Science.gov

Sample records for 1h-1h cosy nmr

  1. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  2. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  3. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  4. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  5. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  6. Ultrafast acquisition of (1)H-(1)H dipolar correlation experiments in spinning elastomers.

    PubMed

    Rouger, Laetitia; Yon, Maxime; Sarou-Kanian, Vincent; Fayon, Franck; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2017-02-09

    We show that two widely used 2D solid-state NMR (ssNMR) pulse sequences can be implemented in an ultrafast (UF) manner, and yield 2D spectra of elastomers in a single scan, under magic-angle spinning. UF 2D ssNMR provides an acceleration of one to several orders of magnitude for classic experiments.

  7. Structure elucidation and complete NMR spectral assignments of four new diterpenoids from Smallantus sonchifolius.

    PubMed

    Dou, De-Qiang; Tian, Fang; Qiu, Ying-Kun; Kang, Ting-Guo; Dong, Feng

    2008-08-01

    Four new diterpenoids, named smaditerpenic acid A-D, together with five known compounds, were isolated from the H(2)O extract of the leaves of Smallantus sonchifolius (yacon) cultivated in Liaoning, China and their structures were elucidated on the basis of one- and two-dimensional NMR (including (1)H, (13)C-NMR, (1)H-(1)H COSY, HSQC, TOCSY, HMBC, and ROESY), electrospray ionization mass spectrometry (ESI-MS), and chemical methods.

  8. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  9. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  10. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    PubMed

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  11. NMR assignments and X-ray diffraction spectra for two unusual kaurene diterpenes from Erythroxylum barbatum.

    PubMed

    dos Santos, Claudio Costa; Sousa Lima, Mary Anne; Braz-Filho, Raimundo; de Simone, Carlos Alberto; Silveira, Edilberto Rocha

    2005-12-01

    The structural characterization of two new, unusual kaurene diterpenes isolated from roots of Erythroxylum barbatum is described. 1D NMR and several 2D shift-correlated NMR pulse sequences (1H,1H-COSY, HMQC, HMBC and NOESY) were used for structure elucidation and the unambiguous 1H and 13C chemical shifts assignments. Single crystal X-ray diffraction analysis was also used to confirm the final relative configuration of the compounds possessing the C-20 methyl and the CH2-15 methylene groups in cis-orientation.

  12. Versatile 1H-31P-31P COSY 2D NMR Techniques for the Characterization of Polyphosphorylated Small Molecules

    PubMed Central

    Majumdar, Ananya; Sun, Yan; Shah, Meha; Freel Meyers, Caren L.

    2010-01-01

    Di- and triphosphorylated small molecules represent key intermediates in a wide range of biological and chemical processes. The importance of polyphosphorylated species in biology and medicine underscores the need to develop methods for the detection and characterization of this compound class. We have reported two-dimensional HPP-COSY spectroscopy techniques to identify diphosphate-containing metabolic intermediates at sub-millimolar concentrations in the methylerythritol phosphate (MEP) isoprenoid biosynthetic pathway.1 In this work, we explore the scope of HPP-COSY based techniques to characterize a diverse group of small organic molecules bearing di- and tri-phosphorylated moieties. These include molecules containing P–O–P and P–C–P connectivities, multivalent P(III)–O–P(V) phosphorus nuclei with widely separated chemical shifts, as well as virtually overlapping 31P resonances exhibiting strong coupling effects. We also demonstrate the utility of these experiments to rapidly distinguish between mono- and diphosphates. A detailed protocol for optimizing these experiments to achieve best performance is presented. PMID:20408590

  13. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  14. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  15. Monoterpene Unknowns Identified Using IR, [to the first power]H-NMR, [to the thirteenth power]C-NMR, DEPT, COSY, and HETCOR

    ERIC Educational Resources Information Center

    Alty, Lisa T.

    2005-01-01

    A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…

  16. NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.).

    PubMed

    Cérantola, Stéphane; Kervarec, Nelly; Pichon, Roger; Magné, Christian; Bessieres, Marie-Anne; Deslandes, Eric

    2004-10-04

    By use of 1H and 13C NMR spectroscopy including 2D 1H,1H DQF-COSY/TOCSY and 1H,13C HMQC/HMBC experiments, the main water-soluble carbohydrate components extracted from leaves of Matricaria maritima were identified as oligofructans composed of a linear chain of (2-->1)-linked beta-D-fructofuranosyl residues specifying an inulin-type structure. Alpha-D-Glcp-(1-->2)-[beta-D-Fruf-(2-->1)-beta-D-Frucf]n-(2-->1)-beta-D-Fruf.

  17. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal.

    PubMed

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-21

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups P1 and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline P1 structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  18. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-01

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups Poverline{1} and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline Poverline{1} structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  19. Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2010-11-01

    A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results.

  20. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance sup 13 C chemical shift editing of sup 1 H- sup 1 H COSY spectra

    SciTech Connect

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P. )

    1989-01-18

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with {sup 13}C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs.

  1. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  2. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  3. CLIP-COSY: A Clean In-Phase Experiment for the Rapid Acquisition of COSY-type Correlations.

    PubMed

    Koos, Martin R M; Kummerlöwe, Grit; Kaltschnee, Lukas; Thiele, Christina M; Luy, Burkhard

    2016-06-27

    The COSY experiment is an essential homonuclear 2D NMR experiment for the assignment of resonances. Its multiplet line shape, however, is often overly complicated, potentially leads to signal intensity losses, and is responsible for long minimum overall acquisition times. Herein, we present CLIP-COSY, a COSY-type experiment yielding clean in-phase peaks. It can be recorded within a few minutes and benefits from enhanced signal intensities for most cross-peaks. In combination with non-uniform sampling, the experiment times can be further reduced, and the in-phase multiplets enable the application of modern homonuclear decoupling techniques in both dimensions. As antiphase cancelations are avoided, CLIP-COSY can also be applied to macromolecules and other samples with broadened lines.

  4. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    PubMed

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  5. Physics at CELSIUS and COSY

    SciTech Connect

    Machner, H.

    2006-02-11

    We review some selected experimental results achieved at the synchrotrons CELSIUS in Sweden and COSY in Germany. They concentrate on meson production with emphasis on the underlying quark structure. The project WASA at COSY is discussed and the search for symmetry breaking in decays of {eta} and {eta}' mesons is highlighted.

  6. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  7. X-ray structure, NMR and stability-in-solution study of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine - A new active compound for cosmetology

    NASA Astrophysics Data System (ADS)

    Walla, Jan; Szüčová, Lucie; Císařová, Ivana; Gucký, Tomáš; Zatloukal, Marek; Doležal, Karel; Greplová, Jarmila; Massino, Frank J.; Strnad, Miroslav

    2010-06-01

    The crystal and molecular structure of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine ( 1) was determined at 150(2) K. The compound crystallizes in monoclinic P2 1/ c space group with a = 10.5642(2), b = 13.6174(3), c = 10.3742(2) Å, V = 1460.78(5) Å 3, Z = 4, R( F) = for 3344 unique reflections. The purine moiety and furfuryl ring are planar and the tetrahydropyran-2-yl is disordered in the ratio 1:3, probably due to the chiral carbon atom C(17). The individual 1H and 13C NMR signals were assigned by 2D correlation experiments such as 1H- 1H COSY and ge-2D HSQC. Stability-in-solution was determined in methanol/water in acidic pH (3-7).

  8. Quantitative time- and frequency-domain analysis of the two-pulse COSY revamped by asymmetric Z-gradient echo detection NMR experiment: Theoretical and experimental aspects, time-zero data truncation artifacts, and radiation damping.

    PubMed

    Kirsch, Stefan; Hull, William E

    2008-07-28

    The two-pulse COSY revamped by asymmetric Z-gradient echo detection (CRAZED) NMR experiment has the basic form 90 degrees -Gdelta-t(rec)-beta-nGdelta-t(rec)-FID, with a phase-encoding gradient pulse G of length delta applied during the evolution time tau for transverse magnetization, readout pulse beta, rephasing gradient nGdelta, and recovery time t(rec) prior to acquisition of the free-induction decay. Based on the classical treatment of the spatially modulated dipolar demagnetizing field and without invoking intermolecular multiple-quantum coherence, a new formulation of the first-order approximation for the theoretical solution of the nonlinear Bloch equations has been developed. The nth-order CRAZED signal can be expressed as a simple product of a scaling function C(n)(beta,tau) and a signal amplitude function A(n)(t), where the domain t begins immediately after the beta pulse. Using a single-quantum coherence model, a generalized rf phase shift function has also been developed, which explains all known phase behavior, including nth-order echo selection by phase cycling. Details of the derivations are provided in two appendices as supplementary material. For n>1, A(n)(t) increases from zero to a maximum value at t=t(max) before decaying and can be expressed as a series of n exponential decays with antisymmetric binomial coefficients. Fourier transform gives an antisymmetric binomial series of Lorentzians, where the composite lineshape exhibits negative wings, zero integral, and a linewidth that decreases with n. Analytical functions are presented for t(max) and A(n)(t(max)) and for estimating the maximal percent error incurred for A(n)(t(max)) when using the first-order model. The preacquisition delay Delta=delta+t(rec) results in the loss of the data points for t=0 to Delta. Conventional Fourier transformation produces time-zero truncation artifacts (reduced negative wing amplitude, nonzero integral, and reduced effective T(2) ( *)), which can be avoided by

  9. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using (1)H, (13)C, (1)H-(1)H DQF-COSY, (1)H-(13)C edited-HSQC, (1)H-(13)C CT-HMBC, and (1)H-(13)C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  10. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  11. Physics at COSY-Juelich

    SciTech Connect

    Stroeher, Hans

    2011-10-21

    COSY, a storage and cooler synchrotron, which is fed by an injector cyclotron, is operated at Forschungszentrum Juelich (Germany). It provides phase space cooled polarized or unpolarized beams of protons and deuterons with momenta between 0.3 and 3.7 GeV/c for internal experiments and to external target stations. The major experimental facilities, used for the ongoing physics program, are ANKE and WASA (internal) and TOF (external). A new internal target station to investigate polarization build-up by spin-filtering (PAX) has recently been commissioned. COSY is the machine for hadron spin physics on a world-wide scale, which is also used for tests in conjunction with plans to build a dedicated storage ring for electric dipole moment (EDM) measurements of proton, deuteron and {sup 3}He. In this contribution recent results as well as future plans are summarized.

  12. N*ews from COSY

    NASA Astrophysics Data System (ADS)

    Ströher, Hans

    2012-04-01

    COSY, a storage and cooler synchrotron, which is fed by an injector cyclotron, is operated at Forschungszentrum Jülich (Germany). It provides phase space cooled polarized or unpolarized beams of protons and deuterons with momenta between 0.3 and 3.7 GeV/c for internal experiments and to external target stations. The major experimental facilities, used for the ongoing physics program, are ANKE and WASA (internal) and TOF (external). A new internal target station to investigate polarization build-up by spin-filtering (PAX) has recently been commissioned. COSY is the machine for hadron spin physics on a world-wide scale, which in recent times is also used for tests in conjunction with plans to build a dedicated storage ring for electric dipole moment (EDM) measurements of proton, deuteron and 3He. In this contribution selected experimental results from the N*-program are presented.

  13. The NMR studies on two new furostanol saponins from Agave sisalana leaves.

    PubMed

    Zou, Peng; Fu, Jing; Yu, He-shui; Zhang, Jie; Kang, Li-ping; Ma, Bai-ping; Yan, Xian-zhong

    2006-12-01

    The detailed NMR studies and full assignments of the 1H and 13C spectral data for two new furostanol saponins isolated from Agave sisalana leaves are described. Their structures were established using a combination of 1D and 2D NMR techniques including 1H, 13C, 1H-1H COSY, TOCSY, HSQC, HMBC and HSQC-TOCSY, and also FAB-MS spectrometry and chemical methods. The structures were established as (25S)-26-(beta-D-glucopyranosyl)-22 xi-hydroxyfurost-12-one-3beta-yl-O-alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galacto- pyranoside (1) and (25S)-26-(beta-D-glucopyranosyl)-22xi-hydroxyfurost-5-en-12-one-3beta-yl-O-alpha-L-rhamno- pyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-O-[O-beta-D-glucopyranosyl-(1-->2)]-O-beta-D-glucopyranosyl- (1-->4)-beta-D-galactopyranoside (2).

  14. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  15. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  16. Recent Results from Experiments at COSY

    SciTech Connect

    Goldenbaum, Frank

    2010-08-05

    In hadron physics, experiments using hadronic probes may shed light on open questions on the structure of hadrons, their interactions that are subject to the strong force and on the symmetries of nature. Therefore a major focus of the physics program studied at the COoler SYnchrotron COSY of the Forschungszentrum Juelich is the production of mesons and hyperons in hadron- hadron scattering with the aim to investigate relevant production processes, interactions of the participating particles as well as symmetries and symmetry breaking. The COoler SYnchrotron COSY at Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c covering hadron physics in the light quark sector. The availability of the beam cooling systems allow precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets. Due to the excellent experimental conditions at COSY single- and double-polarization measurements can be performed with high reaction rates. With the operation of the recently installed WASA-at-COSY apparatus, high-statistics studies aiming at rare decays of {eta} and {eta}{sup '} are effectively turning COSY into a meson factory. This contribution summarizes the ongoing physics program at the COSY facility, using the detector systems ANKE, WASA and COSY-TOF highlighting a few selective recent results and outlining future developments. The research at COSY also provides a step towards the realization of FAIR with studies on spin manipulation and polarization build-up of protons in polarized targets.

  17. Fischer indolisation of N-(α-ketoacyl)anthranilic acids into 2-(indol-2-carboxamido)benzoic acids and 2-indolyl-3,1-benzoxazin-4-ones and their NMR study.

    PubMed

    Proisl, Karel; Kafka, Stanislav; Urankar, Damijana; Gazvoda, Martin; Kimmel, Roman; Košmrlj, Janez

    2014-12-21

    N-(α-ketoacyl)anthranilic acids reacted with phenylhydrazinium chloride in boiling acetic acid to afford 2-(indol-2-carboxamido)benzoic acids in good to excellent yields and 2-indolyl-3,1-benzoxazin-4-ones as by-products. The formation of the latter products could easily be suppressed by a hydrolytic workup. Alternatively, by increasing the reaction temperature and/or time, 2-indolyl-3,1-benzoxazin-4-ones can be obtained exclusively. Optimisations of the reaction conditions as well as the scope and the course of the transformations were investigated. The products were characterized by (1)H, (13)C and (15)N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments ((1)H-(1)H gs-COSY, (1)H-(13)C gs-HSQC, (1)H-(13)C gs-HMBC) with (1)H-(15)N gs-HMBC as a practical tool to determine (15)N NMR chemical shifts at the natural abundance level of (15)N isotope.

  18. Revised NMR data for incartine: an alkaloid from Galanthus elwesii.

    PubMed

    Berkov, Strahil; Reyes-Chilpa, Ricardo; Codina, Carles; Viladomat, Francesc; Bastida, Jaume

    2007-07-12

    Phytochemical studies on Galanthus elwesii resulted in the isolation of five alkaloids: incartine, hordenine, hippeastrine, 8-O-demethylhomolycorine and lycorine. The NMR data given previously for incartine were revised and completed by two-dimensional 1H-1H and 1H-13C chemical shift correlation experiments. In vitro studies on the bioactivity of incartine were carried out.

  19. Making Submicron CoSi2 Structures On Silicon Substrates

    NASA Technical Reports Server (NTRS)

    Nieh, Simon K. W.; Lin, True-Lon; Fathauer, Robert W.

    1989-01-01

    Experimetnal fabrication process makes submicron-sized structures of single-crystal metallic CoSi2 on silicon substrates. Amorphous Co:Si(1:2) crystallized by electron beam becoming single-crystal CoSi2. Remaining amorphous Co:Si then preferentially etched away. When fully developed, process used to make fine wires or dots exhibiting quantum confinement of charge carriers.

  20. Q.E.COSY: determining sign and size of small deuterium residual quadrupolar couplings using an extended E.COSY principle.

    PubMed

    Tzvetkova, Pavleta; Luy, Burkhard

    2016-05-01

    Residual quadrupolar couplings contain important structural information comparable with residual dipolar couplings. However, the measurement of sign and size of especially small residual quadrupolar couplings is difficult. Here, we present an extension of the E.COSY principle to spin systems consisting of a Spin 1 coupled to a spin ½ nucleus, which allows the determination of the sign of the quadrupolar coupling of the Spin 1 nucleus relative to the heteronuclear coupling between the spins. The so-called Q.E.COSY approach is demonstrated with its sign-sensitivity using variable angle NMR, stretched gels and liquid crystalline phases applied to various CD and CD3 groups. Especially the sign-sensitive measurement of residual quadrupolar couplings that remain unresolved in conventional deuterium 1D spectra is shown.

  1. Resveratrol tetramer of hopeaphenol isolated from Shorea johorensis (Dipterocarpaceae)

    NASA Astrophysics Data System (ADS)

    Aisha, Farra; Din, Laily B.; Yaacob, W. A.

    2014-09-01

    Hopeaphenol (1) as a resveratrol tetramer was isolated from the bark of Shorea johorensis collected from Imbak Canyon, Sabah, Malaysia. The structure of this compound was determined by the spectroscopic evidences using 1H- and 13C-NMR assigned with HSQC, HMBC, 1H-1H COSY and 1H-1H NOESY spectra, mass spectrum, and by comparison with reported data.

  2. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  3. Physics at COSY-Jülich

    NASA Astrophysics Data System (ADS)

    Ströher, Hans

    2011-10-01

    COSY, a storage and cooler synchrotron, which is fed by an injector cyclotron, is operated at Forschungszentrum Jülich (Germany). It provides phase space cooled polarized or unpolarized beams of protons and deuterons with momenta between 0.3 and 3.7 GeV/c for internal experiments and to external target stations. The major experimental facilities, used for the ongoing physics program, are ANKE and WASA (internal) and TOF (external). A new internal target station to investigate polarization build-up by spin-filtering (PAX) has recently been commissioned. COSY is the machine for hadron spin physics on a world-wide scale, which is also used for tests in conjunction with plans to build a dedicated storage ring for electric dipole moment (EDM) measurements of proton, deuteron and 3He. In this contribution recent results as well as future plans are summarized.

  4. Stacking structure of confined 1-butanol in SBA-15 investigated by solid-state NMR spectroscopy.

    PubMed

    Lin, Yun-Chih; Chou, Hung-Lung; Sarma, Loka Subramanyam; Hwang, Bing-Joe

    2009-10-12

    Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid-state NMR spectroscopic investigations on 1-butanol molecules confined in the hydrophilic mesoporous SBA-15 host. A range of NMR spectroscopic measurements comprising of (1)H spin-lattice (T(1)), spin-spin (T(2)) relaxation, (13)C cross-polarization (CP), and (1)H,(1)H two-dimensional nuclear Overhauser enhancement spectroscopy ((1)H,(1)H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide-line (2)H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1-butanol in SBA-15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1-butanol are extremely restricted in the confined space of the SBA-15 pores. The dynamics of the confined molecules of 1-butanol imply that the (1)H,(1)H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1-butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA-15 pores in a time-average state by solid-state NMR spectroscopy with the (1)H,(1)H 2D NOESY technique.

  5. Making CoSi(2) Layers By Ion Implantation

    NASA Technical Reports Server (NTRS)

    Namavar, Fereydoon

    1994-01-01

    Monolithic photovoltaic batteries containing vertical cells include buried CoSi(2) contact layers. Vertical-junction photovoltaic cells in series fabricated in monolithic structure. N- and p-doped silicon layers deposited epitaxially. The CoSi(2) layers, formed by ion implantation and annealing, serve as thin, low-resistance ohmic contacts between cells.

  6. Meson-production experiments at COSY-Jülich

    NASA Astrophysics Data System (ADS)

    Büscher, M.

    2010-09-01

    Selected results from experiments at COSY-Jülich are presented: an attempt to measure the mass of the η meson with high precision (ANKE facility), first steps towards the detection of rare η decays (WASA), and several measurements of Kbar K-pair production (ANKE, COSY-11, MOMO).

  7. 1H, 13C NMR spectral and single crystal structural studies of toxaphene congeners. Quantum chemical calculations for preferred conformers of 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene and their DFT/GIAO 13C chemical shifts

    NASA Astrophysics Data System (ADS)

    Laihia, K.; Valkonen, A.; Kolehmainen, E.; Suontamo, R.; Nissinen, M.; Nikiforov, V.; Selivanov, S.

    2005-11-01

    The 1H and 13C NMR chemical shifts for six toxaphene congeners: 2- exo,3- endo,6- exo,8,9,10-hexachloro- ( 1), 2- exo,3- endo,5- exo,9,9,10,10-heptachloro- ( 2), 2- exo,3- endo,6- exo,8,9,10,10-heptachloro- ( 3), 2- exo,3- endo,5- exo,6- endo,8,9,10-heptachloro- ( 4), 2- exo,3- endo,5- exo,6- endo,8,9,9,10-octachlorobornane ( 5) and 2,5- endo,6- exo,8,9,9,10,10-octachloro-2-bornene ( 6) are reported. Their chemical shift assignments have been obtained by means of Pulsed Field Gradient (PFG) Double Quantum Filtered (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H, 13C Heteronuclear Multiple Bond Correlation (HMBC) experiments. A single crystal X-ray structural analysis was made for compounds 1, 3, 4 and 6. The prevalences of two octachlorobornene rotamers ( 6 a, 6 b) were elucidated by ab initio MO method and single point DFT/GIAO calculations for 13C chemical shifts. Theoretical calculations proved that the single crystal structure of 6 corresponds its most stable conformer in solution.

  8. Spin Filtering Studies at COSY and AD

    SciTech Connect

    Nass, Alexander

    2009-08-04

    The high physics potential of experiments with stored high-energy polarized antiprotons led to the proposal of PAX (Polarized Antiproton eXperiment) for the High Energy Storage Ring (HESR) of the FAIR at GSI (Darmstadt/Germany). It is proposed to polarize a stored antiproton beam by means of spin filtering with a polarized H (D) gas target. The feasibility of spin filtering has been demonstrated in the FILTEX experiment. The current interpretation foresees a self-cancellation of the electron contribution to the filtering process and only the hadronic contribution is effective. Several experimental studies with protons (at COSY/Juelich) as well as antiprotons (at AD/CERN) will be carried out to test the principle and measure p-barp-vector and p-bard-vector cross sections. A polarized internal gas target (PIT) with surrounding Silicon detectors immersed into a low-beta section has to be set up.

  9. Spin Filtering Studies at COSY and AD

    NASA Astrophysics Data System (ADS)

    Nass, Alexander

    2009-08-01

    The high physics potential of experiments with stored high-energy polarized antiprotons led to the proposal of PAX (Polarized Antiproton eXperiment) [1] for the High Energy Storage Ring (HESR) of the FAIR at GSI (Darmstadt/Germany). It is proposed to polarize a stored antiproton beam by means of spin filtering with a polarized H (D) gas target. The feasibility of spin filtering has been demonstrated in the FILTEX experiment. The current interpretation foresees a self-cancellation of the electron contribution to the filtering process and only the hadronic contribution is effective. Several experimental studies with protons (at COSY/Jülich) as well as antiprotons (at AD/CERN) will be carried out to test the principle and measure p¯p⃗ and p¯d⃗ cross sections. A polarized internal gas target (PIT) with surrounding Silicon detectors immersed into a low-β section has to be set up.

  10. COSI: The Compton Spectrometer and Imager Science Program

    NASA Astrophysics Data System (ADS)

    Tomsick, John; Jean, Pierre; Chang, Hsiang-Kuang; Boggs, Steven; Zoglauer, A.; Von Ballmoos, Peter; Amman, Mark; Chiu, Jeng-Lun; Chang, Yuan-Hann.; Chou, Yi; Kierans, Carolyn; Lin, Chih-Hsun.; Lowell, Alex; Shang, Jie-Rou.; Tseng, Chao-Hsiung; Yang, Chien-Ying

    The Compton Spectrometer and Imager (COSI), which was formerly known as the Nuclear Compton Telescope (NCT), is a balloon-borne soft gamma-ray telescope (0.2-5 MeV) designed to probe the origins of Galactic positrons, uncover sites of nucleosynthesis in the Galaxy, and perform pioneering studies of gamma-ray polarization in a number of source classes. COSI uses a compact Compton telescope design, resulting from a decade of development under NASA's ROSES program - a modern take on techniques successfully pioneered by COMPTEL on CGRO. We have rebuilt the COSI instrument and flight systems, upgraded for balloon flights and improved polarization sensitivity. We will present the redesign of COSI and the overall goals of the 5-year science program. Three science flights are planned to fulfill the COSI science goals: an LDB in 2014 from Antarctica on a superpressure balloon (SuperCOSI), followed by two 100-day ULDB flights from New Zealand. COSI is a wide-field survey telescope designed to perform imaging, spectroscopy, and polarization measurements. It employs a novel Compton telescope design utilizing a compact array of cross-strip germanium detectors (GeDs) to resolve individual gamma-ray interactions with high spectral and spatial resolution. The COSI array is housed in a common vacuum cryostat cooled by a mechanical cryocooler. An active CsI shield encloses the cryostat on the sides and bottom. The FoV of the instrument covers 25% of the full sky at a given moment. The COSI instrument is mature, building upon considerable heritage from the previous NCT balloon instrument that underwent a successful technology demonstration flight in June 2005 from Fort Sumner, NM, a successful "first light" science flight from Fort Sumner in May 2009, and quickly turned around and delivered on time for a launch campaign from Alice Springs, Australia in June 2010, where it unfortunately suffered a launch mishap. The NCT instrument and Flight System are being rebuilt under the NASA

  11. The Compton Spectrometer and Imager (COSI) Superpressure Balloon Payload

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.

    2014-08-01

    The Compton Spectrometer and Image (COSI) is a ULDB-borne soft gamma-ray telescope (0.2-5 MeV) designed to probe the origins of Galactic positrons, uncover sites of nucleosynthesis in the Galaxy, and perform pioneering studies of gamma-ray polarization in a number of source classes. COSI uses a compact Compton telescope design, resulting from a decade of development under NASA’s ROSES program - a modern take on techniques successfully pioneered by COMPTEL on CGRO. COSI performs groundbreaking science by combining improvements in sensitivity, spectral resolution, and sky coverage. The COSI instrument and flight systems have been designed for flight on NASA’s 18 MCF superpressure balloon (SPB). We are now beginning a series science flights to fulfill the COSI science goals: a SPB in 2014 from Antarctica, followed by two 100-day ULDB flights from New Zealand.COSI is a wide-field survey telescope designed to perform imaging, spectroscopy, and polarization measurements. It employs a novel Compton telescope design utilizing a compact array of cross-strip germanium detectors (GeDs) to resolve individual gamma-ray interactions with high spectral and spatial resolution. The COSI array is housed in a common vacuum cryostat cooled by a mechanical cryocooler. An active CsI Shield encloses the cryostat on the sides and bottom. The FoV of the instrument covers 25% of the full sky at a given moment.The COSI instrument builds upon considerable heritage from the previous Nuclear Compton Telescope (NCT) balloon instrument that underwent a successful technology demonstration flight in June 2005 from Fort Sumner, NM, a successful “first light” science flight from Fort Sumner in May 2009, and a launch campaign from Alice Springs, Australia in June 2010, where it unfortunately suffered a launch mishap. COSI has been upgraded from the previous NCT instrument by conversion to a detector configuration optimized for polarization sensitivity and addition of a cryocooler to remove

  12. Solid state and solution properties of lanthanide(III) complexes of a tetraiminodiphenolate macrocyclic ligand. X-ray structure, 1H NMR and luminescence spectral studies

    NASA Astrophysics Data System (ADS)

    Bag, Pradip; Dutta, Supriya; Flörke, Ulrich; Nag, Kamalaksha

    2008-11-01

    The lanthanide(III) complexes of composition [Ln(LH 2)(H 2O) 3Cl]Cl 2 (Ln = La-Lu and Y, 1- 15) derived from the tetraiminodiphenolate macrocyclic ligand L 2- have been prepared and characterized. In these compounds, the two uncoordinated imine nitrogens of the macrocycle are protonated and hydrogen-bonded with the metal-bound phenolate oxygens and thereby provide a zwitterionic structure to the ligand. The X-ray crystal structure of the compounds of La and Nd have been determined and they are found to be isostructural. The coordination polyhedra for the eight-coordinated metal centre in the complex cation [Ln(N 2O 2)(O 3Cl)] 2+ can be described as distorted square antiprism. Intermolecular hydrogen-bondings involving the three coordinated water molecules and the two uncoordinated chloride ions give rise to the 2-D network in which the chlorides are triply hydrogen-bridged and the water molecules are doubly hydrogen-bridged. Moreover, the aromatic rings in this network are involved in π-π interaction in two different ways. 1H NMR spectra of the complexes in (CD 3) 2SO have been studied. The spectral assignments for the paramagnetic complexes of Ce-Eu have been made from { 1H- 1H} COSY spectra and longitudinal relaxation time ( T1) measurements. It is inferred that the complex species [Ln(LH 2){(CD 3) 2SO} 4] 3+ that exist in solution are isostructural for the compounds of La-Eu. The contact and pseudo-contact contribution to the isotropic paramagnetic shifts in the complexes of Ce-Eu have been estimated. The luminescence spectra of the complexes of La, Sm, Eu and Tb have been studied in methanol-ethanol (1:4) glassy matrix and in the solid state at 77 K, and the quantum yields have been estimated.

  13. EPIC Muon Cooling Simulations using COSY INFINITY

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanasev, R.P. Johnson, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Next gen­er­a­tion mag­net sys­tems need­ed for cool­ing chan­nels in both neu­tri­no fac­to­ries and muon col­lid­ers will be in­no­va­tive and com­pli­cat­ed. De­sign­ing, sim­u­lat­ing and op­ti­miz­ing these sys­tems is a chal­lenge. Using COSY IN­FIN­I­TY, a dif­fer­en­tial al­ge­bra-based code, to sim­u­late com­pli­cat­ed el­e­ments can allow the com­pu­ta­tion and cor­rec­tion of a va­ri­ety of high­er order ef­fects, such as spher­i­cal and chro­mat­ic aber­ra­tions, that are dif­fi­cult to ad­dress with other sim­u­la­tion tools. As an ex­am­ple, a he­li­cal dipole mag­net has been im­ple­ment­ed and sim­u­lat­ed, and the per­for­mance of an epicyclic para­met­ric ion­iza­tion cool­ing sys­tem for muons is stud­ied and com­pared to sim­u­la­tions made using G4Beam­line, a GEAN­T4 toolk­it.

  14. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  15. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  16. Stereoselective synthesis, spectral and antimicrobial studies of some cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.

