Science.gov

Sample records for 1kw package safety

  1. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    SciTech Connect

    West, M; Hafner, R

    2008-05-05

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in

  2. Design and development of 1 KW solid state RF amplifier

    NASA Astrophysics Data System (ADS)

    Ashok, Gayatri; Kadia, Bhavesh; Jain, Pragya; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Since low power tube based RF amplifiers are complicated, occupy a large space and are bulky, the efforts are on to develop indigenously 1 KW solid state technology based RF Power amplifier. A power level of 1KW is chosen for the initial design because RF power Mosfets upto 250 watt are easily available and by clubbing 3-4 stages the power level of 1 KW can be made. Presently design and testing of 100-watt stage is in progress. The first 2 stages are designed to give 5 Watt RF power using bipolar transistors and are operated in CE, Class A to provide low noise level at the output of the system. The 3rd stage will be MOSFET based MRF 174, which is ideally suited for class A operation and is designed for 100 Watt RF power. The last stage will be MOSFET based ARF446 power MOSFET in TO-247 plastic package. This amplifier will be used in the classical push- pull configuration. This paper describes the design aspects as well as the test results of 100 watt amplifier on 50 Ohm dummy load along with the specifications, design criteria, circuit used, operating parameters of 1 KW Solid State RF power amplifier to be used as driver for 91.2 MHz, 1.5 MW stage for ICRH experiments on SST-1 tokamak .

  3. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope

  4. Safety evaluation for packaging (onsite) SERF cask

    SciTech Connect

    Edwards, W.S.

    1997-10-24

    This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  5. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    SciTech Connect

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  6. Performance evaluation of 1 kw PEFC

    SciTech Connect

    Komaki, Hideaki; Tsuchiyama, Syozo

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a PEFC Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns the effects brought on PEFC operating performance by conditions particular to shipboard operation. The performance characteristics were examined through tests performed on a 1 kw stack and on a single cell (Manufactured by Fuji Electric Co., Ltd.). The tests covered the items (1) to (4) cited in the headings of the sections that follow. Specifications of the stack and single cell are as given.

  7. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  8. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  9. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    SciTech Connect

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  10. Safety Analysis for Packaging Steel Banded Wooden Shipping Containers

    SciTech Connect

    FERRELL, P.C.

    2000-12-05

    This safety analysis report for packaging describes the steel banded wooden shipping containers, which are certified as Type AF packagings. The authorized payload for these containers is unirradiated, slightly enriched, uranium ingots, billets, extrusions, and scrap materials. The amount of uranium in the containers will not exceed the LSA-II material requirements as defined in 49 CFR 173.403.

  11. European consumer response to packaging technologies for improved beef safety.

    PubMed

    Van Wezemael, Lynn; Ueland, Øydis; Verbeke, Wim

    2011-09-01

    Beef packaging can influence consumer perceptions of beef. Although consumer perceptions and acceptance are considered to be among the most limiting factors in the application of new technologies, there is a lack of knowledge about the acceptability to consumers of beef packaging systems aimed at improved safety. This paper explores European consumers' acceptance levels of different beef packaging technologies. An online consumer survey was conducted in five European countries (n=2520). Acceptance levels among the sample ranged between 23% for packaging releasing preservative additives up to 73% for vacuum packaging. Factor analysis revealed that familiar packaging technologies were clearly preferred over non-familiar technologies. Four consumer segments were identified: the negative (31% of the sample), cautious (30%), conservative (17%) and enthusiast (22%) consumers, which were profiled based on their attitudes and beef consumption behaviour. Differences between consumer acceptance levels should be taken into account while optimising beef packaging and communicating its benefits.

  12. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    SciTech Connect

    Carlstrom, R.F.

    1994-10-05

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14.

  13. FFTF railroad tank car safety evaluation for packaging

    SciTech Connect

    Romano, T.

    1996-10-25

    This Safety Evaluation for Packaging (SEP) provides evaluations necessary to approve transfer of the 8,000 gallon Liquid Waste Tank Car (LWTC) from the Fast Flux Test Facility (FFTF) to the 200 Areas. This SEP will demonstrate that the transfer cif the LWTC will provide an equivalent degree of safety as would be provided by packages meeting U.S. Department of Transportation (DOT) requirements. This fulfills onsite transportation requirements implemented in the Hazardous Material Packaging and Shipping, WHC-CM-2-14.

  14. FFTF railroad tank car Safety Evaluation for Packaging

    SciTech Connect

    Carlstrom, R.F.

    1995-09-21

    This Safety Evaluation for Packaging (SEP) provides evaluations considered necessary to approve transfer of the 8,000 gallon Liquid Waste Tank Car (LWTC) from Fast Flux Test Facility (FFTF) to the 200 Areas. This SEP will demonstrate that the transfer of the LWTC will provide an equivalent degree of safety as would be provided by packages meeting U.S. Department of Transportation (DOT) requirements. This fulfills onsite transportation requirements implemented in the Hazardous Material Packaging and Shipping, WHC-CM-2-14

  15. Safety analysis report for packaging (onsite) multicanister overpack cask

    SciTech Connect

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  16. Active and Intelligent Packaging: The Indication of Quality and Safety.

    PubMed

    Janjarasskul, Theeranun; Suppakul, Panuwat

    2016-09-19

    The food industry has been under growing pressure to feed an exponentially increasing world population and challenged to meet rigorous food safety law and regulation. The plethora of media consumption has provoked consumer demand for safe, sustainable, organic, and wholesome products with "clean" labels. The application of active and intelligent packaging has been commercially adopted by food and pharmaceutical industries as a solution for the future for extending shelf life and simplifying production processes; facilitating complex distribution logistics; reducing, if not eliminating the need for preservatives in food formulations; enabling restricted food packaging applications; providing convenience, improving quality, variety and marketing features; as well as providing essential information to ensure consumer safety. This chapter reviews innovations of active and intelligent packaging which advance packaging technology through both scavenging and releasing systems for shelf life extension, and through diagnostic and identification systems for communicating quality, tracking and brand protection.

  17. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    SciTech Connect

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  18. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  19. Spoilage and safety characteristics of ground beef packaged in traditional and modified atmosphere packages.

    PubMed

    Brooks, J C; Alvarado, M; Stephens, T P; Kellermeier, J D; Tittor, A W; Miller, M F; Brashears, M M

    2008-02-01

    Two separate studies, one with pathogen-inoculated product and one with noninoculated product, were conducted to determine the safety and spoilage characteristics of modified atmosphere packaging (MAP) and traditional packaging of ground beef patties. Ground beef patties were allotted to five packaging treatments (i) control (foam tray with film overwrap; traditional), (ii) high-oxygen MAP (80% 02, 20% CO2), (iii) high-oxygen MAP with added rosemary extract, (iv) low-oxygen carbon monoxide MAP (0.4% CO, 30% CO2, 69.6% N2), and (v) low-oxygen carbon monoxide MAP with added rosemary extract. Beef patties were evaluated for changes over time (0, 1, 3, 5, 7, 14, and 21 days) during lighted display. Results indicated low-oxygen carbon monoxide gas flush had a stabilizing effect on meat color after the formation of carboxymyoglobin and was effective for preventing the development of surface discoloration. Consumers indicated that beef patties packaged in atmospheres containing carbon monoxide were more likely to smell fresh at 7, 14, and 21 days of display, but the majority would probably not consume these products after 14 days of display because of their odor. MAP suppressed the growth of psychrophilic aerobic bacteria when compared with control packages. Generally, control packages had significantly higher total aerobic bacteria and Lactobacillus counts than did modified atmosphere packages. In the inoculated ground beef (approximately 10(5) CFU/g) in MAP, Escherichia coli O157 populations ranged from 4.51 to 4.73 log CFU/g with no differences among the various packages, but the total E. coli O157:H7 in the ground beef in the control packages was significantly higher at 5.61 log CFU/g after 21 days of storage. On days 14 and 21, the total Salmonella in the ground beef in control packages was at 5.29 and 5.27 log CFU/g, respectively, which was significantly higher than counts in the modified atmosphere packages (3.99 to 4.31 log CFU/g on day 14 and 3.76 to 4.02 log CFU

  20. VIEW OF WEST BANK OF “SAFETY ROD PACKAGE,” INCLUDING SAFETY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WEST BANK OF “SAFETY ROD PACKAGE,” INCLUDING SAFETY ROD MOTOR DRIVES (B AND C), DRUMS, AND CLUTCHES, IN A THREE-TIERED RACK IN THE PDP ROOM AT LEVEL +27’, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  1. VIEW OF EAST BANK OF “SAFETY ROD PACKAGE,” INCLUDING SAFETY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST BANK OF “SAFETY ROD PACKAGE,” INCLUDING SAFETY ROD MOTOR DRIVES (B AND C), DRUMS, AND CLUTCHES, IN A THREE-TIERED RACK IN THE PDP ROOM AT LEVEL +27’, LOOKING SOUTHEAST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  2. Safety analysis report for packaging (onsite) doorstop samplecarrier system

    SciTech Connect

    Obrien, J.H.

    1997-02-24

    The Doorstop Sample Carrier System consists of a Type B certified N-55 overpack, U.S. Department of Transportation (DOT) specification or performance-oriented 208-L (55-gal) drum (DOT 208-L drum), and Doorstop containers. The purpose of the Doorstop Sample Carrier System is to transport samples onsite for characterization. This safety analysis report for packaging (SARP) provides the analyses and evaluation necessary to demonstrate that the Doorstop Sample Carrier System meets the requirements and acceptance criteria for both Hanford Site normal transport conditions and accident condition events for a Type B package. This SARP also establishes operational, acceptance, maintenance, and quality assurance (QA) guidelines to ensure that the method of transport for the Doorstop Sample Carrier System is performed safely in accordance with WHC-CM-2-14, Hazardous Material Packaging and Shipping.

  3. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    SciTech Connect

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  4. Packaging review guide for reviewing safety analysis reports for packagings: Revision 1

    SciTech Connect

    Fisher, L.E.; Chou, C.K.; Lloyd, W.R.; Mount, M.E.; Nelson, T.A.; Schwartz, M.W.; Witte, M.C.

    1988-10-01

    The Department of Energy (DOE) has established procedures for obtaining certification of packagings used by DOE and its contractors for the transport of radioactive materials. The principal purpose of this document is to assure the quality and uniformity of PCS reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The Packaging Review Guide (PRG) also sets forth solutions and approaches determined to be acceptable in the past in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a SARP does not have to follow the solutions or approaches presented. It is also a purpose of the PRG to make information about DOE certification policy and procedures widely available to DOE field offices, DOE contractors, federal agencies, and interested members of the public. 77 refs., 16 figs., 15 tabs.

  5. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  6. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    SciTech Connect

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

  7. Technical Review Report for the Model 9975-96 Package Safety Analysis Report for Packaging (S-SARP-G-00003, Revision 0, January 2008)

    SciTech Connect

    West, M

    2009-05-22

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the U.S. Department of Energy (DOE), on the Safety Analysis Report for Packaging, Model 9975, Revision 0, dated January 2008 (S-SARP-G-00003, the SARP). The review includes an evaluation of the SARP, with respect to the requirements specified in 10 CFR 71, and in International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9975-96 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The safety analysis of the Model 9975-85 Packaging is documented in the Safety Analysis Report for Packaging, Model 9975, B(M)F-85, Revision 0, dated December 2003. The Model 9975-85 Package is certified by DOE Certificate of Compliance (CoC) package identification number, USA/9975/B(M)F-85, for the transportation of Type B quantities of uranium metal/oxide, {sup 238}Pu heat sources, plutonium/uranium metals, plutonium/uranium oxides, plutonium composites, plutonium/tantalum composites, {sup 238}Pu oxide/beryllium metal.

  8. Safety analysis report for packaging: the ORNL DOT Specification 20WC-5 - special form packaging

    SciTech Connect

    Schaich, R.W.

    1982-10-01

    The ORNL DOT Specification 20WC-5 - Special Form Package was fabricated for the transport of large quantities of solid nonfissile radioactive materials in special form. The package was evaluated on the basis of tests performed at Sandia National Laboratories, Albuquerque, New Mexico on an identical fire and impact shield and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of large quantities of nonfissile radioactive materials in special form.

  9. Safety-analysis report for packaging: the ORNL DOT specification 20WC-5 - special form packaging

    SciTech Connect

    Schaich, R.W.

    1983-03-01

    The ORNL DOT Specification 20WC-5 - Special Form Packaging was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of large quantities of solid non-fissile radioactive materials in special form. the package was evaluated on the basis of tests performed at Sandia National Laboratories, Albuquerque, New Mexico (formerly Sandia Corporation), on an identical fire and impact shield and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of large quantities of non-fissile radioactive materials in special form. 7 figures.

  10. Safety analysis report for packaging: the ORNL DOT specification 6M - special form package

    SciTech Connect

    Schaich, R.W.

    1982-07-01

    The ORNL DOT Specification 6M - Special Form Package was fabricated at the Oak Ridge Nation al Laboratory (ORNL) for the transport of Type B solid non-fissile radioactive materials in special form. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities in special form of non-fissile radioactive materials.

  11. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect

    Not Available

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  12. Materials of Criticality Safety Concern in Waste Packages

    SciTech Connect

    Larson, S.L.; Day, B.A.

    2006-07-01

    10 CFR 71.55 requires in part that the fissile material package remain subcritical when considering 'the most reactive credible configuration consistent with the chemical and physical form of the material'. As waste drums and packages may contain unlimited types of materials, determination of the appropriately bounding moderator and reflector materials to ensure compliance with 71.55 requires a comprehensive analysis. Such an analysis was performed to determine the materials or elements that produce the most reactive configuration with regards to both moderation and reflection of a Pu-239 system. The study was originally performed for the TRUPACT-II shipping package and thus the historical fissile mass limit for the package, 325 g Pu-239, was used [1]. Reactivity calculations were performed with the SCALE package to numerically assess the moderation or reflection merits of the materials [2]. Additional details and results are given in SAIC-1322-001 [3]. The development of payload controls utilizing process knowledge to determine the classification of special moderator and/or reflector materials and the associated fissile mass limit is also addressed. (authors)

  13. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect

    Nguyen, P.M.

    1994-08-19

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  14. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  15. Technical Review Report for the Model 9978-96 Package Safety Analysis Report for Packaging (S-SARP-G-00002, Revision 1, March 2009)

    SciTech Connect

    West, M

    2009-03-06

    This Technical Review Report (TRR) documents the review, performed by Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the Department of Energy (DOE), on the 'Safety Analysis Report for Packaging (SARP), Model 9978 B(M)F-96', Revision 1, March 2009 (S-SARP-G-00002). The Model 9978 Package complies with 10 CFR 71, and with 'Regulations for the Safe Transport of Radioactive Material-1996 Edition (As Amended, 2000)-Safety Requirements', International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9978 Packaging is designed, analyzed, fabricated, and tested in accordance with Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME B&PVC). The review presented in this TRR was performed using the methods outlined in Revision 3 of the DOE's 'Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages'. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's Regulatory Guide 7.9, i.e., 'Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material'. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9978 Packaging is a single containment package, using a 5-inch containment vessel (5CV). It uses a nominal 35-gallon drum package design. In comparison, the Model 9977 Packaging uses a 6-inch containment vessel (6CV). The Model 9977 and Model 9978 Packagings were developed concurrently, and they were referred to as the General Purpose Fissile Material Package, Version 1 (GPFP). Both packagings use General Plastics FR-3716 polyurethane foam as insulation and as impact limiters. The 5CV is used as the Primary Containment Vessel (PCV) in the Model 9975-96 Packaging. The Model 9975-96 Packaging also has the 6CV as its Secondary Containment Vessel (SCV). In comparison, the Model 9975

  16. Nano-food packaging: an overview of market, migration research, and safety regulations.

    PubMed

    Bumbudsanpharoke, Nattinee; Ko, Seonghyuk

    2015-05-01

    Recently, food packages produced with nanoparticles, "nano-food packaging," have become more available in the current market. However, although the use of nanomaterials is increasing in food packaging applications, concern over toxicity affects consumer perceptions and acceptance. Quite a number of commercialized forms of nano-food packaging are coated or composited product with inorganic materials, for example, nanosilver and nanoclay as representative examples. Several studies have shown the possibility of nanomaterial migration from packaging or containers to foodstuff. The debate is still ongoing among researchers about the extent of migration and whether it is negligible and safe. Government agencies and stakeholders must hurry to determine use limitations and release conclusive legislation and regulations as soon as possible since nano-food packaging may have great impacts on human health. This paper aims to review the availability of nano-food packaging in the current market, report case studies on nanomaterial migration, and present the current status of safety regulations and management of nano-food packaging in leading countries across regions. This review should enable governments and researchers to develop further nanomaterial risk assessment studies.

  17. Drug packaging in 2014: authorities should direct more efforts towards medication safety.

    PubMed

    2015-05-01

    In 2014, Prescrire examined the packaging quality of about 250 drugs. A few advances stand out, mainly involving recent drugs, but on the whole, the situation is worrisome in terms of medication safety. Although pharmaceutical companies and drug regulatory agencies seem to be taking more account of the risk of accidental poisoning in children, the level of protection remains low overall in the absence of stringent measures on the part of the authorities. New drugs too often have poor-quality or even dangerous packaging at the time of their market introduction. And the packaging quality of older drugs is disturbing. Pharmaceutical companies no longer invest in the packaging of these products, and agencies often fail to take advantage of the opportunities provided by their reassessment to improve the situation. The inappropriate labelling of certain injectable drugs remains a source of medication errors, sometimes resulting in very serious consequences. In 2014, signs of progress in the packaging of several drugs show that its role in medication safety is better appreciated. But the persistence of dangers in the pharmaceuticals market, created by "unfinished", overly complex or poor-quality packaging, raises the question of the responsibility of pharmaceutical companies and agencies for past and present accidents.

  18. A review of the safety features of 6M packagings for DOE programs

    SciTech Connect

    Not Available

    1988-12-01

    This report, prepared by a US Department of Energy (DOE) Task Force and organized for clarity into two-page modules, argues that the US Department of Transportation (DOT) Specification-6M packagings (hereafter referred to as 6M packaging, or simply 6M) merit continued DOE use and, if necessary, DOE certification. This report is designed to address the specific requirements of a Safety Analysis Report for Packaging (SARP). While not a SARP, this report constitutes a compilation of all available documentation on 6M packagings. The authors individually, and the Task Force collectively, believe their investigation provides justification for the continued use of 6M packagings because they meet criteria for quality assurance and for safety under normal and accident conditions as defined by the US Nuclear Regulatory Commission (NRC) regulations. This report may be used by DOE managers to assist in deliberations on future requirements for 6M packagings as they are required to support DOE programs. For the purpose of ready evaluation, this report includes categorical topics found in Nuclear Regulatory Guide 7.9, the topical guideline for SARPs. The format, however, will (it is hoped) pleasantly surprise customary reader expectations. For, while maintaining categorical headings and subheadings found in SARPs as a skeleton, the Task Force chose to adopt the document design principles developed by Hughes Aircraft in the 1960s, ''Sequential Thematic Organization of Publications'' (STOP). 37 figs.

  19. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    SciTech Connect

    1995-01-18

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  20. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    SciTech Connect

    Crow, S R

    1996-02-15

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown.

  1. Safety evaluation for packaging transport of LSA-II liquids in MC-312 cargo tanks

    SciTech Connect

    Carlstrom, R.F.

    1996-09-11

    This safety evaluation for packaging authorizes the onsite transfer of bulk LSA-II radioactive liquids in the 222-S Laboratory Cargo Tank and Liquid Effluent Treatment Facility Cargo Tanks (which are U.S. Department of Transportation MC-312 specification cargo tanks) from their operating facilities to tank farm facilities.

  2. 76 FR 53999 - Safety Notice: Transportation of DOT Special Permit Packages in Commerce

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... accessible through PHMSA's Web site, and answers to specific questions may be obtained from the Hazardous... recognize an SP package and react accordingly. FOR FURTHER INFORMATION CONTACT: For questions regarding..., Office of Hazardous Materials Safety, (404) 832-1135. For general questions regarding Special...

  3. Safety analysis report for packaging (SARP) of the Oak Ridge National Laboratory. TRU curium shipping container

    SciTech Connect

    Box, W.D.; Klima, B.B.; Seagren, R.D.; Shappert, L.B.; Aramayo, G.A.

    1980-06-01

    An analytical evaluation of the Oak Ridge National Laboratory Transuranium (TRU) Curium Shipping Container was made to demonstrate its compliance with the regulations governing offsite shipment of packages containing radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of the evaluation show that the container complies with the applicable regulations.

  4. Food safety concerns deriving from the use of silver based food packaging materials.

    PubMed

    Pezzuto, Alessandra; Losasso, Carmen; Mancin, Marzia; Gallocchio, Federica; Piovesana, Alessia; Binato, Giovanni; Gallina, Albino; Marangon, Alberto; Mioni, Renzo; Favretti, Michela; Ricci, Antonia

    2015-01-01

    The formulation of innovative packaging solutions, exerting a functional antimicrobial role in slowing down food spoilage, is expected to have a significant impact on the food industry, allowing both the maintenance of food safety criteria for longer periods and the reduction of food waste. Different materials are considered able to exert the required antimicrobial activity, among which are materials containing silver. However, challenges exist in the application of silver to food contact materials due to knowledge gaps in the production of ingredients, stability of delivery systems in food matrices and health risks caused by the same properties which also offer the benefits. Aims of the present study were to test the effectiveness and suitability of two packaging systems, one of which contained silver, for packaging and storing Stracchino cheese, a typical Italian fresh cheese, and to investigate if there was any potential for consumers to be exposed to silver, via migration from the packaging to the cheese. Results did not show any significant difference in the effectiveness of the packaging systems on packaged Stracchino cheese, excluding that the active packaging systems exerted an inhibitory effect on the growth of spoilage microorganisms. Moreover, silver migrated into the cheese matrix throughout the storage time (24 days). Silver levels in cheese finally exceeded the maximum established level for the migration of a non-authorised substance through a functional barrier (Commission of the European Communities, 2009). This result poses safety concerns and strongly suggests the need for more research aimed at better characterizing the new packaging materials in terms of their potential impacts on human health and the environment.

  5. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors.

    PubMed

    Duncan, Timothy V

    2011-11-01

    In this article, several applications of nanomaterials in food packaging and food safety are reviewed, including: polymer/clay nanocomposites as high barrier packaging materials, silver nanoparticles as potent antimicrobial agents, and nanosensors and nanomaterial-based assays for the detection of food-relevant analytes (gasses, small organic molecules and food-borne pathogens). In addition to covering the technical aspects of these topics, the current commercial status and understanding of health implications of these technologies are also discussed. These applications were chosen because they do not involve direct addition of nanoparticles to consumed foods, and thus are more likely to be marketed to the public in the short term.

  6. Safety evaluation for packaging (onsite) for cesium chloride capsules with type W overpacks

    SciTech Connect

    McCoy, J.C.

    1997-09-15

    This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the Hazardous Material Packaging and Shipping manual, WHC-CM-2-14. This design supports the one-time onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a one-time onsite shipment or until August 1, 1998, whichever occurs first.

  7. Safety evaluation for packaging for 1720-DR sodium-filled tank

    SciTech Connect

    Mercado, M.S.

    1996-03-09

    Preparations are under way to sell the sodium stored in the 1720-DR tank in the 1720-DR building. This will require that the tank, as well as the 1720-DR facility, be moved to the 300 Area, so that the sodium may be melted and transferred into a railroad tanker car. Because the sodium is a hazardous material and is being shipped in a nonspecification packaging, a safety evaluation for packaging (SEP) is required. This SEP approves the sodium-filled tank for a single shipment from the 105-DR area to the 300 Area.

  8. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  9. Safety Evaluation for Packaging for the N Reactor/single pass reactor fuel characterization shipments

    SciTech Connect

    Stevens, P.F.

    1994-10-13

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the ChemNuclear CNS 1-13G packaging to ship samples of irradiated fuel elements from the 100 K East and 100 K West basins to the Postirradiation Testing Laboratory (PTL) in support of the spent nuclear fuel characterization effort. It also authorizes the return of the fuel element samples to the 100 K East facility using the same packaging. The CNS 1-13G cask has been-chosen to transport the fuel because it has a Certificate of Compliance (CoC) issued by the US Nuclear Regulatory Commission (NRC) for transporting irradiated oxide and metal fuel in commerce. It is capable of being loaded and offloaded underwater and may be shipped with water in the payload compartment.

  10. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    SciTech Connect

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  11. Occurrence Classifications, Severity Weighting, and Normalization for the DOE Packaging and Transportation Safety Metrics Indicator Program

    SciTech Connect

    Dickerson, L.S.; Pope, R.B.; Michelhaugh, R.D.; Harrison, I.G.; Hermann, B.; Lester, P.B.

    1999-06-01

    The US Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) is an interactive computer system designed to support DOE-owned or -operated facilities in reporting and processing information concerning occurrences related to facility operations. The Oak Ridge National Laboratory has been charged by the DOE National Transportation Program Albuquerque (NTPA) with the responsibility of retrieving reports and information pertaining to packaging and transportation (P and T) incidents from the centralized ORPS database. These selected reports are analyzed for trends, impact on P and T operations and safety concerns, and ''lessons learned'' in P and T safety.

  12. Safety evaluation for packaging (onsite) for the Pacific Northwest National Laboratory HEPA filter box

    SciTech Connect

    McCoy, J.C.

    1998-07-15

    This safety evaluation for packaging (SEP) evaluates and documents the safe onsite transport of eight high-efficiency particulate air (HEPA) filters in the Pacific Northwest National Laboratory HEPA Filter Box from the 300 Area of the Hanford Site to the Central Waste Complex and on to burial in the 200 West Area. Use of this SEP is authorized for 1 year from the date of release.

  13. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    SciTech Connect

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  14. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    SciTech Connect

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  15. Safety Analysis Report for Packaging (SARP): Model AL-M1 nuclear packaging (DOE C of C No. USA/9507/BLF)

    SciTech Connect

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This Safety Analysis Report for Packaging (SARP) satisfies the request of the US Department of Energy for a formal safety analysis of the shipping container identified as USA/9507/BLF, also called AL-M1, configuration 5. This report makes available to all potential users the technical information and the limits pertinent to the construction and use of the shipping containers. It includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. A complete physical and technical description of the package is presented. The package consists of an inner container centered within an insulated steel drum. The configuration-5 package contains tritiated water held on sorbent material. There are two other AL-M1 packages, designated configurations 1 and 3. These use the same insulated outer drum, but licensing of these containers will not be addressed in this SARP. Design and development considerations, the tests and evaluations required to prove the ability of the container to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Monsanto Research Corporation-Mound experience in using the containers, and a copy of the DOE/OSD/ALO Certificate of Compliance are included.

  16. Technical Review Report for the Safety Analysis Report for Packaging Model 9977 S-SARP-G-00001 Revision 2

    SciTech Connect

    DiSabatino, A; Hafner, R; West, M

    2007-10-04

    This Technical Review Report (TRR) summarizes the review findings for the Safety Analysis Report for Packaging (SARP) for the Model 9977 B(M)F-96 shipping container. The content analyzed for this submittal is Content Envelope C.1, Heat Sources, in assemblies of Radioisotope Thermoelectric Generators or food-pack cans. The SARP under review, i.e., S-SARP-G-00001, Revision 2 (August 2007), was originally referred to as the General Purpose Fissile Material Package. The review presented in this TRR was performed using the methods outlined in Revision 3 of the Department of Energy's (DOE's) Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's, Regulatory Guide 7.9, i.e., Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9977 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. The Model 9977 Package design includes a single, 6-inch diameter, stainless steel pressure vessel containment system (i.e., the 6CV) that was designed and fabricated in accordance with Section III, Subsection NB, of the American Society of Mechanical Engineers Boiler & Pressure Vessel Code. The earlier package designs, i.e., the Model 9965, 9966, 9967 and 9968 Packages, were originally designed and certified in the 1980s. In the 1990s, updated package designs that incorporated design features consistent with new safety requirements, based on International Atomic Energy Agency guidelines, were proposed. The updated package designs were the Model 9972, 9973, 9974 and 9975 Packages, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under

  17. Safety analysis report: packages. GPHS shipping package supplement 2 to the PISA shipping package (packaging of fissile and other radioactive materials). Final report

    SciTech Connect

    Chalfant, G. G.

    1981-06-01

    Safety Analysis Report DPST-78-124-1 is amended to permit shipment of 6 General Purpose Heat Source (GPHS) capsules (max.). Each capsule contains an average of 2330 curies of /sup 238/Pu, and each pair of capsules is contained in a welded stainless steel primary containment vessel, all of which are doubly contained in a flanged secondary containment vessel. This is in addition to the forms discussed in DPST-78-124-1 and Supplement 1.

  18. Health and Safety Management Plan for the Plutonium Stabilization and Packaging System

    SciTech Connect

    1996-06-04

    This Health and Safety Management Plan (HSMP) presents safety and health policies and a project health and safety organizational structure designed to minimize potential risks of harm to personnel performing activities associated with Plutonium Stabilization and Packaging System (Pu SPS). The objectives of the Pu SPS are to design, fabricate, install, and startup of a glovebox system for the safe repackaging of plutonium oxides and metals, with a requirement of a 50-year storage period. This HSMP is intended as an initial project health and safety submittal as part of a three phase effort to address health and safety issues related to personnel working the Pu SPS project. Phase 1 includes this HSMP and sets up the basic approach to health and safety on the project and addresses health and safety issues related to the engineering and design effort. Phase 2 will include the Site Specific Construction health and Safety Plan (SSCHSP). Phase 3 will include an additional addendum to this HSMP and address health and safety issues associated with the start up and on-site test phase of the project. This initial submittal of the HSMP is intended to address those activities anticipated to be performed during phase 1 of the project. This HSMP is intended to be a living document which shall be modified as information regarding the individual tasks associated with the project becomes available. These modifications will be in the form of addenda to be submitted prior to the initiation of each phase of the project. For additional work authorized under this project this HSMP will be modified as described in section 1.4.

  19. Safety analysis report for packaging (onsite) decontaminated equipment self-container

    SciTech Connect

    Boehnke, W.M.

    1998-09-29

    The purpose of this Safety Analysis Report for Packaging (SARP) is to demonstrate that specific decontaminated equipment can be safely used as its own self-container. As a Decontaminated Equipment Self-Container (also referred to as a self-container), no other packaging, such as a burial box, would be required to transport the equipment onsite. The self-container will consist of a piece of equipment or apparatus which has all readily removable interior contamination removed, all of its external openings sealed, and all external surfaces decontaminated to less than 2000 dpm/100 cm for gamma-emitting radionuclides and less than 220 dpm/100 CM2 for alpha-emitting radionuclides.

  20. Packaging Strategies for Criticality Safety for "Other" DOE Fuels in a Repository

    SciTech Connect

    Larry L Taylor

    2004-06-01

    Since 1998, there has been an ongoing effort to gain acceptance of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the national repository. To accomplish this goal, the fuel matrix was used as a discriminating feature to segregate fuels into nine distinct groups. From each of those groups, a characteristic fuel was selected and analyzed for criticality safety based on a proposed packaging strategy. This report identifies and quantifies the important criticality parameters for the canisterized fuels within each criticality group to: (1) demonstrate how the “other” fuels in the group are bounded by the baseline calculations or (2) allow identification of individual type fuels that might require special analysis and packaging.

  1. The procedures used to review safety analysis reports for packagings submitted to the US Department of Energy for certification

    SciTech Connect

    Popper, G.F.; Raske, D.T.; Turula, P.

    1988-01-01

    This paper presents an overview of the procedures used at the Argonne National Laboratory (ANL) to review Safety Analysis Reports for Packagings (SARPs) submitted to the US Department of Energy (DOE) for issuance of a Certificate of Compliance. Prior to certification and shipment of a packaging for the transport of radioactive materials, a SARP must be prepared describing the design, contents, analyses, testing, and safety features of the packaging. The SARP must be reviewed to ensure that the specific packaging meets all DOE orders and federal regulations for safe transport. The ANL SARP review group provides an independent review and evaluation function for the DOE to ensure that the packaging meets all the prescribed requirements. This review involves many disciplines and includes evaluating the general information, drawings, construction details, operating procedures, maintenance and test programs, and the quality assurance plan for compliance with requirements. 14 refs., 6 figs.

  2. [Definition of "Safety and Hygiene Packages" as a management model for the Hospital Hygiene Service (HHS)].

    PubMed

    Raponi, Matteo; Damiani, Gianfranco; Vincenti, Sara; Wachocka, Malgorzata; Boninti, Federica; Bruno, Stefania; Quaranta, Gianluigi; Moscato, Umberto; Boccia, Stefania; Ficarra, Maria Giovanna; Specchia, Maria Lucia; Posteraro, Brunella; Berloco, Filippo; Celani, Fabrizio; Ricciardi, Walter; Laurenti, Patrizia

    2014-01-01

    The purpose of this research is to identify and formalize the Hospital Hygiene Service activities and products, evaluating them in a cost accounting management view. The ultimate aim, is to evaluate the financial adverse events prevention impact, in an Hospital Hygiene Service management. A three step methodology based on affinity grouping activities, was employed. This methodology led us to identify 4 action areas, with 23 related productive processes, and 86 available safety packages. Owing to this new methodology, we was able to implement a systematic evaluation of the furnished services.

  3. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    SciTech Connect

    1994-10-01

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results.

  4. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    SciTech Connect

    SMITH, R.J.

    1998-11-17

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

  5. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  6. Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages

    SciTech Connect

    DeClue, J. F.

    2011-06-28

    The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

  7. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    SciTech Connect

    1994-10-01

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

  8. Implement the RFID position based system of automatic tablets packaging machine for patient safety.

    PubMed

    Chang, Ching-Hsiang; Lai, Yeong-Lin; Chen, Chih-Cheng

    2012-12-01

    Patient safety has been regarded as the most important quality policy of hospital management. The medicine dispensing definitely plays an influential role in the Joint Commission International Accreditation Standards. The problem we are going to discuss in this paper is that the function of detecting mistakes does not exist in the Automatic Tablets packaging machine (ATPM) in the hospital pharmacy department when the pharmacists implement the replenishment of cassettes. In this situation, there are higher possibilities of placing the wrong cassettes back to the wrong positions, so that the human errors will lead to a crucial impact on total inpatients undoubtedly. Therefore, this study aims to design the RFID (Radio frequency identification) position based system (PBS) for the ATPM with passive high frequency (HF) model. At first, we placed the HF tags on each cassette and installed the HF readers on the cabinets for each position. Then, the system works on the reading loop to verify ID numbers and positions on each cassette. Next, the system would detect whether the orbit opens or not and controls the readers' working power consumption for drug storage temperature. Finally, we use the RFID PBS of the ATPM to achieve the goal of avoiding the medication errors at any time for patient safety.