    2014-11-01

    A series of novel cyanoacetyl hydrazones of 3-alkyl-2,6-diarylpiperidin-4-ones were synthesized stereoselectively and characterized by IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY and 1H-13C COSY spectra. The stereochemistry of the synthesized compounds was established using NMR spectra. Antimicrobial screening of the synthesized compounds revealed their antibacterial and antifungal potencies. Growth inhibition of Enterobacter Aerogenes by compound 15 was found to be superior to the standard drug.

  17. Studying the magnetic properties of CoSi single crystals

    SciTech Connect

    Narozhnyi, V. N. Krasnorussky, V. N.

    2013-05-15

    The magnetic properties of CoSi single crystals have been measured in a range of temperatures T = 5.5-450 K and magnetic field strengths H {<=} 11 kOe. A comparison of the results for crystals grown in various laboratories allowed the temperature dependence of magnetic susceptibility {chi}(T) = M(T)/H to be determined for a hypothetical 'ideal' (free of magnetic impurities and defects) CoSi crystal. The susceptibility of this ideal crystal in the entire temperature range exhibits a diamagnetic character. The {chi}(T) value significantly increases in absolute value with decreasing temperature and exhibits saturation at the lowest temperatures studied. For real CoSi crystals of four types, paramagnetic contributions to the susceptibility have been evaluated and nonlinear (with respect to the field) contributions to the magnetization have been separated and taken into account in the calculations of {chi}(T).

  18. Polarization of stored beam by spin-filtering at COSY

    NASA Astrophysics Data System (ADS)

    Ciullo, G.

    2014-01-01

    In the challenging aim to achieve polarized antiproton, the PAX collaboration performed dedicated measurements of the spin-dependent polarizing cross section for p- p scattering at COSY. The result, under a very nice control of the process, agrees with the theoretical previsions, and confirms the pursuability of the spin-filtering for polarizing antiprotons.

  19. Unequivocal assignments of flavonoids from Tephrosia sp. (Fabaceae).

    PubMed

    Arriaga, A M C; Lima, J Q; Vasconcelos, J N; de Oliveira, M C F; Andrade-Neto, M; Santiago, G M P; Uchoa, D E A; Malcher, G T; Mafezoli, J; Braz-Filho, R

    2009-06-01

    (1)H and (13)C NMR chemical shifts of praecansone B, pongaflavone and dehydrorotenone isolated from Tephrosia egregia Sandw and obovatin from T. toxicaria Pers. were unambiguously assigned by 1D and 2D NMR experiments including (1)H, (1)H COSY, gHMQC and gHMBC, allowing the correction of literature assignments.

  20. Acylated pregnane glycosides from Caralluma russeliana.

    PubMed

    Abdel-Sattar, Essam; Ahmed, Ahmed A; Hegazy, Mohamed-Elamir F; Farag, Mohamed A; Al-Yahya, Mohammad Abdul-Aziz

    2007-05-01

    The chloroform extract of the aerial parts of Caralluma russeliana yielded four acylated pregnane glycosides, namely russeliosides E-H, three were found now. The structures of the compounds were elucidated using MS, 1H NMR, 13C NMR, 1H-1H COSY, HMQC, NOESY and HMBC experiments.

  1. Physics Program at COSY-Juelich with Polarized Hadronic Probes

    SciTech Connect

    Kacharava, Andro

    2009-08-04

    Hadron physics aims at a fundamental understanding of all particles and their interactions that are subject to the strong force. Experiments using hadronic probes could contribute to shed light on open questions on the structure of hadrons and their interaction as well as the symmetries of nature. The COoler SYnchrotron COSY at the Forschungszentrum Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c. The availability of both an electron cooler as well as a stochastic beam cooling system allows for precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets.This contribution summarizes the ongoing physics program at the COSY facility using ANKE, WASA and TOF detector systems with polarized hadronic probes, highlighting recent results and outlining the new developments.

  2. Microstructural characterization of as-cast Co-Si alloys

    SciTech Connect

    Faria, M.I.S.T. . E-mail: ismenia@phase.faenquil.br; Coelho, G.C.; Nunes, C.A.; Avillez, R.R.

    2006-01-15

    This work presents results of microstructural characterization of as-cast Co-Si alloys. The alloys of different compositions were prepared by arc melting Co (min. 99.97%) and Si (min. 99.99%) under argon atmosphere in a water-cooled copper crucible with a nonconsumable tungsten electrode and titanium getter. All samples were characterized by scanning electron microscopy (SEM) using back-scattered electron (BSE) mode and X-ray diffraction (XRD). A good conformity between the currently accepted Co-Si phase diagram and the experimental results from this work was verified. No indication of the {beta}Co{sub 2}Si was observed in the as-cast microstructures. As in previous investigations, the Co{sub 3}Si phase has not been observed in the samples at room temperature; however, microstructural evidence suggests its stability at high temperature.

  3. Recent Results from the WASA-at-COSY Experiment

    SciTech Connect

    Kupsc, Andrzej

    2011-10-24

    Studies of light meson decays are the key experiments for the WASA detector at COSY-Juelich. One of the world largest data samples of the {eta} meson decays have been recently collected in the pd {yields}{sup 3}He{eta} and in the pp {yields} pp{eta} reactions. The status of the analysis of various decay channels and the further plans for the light meson decay program are presented.

  4. First internal and external experiments at COSY Juelich

    NASA Astrophysics Data System (ADS)

    Prasuhn, D.; Maier, R.; Bechstedt, U.; Dietrich, J.; Hacker, U.; Martin, S.; Stockhorst, H.; Tölle, R.; Grzonka, D.; Nake, C.; Mosel, F.

    1995-02-01

    The inauguration of the cooler synchrotron COSY Jülich was celebrated on April 1st, 1993. After the first successful acceleration to proton momenta above 800 GeV/ c, beamtimes for experiments were scheduled in parallel to further machine development. The first experiment was the internal target experiment EDDA, which investigated the energy dependence of the p-p interaction. It makes use of a 3 × 4 μm 2 thin CH 2 fiber as an internal target. The thickness of the fiber is more than adequate to achieve high luminosities, so the intensity of the stored beam has to be reduced to 10 7 p. On the other hand, it is thin enough to achieve beam lifetimes of 3 s at 1.4 GeV/ c. Details of the target fabrication and the first experimental results will be discussed. Both external experimental facilities at COSY, the time-of-flight spectrometer, and the magnetic spectrometer BIG KARL use a liquid hydrogen (deuterium) target. The first experiments were carried out at proton energies between 300 MeV and 500 MeV. Also, these experimental data will be presented. Two further internal experiments are prepared for the installation into the COSY ring. The target for the first experiment is a gas-jet target, the second experiment uses ribbon targets for the interaction. The status of both experimental setups will be shown.

  5. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  6. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  7. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  8. Complete assignment of the (1)H and (13)C NMR spectra of cis and trans isonucleoside derivatives of purine with a tetrahydropyran ring.

    PubMed

    Besada, Pedro; Costas, Tamara; Terán, Carmen

    2010-06-01

    (1)H and (13)C NMR chemical shifts of cis and trans isonucleoside analogues of purine in which the furanose moiety is substituted by a tetrahydropyran ring were completely assigned using one- and two-dimensional NMR experiments that include NOE, DEPT, COSY and HSQC. The significant (1)H and (13)C NMR signals differentiating between the cis and trans stereoisomers were compared.

  9. Interaction of Cu with CoSi2 with and without TiNx barrier layers

    NASA Astrophysics Data System (ADS)

    Olowolafe, J. O.; Li, Jian; Blanpain, B.; Mayer, J. W.

    1990-09-01

    Thermally induced interactions of Cu with CoSi2, with and without interposed TiNx layers, have been studied using Rutherford backscattering spectrometry, Auger electron spectroscopy, and x-ray diffraction. Cu diffuses through a preformed CoSi2 layer to form the structure Cu/CoSi2/Cu3Si/Si at temperatures above 300 °C, and no dissociation of CoSi2 occurs. A 50 nm TiNx(x≊1) layer is observed to be an effective diffusion barrier up to about 500 °C between Cu and CoSi2.

  10. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  11. Characterization of a cinnamoyl derivative from broccoli (Brassica oleracea L. var. italica) florets.

    PubMed

    Survay, Nazneen Shaik; Kumar, Brajesh; Upadhyaya, Chandrama Prakash; Ko, Eunyoung; Lee, Choonghwan; Choi, Jung Nam; Yoon, Do-Young; Jung, Yi-Sook; Park, Se Won

    2010-12-01

    A new intact glucosinolate Cinnamoyl derivative [6'-O-trans-(4″- hydroxy cinnamoyl)-4-(methylsulphinyl) butyl glucosinolate] (A) has been isolated from Broccoli (Brassica oleracea L. var. italica) florets. The compound was isolated and characterized by LC, MS-ESI, FTIR, (1)H and (13)C NMR as well as (1)H-(1)H COSY, DEPT 135° spectrometric experiments.

  12. Highly oxygenated monoterpenes from Chenopodium ambrosioides.

    PubMed

    Ahmed, A A

    2000-07-01

    Three new monoterpenes (3-5) were isolated from an organic extract of the aerial parts of Chenopodium ambrosioides. Structures were established on the basis of MS and NMR spectroscopic ((1)H, (13)C, (1)H-(1)H COSY, HMQC and HMBC) data.

  13. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  14. Non-uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination

    PubMed Central

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-01-01

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [1H,1H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. PMID:26227870

  15. Metabolite analysis of Cannabis sativa L. by NMR spectroscopy.

    PubMed

    Flores-Sanchez, Isvett Josefina; Choi, Young Hae; Verpoorte, Robert

    2012-01-01

    NMR-based metabolomics is an analytical platform, which has been used to classify and analyze Cannabis sativa L. cell suspension cultures and plants. Diverse groups of primary and secondary metabolites were identified by comparing NMR data with reference compounds and/or by structure elucidation using ¹H-NMR, J-resolved, ¹H-¹H COSY, and ¹H-¹³C HMBC spectroscopy. The direct extraction and the extraction by indirect fractionation are two suitable methods for the C. sativa sample preparation. Quantitative analyses could be performed without requiring fractionation or isolation procedures.

  16. A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy.

    PubMed

    Subramanian, R; Kelley, W P; Floyd, P D; Tan, Z J; Webb, A G; Sweedler, J V

    1999-12-01

    An HPLC NMR system is presented that integrates a commercial microbore HPLC system using a 0.5-mm column with a 500-MHz proton NMR spectrometer using a custom NMR probe with an observe volume of 1.1 microL and a coil fill factor of 68%. Careful attention to capillary connections and NMR flow cell design allows on-line NMR detection with no significant loss in separation efficiency when compared with a UV chromatogram. HPLC NMR is performed on mixtures of amino acids and small peptides with analyte injection amounts as small as 750 ng; the separations are accomplished in less than 10 min and individual NMR spectra are acquired with 12 s time resolution. Stopped-flow NMR is achieved by diversion of the chromatographic flow after observation of the beginning of the analyte band within the NMR flow cell. Isolation of the compound of interest within the NMR detection cell allows multidimensional experiments to be performed. A stopped-flow COSY spectrum of the peptide Phe-Ala is acquired in 3.5 h with an injected amount of 5 micrograms.

  17. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  18. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  19. Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination of isomers of 1,4-diketone derivatives.

    PubMed

    Xu, Guohua; Yin, Guodong; Guo, Wenbo; Wu, Anxin; Cui, Yanfang

    2008-01-01

    Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination for a series of new isomers of 1,4-diketone derivatives obtained via self-sorting tandem reaction were accomplished by means of one- and two-dimentional NMR experiments including 1H, 13C, gCOSY, gHSQC, gHMBC, and NOESY.

  20. Two new pentacyclic triterpenoids from Lantana camara LINN.

    PubMed

    Begum, Sabira; Zehra, Syeda Qamar; Siddiqui, Bina Shaheen

    2008-09-01

    Two new pentacyclic triterpenoids, namely lantanoic acid (1) and camaranoic acid (2), and six known compounds such as lantic acid, camarinic acid, camangeloyl acid, camarinin, oleanonic acid, and ursonic acid were isolated from the aerial parts of Lantana camara LINN. Structures of the new constituents were elucidated by chemical transformation and spectral studies including 1D ((1)H- and (13)C-NMR) and 2D ((1)H-(1)H correlation spectroscopy (COSY), nuclear Overhauser effect spectroscopy (NOESY), (1)H-(1)H total correlation spectroscopy (TOCSY), J-resolved, (1)H-detected heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC)) NMR spectroscopy.

  1. Alkaloids from Hippeastrum morelianum Lem. (Amaryllidaceae).

    PubMed

    Giordani, Raquel B; de Andrade, Jean P; Verli, Hugo; Dutilh, Julie H; Henriques, Amélia T; Berkov, Strahil; Bastida, Jaume; Zuanazzi, José Angelo S

    2011-10-01

    The Amaryllidaceae family has proven to be a rich source of active molecules. As part of an ongoing project, we report a phytochemical study of Hippeastrum morelianum (Amaryllidaceae), from which we have isolated two homolycorine-type alkaloids, the new 2α,7-dimethoxyhomolycorine (1) and the poorly described candimine (2), as well as six known alkaloids: tazettine, pretazettine, 3-epimacronine, haemanthamine, hamayne and trisphaeridine. For reference purposes, the NMR of the isolated compounds was unequivocally described, based on 2D NMR measurements including (1)H-(1)H COSY, (1)H-(1)H NOESY, HSQC and HMBC.

  2. Subsurface Growth of CoSi2 by Deposition of Co on Si-Capped CoSi2 Seed Regions

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1991-01-01

    At a growth temperature of 800 C, Co deposited on Si(111) diffuses through a Si cap and exhibits oriented growth on buried CoSi2 grains, a process referred to as endotaxy. This occurs preferentially to surface nucleation of CoSi2 provided the thickness of the Si cap is less than a critical value between 100 and 200 nm for a deposition rate of 0.01 nm/s. Steady-state endotaxy is modeled under the assumption that the process is controlled by Co diffusion.

  3. Structure elucidation and NMR assignments of two unusual monoterpene indole alkaloids from Psychotria stachyoides.

    PubMed

    Pimenta, Antonia Torres Avila; Braz-Filho, Raimundo; Delprete, Piero Giuseppe; de Souza, Elnatan Bezerra; Silveira, Edilberto Rocha; Lima, Mary Anne Sousa

    2010-09-01

    Two unusual monoterpene indole alkaloids, stachyoside (1) and nor-methyl-23-oxo-correantoside (2), have been isolated from the aerial parts of Psychotria stachyoides. The structural elucidation of both compounds was performed by the aid of HRESIMS, FT-IR, and 1D- and 2D-NMR techniques including COSY, HSQC, HMBC, and NOESY.

  4. Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1992-01-01

    The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.

  5. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  6. Selective Detection of 1H NMR Resonances of 13CH n Groups Using Two-Dimensional Maximum-Quantum Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, M.; Farrant, R. D.; Nicholson, J. K.; Lindon, J. C.

    Methods for editing spectra based upon maximum-quantum filtering in two-dimensional 1H NMR are presented (MAXY NMR). Separation of 1H resonances from 13CH, 13CH 2, and 13CH 3 groups is demonstrated, using the coherence of the attached natural-abundance 13C spin. Two-dimensional correlation pulse sequences based on J connectivity (MAXY-COSY), total J connectivity (MAXY-TOCSY), and NOE and exchange processes (MAXY-NOESY) are given and exemplified using dexamethasone as a model compound. In addition, an improved form of a 13CH 2 only COSY spectrum (gem-COSY) is shown, and the application of z magnetic-field gradients is demonstrated as an alternative to phase cycling. The approach should have utility in the assignment of complex 1H NMR spectra which arise from peptides or complex mixtures such as biofluids.

  7. Revised NMR data for 9-O-demethylgalanthine: an alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity.

    PubMed

    Safratová, Marcela; Novák, Zdenek; Kulhánková, Andrea; Kunes, Jirí; Hrabinová, Martina; Jun, Daniel; Macáková, Katerina; Opletal, Lubomír; Cahlíková, Lucie

    2014-06-01

    Ongoing studies of Zephyranthes robusta resulted in the isolation of the lycorine-type alkaloid previously called carinatine and 10-O-demethylgalanthine. The NMR data given previously for this compound were revised and completed by two-dimensional 1H-1H and 1H-13C chemical shift correlation experiments. The name of the isolated compound was corrected to 9-O-demethylgalanthine in accordance with the currently used system of numbering of lycorine-type alkaloids. 9-O-Demethylgalanthine and galanthine, a previously isolated alkaloid from Z robusta, were inactive in acetylcholinesterase/butyrylcholinesterase assays (IC50 > 500 microM), but showed important prolyl oligopeptidase inhibition activity.

  8. Disorder dependent half-metallicity in Mn{sub 2}CoSi inverse Heusler alloy

    SciTech Connect

    Singh, Mukhtiyar; Saini, Hardev S.; Thakur, Jyoti; Reshak, Ali H.; Kashyap, Manish K.

    2013-12-15

    Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disorders in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.

  9. The TRIC Experiment: A P-even Time-Reversal Invariance Test at COSY

    SciTech Connect

    Eversheim, P.D.

    2005-10-26

    At the cooler synchrotron COSY at Juelich a novel (P-even, T-odd) true null test was proposed, that is supposed to measure the time-reversal invariance sensitive observable, the total cross-section correlation Ay,xz, to an accuracy of 10-6. This observable is measured in a transmission experiment of a circulating vector polarized (Py) proton beam through an internal tensor polarized (Pxz) atomic deuteron target. The experiment uses the COSY facility as an accelerator, an ideal forward spectrometer, and as a detector. At present the experimental focus lies on the development of a precise current measurement via a Beam-Current-Transformer (BCT), its precise read-out and analysis. So far, we succeeded to meet the BCT's accuracy specification. With the help of this accurate current measurement the development of a proper long living proton beam in COSY at the optimum energy, where the experiment has its highest sensitivity, is in progress.

  10. Structural and spectroscopic investigation on a new potentially bioactive di-hydrazone containing thiophene heterocyclic rings

    NASA Astrophysics Data System (ADS)

    Nogueira, Vanessa de S.; Ramalho Freitas, Maria Clara; Cruz, Wellington S.; Ribeiro, Tatiana S.; Resende, Jackson A. L. C.; Rey, Nicolás A.

    2016-02-01

    Hydrazones and several substituted hydrazones are associated with a broad spectrum of biological activities, as well as compounds containing the thiophene ring. In this context, a novel di-hydrazone derived from 2-thiophenecarboxylic acid hydrazide was synthesized and completely characterized by elemental analysis, XRD, FT-IR, Raman and UV-Vis spectroscopies, thermogravimetry, 1H NMR, 1H-1H COSY and 1H-1H ROESY. A preliminary in silico pharmacological evaluation was also performed in order to assess the performance of the new compound regarding some molecular properties relevant for a drug's pharmacokinetics in the human body.

  11. Exclusive near threshold two-pion production with the MOMO experiment at COSY

    NASA Astrophysics Data System (ADS)

    Bavink, S.; Bellemann, F.; Berg, A.; Bisplinghoff, J.; Bohlscheid, G.; Ernst, J.; Henrich, C.; Hinterberger, F.; Ibald, R.; Jahn, R.; Jarczyk, L.; Joosten, R.; Kozela, A.; Machner, H.; Magiera, A.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Munkel, J.; Neumann-Cosel, P. v.; Rosendaal, D.; Rossen, P. v.; Schnitker, H.; Scho, K.; Smyrski, J.; Strzalkowski, A.; Tölle, R.; Wurzinger, R.

    1997-05-01

    Near threshold two pion production via the reaction pd→3Heπ+π- was measured kinematically complete with the MOMO experiment at COSY. A remarkable deviation of the obtained two pion invariant mass spectra from phase space as well as a predominant sidewise and back to back emission of the two mesons was observed.

  12. Exclusive near threshold two-pion production with the MOMO experiment at COSY

    NASA Astrophysics Data System (ADS)

    Bavink, S.; Bellemann, F.; Berg, A.; Bisplinghoff, J.; Bohlscheid, G.; Ernst, J.; Henrich, C.; Hinterberger, F.; Ibald, R.; Jahn, R.; Jarczyk, L.; Joosten, R.; Kozela, A.; Machner, H.; Magiera, A.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Munkel, J.; Neumann-Cosel, P. v.; Rosendaal, D.; Rossen, P. v.; Schnitker, H.; Scho, K.; Smyrski, J.; Strzalkowski, A.; Tölle, R.; Wurzinger, R.

    1998-03-01

    Near threshold two pion production via the reaction pd → 3Heπ +π - was measured kinematically complete with the MOMO experiment at COSY. A remarkable deviation of the obtained two pion invariant mass spectra from phase space as well as a predominant back to back and sidewise emission of the two pions was observed.

  13. Development of cluster-jet targets: From COSY-11 to FAIR

    SciTech Connect

    Taeschner, A.; General, S.; Otte, J.; Rausmann, T.; Khoukaz, A.

    2007-11-07

    The development of cluster-jet targets of Muenster type is presented. Starting with the first target installed at the COSY-11 experiment the progress is described which was made at a cluster-jet target facility installed in Muenster leading to a prototype for a cluster-jet target for the upcoming PANDA experiment at FAIR.

  14. The upcoming balloon campaign of the Compton Spectrometer and Imager (COSI)

    NASA Astrophysics Data System (ADS)

    Chiu, J.-L.; Boggs, S. E.; Chang, H.-K.; Tomsick, J. A.; Zoglauer, A.; Amman, M.; Chang, Y.-H.; Chou, Y.; Jean, P.; Kierans, C.; Lin, C.-H.; Lowell, A.; Shang, J.-R.; Tseng, C.-H.; von Ballmoos, P.; Yang, C.-Y.

    2015-06-01

    The Compton Spectrometer and Imager (COSI), formerly known as the Nuclear Compton Telescope (NCT), is a balloon-borne soft gamma-ray telescope (0.2-5 MeV) designed to study astrophysical sources of nuclear-line emission and gamma-ray polarization. The heart of COSI is a compact array of cross-strip germanium detectors (GeDs), providing excellent spectral resolution ( 0.2 - 1 %) and the capability to track individual photon interactions with full 3D position resolution to 1.6 mm3. COSI is built upon considerable heritage from the previous NCT balloon instrument, which has flown successfully on two conventional balloon flights to date. The Crab Nebula was detected at a significance of 6σ in the second flight, which is the first reported detection of an astrophysical source by a compact Compton telescope. COSI has been upgraded from the previous NCT instrument to be an Ultra Long Duration Balloon (ULDB) payload, utilizing a new detector configuration optimized for polarization sensitivity and employing a mechanical cryocooler to remove consumables (LN2) for ULDB flights. The instrument is being integrated for a ULDB flight in December 2014 from Antarctica on a superpressure balloon. Here we will present the redesign of the instrument and our current progress in preparing for the flight.

  15. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  16. Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

    2014-01-06

    The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic.

  17. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole.

  18. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    SciTech Connect

    Cort, John R.; Cho, Herman M.

    2009-10-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography

    PubMed Central

    Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D’Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

    2010-01-01

    The 5′-untranslated regions (5′-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([ΨCD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

  20. The structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O47.

    PubMed

    Ovchinnikova, Olga G; Kocharova, Nina A; Bakinovskiy, Leon V; Torzewska, Agnieszka; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-10-20

    The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O47:H4, strain 3646/51. Studies by sugar and methylation analyses along with Smith degradation and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, ROESY and H-detected 1H,13C HSQC and HMBC experiments, showed that the polysaccharide has a branched hexasaccharide repeating unit with the following structure: [carbohydrate structure: see text

  1. Two compounds from Peucedanum dissolutum.

    PubMed

    Wu, Xian-Li; Li, Yi; Kong, Ling-Yi; Min, Zhi-Da

    2004-12-01

    A new compound, 3'(R)-O-beta-D-glucopyranosyl-3',4'-dihydroxanthyletin (1), and a known compound, prim-O-glucosylcimifugin (2), were isolated from the roots of Peucedanum dissolutum. The structure of 1 was elucidated by spectral evidence and chemical reaction. The NMR signals of carbons and protons of 2 were assigned for the first time by analysis of (1)H-(1)H COSY, HMQC and HMBC spectra.

  2. Structural determination of two new steroidal saponins from Smilax china.

    PubMed

    Huang, Hui-Lian; Liu, Rong-Hua; Shao, Feng

    2009-09-01

    Two new steroidal saponins (1 and 2) were isolated from the BuOH fraction of the 70% EtOH extract of the tubes of Smilax china, together with four known analogues, 3-6. The structures of the new compounds were elucidated by means of chemical evidence and spectroscopic analyses, including HR-MS, IR, (1)H- and (13)C-NMR, and 2D experiments ((1)H-(1)H COSY, HSQC and HMBC).

  3. A new lyoniresinol derivative from Smilax microphylla.

    PubMed

    Liu, Li-Sha; Huang, Hui-Lian; Liu, Rong-Hua; Ren, Gang; Shao, Feng; Ye, Yao-Hui; Lin, Tao

    2013-01-01

    A new lignan, lyoniresinol-9-O-8"-syringylglycerol ether (1), together with five known compounds, piceatannol (2), resveratrol (3), oxyresveratrol (4), quercetin-3'-glucoside (5) and diosgenin (6) were isolated from the rhizomes of Smilax microphylla. The structure of the new compound was determined by means of chemical evidence and 1D-and 2D-NMR (1H, 13C, HSQC, HMBC, 1H-1H COSY and NOESY) spectroscopic analysis and HR-ESI-MS.

  4. Sesquiterpene constituents from the soft coral Sinularia nanolobata.

    PubMed

    Ngoc, Ninh Thi; Huong, Pham Thi Mai; Thanh, Nguyen Van; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Thung, Do Cong; Kiem, Phan Van; Minh, Chau Van

    2017-02-28

    Using various chromatographic separations, four sesquiterpenes (1-4), including two new compounds, nanolobatols A and B (1 and 2), were isolated from the Vietnamese soft coral Sinularia nanolobata. Their structures were determined on the basis of spectroscopic data ((1)H and (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, NOESY and FT-ICR-MS) and by comparison with the literature values. The cytotoxic activity of isolated compounds against a panel of eight human cancer cell lines was also evaluated.

  5. Precise momentum determination of the external COSY proton beam near 1930 MeV//c

    NASA Astrophysics Data System (ADS)

    Betigeri, M. G.; Bojowald, J.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Förtsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Hawash, M.; Igel, S.; Ilieva, I.; Jahn, R.; Jarczyk, L.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, B. J.; Lippert, G.; Machner, H.; Magiera, A.; Maier, R.; Nann, H.; Plendl, H. S.; Protic, D.; Razen, B.; von Rossen, P.; Roy, B.; Siudak, R.; Smyrski, J.; Strzałkowski, A.; Tsenov, R.; Zolnierczuk, P. A.; Zwoll, K.; GEM Collaboration

    1999-05-01

    We present a method to determine precisely the absolute momentum of the external proton beam from the Jülich Cooler Synchrotron COSY near 1930 MeV /c. In the pp → d π+ reaction at 1930.477 MeV /c incident beam momentum, the forward going pions ( θ c.m.=0° ) and the backward going deuterons ( θ c.m.=180° ) have the same laboratory momentum. Such coincident pion-deuteron events are detected in the focal plane of the magnetic spectrometer BIG KARL located at θ lab=0° . Using the nearly linear dependence of the difference between the measured pion and deuteron momenta as a function of the proton beam momentum, the absolute momentum of the external proton beam from COSY near 1930 MeV /c was determined with a precision of 5.2×10 -5.

  6. The H and D Polarized Target for Spin-Filtering Measurements at COSY

    NASA Astrophysics Data System (ADS)

    Ciullo, Giuseppe; Statera, Marco; Lenisa, Paolo; Nass, Alexander; Tagliente, Giuseppe

    2016-04-01

    In the main frame of the PAX (Polarized Antiproton eXperiments) collaboration, which engaged the challenging purpose of polarizing antiproton beams, the possibility to have H or D polarized targets requires a daily switchable source and its diagnostics: mainly change is a dual cavity tunable for H and D. The commissioning of PAX has been fullfilled, for the transverse case, on the COSY (COoler SYnchrotron) proton ring, achieving milestones on spin-dependent cross-section measurements. Now the longitudinal case could provide sensitive polarization results. An H or D source allows the exploration of the spin-filtering process with a deuterium polarized target, and opens new chances for testing Time Reversal Invariance at COSY (TRIC).

  7. Endotaxial growth of CoSi2 within (111) oriented Si in a molecular beam epitaxy system

    NASA Technical Reports Server (NTRS)

    George, T.; Fathauer, R. W.

    1991-01-01

    A new mode of growth is reported in which buried metallic layers can be fabricated within a single-crystal semiconductor through preferential subsurface growth on previously-grown 'seed' regions. The deposition of Co at 800 C at a rate of 0.01 nm/s on (111) Si substrates containing buried CoSi2 columns 40-100 nm below the Si surface results in the growth and coalescence of these subsurface columns. The formation of a CoSi2 layer on the Si surface is suppressed by this growth mode. It is proposed that the high diffusion rate of Co at 800 C, coupled with the high growth rate of CoSi2 at the subsurface columns, is responsible for this preferred 'endotaxial' growth mode. This growth technique was used to produce a continuous buried single-crystal layer of CoSi2 under a single-crystal Si capping layer.

  8. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Shankar, Ravi; Leskes, Michal; Vega, Shimon; Nielsen, Niels Chr.; Madhu, P. K.

    2017-03-01

    Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

  9. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes.

    PubMed

    Equbal, Asif; Shankar, Ravi; Leskes, Michal; Vega, Shimon; Nielsen, Niels Chr; Madhu, P K

    2017-03-14

    Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient (1)H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the (1)H-(1)H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of (1)H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

  10. Negative ion source development at the cooler synchrotron COSY/Jülich

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.

    2013-02-01

    The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.

  11. The Storage Cell for the Tri-Experiment at COSY-JÜLICH

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Glende, M.; Lehrach, A.; Maier, R.; Prasuhn, D.; von Rossen, P.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.

    2002-04-01

    At the EDDA experiment in the cooler synchrotron COSY in Jülich an atomic beam target is used which provides the designed polarization and density distribution. To increase the target density significantly a storage cell has been developed and implemented. This will contribute to a higher accuracy for the test of Time Reversal Invariance (TRI) which will be performed at the EDDA target place. To obtain the higher luminosity the target density and the transmission of the COSY beam through the cell were determined in their dependence on the cell aperture. Low storage cell apertures increase the target density in the cell but reduce the transmission of the circulating proton beam. To find the optimal cell design the transmission of the COSY beam was measured with movable scrapers and tested with an aperture at EDDA simulating the storage cell. The target density was calculated by Monte Carlo simulations for several cell geometries. An additional gain in target density is achieved by cooling the cell. A Teflon coating of the cell reduces depolarization of the target gas. First measurements with the EDDA detector have shown that the target density as well as the polarization are within the range of the expected values.