  9. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  10. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  11. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    SciTech Connect

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella; Snipes, Randy

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108

  12. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    SciTech Connect

    SULLIVAN, T.

    2004-06-30

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of

  13. A Predictive Safety Management System Software Package Based on the Continuous Hazard Tracking and Failure Prediction Methodology

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2003-01-01

    The goal of this research was to integrate a previously validated and reliable safety model, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM), into a software application. This led to the development of a safety management information system (PSMIS). This means that the theory or principles of the CHTFPM were incorporated in a software package; hence, the PSMIS is referred to as CHTFPM management information system (CHTFPM MIS). The purpose of the PSMIS is to reduce the time and manpower required to perform predictive studies as well as to facilitate the handling of enormous quantities of information in this type of studies. The CHTFPM theory encompasses the philosophy of looking at the concept of safety engineering from a new perspective: from a proactive, than a reactive, viewpoint. That is, corrective measures are taken before a problem instead of after it happened. That is why the CHTFPM is a predictive safety because it foresees or anticipates accidents, system failures and unacceptable risks; therefore, corrective action can be taken in order to prevent all these unwanted issues. Consequently, safety and reliability of systems or processes can be further improved by taking proactive and timely corrective actions.

  14. Technical Review Report for the Model 9977 Safety Analysis Report for Packaging Addendum 1 Justification for DNDO Contents

    SciTech Connect

    West, M H

    2008-12-17

    The Model 9977 Package is currently certified for Content Envelope C.1, {sup 238}Pu Heat Sources, either in Radioisotope Thermoelectric Generator (RTG), or in Food-Pack Can configurations, under Certificate of Compliance (CoC) Certificate Number 9977 and Package Identification Number USA/9977/B(M)F-96 (DOE). Addendum 1, Justification for DNDO Contents,--the Submittal--supplements Revision 2 of the Safety Analysis Report for Packaging for the Model 9977 Package. The Submittal adds five new contents to the Model 9977 Package, Content Envelopes, AC.1 through AC.5. The Content Envelopes are neptunium metal, the beryllium-reflected plutonium ball (BeRP Ball), plutonium/uranium metal, plutonium/uranium metal with enhanced wt% {sup 240}Pu (to 50 wt%), and uranium metal. The last three Content Envelopes are stabilized to DOE-STD-3013. These Content Envelopes will be shipped to the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), where they will reside, and, hence, to off-site locations in support of the Department of Homeland Security (DHS) Domestic Nuclear Detection Office (DNDO). The new certificate will apply to a limited number of Model 9977 Packages. At the same time, the Submittal requests an extension of the periodic maintenance requirements from one (1) year to up to five (5) years using Radio-Frequency Identification (RFID) temperature-monitoring systems to measure the ambient storage temperature in order to ensure that the temperature of the Viton{reg_sign} O-rings for the 6-inch Containment Vessel (6CV) remain less than 200 F. The RFIDs have been developed by Argonne National Laboratory. An on-going surveillance program at the K-Area Materials Storage (KAMS) facility at the Savannah River Site, and an on-going examination of Viton{reg_sign} O-rings from mock Primary Containment Vessels (PCVs) at Savannah River National Laboratory (SRNL) provide the technical justification for the extension of the periodic maintenance interval. Where extended

  15. DOE Safety Metrics Indicator Program (SMIP) Fiscal Year 2000 Annual Report of Packaging- and Transportation-related Occurrences

    SciTech Connect

    Dickerson, L.S.

    2001-07-26

    The Oak Ridge National Laboratory (ORNL) has been charged by the DOE National Transportation Program (NTP) with the responsibility of retrieving reports and information pertaining to packaging and transportation (P&T) incidents from the centralized Occurrence Reporting and Processing System (ORPS) database. These selected reports have been analyzed for trends, impact on P&T operations and safety concerns, and lessons learned (LL) in P&T operations. This task is designed not only to keep the NTP aware of what is occurring at DOE sites on a periodic basis, but also to highlight potential P&T problems that may need management attention and allow dissemination of LL to DOE Operations Offices, with the subsequent flow of information to contractors. The Safety Metrics Indicator Program (SMIP) was established by the NTP in fiscal year (FY) 1998 as an initiative to develop a methodology for reporting occurrences with the appropriate metrics to show rates and trends. One of its chief goals has been to augment historical reporting of occurrence-based information and present more meaningful statistics for comparison of occurrences. To this end, the SMIP established a severity weighting system for the classification of the occurrences, which would allow normalization of the data and provide a basis for trending analyses. The process for application of this methodology is documented in the September 1999 report DOE Packaging and Transportation Measurement Methodology for the Safety Metrics Indicator Program (SMIP). This annual report contains information on those P&T-related occurrences reported to the ORPS during the period from October 1, 1999, through September 30, 2000. Only those incidents that occur in preparation for transport, during transport, and during unloading of hazardous material are considered as packaging- or transportation-related occurrences. Other incidents with P&T significance, but not involving hazardous material (such as vehicle accidents or empty

  16. Interactions between sanitizers and packaging gas compositions and their effects on the safety and quality of fresh-cut onions (Allium cepa L.).

    PubMed

    Page, Natalie; González-Buesa, Jaime; Ryser, Elliot T; Harte, Janice; Almenar, Eva

    2016-02-02

    Onions are one of the most widely utilized vegetables worldwide, with demand for fresh-cut onions steadily increasing. Due to heightened safety concerns and consumer demand, the implications of sanitizing and packaging on fresh-cut onion safety and quality need to be better understood. The objective of this study was to investigate the effect of produce sanitizers, in-package atmospheres, and their interactions on the growth of Salmonella Typhimurium, mesophilic aerobic bacteria, yeast and mold, and the physico-chemical quality of diced onions to determine the best sanitizer and in-package atmosphere combination for both safety and quality. Diced onions were inoculated or not with S. Typhimurium, sanitized in sodium hypochlorite, peroxyacetic acid, or liquid chlorine dioxide, and then packaged in either polylactic acid bags containing superatmospheric O2, elevated CO2/reduced O2, or air, or in polyethylene terephthalate snap-fit containers. Throughout 14 days of storage at 7 °C, packaged diced onions were assessed for their safety (S. Typhimurium), and quality (mesophilic aerobic bacteria, yeasts and molds, physico-chemical analyses, and descriptive and consumer acceptance sensory panels). While sanitizer affected (P<0.05) fewer parameters (S. Typhimurium, mesophiles, yeasts and molds, headspace CO2, weight loss, and pH), in-package atmosphere had a significant (P<0.05) effect on all parameters evaluated. Two-way interactions between sanitizer and atmosphere that affected S. Typhimurium and pH were identified whereas 3-way interactions (sanitizer, atmosphere and time) were only observed for headspace CO2. Sodium hypochlorite and elevated CO2/reduced O2 was the best sanitizer and in-package atmosphere combination for enhancing the safety and quality of packaged diced onions. In addition, this combination led to diced onions acceptable for purchase after 2 weeks of storage by trained and consumer panels.

  17. DOE Safety Metrics Indicator Program (SMIP) Fiscal Year 2001 Fourth Quarter Report of Packaging- and Transportation-related Occurrences

    SciTech Connect

    Dickerson, L.S.

    2001-11-30

    The Safety Metrics Indicator Program (SMIP) retrieved 44 packaging- or transportation-related occurrences from the Occurrence Reporting and Processing System (ORPS) during the period from July 1 through September 30, 2001. Only those incidents that occur in preparation for transport, during transport, and during unloading of hazardous material are considered as packaging- or transportation-related occurrences. Other incidents with packaging and transportation (P and T) significance but not involving hazardous material (such as vehicle accidents or empty packagings) are not rated to the SMIP criteria, but are archived in the SMIP Subsidiary Database of occurrences, a sub-database of the main SMIP P and T Occurrence Database. Thirty-two of the originally-selected 44 occurrences were appropriate for classification to the SMIP criteria, only 7 of which have offsite applicability. Eight of the original 44 reports are archived in a subsidiary database because they either do not involve the transport of hazardous material or do not involve transport by vehicle, plane, boat, or rail. The others either were deleted because more thorough review revealed that they were not strictly related to P and T or were canceled by the reporting site and removed from the ORPS. These occurrences have not been normalized as in the Annual Report of Occurrences because the necessary information is not yet available. The number and severity of the selected occurrence reports (ORs) are consistent with historical reporting. Contamination events continue to be among the most common type of occurrences; however, ''Shipping Preparation'' events decreased this quarter to only 4 events from the 21 reported last quarter. None of the 32 ORs that were rated had event consequence measures (W{sub EC}) greater than 2; 14 of them were categorized as having a W{sub EC} of 1. This means that all of the fourth-quarter FY 2001 ORs had only slight consequences at worst (i.e., resulting in minimal safety

  18. Safety review package for University of Central Florida flat-plate heat pipe experiment

    NASA Technical Reports Server (NTRS)

    Chow, Louis C.

    1998-01-01

    A flat-plate heat pipe (FPHP) experiment has been set up for micro-gravity tests on a NASA supplied aircraft. This report presents an analysis on various components of the experimental setup to certify that it will satisfy the flight safety and operation requirements.

  19. Criticality Safety Scoping Study for the Transport of Weapons-Grade Mixed-Oxide Fuel Using the MO-1 Shipping Package

    SciTech Connect

    Dunn, M.E.; Fox, P.B.

    1999-05-01

    This report provides the criticality safety information needed for obtaining certification of the shipment of mixed-oxide (MOX) fuel using the MO-1 [USA/9069/B()F] shipping package. Specifically, this report addresses the shipment of non-weapons-grade MOX fuel as certified under Certificate of Compliance 9069, Revision 10. The report further addresses the shipment of weapons-grade MOX fuel using a possible Westinghouse fuel design. Criticality safety analysis information is provided to demonstrate that the requirements of 10 CFR S 71.55 and 71.59 are satisfied for the MO-1 package. Using NUREG/CR-5661 as a guide, a transport index (TI) for criticality control is determined for the shipment of non-weapons-grade MOX fuel as specified in Certificate of Compliance 9069, Revision 10. A TI for criticality control is also determined for the shipment of weapons-grade MOX fuel. Since the possible weapons-grade fuel design is preliminary in nature, this report is considered to be a scoping evaluation and is not intended as a substitute for the final criticality safety analysis of the MO-1 shipping package. However, the criticality safety evaluation information that is presented in this report does demonstrate the feasibility of obtaining certification for the transport of weapons-grade MOX lead test fuel using the MO-1 shipping package.

  20. Safety analysis report for packaging: the ORNL DOT specification 6M - tritium trap package. [Tritium absorbed as solid uranium tritide in depleted uranium trap

    SciTech Connect

    DeVore, J.R.

    1984-04-01

    The ORNL DOT Specification 6M--Tritium Trap Package was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B quantities of tritium as solid uranium tritide. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container, a drop test performed by the ORNL Operations Division, and International Atomic Energy Agency (IAEA) approvals on a similar tritium transport container. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities of tritium. 4 references, 8 figures.

  1. Propagation of Isotopic Bias and Uncertainty to Criticality Safety Analyses of PWR Waste Packages

    SciTech Connect

    Radulescu, Georgeta

    2010-06-01

    Burnup credit methodology is economically advantageous because significantly higher loading capacity may be achieved for spent nuclear fuel (SNF) casks based on this methodology as compared to the loading capacity based on a fresh fuel assumption. However, the criticality safety analysis for establishing the loading curve based on burnup credit becomes increasingly complex as more parameters accounting for spent fuel isotopic compositions are introduced to the safety analysis. The safety analysis requires validation of both depletion and criticality calculation methods. Validation of a neutronic-depletion code consists of quantifying the bias and the uncertainty associated with the bias in predicted SNF compositions caused by cross-section data uncertainty and by approximations in the calculational method. The validation is based on comparison between radiochemical assay (RCA) data and calculated isotopic concentrations for fuel samples representative of SNF inventory. The criticality analysis methodology for commercial SNF disposal allows burnup credit for 14 actinides and 15 fission product isotopes in SNF compositions. The neutronic-depletion method for disposal criticality analysis employing burnup credit is the two-dimensional (2-D) depletion sequence TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)/NEWT (New ESC-based Weighting Transport code) and the 44GROUPNDF5 crosssection library in the Standardized Computer Analysis for Licensing Evaluation (SCALE 5.1) code system. The SCALE 44GROUPNDF5 cross section library is based on the Evaluated Nuclear Data File/B Version V (ENDF/B-V) library. The criticality calculation code for disposal criticality analysis employing burnup credit is General Monte Carlo N-Particle (MCNP) Transport Code. The purpose of this calculation report is to determine the bias on the calculated effective neutron multiplication factor, k{sub eff}, due to the bias and bias uncertainty associated with

  2. Performance oriented packaging testing of safety and arming assemblies for the BLU 91/B and BLU 92/B mines packed 90 per wood box. Final report

    SciTech Connect

    Dzury, C.

    1992-11-30

    This report contains the test results and test procedures for Performance Oriented Packaging Tests performed on the pack for both the Safety and Arming Assembly for the BLU 91/B Mine and the BLU 92/B Mine. This pack consists of 90 Safety and Arming Assemblies in a fiberboard box inner pack with a wooden box outer pack. Both Safety and Arming Assemblies are packed in the same way and have the same Proper Shipping Name and Identification Number which is Fuzes, Detonating UN 0257.

  3. Performance oriented packaging testing of safety and arming assemblies for the BLU 91/B and BLU 92/B mines, packed 144 per wood box. Final report

    SciTech Connect

    Dzury, C.

    1992-12-07

    This report contains the test results and test procedures for Performance Oriented Packaging Tests performed on the pack for both the Safety and Arming Assembly for the BLU 91/B Mine and the BLU 92/B Mine. This pack consists of - 144 Safety and Arming Assemblies in a fiberboard box inner pack with a wooden box outer pack. Both Safety and Arming Assemblies are packed in the same way and have the same Proper Shipping Name and Identification Number which in Fuzes, Detonating UN 0257.

  4. Microbial and chemical safety of non-commercially packaged water stored for emergency use.

    PubMed

    Gerla, Stephanie R; Lloyd, Michelle A; Eggett, Dennis L; Pike, Oscar A

    2015-09-01

    Water storage is one of the most important components of emergency preparedness. Potable water is needed for ensuring the survival and well-being of disaster victims. Consumers may store water in previously used beverage or other food-grade containers for emergency use; however, this practice poses potential safety risks. Water stored in various containers for emergency purposes in residences within the state of Utah was tested for various contaminants. Of 240 samples, seven contained coliforms and 14 samples had free chlorine levels over the Environmental Protection Agency (EPA) 4 parts per million limit. There was a negative correlation between chlorine levels and age of water. The probability that a container had free chlorine present decreased by 4% for each month of storage, suggesting the importance of preventing subsequent contamination of water during storage and use. Water in clear polyethylene terephthalate plastic soda bottles (n=16), even when stored for >18 months, did not exceed 0.3 parts per billion (ppb) antimony, a level significantly lower than the EPA limit of 6.0 ppb antimony. These results support the practice of utilizing previously used containers, when properly cleaned and chlorinated, for emergency water storage.

  5. Programme on the recyclability of food-packaging materials with respect to food safety considerations: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers.

    PubMed

    Franz, R

    2002-01-01

    Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.

  6. 75 FR 60333 - Hazardous Material; Miscellaneous Packaging Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Hazardous Material; Miscellaneous Packaging Amendments AGENCY: Pipeline and Hazardous Materials Safety... materials packages may be considered a bulk packaging. The September 1, 2006 NPRM definition for ``bulk... erroneously stated Large Packagings would contain hazardous materials without an intermediate packaging,...

  7. Technical Review Report for the Justification for 233U Content Envelope Safety Analysis Report for Packaging Model 9975-85, Addendum 2

    SciTech Connect

    West, M

    2008-07-25

    This report documents the review of Addendum 2, Justification for {sup 233}U Content Envelope, Safety Analysis Report for Packaging, prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL),--the Submittal--at the request of the Department of Energy's (DOE) National Nuclear Security Agency's (NNSA) Albuquerque Operations Office, for the shipment of 233U-bearing material from Los Alamos National Laboratory (LANL), in support of the Technical Area 18 (TA-18) Materials Relocation Program. This Addendum supplements the Safety Analysis Report for Packaging (SARP), Revision 0, and Addendum 1 to Revision 0 of the 9975 SARP (called Revision 0 of the 9975 SARP in this Addendum). The {sup 233}U-bearing items are currently stored at TA-18, awaiting shipment in the Model 9975-85 Package as a new Content Envelope, C.9. Following acceptance of this Addendum by the DOE-Headquarters Certifying Official (EM-60), and subsequent revision to the current Certificate of Compliance (CoC), the new contents will be authorized for shipment in the Model 9975-85 Package. The new Content Configuration, C.9, along with the optional Shielded-Pig Convenience Container Configuration, will be incorporated into the next revision of the Model 9975-85 Package SARP. In addition to the {sup 233}U-bearing items stored at TA-18, kilogram quantities of {sup 233}U-bearing materials are stored at Oak Ridge National Laboratory (ORNL). About one quarter of the items is Highly Enriched Uranium (HEU) as U{sub 3}O{sub 8} with {sup 233}U and {sup 232}U. Highly Enriched Uranium implies a {sup 236}U enrichment of >93%. The remaining material located at ORNL is pure {sup 233}U (>90%) with varying amounts of {sup 232}U. The form of the material is U{sub 3}O{sub 8}, UO{sub 3}, UO{sub 2}, and U metal. Additional DOE Sites may also have {sup 233}U-bearing materials for shipment.

  8. Packaging design criteria for the K east basin sludge transportation system

    SciTech Connect

    Tomaszewski, T.A., Westinghouse Hanford

    1996-07-11

    This packaging design criteria (PDC) establishes the onsite transportation safety criteria for a reusable packaging and transport system to transport K East Basin sludge and water.This PDC provides the basis for the development of a safety analysis report for packaging; establishes the packaging contents and safety class of the package; and provides design criteria for the package, packaging, and transport systems.

  9. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    PubMed

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces.

  10. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  11. Experiment Safety Assurance Package for Mixed Oxide Fuel Irradiation in an Average Power Position (I-24) in the Advanced Test Reactor

    SciTech Connect

    J. M . Ryskamp; R. C. Howard; R. C. Pedersen; S. T. Khericha

    1998-10-01

    The Fissile Material Disposition Program Light Water Reactor Mixed Oxide Fuel Irradiation Test Project Plan details a series of test irradiations designed to investigate the use of weapons-grade plutonium in MOX fuel for light water reactors (LWR) (Cowell 1996a, Cowell 1997a, Thoms 1997a). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons-derived test fuel contains small amounts of gallium (about 2 parts per million). A concern exists that the gallium may migrate out of the fuel and into the clad, inducing embrittlement. For preliminary out-of-pile experiments, Wilson (1997) states that intermetallic compound formation is the principal interaction mechanism between zircaloy cladding and gallium. This interaction is very limited by the low mass of gallium, so problems are not expected with the zircaloy cladding, but an in-pile experiment is needed to confirm the out-of-pile experiments. Ryskamp (1998) provides an overview of this experiment and its documentation. The purpose of this Experiment Safety Assurance Package (ESAP) is to demonstrate the safe irradiation and handling of the mixed uranium and plutonium oxide (MOX) Fuel Average Power Test (APT) experiment as required by Advanced Test Reactor (ATR) Technical Safety Requirement (TSR) 3.9.1 (LMITCO 1998). This ESAP addresses the specific operation of the MOX Fuel APT experiment with respect to the operating envelope for irradiation established by the Upgraded Final Safety Analysis Report (UFSAR) Lockheed Martin Idaho Technologies Company (LMITCO 1997a). Experiment handling activities are discussed herein.

  12. Recovery of Listeria monocytogenes from vacuum-sealed packages of frankfurters: comparison of the U.S. Department of Agriculture (USDA) food safety and inspection service product composite enrichment method, the USDA Agricultural Research Service (ARS) product composite rinse method, and the USDA-ARS package rinse method.

    PubMed

    Luchansky, John B; Porto, Anna C S; Wallace, F Morgan; Call, Jeffrey E

    2002-03-01

    This study compared three methods for the recovery of Listeria monocytogenes from commercially prepared and vacuum-packaged frankfurters that were inoculated with a five-strain mixture of this pathogen at averages of 22 and 20,133 CFU per package over three trials. The presence and levels of the pathogen were determined by (i) the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) product composite enrichment method, involving the selective enrichment of a 25-g composite of product and the subsequent plating of this product onto selective agar plates; (ii) the USDA Agricultural Research Service (ARS) product composite rinse method, involving the rinsing of a 25-g composite of product with 0.1% peptone water and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates; and (iii) the USDA-ARS package rinse method, involving the use of 25 ml of 0.1% peptone water to rinse the entire contents of a package and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates. For packages inoculated with 20,133 CFU. L. monocytogenes was recovered at a frequency (percentage of packages positive) of 100% by each of the three methods. The pathogen was recovered at efficiencies (percentages of recovery of L. monocytogenes) of 43 and 94% with the USDA-ARS product rinse method and the USDA-ARS package rinse method, respectively. For packages inoculated with 22 CFU, L. monocytogenes was recovered at frequencies of 17, 10, and 100% by the USDA-FSIS product composite enrichment method, the USDA-ARS product composite rinse method, and the USDA-ARS package rinse method, respectively. The pathogen was recovered at efficiencies of 20 and 95% with the USDA-ARS product composite rinse method and the USDA-ARS package rinse method, respectively. In a related study, the USDA-ARS package rinse method was the only method that detected the pathogen in 60 packages from each of five brands of frankfurters

  13. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  14. 49 CFR 173.24 - General requirements for packagings and packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for.... (b) Each package used for the shipment of hazardous materials under this subchapter shall be...

  15. 49 CFR 173.24 - General requirements for packagings and packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for.... (b) Each package used for the shipment of hazardous materials under this subchapter shall be...

  16. Packaging food for radiation processing

    NASA Astrophysics Data System (ADS)

    Komolprasert, Vanee

    2016-12-01

    Irradiation can play an important role in reducing pathogens that cause food borne illness. Food processors and food safety experts prefer that food be irradiated after packaging to prevent post-irradiation contamination. Food irradiation has been studied for the last century. However, the implementation of irradiation on prepackaged food still faces challenges on how to assess the suitability and safety of these packaging materials used during irradiation. Irradiation is known to induce chemical changes to the food packaging materials resulting in the formation of breakdown products, so called radiolysis products (RP), which may migrate into foods and affect the safety of the irradiated foods. Therefore, the safety of the food packaging material (both polymers and adjuvants) must be determined to ensure safety of irradiated packaged food. Evaluating the safety of food packaging materials presents technical challenges because of the range of possible chemicals generated by ionizing radiation. These challenges and the U.S. regulations on food irradiation are discussed in this article.

  17. 76 FR 30551 - Specifications for Packagings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Pipeline and Hazardous Materials Safety Administration 49 CFR Part 178 Specifications for Packagings CFR... on a packaging, a test report must be prepared. The test report must be maintained at each location where the packaging is manufactured and each location where the design qualification tests are...

  18. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  19. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  20. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  1. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  2. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  3. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions...-shore supply vessel; (3) Cargo compartment of a cargo vessel; or (4) Passenger-carrying aircraft used...

  4. SPHINX experimenters information package

    SciTech Connect

    Zarick, T.A.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  5. Scoring Package

    National Institute of Standards and Technology Data Gateway

    NIST Scoring Package (PC database for purchase)   The NIST Scoring Package (Special Database 1) is a reference implementation of the draft Standard Method for Evaluating the Performance of Systems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms.

  6. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  7. 16 CFR 1702.15 - Petitions alleging the incompatiability of child resistant packaging with the particular...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  8. 16 CFR 1702.15 - Petitions alleging the incompatiability of child resistant packaging with the particular...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  9. CH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2005-02-28

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

  10. RH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a

  11. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2008-09-11

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the pplication." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are

  12. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2009-06-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are

  13. Naval Waste Package Design Report

    SciTech Connect

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  14. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2006-04-25

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package TransporterModel II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant| (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations(CFR) §71.8. Any time a user suspects or has indications that the conditions ofapproval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are

  15. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2007-12-13

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are

  16. 16 CFR 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  17. 16 CFR 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  18. 16 CFR 1702.15 - Petitions alleging the incompatibility of child resistant packaging with the particular substance...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  19. Seafood Packaging

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.

  20. Packaged Food

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After studies found that many elderly persons don't eat adequately because they can't afford to, they have limited mobility, or they just don't bother, Innovated Foods, Inc. and JSC developed shelf-stable foods processed and packaged for home preparation with minimum effort. Various food-processing techniques and delivery systems are under study and freeze dried foods originally used for space flight are being marketed. (See 77N76140)

  1. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect

    S. T. Khericha; R. C. Pedersen

    2003-09-01

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  2. Evaluating the Effectiveness of a Teaching Package Utilizing Behavioral Skills Training and In Situ Training to Teach Gun Safety Skills in a Preschool Classroom

    ERIC Educational Resources Information Center

    Hanratty, Laura A.; Miltenberger, Raymond G.; Florentino, Samantha R.

    2016-01-01

    There are a number of different safety threats that children face in their lives. One infrequent, but highly dangerous situation a child can face is finding a firearm. Hundreds of children are injured or killed by firearms each year. Fortunately, behavioral skills training (BST) and in situ training (IST) are effective approaches for teaching a…

  3. Safety analysis report for packaging for the Idaho National Engineering Laboratory TRA Type 1 Shipping Container and TRA Type 2 Shipping Capsule

    SciTech Connect

    Havlovick, B.J.

    1992-07-27

    The TRA Type I Shipping Container and TRA Type II Shipping Capsule were designed and fabricated at the Idaho National Engineering Laboratory as special form containers for the transport of non-fissile radioisotopes and fissile radioisotopes in exempt quantities. The Type I container measures 0.75 in. outside diameter and 3.000 in long. The Type II capsule is 0.495 in. outside diameter 2.000 in. long. The container and capsule were tested and evaluated to determine their compliance with Title 49 Code of Federal Regulations 173, which governs packages for special form radioactive material. This report is based upon those tests and evaluations. The results of those tests and evaluations demonstrate the container and capsule are in full compliance with the special form shipping container regulations of 49 CFR 173.

  4. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... development, quality control, or as a commercial sample. Explosive samples which are wetted or desensitized... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... kg in small packages as specified by the Associate Administrator for Hazardous Materials Safety...

  5. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  6. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, Soli T

    2002-06-01

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  7. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, S.T.

    2002-06-30

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  8. Packaging - Materials review

    SciTech Connect

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  9. Packaging - Materials review

    NASA Astrophysics Data System (ADS)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device

  10. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF... household substances that are subject to requirements for special packaging readily available to elderly or... base on which the package rests as it is designed to be displayed. (4) The declaration shall be...

  11. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF... household substances that are subject to requirements for special packaging readily available to elderly or... base on which the package rests as it is designed to be displayed. (4) The declaration shall be...

  12. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF... household substances that are subject to requirements for special packaging readily available to elderly or... base on which the package rests as it is designed to be displayed. (4) The declaration shall be...

  13. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF... household substances that are subject to requirements for special packaging readily available to elderly or... base on which the package rests as it is designed to be displayed. (4) The declaration shall be...

  14. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  15. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  16. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Poison prevention packaging standards. 1700.15 Section 1700.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention...

  17. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  18. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Poison prevention packaging standards. 1700.15 Section 1700.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention...

  19. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Poison prevention packaging standards. 1700.15 Section 1700.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention...

  20. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  1. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  2. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Poison prevention packaging standards. 1700.15 Section 1700.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention...

  3. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Poison prevention packaging standards. 1700.15 Section 1700.15 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention...

  4. Lessons learned during Type A Packaging testing

    SciTech Connect

    O`Brien, J.H.; Kelly, D.L.

    1995-11-01

    For the past 6 years, the US Department of Energy (DOE) Office of Facility Safety Analysis (EH-32) has contracted Westinghouse Hanford Company (WHC) to conduct compliance testing on DOE Type A packagings. The packagings are tested for compliance with the U.S. Department of Transportation (DOT) Specification 7A, general packaging, Type A requirements. The DOE has shared the Type A packaging information throughout the nuclear materials transportation community. During testing, there have been recurring areas of packaging design that resulted in testing delays and/or initial failure. The lessons learned during the testing are considered a valuable resource. DOE requested that WHC share this resource. By sharing what is and can be encountered during packaging testing, individuals will hopefully avoid past mistakes.

  5. A 2-step cooking method of searing and hot water pasteurization to maximize the safety of refrigerated, vacuum packaged, chicken breast meat.

    PubMed

    Enns, D K; Crandall, P G; O'Bryan, C A; Griffis, C L; Martin, E M

    2007-05-01

    Americans consume almost 40 kg per capita of chicken each year. Increasing consumption of chicken surpassed pork in 1982 and beef in 1992. The objectives of this study were to examine the effectiveness of a novel, 2-step cooking method of grilling, slicing, vacuum packaging, and hot water pasteurization to inhibit the growth of Listeria monocytogenes in chicken breast meat. Because this study required the use of pilot plant scale pasteurization equipment, Listeria innocua M1, a nonpathogen with slightly greater heat resistance than L. monocytogenes, was used as a surrogate. We first examined the lethal effects of grilling on a boneless skinless chicken breast to mimic cross-contaminated, surface-inoculated Listeria. Searing produced a mean reduction of 2.5 log CFU/g of Listeria and a moisture loss of only 7% (w/w). A 2nd experiment studied the lethal effect of pasteurization of the sliced seared chicken breast. L. innocua M1 inoculated between the slices mimicked contamination in deep muscle. Pasteurization in a 71 degrees C bath (final internal temperature of 66 degrees C) gave an additional 2.3 log CFU/g reduction. L. innocua M1 did not show significant regrowth during a wk of refrigerated storage. The combined 2-step cooking method of searing and pasteurization gave a combined 4.8 log reduction in LI M1. In parallel tests a non-Listeria indicator, Corynebacterium glutamicum, inoculated between sliced, seared chicken, showed a 3 log reduction after pasteurization for 10 min in a 71 degrees C bath compared to 2.3 log reduction of Listeria. Corynebacterium regrowth occurred much faster than did L. innocua M1.

  6. Packaging Your Training Materials

    ERIC Educational Resources Information Center

    Espeland, Pamela

    1977-01-01

    The types of packaging and packaging materials to use for training materials should be determined during the planning of the training programs, according to the packaging market. Five steps to follow in shopping for packaging are presented, along with a list of packaging manufacturers. (MF)

  7. Biocidal packaging for pharmaceuticals, foods, and other perishables.

    PubMed

    Larson, Alyssa M; Klibanov, Alexander M

    2013-01-01

    Many consumer goods must be protected from bacterial and fungal colonization to ensure their integrity and safety. By making these items' packaging biocidal, the interior environment can be preserved from microbial spoilage without altering the products themselves. Herein we briefly review this concept, referred to as active packaging, and discuss existing methods for constructing active packaging systems. They are based on either packaging materials that release biocides or those that are themselves intrinsically biocidal (or biostatic), with numerous variations within each category.

  8. RH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions, LLC

    2003-08-25

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR {section} 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word

  9. Science packages

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  10. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree.

    PubMed

    Price, Paul; Zaleski, Rosemary; Hollnagel, Heli; Ketelslegers, Hans; Han, Xianglu

    2014-01-01

    Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture's toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.

  11. Natural biopolimers in organic food packaging

    NASA Astrophysics Data System (ADS)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  12. The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403

    SciTech Connect

    Lavender, John C.; Edwards, W. Scott; Macbeth, Paul J.; Self, Richard J.; West, Lori D.

    2012-07-01

    The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

  13. Drug packaging in 2009: a few advances.

    PubMed

    2010-06-01

    Once again, in 2009, most of the packaging that Prescrire analysed did not meet our quality criteria. Labelling information was too often ambiguous or clumsily expressed. The quality of dosing devices and the safety of multidose bottles were not guaranteed. Patient information leaflets were more legible on the whole, but once again rather uninformative. All of these shortcomings put patients at risk. European measures concerning drug labelling have finally been transposed into French law, and have led to some improvements: the international nonproprietary name (INN) is more frequently displayed on primary packaging. The use of Braille on boxes and access to Braille package leaflets are increasing. The improved legibility of the labelling of ampoules containing certain dangerous injectable drugs, as recommended by the French drug regulatory agency (Afssaps), has become more widespread. In practice, healthcare professionals need to take action on packaging issues: by choosing the best packaging, reporting potential sources of confusion and error and informing patients.

  14. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  15. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... materials. 173.247 Section 173.247 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Bulk Packaging for Hazardous Materials...

  16. Effectiveness of some recent antimicrobial packaging concepts.

    PubMed

    Vermeiren, L; Devlieghere, F; Debevere, J

    2002-01-01

    A new type of active packaging is the combination of food-packaging materials with antimicrobial substances to control microbial surface contamination of foods. For both migrating and non-migrating antimicrobial materials, intensive contact between the food product and packaging material is required and therefore potential food applications include especially vacuum or skin-packaged products, e.g. vacuum-packaged meat, fish, poultry or cheese. Several antimicrobial compounds have been combined with different types of carriers (plastic and rubber articles, paper-based materials, textile fibrils and food-packaging materials). Until now, however, few antimicrobial concepts have found applications as a food-packaging material. Antimicrobial packaging materials cannot legally be used in the EU at the moment. The potential use would require amendments of several different legal texts involving areas such as food additives, food packaging, hygiene, etc. The main objective of this paper is to provide a state of the art about the different types of antimicrobial concepts, their experimental development and commercialization, and to present a case study summarizing the results of investigations on the feasibility of a low-density polyethylene (LDPE)-film containing triclosan to inhibit microbial growth on food surfaces and consequently prolong shelf-life or improve microbial food safety. In contrast with the strong antimicrobial effect in in-vitro simulated vacuum-packaged conditions against the psychrotrophic food pathogen L. monocytogenes, the 1000 mg kg(-1) containing triclosan film did not effectively reduce spoilage bacteria and growth of L. monocytogenes on refrigerated vacuum-packaged chicken breasts stored at 7 degrees C.