  12. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSiCoSi 2.

  13. The Scalar Resonances a0/f0(980) at COSY

    SciTech Connect

    Buescher, M.

    2006-02-11

    Fundamental properties of the scalar resonances a0/f0(980), like their masses, widths and couplings to KK-bar, are poorly known. In particular, precise knowledge of the latter quantity would be of great importance since it can be related to the KK-bar content of these resonances.An experimental program is under way at COSY-Juelich aiming at the extraction of the isospin violating a0/f0 mixing amplitude {lambda} which is in leading order proportional to the product of the coupling constants of the a0 and f0 to kaons. a0/f0 production is studied in pp, pn and dd interactions, both for the KK-bar and the {pi}{eta}/{pi}{pi} decays, using the ANKE and WASA spectrometers. The latter will be available for measurements at COSY in 2007.As a first step, isovector KK-bar production has been measured in the reaction pp {yields} dK+K-bar0. The data reveal dominance of the a{sub 0}{sup +} channel, thus demonstrating the feasibility of scalar meson studies at COSY. Analyses of KK-bar- and K-bard-FSI effects yield the corresponding scattering lengths, a(KK-bar)I=1 = -(0.02 {+-} 0.03) - i(0.61 {+-} 0.05) fm and vertical bar Re a(K-bard) vertical bar {<=}1.3 fm, Im a(K-bard){<=}1.3 fm.

  14. Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR.

    PubMed

    Peti, Wolfgang; Page, Rebecca; Moy, Kin; O'Neil-Johnson, Mark; Wilson, Ian A; Stevens, Raymond C; Wüthrich, Kurt

    2005-12-01

    In structural genomics centers, nuclear magnetic resonance (NMR) screening is in increasing use as a tool to identify folded proteins that are promising targets for three-dimensional structure determination by X-ray crystallography or NMR spectroscopy. The use of 1D 1H NMR spectra or 2D [1H,15N]-correlation spectroscopy (COSY) typically requires milligram quantities of unlabeled or isotope-labeled protein, respectively. Here, we outline ways towards miniaturization of a structural genomics pipeline with NMR screening for folded globular proteins, using a high-density micro-fermentation device and a microcoil NMR probe. The proteins are micro-expressed in unlabeled or isotope-labeled media, purified, and then subjected to 1D 1H NMR and/or 2D [1H,15N]-COSY screening. To demonstrate that the miniaturization is functioning effectively, we processed nine mouse homologue protein targets and compared the results with those from the "macro-scale" Joint Center of Structural Genomics (JCSG) high-throughput pipeline. The results from the two pipelines were comparable, illustrating that the data were not compromised in the miniaturized approach.

  15. A new COmpact hyperSpectral Imaging system (COSI) for UAS

    NASA Astrophysics Data System (ADS)

    Sima, Aleksandra; Baeck, Pieter-Jan; Delalieux, Stephanie; Livens, Stefan; Blommaert, Joris; Delauré, Bavo; Boonen, Miet

    2016-04-01

    This presentation gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for multirotor Remotely Piloted Aircraft Systems (RPAS) platforms. The camera is compact and lightweight, with a total mass of less than 500g including: an embedded computer, storage and power distribution unit. Such device miniaturization was possible thanks to the application of linear variable filters technology, in which image lines in the across flight direction correspond to different spectral bands as well as a different location on the ground (frame camera). The scanning motion is required to retrieve the complete spectrum for every point on the ground. The COSI camera captures data in 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Such spectral information is highly favourable for vegetation studies, since the main chlorophyll absorption feature centred around 680 nm is measured, as well as, the red-edge region (680 nm to 730 nm) which is often linked to plant stress. The NIR region furthermore reflects the internal plant structure, and is often linked to leaf area index and plant biomass. Next to the high spectral resolution, the COSI imager also provides a very high spatial data resolution i.e. images captured with a 9mm lens at 40m altitude cover a swath of ~40m with a ~2cm ground sampling distance. A dedicated data processing chain transforms the raw images into various information and action maps representing the status of the vegetation health and thus allowing for optimization of the management decisions within agricultural fields. In a number of test flights, hyperspectral COSI imager data were acquired covering diverse environments, e.g.: strawberry fields, natural grassland or pear orchards. Next to the COSI system overview, examples of collected data will be presented together with the results of the spectral data analysis. Lessons

  16. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.18 ± 0.08 Å).

  17. Fluxionality in a paramagnetic seven-coordinate iron(II) complex: a variable-temperature, two-dimensional NMR and DFT study.

    PubMed

    Lonnon, David G; Ball, Graham E; Taylor, Ivan; Craig, Donald C; Colbran, Stephen B

    2009-06-01

    The preparation and detailed characterizations of the high-spin seven-coordinate complexes [M(kappa(7)N-L)](ClO(4))(2) (M = Mn(II), Fe(II); L = N,N,N',N'-tetrakis(2-pyridylmethyl)-2,6-bis(aminomethyl)pyridine) are described. The X-ray crystal structures reveal seven-coordinate metal complex ions. Consideration of continuous shape measures reveals that the coordination environments about the metal ions are better described as having (C(s)) face-capped trigonal prismatic symmetry than (C(2)) pentagonal bipyramidal symmetry. The (S = (5)/(2)) Mn(II) species shows complicated X-band electron paramagnetic resonance (EPR) spectra and broad, unrevealing (1)H NMR spectra. In contrast, the (S = 2) Fe(II) complex is EPR-silent and shows completely interpretable (1)H NMR spectra containing the requisite number of paramagnetically shifted peaks in the range delta +150 to -60. The (13)C NMR spectra are likewise informative. Variable-temperature (1)H NMR spectra show coalescences and decoalescences indicative of an intramolecular process that pairwise-exchanges the nonequivalent pyridylmethyl "arms" of the two bis(pyridylmethyl)amine (bpa) domains. A suite of NMR techniques, including T(1) relaxation measurements and variable-temperature (1)H-(1)H correlation spectroscopy, (1)H-(1)H total correlation spectroscopy, (1)H-(1)H nuclear Overhauser effect spectroscopy/exchange spectroscopy, and (1)H-(13)C heteronuclear multiple-quantum coherence experiments, has been used to assign the NMR spectra and characterize the exchange process. Analysis of the data from these experiments yields the following thermodynamic parameters for the exchange: DeltaH++ = 53.6 +/- 2.8 kJ mol(-1), DeltaS++ = -10.0 +/- 9.8 J K(-1) mol(-1), and DeltaG++ (298 K) = 50.6 kJ mol(-1). Density functional theory (B3LYP) calculations have been used to explore the energetics of possible mechanistic pathways for the underlying fluxional process. The most plausible mechanism found involves dissociation of a

  18. Synthesis, characterization and dynamic NMR studies of a novel chalcone based N-substituted morpholine derivative

    NASA Astrophysics Data System (ADS)

    Baskar, R.; Baby, C.; Moni, M. S.; Subramanian, K.

    2013-05-01

    The synthesis of a novel chalcone based N-substituted morpholine derivative namely, (E)-1-(biphenyl-4-yl)-3-(4-(5-morpholinopentyloxy) phenyl) prop-2-en-1-one (BMPP), using a two step protocol is reported. The compound is characterized by FTIR, GC-MS and FTNMR spectroscopy techniques. Advanced 2D NMR techniques such as gradient enhanced COSY, HSQC, HMBC and NOESY were employed to establish through-bond and through-space correlations. Dynamic NMR measurements were carried out to obtain the energy barrier to ring inversion of the morpholine moiety.

  19. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  20. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  1. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    SciTech Connect

    Engels, R.; Lorentz, B.; Prasuhn, D.; Rathmann, F.; Sarkadi, J.; Schleichert, R.; Seyfarth, H.; Stroeher, H.; Chiladze, D.; Dymov, S.; Grigoryev, K.; Mikirtychyants, M.; Kacharava, A.; Klehr, F.; Mikirtychyants, S.; Vasilyev, A.; Schieck, H. Paetz gen.; Steffens, E.

    2009-08-04

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate the beam heating by the target gas. The analysis of the d-vectorp-vector->dp and d-vectorp-vector->(dp{sub sp})pi{sup 0} reactions showed that events from different positions of the extended target can be clearly identified in the ANKE detector system. The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np->dpi{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79+-0.07 in the vertical stray field of the D2 magnet acting as a holding field. The target thickness achieved was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.

  2. Structural Characterization and Thermoelectric Properties of Hot-Pressed CoSi Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ioannou, Maria; Symeou, Elli; Giapintzakis, John; Kyratsi, Theodora

    2014-10-01

    Fabrication of nanocomposites by introduction of SiO2 metal oxide nanoparticles into a cobalt silicide thermoelectric matrix is studied. The CoSi matrix material was prepared through solid-state synthesis, and the nano-SiO2 metal oxide was introduced by mechanical grinding. The mixed powders were hot pressed to fabricate nanocomposites. The structural and morphological modifications were studied by powder x-ray diffraction analysis and scanning electron microscopy. The thermoelectric properties of the materials were followed through the Hall effect, Seebeck coefficient, and electrical and thermal conductivities in the temperature range from 300 K to 1000 K.

  3. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  4. Magnetic ordering in Sc2CoSi2-type R2FeSi2 (R=Gd, Tb) and R2CoSi2 (R=Y, Gd-Er) compounds

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Pani, M.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-09-01

    Magnetic and magnetocaloric properties of Sc2CoSi2-type R2TSi2 (R=Gd-Er, T=Fe, Co) compounds have been studied using magnetization data. These indicate the presence of mixed ferromagnetic and antiferromagnetic interactions in these compounds. One observes a ferromagnetic transition followed by an antiferromagnetic order and a further possible spin-reorientation transition at low temperatures. Compared to Gd2{Fe, Co}Si2, the Tb2FeSi2 and {Tb-Er}2CoSi2 compounds exhibit remarkable hysteresis (for e.g. Tb2FeSi2 shows residual magnetization Mres/Tb=2.45 μB, coercive field Hcoer=14.9 kOe, and critical field Hcrit 5 kOe at 5 K) possibly due to the magnetocrystalline anisotropy of the rare earth. The R2{Fe, Co}Si2 show relatively small magnetocaloric effect (i.e. isothermal magnetic entropy change, ΔSm) around the magnetic transition temperature: the maximal value of MCE is demonstrated by Ho2CoSi2 (ΔSm=-8.1 J/kg K at 72 K and ΔSm=-9.4 J/kg K at 23 K in field change of 50 kOe) and Er2CoSi2 (ΔSm=-13.6 J/kg K at 32 K and ΔSm=-8.4 J/kg K at 12 K in field change of 50 kOe).

  5. From CELSIUS to COSY: on the observation of a dibaryon resonance

    NASA Astrophysics Data System (ADS)

    Clement, H.; Bashkanov, M.; Skorodko, T.

    2015-11-01

    Using a high-quality beam of storage rings in combination with a pellet target and a hermetic WASA detector covering practically the full solid angle, two-pion production in nucleon-nucleon collisions has been systematically studied by exclusive and kinematically complete measurements—first at CELSIUS and subsequently at COSY. These measurements resulted in a detailed understanding of the two-pion production mechanism by t-channel meson exchange. The investigation of the ABC effect, which denotes an unusual low-mass enhancement in the ππ-invariant mass spectrum, in double-pionic fusion reactions led the trace to the observation of a narrow dibaryon resonance with I({J}P)=0({3}+) about 80 MeV below the nominal mass of the conventional Δ Δ system. New neutron-proton scattering data, taken with a polarized beam at COSY, produced a pole in the coupled {}3{D}3-3{G}3 partial waves at (2380+/- 10\\-\\i\\40+/- 5) MeV, establishing thus the first observation of a genuine s-channel dibaryon resonance.

  6. Signs of deuteron quadrupole coupling constants from COSY-2D spectra of solids

    NASA Astrophysics Data System (ADS)

    Schlemmer, H.; Haeberlen, U.

    It is shown how the signs of the quadrupole coupling constants (QCCs) of deuterons can be determined from the multiplet structures of the cross peaks in COSY-2D spectra of deuterons in molecular crystals or any other ordered sample. Multiplets arise as a result of dipolar couplings between pairs of deuterons. The 21) multiplet of a cross peak of a dipolar-coupled pair of deuterons consists of a 3 × 3 array of component lines. If the mixing pulse of the COSY sequence is a 90° pulse the multiplet is insensitive to the signs of the deuteron QCCs. If, however, the mixing pulse is a 54°44' pulse only four of the nine components are strong. These are located in one of the four corners of the 3 × 3 array. In which comer of the 3 × 3 array the four strong peaks appear depends on the relative signs of the dipolar and quadrupolar splittings D, ΔωQ1 and ΔωQ2. This can be used as a fingerprint for the relative signs of D, D, ΔωQ1 and ΔωQ2. The experimental conditions of the procedure are explored in an experiment on a single crystal of fully deuterated potassium oxalate monohydrate.

  7. Identification, isolation and characterization of a new degradation product in sultamicillin drug substance.

    PubMed

    Kumar, Vundavilli Jagadeesh; Gupta, P Badarinadh; Kumar, K S R Pavan; Ray, Uttam Kumar; Sreenivasulu, B; Kumar, G S Siva; Rao, K Ranga; Sharma, Hemant Kumar; Mukkanti, K

    2011-02-20

    A new degradant of sultamicillin drug substance was found during the gradient reverse phase HPLC analysis of stability storage samples. The level of this degradant impurity was observed up to 1.0%. The impurity (formaldehyde adduct with 5-oxo-4-phenylimidazolidin-1-yl moiety) was identified by LC/MS and was characterized by ((1)H NMR, (13)C NMR, 2D-NMR ((1)H-(1)H COSY, NOESY, HSQC and HMBC), LC/MS/MS, MS/TOF, elemental analysis and IR. This impurity was prepared by isolation and co-injected into HPLC system to confirm the retention time.

  8. CosI: Development of a low threshold detector for the observation of coherent elastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Fields, Nicole Elizabeth

    I present the development of an experimental setup designed to measure CENNS (coherent elastic neutrino-nucleus scattering), a process that has never been experimentally observed. CosI (Coherent Neutrino Scattering with Cesium Iodide) uses a sodium doped cesium iodide detector intended to be able to observe CENNS at the SNS (Spallation Neutron Source) in Oak Ridge, TN. This thesis describes the experimental design and construction of the CosI apparatus, while sited at the University of Chicago. This thesis also presents the screening of materials for radioactivity in conjunction with simulations of the background contributions from various experimental components to CosI. Background measurements were performed at the University of Chicago with a 2 kg prototype CosI crystal, and those results are presented here. I also present neutrino signal calculations for the full size 15 kg CosI crystal which is to be installed at the SNS. Finally, the feasibility of a CENNS detection at the SNS using the CosI apparatus is discussed. This thesis also makes a contribution to the ongoing search for WIMP (weakly interacting massive particle) dark matter. I present a data-driven method for applying a surface event correction to CoGeNT (Coherent Germanium Neutrino Technology) data. After applying this correction, I then calculate new dark matter limits using the 807 day CoGeNT data set. In addition, I also perform a two dimensional maximum likelihood analysis of low energy CDMS (Cryogenic Dark Matter Search) data. The maximum likelihood analysis reveals a strong preference for a population of nuclear recoil events in the CDMS data set.

  9. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  10. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  11. Investigation of Uña De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa.

    PubMed

    Muhammad, I; Dunbar, D C; Khan, R A; Ganzera, M; Khan, I A

    2001-07-01

    The C-8-(S) isomer of deoxyloganic acid (7-deoxyloganic acid), together with beta-sitosteryl glucoside, five known stereoisomeric pentacyclic oxindole alkaloids and the tetracyclic oxindole isorhyncophylline, were isolated from the inner bark of Uncaria tomentosa. Structures of the isolated compounds were based on 1H and 13C NMR data, mainly 2D NMR experiments, including 1H-13C HMBC and 1H-1H NOESY correlation. Furthermore, the hitherto unreported 15N chemical shifts of the isomeric oxindole alkaloids, using 1H-15N HMBC experiments, were utilized to facilitate their characterization. Uncarine D showed weak cytotoxic activity against SK-MEL, KB, BT-549 and SK-OV-3 cell lines with IC(50) values between 30 and 40 microg/ml, while uncarine C exhibited weak cytotoxicity only against ovarian carcinoma (IC(50) at 37 microg/ml).

  12. [NMR study of complex formation of aromatic ligands with heptadeoxynucleotide 5'-d(GCGAAGC) forming stable hairpin structure in aqueous solution].

    PubMed

    Veselkov, A N; Eaton, R J; Semanin, A V; Pakhomov, V I; Dymant, L N; Karavaev, L; Davies, D V

    2002-01-01

    Complex formation of hairpin-producing heptadeoxynucleotide 5'-d(GCGAAGC) with aromatic molecules: acridine dye proflavine and anthracycline antibiotic daunomycin was studied by one-dimensional 1H NMR and two-dimensional correlation 1H-1H (2M-TOCSY, 2M-NOESY), 1H-31P (2M-HMBC) NMR spectroscopy (500 and 600 MHz) in aqueous solution. Concentration and temperature dependences for the chemical shifts of ligand protons were measured, molecular models of equilibrium in solution were developed, and equilibrium thermodynamic parameters for the formation of intercalation complexes were calculated. Spatial structures of dye and antibiotic complexes with the heptamer hairpin were constructed on the basis of 2M-NOE data and the calculated values of limiting chemical shifts of ligand protons.

  13. Molecular characterization and quantification using state of the art solid-state adiabatic TOBSY NMR in burn trauma.

    PubMed

    Righi, Valeria; Andronesi, Ovidiu; Mintzopoulos, Dionyssios; Tzika, A Aria

    2009-12-01

    We describe a novel solid-state nuclear magnetic resonance (NMR) method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS), relative conventional liquid-state NMR approaches, when applied to intact biopsies of skeletal muscle specimens collected from burn trauma patients. This novel method, termed optimized adiabatic TOtal through Bond correlation SpectroscopY (TOBSY) solid-state NMR pulse sequence for two-dimensional (2D) 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing, was demonstrated to provide a 40-60% improvement in signal-to-noise ratio (SNR) relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). Using 1- and 2-dimensional HRMAS NMR experiments, we identified several metabolites in burned tissues. Quantification of metabolites in burned tissues showed increased levels of lipid compounds, intracellular metabolites (e.g., taurine and phosphocreatine) and substantially decreased water-soluble metabolites (e.g., glutathione, carnosine, glucose, glutamine/glutamate and alanine). These findings demonstrate that HRMAS NMR Spectroscopy using TOBSY is a feasible technique that reveals new insights into the pathophysiology of burn trauma. Moreover, this method has applications that facilitate the development of novel therapeutic strategies.

  14. Combined NMR analysis of huge residual dipolar couplings and pseudocontact shifts in terbium(III)-phthalocyaninato single molecule magnets.

    PubMed

    Damjanovic, Marko; Katoh, Keiichi; Yamashita, Masahiro; Enders, Markus

    2013-09-25

    Several small paramagnetic complexes combine large hyperfine NMR shifts with large magnetic anisotropies. The latter are a prerequisite for single molecule magnet (SMM) behavior. We choose the SMM tris(octabutoxyphthalocyaninato) diterbium (1) for a high resolution NMR study where we combined for the first time a comprehensive (1)H and (13)C chemical shift analysis of a SMM with the evaluation of large residual dipolar couplings (RDCs). The latter are a consequence of partial alignment of SMM 1 in the strong magnetic field of the NMR spectrometer. To the best of our knowledge RDCs in SMMs have never been reported before. We measured RDCs between -78 and +99 Hz for the (13)C-(1)H vectors of CH bonds and up to -109 Hz for (1)H-(1)H vectors of geminal hydrogen atoms (magnetic field of 14.09 T, temperature 295 K). Considerable negative Fermi contact shifts (up to -60 ppm) were determined for (13)C atoms at the phthalocyaninato core. Paramagnetic (13)C NMR shifts of the butoxy chains as well as all (1)H NMR chemical shifts are a result of pseudocontact shifts (pcs), and therefore it is easily possible to determine the positions of the respective nuclei in solution. Measurements of CH and HH vectors by RDC analysis are in accordance with the geometry as determined by the pseudocontact shifts, but in addition to that, RDCs give information about internal mobility. The axial component of the magnetic susceptibility tensor has been determined independently by pcs and by RDC.

  15. Dual microcoil NMR probe coupled to cyclic ce for continuous separation and analyte isolation.

    PubMed

    Jayawickrama, Dimuthu A; Sweedler, Jonathan V

    2004-08-15

    Capillary electrophoresis (CE)-nuclear magnetic resonance (NMR) spectroscopy combines the separation efficiency of CE and the information-rich detection capabilities of NMR. However, the temporally narrow CE peaks reduce NMR sensitivity and prevent on-line multidimensional NMR acquisitions. In this work, cyclic CE with multicoil NMR instrumentation is developed to perform CE in multiple closed loops. As a proof of concept, a two-loop five-junction capillary configuration creates two connected yet independently operable fluidic loops. With appropriate voltage switching, analytes can be directed as desired around or between the loops, and a particular analyte band can be parked in one NMR detector coil while CE continues in the second loop and monitored with a second NMR detector coil. The separation of a mixture of amino acids (Ala, Val, Thr) is achieved in two cycles. After one CE cycle, Ala is separated and COSY data are recorded in one loop while Val and Thr are separated in the second loop. At the end of the second cycle, both Val and Thr are separated and multidimensional NMR spectra acquired. With this instrumentation and appropriate protocols, two-dimensional NMR data acquisition and CE separation are achieved simultaneously.

  16. Deciphering the Conformational Choreography of Zinc Coordination Complexes with Standard and Novel Proton NMR Techniques Combined with DFT Methods.

    PubMed

    Pucheta, Jose Enrique Herbert; Prim, Damien; Gillet, Jean Michel; Farjon, Jonathan

    2016-04-04

    The presence of water has been shown to deeply impact the stability and geometry of Zn complexes in solution. Evidence for tetra- and penta-coordinated species in a pyridylmethylamine-Zn(II) model complex is presented. Novel (1) H NMR tools such as T1 -filtered selective exchange spectroscopy and pure shifted gradient-encoded selective refocusing as well as classical 2D ((1) H-(1) H) exchange spectroscopy, diffusion-ordered spectroscopy and T1 ((1) H) measurements, in combination with density functional theory methods allow the full conformational dynamics of a pyridylmethylamine-Zn(II) complex to be revealed. Four conformers and two families of complexes depending on the hydration states are elucidated.

  17. APSY-NMR for protein backbone assignment in high-throughput structural biology

    PubMed Central

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael; Pedrini, Bill; Herrmann, Torsten; Wüthrich, Kurt

    2014-01-01

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90% of the residues. For most proteins the APSY data acquisition was completed in less than 30 hours. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination. PMID:25428764

  18. A study of dipolar interactions and dynamic processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multiple-quantum-filtered NMR spectroscopy.

    PubMed

    Eliav, U; Navon, G

    1999-04-01

    The effect of proton exchange on the measurement of 1H-1H, 1H-2H, and 2H-2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the 1H-1H and 1H-2H residual dipolar interactions and the proton exchange rate at a temperature of 24 degrees C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24 degrees C were 300 and 50 Hz and 3000 s-1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5 degrees C, where the spectra of the H2O molecules were well resolved, so that the 1H-1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5 degrees C, where the proton exchange was in the intermediate regime for the 1H-2H dipolar interaction, confirmed the result obtained at 24 degrees C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.

  19. CoSi: Correlation of signals-A new measure to assess the correlation of history response curves

    NASA Astrophysics Data System (ADS)

    Murmann, Robert; Harzheim, Lothar; Dominico, Stefan; Immel, Rainer

    2016-12-01

    In the context of CAE work it is often required to assess the level of agreement of two curves objectively, e.g. measured against numerically computed results. Therefore a new comprehensive measure is proposed in this paper. The new measure 'CoSi' (Correlation of Signals) allows to account for uncertainties in both curves. This is achieved by constructing a corridor around one curve which considers deviations in direction of both abscissa and ordinate. Here CoSi differs from other common corridor approaches which consider only the deviation on the ordinate. It is explained how CoSi aligns the two curves taking the uncertainties of the second curve by scaling and shifting into account. This leads to the best theoretical achievable agreement between the two curves. Based on the aligned curves, quality factors are calculated to evaluate the results in terms of amplitudes of the curves, their overall match in shape, the phase between the curves, and all these combined into a comprehensive quality factor. The properties and results of CoSi are compared with other metrics from literature using various examples.

  20. Synthesis, characterization and magnetism of novel Cobalt-åkermanite:Ca2CoSi2O7

    NASA Astrophysics Data System (ADS)

    Barbar, Shiv Kumar; Patel, K. R.; Roy, M.; Sharma, R.; Kumar, Sudhish

    2017-04-01

    Polycrystalline sample of novel Cobalt-åkermanite: Ca2CoSi2O7 was synthesized using solid state reaction method. Room temperature powder X-ray diffraction and dc-electrical conductivity studies confirmed good quality of the synthesized sample in single phase tetragonal structure with space group: P 4 ̅21m. Low value of activation energy estimated from the dc-conductivity study indicates insulating behavior of this compound. Magnetic study showed a paramagnetic nature of Ca2CoSi2O7 at room temperature and antiferromagnetic nature below TN=5.6 K. In this compound weak ferromagnetism co-exist with antiferromagnetism below Neel temperature. Ca2CoSi2O7 displays magnetic field induced weak ferromagnetic transition around 7.4 K. Antiferromagnetic interactions occurs between the nearest neighbor Co2+ ions, as indicated by the negative sign of Weiss constant, θP=-22.7 K. Estimated value of the effective magnetic moment, μeff=4.75μB is found to be larger than the spin-only value of magnetic moment of Co2+ ion in the tetrahedral coordination having three unpaired electrons. These results, suggest that the orbital contribution to magnetic moment in this compound cannot be neglected and the electric polarization through spin dependent p-d hybridization can be expected in Ca2CoSi2O7.

  1. Nucleon-nucleon scattering at small angles, measured at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Bagdasarian, Z.

    2016-03-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.

  2. COSY Simulations to Guide Commissioning of the St. George Recoil Mass Separator

    NASA Astrophysics Data System (ADS)

    Schmitt, Jaclyn; Moran, Michael; Seymour, Christopher; Gilardy, Gwenaelle; Meisel, Zach; Couder, Manoel

    2015-10-01

    The goal of St. George (STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiments) is to measure (α, γ) cross sections relevant to stellar helium burning. Recoil separators such as St. George are able to more closely approach the low astrophysical energies of interest because they collect reaction recoils rather than γ-rays, and thus are not limited by room background. In order to obtain an accurate cross section measurement, a recoil separator must be able to collect all recoils over their full range of expected energy and angular spread. The energy acceptance of St. George is currently being measured, and the angular acceptance will be measured soon. Here we present the results of COSY ion optics simulations and magnetic field analyses which were performed to help guide the commissioning measurements and diagnostic upgrades required to complete those measurements. National Science Foundation Research Experiences for Undergraduates program.

  3. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  4. The Composite Strain Index (COSI) and Cumulative Strain Index (CUSI): methodologies for quantifying biomechanical stressors for complex tasks and job rotation using the Revised Strain Index.

    PubMed

    Garg, Arun; Moore, J Steven; Kapellusch, Jay M

    2016-11-04

    The Composite Strain Index (COSI) quantifies biomechanical stressors for complex tasks consisting of exertions at different force levels and/or with different exertion times. The Cumulative Strain Index (CUSI) further integrates biomechanical stressors from different tasks to quantify exposure for the entire work shift. The paper provides methodologies to compute COSI and CUSI along with examples. Complex task simulation produced 169,214 distinct tasks. Use of average, time-weighted average (TWA) and peak force and COSI classified 66.9, 28.2, 100 and 38.9% of tasks as hazardous, respectively. For job rotation the simulation produced 10,920 distinct jobs. TWA COSI, peak task COSI and CUSI classified 36.5, 78.1 and 66.6% jobs as hazardous, respectively. The results suggest that the TWA approach systematically underestimates the biomechanical stressors and peak approach overestimates biomechanical stressors, both at the task and job level. It is believed that the COSI and CUSI partially address these underestimations and overestimations of biomechanical stressors. Practitioner Summary: COSI quantifies exposure when applied hand force and/or duration of that force changes during a task cycle. CUSI integrates physical exposures from job rotation. These should be valuable tools for designing and analysing tasks and job rotation to determine risk of musculoskeletal injuries.

  5. HRJCOSY: A three-dimensional NMR method for measuring complex samples in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Zhang, Zhiyong; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-08-01

    Three-dimensional (3D) NMR plays an important role in structural elucidations of complex samples, whereas difficulty remains in its applications to inhomogeneous fields. Here, we propose an NMR approach based on intermolecular zero-quantum coherences (iZQCs) to obtain high-resolution 3D J-resolved-COSY spectra in inhomogeneous fields. Theoretical analyses are presented for verifying the proposed method. Experiments on a simple chemical solution and a complex brain phantom are performed under non-ideal field conditions to show the ability of the proposed method. This method is an application of iZQCs to high-resolution 3D NMR, and is useful for studies of complex samples in inhomogeneous fields.

  6. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica.

    PubMed

    Yang, Wan-Qing; Song, Yue-Lin; Zhu, Zhi-Xiang; Su, Cong; Zhang, Xu; Wang, Juan; Shi, She-Po; Tu, Peng-Fei

    2015-09-01

    Seven new dimeric furanocoumarins, dahuribiethrins A-G (1-7), were isolated from the roots of Angelica dahurica. Their structures were determined by chemical derivatization and extensive spectroscopic techniques, including (1)H NMR, (13)C NMR, HSQC, (1)H-(1)H COSY, HMBC, and NOESY experiments. Compounds 2, 3, 4, and 5 exhibited significant inhibition of nitric oxide production in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 8.8-9.8 μM.

  7. Tzumin A and B, two new lignan derivatives from the barks of Sassafras tzumu.

    PubMed

    Lu, Haixiao; Wu, Feiyan; Jiang, Meixiao; Liang, Weijiang

    2017-04-01

    Two new lignan compounds, 5'-allyl-2,2'-dihydroxy-[1,1'-biphenyl]-5-carboxylic acid (1) and 4,4'-diallyl-[1,1'-biphenyl]-2,2'-diol (2), together with four known compounds (3-6), were isolated from the barks of Sassafras tzumu. The new compounds were determined by NMR ((1)H and (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, NOESY/ROESY), and MS analysis. Compounds 1-3 showed potent AChE inhibitory activities, with IC50 values of 2.00, 1.81 and 1.91 μM, respectively.

  8. 11α-Ethoxy-β-boswellic acid and nizwanone, a new boswellic acid derivative and a new triterpene, respectively, from Boswellia sacra.

    PubMed

    Al-Harrasi, Ahmed; Ali, Liaqat; Ur Rehman, Najeeb; Hussain, Javid; Hussain, Hidayat; Al-Rawahi, Ahmed; Shamim Rizvi, Tania

    2013-08-01

    A new boswellic acid derivative, 11α-ethoxy-β-boswellic acid (EBA; 1) and a new ursane-type triterpene, named nizwanone (2), were isolated from Omani frankincense Boswellia sacra Flueck. together with two known compounds papyriogenin B and rigidenol. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis using (1) H- and (13) C-NMR, (1) H,(1) H-COSY, HMQC, HMBC, and HR-EI-MS techniques. The relative configurations of 1 and 2 were assigned by comparative analysis of the NMR spectral data with those of known analogs together with NOESY experiments. Structures of known compounds were identified by comparison with the reported data.

  9. New Prenylxanthones from the Deep-Sea Derived Fungus Emericella sp. SCSIO 05240

    PubMed Central

    Fredimoses, Mangaladoss; Zhou, Xuefeng; Lin, Xiuping; Tian, Xinpeng; Ai, Wen; Wang, Junfeng; Liao, Shengrong; Liu, Juan; Yang, Bin; Yang, Xianwen; Liu, Yonghong

    2014-01-01

    Four new prenylxanthones, emerixanthones A–D (1–4), together with six known analogues (5–10), were isolated from the culture of the deep-sea sediment derived fungus Emericella sp. SCSIO 05240, which was identified on the basis of morphology and ITS sequence analysis. The newstructures were determined by NMR (1H, 13C NMR, HSQC, HMBC, and 1H-1H COSY), MS, CD, and optical rotation analysis. The absolute configuration of prenylxanthone skeleton was also confirmed by the X-ray crystallographic analysis. Compounds 1 and 3 showed weak antibacterial activities, and 4 displayed mild antifungal activities against agricultural pathogens. PMID:24879543

  10. α-Glucosidase inhibitor from Buthus martensi Karsch.

    PubMed

    Kim, Shin-Duk

    2013-01-15

    A bioassay-guided fractionation of an ethanol extract of Buthus martensi Karsch led to the isolation of a potent α-glucosidase inhibitor (compound S). The structure was elucidated as a novel β-carboline glucoalkaloid, harmanyl β-d-glucopyranoside, on the basis of spectral data, including (1)H NMR, (13)C NMR, (1)H-(1)H COSY, NOESY, and HMBC. Compound S showed potent inhibitory activity against α-glucosidase, with an IC(50) value of 24 μM. A Lineweaver-Burk plot indicated that its inhibition of α-glucosidase was uncompetitive, with a Ki value of 16.1 μM.

  11. New clerodane diterpenoids from Croton crassifolius.

    PubMed

    Qiu, Maosong; Cao, Di; Gao, Youheng; Li, Shuhua; Zhu, Jinping; Yang, Bao; Zhou, Lian; Zhou, Yuan; Jin, Jing; Zhao, Zhongxiang

    2016-01-01

    Two new clerodane diterpenoids (1-2), one new clerodane diterpenoid alkaloid (3), as well as thirteen known compounds were isolated from Croton crassifolius. The structures of new compounds were established by a combination of spectroscopic methods, including HRMS, (1)H NMR, (13)C NMR, (1)H (1)H COSY, HSQC, HMBC, NOESY and X-ray crystallographic analysis. Compound 3 is firstly reported as the clerodane-type diterpenoid alkaloid in natural products. All of the compounds were evaluated for in vitro cytotoxic activities against CT26.WT cell using the MTT method.

  12. Using COSI-CORR to Quantify Earthflow Movement Rates Over Decadal Time Scales

    NASA Astrophysics Data System (ADS)

    Cerovski-Darriau, C.; Roering, J. J.

    2011-12-01

    Large, complex earthflow systems can evolve over diverse (seasonal to millennial) timescales and thus require a range of tools to document their kinematics. In many areas, extensive archives of historical aerial photographs offer potential for quantifying decadal fluctuations, but tracking individual features has been impractical over significant temporal and spatial scales. Here, we explore recent software that automates landslide mapping and improves feasibility of tracking deformation at these scales. The Co-registration of Optically Sensed Images and Correlation (COSI-Corr) software allows for correlation between air photographs and LiDAR imagery, and tracks surface deformation over a sequence of aerial surveys. To analyze the efficacy for landslides, we focused on a 1km2 area riddled with active earthflows, shallow landslides, and gullying in the Waipaoa River catchment on the North Island of New Zealand. This area is dominated by Late Cretaceous-Early Tertiary clay-rich mudstones and calcite-rich sandstones with highly sheared and more massive units that fail in diverse fashion. Starting in the 1900s, the area was burned and converted to pastureland, and is now heavily grazed by sheep and cattle. Slope deformation in the study area has accelerated due to this history of land use changes. We used aerial photographs from 1956, 1960, 1979, and 1982 to track slide movement. The photos were scanned at 1200 dpi (21 micron), giving a ground resolution between approximately 0.2-1m/pixel (scale of 1:16000 to 1:47000). We rectified the photos with 2010 orthophotos and a corresponding 1m LiDAR DEM and hillshade map using the COSI-Corr interface in ENVI 4.5. They were then sequentially correlated, which automatically identifies surface changes with sub-pixel resolution. Next we generated a vector field displacement map for each time step with 8m grid nodes. The resulting vector maps show velocities ranging from about 1-5m/yr. This corresponds well with previously

  13. Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Porrati, F.; Kämpken, B.; Terfort, A.; Huth, M.

    2013-02-01

    CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co2(CO)8, and neopentasilane, Si5H12, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi2 nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

  14. Negative differential resistance of metal (CoSi2)/insulator (CaF2) triple-barrier resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Suemasu, Takashi; Muratake, Shigeki; Asada, Masahiro

    1993-01-01

    The electron transport and negative differential resistance in metal-insulator nanometer-thick heterostructures are reported for the first time. The structure of the samples is a resonant tunneling diode with three-barriers of 0.9-nm-thick CaF2 layers and two wells of 1.9- and 2.8-nm-thick CoSi2 layers. These layers were grown by means of partially ionized beam epitaxy for CaF2 and a two step growth technique for CoSi2. In the current-voltage characteristics at 77 K, negative differential resistance was observed in the significant number of samples and the typical peak-to-valley ratio was as high as 2. The negative differential resistance observed here can be attributed to the electron transport through the resonant levels in metal/insulator multilayered heterostructures.

  15. Columnar growth of CoSi2 on Si(111), Si(100) and Si(110) by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1990-01-01

    Codeposition of silicon and cobalt on heated silicon substrates in ratios several times the silicide stoichiometry is found to result in epitaxial columns of CoSi2 surrounded by a matrix of epitaxial silicon. For (111)-oriented wafers, nearly cylindrical columns are formed, where both columns and surrounding silicon are defect free, as deduced from transmission electron microscopy. Independent control of the column diameter and separation is possible, and diameters of 27-135 nm have been demonstrated.

  16. The control system of the polarized internal target of ANKE at COSY

    NASA Astrophysics Data System (ADS)

    Kleines, H.; Sarkadi, J.; Zwoll, K.; Engels, R.; Grigoryev, K.; Mikirtychyants, M.; Nekipelov, M.; Rathmann, F.; Seyfarth, H.; Kravtsov, P.; Vasilyev, A.

    2006-05-01

    The polarized internal target for the ANKE experiment at the Cooler Synchrotron COSY of the Forschungszentrum Jülich utilizes a polarized atomic beam source to feed a storage cell with polarized hydrogen or deuterium atoms. The nuclear polarization is measured with a Lamb-shift polarimeter. For common control of the two systems, industrial equipment was selected providing reliable, long-term support and remote control of the target as well as measurement and optimization of its operating parameters. The interlock system has been implemented on the basis of SIEMENS SIMATIC S7-300 family of programmable logic controllers. In order to unify the interfacing to the control computer, all front-end equipment is connected via the PROFIBUS DP fieldbus. The process control software was implemented using the Windows-based WinCC toolkit from SIEMENS. The variety of components, to be controlled, and the logical structure of the control and interlock system are described. Finally, a number of applications derived from the present development to other, new installations are briefly mentioned.

  17. A very light and thin liquid hydrogen/deuterium heat pipe target for COSY experiments

    NASA Astrophysics Data System (ADS)

    Abdel-Bary, M.; Abdel-Samad, S.; Kilian, K.

    2005-07-01

    A liquid hydrogen/deuterium heat pipe (HP) target is used at the COSY external experiments TOF, GEM and MOMO. The target liquid is produced at a cooled condenser and guided through a central tube assisted by gravitation into the target cell. An aluminum condenser is used instead of copper, which requires less material, improves conductivities and provides shorter cooling down time. Residual condenser temperature fluctuations in the order of ≈0.4 K are reduced by using thermal resistances between the cooling machine and the condenser of the heat pipe combined with a controlled heating power. A new design with only a 7-mm-diameter HP has been developed. The diameter of the condenser part remains at 16 mm to provide enough condensation area. The small amount of material ensures short cooling down times. A cold gas deuterium HP target has been designed and developed which allows protons with energy ⩽1 MeV to be measured. A 7-mm-diameter HP is used to fill a cooling jacket around the D 2 gas cell with LH 2. The D 2 gas is stabilized at 200 mbar to allow for thin windows. Its density is increased by factor 15 compared to room temperature.

  18. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    SciTech Connect

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessary to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.

  19. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  20. Compact Hyperspectral Imaging System (cosi) for Small Remotely Piloted Aircraft Systems (rpas) - System Overview and First Performance Evaluation Results

    NASA Astrophysics Data System (ADS)

    Sima, A. A.; Baeck, P.; Nuyts, D.; Delalieux, S.; Livens, S.; Blommaert, J.; Delauré, B.; Boonen, M.

    2016-06-01

    This paper gives an overview of the new COmpact hyperSpectral Imaging (COSI) system recently developed at the Flemish Institute for Technological Research (VITO, Belgium) and suitable for remotely piloted aircraft systems. A hyperspectral dataset captured from a multirotor platform over a strawberry field is presented and explored in order to assess spectral bands co-registration quality. Thanks to application of line based interference filters deposited directly on the detector wafer the COSI camera is compact and lightweight (total mass of 500g), and captures 72 narrow (FWHM: 5nm to 10 nm) bands in the spectral range of 600-900 nm. Covering the region of red edge (680 nm to 730 nm) allows for deriving plant chlorophyll content, biomass and hydric status indicators, making the camera suitable for agriculture purposes. Additionally to the orthorectified hypercube digital terrain model can be derived enabling various analyses requiring object height, e.g. plant height in vegetation growth monitoring. Geometric data quality assessment proves that the COSI camera and the dedicated data processing chain are capable to deliver very high resolution data (centimetre level) where spectral information can be correctly derived. Obtained results are comparable or better than results reported in similar studies for an alternative system based on the Fabry-Pérot interferometer.

  1. Spectral assignments and structural studies of a warfarin derivative stereoselectively formed by tandem cyclization

    NASA Astrophysics Data System (ADS)

    Velayutham Pillai, M.; Rajeswari, K.; Vidhyasagar, T.

    2015-11-01

    The structural elucidation of a Mannich condensation product of rac-Warfarin with benzaldehyde and methyl amine was carried out using IR, Mass, 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C COSY, DEPT-135, HMBC, NOESY spectra and single crystal X-ray diffraction. Formation of a new pyran ring via a tandem cyclization in the presence of methyl amine was observed. The optimized geometry and HOMO-LUMO energy gap along with other important physical parameters were found by Gaussian 09 program using HF 6-31G (d, p) and B3YLP/DFT 6-31G (d, p) level of theory. The preferred conformation of the piperidine ring in solution state was found to be chair from the NMR spectra. Single crystal X-ray diffraction and optimized geometry (by theoretical study) also confirms the chair conformation in the solid state.

  2. Complementarity of DFT Calculations, NMR Anisotropy, and ECD for the Configurational Analysis of Brevipolides K-O from Hyptis brevipes.

    PubMed

    Suárez-Ortiz, G Alejandra; Cerda-García-Rojas, Carlos M; Fragoso-Serrano, Mabel; Pereda-Miranda, Rogelio

    2017-01-27

    Brevipolides K-O (1-5), five new cytotoxic 6-(6'-cinnamoyloxy-2',5'-epoxy-1'-hydroxyheptyl)-5,6-dihydro-2H-pyran-2-ones (IC50 values against six cancer cell lines, 1.7-10 μM), were purified by recycling HPLC from Hyptis brevipes. The structures, containing a distinctive tetrahydrofuran ring, were established by comprehensive quantum mechanical calculations and experimental spectroscopic analysis of their NMR and ECD data. Detailed analysis of the experimental NMR (1)H-(1)H vicinal coupling constants in comparison with the corresponding DFT-calculated values at the B3LYP/DGDZVP level confirmed the absolute configuration of 3 and revealed its conformational preferences, which were further strengthened by NOESY correlations. NMR anisotropy experiments by the application of Mosher's ester methodology and chemical correlations were also used to conclude that this novel brevipolide series (1-5) share the same absolute configuration corresponding to C-6(R), C-1'(S), C-2'(R), C-5'(S), and C-6'(S).

  3. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  4. Total NMR assignments of new [C7-O-C7'']-biflavones from leaves of the limonene-carvone chemotype of Lippia alba (Mill) N. E. Brown.

    PubMed

    Barbosa, Francisco Geraldo; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2005-04-01

    Phytochemical analysis of leaves of the limonene-carvone chemotype of Lippia alba led to the isolation of two biflavonoids with a new structural pattern with an ether linkage: 5,5''-dihydroxy-6,4',6'',3''',4'''-pentamethoxy-[C(7)--O--C(7'')]-biflavone (1) and 4',4,5,5''-tetrahydroxy-6,6'',3'''-trimethoxy-[C(7)--O--C(7'')]-biflavone (2). Structural elucidation of the new compounds was established on the basis of spectral data, through the use of 1D NMR and several 2D shift correlated NMR pulse sequences (COSY, HMQC, HMBC and NOESY).

  5. Synthesis and complete assignment of the 1H and 13C NMR spectra of 6-substituted and 2,6-disubstituted pyridazin-3(2H)-ones.

    PubMed

    Besada, Pedro; Costas, Tamara; Vila, Noemi; Chessa, Carla; Terán, Carmen

    2011-07-01

    Several pyridazin-3(2H)-one derivatives were synthesized starting from alkyl furans using oxidation with singlet oxygen to give 4-methoxy or 4-hydroxybutenolides, key intermediates of the synthetic strategy followed. For all pyridazinones reported, a complete assignment of the (1)H and (13)C NMR spectra using one- and two-dimensional NMR spectroscopic methods, which included NOE, DEPT, COSY, HSQC and HMBC experiments, was accomplished. Correlations between the chemical shifts of the heterocyclic ring atoms and substituents at N-2 and C-6 were analyzed.

  6. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  7. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  8. NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.

    PubMed

    Jia, Zhonghua; Cash, Michael; Darvill, Alan G; York, William S

    2005-08-15

    Eight oligosaccharide subunits, generated by endoglucanase treatment of the plant polysaccharide xyloglucan isolated from the culture filtrate of suspension-cultured tomato (Lycopersicon esculentum) cells, were structurally characterized by NMR spectroscopy. These oligosaccharides, which contain up to three endogenous O-acetyl substituents, consist of a cellotetraose core with alpha-D-Xylp residues at O-6 of the two beta-D-Glcp residues at the non-reducing end of the core. Some of the alpha-D-Xylp residues themselves bear either an alpha-L-Arap or a beta-D-Galp residue at O-2. O-Acetyl substituents are located at O-6 of the unbranched (internal) beta-D-Glcp residue, O-6 of the terminal beta-D-Galp residue, and/or at O-5 of the terminal alpha-L-Arap residue. Structural assignments were facilitated by long-range scalar coupling interactions observed in the high-resolution gCOSY spectra of the oligosaccharides. The presence of five-bond scalar coupling constants in the gCOSY spectra provides a direct method of assigning O-acetylation sites, which may prove generally useful in the analysis of O-acylated glycans. Spectral assignment of these endogenously O-acetylated oligosaccharides makes it possible to deduce correlations between their structural features and the chemical shifts of diagnostic resonances in their NMR spectra.

  9. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  10. Search for the C-violating meson decay η → π0e+e- with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Demmich, Kay; Bergmann, Florian; Hüsken, Nils; Khoukaz, Alfons

    2016-11-01

    TheWASA-at-COSY experiment is, besides meson production processes, dedicated to studies on rare and forbidden decays of light mesons. In extensive η-production beam times, a high-statistics data set have been collected by means of proton-proton scattering which opens the door to studies on forbidden decays like the C-parity violating process η → π0e+e-. In this article, an optimized detector calibration leading to a significantly improved missing mass resolution and a preliminary decay analysis are presented.

  11. Interactions of Cu with CoSi2, CrSi2 and TiSi2 with and without TiNx barrier layers

    NASA Astrophysics Data System (ADS)

    Olowolafe, J. O.; Li, Jian; Mayer, J. W.

    1990-12-01

    Interactions of Cu with CoSi2, CrSi2, and TiSi2 with and without interposed TiNx layers have been studied using Rutherford backscattering spectrometry, Auger electron spectrometry, x-ray diffraction, and in situ sheet resistivity measurements. Cu diffuses through a preformed CoSi2 layer to form the structure CoSi2/Cu3Si/Si(100). No dissociation of CoSi2 has been observed. For the Cu/CrSi2/Si system, the outdiffusion of Si leads to the formation of Cu3Si/CrSi2/Si at temperatures above 300 °C. At about the same temperature, Cu diffuses into a TiSi2 layer and to the TiSi2/Si interface to react with both Ti and Si forming Cu3Ti, Cu3Si, and Cu4Si phases. A 50-nm TiNx layer prepared by reactive sputtering was observed to be an effective diffusion barrier between Cu and CoSi2 or CrSi2. A 30-nm layer of TiNx simultaneously grown with TiSi2 by rapid thermal annealing proved effective between Cu and TiSi2 up to 500 °C.

  12. DFT studies of the conformational/structural dependencies of geminal 1H,1H scalar coupling 2J(H,H') in substituted methanes.

    PubMed

    Barfield, Michael

    2007-08-01

    A study is presented of the structural dependencies for scalar, interproton J-coupling across two bonds in a series of substituted methanes. The coupled perturbed, density functional theory method with a B3PW91 functional and aug-cc-pVTZ-J basis sets is used to examine coupling between geminal protons (2)J(H,H') in methane and a series of substituted compounds CH(3)X (X = CH3, CH(2)CH(3), CH=CH2, CH=O, and NH2) as functions of the dihedral angle phi measured about the C1-X2 bonds. All four contributions are obtained but all conformational effects are dominated by the Fermi contact term. Simple linear combination of atomic orbitals (LCAO)-molecular orbital (MO) sum-over-states methods are used to examine the relationships of the coupling constants with dihedral angles as well as internal H-C-H and H-C1-X2 angles. This study explores some novel aspects of geminal H-H coupling including an analysis of the asymmetry in the conformational dependencies arising from non-next-nearest neighbor interactions. For each of the substituted methanes, explicit trigonometric/exponential expressions are given and these accurately reproduce the (2)J(H,H') structural dependencies with standard deviations usually less than 0.03 Hz. The molecular structures for representative bicyclic molecules were fully optimized, and DFT results for (2)J(H,H') reproduce all the trends in the experimental data. A discussion is given on the applicability of the equations for H--H coupling in the substituted methanes to coupling in the bicyclic molecules.

  13. New flavonoid C-O-C dimers and other chemical constituents from Garcinia brevipedicellata stem heartwood.

    PubMed

    Abderamane, Bintou; Tih, Anastasie E; Ghogomu, Raphael T; Blond, Alain; Bodo, Bernard

    The methanol extract of the stem heartwood of Garcinia brevipedicellata has furnished three new flavonoid C-O-C dimers, brevipedicilones A (6), B (8) and C (10), along with five previously reported flavonoid dimers, viz. amentoflavone (1), 4″'-O-methylamentoflavone (2), robustaflavone (3), 4'-O-methyl robustaflavone (4) and tetrahinokiflavone (5). The new structures, which are composed of flavanone-flavanonol or flavanonol-flavanonol sub-units, were established based on spectroscopic analysis including 1D and 2D NMR (1H-1H COSY, HSQC, HMBC, and NOESY) spectroscopy, and by comparing their spectral data with those reported for related compounds.

  14. Jusbetonin, the first indolo[3,2-b]quinoline alkaloid glycoside, from Justicia betonica.

    PubMed

    Subbaraju, Gottumukkala V; Kavitha, Jakka; Rajasekhar, Dodda; Jimenez, Jorge I

    2004-03-01

    A new indolo[3,2-b]quinoline alkaloid glycoside, jusbetonin (1), and three known alkaloids, namely, 10H-quindoline (2), 6H-quinindoline (3), and 5H,6H-quinindolin-11-one (4), have been isolated from the leaves of Justicia betonica. The structure of 1 was established on the basis of 1D and 2D NMR ((1)H-(1)H COSY, HMQC, and HMBC) and HRFABMS data. Compound 1 is the first example of a glycosylated indolo[3,2-b]quinoline alkaloid, while compound 4 was isolated for the first time from a natural source.

  15. Sannastatin, a novel toxic macrolactam polyketide glycoside produced by actinomycete Streptomyces sannanensis.

    PubMed

    Yang, Sheng-Xiang; Gao, Jin-Ming; Zhang, An-Ling; Laatsch, Hartmut

    2011-07-01

    A new rare 20-membered macrocyclic lactam incorporating a diene conjugated olefin, designated sannastatin (1), together with the known structurally related vicenistatin (2), has been isolated from the cultures of Streptomyces sannanensis, a bacteria found in the feces of Ailuropoda melanoleuca. The structure of the new compound was established on the basis of extensive spectroscopic analyses including 1D- and 2D-NMR ((1)H-(1)H COSY, TOCSY, HSQC, HMBC, and NOESY) experiments. Compounds 1 and 2 displayed significant growth inhibitory activity against the brine shrimp (Artemia salina) larvae.

  16. Structure and cross-reactivity of the O-antigen of Providencia stuartii O18 containing 3-acetamido-3,6-dideoxy-D-glucose.

    PubMed

    Kocharova, Nina A; Błaszczyk, Aleksandra; Zatonsky, George V; Torzewska, Agnieszka; Bystrova, Olga V; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-01-22

    The O-polysaccharide (O-antigen) of Providencia stuartii O18 was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text] where Qui3NAc is 3-acetamido-3,6-dideoxyglucose. Anti-P. stuartii O18 serum cross-reacted with the O-antigen of Proteus genomospecies 4, which could be accounted for the marked structural similarities of the main chain.

  17. The O-polysaccharide from the lipopolysaccharide of Providencia stuartii O44 contains L-quinovose, a 6-deoxy sugar rarely occurring in bacterial polysaccharides.

    PubMed

    Kocharova, Nina A; Ovchinnikova, Olga G; Toukach, Filip V; Torzewska, Agnieszka; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2005-05-23

    The O-polysaccharide (O-antigen) of Providencia stuartii O44:H4 (strain 3768/51) was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, and H-detected (1)H,(13)C HSQC, and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure: [Formula: see text].

  18. The structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O57 containing an amide of D-galacturonic acid with L-alanine.

    PubMed

    Kocharova, Nina A; Ovchinnikova, Olga G; Bushmarinov, Ivan S; Toukach, Filip V; Torzewska, Agnieszka; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2005-03-21

    The O-polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O57:H29. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments, showed that the polysaccharide contains an amide of D-galacturonic acid with L-alanine and has the following pentasaccharide repeating unit: [formula: see text

  19. Flavonoid glycosides and their p-coumaroyl esters from Campylospermum calanthum leaves.

    PubMed

    Elo Manga, Savio S; Tih, Anastasie E; Abderamane, Bintou; Ghogomu, Raphael T; Blond, Alain; Bodo, Bernard

    2012-01-01

    Six new compounds, comprising three flavonoid glycosides and their respective coumaroyl esters, have been isolated and characterized from the methanol extract of the leaves of Campylospermum calanthum, along with three known flavonoid aglycones, 7-O-methyl apigenin (1), 7-O-methyl luteolin (2), and 7-O-methyl quercetin (3). Their structures were elucidated based on chemical evidence as well as spectroscopic analysis including 1D and 2D NMR (1H-1H COSY, HSQC, HMBC, and NOESY) spectroscopy and by comparing their spectral data with those reported for related compounds.

  20. A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant Scyphiphora hydrophyllacea.

    PubMed

    Zeng, Yan-Bo; Wang, Hui; Zuo, Wen-Jian; Zheng, Bo; Yang, Tao; Dai, Hao-Fu; Mei, Wen-Li

    2012-03-01

    To study the antimicrobial components from the endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea Gaertn. F., a new fatty acid glucoside was isolated by column chromatography from the broth of A1, and its structure was identified as R-3-hydroxyundecanoic acid methylester-3-O-α-l-rhamnopyranoside (1) by spectroscopic methods including 1D and 2D NMR (HMQC, (1)H-(1)H COSY and HMBC) and chemical methods. Antimicrobial assay showed compound 1 possessed modest inhibitory effect on Saphylococcus aureus and methicillin-resistant S. aureus (MRSA) using the filter paper disc agar diffusion method.

  1. Eurycomaoside: a new quassinoid-type glycoside from the roots of Eurycoma longifolia.

    PubMed

    Bedir, Erdal; Abou-Gazar, Hassan; Ngwendson, Julius Ngunde; Khan, Ikhlas Ahmad

    2003-11-01

    A new C(19)-quassinoid-type glycoside has been isolated from the roots of Eurycoma longifolia. The structure elucidation of the compound was achieved by a combination of one- and two-dimensional NMR techniques, including (1)H-(1)H-correlation spectroscopy (COSY), (1)H-(13)C-heteronuclear correlation spectroscopy (HMQC), and (1)H-(13)C-heteronuclear multiple-bond correlation spectroscopy (HMBC), as well as high resolution electrospray ionization Fourier transformation mass spectrometry (HR-ESI-FT-MS) data. The C(1)-glycosidation site in the quassinoid framework is encountered for the first time.

  2. A new sesquiterpenoid quinone with cytotoxicity from Abelmoschus sagittifolius.

    PubMed

    Chen, De-Li; Zhang, Xiao-Po; Ma, Guo-Xu; Wu, Hai-Feng; Yang, Jun-Shan; Xu, Xu-Dong

    2016-01-01

    A new sesquiterpenoid quinone, Acyl hibiscone B (1), together with five known compounds, (R)-lasiodiplodin (2), (R)-de-O-methyllasiodiplodin, (3) dibutyl phthalate (4), (R)-9-phenylnonan-2-ol (5) and hibiscone B (6), was obtained from the stem tuber of Abelmoschus sagittifolius. The structure of compound 1 was elucidated by analysing its (1)H and (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, NOESY and HR-ESI-MS values. Compound 1 showed significant cytotoxicity against Hela and HepG-2 human cancer cell lines.

  3. A new coumestan from Tephrosia calophylla.

    PubMed

    Hari Kishore, Pennaka; Vijaya Bhaskar Reddy, Mopuru; Gunasekar, Duvvuru; Marthanda Murthy, Madugula; Caux, Cristelle; Bodo, Bernard

    2003-02-01

    A new coumestan, tephcalostan (1) has been isolated from the whole plant of Tephrosia calophylla BEDD. together with two known flavonoids, 7-O-methylglabranin (2) and kaempferol 3-O-beta-D-glucopyranoside (3). The structure of tephcalostan was elucidated as 5'-(R)-8, 9-methylenedioxy-5'-isopropenyl-4', 5'-dihydrofurano[2', 3':2, 3]coumestan by extensive one-and two-dimensional (1D- and 2D-)-NMR techniques including (1)H-(1)H correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond connectivity (HMBC) and nuclear Overhauser enhancement spectroscopy (NOESY) experiments.

  4. Structural study of (±) alkyl 3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylates

    NASA Astrophysics Data System (ADS)

    Arias-Pérez, M. S.; Cosme, A.; Gálvez, E.; Sanz-Aparicio, J.; Fonseca, I.; Bellanato, J.

    2003-01-01

    A series of α-hydroxyesters derived from (±) 3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylic acid was synthesised and studied by IR and NMR spectroscopy. The combined use of 1H- 1H COSY and 1H- 13C correlation spectra of these compounds helped in the unambiguous assignments of the bicyclic carbon and proton resonances. The crystal structure of ethyl (±) 3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylate was determined by X-ray diffraction.

  5. Sapinmusaponins F-J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi.

    PubMed

    Huang, Hui-Chi; Tsai, Wei-Jern; Morris-Natschke, Susan L; Tokuda, Harukuni; Lee, Kuo-Hsiung; Wu, Yang-Chang; Kuo, Yao-Haur

    2006-05-01

    Five new tirucallane-type saponins, sapinmusaponins F-J (1-5), were isolated from the galls of Sapindus mukorossi. The structures of these saponins were elucidated on the basis of spectroscopic analysis including 1D and 2D NMR techniques ((1)H-(1)H COSY, HMQC, HMBC, TOCSY, and NOESY). Compounds 1-5 showed anti-platelet-aggregation effects, but no obvious cytotoxic activity for platelets as assayed by lactate dehydrogenase (LDH) leakage. Compounds 1-5 also showed moderate activity in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-Barr virus early antigen (EBV-EA) activation assay.

  6. Water-soluble constituents from aerial roots of Ficus microcarpa.

    PubMed

    Ouyang, M-A; Kuo, Y-H

    2006-01-01

    Three new water-soluble constituents [ficuscarpanoside B (1), (7E,9Z)-dihydrophaseic acid 3-O-beta-D-glucopyranoside (4) and ficuscarpanic acid (6)] and the natural product 2,2'-dihydroxyl ether (7) have been isolated, together with three known compounds [(7S,8R)-syringoylglycerol (2), (7S,8R)-syringoylglycerol-7-O-beta-D-glucopyranoside (3) and icariside D2 (5)] from the aerial roots of Ficus microcarpa. Identification of their structures was achieved by 1D and 2D NMR experiments, including 1H-1H COSY, NOESY, HMQC and HMBC methods and FAB mass spectral data.

  7. Identification of two novel Prodelphinidin A-type dimers from roasted hazelnut skins ( Corylus avellana L.).

    PubMed

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2013-12-26

    Two new A-type dimeric prodelphinidins, EGC-(2β→O7, 4β→8)-C and EGC-(2β→O5, 4β→6)-C, were isolated from the skins of roasted hazelnut ( Corylus avellana L.) by low-speed rotary countercurrent chromatography (LSRCCC) and final purification by preparative HPLC. Their structures were determined by a combination of mass spectrometry (HPLC-ESI-MS(n) and HR-ESI-MS) and NMR spectroscopy that included the application of 2D methods ((1)H-(1)H COSY, HSQC, HMBC, and NOESY). Furthermore, circular dichroism (CD) and acid-catalyzed degradation (phloroglucinolysis) confirmed the proposed structures.