  17. Hand Safety

    MedlinePlus

    ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ... Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring ...

  18. Packaging for Food Service

    NASA Technical Reports Server (NTRS)

    Stilwell, E. J.

    1985-01-01

    Most of the key areas of concern in packaging the three principle food forms for the space station were covered. It can be generally concluded that there are no significant voids in packaging materials availability or in current packaging technology. However, it must also be concluded that the process by which packaging decisions are made for the space station feeding program will be very synergistic. Packaging selection will depend heavily on the preparation mechanics, the preferred presentation and the achievable disposal systems. It will be important that packaging be considered as an integral part of each decision as these systems are developed.

  19. Packaging of MEMS microphones

    NASA Astrophysics Data System (ADS)

    Feiertag, Gregor; Winter, Matthias; Leidl, Anton

    2009-05-01

    To miniaturize MEMS microphones we have developed a microphone package using flip chip technology instead of chip and wire bonding. In this new packaging technology MEMS and ASIC are flip chip bonded on a ceramic substrate. The package is sealed by a laminated polymer foil and by a metal layer. The sound port is on the bottom side in the ceramic substrate. In this paper the packaging technology is explained in detail and results of electro-acoustic characterization and reliability testing are presented. We will also explain the way which has led us from the packaging of Surface Acoustic Wave (SAW) components to the packaging of MEMS microphones.

  20. CH Packaging Operations Manual

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  1. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  2. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  3. ADVANCED ELECTRONIC PACKAGING TECHNIQUES

    DTIC Science & Technology

    MICROMINIATURIZATION (ELECTRONICS), *PACKAGED CIRCUITS, CIRCUITS, EXPERIMENTAL DATA, MANUFACTURING, NONDESTRUCTIVE TESTING, RESISTANCE (ELECTRICAL), SEMICONDUCTORS, TESTS, THIN FILMS (STORAGE DEVICES), WELDING.

  4. Trends in Food Packaging.

    ERIC Educational Resources Information Center

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  5. Safety: System Safety Engineering and Management

    DTIC Science & Technology

    2007-11-02

    Review system safety status and issues during each milestone decision review ( MDR ) of new or improved Army Acquisition Executive (AAE)-managed systems...under research, development, or modification. (3) Review system safety status and issues during each MDR of new or improved DISC4-managed systems. (4) Act...for acceptance in all MDR packages and forward to the appropriate decision level. Institute risk management procedures as described in appendix B and

  6. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... safety. (b) The licensee, certificate holder, and applicant for a CoC shall establish measures for...

  7. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... safety. (b) The licensee, certificate holder, and applicant for a CoC shall establish measures for...

  8. 49 CFR 178.940 - Standards for flexible Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Construction requirements for flexible Large Packagings are as follows: (1) The strength of the material and... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS... use. (2) All materials used in the construction of flexible Large Packagings of types 51M must,...

  9. 49 CFR 178.940 - Standards for flexible Large Packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Construction requirements for flexible Large Packagings are as follows: (1) The strength of the material and... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR... use. (2) All materials used in the construction of flexible Large Packagings of types 51M must,...

  10. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-03431

    SciTech Connect

    Daugherty, W.

    2012-05-30

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-03431. For those attributes that were also measured during the field surveillance, no significant changes were observed. All observations and test results met identified criteria, or were collected for information and trending purposes. Except for modest corrosion of the lead shield (which is typical of these packages following several years service), no evidence of a degraded condition was found in this package. The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the KArea Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-03431 was performed following field surveillance in accordance with Reference. Field surveillance of the Model 9975 package in KAC included nondestructive examination of the drum, fiberboard, lead shield and containment vessels. Results of the field surveillance are provided in Attachment 1.

  11. 78 FR 44894 - Specifications for Packagings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 178 Specifications for Packagings CFR Correction 0 In Title 49 of the Code of Federal Regulations, Parts 178 to 199, revised as of October 1,...

  12. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    SciTech Connect

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  13. Extreme temperature packaging: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Johnson, R. Wayne

    2016-05-01

    Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.

  14. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non-fissile or fissile-excepted material packages. 173.459 Section 173.459 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  15. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  16. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  17. 16 CFR 1700.3 - Establishment of standards for special packaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Establishment of standards for special packaging. 1700.3 Section 1700.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.3 Establishment of standards...

  18. 16 CFR 1700.3 - Establishment of standards for special packaging.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Establishment of standards for special packaging. 1700.3 Section 1700.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.3 Establishment of standards...

  19. 16 CFR 1700.3 - Establishment of standards for special packaging.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Establishment of standards for special packaging. 1700.3 Section 1700.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.3 Establishment of standards...

  20. 16 CFR 1700.3 - Establishment of standards for special packaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Establishment of standards for special packaging. 1700.3 Section 1700.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.3 Establishment of standards...

  1. GENERAL PURPOSE ADA PACKAGES

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package

  2. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  3. Effectiveness of antimicrobial food packaging materials.

    PubMed

    Cooksey, K

    2005-10-01

    Antimicrobial additives have been used successfully for many years as direct food additives. The literature provides evidence that some of these additives may be effective as indirect food additives incorporated into food packaging materials. Antimicrobial food packaging is directed toward the reduction of surface contamination of processed, prepared foods such as sliced meats and Frankfurter sausages (hot dogs). The use of such packaging materials is not meant to be a substitute for good sanitation practices, but it should enhance the safety of food as an additional hurdle for the growth of pathogenic and/or spoilage microorganisms. Studies have focused on establishing methods for coating low-density polyethylene film or barrier films with methyl cellulose as a carrier for nisin. These films have significantly reduced the presence of Listeria monocytogenes in solutions and in vacuum packaged hot dogs. Other research has focused on the use of chitosan to inhibit L. monocytogenes and chlorine dioxide sachets for the reduction of Salmonella on modified atmosphere-packaged fresh chicken breasts. Overall, antimicrobial packaging shows promise as an effective method for the inhibition of certain bacteria in foods, but barriers to their commercial implementation continue to exist.

  4. Naming, labeling, and packaging of pharmaceuticals.

    PubMed

    Kenagy, J W; Stein, G C

    2001-11-01

    The problem of medical errors associated with the naming, labeling, and packaging of pharmaceuticals is discussed. Sound-alike and look-alike drug names and packages can lead pharmacists and nurses to unintended interchanges of drugs that can result in patient injury or death. The existing medication-use system is flawed because its safety depends on human perfection. Simplicity, standardization, differentiation, lack of duplication, and unambiguous communication are human factors concepts that are relevant to the medication-use process. These principles have often been ignored in drug naming, labeling, and packaging. Instead, current methods are based on long-standing commercial considerations and bureaucratic procedures. The process for naming a marketable drug is lengthy and complex and involves submission of a new chemical entity and patent application, generic naming, brand naming, FDA review, and final approval. Drug companies seek the fastest possible approval and may believe that the incremental benefit of human factors evaluation is small. "Trade dress" is the concept that underlies labeling and packaging issues for the drug industry. Drug companies are resistant to changing trade dress and brand names. Although a variety of private-sector organizations have called for reforms in drug naming, labeling, and packaging standards have been proposed, the problem remains. Drug names, labels, and packages are not selected and designed in accordance with human factors principles. FDA standards do not require application of these principles, the drug industry has struggled with change, and private-sector initiatives have had only limited success.

  5. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-02028

    SciTech Connect

    Daugherty, W.; Stefek, T.

    2009-12-30

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-02028. For those attributes that were also measured during the field surveillance, no significant changes were observed. Four conditions were identified that do not meet inspection criteria. These conditions are subject to additional investigation and disposition by the Surveillance Program Authority. The conditions include: (1) The lead shield was covered with a white corrosion layer; (2) The lead shield height exceeds drawing requirements; (3) Mold was observed on the lower fiberboard subassembly; and (4) Fiberboard thermal conductivity in the axial direction exceeded the specified range. The Surveillance Program Authority was notified of these conditions and will document the disposition by surveillance report. All other observations and test results met identified criteria, or were collected for information and trending purposes. The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the K-Area Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-02028 was performed

  6. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-02168

    SciTech Connect

    Daugherty, W.

    2010-11-18

    The Savannah River Site (SRS) stores packages containing plutonium (Pu) materials in the K-Area Complex (KAC). The Pu materials are packaged per the DOE 3013 Standard and stored within Model 9975 shipping packages in KAC. The KAC facility DSA (Document Safety Analysis) credits the Model 9975 package to perform several safety functions, including criticality prevention, impact resistance, containment, and fire resistance to ensure the plutonium materials remain in a safe configuration during normal and accident conditions. The Model 9975 package is expected to perform its safety function for at least 12 years from initial packaging. The DSA recognizes the degradation potential for the materials of package construction over time in the KAC storage environment and requires an assessment of materials performance to validate the assumptions of the analysis and ultimately predict service life. As part of the comprehensive Model 9975 package surveillance program, destructive examination of package 9975-02028 was performed following field surveillance in accordance with Reference. Field surveillance of the Model 9975 package in KAC included nondestructive examination of the drum, fiberboard, lead shield and containment vessels. Results of the field surveillance are provided in Attachment 1. Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-02168. For those attributes that were also measured during the field surveillance, no significant changes were observed. Two conditions were identified that do not meet inspection criteria. These conditions are subject to additional investigation and disposition by the Surveillance Program Authority. The conditions include: (1) The lead shield was covered with a white corrosion layer, and (2) Fiberboard thermal conductivity in the axial direction exceeded the specified range. The Surveillance Program Authority was notified of these conditions and will document the findings

  7. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  8. Nanocellulose-based composites and bioactive agents for food packaging.

    PubMed

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2014-01-01

    Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.

  9. Developing Large CAI Packages.

    ERIC Educational Resources Information Center

    Reed, Mary Jac M.; Smith, Lynn H.

    1983-01-01

    When developing large computer-assisted instructional (CAI) courseware packages, it is suggested that there be more attentive planning to the overall package design before actual lesson development is begun. This process has been simplified by modifying the systems approach used to develop single CAI lessons, followed by planning for the…

  10. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  11. Project Information Packages: Overview.

    ERIC Educational Resources Information Center

    RMC Research Corp., Mountain View, CA.

    This brochure describes a new series of Project Information Packages, a U.S. Office of Education response to the need for a systematic approach to disseminating exemplary projects. The packages describe procedures for developing the necessary administrative support and management framework, as well as instructional methods and techniques. The six…

  12. Packaging issues: avoiding delamination.

    PubMed

    Hall, R

    2005-10-01

    Manufacturers can minimise delamination occurrence by applying the appropriate packaging design and process features. The end user can minimise the impact of fibre tear and reduce subsequent delamination by careful package opening. The occasional inconvenient delamination is a small price to pay for the high level of sterility assurance that comes with the use of Tyvek.

  13. EARLY TESTS OF DRUM TYPE PACKAGINGS - THE LEWALLEN REPORT

    SciTech Connect

    Smith, A.

    2010-07-29

    The need for robust packagings for radioactive materials (RAM) was recognized from the earliest days of the nuclear industry. The U.S. Department of Energy (DOE) Rocky Flats Plant developed a packaging for shipment of Pu in the early 1960's, which became the U.S. Department of Transportation (DOT) 6M specification package. The design concepts were employed in other early packagings. Extensive tests of these at Savannah River Laboratory (now Savannah River National Laboratory) were performed in 1969 and 1970. The results of these tests were reported in 'Drum and Board-Type Insulation Overpacks of Shipping Packages for Radioactive Materials', by E. E. Lewallen. The Lewallen Report was foundational to design of subsequent drum type RAM packaging. This paper summarizes this important early study of drum type packagings. The Lewallen Report demonstrated the ability packagings employing drum and insulation board overpacks and engineered containment vessels to meet the Type B package requirements. Because of the results of the Lewallen Report, package designers showed high concern for thermal protection of 'Celotex'. Subsequent packages addressed this by following strategies like those recommended by Lewallen and by internal metal shields and supplemental, encapsulated insulation disks, as in 9975. The guidance provide by the Lewallen Report was employed in design of a large number of drum size packagings over the following three decades. With the increased public concern over transportation of radioactive materials and recognition of the need for larger margins of safety, more sophisticated and complex packages have been developed and have replaced the simple packagings developed under the Lewallen Report paradigm.

  14. Generic criticality safety issues

    SciTech Connect

    Hively, L.M.

    1991-01-01

    An independent group has been designated by Martin Marietta Energy Systems, Inc., (MMES) to internally review Safety Analysis Reports for Packaging (SARPs) that describe containers for shipment of radioactive material. This group is called the Energy Systems Independent Review Group (ESIRG), reporting to the MMES Transportation Safety Manager as part of a central staff function. The ESIRG focus is Y-12 Plant packages, with additional review responsibilities for the Paducah Tiger UF{sub 6} overpack and 6M package. Review questions are posed directly to the SARP preparers. This paper addresses three generic issues that arose during the ESIRG criticality reviews: analysis tools, uncertainties in results, and resulting (finite) probability of criticality. 6 refs., 1 tab.

  15. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  16. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  17. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  18. Packaging Concerns/Techniques for Large Devices

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2009-01-01

    This slide presentation reviews packaging challenges and options for electronic parts. The presentation includes information about non-hermetic packages, space challenges for packaging and complex package variations.

  19. STRUMPACK -- STRUctured Matrices PACKage

    SciTech Connect

    2014-12-01

    STRUMPACK - STRUctured Matrices PACKage - is a package for computations with sparse and dense structured matrix, i.e., matrices that exhibit some kind of low-rank property, in particular Hierarchically Semi Separable structure (HSS). Such matrices appear in many applications, e.g., FEM, BEM, Integral equations. etc. Exploiting this structure using certain compression algorithms allow for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. STRUMPACK has presently two main components: a distributed-memory dense matrix computations package and a shared-memory sparse direct solver.

  20. DOT-7A packaging test procedure

    SciTech Connect

    Kelly, D.L.

    1995-01-23

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes.

  1. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  2. Waste Package Component Design Methodology Report

    SciTech Connect

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational

  3. Antimicrobial seafood packaging: a review.

    PubMed

    Singh, Suman; Ho Lee, Myung; Park, Lnsik; Shin, Yangjai; Lee, Youn Suk

    2016-06-01

    Microorganisms are the major cause of spoilage in most seafood products; however, only few microbes, called the specific spoilage organisms (SSOs), contribute to the offensive off-flavors associated with seafood spoilage. In food, microbial degradation manifests itself as spoilage, or changes in the sensory properties of a food product, rendering it unsuitable for human consumption. The use of antimicrobial substances can control the general microflora as well as specific microorganisms related to spoilage to provide products with higher safety and better quality. Many antimicrobial compounds have been evaluated in film structures for use in seafood, especially organic acids and their salts, enzymes, bacteriocins; some studies have considered inorganic compounds such as AgSiO2, zinc oxide, silver zeolite, and titanium oxide. The characteristics of some organic antimicrobial packaging systems for seafood and their antimicrobial efficiency in film structures are reviewed in this article.

  4. Analytical screening studies on irradiated food packaging.

    PubMed

    Driffield, M; Bradley, E L; Leon, I; Lister, L; Speck, D R; Castle, L; Potter, E L J

    2014-01-01

    Foods may be irradiated in their final packaging and this process may affect the composition of the packaging and in turn affect the migration of substances into food. Headspace and liquid injection GC-MS and HPLC with time-of-flight MS have been used to identify and estimate levels of radiolytic products in irradiated finished plastic packaging materials. Fifteen retail packaging materials were studied. Investigations were carried out into the effect of different irradiation types (gamma and electron beam), irradiation doses (1, 3, 7 and 10 kGy) and dose rates (5 kGy s(-1) for electron beam and 0.4 and 1.85 kGy h(-1) for gamma) on the radiolytic products. Any differences seen in comparing the two ionising radiation types were attributed largely to the very different dose rates; for electron beam a 10 kGy dose was delivered in just 2 s whereas using gamma it took 5.4 h. Differences were also seen when comparing the same samples irradiated at different doses. Some substances were not affected by irradiation, others decreased in concentration and others were formed upon increasing doses of irradiation. These results confirm that irradiation-induced changes do occur in substances with the potential to migrate and that the safety of the finished packaging material following irradiation should be assessed.

  5. Packaging for Posterity.

    ERIC Educational Resources Information Center

    Sias, Jim

    1990-01-01

    A project in which students designed environmentally responsible food packaging is described. The problem definition; research on topics such as waste paper, plastic, metal, glass, incineration, recycling, and consumer preferences; and the presentation design are provided. (KR)

  6. Battery packaging - Technology review

    SciTech Connect

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  7. Electronic Packaging Techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A characteristic of aerospace system design is that equipment size and weight must always be kept to a minimum, even in small components such as electronic packages. The dictates of spacecraft design have spawned a number of high-density packaging techniques, among them methods of connecting circuits in printed wiring boards by processes called stitchbond welding and parallel gap welding. These processes help designers compress more components into less space; they also afford weight savings and lower production costs.

  8. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Oziomek, Thomas V.