  8. In situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) at temperatures below 150 C

    NASA Technical Reports Server (NTRS)

    Nieh, C. W.; Lin, T. L.

    1989-01-01

    This paper reports an in situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) from a 10-nm-thick amorphous mixture of Co and Si in the ratio 1:2, which was formed by codeposition of Co and Si near room temperature. Nuclei of CoSi2 are observed in the as-deposited film. These nuclei are epitaxial and extend through the whole film thickness. Upon annealing, these columnar epitaxial CoSi2 grains grow laterally at temperatures as low as 50 C. The kinetics of this lateral epitaxial growth was studied at temperatures between 50 and 150 C. The activation energy of the growth process is 0.8 + or - 0.1 eV.

  9. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  10. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  11. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  12. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  13. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR.

    PubMed

    Andreas, Loren B; Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-08-16

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.

  14. Structure of fully protonated proteins by proton-detected magic-angle spinning NMR

    PubMed Central

    Jaudzems, Kristaps; Stanek, Jan; Lalli, Daniela; Bertarello, Andrea; Le Marchand, Tanguy; Cala-De Paepe, Diane; Kotelovica, Svetlana; Akopjana, Inara; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Lesage, Anne; Emsley, Lyndon; Tars, Kaspars; Herrmann, Torsten; Pintacuda, Guido

    2016-01-01

    Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of 1H-1H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins. PMID:27489348

  15. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  16. Chemical exchange spectroscopy based on carbon-13 NMR. Applications to enzymology and protein folding

    NASA Astrophysics Data System (ADS)

    Alexandrescu, Andrei T.; Loh, Stewart N.; Markley, John L.

    We explore how 13C-based two-dimensional chemical exchange spectroscopy (EXSY) can be used to investigate exchange processes that are slow on the NMR time scale. Results are shown for the mutarotase-catalyzed α →← β isomerization of [1- 13C]glucose using experiments that detect carbon spins: homonuclear 13C exchange spectroscopy [ 13C { 13C} EXSY] and heteronuclear exchange spectroscopy [ 13C { 1H} EXSY]; and inverse experiments that select for proton spins attached to 13C: 1H- 13C single-bond correlation exchange spectroscopy [ 1H { 13C} SBC-EXSY] and 13C-filtered 1H exchange spectroscopy [ 1H{ 1H}- 13Cƒ- EXSY] . The main advantage of 13C-based exchange experiments is the simplification of complex spectra afforded by incorporation of selective labels. The inherent power of this approach is illustrated with a 1H { 13C} SBC-EXSY spectrum showing the native →← denatured interconversion of [ 13Cδ1] Trp-staphylococcal nuclease. Certain 13C-based EXSY experiments are useful for discriminating exchange connectivities from dipole-dipole connectivities.

  17. Efficiency of homonuclear Hartmann-Hahn and COSY-type mixing sequences in the presence of scalar and residual dipolar couplings.

    PubMed

    Kramer, Frank; Glaser, Steffen J

    2002-03-01

    In the presence of scalar (J) and residual dipolar (D) couplings, the transfer efficiency of homonuclear Hartmann-Hahn and COSY-type mixing depends on the ratio D/J and on the mixing sequence. This dependence is analyzed theoretically and the results are confirmed experimentally. At least two different mixing sequences are required to yield good transfer efficiencies for all ratios D/J. In contrast to COSY-type experiments, homonuclear Hartmann-Hahn sequences can provide efficient transfer even if the sum of D and J is zero, i.e., if the coupling vanishes in the weak coupling limit.

  18. Hydrogen-bonding and the dissolution mechanism of uracil in an acetate ionic liquid: new insights from NMR spectroscopy and quantum chemical calculations.

    PubMed

    Araújo, João M M; Pereiro, Ana B; Canongia Lopes, José N; Rebelo, Luís P N; Marrucho, Isabel M

    2013-04-18

    The dissolution of uracil-a pyrimidine nucleic acid base-in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][CH3COO]) has been investigated by methods of (1)H and (13)C NMR spectroscopy, (1)H-(1)H NOESY NMR spectroscopy, and quantum chemical calculations. The uracil-[C2mim][CH3COO] interactions that define the dissolution mechanism comprise the hydrogen bonds between the oxygen atoms of the acetate anion and the hydrogen atoms of the N1-H and N3-H groups of uracil and also the hydrogen bonds between the most acidic aromatic hydrogen atom (H2) of the imidazolium cation and the oxygen atoms of the carbonyl groups of uracil. The bifunctional solvation nature of the ionic liquid can be inferred from the presence of interactions between both ions of the ionic liquid and the uracil molecule. The location of such interaction sites was revealed using NMR data ((1)H and (13)C chemical shifts both in the IL and in the uracil molecule), complemented by DFT calculations. NOESY experiments provided additional evidence concerning the cation-uracil interactions.

  19. 1H and 13C NMR assignments for new heterocyclic TAM leuco dyes, (2Z,2'E)-2,2'-(2-phenyl propane-1,3-diylidene) bis(1,3,3-trimethylindoline) derivatives. Part II.

    PubMed

    Keum, Sam-Rok; Roh, Se-Jung; Lee, Min-Hyung; Sauriol, Francoise; Buncel, Erwin

    2008-09-01

    The (1)H and (13)C NMR spectra of the novel heterocyclic Leuco-TAM dyes, (2Z, 2'E)-2,2'-(2-phenyl propane-1,3-diylidene) bis(1,3,3-trimethylindoline) derivatives 1-4 as precursors of triarylmethane (TAM)(+) (Malachite Green FB-analog) dyes were completely assigned by 1D and 2D NMR experiments, including DEPT, COSY, HSQC, HMBC, and NOESY. Especially, the diastereotopic gem-dimethyl protons at the C3 and C3' positions of the FB rings were definitively assigned. The (Z,E) isomers adopt the energetically favored three-bladed propeller conformation in solution.

  20. Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition

    SciTech Connect

    Porrati, F.; Huth, M.; Kaempken, B.; Terfort, A.

    2013-02-07

    CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co{sub 2}(CO){sub 8}, and neopentasilane, Si{sub 5}H{sub 12}, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi{sub 2} nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

  1. Desktop NMR for structure elucidation and identification of strychnine adulteration.

    PubMed

    Singh, Kawarpal; Blümich, Bernhard

    2017-03-27

    Elucidating the structure of complex molecules is difficult at low magnetic fields due to the overlap of different peak multiplets and second-order coupling effects. This is even more challenging for rigid molecules with small chemical shift differences and with prochiral centers. Since low-field NMR spectroscopy is sometimes presumed as restricted to the analysis of only small and simple molecules, this paper aims at countering this misconception: it demonstrates the use of low-field NMR spectroscopy in chemical forensics for identifying strychnine and its counterions by exploring the chemical shift as a signature in different 1D (1)H and (13)C experiments. Hereby the applied methodologies combine various 1D and 2D experiments such as 1D (1)H, (13)C, DEPT, and 2D COSY, HETCOR, HSQC, HMBC and J-resolved spectroscopy to elucidate the molecular structure and skeleton of strychnine at 1 Tesla. Strychnine is exemplified here, because it is a basic precursor in the chemistry of natural products and is employed as a chemical weapon and as a doping agent in sports including the Olympics. In our study, the molecular structure of the compound could be identified either with a 1D experiment at high magnetic field or with HMBC and HSQC experiments at 1 T. In conclusion, low-field NMR spectroscopy enables the chemical elucidation of the strychnine structure through a simple click with a computer mouse. In situations where a high-field NMR spectrometer is unavailable, compact NMR spectrometers can nevertheless generate knowledge of the structure, important for identifying the different chemical reaction mechanisms associated with the molecule. Desktop NMR is a cost-effective viable option in chemical forensics. It can prove adulteration and identify the origin of different strychnine salts, in particular, the strychnine free base, strychnine hemisulphate and strychnine hydrochloride. The chemical shift signatures report the chemical structure of the molecules due to the impact

  2. CoSi2 growth on Si(001) by reactive deposition epitaxy: Effects of high-flux, low-energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Lim, C. W.; Greene, J. E.; Petrov, I.

    2006-07-01

    CoSi2 layers, <40nm thick, were grown on Si(001) by reactive deposition epitaxy (RDE) in which Co was deposited at 700°C by magnetically unbalanced ultrahigh vacuum magnetron sputtering. X-ray diffraction pole figures and transmission electron microscopy (TEM) reveal that the layers, which exhibit a cube-on-cube epitaxial relationship with the substrate, (001)CoSi2‖(001)Si and [100]CoSi2‖[100]Si, contain fourfold symmetric {111} twinned domains oriented such that {221}CoSi2‖(001)Si and ⟨110⟩CoSi2‖[110]Si. We demonstrate that high-flux low-energy (EAr+=9.6eV) Ar+ ion irradiation during deposition dramatically increases the area fraction fu of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio JAr+/JCo of the incident Ar+ to Co fluxes is 1.4 to 0.72 with JAr+/JCo=13.3. TEM analyses show that the early stages of RDE CoSi2(001) film growth proceed via the Volmer-Weber mode with independent nucleation of both untwinned and twinned islands. Increasing JAr+/JCo results in larger values of both the number density and area of untwinned with respect to twinned islands. The intense Ar+ ion bombardment creates additional low-energy adsorption sites that favor the nucleation of untwinned islands while collisionally enhancing Co surface mobilities which, in turn, increases the probability of itinerant Co adatoms reaching these sites.

  3. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    PubMed

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  4. Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: A 600-MHz NMR study

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-09-03

    Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. Receptor polysaccharide was isolated form S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The {sup 1}H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by {sup 1}H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments ({sup 1}H and {sup 13}C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages.

  5. J-edited pure shift NMR for the facile measurement of (n)J(HH) for specific protons.

    PubMed

    Chaudhari, Sachin Rama; Suryaprakash, N

    2015-04-07

    We report a novel 1D J-edited pure shift NMR experiment (J-PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton-proton scalar couplings. The experiment gives homonuclear broad-band (1)H-decoupled (1)H NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear-scalar-coupled doublet pattern at the chemical-shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.

  6. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  7. Structure of the O-polysaccharide of Providencia stuartii O4 containing 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose.

    PubMed

    Kocharova, Nina A; Torzewska, Agnieszka; Zatonsky, George V; Błaszczyk, Aleksandra; Bystrova, Olga V; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-01-22

    The O-polysaccharide of Providencia stuartii O4 was obtained by mild acid degradation of the lipopolysaccharide, and the following structure of the pentasaccharide repeating unit was established: [structure: see text] where D-Qui4N(L-AspAc) is 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose, which has not been hitherto found in bacterial polysaccharides. Structural studies were performed using sugar and methylation analyses, Smith degradation and NMR spectroscopy, including conventional 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments as well as COSY and NOESY experiments run in an H(2)O-D(2)O mixture to reveal correlations for NH protons.

  8. Cytotoxic benzil and coumestan derivatives from Tephrosia calophylla.

    PubMed

    Ganapaty, Seru; Srilakshmi, Guttula Veera Kantha; Pannakal, Steve Thomas; Rahman, Hafizur; Laatsch, Hartmut; Brun, Reto

    2009-01-01

    A benzil, calophione A, 1-(6'-Hydroxy-1',3'-benzodioxol-5'-yl)-2-(6''-hydroxy-2''-isopropenyl-2'',3''-dihydro-benzofuran-5''-yl)-ethane-1,2-dione and three coumestan derivatives, tephcalostan B, C and D were isolated from the roots of Tephrosia calophylla. Their structures were deduced from spectroscopic data, including 2D NMR (1)H-(1)H COSY and (13)C-(1)H COSY experiments. Compounds were evaluated for cytotoxicity against RAW (mouse macrophage cells) and HT-29 (colon cancer cells) cancer cell lines and antiprotozoal activity against various parasitic protozoa. Calophione A exhibited significant cytotoxicity with IC(50) of 5.00 (RAW) and 2.90microM (HT-29), respectively.

  9. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  10. A New Sucrase Enzyme Inhibitor from Azadirachta indica

    PubMed Central

    Abdelhady, Mohamed I. S.; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A.

    2016-01-01

    Background: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Materials and Methods: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. Results: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-4C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, NOESY and HMBC. Conclusion: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. SUMMARY Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica. PMID:27563214

  11. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  12. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  13. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  14. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Structural elucidation of the Brucella melitensis M antigen by high-resolution NMR at 500 MHz

    SciTech Connect

    Bundle, D.R.; Cherwonogrodzky, J.W.; Perry, M.B.

    1987-12-29

    The Brucella M antigen from the species type strain Brucella melitensis 16M has been identified as a component of the cell wall lipopolysaccharide (LPS). O polysaccharide liberated from this LPS by mild acid hydrolysis exhibited M activity in serological tests and was shown to be a homopolymer of 4-formamido-4,6-dideoxy-..cap alpha..-D-mannopyranosyl residues arranged in an oligosaccharide repeating unit as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the native lipopolysaccharide. Structural analysis of the O polysaccharide by NMR methods was difficult due to apparent microheterogeneity of the repeating unit, which was in fact caused by the presence of rotational isomers of the N-formyl moiety. This problem was resolved by chemical modification of the polysaccharide to its amino and N-acetyl derivatives, the 500-MHz /sup 1/H and 125-MHz /sup 13/C NMR spectra of which could be analyzed in terms of a unique structure through application of pH-dependent ..beta..-shifts and two-dimensional techniques that included COSY, relayed COSY, and NOESY experiments together with heteronuclear C/H shift correlation spectroscopy. On the basis of these experiments and supported by methylation and periodate oxidation data, the structure of the M polysaccharide was determined as a linear polymer of unbranched pentasaccharide repeating units consisting of four 1,2-linked and one 1,3-lined 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl residues. The marked structural similarity of the M antigen and the A antigen, which is known to be a 1,2-linked homopolysaccharide of 4,6-dideoxy-4-formamido-..cap alpha..-D-mannopyranosyl units, accounts for cross-serological reactions of the two and the long-standing confusion surrounding the nature of their antigenic determinants.

  16. Increased effective barrier heights in Schottky diodes by molecular-beam epitaxy of CoSi2 and Ga-doped Si on Si(111)

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Lin, T. L.; Grunthaner, P. J.; Andersson, P. O.; Iannelli, J. M.

    1988-01-01

    Increasing the effective Schottky-barrier height of epitaxial CoSi2/Si(111) diodes by the use of thin, highly doped Si layers in close proximity to the metal-semiconductor interface has been studied. Intrinsic Si, Si doped by coevaporation of Ga, and epitaxial CoSi2 layers have all been grown in the same molecular-beam epitaxy system. Current-voltage and photoresponse characterization yield barrier heights ranging from 0.61 eV for a sample with no p(+) layer to 0.89 eV for a sample with a 20-nm-thick p(+) layer. These results are compared to theoretical values based on a one-dimensional solution of Poisson's equation under the depletion approximation.

  17. Analysis of human muscle extracts by proton NMR

    SciTech Connect

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-03-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in /sup 2/H/sub 2/O to contain 120 O.D. units at 280 nm per 0.5 ml. /sup 1/H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference.

  18. Formation of Bamboo-Like Carbon Nanotubes and Nanofibers Using Co-Si-O and Co-Si Catalysts

    NASA Astrophysics Data System (ADS)

    Chang, Hui Lin; Tzu Kuo, Cheng

    2010-04-01

    Bamboo-like carbon nanotubes were synthesized by microwave plasma chemical vapor deposition (MPCVD) using CH4 and N2 as source gases in various ratios. Two types of catalytic films, namely, a condition 1, Co film/SiO2/Si substrate, and, a Co film/Si substrate layer with rapid thermal annealing (RTA; condition 2), were used as catalysts to grow carbon nanotubes. The interaction between the catalytic film and the Si substrate or between the catalytic film and the SiO2 interlayer occurred during the H2 reduction step before nanotube growth. The chemical compositions of catalytic particles capping the carbon nanotubes were identified by energy-dispersive X-ray spectroscopy (EDS) as Co-Si-O and Co-Si for conditions 1 and 2, respectively. The growth of the base and tip growths was investigated and is suggested to be governed by the capillary effect and the strength of adhesion between the catalytic particles and the underlayer. Transmission electron microscopy (TEM) analysis reveals that the carbon nanotubes and nanofibers have bamboo-like structures with hollow internal compartments. The formation mechanisms of these bamboo-like structures are discussed.

  19. BIG KARL and COSY: Examples for high performance magnet design taught by {open_quotes}Papa Klaus{close_quotes}

    SciTech Connect

    Bechtstedt, U.; Hacker, U.; Maier, R.; Martin, S.; Berg, G.P.A.; Hardt, A.; Huerlimann, W.; Meissburger, J.; Roemer, J.G.M.

    1995-02-01

    The past decades have seen a tremendous development in nuclear, middle, and high energy physics. This advance was in a great part promoted by the availability of newer and more powerful instruments. Over time, these instruments grew in size as well as in sophistication and precision. Nearly all these devices had one fundamental thing in common - magnetic fields produced with currents and iron. The precision demanded by the new experiments and machines did bring the magnet technology to new frontiers requiring the utmost in the accuracy of magnetic fields. The complex properties of the iron challenged innumerable physicists in the attempt to force the magnetic fields into the desired shape. Experience and analytical insight were the pillars for coping with those problems and only few mastered the skills and were in addition able to communicate their intricate knowledge. It was a fortuitous situation that the authors got to know Klaus Halbach who belonged to those few and who shared his knowledge contributing thus largely to the successful completion of two large instruments that were built at the Forschungszentrum Juelich, KFA, for nuclear and middle energy physics. In one case the efforts went to the large spectrometer named BIG KARL whose design phase started in the early 70`s. In the second case the work started in the early 80`s with the task to build a high precision 2.5 GeV proton accelerator for cooled stored and extracted beams known as COSY-Juelich.

  20. High field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for the Characterization of Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-04-01

    High-field NMR and FTMS of SPE-derived marine dissolved organic matter (SPE-DOM) from the South Atlantic Ocean provided molecular level information of complex unknowns with unprecedented coverage of carbon and resolution. SPE-DOM represented major oceanic regimes of general significance: 5 m (near surface photic zone), 48 m (fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 1H NMR spectra showed rather smooth bulk NMR envelopes with a few percent of visibly resolved signatures. 1H NMR spectra of SPE-DOM indicated considerable variance in abundance for all major chemical environments. Two-dimensional NMR spectra of SPE-DOM displayed exceptional resolution. JRES (sensitive but limited resolution), COSY (highly resolved) and HMBC NMR (informative but limited S/N ratio) spectra depicted resolved molecular signatures in excess of a certain minimum abundance. COSY cross peaks were most diverse for sample FMAX and conformed to >1,500 molecules present. Classical methyl groups terminating aliphatic chains represented only ~ 15 % of total methyl in all marine DOM investigated; 2 % of methyl was bound to olefinic carbon. Methyl ethers were abundant in surface marine DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine SPE-DOM with discrimination of isolated and conjugated olefins as well as ?,?-unsaturated double bonds. Olefinic protons were more abundant than aromatic protons; relative HSQC cross peak integrals indicated more abundant olefinic carbon than aromatic carbon in all marine DOM as well. Furan, pyrrol and thiophene derivatives were marginal. Benzene derivatives and phenols as well as six-membered nitrogen heterocycles were prominent. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter (TMOC) in marine DOM at all

  1. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi0.98B0.02

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Lu, Xu; Morelli, Donald T.

    2016-07-01

    Boron-added CoSi, CoSi0.98B0.02, possesses a very high thermoelectric power factor of 60 μW cm-1 K-2 at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms is intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi0.98B0.02 has been studied. Here, we present a study of the substitution of Ge for Si atoms in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands, while Ge substitution only shifts the Fermi level upward into the conduction band. Our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.

  2. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi0.98B0.02

    DOE PAGES

    Sun, Hui; Lu, Xu; Morelli, Donald T.

    2016-07-21

    Boron-added CoSi, CoSi0.98B0.02, possesses a very high thermoelectric power factor of 60 μW cm-1 K-2 at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms are intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi0.98B0.02 has been studied. Here we present a study of the substitution of Ge for Si atomsmore » in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands while Ge substitution only shifts the Fermi level upward into the conduction band. Lastly, our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.« less

  3. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  4. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  5. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds.

    PubMed

    Aspers, Ruud L E G; Ampt, Kirsten A M; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, (n)J(CF)- and (n)J(FF)-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all (n)J(CF)- and (n)J(FF)-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to

  6. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  7. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  8. Vibrational spectroscopic study, structural analysis, photophysical properties and theoretical calculations of cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline

    NASA Astrophysics Data System (ADS)

    Baldenebro-López, Jesús; Báez-Castro, Alberto; Glossman-Mitnik, Daniel; Höpfl, Herbert; Cruz-Enríquez, Adriana; Miranda-Soto, Valentín; Parra-Hake, Miguel; Campos-Gaxiola, José J.

    2017-02-01

    cis-(±)-2,4,5-tris(pyridin-2-yl)imidazoline has been fully characterized by FT-IR, FT-Raman, UV-Vis and fluorescence spectroscopy, one- and two-dimensional NMR spectroscopy (1H, 1H-1H gCOSY, 1H-1H gNOESY,13C{1H} ATP, 1H-13C and 1H-15N gHSQC and 1H-13C gHMBC), high-resolution mass spectrometry (HR-FAB+), TG-DSC analysis and low-temperature single-crystal X-ray diffraction analysis. Additionally, the molecular geometry and the vibrational infrared and Raman frequencies were calculated by density functional theory using the M06/6-31G(d) level of theory, showing good agreement with the experimental results. The title compound showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy and compared to the theoretically obtained parameters using TD-DFT calculations. Natural and Mulliken atomic charges and the molecular electrostatic potential (MEP) have been mapped.

  9. Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    PubMed Central

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna P.; Charan, Romila D.; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-01-01

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides. PMID:24970220

  10. Isolation and characterization of a novel rebaudioside M isomer from a bioconversion reaction of rebaudioside A and NMR comparison studies of rebaudioside M isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita.

    PubMed

    Prakash, Indra; Bunders, Cynthia; Devkota, Krishna P; Charan, Romila D; Ramirez, Catherine; Priedemann, Christopher; Markosyan, Avetik

    2014-03-31

    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides.

  11. High-resolution 2D NMR spectra in inhomogeneous fields based on intermolecular multiple-quantum coherences with efficient acquisition schemes

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Huang, Yuqing; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2011-01-01

    High-resolution 2D NMR spectra in inhomogeneous fields can be achieved by the use of intermolecular multiple-quantum coherences and shearing reconstruction of 3D data. However, the long acquisition time of 3D spectral data is generally unbearable for invivo applications. To overcome this problem, two pulse sequences dubbed as iDH-COSY and iDH-JRES were proposed in this paper. Although 3D acquisition is still required for the new sequences, the high-resolution 2D spectra can be obtained with a relatively short scanning time utilizing the manipulation of indirect evolution period and sparse sampling. The intermolecular multiple-quantum coherence treatment combined with the raising and lowering operators was applied to derive analytical signal expressions for the new sequences. And the experimental observations agree with the theoretical predictions. Our results show that the new sequences possess bright perspective in the applications on invivo localized NMR spectroscopy.

  12. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  13. Glycosylamines of 4,6-O-butylidene-alpha-D-glucopyranose: synthesis and characterization of glycosylamines, and the crystal structure of 4,6-O-butylidene-N-(o-chlorophenyl)-beta-D-glucopyranosylamine.

    PubMed

    Rajsekhar, Gudneppanavar; Rao, Chebrolu P; Saarenketo, Pauli K; Kolehmainen, Erkki; Rissanen, Kari

    2002-02-11

    A total of nine glycosylamines of 4,6-O-butylidene-alpha-D-glucopyranose were synthesized using primary amines having various groups in their ortho- or para-positions. Among these, six are monoglycosylamines, including one primary glycosylamine, and three are bis-glycosylamines. All these compounds were characterized by 1H, 1H-1H COSY, 1H-13C COSY and 13C NMR spectroscopy and FTIR spectra. The FAB mass spectra provided the molecular weights of the products by exhibiting the corresponding molecular ion peaks. The crystal structure of 4,6-O-butylidene-N-(o-chlorophenyl)-beta-D-glucopyranosylamine revealed the C-1 glycosylation, the beta-anomeric nature, and the 4C1 chair conformation of the saccharide unit in the product. In the lattice two types of dimers exist. While one type of dimer is formed through O-H...O type of interactions, the other type is formed via C-H...O type of interactions. In the direction of these C-H...O type of interactions, the dimeric units are connected to form a chain.

  14. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 17. Characterization of Poly(10-((4-Cyano-4’-Biphenyl)oxy) decanyl Vinyl Ether)s by 1-D and 2-D H-NMR Spectroscopy

    DTIC Science & Technology

    1991-10-30

    Spectroscopy by Virril Percec and Myongsoo Lee Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106-2699 and Peter L ...AUTHOrZ(S) Virgil Percec, Myongsoo Lee, Peter L . Rinaldi and Vincent E. Litman l3a TYPE OF REPORT 1131) TIME COVERED 14. DATE OF REPORT (Year. Afot? Dy I...with CF3SO 3 H/S(CH 3)2 in CH2Cl2 at 0OC and termninated by ammoniacal methanol, by 1 -D and 2-D (COSY) 300 MHz IH-NMR spectroscopy is presented. The

  15. Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Nieh, C. W.; Xiao, Q. F.; Hashimoto, Shin

    1989-01-01

    The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by an Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced.

  16. Isolation, NMR Spectral Analysis and Hydrolysis Studies of a Hepta Pyranosyl Diterpene Glycoside from Stevia rebaudiana Bertoni.

    PubMed

    Chaturvedula, Venkata Sai Prakash; Chen, Steven; Yu, Oliver; Mao, Guohong

    2013-09-30

    From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a minor steviol glycoside, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-(3-O-β-D-glucopyranosyl-α-L-rhamnopyranosyl)-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl) ester] (1); also known as rebaudioside O having seven sugar units has been isolated. Its structural characterization has been achieved by the extensive 1D (1H and 13C), and 2D NMR (COSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside O using acid and enzymatic methods to identify aglycone and sugar residues in its structure as well as their configurations.

  17. Isolation, NMR Spectral Analysis and Hydrolysis Studies of a Hepta Pyranosyl Diterpene Glycoside from Stevia rebaudiana Bertoni

    PubMed Central

    Chaturvedula, Venkata Sai Prakash; Chen, Steven; Yu, Oliver; Mao, Guohong

    2013-01-01

    From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a minor steviol glycoside, 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-(3-O-β-d-glucopyranosyl-α-l-rhamnopyranosyl)-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester] (1); also known as rebaudioside O having seven sugar units has been isolated. Its structural characterization has been achieved by the extensive 1D (1H and 13C), and 2D NMR (COSY, HMQC, HMBC) as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside O using acid and enzymatic methods to identify aglycone and sugar residues in its structure as well as their configurations. PMID:24970189

  18. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  19. Design and application of robust rf pulses for toroid cavity NMR spectroscopy.

    PubMed

    Skinner, Thomas E; Braun, Michael; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J

    2011-04-01

    We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B₁ field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 μs) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR spectroscopy using a toroid probe.

  20. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  1. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    PubMed

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as (1)H, (13)C, (31)P, (19)F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  2. Self-aligned silicides for Ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Smith, U.

    2004-07-01

    Metal silicides continue to play an indispensable role during the remarkable development of microelectronics. Along with several other technological innovations, the implementation of the self-aligned silicide technology paved the way for a rapid and successful miniaturization of device dimensions for metal-oxide-semiconductor field-effect transistors (MOSFETs) in pace with the Moore's law. The use of silicides has also evolved from creating reliable contacts for diodes, to generating high-conductivity current paths for local wiring, and lately to forming low-resistivity electrical contacts for MOSFETs. With respect to the choice of silicides for complementary metal-oxide-semiconductor (CMOS) technology, a convergence has become clear with the self-alignment technology using only a limited number of silicides, namely TiSi2, CoSi2, and NiSi. The present work discusses the advantages and limitations of TiSi2, CoSi2, and NiSi using the development trend of CMOS technology as a measure. Specifically, the reactive diffusion and phase formation of these silicides in the three terminals of a MOSFET, i.e., gate, source, and drain, are analyzed. This work ends with a brief discussion about future trends of metal silicides in micro/nanoelectronics with reference to potential material aspects and device structures outlined in the International Technology Roadmap for Semiconductors. .

  3. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    PubMed

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells.

  4. Cytotoxic withanolides from Physalis angulata L.

    PubMed

    He, Qing-Ping; Ma, Lei; Luo, Jie-Ying; He, Fu-Yuan; Lou, Li-Guang; Hu, Li-Hong

    2007-03-01

    Four new withanolides, physagulins L-O (1-4), were isolated from the MeOH extract of the aerial parts of Physalis angulata L. (Solanaceae), together with seven known withanolides, compounds 5-11. Their structures were determined by spectroscopic techniques, including 1H-, 13C-NMR (DEPT), and 2D-NMR (HMBC, HMQC, 1H,1H-COSY, NOESY) experiments, as well as by HR-MS. All eleven compounds were tested for their antiproliferative activities towards human colorectal-carcinoma (HCT-116) and human non-small-cell lung-cancer (NCI-H460) cells. Compound 5 exhibited the highest anticancer activity against the HCT-116 cell line, with an IC50 value of 1.64+/-0.06 microM. Compound 9 exhibited the highest cytotoxicity towards the NCI-H460 cell line, with an IC50 value of 0.43+/-0.02 microM.

  5. Diterpenes from the Trunk of Abies holophylla and Their Potential Neuroprotective and Anti-inflammatory Activities.

    PubMed

    Kim, Chung Sub; Subedi, Lalita; Kim, Sun Yeou; Choi, Sang Un; Kim, Ki Hyun; Lee, Kang Ro

    2016-02-26

    Eleven new abietane-type diterpenes, holophyllins D-N (1-11), and 17 known analogues (12-28), were isolated from a MeOH extract of the trunk of Abies holophylla. The chemical structures of 1-11 were determined through spectroscopic data analysis, including NMR ((1)H and (13)C NMR, DEPT, (1)H-(1)H COSY, HMQC, HMBC, and NOESY) and HRFABMS methods. All isolated compounds (1-28) were evaluated for their cytotoxicity against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-116), for their potential neuroprotective effects through induction of nerve growth factor in C6 glioma cells, and for their effects on nitric oxide levels in lipopolysaccharide-stimulated murine microglia BV2 cells.

  6. Evaluation of antinociceptive and anti-inflammatory activities of a new triterpene saponin from Bauhinia variegata leaves.