    2009-01-01

    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable and nutritious. Development of high barrier food packaging will enable this requirement by preventing the ingress and egress of gases and moisture. New high barrier food packaging materials have been identified through a trade study. Practical application of this packaging material within a shelf life test will allow for better determination of whether this material will allow the food system to meet given requirements after the package has undergone processing. The reason to conduct shelf life testing, using a variety of packaging materials, stems from the need to preserve food used for mission durations of several years. Chemical reactions that take place during longer durations may decrease food quality to a point where crew physical or psychological well-being is compromised. This can result in a reduction or loss of mission success. The rate of chemical reactions, including oxidative rancidity and staling, can be controlled by limiting the reactants, reducing the amount of energy available to drive the reaction, and minimizing the amount of water available. Water not only acts as a media for microbial growth, but also as a reactant and means by which two reactants may come into contact with each other. The objective of this study is to evaluate three packaging materials for potential use in long duration space exploration missions.

  9. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  10. Low molecular weight components of polymers used in packaging.

    PubMed Central

    Gilbert, S G

    1975-01-01

    The increasing use of polymers in packaging of foods and drugs focuses attention on the possible chronic toxicity relations of migrants from these polymers to the contents. Such migrants can arise from residues and additives in the polymers from manufacturing processes used in fabrication of packages. The origin and chemical nature of potential migrants, the methods of transfer, and principles involved in development of safety criteria for their regulation are discussed. PMID:1236793

  11. Isolation and identification of bacteria from paperboard food packaging

    PubMed Central

    Mashhadi Mohammadzadeh-Vazifeh, Mojtaba; Khajeh-Nasiri, Shamsolmoluk; Hashemi, Shabnam; Fakhari, Javad

    2015-01-01

    Background and Objectives: Paper and paperboard packaging play an important role in safety and quality of food products. Common bacteria of paper and paperboard food packaging could grow due to specific conditions included humidity, temperature and major nutrition to contaminate the food. The purpose of this research was to investigate numbers and the types of bacteria in the food packaging paperboard. Materials and Methods: The surface and the depth of the each paperboard sample were examined by the dimension of one cm2 and one gram. The paperboard samples were randomly collected from popular confectionaries and fast food restaurants in Tehran, Iran. Results: The results indicated the range of 0.2×103 to >1.0×105 cfu/1g bacterial contamination in paperboard food packaging. Also, most detected bacteria were from spore forming and family Bacillaceae. Conclusion: The bioburden paperboard used for food packaging showed high contamination rate more than standard acceptance level. PMID:26719786

  12. Food Packaging Materials

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  13. COMPACTION OF FIBERBOARD OVERPACK MATERIALS IN A 9975 SHIPPING PACKAGE

    SciTech Connect

    Stefek, T.; Daugherty, W.; Estochen, E.; Murphy, J.

    2010-05-27

    Compaction of lower layers in the 9975 fiberboard overpack has been observed in packages that contain excess moisture. Dynamic loading of the package during transportation may also contribute to compaction of the fiberboard. This condition is being tested and analyzed to better understand these compaction mechanisms and provide a basis from which to evaluate their impact to the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Design Safety Analysis) at the Savannah River Site (SRS). A test program has been developed and is being implemented to identify the extent of the compaction as a function of fiberboard moisture and typical transport dynamic loadings. Test conditions will be compared to regulatory requirements for dynamic loading. Characterization of the recovery of short-term compaction following the application of dynamic loading is also being evaluated. Interim results from this test program will be summarized.

  14. Detecting small holes in packages

    DOEpatents

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  15. Detecting small holes in packages

    DOEpatents

    Kronberg, James W.; Cadieux, James R.

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  16. Technology transfer package on seismic base isolation - Volume III

    SciTech Connect

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  17. 77 FR 36607 - Office of Hazardous Materials Safety Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... radioactive material packagings after October 1, 2008. (mode 1) BILLING CODE 4909-60-M ... Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety Notice of Application for Special Permits AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA),...

  18. MMIC packaging with Waffleline

    NASA Astrophysics Data System (ADS)

    Perry, R. W.; Ellis, T. T.; Schineller, E. R.

    1990-06-01

    The design principle of Waffleline, a patented MMIC packaging technology, is discussed, and several recent applications are described and illustrated with drawings, diagrams, and photographs. Standard Waffleline is a foil-covered waffle-iron-like grid with dielectric-coated signal and power wires running in the channels and foil-removed holes for mounting prepackaged chips or chip carriers. With spacing of 50 mils between center conductors, this material is applicable at frequencies up to 40 GHz; EHF devices require Waffleline with 25-mil spacing. Applications characterized include a subassembly for a man-transportable SHF satellite-communication terminal, a transmitter driver for a high-power TWT, and a 60-GHz receiver front end (including an integrated monolithic microstrip antenna, a low-noise amplifier, a mixer, and an IF amplifier in a 0.25-inch-thick 1.6-inch-diameter package). The high package density and relatively low cost of Waffleline are emphasized.

  19. Effect of vacuum packaging on growth of Clostridium botulinum and Staphylococcus aureus in cured meats.

    PubMed

    Christiansen, L N; Foster, E M

    1965-11-01

    Incrimination of vacuum-packaged smoked fish in outbreaks of botulism has raised questions about the safety of this process in comparison with other methods of packaging foods. It has been suggested, for example, that Clostridium botulinum may grow better in a vacuum-packaged product than in one that is packaged without vacuum. To evaluate this possibility, sliced bologna was inoculated with spores of C. botulinum type A, packaged in transparent plastic film with and without vacuum, and stored at temperatures within the growth range of the organism. There was no detectable difference in the rate of toxin development in the two types of packages. In contrast, vacuum packaging markedly inhibited the growth of Staphylococcus aureus on sliced ham. The results indicate that vacuum packaging has little if any effect on the ability of C. botulinum to grow in cured meats, but it may reduce the likelihood of staphylococcal food poisoning.

  20. Ada Namelist Package

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.

    1991-01-01

    Ada Namelist Package, developed for Ada programming language, enables calling program to read and write FORTRAN-style namelist files. Features are: handling of any combination of types defined by user; ability to read vectors, matrices, and slices of vectors and matrices; handling of mismatches between variables in namelist file and those in programmed list of namelist variables; and ability to avoid searching entire input file for each variable. Principle benefits derived by user: ability to read and write namelist-readable files, ability to detect most file errors in initialization phase, and organization keeping number of instantiated units to few packages rather than to many subprograms.

  1. Certification of the Mound 1 kW package for shipping of plutonium dioxide source material

    SciTech Connect

    Annese, C.E.; Mount, M.K.

    1994-01-01

    The Department of Energy (DOE) has established procedures for obtaining certification of packagings used by DOE and its contractors for the transport of radioactive materials. Specifically, DOE Orders 5480.3 and 1540.2 provide references for other DOE Orders which must be followed when an applicant submits a Safety Analysis Report for Packaging (SARP). From the orders, Department EH of DOE, has internal oversight responsibility for transportation and Packaging safety; package certification falls under EH responsibility; transportation and packaging safety division in EH certifies packages for DOE; and use of DOE certified packages is authorized by DOT. An independent review of the SARP must confirm that the packaging designs and operations meet safety criteria at least equivalent to these standards. This paper will discuss the independent review process of the shielding section of the Mound 1 kW SARP; describe the geometry of the packaging and the load configurations; discuss the analysis of the various neutron and photon source terms that were used for the load configuration under analysis; and provide illustrations of the use of the monte-carlo code, COG{sup 3}, which was utilized to perform the shielding analysis.

  2. AN ADA NAMELIST PACKAGE

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    The Ada Namelist Package, developed for the Ada programming language, enables a calling program to read and write FORTRAN-style namelist files. A namelist file consists of any number of assignment statements in any order. Features of the Ada Namelist Package are: the handling of any combination of user-defined types; the ability to read vectors, matrices, and slices of vectors and matrices; the handling of mismatches between variables in the namelist file and those in the programmed list of namelist variables; and the ability to avoid searching the entire input file for each variable. The principle user benefits of this software are the following: the ability to write namelist-readable files, the ability to detect most file errors in the initialization phase, a package organization that reduces the number of instantiated units to a few packages rather than to many subprograms, a reduced number of restrictions, and an increased execution speed. The Ada Namelist reads data from an input file into variables declared within a user program. It then writes data from the user program to an output file, printer, or display. The input file contains a sequence of assignment statements in arbitrary order. The output is in namelist-readable form. There is a one-to-one correspondence between namelist I/O statements executed in the user program and variables read or written. Nevertheless, in the input file, mismatches are allowed between assignment statements in the file and the namelist read procedure statements in the user program. The Ada Namelist Package itself is non-generic. However, it has a group of nested generic packages following the nongeneric opening portion. The opening portion declares a variety of useraccessible constants, variables and subprograms. The subprograms are procedures for initializing namelists for reading, reading and writing strings. The subprograms are also functions for analyzing the content of the current dataset and diagnosing errors. Two nested

  3. Module 13: Bulk Packaging Shipments by Highway

    SciTech Connect

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ``Training.`` Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination.

  4. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  5. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  6. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Automatic Differentiation Package

    SciTech Connect

    Gay, David M.; Phipps, Eric; Bratlett, Roscoe

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  8. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  9. YWCA Vocational Readiness Package.

    ERIC Educational Resources Information Center

    Scott, Jeanne

    This document outlines, in detail, the Vocational Readiness Package for young girls, which is a week-long program utilizing simulation games and role-playing, while employing peer group counseling techniques to dramatize the realities concerning women in marriage and careers today. After three years of using this program, the authors have compiled…

  10. Radiographic film package

    SciTech Connect

    Muylle, W. E.

    1985-08-27

    A radiographic film package for non-destructive testing, comprising a radiographic film sheet, an intensifying screen with a layer of lead bonded to a paper foil, and a vacuum heat-sealed wrapper with a layer of aluminum and a heat-sealed easy-peelable thermoplastic layer.

  11. Project Information Packages Kit.

    ERIC Educational Resources Information Center

    RMC Research Corp., Mountain View, CA.

    Presented are an overview booklet, a project selection guide, and six Project Information Packages (PIPs) for six exemplary projects serving underachieving students in grades k through 9. The overview booklet outlines the PIP projects and includes a chart of major project features. A project selection guide reviews the PIP history, PIP contents,…

  12. Packaging, transportation of LLW

    SciTech Connect

    Shelton, P.

    1994-12-31

    This presentation is an overview of the regulations and requirements for the packaging and transportation of low-level radioactive wastes. United States Environmental Protection Agency and Department of Transportation regulations governing the classification of wastes and the transport documentation are also described.

  13. Nutrition Learning Packages.

    ERIC Educational Resources Information Center

    World Health Organization, Geneva (Switzerland).

    This book presents nine packages of learning materials for trainers to use in teaching community health workers to carry out the nutrition element of their jobs. Lessons are intended to help health workers acquire skill in presenting to communities the principles and practice of good nutrition. Responding to the most common causes of poor…

  14. Jpetra Kernel Package

    SciTech Connect

    Heroux, Michael A.

    2004-03-01

    A package of classes for constructing and using distributed sparse and dense matrices, vectors and graphs, written in Java. Jpetra is intended to provide the foundation for basic matrix and vector operations for Java developers. Jpetra provides distributed memory operations via an abstract parallel machine interface. The most common implementation of this interface will be Java sockets.

  15. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  16. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  17. Current topics in active and intelligent food packaging for preservation of fresh foods.

    PubMed

    Lee, Seung Yuan; Lee, Seung Jae; Choi, Dong Soo; Hur, Sun Jin

    2015-11-01

    The purpose of this review is to provide an overview of current packaging systems, e.g. active packaging and intelligent packaging, for various foods. Active packaging, such as modified atmosphere packaging (MAP), extends the shelf life of fresh produce, provides a high-quality product, reduces economic losses, including those caused by delay of ripening, and improves appearance. However, in active packaging, several variables must be considered, such as temperature control and different gas formulations with different product types and microorganisms. Active packaging refers to the incorporation of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. Intelligent packaging is emerging as a potential advantage in food processing and is an especially useful tool for tracking product information and monitoring product conditions. Moreover, intelligent packaging facilitates data access and information exchange by altering conditions inside or outside the packaging and product. In spite of these advantages, few of these packaging systems are commercialized because of high cost, strict safety and hygiene regulations or limited consumer acceptance. Therefore more research is needed to develop cheaper, more easily applicable and effective packaging systems for various foods.

  18. Food packaging history and innovations.

    PubMed

    Risch, Sara J

    2009-09-23

    Food packaging has evolved from simply a container to hold food to something today that can play an active role in food quality. Many packages are still simply containers, but they have properties that have been developed to protect the food. These include barriers to oxygen, moisture, and flavors. Active packaging, or that which plays an active role in food quality, includes some microwave packaging as well as packaging that has absorbers built in to remove oxygen from the atmosphere surrounding the product or to provide antimicrobials to the surface of the food. Packaging has allowed access to many foods year-round that otherwise could not be preserved. It is interesting to note that some packages have actually allowed the creation of new categories in the supermarket. Examples include microwave popcorn and fresh-cut produce, which owe their existence to the unique packaging that has been developed.

  19. Packaging legislation. Objectives and consequences.

    PubMed

    Christmann, H

    1995-05-01

    The recently published Directive on packaging and packaging waste makes new demands on the industry. This article highlights the key areas and raises some of the issues that must be confronted in the future.

  20. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    J.K. Knudson

    2003-10-02

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  1. Commercial Spent Nuclear Fuel Waste Package Misload Analysis

    SciTech Connect

    A. Alsaed

    2005-07-28

    The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis

  2. Sustainable Library Development Training Package

    ERIC Educational Resources Information Center

    Peace Corps, 2012

    2012-01-01

    This Sustainable Library Development Training Package supports Peace Corps' Focus In/Train Up strategy, which was implemented following the 2010 Comprehensive Agency Assessment. Sustainable Library Development is a technical training package in Peace Corps programming within the Education sector. The training package addresses the Volunteer…

  3. Characterization of whey cheese packaged under vacuum.

    PubMed

    Pintado, M E; Malcata, F X

    2000-02-01

    Vacuum packaging was assayed at 4 degrees C and was tested in comparison to unpackaged counterparts, in both microbiological and physicochemical terms, in studies pertaining to the preservation of Requeijão, a traditional Portuguese whey cheese. Bacteria were absent (i.e., <10 CFU/g) in whey cheeses on the day of manufacture as a result of thermal processing. After storage, both unpackaged and packaged cheeses exhibited high viable counts of Bacillus, Pseudomonas, Enterobacteriaceae, and lactic acid bacteria (especially lactococci). Yeasts, staphylococci, enterococci, and spore-forming clostridia were severely inhibited by the package vacuum combined with the increasing acidification developed therein. Whey cheeses packaged under vacuum underwent substantial acidification, slight depletion of lactose, and no significant variation in moisture content or texture; conversely, unpackaged whey cheeses exhibited substantial loss of water and a concomitant increase in rigidity. Vacuum packaging strongly inhibited lipolysis (even if viable counts of some microbial groups were high); saturated fatty acids (mainly C16:0 and C14:0) accounted for ca. 73% of the total free-fatty acid content, whereas the most concentrated unsaturated fatty acids were C18:1 and C18:2 (ca. 14% each). The conclusions generated in our study are, in general, useful for a wide range of whey cheeses worldwide: i.e., Requéson (Spain), Ricotta (Italy), Broccio (France), and Anthotyro (Greece). In addition, our conclusions are particularly helpful in terms of improving the safety of Requeijão, a widely acclaimed dairy specialty.

  4. 49 CFR 173.24b - Additional general requirements for bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for... outage is at least five percent for materials poisonous by inhalation, or at least one percent for...

  5. Anticounterfeit packaging technologies

    PubMed Central

    Shah, Ruchir Y.; Prajapati, Prajesh N.; Agrawal, Y. K.

    2010-01-01

    Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology. PMID:22247875

  6. TIDEV: Tidal Evolution package

    NASA Astrophysics Data System (ADS)

    Cuartas-Restrepo, P.; Melita, M.; Zuluaga, J.; Portilla, B.; Sucerquia, M.; Miloni, O.

    2016-09-01

    TIDEV (Tidal Evolution package) calculates the evolution of rotation for tidally interacting bodies using Efroimsky-Makarov-Williams (EMW) formalism. The package integrates tidal evolution equations and computes the rotational and dynamical evolution of a planet under tidal and triaxial torques. TIDEV accounts for the perturbative effects due to the presence of the other planets in the system, especially the secular variations of the eccentricity. Bulk parameters include the mass and radius of the planet (and those of the other planets involved in the integration), the size and mass of the host star, the Maxwell time and Andrade's parameter. TIDEV also calculates the time scale that a planet takes to be tidally locked as well as the periods of rotation reached at the end of the spin-orbit evolution.

  7. Fair Package Assignment

    NASA Astrophysics Data System (ADS)

    Lahaie, Sébastien; Parkes, David C.

    We consider the problem of fair allocation in the package assignment model, where a set of indivisible items, held by single seller, must be efficiently allocated to agents with quasi-linear utilities. A fair assignment is one that is efficient and envy-free. We consider a model where bidders have superadditive valuations, meaning that items are pure complements. Our central result is that core outcomes are fair and even coalition-fair over this domain, while fair distributions may not even exist for general valuations. Of relevance to auction design, we also establish that the core is equivalent to the set of anonymous-price competitive equilibria, and that superadditive valuations are a maximal domain that guarantees the existence of anonymous-price competitive equilibrium. Our results are analogs of core equivalence results for linear prices in the standard assignment model, and for nonlinear, non-anonymous prices in the package assignment model with general valuations.

  8. DEVELOPMENT AND USE OF A BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect

    Blanton, P.

    2010-09-30

    A shipping package for transporting tritium has been developed for use by the National Nuclear Safety Administration as a replacement for the DOE Model UC-609, a tritium package developed and used by the DOE and NRC since the early 1970s. This paper presents the major design features and highlights the improvements made over its predecessor by incorporating new engineered materials and implementing improved testing, handling, and maintenance capabilities, while improving manufacturability. A discussion will be provided demonstrating how the BTSP complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper further summarizes the results of testing to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and possible future missions for this packaging will be addressed.

  9. Expanded Content Envelope For The Model 9977 Packaging

    SciTech Connect

    Abramczyk, G. A.; Loftin, B. M.; Nathan, S. J.; Bellamy, J. S.

    2013-07-30

    An Addendum was written to the Model 9977 Safety Analysis Report for Packaging adding a new content consisting of DOE-STD-3013 stabilized plutonium dioxide materials to the authorized Model 9977 contents. The new Plutonium Oxide Content (PuO{sub 2}) Envelope will support the Department of Energy shipment of materials between Los Alamos National Laboratory and Savannah River Site facilities. The new content extended the current content envelope boundaries for radioactive material mass and for decay heat load and required a revision to the 9977 Certificate of Compliance prior to shipment. The Addendum documented how the new contents/configurations do not compromise the safety basis presented in the 9977 SARP Revision 2. The changes from the certified package baseline and the changes to the package required to safely transport this material is discussed.

  10. Transportation and packaging headquarters support 1997 multi-year work plan WBS 8.1

    SciTech Connect

    Chapman, T.J., Westinghouse Hanford

    1996-08-01

    To develop and implement baseline and state-of-the-art transportation and packaging resources for DOE, and its support contractors. These resources include effective strategies, tools and techniques, packaging and transportation systems, operational methods, policy and guidance focused at providing safety,efficient, regulatory compliant and cost-effective materials transportation.

  11. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  12. Aquaculture information package

    SciTech Connect

    Boyd, T.; Rafferty, K.

    1998-08-01

    This package of information is intended to provide background information to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements. A bibliography containing 68 references is also included.

  13. Trilinos Web Interface Package

    SciTech Connect

    Hu, Jonathan; Phenow, Michael N.; Sala, Marzio; Tuminaro, Ray S.

    2006-09-01

    WebTrilinos is a scientific portal, a web-based environment to use several Trilinos packages through the web. If you are a teaching sparse linear algebra, you can use WebTrilinos to present code snippets and simple scripts, and let the students execute them from their browsers. If you want to test linear algebra solvers, you can use the MatrixPortal module, and you just have to select problems and options, then plot the results in nice graphs.

  14. 9 CFR 592.340 - Supervision of marking and packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Supervision of marking and packaging. 592.340 Section 592.340 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking...

  15. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... specified in the license or CoC for those materials and components to which this section applies, are... safety. (b) The licensee, certificate holder, and applicant for a CoC shall establish measures for...

  16. 9 CFR 592.340 - Supervision of marking and packaging.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Supervision of marking and packaging. 592.340 Section 592.340 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking...

  17. 9 CFR 592.340 - Supervision of marking and packaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Supervision of marking and packaging. 592.340 Section 592.340 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking...

  18. 9 CFR 592.340 - Supervision of marking and packaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Supervision of marking and packaging. 592.340 Section 592.340 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking...

  19. 9 CFR 592.340 - Supervision of marking and packaging.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Supervision of marking and packaging. 592.340 Section 592.340 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking...

  20. 49 CFR 172.315 - Packages containing limited quantities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packages containing limited quantities. 172.315 Section 172.315 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  1. 49 CFR 178.935 - Standards for wooden Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Construction requirements for wooden Large Packagings are as follows: (1) The strength of the materials used... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS... dry and free from defects that would materially lessen the strength of any part of the...

  2. Instructor Training Institutes for NHTSA Curriculum Package: Traffic Court Judges.

    ERIC Educational Resources Information Center

    Burgener, V. E.; Reese, Dorothy

    A series of five national instructor training workshops were planned for traffic court judges and administrators. A curriculum package which had been previously prepared was used to orient selected key personnel toward highway safety. Technical Education Research Centers (Midwest Center) conducted the conferences from October 23 to December 12,…

  3. PACKAGING AND TRANSPORTATION OF NEPTUNIUM OXIDE

    SciTech Connect

    Watkins, R; Steve Hensel, S; Jeffrey Jordan, J

    2009-03-03

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty (50) cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. This shipping campaign involved the addition of neptunium oxide to the 9975 Safety Analysis Report for Packaging (SARP) as a new content and subsequently a Letter of Amendment to the SARP content table. This paper will address the proper steps which should be taken to add a new content table to a SARP. It will also address the importance of product sampling and understanding the material shipping requirements of a SARP.

  4. 78 FR 19007 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof.... 1337, on behalf of Lamina Packaging Innovations LLC of Longview, Texas. An amended complaint was filed... importation of certain products having laminated packaging, laminated packaging, and components thereof...

  5. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  6. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  7. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  8. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  9. What should ``damaged`` mean in air transport of fissile packages

    SciTech Connect

    Luna, R.E.; Falci, F.P.; Blackman, D.

    1995-12-31

    It is likely that the ongoing process to produce the 1996 version of the IAEA Regulation for the Safe Transport of Radioactive Materials, IAEA Safety Series 6(SS 6) will result in a more stringent package qualification standard for air transport of large quantities of radioactive materials (RAM) than is included in the 1990 version. During the process to define the scope of the new requirements there was extensive discussion of their impact on, and application to, fissile material package qualification criteria. Since fissile materials are shipped in a variety of packagings ranging from exempt to Type B, each packaging of each type must be evaluated for its ability to maintain subcriticality both alone and in arrays and in both damaged and undamaged condition. In the 1990 version of SS 6 ``damaged`` means the condition of a package after it had undergone the ``tests for demonstrating the ability to withstand accident conditions in transport,`` i.e., Type B qualification tests. These tests conditions are typical of severe accidents in surface modes, but are less severe than air mode qualification test environments to be applied to Type C packages. As a result, questions arose about the need for a corresponding change in the 1996 SS 6 to define ``damaged`` to include the Type C test regime for criticality evaluations of fissile packages in air transport.

  10. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  11. Analysis of microgravity space experiments Space Shuttle programmatic safety requirements

    NASA Technical Reports Server (NTRS)

    Terlep, Judith A.

    1996-01-01

    This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

  12. Components of Adenovirus Genome Packaging

    PubMed Central

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  13. Aristos Optimization Package

    SciTech Connect

    Ridzal, Danis

    2007-03-01

    Aristos is a Trilinos package for nonlinear continuous optimization, based on full-space sequential quadratic programming (SQP) methods. Aristos is specifically designed for the solution of large-scale constrained optimization problems in which the linearized constraint equations require iterative (i.e. inexact) linear solver techniques. Aristos' unique feature is an efficient handling of inexactness in linear system solves. Aristos currently supports the solution of equality-constrained convex and nonconvex optimization problems. It has been used successfully in the area of PDE-constrained optimization, for the solution of nonlinear optimal control, optimal design, and inverse problems.

  14. Destructive examination of shipping package 9975-02101

    SciTech Connect

    Daugherty, W. L.

    2016-05-01

    Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02101 as part of the comprehensive Model 9975 package surveillance program. This package is one of ten high-wattage packages that were selected for field surveillance in FY15, and was identified to contain several non-conforming conditions. Most of these conditions (mold, stains, drum corrosion, calculated fiberboard dimensions and fiberboard damage) relate to the accumulation of water in the outer and lower portions of the cane fiberboard assembly. In the short term, this causes local but reversible changes in the fiberboard properties. Long-term effects can include the permanent loss of fiberboard properties (thus far observed only in the bottom fiberboard layers) and reduced drum integrity due to corrosion. The observed conditions must be fully evaluated by KAC to ensure the safety function of the package is being maintained. Three of the other nine FY15 high-wattage packages examined in the K-Area Complex showed similar behavior. Corrosion of the overpack drum has been seen primarily in those packages with relatively severe fiberboard degradation. Visual examination of the drums in storage for external corrosion should be considered as a screening tool to identify additional packages with potential fiberboard degradation. Where overpack drum corrosion has been observed, it is typically heaviest adjacent to the stitch welds along the bottom edge. It is possible that changes to the stitch weld design would reduce the degree of corrosion in this area, but would not eliminate it. Several factors can contribute to the concentration of moisture in the fiberboard, including higher than average initial moisture content, higher internal temperature (due to internal heat load and placement with the array of packages), and the creation of additional moisture as the fiberboard begins to degrade.

  15. CH Packaging Operations Manual

    SciTech Connect

    None, None

    2009-05-27

    This document provides the user with instructions for assembling a payload. All the steps in Subsections 1.2, Preparing 55-Gallon Drum Payload Assembly; 1.3, Preparing "Short" 85-Gallon Drum Payload Assembly (TRUPACT-II and HalfPACT); 1.4, Preparing "Tall" 85-Gallon Drum Payload Assembly (HalfPACT only); 1.5, Preparing 100-Gallon Drum Payload Assembly; 1.6, Preparing Shielded Container Payload Assembly; 1.7, Preparing SWB Payload Assembly; and 1.8, Preparing TDOP Payload Assembly, must be completed, but may be performed in any order as long as radiological control steps are not bypassed. Transport trailer operations, package loading and unloading from transport trailers, hoisting and rigging activities such as ACGLF operations, equipment checkout and shutdown, and component inspection activities must be performed, but may be performed in any order and in parallel with other activities as long as radiological control steps are not bypassed. Steps involving OCA/ICV lid removal/installation and payload removal/loading may be performed in parallel if there are multiple operators working on the same packaging. Steps involving removal/installation of OCV/ICV upper and lower main O-rings must be performed in sequence, except as noted.

  16. CH Packaging Operations Manual

    SciTech Connect

    None, None

    2008-09-11

    This document provides the user with instructions for assembling a payload. All the steps in Subsections 1.2, Preparing 55-Gallon Drum Payload Assembly; 1.3, Preparing "Short" 85-Gallon Drum Payload Assembly (TRUPACT-II and HalfPACT); 1.4, Preparing "Tall" 85-gallon Drum Payload Assembly (HalfPACT only); 1.5, Preparing 100-Gallon Drum Payload Assembly; 1.6, Preparing SWB Payload Assembly; and 1.7, Preparing TDOP Payload Assembly, must be completed, but may be performed in any order as long as radiological control steps are not bypassed. Transport trailer operations, package loading and unloading from transport trailers, hoisting and rigging activities such as ACGLF operations, equipment checkout and shutdown, and component inspection activities must be performed, but may be performed in any order and in parallel with other activities as long as radiological control steps are not bypassed. Steps involving OCA/ICV lid removal/installation and payload removal/loading may be performed in parallel if there are multiple operators working on the same packaging. Steps involving removal/installation of OCV/ICV upper and lower main O-rings must be performed in sequence.

  17. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  18. Japan's electronic packaging technologies

    NASA Astrophysics Data System (ADS)

    Tummala, Rao R.; Pecht, Michael

    1995-02-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  19. Signal processor packaging design

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Phipps, Mickie A.

    1993-10-01

    The Signal Processor Packaging Design (SPPD) program was a technology development effort to demonstrate that a miniaturized, high throughput programmable processor could be fabricated to meet the stringent environment imposed by high speed kinetic energy guided interceptor and missile applications. This successful program culminated with the delivery of two very small processors, each about the size of a large pin grid array package. Rockwell International's Tactical Systems Division in Anaheim, California developed one of the processors, and the other was developed by Texas Instruments' (TI) Defense Systems and Electronics Group (DSEG) of Dallas, Texas. The SPPD program was sponsored by the Guided Interceptor Technology Branch of the Air Force Wright Laboratory's Armament Directorate (WL/MNSI) at Eglin AFB, Florida and funded by SDIO's Interceptor Technology Directorate (SDIO/TNC). These prototype processors were subjected to rigorous tests of their image processing capabilities, and both successfully demonstrated the ability to process 128 X 128 infrared images at a frame rate of over 100 Hz.

  20. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  1. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  2. Food losses, shelf life extension and environmental impact of a packaged cheesecake: A life cycle assessment.

    PubMed

    Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio

    2017-01-01

    Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N2/CO2: 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing.

  3. Food packaging materials and radiation processing of food: A brief review

    NASA Astrophysics Data System (ADS)

    Chuaqui-Offermanns, N.

    Food is usually packaged to prevent microbial contamination and spoilage. Ionizing radiation can be applied to food-packaging materials in two ways: (i) sterilization of packaging materials for aseptic packaging, and (ii) radiation processing of prepackaged food. In aseptic packaging, a sterile package is filled with a sterile product in a microbiologically controlled environment. In irradiation of prepackaged food, the food and the packaging material are irradiated simultaneously. For both applications, the radiation stability of the packaging material is a key consideration if the technology is to be used successfully. To demonstrate the radiation stability of the packaging material, it must be shown that irradiation does not significantly alter the physical and chemical properties of the material. The irradiated material must protect the food from environmental contamination while maintaining its organoleptic and toxicological properties. Single-layer plastics cannot meet the requirements of either application. Multilayered structures produced by coextrusion would likely satisfy the demands of radiation processing prepackaged food. In aseptic packaging, the package is irradiated prior to filling, making demands on toxicological safety less stringent. Therefore, multilayered structures produced by coextrusion, lamination or co-injection moulding could satisfy the requirements.

  4. IN-PACKAGE CHEMISTRY ABSTRACTION

    SciTech Connect

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  5. Hazardous materials package performance regulations

    SciTech Connect

    Russell, N. A.; Glass, R. E.; McClure, J. D.; Finley, N. C.

    1991-01-01

    This paper discusses a hazardous materials Hazmat Packaging Performance Evaluation (HPPE) project being conducted at Sandia National Laboratories for the US Department of Transportation Research Special Programs Administration (DOT-RSPA) to look at the subset of bulk packagings that are larger than 2000 gallons. The objectives of this project are to evaluate current hazmat specification packagings and develop supporting documentation for determining performance requirements for packagings in excess of 2000 gallons that transport hazardous materials that have been classified as extremely toxic by inhalation (METBI).

  6. About the ZOOM minimization package

    SciTech Connect

    Fischler, M.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  7. Cesium legacy safety project management work plan

    SciTech Connect

    Durham, J.S.

    1998-04-21

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  8. Food safety.

    PubMed

    Borchers, Andrea; Teuber, Suzanne S; Keen, Carl L; Gershwin, M Eric

    2010-10-01

    Food can never be entirely safe. Food safety is threatened by numerous pathogens that cause a variety of foodborne diseases, algal toxins that cause mostly acute disease, and fungal toxins that may be acutely toxic but may also have chronic sequelae, such as teratogenic, immunotoxic, nephrotoxic, and estrogenic effects. Perhaps more worrisome, the industrial activities of the last century and more have resulted in massive increases in our exposure to toxic metals such as lead, cadmium, mercury, and arsenic, which now are present in the entire food chain and exhibit various toxicities. Industrial processes also released chemicals that, although banned a long time ago, persist in the environment and contaminate our food. These include organochlorine compounds, such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (dichlorodiphenyl dichloroethene) (DDT), other pesticides, dioxins, and dioxin-like compounds. DDT and its breakdown product dichlorophenyl dichloroethylene affect the developing male and female reproductive organs. In addition, there is increasing evidence that they exhibit neurodevelopmental toxicities in human infants and children. They share this characteristic with the dioxins and dioxin-like compounds. Other food contaminants can arise from the treatment of animals with veterinary drugs or the spraying of food crops, which may leave residues. Among the pesticides applied to food crops, the organophosphates have been the focus of much regulatory attention because there is growing evidence that they, too, affect the developing brain. Numerous chemical contaminants are formed during the processing and cooking of foods. Many of them are known or suspected carcinogens. Other food contaminants leach from the packaging or storage containers. Examples that have garnered increasing attention in recent years are phthalates, which have been shown to induce malformations in the male reproductive system in laboratory animals, and bisphenol A, which negatively

  9. Package Up Your Troubles--An Introduction to Package Libraries

    ERIC Educational Resources Information Center

    Frank, Colin

    1978-01-01

    Discusses a "package deal" library--a prefabricated building including interior furnishing--in terms of costs, fitness for purpose, and interior design, i.e., shelving, flooring, heating, lighting, and humidity. Advantages and disadvantages of the package library are also considered. (Author/MBR)

  10. The Packaging Handbook -- A guide to package design

    SciTech Connect

    Shappert, L.B.

    1995-12-31

    The Packaging Handbook is a compilation of 14 technical chapters and five appendices that address the life cycle of a packaging which is intended to transport radioactive material by any transport mode in normal commerce. Although many topics are discussed in depth, this document focuses on the design aspects of a packaging. The Handbook, which is being prepared under the direction of the US Department of Energy, is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators in specific aspects of packaging design, and the types of analyses that should be seriously considered when developing the packaging design. Even though the Handbook is concerned with all packagings, most of the emphasis is placed on large packagings that are capable of transporting large radioactive sources that are also fissile (e.g., spent fuel). These are the types of packagings that must address the widest range of technical topics in order to meet domestic and international regulations. Most of the chapters in the Handbook have been drafted and submitted to the Oak Ridge National Laboratory for editing; the majority of these have been edited. This report summarizes the contents.