    PubMed

    Mohamed, Mona A; Mammoud, Madeha R; Hayen, Heiko

    2009-01-01

    A new triterpene saponin, named as 23-hydroxy-3alpha-[O-alpha-L-1C4-rhamnopyranosyl-(1"-->4')-O-alpha-L-4C1-arabinopyranosyl-oxy]olean-12-en-28-oic acid O-alpha-L-1C4-rhamnopyranosyl-(1"'-->4")-O-beta-D-4C1-glucopyranosyl-(1"-->6"')-O-beta-D-4C1-glucopyranosyl ester (9), was isolated from the leaves of Bauhinia variegata Linn. In addition, six flavonoid compounds along with two cinnamic acid derivatives were isolated and identified based on their chromatographic properties, and chemical and spectral data (ESI-high resolution-MSn, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, and HMBC). Compound 9 was found to be nontoxic (LD50) and to have significant anti-inflammatory and antinociceptive activities. It also showed a slight antischistosomal activity.

  7. Isolation and characterization of water-soluble intermediates of blue pigments transformed from geniposide of Gardenia jasminoides.

    PubMed

    Park, Jee-Eun; Lee, Jae-Youn; Kim, Hong-Gyu; Hahn, Tae-Ryong; Paik, Young-Sook

    2002-10-23

    Gardenia blue dye was obtained through the reaction of methylamine with genipin, the aglycone of geniposide isolated from the fruits of Gardenia jasminoides. The resulting blue pigments were passed through Bio-Gel P-2 resin yielding five fractions, GM1-GM5. Four fractions (GM1-GM4) were all blue pigments, and the first eluted higher molecular weight fraction GM1 had a higher tinctorial strength than the later eluted lower molecular weight fractions, GM2-GM4. The last eluted GM5 fraction with lambda(max) of 292 nm was colorless and was confirmed as the true intermediate of the blue pigments on the basis of UV-vis spectrophotometric evidence. The GM5 fraction was composed of two epimeric isomers, and their structures were characterized by (1)H NMR, (1)H-(1)H COSY, (13)C NMR, and HMQC and HMBC spectral measurements.

  8. Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D H2BC and clean HMBC.

    PubMed

    Meier, Sebastian; Petersen, Bent O; Duus, Jens Ø; Sørensen, Ole W

    2009-11-02

    The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of (13)C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the (1)H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.

  9. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  10. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  11. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  12. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  13. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  14. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  15. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  16. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  18. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  19. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  20. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    PubMed

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  1. A new glycation product ‘norpronyl-lysine,’ and direct characterization of cross linking and other glycation adducts: NMR of model compounds and collagen

    PubMed Central

    Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.

    2014-01-01

    NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030

  2. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  3. Structural elucidation of the Brucella melitensis M antigen by high-resolution NMR at 500 MHz.

    PubMed

    Bundle, D R; Cherwonogrodzky, J W; Perry, M B

    1987-12-29

    The Brucella M antigen from the species type strain Brucella melitensis 16M has been identified as a component of the cell wall lipopolysaccharide (LPS). O polysaccharide liberated from this LPS by mild acid hydrolysis exhibited M activity in serological tests and was shown to be a homopolymer of 4-formamido-4,6-dideoxy-alpha-D-mannopyranosyl residues arranged in an oligosaccharide repeating unit as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the native lipopolysaccharide. Structural analysis of the O polysaccharide by NMR methods was difficult due to apparent microheterogeneity of the repeating unit, which was in fact caused by the presence of rotational isomers of the N-formyl moiety. This problem was resolved by chemical modification of the polysaccharide to its amino and N-acetyl derivatives, the 500-MHz 1H and 125-MHz 13C NMR spectra of which could be analyzed in terms of a unique structure through application of pH-dependent beta-shifts and two-dimensional techniques that included COSY, relayed COSY, and NOESY experiments together with heteronuclear C/H shift correlation spectroscopy. On the basis of these experiments and supported by methylation and periodate oxidation data, the structure of the M polysaccharide was determined as a linear polymer of unbranched pentasaccharide repeating units consisting of four 1,2-linked and one 1,3-linked 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl residues. The marked structural similarity of the M antigen and the A antigen, which is known to be a 1,2-linked homopolysaccharide of 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl units, accounts for cross-serological reactions of the two and the long-standing confusion surrounding the nature of their antigenic determinants. Structural and serological considerations in conjuction with the sodium dodecyl sulfate banding pattern of Brucella A LPS suggest that its biosynthesis differs appreciably from that of the M antigen, which appears to be

  4. Image cross-correlation using COSI-Corr: A versatile technique to monitor and quantity surface deformation in space and time

    NASA Astrophysics Data System (ADS)

    Leprince, S.; Ayoub, F.; Avouac, J.

    2011-12-01

    We have developed a suite of algorithms for precise Co-registration of Optically Sensed Images and Correlation (COSI-Corr) which were implemented in a software package first released to the academic community in 2007. Its capability for accurate surface deformation measurement has proved useful for a wide variety of applications. We present the fundamental principles of COSI-Corr, which are the key ingredients to achieve sub-pixel registration and sub-pixel measurement accuracy, and we show how they can be applied to various types of images to extract 2D, 3D, or even 4D deformation fields of a given surface. Examples are drawn from recent collaborative studies and include: (1) The study of the Icelandic Krafla rifting crisis that occurred from 1975 to 1984 where we used a combination of archived airborne photographs, declassified spy satellite imagery, and modern satellite acquisitions to propose a detailed 2D displacement field of the ground; (2) The estimation of glacial velocities from fast New Zealand glaciers using successive ASTER acquisitions; (3) The derivation of sand dunes migration rates; (4) The estimation of ocean swell velocity taking advantage of the short time delay between the acquisition of different spectral bands on the SPOT 5 satellite; (5) The derivation of the full 3D ground displacement field induced by the 2010 Mw 7.2 El Mayor-Cucapah Earthquake, as recorded from pre- and post-event lidar acquisitions; (6) And, the estimation of 2D in plane deformation of mechanical samples under stress in the lab. Finally, we conclude by highlighting the potential future and implication of applying such correlation techniques on a large scale to provide global monitoring of our environment.

  5. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  8. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  9. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  10. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  11. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  12. Antiinflammatory and Antioxidant Flavonoids and Phenols from Cardiospermum halicacabum (倒地鈴 Dào Dì Líng)

    PubMed Central

    Cheng, Hui-Ling; Zhang, Li-Jie; Liang, Yu-Han; Hsu, Ya-Wen; Lee, I-Jung; Liaw, Chia-Ching; Hwang, Syh-Yuan; Kuo, Yao-Haur

    2013-01-01

    Seventeen compounds, quercetin-3-O-α-l-rhamnoside (1), kaempferol-3-O-α-L-rhamnoside (2), apigenin-7-O-β-D-glucuronide (3), apigenin 7-O-β-D-glucuronide methyl ester (4), apigenin 7-O-β-D-glucuronide ethyl ester (5), chrysoeriol (6), apigenin (7), kaempferol (8), luteolin (9), quercetin (10), methyl 3,4-dihydroxybenzoate (11), p-coumaric acid (12), 4-hydroxybenzoic acid (13), hydroquinone (14), protocathehuic acid (15), gallic acid (16), and indole-3-carboxylic acid (17), were isolated from the ethanol extract of Taiwanese Cardiospermum halicabum. All chemical structures were determined by physical and extensive spectroscopic analyses such as 1 H Nuclear Magnetic Resonance spectroscopy (NMR), 13C NMR, 1H-1H Correlation spectroscopy (1H-1H COSY), Heteronuclear Multiple Quantum Coherence spectroscopy (HMQC), Heteronuclear Multiple-bond Correlation spectroscopy (HMBC), and Nuclear Overhauser Effect spectroscopy (NOESY), as well as comparison with literature values. Furthermore, the High-Performance Liquid Chromatography- Photodiode Array Detector (HPLC-DAD) fingerprint profile was established for the determination of major constituents in the EtOAc extract and retention times of the isolated compounds. All isolated compounds were also evaluated for antiinflammatory and antioxidant activities. PMID:24716153

  13. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  14. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  15. Enantiotopic discrimination in the deuterium NMR spectrum of solutes with S4 symmetry in chiral liquid crystals.

    PubMed

    Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev; Lesot, Philippe

    2011-04-07

    Enantiotopic discrimination in the NMR spectra of prochiral rigid solutes in chiral liquid crystals (CLC), by the ordering mechanism, is limited to molecules possessing one of the four, so called, "allowed" symmetries, D(2d), C(2v), C(s), and S(4). So far, such spectral discrimination was demonstrated only for solutes possessing one of the first three symmetries. In this work, we present deuterium NMR measurements on a rigid S(4) compound dissolved in a chiral nematic solvent and demonstrate, for the first time, enantiotopic discrimination in such symmetry. The measurements were performed on the isotopically normal icosane derivative (1) and on its isotopomer (1-d(8)), specifically deuterated in its four core methylene groups. As a CLC solvent, a lyotropic mesophase, consisting of a solution of poly-γ-benzyl-L-glutamate (PBLG) in pyridine, was employed. For comparison with a corresponding achiral liquid crystal (ALC) solvent, a solution of a racemic mixture of poly-γ-benzylglutamate (PBG) of similar composition in the same co-solvent was used. The spectra were recorded at 92.1 MHz using the 2D Q-COSY Fz sequence with proton decoupling. In the CLC solvents they exhibited clear discrimination due to different enantiotopic sites, with components displaced symmetrically, at frequencies below and above those in the corresponding ALC, as expected for discrimination by ordering. Two procedures were employed for correlating the enantiotopic sites in the CLC spectra. For 1-d(8) the dipolar cross-peaks in a 2D (2)H-(2)H COSY-90 experiment provided identification of signals belonging to the same methylene (and hence the same enantiotopic) groups. For 1 the correlation was achieved using a least-square-deviation fitting of the experimental quadrupole splittings with respect to those expected from the molecular geometry. These results, with appropriate symmetry considerations were used to determine the symmetric (S(zz)) and antisymmetric (S(xy) and S(xx)-S(yy)) components of

  16. Enantiotopic discrimination in the deuterium NMR spectrum of solutes with S4 symmetry in chiral liquid crystalsa)

    NASA Astrophysics Data System (ADS)

    Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev; Lesot, Philippe

    2011-04-01

    Enantiotopic discrimination in the NMR spectra of prochiral rigid solutes in chiral liquid crystals (CLC), by the ordering mechanism, is limited to molecules possessing one of the four, so called, "allowed" symmetries, D2d, C2v, Cs, and S4. So far, such spectral discrimination was demonstrated only for solutes possessing one of the first three symmetries. In this work, we present deuterium NMR measurements on a rigid S4 compound dissolved in a chiral nematic solvent and demonstrate, for the first time, enantiotopic discrimination in such symmetry. The measurements were performed on the isotopically normal icosane derivative (1) and on its isotopomer (1-d8), specifically deuterated in its four core methylene groups. As a CLC solvent, a lyotropic mesophase, consisting of a solution of poly-γ-benzyl-L-glutamate (PBLG) in pyridine, was employed. For comparison with a corresponding achiral liquid crystal (ALC) solvent, a solution of a racemic mixture of poly-γ-benzylglutamate (PBG) of similar composition in the same co-solvent was used. The spectra were recorded at 92.1 MHz using the 2D Q-COSY Fz sequence with proton decoupling. In the CLC solvents they exhibited clear discrimination due to different enantiotopic sites, with components displaced symmetrically, at frequencies below and above those in the corresponding ALC, as expected for discrimination by ordering. Two procedures were employed for correlating the enantiotopic sites in the CLC spectra. For 1-d8 the dipolar cross-peaks in a 2D 2H-2H COSY-90 experiment provided identification of signals belonging to the same methylene (and hence the same enantiotopic) groups. For 1 the correlation was achieved using a least-square-deviation fitting of the experimental quadrupole splittings with respect to those expected from the molecular geometry. These results, with appropriate symmetry considerations were used to determine the symmetric (Szz) and antisymmetric (Sxy and Sxx-Syy) components of the Saupe ordering matrix

  17. Understanding interactions of gastric inhibitory polypeptide (GIP) with its G-protein coupled receptor through NMR and molecular modeling.

    PubMed

    Malde, Alpeshkumar K; Srivastava, Sudha S; Coutinho, Evans C

    2007-05-01

    Gastric inhibitory polypeptide (GIP, or glucose-dependent insulinotropic polypeptide) is a 42-amino acid incretin hormone moderating glucose-induced insulin secretion. Antidiabetic therapy based on GIP holds great promise because of the fact that its insulinotropic action is highly dependent on the level of glucose, overcoming the sideeffects of hypoglycemia associated with the current therapy of Type 2 diabetes. The truncated peptide, GIP(1-30)NH2, has the same activity as the full length native peptide. We have studied the structure of GIP(1-30)NH2 and built a model of its G-protein coupled receptor (GPCR). The structure of GIP(1-30)NH2 in DMSO-d6 and H2O has been studied using 2D NMR (total correlation spectroscopy (TOCSY), nuclear overhauser effect spectroscopy (NOESY), double quantum filtered-COSY (DQF-COSY), 13C-heteronuclear single quantum correlation (HSQC) experiments, and its conformation built by MD simulations with the NMR data as constraints. The peptide in DMSO-d6 exhibits an alpha-helix between residues Ile12 and Lys30 with a discontinuity at residues Gln19 and Gln20. In H2O, the alpha-helix starts at Ile7, breaks off at Gln19, and then continues right through to Lys30. GIP(1-30)NH2 has all the structural features of peptides belonging to family B1 GPCRs, which are characterized by a coil at the N-terminal and a long C-terminal alpha-helix with or without a break. A model of the seven transmembrane (TM) helices of the GIP receptor (GIPR) has been built on the principles of comparative protein modeling, using the crystal structure of bovine rhodopsin as a template. The N-terminal domain of GIPR has been constructed from the NMR structure of the N-terminal of corticoptropin releasing factor receptor (CRFR), a family B1 GCPR. The intra and extra cellular loops and the C-terminal have been modeled from fragments retrieved from the PDB. On the basis of the experimental data available for some members of family B1 GPCRs, four pairs of constraints between

  18. Hepatitis B virus direct repeat sequence: imino proton exchange rates and distance and torsion angle restraints from NMR.

    PubMed

    Bishop, K D; Blocker, F J; Egan, W; James, T L

    1994-01-18

    Structural features of a trisdecamer duplex, [d(GGCAGAGGTGAAA).d(TTTCACCTCTGCC)], in solution are being investigated by proton one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy. This DNA sequence is comprised of the 11-base-pair direct repeat sequence found in the hepatitis B viral genome with an additional base pair from the genome included on each end to minimize end effects on the 11-bp sequence of interest. The direct repeat sequence occurs twice in the viral genome; both are essential for initiation of DNA synthesis. The critical nature of this sequence suggests it may be a target to control replication of the virus. Elucidation of the structure of the direct repeat sequence could prove to be beneficial in targeting efforts. Structural determination via restrained molecular dynamics requires experimentally derived distance restraints. The ability to determine solution structures of biomolecules by NMR spectroscopy is limited by the quality and quantity of distance and torsion angle restraints that can be extracted from the NMR data. Techniques used to establish these restraints are constantly evolving and improving. Modifications in procedure are applied to the trisdecamer duplex to yield improvements in the determination of sugar conformations from COSY data and a substantial increase in the number of distance restraints typically garnered from 2D NOE intensity data. This increase in the number of distance restraints normally obtained from 2D NOE intensities was accomplished by utilizing a new version of the iterative complete relaxation matrix program MARDIGRAS with intensities extracted from a 2D NOE data set acquired in 90% H2O. The exchange rate of the imino and amino protons with the solvent water protons can now be included in the relaxation matrix calculations, thereby providing more accurate distances when utilizing the 2D NOE cross-peaks involving at least one exchangeable proton. In this lab, analysis of two-quantum-filtered correlation

  19. Potential impurities of anxiolytic drug, clobazam: Identification, synthesis and characterization using HPLC, LC-ESI/MS(n) and NMR.

    PubMed

    Kumar, Neeraj; Devineni, Subba Rao; Dubey, Shailendra Kumar; Kumar, Pramod

    2017-04-15

    During the optimization of process, eight impurities (CLB Imp-A to CLB Imp-H) were detected in few of the laboratory batches of clobazam, used as anxiolytic agent, in the range of 0.02-0.12% using gradient HPLC method with UV detection. On the basis of co-spiking analysis, six impurities (CLB Imp-A to -F) enumerated by European Pharmacopoeia, however, not reported in the earlier literature, have been harmonized and found to be two impurities are completely unknown (CLB Imp-G and -H). These two new impurities structures were presumed based on LC-ESI/MS(n) study as 8-chloro-1-methyl-5-phenyl-1,5-dihydro-3H-1,5-benzodiazepine-2,4-dione (CLB Imp-G) and 5-chloro-1-methyl-3-phenyl-1H-benzo[d]imidazol-2(3H)-one (CLB Imp-H). The presumed impurities structures were confirmed by their synthesis followed by the complete spectral analysis such as ESI-MS, 1D NMR ((1)H, (13)C and DEPT), 2D NMR (HSQC, HMBC and COSY) and IR, and chromatographic retention time profile. Identification, synthesis, structural characterization, prospects to the formation and controlling of these new impurities were described in detail and reported first in this paper.

  20. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  1. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  2. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  3. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  4. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  5. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  6. Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose.

    PubMed

    Oku, Kazuyuki; Kurose, Mayumi; Kubota, Michio; Fukuda, Shigeharu; Kurimoto, Masashi; Tujisaka, Yoshio; Okabe, Atsutoshi; Sakurai, Minoru

    2005-02-24

    In a previous study (Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. J. Am. Chem. Soc. 2003, 125, 12739), we investigated the mechanism of the antioxidant function of trehalose against unsaturated fatty acids (UFAs) and revealed that the key factor relevant to the function is the formation of OH...pi and CH...O hydrogen bonds between trehalose and the cis double bonds of the UFA. Here, we investigate whether such intriguing interactions also occur between this sugar and cis double bonds in other unsaturated compounds. For this purpose, we selected various diene compounds (1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, and 2,5-heptadiene) as interaction partners. All NMR experiments performed, including 1H-1H NOESY measurements, indicated that trehalose selectively interacts with the cis-olefin proton pair in the above diene with a 1:1 stoichiometry, and the C-3 (C-3') and C-6' (C-6) sites of the sugar are responsible for the interaction. Similar interactions were not observed for the mixtures of the diene and other saccharides (neotrehalose, kojibiose, nigerose, maltose, isomaltose, sucrose, maltitol, and sorbitol). Quantum chemical calculations revealed that the OH-3 and OH-6 groups bind to the olefin double bonds of the diene through OH...pi and CH...O types of hydrogen bonds, respectively, and the stabilization energy of the resulting complex is 5-6 kcal mol(-1). These results strongly support the above NMR results. Finally, the activation energies were calculated for the hydrogen abstraction reactions from the activated methylene group of heptadiene. In particular, when the reaction was initiated by a methyl radical, the activation energy was only 10 kcal mol(-1) for the free heptadiene, but on complexation with trehalose it drastically increased to ca. 40 kcal mol(-1). This indicates that trehalose has a significant depression effect on the oxidation of the diene compounds. These results strongly

  7. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  8. Triblock Terpolymers by Simultaneous Tandem Block Polymerization (STBP).

    PubMed

    Freudensprung, Ines; Klapper, Markus; Müllen, Klaus

    2016-02-01

    A route of synthesizing triblock terpolymers in a one-pot, "one-step" polymerization approach is presented. The combination of two distinct polymerization techniques through orthogonal catalyst/initiator functionalities attached to a polymeric linker furnishes novel pathways to ABC-terpolymers. Both polymerizations have to be compatible regarding mechanisms, chosen monomers, and solvents. Here, an α,ω-heterobifunctional poly(ethylene glycol) serves as poly-meric catalyst/initiator to obtain triblock terpolymers of poly(norbornene)-b-poly(ethylene glycol)-b-poly(L-lactic acid) PNB-PEG-PLLA via simultaneous ring opening metathesis poly-merization and ring opening polymerization in a fast one-pot polymerization. Structural characterization of the polymers is provided via (1)H-, DOSY-, and (1)H,(1)H-COSY-NMR, while solution and thin film self-assembly are investigated by dynamic light scattering and atomic force microscopy.

  9. Nardosinanols A-I and lemnafricanol, sesquiterpenes from several soft corals, Lemnalia sp., Paralemnalia clavata, Lemnalia africana, and Rhytisma fulvum fulvum.

    PubMed

    Bishara, Ashgan; Yeffet, Dina; Sisso, Mor; Shmul, Guy; Schleyer, Michael; Benayahu, Yehuda; Rudi, Amira; Kashman, Yoel

    2008-03-01

    Ten new sesquiterpenes, nardosinanols A-I ( 1- 9) and lemnafricanol ( 10), have been isolated from several Kenyan soft corals, i.e., from Lemnalia sp., Paralemnalia clavata, Lemnalia africana, and Rhytisma fulvum fulvum. The structures and relative stereochemistry of these compounds were elucidated by interpretation of MS, COSY ( (1)H- (1)H correlations), HSQC, HMBC, and NOESY NMR spectroscopic experiments and in the case of 5 also by chemical transformation to compounds 11 and 12. Nine compounds ( 1- 9) are based on the nardosinane skeleton ( 1- 6 are nardosinanes and 7- 9 nornardosinanes). Lemnafricanol ( 10) possesses a novel tricyclic skeleton. Compounds 3, 7, and 10 were found to be toxic to brine shrimp with LC 50 values of 4.0, 0.35, and 0.32 microM, respectively.

  10. New structure for the O-polysaccharide of Providencia alcalifaciens O27 and revised structure for the O-polysaccharide of Providencia stuartii O43.

    PubMed

    Ovchinnikova, Olga G; Bushmarinov, Ivan S; Kocharova, Nina A; Toukach, Filip V; Wykrota, Marianna; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2007-06-11

    The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide from Providencia alcalifaciens O27 and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments. It was found that the polysaccharide is built up of linear partially O-acetylated tetrasaccharide repeating units and has the following structure: [structure: see text] where Qui4NFo stands for 4-formamido-4,6-dideoxyglucose (4-formamido-4-deoxyquinovose). The O-polysaccharide structure of Providencia stuartii O43 established earlier was revised with respect to the configuration of the constituent 4-amino-4,6-dideoxyhexose (from Rha4N to Qui4N).

  11. Phenolic compounds with IL-6 inhibitory activity from Aster yomena.

    PubMed

    Kim, A Ryun; Jin, Qinglong; Jin, Hong-Guang; Ko, Hae Ju; Woo, Eun-Rhan

    2014-07-01

    A new biflavonoid, named asteryomenin (1), as well as six known phenolic compounds, esculetin (2), 4-O-β-D-glucopyranoside-3-hydroxy methyl benzoate (3), caffeic acid (4), isoquercitrin (5), isorhamnetin-3-O-glucoside (6), and apigenin (7) were isolated from the aerial parts of Aster yomena. The structures of compounds (1-7) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 2-7 were isolated from this plant for the first time. For these isolates, the inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell was examined. Among these isolates, compounds 4 and 7 appeared to have potent inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell, while compounds 1-3 and 5-6 showed moderate activity.

  12. Structure of the acidic O-specific polysaccharide from Proteus vulgaris O39 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid.

    PubMed

    Kondakova, A N; Perepelov, A V; Bartodziejska, B; Shashkov, A S; Senchenkova, S N; Wykrota, M; Knirel, Y A; Rozalski, A

    2001-07-12

    The O-specific polysaccharide of Proteus vulgaris O39 was found to contain a new acidic component of Proteus lipopolysaccharides, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac). The following structure of the polysaccharide was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with selective cleavage of the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid: -->8)-beta-Psep5Ac7Ac-(2-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D-GlcpNAc-(1--> The structure established is unique among the O-specific polysaccharides, which is in accordance with classification of the strain studied into a separate Proteus serogroup.

  13. Steroidal Saponins from the Rhizomes of Aspidistra typica

    PubMed Central

    Zhao, Yang; Zhao, Jian-Yuan; Zhang, Jie; Pang, Xu; Yu, He-Shui; Jia, De-Xian; Liu, Chao; Yu, Li-Yan; Ma, Bai-Ping

    2016-01-01

    Eleven new furostanol saponins, typaspidosides B-L (1–11), one new spirostanol saponin, typaspidoside M (12), and five known spirostanol saponins, 25S-atropuroside (13), neoaspidistrin (14), (25S)-pratioside D1 (15), 25S-aspidistrin (16) and 25S-neosibiricoside (17) were isolated from the rhizomes of Aspidistra typica Baill. The structures of the new compounds were established using 1D and 2D NMR (1H-1H COSY, HMQC, HMBC and ROESY) spectroscopy, high resolution mass spectrometry, and chemical methods. The aglycones of 1–3 (unusual furostanol saponins with opened E ring type), 9 and 10 (the methoxyl substituent at C-23 position) were found, identified from natural products for the first time. Moreover, the anti-HIV activities of the isolated steroidal glycosides were assessed, and compounds 13, 14, 16 and 17 exhibited high active against HIV-1. PMID:26937954

  14. A new ent-clerodane diterpenoid from Crassocephalum bauchiense Huch. (Asteraceae).

    PubMed

    Tchinda, Alembert T; Mouokeu, Simplice R; Ngono, Rosalie A N; Ebelle, Madeleine R E; Mokale, Aristide L K; Nono, Diane K; Frédérich, Michel

    2015-01-01

    A phytochemical investigation of the whole plant of Crassocephalum bauchiense Huch. resulted in the isolation of a new clerodane diterpenoid, ent-2β,18,19-trihydroxycleroda-3,13-dien-16,15-olide (1), together with two known flavonoids 3',5-dihydroxy-4',5',6,7,8-pentamethoxyflavone (2) and 4',5-dihydroxy-3',5',6,7,8-pentamethoxyflavone (3). The compounds were tested against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum. Compound 2 showed weak activity (IC50 = 10.1 g/mL) whilst compounds 1 and 3 were inactive. The structures of the compounds were elucidated by using detailed spectral analyses, especially (1)H and (13)C NMR, (1)H-(1)H COSY, NOESY, HMBC and HR-ESI-MS.

  15. Antimycobacterial physalins from Physalis angulata L. (Solanaceae).

    PubMed

    Januário, A H; Filho, E Rodrigues; Pietro, R C L R; Kashima, S; Sato, D N; França, S C

    2002-08-01

    Crude extracts and fractions from aerial parts of Physalis angulata have been bioassayed for antimycobacterial activity. Fraction A1-29-12 containing physalins B, F and D exhibited a minimum inhibitory concentration value (MIC) against Mycobacterium tuberculosis H(37)Rv strain of 32 microg/mL. Purified physalin B and physalin D were also tested showing MIC values against Mycobacterium tuberculosis H(37)Rv strain of > 128 microg/mL and 32 microg/mL respectively, suggesting that physalin D plays a relevant role in the antimycobacterial activity displayed. Structural elucidation of both physalins D and B was based on detailed (13)C and (1)H NMR spectral analysis with the aid of 2D-correlation spectroscopy ((1)H-(1)H, COSY, HSQC and HMBC). The assignment of the (13)C chemical shift for physalin D is reported here for the first time.

  16. Antioxidant activity of a new phenolic glycoside from Lagenaria siceraria Stand. fruits.

    PubMed

    Mohan, Rahul; Birari, Rahul; Karmase, Aniket; Jagtap, Sneha; Bhutani, Kamlesh Kumar

    2012-05-01

    The antioxidant properties of different extracts of Lagenaria siceraria (bottle gourd) fruit were evaluated. In the process, a new phenolic glycoside (E)-4-hydroxymethyl-phenyl-6-O-caffeoyl-β-d-glucopyranoside (1) was isolated and identified together with 1-(2-hydroxy-4-hydroxymethyl)-phenyl-6-O-caffeoyl-β-d-gluco-pyranoside (2), protocatechuic acid (3), gallic acid (4), caffeic acid (5) and 3,4-dimethoxy cinnamic acid (6). Their structures were elucidated by extensive NMR experiments including (1)H-(1)H (COSY) and (1)H-(13)C (HMQC and HMBC) spectroscopy and chemical evidences. The antioxidant potential of the compound 1 and 2 was tested in different in vitro assay systems such as free radical scavenging assay, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, superoxide scavenging activity, reducing power assay and linoleic acid peroxidation assay.

  17. Spectroscopic, crystal structural and electrochemical studies of zinc(II)-Schiff base complex obtained from 2,3-diaminobenzene and 2-hydroxy naphthaldehyde.

    PubMed

    Ouari, Kamel; Bendia, Sabrina; Weiss, Jean; Bailly, Corinne

    2015-01-25

    Mononuclear zinc(II) complex, [Zn(II)L], where L is a dianionic ligand, has been synthesized and characterized by elemental analysis, electronic, IR and NMR [(1)H, (13)C, DEPT, (1)H-(1)H COSY, ROESY, HSQC and HMBC] spectroscopic techniques. Structural analysis of the complex by single crystal X-ray crystallography shows the presence of a distorted square planar coordination geometry (NNOO) of the metal center. The crystal of the title complex C28H18N2O2Zn belongs to the orthorhombic system with space group Pmn21. Electrochemical behavior of the Zn(II)L complex has been investigated by cyclic voltammetry on glassy carbon and platinum electrodes in DMF at 100 mV/s scan rate.

  18. Constituents from the stem barks of Canarium bengalense with cytoprotective activity against hydrogen peroxide-induced hepatotoxicity.

    PubMed

    Le, Hoang Thi; Ha, Do Thi; Minh, Chau Thi Anh; Kim, Tae Hoon; Van Kiem, Phan; Thuan, Nguyen Duy; Na, Minkyun

    2012-01-01

    Phytochemical investigation of the stem barks of Canarium bengalense (Burseraceace) resulted in the isolation of a new flavone glycoside (5) together with six known compounds (1-4, 6, and 7). The chemical structure of the new compound was elucidated as 3'-hydroxy-7,4'-dimethoxyflavone-5-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside by means of 1D and 2D NMR ((1)H-(1)H COSY, HMQC, and HMBC) and MS analyses. To evaluate the in vitro cytoprotective effect, the isolates (1-7) were tested against hydrogen peroxide (H(2)O(2))-induced damage in primary cultured hepatocytes. The viability of hepatocytes was increased by treatment with each compound, except compound 1. Compounds 3, 4, and 7 exerted cytoprotective effects comparable to curcumin, the positive control. Our results suggest that the cytoprotective constituents of C. bengalense may contribute to its traditional use in the treatment of tumor and liver damage.

  19. Molecular-level insights into the oxidative degradation of grafted amines.

    PubMed

    Ahmadalinezhad, Asieh; Tailor, Ritesh; Sayari, Abdelhamid

    2013-08-05

    The oxidative degradation of CO2 adsorbents consisting of amine-grafted pore-expanded mesoporous MCM-41 silica was investigated. The adsorbents were treated under flowing air at various temperatures, and the degree of deactivation was evaluated through the measurement of their CO2 adsorption capacity prior and subsequent to exposure to air. To decipher the chemical structure of surface species upon air-deactivation of grafted amines, a solvent extraction procedure was developed using a deuterated basic solution. The obtained solutions were analyzed by a variety of 1D and 2D NMR spectroscopy techniques, such as (29)Si, (13)C, (1)H, [(1)H,(15)N] HMBC, [(1)H,(13)C] HMQC, COSY and DOSY. The surface species generated by oxidative degradation of amine-grafted silica were found to contain functional groups such as imine, amide and carboxylic groups. Several structural units were conclusively demonstrated.

  20. Novel synthesis, structural analysis, photophysical properties and theoretical study of 2,4,5-tris(2-pyridyl)imidazole

    NASA Astrophysics Data System (ADS)

    Báez-Castro, Alberto; Baldenebro-López, Jesús; Glossman-Mitnik, Daniel; Höpfl, Herbert; Cruz-Enríquez, Adriana; Miranda-Soto, Valentín; Parra-Hake, Miguel; Campos-Gaxiola, José J.

    2015-11-01

    2,4,5-Tris(2-pyridyl)imidazole has been successfully synthetized by a novel synthetic route and fully characterized by FT-IR,UV-Vis and fluorescence spectroscopy, one- and two-dimensional NMR spectroscopy (1H, 13C{1H} ATP, 1H-1H COSY, NOESY 1H-13C HSQC and HMBC) high-resolution, mass spectrometry (HR-FAB+), and single-crystal X-ray diffraction analysis. Additionally, the molecular geometry, vibrational frequencies and infrared intensities were calculated by density functional theory using the M06/6-31G(d) level of theory, showing good agreement with the experimental results. The title compound showed interesting photophysical properties, which were studied experimentally in solution and in the solid state by UV-Vis and fluorescence spectroscopy, and theoretically using TD-DFT calculations. Natural and Mulliken atomic charges and the molecular electrostatic potential (MEP) have been mapped.

  1. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

    PubMed

    Gong, Jun; Ju, Aichun; Zhou, Dazheng; Li, Dekun; Zhou, Wei; Geng, Wanli; Li, Bing; Li, Li; Liu, Yanjie; He, Ying; Song, Meizhen; Wang, Yunhua; Ye, Zhengliang; Lin, Ruichao

    2015-01-06

    Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

  2. Isolation of an alpha-methylene-gamma-butyrolactone derivative, a toxin from the plant pathogen Lasiodiplodia theobromae.

    PubMed

    He, Guochun; Matsuura, Hideyuki; Yoshihara, Teruhiko

    2004-10-01

    Lasiodiplodia theobromae is known as a multi-infectious microorganism that causes considerable crop damage, particularly to tropical fruits. When the fruits are infected by L. theobromae, the typical symptom is the appearance of black spots on the surface of the infected fruit. When injected in to the peel of banana, the culture filtrate of L. theobromae induced formation of black spots. The structure of the isolated compound responsible for this effect was determined to be (3S,4R)-3-carboxy-2-methylene-heptan-4-olide on the basis of analysis of MS, IR, and 1H and 13C NMR spectroscopic data, including HMQC, HMBC, and 1H-1H COSY experiments. The active compound was not only isolated from the culture filtrate derived from potato dextrose medium, but also from the extract of infected peels of bananas.

  3. New Antifungal Pyranoisoflavone from Ficus tikoua Bur.

    PubMed Central

    Wei, Shaopeng; Wu, Wenjun; Ji, Zhiqin

    2012-01-01

    Considering the undesirable attributes of synthetic fungicides and the availability of Ficus species in China, the stem of Ficus tikoua Bur. was investigated. One new antifungal pyranoisoflavone, 5,3′,4′-trihydroxy-2″,2″-dimethylpyrano (5″,6″:7,8) isoflavone (1), together with two known isoflavones, wighteone (2) and lupiwighteone (3) (with previously reported antifungal activities), were isolated from ethyl acetate extract by bioassay-guided fractionation. Their structures were determined by spectroscopic analysis, such as NMR (1H-1H COSY, HMQC, HMBC and NOESY), IR, UV and HRMS, as well as ESI-MSn analyses. The antifungal activities of 1–3 against Phytophthora infestans were evaluated by direct spore germination assay, and the IC50 values were 262.442, 198.153 and 90.365 μg·mL−1, respectively. PMID:22837700

  4. Thiotagetin A, a new cytotoxic thiophene from Tagetes minuta.

    PubMed

    Ibrahim, Sabrin R M; Mohamed, Gamal A

    2017-03-01

    Phytochemical investigation of the n-hexane fraction of the methanolic extract of Tagetes minuta L. (Asteraceae) aerial parts afforded a new thiophene derivative: thiotagetin A (3), together with β-sitosterol (1) and stigmasterol (2). The structure of the new thiophene was identified by UV, IR, 1D ((1)H and (13)C), 2D ((1)H-(1)H COSY, HSQC and HMBC) NMR and HRESIMS spectral data. Compound 3 displayed cytotoxic activity against KB and MCF7 cancer cell lines with ED50 values of 2.03 and 3.88 μg/mL, respectively, compared to adriamycin (0.26 and 0.07 μg/mL, respectively).

  5. Metal-mediated coupling of a coordinated isocyanide and indazoles.

    PubMed

    Kinzhalov, Mikhail A; Boyarskiy, Vadim P; Luzyanin, Konstantin V; Dolgushin, Fedor M; Kukushkin, Vadim Yu

    2013-08-07

    A reaction between equimolar amounts of cis-[PdCl2(CNCy)2] (1) and indazole (HInd, 2) or 5-methylindazole (HInd(Me), 3) proceeded in refluxing CHCl3 for ca. 6 h affording the aminocarbene species cis-[PdCl2{C(Ind)=N(H)Cy}(CNCy)] (4) or cis-[PdCl2{C(Ind(Me))=N(H)Cy}(CNCy)] (5) in good (72-83%) isolated yields. Complexes 4 and 5 were characterized by elemental analyses (C, H, N), HR ESI(+)-MS, IR, and 1D ((1)H, (13)C{(1)H}) and 2D ((1)H,(1)H-COSY, (1)H,(13)C-HMQC/(1)H,(13)C-HSQC, (1)H,(13)C-HMBC) NMR spectroscopies, and complex 4 as well by X-ray diffraction. The observed coupling represents the first example of metal-mediated integration between any isocyanide and any aromatic heterocyclic system having an HN center.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  7. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    PubMed

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  8. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  9. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  10. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  11. Recognition of lumbar disk herniation with NMR

    SciTech Connect

    Chafetz, N.I.; Genant, H.K.; Moon, K.L.; Helms, C.A.; Morris, J.M.

    1983-12-01

    Fifteen nuclear magnetic resonance (NMR) studies of 14 patients with herniated lumbar intervertebral disks were performed on the UCSF NMR imager. Computed tomographic (CT) scans done on a GE CT/T 8800 or comparable scanner were available at the time of NMR scan interpretation. Of the 16 posterior disk ruptures seen at CT, 12 were recognized on NMR. Diminished nucleus pulposus signal intensity was present in all ruptured disks. In one patient, NMR scans before and after chymopapain injection showed retraction of the protruding part of the disk and loss of signal intensity after chemonucleolysis. Postoperative fibrosis demonstrated by CT in one patient and at surgery in another showed intermediate to high signal intensity on NMR, easily distinguishing it from nearby thecal sac and disk. While CT remains the method of choice for evaluation of the patient with suspected lumbar disk rupture, the results of this study suggest that NMR may play a role in evaluating this common clinical problem.

  12. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  13. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi0.98B0.02

    SciTech Connect

    Sun, Hui; Lu, Xu; Morelli, Donald T.

    2016-07-21

    Boron-added CoSi, CoSi0.98B0.02, possesses a very high thermoelectric power factor of 60 μW cm-1 K-2 at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms are intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi0.98B0.02 has been studied. Here we present a study of the substitution of Ge for Si atoms in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands while Ge substitution only shifts the Fermi level upward into the conduction band. Lastly, our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.

  14. Hyperpolarized 131Xe NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented.

  15. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  16. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy.

    PubMed

    Hopson, Russell E; Peti, Wolfgang

    2008-01-01

    Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.

  17. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  18. Inferences on the Nature of a Cr(V) or Cr(IV) Species Formed by Reduction of Dichromate by a Bovine Liver Homogenate: NMR and Mass-Spectrometric Studies

    PubMed Central

    Gaggelli, Elena; D'Amelio, Nicola; Gaggelli, Nicola; Bovalini, Lucia; Paffetti, Alessandro; Trabalzini, Lorenza

    2003-01-01

    A low-molecular weight chromium-containing fraction of the material resulting from dichromate reduction by bovine liver homogenate was investigated by NMR and ES-MS. The ES-MS spectrum showed a readily detectable peak at m/z = 786.1. The same molecular weight reasonably agreed with the relatively low diffusion coefficient measured by NMR-DOSY experiments on the main species observed in the 1H NMR spectrum. At least two downfield shifted and broad paramagnetic signals were apparent in the 1H NMR spectrum. Temperature dependence of chemical shift was exploited in order to estimate the diamagnetic shift of the signals in the diamagnetic region of the spectrum. 2D TOCSY, NOESY, COSY and 1H-3C HMQC spectra revealed the presence of aromatic protons (which were assigned as His residues), Gly and some other short chain amino-acids. Combinations of the molecular masses of such components together with acetate (which is present in the solution) and chromium atoms allowed a tentative proposal of a model for the compound. PMID:18365060

  19. Complete 1H assignments of the non-exchangeable protons of the non self-complementary heptadeoxyribonucleotide d[(GTCGTCA).(TGACGAC)] and its component strands by high field NMR.

    PubMed

    Lown, J W; Hanstock, C C; Lobe, C G; Bleackley, C

    1985-06-01

    The non self complementary heptadeoxyribonucleotides d(GTCGTCA) and d(TGACGAC) were synthesized by the phosphotriester method. While complete 1H-NMR assignments of the former were obtained by a combination of one and two-dimensional techniques at room temperature, extensive stacking of the latter under these conditions dictated analysis at 50 degrees C when the lines were sharply resolved. The duplex form of the annealed strands under the conditions of the 1H-NMR experiment was established independently of the NMR evidence by 32P end labeling with T4 polynucleotide kinase followed by butt end joining using the absolute specificity of T4 ligase for double strand DNA. Analysis of the resulting ladder of polymers was performed using gel electrophoresis and autoradiography. Complete 1H-NMR assignments of the non-exchangeable protons in the self complementary heptamer was achieved. The assignments were confirmed using NOE differences, and two-dimensional COSY, and HH-INADEQUATE experiments at 400 and 500 MHz. The assignments are in accord with a conformation for the heptamer belonging to the B family of structures.

  20. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  1. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  2. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  3. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  4. NMR characterization of pituitary tumors

    SciTech Connect

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions.

  5. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  6. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  7. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  8. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  9. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  10. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  11. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  12. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  13. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  14. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  15. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  16. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  17. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  18. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  19. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.

  1. NMR polarization echoes in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  2. Using HMBC and ADEQUATE NMR data to define and differentiate long-range coupling pathways: is the Crews rule obsolete?

    PubMed

    Senior, Mary M; Williamson, R Thomas; Martin, Gary E

    2013-11-22

    It is well known that as molecules become progressively more proton-deficient, structure elucidation becomes correspondingly more challenging. When the ratio of (1)H to (13)C and the sum of other heavy atoms falls below 2, an axiom that has been dubbed the "Crews rule" comes into play. The general premise of the Crews rule is that highly proton-deficient molecules may have structures that are difficult, and in some cases impossible, to elucidate using conventional suites of NMR experiments that include proton and carbon reference spectra, COSY, multiplicity-edited HSQC, and HMBC (both (1)H-(13)C and (1)H-(15)N). However, with access to modern cryogenic probes and microcyroprobes, experiments that have been less commonly utilized in the past and new experiments such as inverted (1)J(CC) 1,n-ADEQUATE are feasible with modest sized samples. In this light, it may well be time to consider revising the Crews rule. The complex, highly proton-deficient alkaloid staurosporine (1) is used as a model proton-deficient compound for this investigation to highlight the combination of inverted (1)J(CC) 1,n-ADEQUATE with 1.7 mm cryoprobe technology.

  3. Development of a Standardized Methodology for the Use of COSI-Corr Sub-Pixel Image Correlation to Determine Surface Deformation Patterns in Large Magnitude Earthquakes.

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2014-12-01

    Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean

  4. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  5. Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II

    SciTech Connect

    Brito, R.M.M.; Putkey, J.A.; Rosevear, P.R. ); Strynadka, N.C.J.; James, M.N.G. )

    1991-10-22

    One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca{sup 2+} binding to site II, the site responsible for triggering muscle contraction. Spin systems of the nine Phe and three Tyr residues were elucidated from DQF-COSY and NOESY spectra. Comparison of the pattern of NOE connectivities obtained from a NOESY spectrum of cTnC3 with a model of cTnC based on the crystal structure of skeletal TnC permitted sequence-specific assignment of all three Tyr residues, as well as Phe-101 and Phe-153. NOESY spectra and calcium titrations of cTnC3 monitoring the aromatic region of the {sup 1}H NMR spectrum permitted localization of six of the nine Phe residues to either the N- or C-terminal domain of cTnC3. The authors have examined the effects of mutating Asp-65 to Ala, CBM-IIA, a functionally inactive mutant which is incapable of binding Ca{sup 2+} at site II. Comparison of the apo, Mg{sup 2+}-, and Ca{sup 2+}-bound forms of cTnC3 and CBM-IIA demonstrates that the inability of CBM-IIA to trigger muscle contraction is not due to global structural changes in the mutant protein but it is consequence of the inability of CBM-IIA to bind CA{sup 2+} at site II. The pattern of NOEs between aromatic residues in the C-terminal domain is nearly identical in cTnC3 and CBM-IIA. Similar interresidue NOEs were also observed.

  6. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  7. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).

  8. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  9. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  10. An Inversion Recovery NMR Kinetics Experiment.

    PubMed

    Williams, Travis J; Kershaw, Allan D; Li, Vincent; Wu, Xinping

    2011-05-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.

  11. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  12. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  13. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  14. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  15. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  16. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  17. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  18. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  19. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  20. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  1. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  2. WHNMR--a universal NMR application package.

    PubMed

    Xiaodong, Z; Hongbin, H; Nian, H; Lianfang, S; Chaohui, Y

    1996-06-01

    A PC-based NMR off-line data processing system is developed and described in detail. With this software system, one-dimensional (1D), two-dimensional (2D), and NMR imaging (MRI) data can be processed easily, and give reliable results. By the applications of this system, a versatile software interface is set up to achieve data exchanging and integrated usage with other PC application software and aids the PC to become an effective and powerful workstation.

  3. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  4. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  5. Human- and computer-accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial-intelligence analysis of NMR spectra.

    PubMed

    Jeannerat, Damien

    2017-01-01

    The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Combining NMR spectral and structural data to form models of polychlorinated dibenzodioxins, dibenzofurans, and biphenyls binding to the AhR

    NASA Astrophysics Data System (ADS)

    Beger, Richard D.; Buzatu, Dan A.; Wilkes, Jon G.

    2002-10-01

    A three-dimensional quantitative spectrometric data-activity relationship (3D-QSDAR) modeling technique which uses NMR spectral and structural information that is combined in a 3D-connectivity matrix has been developed. A 3D-connectivity matrix was built by displaying all possible assigned carbon NMR chemical shifts, carbon-to-carbon connections, and distances between the carbons. Two-dimensional 13C-13C COSY and 2D slices from the distance dimension of the 3D-connectivity matrix were used to produce a relationship among the 2D spectral patterns for polychlorinated dibenzofurans, dibenzodioxins, and biphenyls (PCDFs, PCDDs, and PCBs respectively) binding to the aryl hydrocarbon receptor (AhR). We refer to this technique as comparative structural connectivity spectral analysis (CoSCoSA) modeling. All CoSCoSA models were developed using forward multiple linear regression analysis of the predicted 13C NMR structure-connectivity spectral bins. A CoSCoSA model for 26 PCDFs had an explained variance (r2) of 0.93 and an average leave-four-out cross-validated variance (q4 2) of 0.89. A CoSCoSA model for 14 PCDDs produced an r2 of 0.90 and an average leave-two-out cross-validated variance (q2 2) of 0.79. One CoSCoSA model for 12 PCBs gave an r2 of 0.91 and an average q2 2 of 0.80. Another CoSCoSA model for all 52 compounds had an r2 of 0.85 and an average q4 2 of 0.52. Major benefits of CoSCoSA modeling include ease of development since the technique does not use molecular docking routines.

  7. A new anthraquinone and eight constituents from Hedyotis caudatifolia Merr. et Metcalf: isolation, purification and structural identification.

    PubMed

    Luo, Peng; Su, Jiale; Zhu, Yilin; Wei, Jianhua; Wei, Wanxing; Pan, Weigao

    2016-10-01

    Hedyotis caudatifolia Merr. et Metcalf. (HC), a folk medicine in Yao nationalities areas in China, was used to investigate the chemical constituents. Through silica gel and Sephadex LH-20 column chromatography, nine compounds were isolated and purified. By physical and chemical properties, IR, MS (EI-MS, high resolution EI-MS), 1D NMR ((1)H NMR, (13)C NMR) and 2D NMR (HSQC, (1)H-(1)H COSY, HMBC), their structures were identified as β-sitosterol (1), stigmasterol (2), scopolin (3), 2-hydroxy-1,7,8-trimethoxyanthracene-9,10-dione (4), oleanolic acid (5), ursolic acid (6), methyl barbinervate (7), β-daucosterol (8) and p-Hydroxybenzoic acid (9). These compounds were isolated from HC for the first time, and 4 a new anthraquinone whose biological activities are worth to be investigated in future. These compounds may contribute to the HC's pharmacological effects on treating diseases, and may be used as candidates for control index in establishing the quality control standard of HC.

  8. Hypothesis driven assessment of an NMR curriculum

    NASA Astrophysics Data System (ADS)

    Cossey, Kimberly

    The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within

  9. Structure of the O-polysaccharide and serological cross-reactivity of the Providencia stuartii O33 lipopolysaccharide containing 4-(N-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose.

    PubMed

    Torzewska, Agnieszka; Kocharova, Nina A; Zatonsky, George V; Blaszczyk, Aleksandra; Bystrova, Olga V; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-06-01

    The O-polysaccharide of Providencia stuartii O33 was obtained by mild acid degradation of the lipopolysaccharide and the following structure of the tetrasaccharide repeating unit was established: -->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp)-(1-->, where d-Qui4N(Ac-D-Asp) is 4-(N-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose. Structural studies were performed using sugar and methylation analyses and NMR spectroscopy, including conventional 2D 1H, 1H COSY, TOCSY, NOESY and 1H, 13C HSQC experiments as well as COSY and NOESY experiments in an H2O-D2O mixture to reveal correlations for NH protons. The O-polysaccharide of P. stuartii O33 shares an alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp) epitope with that of Proteus mirabilis O38, which seems to be responsible for a marked serological cross-reactivity of anti-P. stuartii O33 serum with the lipopolysaccharide of the latter bacterium. P. stuartii O33 is serologically related also to P. stuartii O4, whose O-polysaccharide contains a lateral beta-D-Qui4N(Ac-L-Asp) residue.

  10. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  11. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  12. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  13. NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items

    ERIC Educational Resources Information Center

    Topczewski, Joseph J.; Topczewski, Anna M.; Tang, Hui; Kendhammer, Lisa K.; Pienta, Norbert J.

    2017-01-01

    Nuclear magnetic resonance spectroscopy (NMR) plays a key role in introductory organic chemistry, spanning theory, concepts, and experimentation. Therefore, it is imperative that the instruction methods for NMR are both efficient and effective. By utilizing eye tracking equipment, the researchers were able to monitor how second-semester organic…

  14. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  15. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  16. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  17. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering.

  18. Radiation damping in microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Krishnan, V. V.

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  19. Radiation damping in microcoil NMR probes.

    PubMed

    Krishnan, V V

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  20. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  1. Magic angle spinning NMR of paramagnetic proteins.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  2. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  3. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  4. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  5. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  6. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  7. Contact replacement for NMR resonance assignment

    PubMed Central

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-01-01

    Motivation: Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein–protein and protein–ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. Results: We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1–2 AA), noise (250–600%) and missings (10–40%). Our algorithm achieves very good overall assignment accuracy, above 80% in α-helices, 70% in β-sheets and 60% in loop regions. Availability: Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors. Contact: gopal@cs.purdue.edu; cbk@cs.dartmouth.edu PMID:18586716

  8. Solid-state NMR of proteins sedimented by ultracentrifugation

    PubMed Central

    Bertini, Ivano; Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico; Reif, Bernd; Turano, Paola

    2011-01-01

    Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a novel phase as far as NMR is concerned. NMR of transiently sedimented molecules under fast magic angle spinning has the advantage of overcoming protein size limitations of solution NMR without the need of sample crystallization/precipitation required by solid-state NMR. PMID:21670262

  9. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  10. New Designs for NMR Core Scanning

    NASA Astrophysics Data System (ADS)

    Bluemich, B.; Anferova, S.; Talnishnikh, E.; Arnold, J.; Clauser, C.

    2006-12-01

    Within the last ten years, mobile magnetic resonance has moved from the oil field to many new areas of application. While the focus of mobile NMR in the past was on single-sided or inside-out NMR, the advent of tube-shaped Halbach magnets has introduced the conventional outside-in NMR concept to mobile NMR where the object is inside a magnet. Our Halbach magnet is constructed from small magnet blocks at light weight and low cost with a magnetic field sufficiently homogeneous. To automatize NMR measurements, the Halbach magnet is mounted on a sliding table to scan long core sections without human interaction. In homogeneous magnetic fields, the longitudinal relaxation time T1 and even the transverse relaxation time T2 are proportional to the pore diameters of rocks. Hence, the T1 and T2 signals map the pore-size distribution of the studied rock cores. For fully saturated samples the integral of the distribution curve is proportional to porosity. The porosity values from NMR measurements with the Halbach magnet are used to estimate permability. The Halbach magnet can be used for certain sample geometries in combination with exchangeable radio frequency (rf) coils with different diameters from 24 mm up to 80 mm. To measure standard Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) cores, which have a standard diameter of 60 mm and are split lengthwise after recovery, we use a surface figure-8 rf coil with an inner diameter of 60 mm. Besides 1D T2 measurements, we perform relaxation-relaxation correlation experiments, where T1 and T2 are measured in parallel. In this way, the influence of diffusion on the shape of the T2 distribution function is probed. A gradient coil system was designed to perform Pulsed Field Gradients (PFG) experiments. As the gradient coils restrict the axial access to the magnet, only cylindrical core plugs with 20 mm in diameter can be analysed by PFG NMR methods. The homogeneity of the magnetic field in the sensitive volume

  11. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  12. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  13. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  14. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  15. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  16. (1)H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw (1)H NMR data were made available in Microsoft Excel workbook format (.xls).

  17. Cd(II) and Zn(II) complexes of two new hexadentate Schiff base ligands derived from different aldehydes and ethanol amine; X-ray crystal structure, IR and NMR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila

    2014-11-01

    Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  18. Five new alkaloids from Coptidis Rhizoma-Euodiae Fructus couple and their cytotoxic activities against gastrointestinal cancer cells.

    PubMed

    Qian, Ping; Yang, Xiu-Wei

    2014-03-01

    A new indoloquinazoline alkaloid, 10-methoxywuchuyuamide I (1), three new benzylisoquinoline alkaloids, named as coptichic aldehyde (2), coptichine (3) and 13-carboxaldehyde-8-oxocoptisine (4), and a new isoindoline alkaloid, named as coptichinamide (5), together with two known alkaloids, wuchuyuamide I (6) and 8-oxocoptisine (7) were isolated from the Coptidis Rhizoma-Euodiae Fructus couple. Their chemical structures were determined by extensive spectroscopic analyses, including IR, UV, EI-MS, HRESI-MS, 1D and 2D NMR data ((1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC). Cytotoxicities of the isolated alkaloids against NCI-N87 and Caco-2 cell lines were evaluated. Four benzylisoquinoline alkaloids 2-4 and 7 showed inhibitory activities against NCI-N87 cell with IC50 values range from 8.92 to 35.98 μM. The alkaloid 3 was a new antiproliferation compound against NCI-N87 cells. The results provided valuable information for further investigation of alkaloid 3 as a chemopreventive agent.

  19. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations.

  20. Salicin derivatives from Salix glandulosa and their biological activities.

    PubMed

    Kim, Chung Sub; Subedi, Lalita; Park, Kyoung Jin; Kim, Sun Yeou; Choi, Sang Un; Kim, Ki Hyun; Lee, Kang Ro

    2015-10-01

    Two new salicin derivatives, saliglandin (1) and 6'-O-(Z)-p-coumaroylsalicin (2), along with fourteen known analogues (3-16) were isolated from the twigs of Salix glandulosa Seemen. The structures of 1-16 were characterized by the use of NMR methods ((1)H and (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC), chemical hydrolysis, and GC/MS. The full NMR data assignment of the known compounds 6, 13, and 14 are reported for the first time. Isolated compounds were evaluated for their nitric oxide (NO) inhibitory efficacy in lipopolysaccharide (LPS)-activated microglial cell (BV-2). Compounds 2, 5, 8-16 significantly inhibited NO production, compound 11 being the most efficacious (IC50 13.57 μM) respectively. Moreover, compound 16 dramatically increased the nerve growth factor (NGF) production (165.24 ± 11.1%) in C6 glioma cells. Taken together, these results revealed that salicin derivatives from Salix glandulosa might have potent effect as anti-neuroinflammatory agents.

  1. Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment.

    PubMed

    Prasse, Carsten; Wagner, Manfred; Schulz, Ralf; Ternes, Thomas A

    2011-04-01

    The biotransformation of the two antiviral drugs, acyclovir (ACV) and penciclovir (PCV), was investigated in contact with activated sludge. Biodegradation kinetics were determined, and transformation products (TPs) were identified using Hybrid Linear Ion Trap- FT Mass Spectrometry (LTQ Orbitrap Velos) and 1D (1H NMR, 13C NMR) and 2D (1H,1H-COSY, 1H-(13)C-HSQC) NMR Spectroscopy. ACV and PCV rapidly dissipated in the activated sludge batch systems with half-lives of 5.3 and 3.4 h and first-order rate constants in relation to the amount of suspended solids (SS) of 4.9±0.1 L gss(-1) d(-1) and 7.6±0.3 L gss(-1) d(-1), respectively. For ACV only a single TP was found, whereas eight TPs were identified for PCV. Structural elucidation of TPs exhibited that transformation only took place at the side chain leaving the guanine moiety unaltered. The oxidation of the primary hydroxyl group in ACV resulted in the formation of carboxy-acyclovir (Carboxy-ACV). For PCV, transformation was more diverse with several enzymatic reactions taking place such as the oxidation of terminal hydroxyl groups and β-oxidation followed by acetate cleavage. Analysis of different environmental samples revealed the presence of Carboxy-ACV in surface and drinking water with concentrations up to 3200 ng L(-1) and 40 ng L(-1), respectively.

  2. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  3. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  4. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  5. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  6. Planar microcoil-based microfluidic NMR probes

    NASA Astrophysics Data System (ADS)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S.

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 μg sucrose in D 2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  7. Planar microcoil-based microfluidic NMR probes.

    PubMed

    Massin, C; Vincent, F; Homsy, A; Ehrmann, K; Boero, G; Besse, P-A; Daridon, A; Verpoorte, E; de Rooij, N F; Popovic, R S

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 microg sucrose in D2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  8. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  9. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  10. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  11. NMR characterization of polymers: Review and update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  12. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMR-MOLE.

    PubMed

    Manz, B; Coy, A; Dykstra, R; Eccles, C D; Hunter, M W; Parkinson, B J; Callaghan, P T

    2006-11-01

    A new portable NMR sensor with a novel one-sided access magnet design, termed NMR-MOLE (MObile Lateral Explorer), has been characterised in terms of sensitivity and depth penetration. The magnet has been designed to be portable and create a volume with a relatively homogeneous magnetic field, 15,000 ppm over a region from 4 to 16 mm away from the probe, with maximum sensitivity at a depth of 10 mm. The proton NMR frequency is 3.3 MHz. We have demonstrated that with this approach a highly sensitive, portable, unilateral NMR sensor can be built. Such a design is especially suited for the characterisation of liquids in situations where unilateral or portable access is required.

  13. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints

    PubMed Central

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-01-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint PMID:20513646

  14. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  15. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  16. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  17. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  18. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  19. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  20. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  1. Advances in NMR-based biofluid analysis and metabolite profiling.

    PubMed

    Zhang, Shucha; Nagana Gowda, G A; Ye, Tao; Raftery, Daniel

    2010-07-01

    Significant improvements in NMR technology and methods have propelled NMR studies to play an important role in a rapidly expanding number of applications involving the profiling of metabolites in biofluids. This review discusses recent technical advances in NMR spectroscopy based metabolite profiling methods, data processing and analysis over the last three years.

  2. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  3. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  4. A fluorogenic peptide containing the processing site of human SARS corona virus S-protein: kinetic evaluation and NMR structure elucidation.

    PubMed

    Basak, Ajoy; Mitra, Abhijit; Basak, Sarmistha; Pasko, Carolyn; Chrétien, Michel; Seaton, Pamela

    2007-06-18

    Human severe acute respiratory syndrome coronavirus (hSARS-CoV) is the causative agent for SARS infection. Its surface glycoprotein (spike protein) is considered to be one of the prime targets for SARS therapeutics and intervention because its proteolytic maturation by a host protease is crucial for host-virus fusion. Using intramolecularly quenched fluorogenic (IQF) peptides based on hSARS-CoV spike protein (Abz-(755)Glu-Gln-Asp-Arg-Asn-Thr-Arg-Glu-Val-Phe-Ala-Gln(766)-Tyx-NH(2)) and in vitro studies, we show that besides furin, other PCs, like PC5 and PC7, might also be involved in this cleavage event. Through kinetic measurements with recombinant PCs, we observed that the peptide was cleaved efficiently by both furin and PC5, but very poorly by PC7. The cleavage could be blocked by a PC-inhibitor, alpha1-PDX, in a dose-dependent manner. Circular dichroism spectra indicated that this peptide possesses a high degree of sheet structure. Following cleavage by furin, the sheet content increased, possibly at the expense of turn and random structures. (1)H NMR spectra from 2D COSY and ROESY experiments under physiological buffer and pH conditions indicated that this peptide possesses a structure with a turn at its C-terminal segment, close to the cleavage site. The data suggest that the cleavable peptide bond is located within the most exposed domain; this is supported by the nearby turn structure. Several strong to weak NMR ROESY correlations were detected, and a 3D structure of the spike IQF peptide that contains the crucial cleavage site R(761) E has been proposed.

  5. NMR studies on the binding of antitumor drug nogalamycin to DNA hexamer d(CGTACG).

    PubMed

    Robinson, H; Liaw, Y C; van der Marel, G A; van Boom, J H; Wang, A H

    1990-08-25

    The interactions between a novel antitumor drug nogalamycin with the self-complementary DNA hexamer d(CGTACG) have been studied by 500 MHz two dimensional proton nuclear magnetic resonance spectroscopy. When two nogalamycins are mixed with the DNA hexamer duplex in a 2:1 ratio, a symmetrical complex is formed. All non-exchangeable proton resonances (except H5' & H5") of this complex have been assigned using 2D-COSY and 2D-NOESY methods at pH 7.0. The observed NOE cross peaks are fully consistent with the 1.3 A resolution x-ray crystal structure (Liaw et al., Biochemistry 28, 9913-9918, 1989) in which the elongated aglycone chromophore is intercalated between the CpG steps at both ends of the helix. The aglycone chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. The binding conformation suggests that specific hydrogen bonds exist in the complex between the drug and guanine-cytosine bases in both grooves of the helix. When only one drug per DNA duplex is present in solution, there are three molecular species (free DNA, 1:1 complex and 2:1 complex) in slow exchange on the NMR time scale. This equilibrium is temperature dependent. At high temperature the free DNA hexamer duplex and the 1:1 complex are completely destabilized such that at 65 degrees C only free single-stranded DNA and the 2:1 complex co-exist. At 35 degrees C the equilibrium between free DNA and the 1:1 complex is relatively fast, while that between the 1:1 complex and the 2:1 complex is slow. This may be rationalized by the fact that the binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through. A separate study of the 2:1 complex at low pH showed that the terminal GC base pair is destabilized.

  6. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  7. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  8. ABCs of FT NMR, (by John D. Roberts)

    NASA Astrophysics Data System (ADS)

    Shibata, John H.

    2002-11-01

    In summary, there are several good books on NMR that I have read and used in preparing lectures on NMR, and in comparison to these books, this would not be the first book that I would take from my bookshelf to learn NMR. It is an elementary book that does have explanations that may help clarify some topics. For that reason, it may be useful to have in a chemistry library collection. I could envision an NMR course based on this book, but not without using other books to supplement the course. To this end, this book has a very useful appendix that describes several excellent NMR books and journals.

  9. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  10. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  14. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  15. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  16. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  17. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  18. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  19. High Resolution non-Markovianity in NMR

    NASA Astrophysics Data System (ADS)

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-09-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

  20. Protein structure determination from NMR chemical shifts.

    PubMed

    Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M; Vendruscolo, Michele

    2007-06-05

    NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 angstroms or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

  1. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  2. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  3. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  4. Hypoxia-sensitive NMR contrast agents

    SciTech Connect

    Swartz, H.M.; Chen, K.; Pals, M.; Sentjurc, M.; Morse, P.D. 2d.

    1986-02-01

    The rate of reduction of nitroxides is shown to be more rapid in hypoxic cells. The rate of reduction and the effect of hypoxia on the reduction rate vary for different nitroxides. These findings indicate that it may be feasible to develop in vivo NMR contrast agents that selectively will indicate areas of hypoxia and thereby aid in the detection of disease processes such as neoplasia, ischemia, and inflammation.

  5. NMR in Copper-Oxide Metals

    SciTech Connect

    Varma, C.M.

    1996-10-01

    The anomalous part of the NMR relaxation rate of copper nuclei in the normal state of copper-oxide metals is calculated using the orbital magnetic parts of the fluctuations derived in a recent theory to explain the long wavelength transport anomalies. Oxygen and yttrium reside on lattice sites at which the anomalous contribution is absent at all hole densities. The frequency, momentum dependence, and the form factor of the fluctuations is predicted. {copyright} {ital 1996 The American Physical Society.}

  6. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Watson, A. Ted; Phan, Jack; Uh, Jinsoo; Michalak, Rudi; Xue, Song

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. Completed the facilities to house our new NMR imager, the equipment has been delivered and installed. New experimental designs will provide for more reliable estimation of permeability distributions were evaluated. Designed and built a new core holder to incorporate one of the new experimental designs.

  7. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  8. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  9. NMR quantum computation with optically polarized molecules

    NASA Astrophysics Data System (ADS)

    Verhulst, Anne; Yannoni, Constantino; Sherwood, Mark; Pomerantz, Drew; Vandersypen, Lieven; Chuang, Isaac

    2000-03-01

    Current methods for bulk NMR quantum computation rely on nuclear spin polarization present at high temperature equilibrium. This presents a challenging obstacle as the probability to find a spin in a specific state decreases exponentially in the number of spins used as qubits, causing a corresponding decrease in the signal to noise ratio of the desired NMR signal. One way to address this problem is to provide an artificial source of high polarization, such as optically pumped ^129Xe. For comparison, thermal equilibrium polarizations are only about 10-3% for ^1H in a typical NMR experiment at room temperature and in a 10 Tesla magnetic field, but with ^129Xe polarizations as high as 18% have been achieved [Happer et. al., Chem.Phys.Lett., 284, p.87-92, Feb 1998]. Using this technique, we prepare hyperpolarized liquid Xe and use it as a solvent for chloroform molecules (CHCl_3). Cross polarization (SPINOE) between ^129Xe and ^1H results in measured enhancements of the proton signal of over 300%, and evidence of transfer to ^13C. These results provide hope for the scalability of quantum computation.

  10. In-cell NMR: a topical review

    PubMed Central

    Banci, Lucia

    2017-01-01

    Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells. PMID:28250949

  11. Earth's field NMR; a surface moisture detector?

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  12. Protein NMR structures refined without NOE data.

    PubMed

    Ryu, Hyojung; Kim, Tae-Rae; Ahn, SeonJoo; Ji, Sunyoung; Lee, Jinhyuk

    2014-01-01

    The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal "width" parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.

  13. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  14. Search for η-mesic 4He in the dd →3He nπ0 and dd →3He pπ- reactions with the WASA-at-COSY facility

    NASA Astrophysics Data System (ADS)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kelkar, N. G.; Kemmerling, G.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.

    2017-03-01

    The search for 4He- η bound states was performed with the WASA-at-COSY facility via the measurement of the excitation function for the dd →3He nπ0 and dd →3He pπ- processes. The deuteron beam momentum was varied continuously between 2.127 GeV/c and 2.422 GeV/c, corresponding to the excess energy for the dd →4He η reaction ranging from Q = - 70 MeV to Q = 30 MeV. The luminosity was determined based on the dd →3He n reaction and the quasi-free proton-proton scattering via dd → ppnspectatornspectator reactions. The excitation functions, determined independently for the measured reactions, do not reveal a structure which could be interpreted as a narrow mesic nucleus. Therefore, the upper limits of the total cross sections for the bound state production and decay in dd →(4He- η) bound →3He nπ0 and dd →(4He- η) bound →3He pπ- processes were determined taking into account the isospin relation between the both of the considered channels. The results of the analysis depend on the assumptions of the N*(1535) momentum distribution in the anticipated mesic-4He. Assuming, as in the previous works, that this is identical with the distribution of nucleons bound with 20 MeV in 4He, we determined that (for the mesic bound state width in the range from 5 MeV to 50 MeV) the upper limits at 90% confidence level are about 3 nb and about 6 nb for nπ0 and pπ- channels, respectively. However, based on the recent theoretical findings of the N*(1535) momentum distribution in the N*-3He nucleus bound by 3.6 MeV, we find that the WASA-at-COSY detector acceptance decreases and hence the corresponding upper limits are 5 nb and 10 nb for nπ0 and pπ- channels respectively.

  15. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    PubMed Central

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano

    2016-01-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases 15N-1H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include 1) using a global metric of structural accuracy, the Discriminating Power (DP) score, for guiding model selection during the iterative NOE interpretation process, and 2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  16. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis.

    PubMed

    Skinner, Simon P; Fogh, Rasmus H; Boucher, Wayne; Ragan, Timothy J; Mureddu, Luca G; Vuister, Geerten W

    2016-10-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  17. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  18. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  19. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  20. Portable microcoil NMR detection coupled to capillary electrophoresis.

    PubMed

    Diekmann, Joana; Adams, Kristl L; Klunder, Gregory L; Evans, Lee; Steele, Paul; Vogt, Carla; Herberg, Julie L

    2011-02-15

    High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system.

  1. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  2. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  3. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  4. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR.

    PubMed

    Korir, Albert K; Larive, Cynthia K

    2007-08-01

    The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe.

  5. Incorporation of FT-NMR into Research Infrastructure and Chemistry Curriculum at Bowie State University

    DTIC Science & Technology

    2014-01-09

    undergraduate research education. The Eft FT NMR software system consist of two programs: WinPNMR, a data acquisition program and NUTS (Acorn NMR Inc.) A NMR...3 2. Equipment Purchased I. Eft -GENII : The basic proton only EFT90 Fourier Transform NMR includes 1H observation at 90 MHz. It uses an Anasazi...c. Software- The Eft FT NMR software operating systems consist of two NMR programs: i. WinPNMR (Anasazi Instruments Inc.) - A NMR data

  6. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  7. Antioxidant C-glycosylflavones of Drymaria cordata (Linn.) Willd.

    PubMed

    Nono, Raymond N; Nguelefack-Mbuyo, Elvine P; Nzowa, Laurence K; Ponou, Beaudelaire K; Teponno, Rémy B; Nguelefack, Télesphore B; Barboni, Luciano; Tapondjou, Léon A; Park, Hee-Juhn

    2016-01-01

    A new C-glycosylflavone, drymaritin E (6-C-(3-keto-β-digitoxopyranosyl)-4'-O-(β-D-glucopyranosyl)-7-methoxyl-5,4'-dihydroxylflavone) 1 was isolated from the oily upper phase (SU) of the MeOH extract from aerial parts of Drymaria cordata together with two known compounds (cassiaoccidentalin A 2 and anemonin 3) and an inseparable mixture of two known C-glycosylflavones 5,4'-dihydroxy-7-methoxyflavone-6-C-(2''-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside 4a and 5,7,3',4'-tetrahydroxyflavone-6-C-(2''-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside 4b. The alkaline hydrolysis of 3 led to a new hemisynthetic derivative, sodium anemonate (sodium 2-((1'E) 2'-sodium-carboxylate-vinyl)-5-oxo-cyclohex-1-ene carboxylate) 3a. The chemical structures were determined by spectroscopic methods ((1)H NMR, (13)C NMR, (1)H-(1)H COSY, HMBC, HSQC, and NOESY) and mass spectrometry (ESI-MS). C-glycosylflavones had significant free radical-scavenging activities on the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). However, SU and compounds 3 and 3a exhibited no activity. In particular, compound 1 exhibited a concentration-dependent radical scavenging activity on DPPH with EC50 of 31.43 µg/mL.

  8. Synthesis of 21,23-selenium- and tellurium-substituted 5-porphomethenes, 5,10-porphodimethenes, 5,15-porphodimethenes, and porphotrimethenes and their interactions with mercury.

    PubMed

    Ahmad, Sohail; Yadav, Kumar Karitkey; Bhattacharya, Soumee; Chauhan, Prashant; Chauhan, S M S

    2015-04-17

    The 3+1 condensation of symmetrical 16-Selena/telluratripyrranes with symmetrical selenophene-2,5-diols/tellurophene-2,5-diols in the presence of BF3-etheratre or BF3-methanol followed by oxidation with DDQ gave 5,10-porphodimethenes, whereas the process with unsymmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave 5-porphomethenes. In addition, the reaction of unsymmetrical 16-Selena/telluratripyrranes with symmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave the corresponding porphotrimethenes, whereas the process with unsymmetrical selenophene-2,5-diols/tellurophene-2,5-diols gave the 5,15-porphodimethenes. The structures of different products were characterized by IR, (1)H and (13)C NMR, (1)H-(1)H COSY, CHN analysis, and mass spectrometry. The binding of mercury with the calix[4]phyrins mentioned above had been observed in the decreasing order of porphodimethenes > porphomethenes > porphotrimethenes by UV-vis and (1)H NMR spectroscopy.

  9. Hyphenating Centrifugal Partition Chromatography with Nuclear Magnetic Resonance through Automated Solid Phase Extraction.

    PubMed

    Bisson, Jonathan; Brunel, Marion; Badoc, Alain; Da Costa, Grégory; Richard, Tristan; Mérillon, Jean-Michel; Waffo-Téguo, Pierre

    2016-10-18

    Centrifugal partition chromatography (CPC) and all countercurrent separation apparatus provide chemists with efficient ways to work with complex matrixes, especially in the domain of natural products. However, despite the great advances provided by these techniques, more efficient ways of analyzing the output flow would bring further enhancement. This study describe a hyphenated approach made by coupling NMR with CPC through a hybrid-indirect coupling made possible by using a solid phase extraction (SPE) apparatus intended for high-pressure liquid chromatography (HPLC)-NMR hyphenation. Some hardware changes were needed to adapt the incompatible flow-rates and a reverse-engineering approach that led to the specific software required to control the apparatus. 1D (1)HNMR and (1)H-(1)H correlation spectroscopy (COSY) spectra were acquired in reasonable time without the need for any solvent-suppression method thanks to the SPE nitrogen drying step. The reduced usage of expensive deuterated solvents from several hundreds of milliliters to the milliliter order is the major improvement of this approach compared to the previously published ones.

  10. Two novel bioactive glucosinolates from Broccoli (Brassica oleracea L. var. italica) florets.

    PubMed

    Survay, Nazneen Shaik; Kumar, Brajesh; Jang, Mi; Yoon, Do-Young; Jung, Yi-Sook; Yang, Deok-Chun; Park, Se Won

    2012-09-01

    Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20 mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5 mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625 μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625 μg/mL and <1250 μg/mL, respectively, when compared to ampicillin (IC(50) ≤ 39 μg/mL) as a positive control.

  11. Isolation and structure elucidation of cytotoxic polyacetylenes and polyenes from Echinacea pallida.

    PubMed

    Pellati, Federica; Calò, Samuele; Benvenuti, Stefania; Adinolfi, Barbara; Nieri, Paola; Melegari, Michele

    2006-07-01

    Bioassay-guided fractionation of n-hexane extracts of Echinacea pallida (Asteraceae) roots led to the isolation and structure elucidation of two polyacetylenes (1, 3) and three polyenes (2, 4, 5). Two are known hydroxylated compounds, namely 8-hydroxy-pentadeca-(9E)-ene-11,13-diyn-2-one (1) and 8-hydroxy-pentadeca-(9E,13Z)-dien-11-yn-2-one (2). Two dicarbonylic constituents, namely pentadeca-(9E)-ene-11,13-diyne-2,8-dione (3) and pentadeca-(9E,13Z)-dien-11-yne-2,8-dione (4), were isolated and characterized for the first time. Furthermore, the structure elucidation of pentadeca-(8Z,13Z)-dien-11-yn-2-one (5) is described. The structure of the compounds isolated was determined on the basis of UV, IR, NMR (including 1D and 2D NMR experiments, such as 1H-1H gCOSY, gHSQC-DEPT, gHMBC, gNOESY) and MS spectroscopic data. The cytotoxic activity of the isolated constituents against MIA PaCa-2 human pancreatic adenocarcinoma cells was evaluated in the concentration range 1-100 microg/ml. Results show that the hydroxylated compounds (1, 2) have low cytotoxicity, while the more hydrophobic polyacetylenes (3) and polyenes (4, 5) displayed moderate activity.

  12. Isolation of brassicasterol, its synthetic prodrug-crystal structure, stereochemistry and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sethi, Arun; Prakash, Rohit; Srivastava, Sangeeta; Amandeep; Bishnoi, Abha; Singh, Ranvijay Pratap

    2014-07-01

    In the present study brassicasterol (1), was isolated from the chloroform extract of the flowers of Allamanda violacea and identified with the help of different spectroscopic techniques like 1H, 13C, 2D NMR (1H-1H COSY), IR, UV and mass spectrometry. A novel prodrug was synthesized by carrying out esterification of brassicasterol (1) with the well known drug naproxen using Steglich esterification to give 3β-(2-(6-methoxynaphthalene-2yl) propionoxy) 24 methyl cholest-5, 22-dien (2). Compounds 2 was subjected to single crystal X-ray diffraction technique and crystallized out in monoclinic form having P21 space group and stabilized by CH-π interactions. Structure and stereochemistry of compound 2 was established with the help of modern spectroscopic techniques like 1H NMR, IR, UV, mass spectrometry as well as with single crystal X-ray diffraction. Molecular geometry and vibrational frequencies of compounds 1 and 2 were calculated by density functional method (DFT/B3LYP) using 6-31G (d, p) basis set, bond parameters and IR frequencies were correlated with the experimental data. 1H and 13C chemical shifts of compound 1 and 1H chemical shifts of compound 2 were calculated with GIAO method and correlated with experimental data. Hyperconjugative interactions were studied with the help of natural bond order analysis (NBO). Electronic properties of both the compounds such as HOMO-LUMO energies were measured with the help of time dependent DFT method.

  13. Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum.

    PubMed

    Kumar, S Nishanth; Nambisan, Bala; Mohandas, C

    2014-04-01

    The cell-free culture filtrate of Bacillus cereus subsp. thuringiensis associated with an entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain two cyclic dipeptides (CDPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclo(D-Pro-L-Met) and cyclo(D-Pro-D-Tyr). CDPs showed significantly higher activity than the standard fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum. The highest activity of 2 µg/ml by cyclo(D-Pro-D-Tyr) was recorded against F. oxysporum, a plant pathogen responsible for causing fusarium wilt followed by R. solani, a pathogen that causes root rot and P. expansum. To our knowledge, this is the first report on the isolation of these compounds from Rhabditis EPN bacterial strain Bacillus cereus subsp. thuringiensis.

  14. Amaryllidaceae alkaloids with new framework types from Zephyranthes candida as potent acetylcholinesterase inhibitors.

    PubMed

    Zhan, Guanqun; Liu, Junjun; Zhou, Junfei; Sun, Bin; Aisa, Haji Akber; Yao, Guangmin

    2017-02-15

    Three new Amaryllidaceae alkaloids, named zephycandidines I-III (1-3), were isolated from Zephyranthes candida. The structures of 1-3 were elucidated by spectroscopic analyses including HRESIMS, (1)H NMR, (13)C NMR, DEPT, HSQC, (1)H-(1)H COSY, HMBC, ROESY, and electronic circular dichroism (ECD), as well as ECD calculation. The absolute configuration of 1 was finally established by single crystal X-ray diffraction using Cu Kα radiation. Zephycandidines I (1) and III (3) with new framework types represent the first example of 7-phenyl-hexahydroindole and 5,2'-dimethyl-biphenyl-2-ylamine alkaloids, respectively, and their plausible biosynthetic pathway are proposed. Zephycandidine II (2) is the first C3a-phenyl-hexahydroindole type alkaloid isolated from the genus of Zephyranthes. These new alkaloids 1-3 were evaluated for their acetylcholinesterase (AChE) inhibitory activities, and 3 showed potent AChE inhibitory activity with an IC50 value of 8.82 μM, suggesting that the framework of 5,2'-dimethyl-biphenyl-2-ylamine in 3 may be a potential group for the AChE inhibitory activity. The docking studies of 1-3 and galanthamine with AChE revealed that interactions with W286 and Y337 are necessary for the AChE inhibitory activity.

  15. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  16. NMR of platinum catalysts: Double NMR of chemisorbed carbon monoxide and a model for the platinum NMR line shape

    NASA Astrophysics Data System (ADS)

    Makowka, Claus D.; Slichter, Charles P.; Sinfelt, J. H.

    1985-05-01

    The authors report observation of the NMR line of 195Pt atoms in the surface layer of small platinum-metal particles on which 13CO has been chemisorbed. The surface 195Pt atoms are resolved from those of 195Pt atoms deeper in the particle by spin-echo double resonance between 195Pt and 13C. The particles, supported on η-alumina, had dispersions (fraction of the atoms that are on the surface) of 26% and 76%. Comparison with 195Pt resonance in Pt carbonyls suggests that the magnitude of the Knight shift of the surface Pt is less than 0.2%. Analysis of the 195Pt spin-lattice relaxation indicates that the small surface Knight shift results from cancellation of 6s and 5d core-polarization contributions as was found theoretically by Weinert and Freeman for clean Pt surfaces. The 13-195Pt indirect spin coupling is found to be very similar to those in diamagnetic platinum carbonyl molecules. The results show that CO bonds via the C atom and verify that concepts from studies of large single crystals are valid for the small particles. The key features of the 195Pt line shapes in these small platinum particles are described by a simple phenomenological model of the spatial Knight-shift variation inside these particles. The model successfully describes the major structure seen in the NMR line shapes of samples with dispersions ranging from 5% to 76%.

  17. NMR and EPR Studies of Chloroiron(III) Tetraphenylchlorin and Its Complexes with Imidazoles and Pyridines of Widely Differing Basicities

    PubMed Central

    Cai, Sheng; Shokhireva, Tatjana Kh.; Lichtenberger, Dennis L.; Walker, F. Ann

    2008-01-01

    The NMR and EPR spectra of two bis-imidazole and three bis-pyridine complexes of tetraphenylchlorinatoiron(III), [(TPC)Fe(L)2]+ (L = Im-d4, 2-MeHIm, 4-Me2NPy, Py and 4-CNPy) have been investigated. The full resonance assignments of the [(TPC)Fe(L)2]+ complexes of this study have been made from COSY and NOESY experiments and ADF calculations. Unlike the [(OEC)Fe(L)2]+ complexes reported previously (Cai, S.; Lichtenberger, D. L.; Walker, F. A. Inorg. Chem. 2005, 44, 1890-1903), the NMR data for the [(TPC)Fe(L)2]+ complexes of this study indicate that the ground state is S = ½ for each bis-ligand complex, whereas a higher spin state was present at NMR temperatures for the Py and 4-CNPy complexes of (OEC)Fe(III). The pyrrole-8,17 and pyrroline-H of all [TPCFe(L)2]+ show large magnitude chemical shifts (hence indicating large spin density on the adjacent carbons that are part of the π system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from ADF calculations. The magnitude of the chemical shifts decreases with decreasing donor ability of the substituted pyridine ligands, with the non-hindered imidazole ligand having slightly larger magnitude chemical shifts than the most basic pyridine, even though its basicity is significantly lower (4-Me2NPyH+ pKa = 9.7, H2Im+ pKa = 6.65 (adjusted for the statistical factor of 2 protons)). The temperature dependence of the chemical shifts of all but the 4-Me2NPy bis-ligand complexes studied over the temperature range of the NMR investigations shows that most of them have mixed (dxy)2(dxz,dyz)3/(dxzdyz)4(dxy)1 electron configurations that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with a S = 3/2 excited state in each case that in most cases lies at more than kT at room temperature above the ground state. The observed pattern of chemical shifts of the 4-CNPy complex and analysis of the temperature dependence

  18. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  19. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  20. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Uh, Jinsoo; Phan, Jack; Xue, Dong; Watson, A. Ted

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. During this reporting period, the determination of surface relaxivity from NMR data was investigated. A new method for determining the surface relaxivity from measured data was developed and tested with data obtained from an Exxon sample. The new method avoids the use of a certain mathematical short-time approximation in the data analysis, which has been shown to be unsuitable.

  1. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  2. In vivo NMR imaging of deuterium

    NASA Astrophysics Data System (ADS)

    Müller, S.; Seelig, J.

    D 2O is used as a contrast agent for studying anatomical images and flow in vivo by deuterium NMR. A deuterium image of the head of a living rat after administration of D 2O (5% v/v) in the drinking water is shown. It was obtained in 14 min with a surface coil and has a spatial resolution of about one millimeter. The application of D 2O as a tracer is discussed and the inflow of heavy water into the brain of a rat is recorded in a time series of deuterium images. Spatially resolved inflow time constants have been determined.

  3. Understanding NMR T2 spectral uncertainty

    NASA Astrophysics Data System (ADS)

    Prange, Michael; Song, Yi-Qiao

    2010-05-01

    NMR relaxation and diffusion data analysis commonly uses a wide range of methods from simple exponential fitting to Laplace inversions. The pros and cons of these methods are often the subject of intense debate. We show that the ill-conditioned nature of such analysis gives rise to a range of solutions for every method resulting in uncertainty in the spectral solution. Such uncertainty is in fact characteristic of the inversion method. We show a simple method of sparse spectral representation can be used to improve the statistics of multiple-exponential-based inversion schemes.

  4. Measurement of vorticity diffusion by NMR microscopy.

    PubMed

    Brown, Jennifer R; Callaghan, Paul T

    2010-05-01

    In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid, at the cylinder's rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low viscosity fluids without the need to measure stress.

  5. NMR-based quantification of organic diphosphates

    PubMed Central

    Lenevich, Stepan

    2010-01-01

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogues have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using 31P NMR spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking. PMID:20833124

  6. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  7. Complete NMR analysis of oxytocin in phosphate buffer.

    PubMed

    Ohno, Akiko; Kawasaki, Nana; Fukuhara, Kiyoshi; Okuda, Haruhiro; Yamaguchi, Teruhide

    2010-02-01

    Complete NMR analysis of oxytocin (OXT) in phosphate buffer was elucidated by one-dimensional (1D)- and two-dimensional (2D)-NMR techniques, which involve the assignment of peptide amide NH protons and carbamoyl NH(2) protons. The (1)H-(15)N correlation of seven amide NH protons and three carbamoyl NH(2) protons were also shown by HSQC NMR of OXT without (15)N enrichment.

  8. Avoiding Problems with Suspensions in NMR Sample Tubes

    NASA Astrophysics Data System (ADS)

    Ali, Saqib; Danish, M.; Mazhar, M.

    1995-07-01

    Many times during the sample preparation for NMR studies solid samples form suspension due to low solubility in duterated solvents. We developed a technique to get rid of this problem easily. Just tighten the lid on the NMR sample tube and seal it with parafilm. Invert the tube and centrifuge it for five minutes. Now the suspension is collected in the lid and the clear sample is ready for NMR analysis in the tube.

  9. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  10. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  11. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  12. Microgram-scale protein structure determination by NMR.

    PubMed

    Aramini, James M; Rossi, Paolo; Anklin, Clemens; Xiao, Rong; Montelione, Gaetano T

    2007-06-01

    Using conventional triple-resonance nuclear magnetic resonance (NMR) experiments with a 1 mm triple-resonance microcoil NMR probe, we determined near complete resonance assignments and three-dimensional (3D) structure of the 68-residue Methanosarcina mazei TRAM protein using only 72 mug (6 microl, 1.4 mM) of protein. This first example of a complete solution NMR structure determined using microgram quantities of protein demonstrates the utility of microcoil-probe NMR technologies for protein samples that can be produced in only limited quantities.

  13. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  14. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  15. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.

    PubMed

    Abdul-Manan, N; Hinton, J F

    1994-06-07

    Gramicidin A incorporated into SDS (sodium dodecyl sulfate) micelles exists as a right-handed, N-to-N-terminal beta 6.3 helical dimer [Lomize, A. L., Orechov, V. Yu., & Arseniev, A.S. (1992) Bioorg. Khim. 18, 182-189]. In the incorporation procedure to achieve the ion channel state of gramicidin A in SDS micelles, trifluoroethanol (TFE) is used to solubilize the hydrophobic peptide before addition to the aqueous/micelle solution. The conformational transition of gramicidin A to form ion channels in SDS micelles, i.e., in TFE and 10% TFE/water, has been investigated using 2D NMR and CD spectroscopy. In neat TFE, gramicidin A was found to be monomeric and may possibly exist in an equilibrium of rapidly interconverting conformers of at least three different forms believed to be left- and/or right-handed alpha and beta 4.4 helices. It was found that the interconversion between these conformers was slowed down in 55% TFE as evident by the observation of at least three different sets of d alpha N COSY peaks although CD gave a net spectrum similar to that in neat TFE. In 10% TFE gramicidin A spontaneously forms a precipitate. The precipitated species were isolated and solubilized in dioxane where gramicidin conformers undergo very slow interconversion and could be characterized by NMR. At least seven different gramicidin A conformations were found in 10% TFE. Four of thes are the same types of double helices as previously found in ethanol (i.e., a symmetric left-handed parallel beta 5.6 double helix, an unsymmetric left-handed parallel beta 5.6 double helix, a symmetric left-handed antiparallel beta 5.6 double helix, a symmetric right-handed parallel beta 5.6 double helix); the fifth is possibly a symmetric right-handed antiparallel beta 5.6 double helix. There is also evidence for the presence of at least one form of monomeric species. Previous observation on the solvent history dependence in the ease of channel incorporation may be explained by the presence of several

  16. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  17. Chromatographic Separation and NMR An Integrated Approach in Pharmaceutical Development.

    PubMed

    Gonnella, Nina C

    2012-01-01

    Over the past 10 years, major improvements in the performance of LC-NMR have been realized. The addition of postcolumn SPE, advances in probe technology including cryogenic probes and microcoil probes, improved solvent suppression pulse sequences, and shielded magnets with better homogeneity have all contributed to rapid advancements in this technology. Application of LC-NMR to problems in pharmaceutical development has had a major impact on structure elucidation studies. LC-NMR has been successfully applied to determine the structures of degradation products, impurities, mixtures of compounds, and metabolites. Use of stop flow techniques with LC-NMR experiments has been a critical means of identifying unstable compounds and studying conformational kinetics. The integration of SPE as an intermediate step between the LC unit and the NMR spectrometer has vastly improved the power of the hyphenated technique in trace analysis applications. Online postcolumn enrichment of chromatographic peaks by SPE dramatically reduces the NMR acquisition times by allowing repeated injections to be trapped onto the same cartridge or different cartridges. Because protonated solvents can be easily removed with a drying procedure, solvents and buffers may be freely chosen for maximizing chromatographic separation without compromising NMR spectral quality. The compound of interest may then be eluted from an SPE cartridge using deuterated organic solvent, which helps to reduce dynamic range issues. When combined with cryogenically cooled microcapillary probes, the sensitivity of the NMR signal increases about 10-fold over conventional room temperature probes, enabling full structure characterization at the microgram level. Heteronuclear experiments with concentrations previously only possible in a limited number of cases have now become standard experiments. The availability of HSQC and HMBC experiments and microcoil/cryogenic technology opens the possibility of using LC-(SPE) NMR for the

  18. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  19. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  20. NMR-Metabolic Methodology in the Study of GM Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...