  11. Anhydrous Ammonia Training Module. Trainer's Package. Participant's Package.

    ERIC Educational Resources Information Center

    Beaudin, Bart; And Others

    This document contains a trainer's and a participant's package for teaching employees on site safe handling procedures for working with anhydrous ammonia, especially on farms. The trainer's package includes the following: a description of the module; a competency; objectives; suggested instructional aids; a training outline (or lesson plan) for…

  12. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50

  13. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  14. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  15. Tritium waste package

    DOEpatents

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  16. Tritium waste package

    DOEpatents

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  17. The LISA Technology Package

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The UP is in the late stages of development -- all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the UP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the UP delivery.

  18. Balloon gondola diagnostics package

    NASA Astrophysics Data System (ADS)

    Cantor, K. M.

    1986-10-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  19. Electro-Microfluidic Packaging

    SciTech Connect

    BENAVIDES, GILBERT L.; GALAMBOS, PAUL C.

    2002-06-01

    Electro-microfluidics is experiencing explosive growth in new product developments. There are many commercial applications for electro-microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of silicon surface micromachined electro-microfluidic products is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. Surface micromachined microfluidic devices are manufactured with the same tools as IC's (integrated circuits) and their fabrication can be incorporated into the IC fabrication process. In order to realize applications for devices must be developed. An Electro-Microfluidic Dual In-line Package (EMDIP{trademark}) was developed surface micromachined electro-microfluidic devices, a practical method for getting fluid into these to be a standard solution that allows for both the electrical and the fluidic connections needed to operate a great variety of electro-microfluidic devices. The EMDIP{trademark} includes a fan-out manifold that, on one side, mates directly with the 200 micron diameter Bosch etched holes found on the device, and, on the other side, mates to lager 1 mm diameter holes. To minimize cost the EMDIP{trademark} can be injection molded in a great variety of thermoplastics which also serve to optimize fluid compatibility. The EMDIP{trademark} plugs directly into a fluidic printed wiring board using a standard dual in-line package pattern for the electrical connections and having a grid of multiple 1 mm diameter fluidic connections to mate to the underside of the EMDIP{trademark}.

  20. Chip packaging technique

    NASA Technical Reports Server (NTRS)

    Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)

    2001-01-01

    A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.

  1. Conceptual waste packaging options for deep borehole disposal

    SciTech Connect

    Su, Jiann -Cherng; Hardin, Ernest L.

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  2. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  3. Individualized Learning Package about Etching.

    ERIC Educational Resources Information Center

    Sauer, Michael J.

    An individualized learning package provides step-by-step instruction in the fundamentals of the etching process. Thirteen specific behavioral objectives are listed. A pretest, consisting of matching 15 etching terms with their definitions, is provided along with an answer key. The remainder of the learning package teaches the 13 steps of the…

  4. The Macro - TIPS Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    The TIPS (Teaching Information Processing System) Course Package was designed to be used with the Macro-Games Course Package (SO 011 930) in order to train college students to apply the tools of economic analysis to current problems. TIPS is used to provide feedback and individualized assignments to students, as well as information about the…

  5. Chemical Energy: A Learning Package.

    ERIC Educational Resources Information Center

    Cohen, Ita; Ben-Zvi, Ruth

    1982-01-01

    A comprehensive teaching/learning chemical energy package was developed to overcome conceptual/experimental difficulties and time required for calculation of enthalpy changes. The package consists of five types of activities occuring in repeated cycles: group activities, laboratory experiments, inquiry questionnaires, teacher-led class…

  6. Microelectronics/electronic packaging potential

    NASA Technical Reports Server (NTRS)

    Sandeau, R. F.

    1977-01-01

    The trend toward smaller and lighter electronic packages was examined. It is suggested that electronic packaging engineers and microelectronic designers closely associate and give full attention to optimization of both disciplines on all product lines. Extensive research and development work underway to explore innovative ideas and make new inroads into the technology base, is expected to satisfy the demands of the 1980's.

  7. Oral Hygiene. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  8. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging exceptions. 173.63 Section 173.63... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions... which are used to project fastening devices. (2) Packaging for cartridges, small arms, and...

  9. 49 CFR 173.411 - Industrial packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... record retention applicable to Industrial Packaging Type 1 (IP-1), Industrial Packaging Type 2 (IP-2), and Industrial Packaging Type 3 (IP-3). (b) Industrial packaging certification and tests. (1) Each IP... specified in § 173.412(a) through (j). (4) Tank containers may be used as Industrial package Types 2 or...

  10. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  11. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  12. Moderation control in low enriched {sup 235}U uranium hexafluoride packaging operations and transportation

    SciTech Connect

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-10-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low {sup 235}U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation.

  13. Nanocomposite Sensors for Food Packaging

    NASA Astrophysics Data System (ADS)

    Avella, Maurizio; Errico, Maria Emanuela; Gentile, Gennaro; Volpe, Maria Grazia

    Nowadays nanotechnologies applied to the food packaging sector find always more applications due to a wide range of benefits that they can offer, such as improved barrier properties, improved mechanical performance, antimicrobial properties and so on. Recently many researches are addressed to the set up of new food packaging materials, in which polymer nanocomposites incorporate nanosensors, developing the so-called "smart" packaging. Some examples of nanocomposite sensors specifically realised for the food packaging industry are reported. The second part of this work deals with the preparation and characterisation of two new polymer-based nanocomposite systems that can be used as food packaging materials. Particularly the results concerning the following systems are illustrated: isotactic polypropylene (iPP) filled with CaCO3 nanoparticles and polycaprolactone (PCL) filled with SiO2 nanoparticles.

  14. [The development and operation of a package inserts service system for electronic medical records].

    PubMed

    Yamada, Hidetoshi; Nishimura, Sachiho; Shimamori, Yoshimitsu; Sato, Seiji; Hayase, Yukitoshi

    2003-03-01

    To promote the appropriate use of pharmaceuticals and to prevent side effects, physicians need package inserts on medicinal drugs as soon as possible. A medicinal drug information service system was established for electronic medical records to speed up and increase the efficiency of package insert communications within a medical institution. Development of this system facilitates access to package inserts by, for example, physicians. The time required to maintain files of package inserts was shortened, and the efficiency of the drug information service increased. As a source of package inserts for this system, package inserts using a standard generalized markup language (SGML) form were used, which are accessible to the public on the homepage of the Organization for Pharmaceutical Safety and Research (OPSR). This study found that a delay occurred in communicating revised package inserts from pharmaceutical companies to the OPSR. Therefore a pharmaceutical department page was set up as part of the homepage of the medical institution for electronic medical records to shorten the delay in the revision of package inserts posted on the medicinal drug information service homepage of the OPSR. The usefulness of this package insert service system for electronic medical records is clear. For more effective use of this system based on the OPSR homepage pharmaceutical companies have been requested to provide quicker updating of package inserts.

  15. Technology transfer package on seismic base isolation - Volume I

    SciTech Connect

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  16. Technology transfer package on seismic base isolation - Volume II

    SciTech Connect

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  17. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... testing at periodic intervals only (i.e., other than initial design qualification testing), at ambient... 49 Transportation 3 2011-10-01 2011-10-01 false Preparation of packagings and packages for testing...) SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings...

  18. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... testing at periodic intervals only (i.e., other than initial design qualification testing), at ambient... 49 Transportation 3 2012-10-01 2012-10-01 false Preparation of packagings and packages for testing...) SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings...

  19. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... testing at periodic intervals only (i.e., other than initial design qualification testing), at ambient... 49 Transportation 3 2014-10-01 2014-10-01 false Preparation of packagings and packages for testing...) SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings...

  20. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide products... for risk reduction....

  1. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide products... for risk reduction....

  2. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide products... for risk reduction....

  3. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide products... for risk reduction....

  4. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    NASA Astrophysics Data System (ADS)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  5. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    PubMed Central

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  6. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    PubMed

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  7. In-Package Chemistry Abstraction

    SciTech Connect

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  8. Novel trends to revolutionize preservation and packaging of fruits/fruit products: microbiological and nanotechnological perspectives.

    PubMed

    Kalia, Anu; Parshad, Vir R

    2015-01-01

    Fruit preservation and packaging have been practiced since ages to maintain the constant supply of seasonal fruits over lengthened periods round the year. However, health and safety issues have attracted attention in recent decades. The safety and quality assurance of packaged fruits/fruit products are vital concerns in present day world-wide-integrated food supply chains. The growing demand of minimally or unprocessed packaged fruits has further aggravated the safety concerns which fuelled in extensive research with objectives to develop novel techniques of food processing, preservation, and packaging as well as for rapid, accurate, and early detection of contaminant products/microbes. Nevertheless, fruits and fruit-based products have yet to observe a panoramic introduction. Tropics and subtropics are the stellar producers of a variety of fruits; majority if not all is perishable and prone to postharvest decay. This evoked the opportunity to critically review the global scenario of emerging and novel techniques for fruit preservation and packaging, hence providing insight for their future implementation. This review would survey key nanotechnology innovations applied in preservation, packaging, safety, and storage of fruits and fruit-based products. The challenges and pros and cons of wider application of these innovative techniques, their commercial potential, and consumer acceptability have also been discussed.

  9. Laser Welding in Electronic Packaging

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  10. Naval Waste Package Design Sensitivity

    SciTech Connect

    T. Schmitt

    2006-12-13

    The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license application design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.

  11. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  12. Vacuum Packaging for Microelectromechanical Systems (MEMS)

    DTIC Science & Technology

    2002-10-01

    The Vacuum Packaging for MEMS Program focused on the development of an integrated set of packaging technologies which in totality provide a low cost...high volume product-neutral vacuum packaging capability which addresses all MEMS vacuum packaging requirements. The program balanced the need for...near term component and wafer-level vacuum packaging with the development of advanced high density wafer-level packaging solutions. Three vacuum

  13. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  14. Recent advances in applied nanoscience for food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing developments in nanotechnology offer potential to transform agriculture in several areas, including food safety, quality, packaging, product traceability, food processing, and bioactive delivery. These nanoscience-based applications utilize the unique properties of materials with a dimension...

  15. Microelectronics packaging research directions for aerospace applications

    NASA Technical Reports Server (NTRS)

    Galbraith, L.

    2003-01-01

    The Roadmap begins with an assessment of needs from the microelectronics for aerospace applications viewpoint. Needs Assessment is divided into materials, packaging components, and radiation characterization of packaging.

  16. 16 CFR 1701.3 - Applicability of special packaging requirements to hazardous substances in large size containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Applicability of special packaging requirements to hazardous substances in large size containers. 1701.3 Section 1701.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS STATEMENTS OF...

  17. 16 CFR 1701.3 - Applicability of special packaging requirements to hazardous substances in large size containers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Applicability of special packaging requirements to hazardous substances in large size containers. 1701.3 Section 1701.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS STATEMENTS OF...

  18. 16 CFR 1701.3 - Applicability of special packaging requirements to hazardous substances in large size containers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Applicability of special packaging requirements to hazardous substances in large size containers. 1701.3 Section 1701.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS STATEMENTS OF...

  19. 16 CFR 1701.3 - Applicability of special packaging requirements to hazardous substances in large size containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Applicability of special packaging requirements to hazardous substances in large size containers. 1701.3 Section 1701.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS STATEMENTS OF...

  20. 16 CFR 1701.3 - Applicability of special packaging requirements to hazardous substances in large size containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Applicability of special packaging requirements to hazardous substances in large size containers. 1701.3 Section 1701.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS STATEMENTS OF...

  1. Evaluation of residue drum storage safety risks

    SciTech Connect

    Conner, W.V.

    1994-06-17

    A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

  2. The evaluation of the safety benefits of combined passive and on-board active safety applications.

    PubMed

    Page, Yves; Cuny, Sophie; Zangmeister, Tobias; Kreiss, Jens-Peter; Hermitte, Thierry

    2009-10-01

    One of the objectives of the European TRACE project (TRaffic Accident Causation in Europe, 2006-2008) was to estimate the proportion of injury accidents that could be avoided and/or the proportion of injury accidents where the severity could be mitigated for on-the-market safety applications, if 100 % of the car fleet would be equipped with them. We have selected for evaluation the Electronic Stability Control (ESC) and the Emergency Brake Assist (EBA) applications. As for passive safety systems, recent cars are designed to offer overall safety protection. Car structure, load limiters, front airbags, side airbags, knee airbags, pretensioners, padding and non aggressive structures in the door panel, the dashboard, the windshield, the seats, and the head rest also contribute to applying more protection. The whole safety package is very difficult to evaluate separately, one element independently segmented from the others. We decided to consider evaluating the effectiveness of the whole passive safety package, This package,, for the sake of simplicity, was the number of stars awarded at the Euro NCAP testing. The challenges were to compare the effectiveness of some safety configuration SC I, with the effectiveness of a different safety configuration SC II. A safety configuration is understood as a package of safety functions. Ten comparisons have been carried out such as the evaluation of the safety benefit of a fifth star given that the car has four stars and an EBA. The main outcome of this analysis is that any addition of a passive or active safety function selected in this analysis is producing increased safety benefits. For example, if all cars were five stars fitted with EBA and ESC, instead of four stars without ESC and EBA, injury accidents would be reduced by 47.2% for severe injuries and 69.5% for fatal injuries.

  3. The Evaluation of the Safety Benefits of Combined Passive and On-Board Active Safety Applications

    PubMed Central

    Page, Yves; Cuny, Sophie; Zangmeister, Tobias; Kreiss, Jens-Peter; Hermitte, Thierry

    2009-01-01

    One of the objectives of the European TRACE project (TRaffic Accident Causation in Europe, 2006–2008) was to estimate the proportion of injury accidents that could be avoided and/or the proportion of injury accidents where the severity could be mitigated for on-the-market safety applications, if 100 % of the car fleet would be equipped with them. We have selected for evaluation the Electronic Stability Control (ESC) and the Emergency Brake Assist (EBA) applications. As for passive safety systems, recent cars are designed to offer overall safety protection. Car structure, load limiters, front airbags, side airbags, knee airbags, pretensioners, padding and non aggressive structures in the door panel, the dashboard, the windshield, the seats, and the head rest also contribute to applying more protection. The whole safety package is very difficult to evaluate separately, one element independently segmented from the others. We decided to consider evaluating the effectivenessof the whole passive safety package, This package,, for the sake of simplicity, was the number of stars awarded at the Euro NCAP testing. The challenges were to compare the effectiveness of some safety configuration SC I, with the effectiveness of a different safety configuration SC II. A safety configuration is understood as a package of safety functions. Ten comparisons have been carried out such as the evaluation of the safety benefit of a fifth star given that the car has four stars and an EBA. The main outcome of this analysis is that any addition of a passive or active safety function selected in this analysis is producing increased safety benefits. For example, if all cars were five stars fitted with EBA and ESC, instead of four stars without ESC and EBA, injury accidents would be reduced by 47.2% for severe injuries and 69.5% for fatal injuries. PMID:20184838

  4. Micro Computer Tomography for medical device and pharmaceutical packaging analysis.

    PubMed

    Hindelang, Florine; Zurbach, Raphael; Roggo, Yves

    2015-04-10

    Biomedical device and medicine product manufacturing are long processes facing global competition. As technology evolves with time, the level of quality, safety and reliability increases simultaneously. Micro Computer Tomography (Micro CT) is a tool allowing a deep investigation of products: it can contribute to quality improvement. This article presents the numerous applications of Micro CT for medical device and pharmaceutical packaging analysis. The samples investigated confirmed CT suitability for verification of integrity, measurements and defect detections in a non-destructive manner.

  5. Packaging and Transportation of Additional Neptunium Oxide

    SciTech Connect

    Watkins, R.; Jordan, J.; Hensel, S.

    2010-05-05

    The Savannah River Site's HB-Line Facility completed a second neptunium oxide production campaign in which nine (9) additional cans of neptunium oxide were produced and shipped to the Idaho National Laboratory and Oak Ridge National Laboratory in the 9975 shipping container. These additional cans were from a different feed solution than the first fifty (50) cans of neptunium oxide that were previously produced and shipped via a Letter of Amendment to the 9975 Safety Analysis Report for Packaging (SARP) content table. This paper will address the challenges associated with demonstrating the neptunium oxide produced from the additional feed solution was equivalent to the original neptunium oxide and within the content description of the Letter of Amendment.

  6. AMPX-77 Phase 1 certification package

    SciTech Connect

    Niemer, K.A.

    1994-03-01

    The AMPX-77 Phase 1 modules have been certified. AMPX-77 is a modular code system for generating coupled multigroup neutron-gamma cross section libraries from Evaluated Nuclear Data Files (ENDF/B). All basic cross-section data are input from the formats used by the ENDF/B, and output can be obtained from a variety of formats, included in its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-ray data. The AMPX-77 code system will be used at SRS to perform critical calculations related to nuclear criticality safety. The AMPX-77 modular codes system contains forty-seven separate modules. For the certification process, the 47 modules have been divided into three groups or phases. This Certification Package is for the Phase 1 modules: BONAMI, LAPHNGAS, MALOCS, NITAWL, ROLAIDS, SMUG, and XSDRNPM.

  7. Exposure Assessment of Chemicals from Packaging Materials

    NASA Astrophysics Data System (ADS)

    Poças, Maria De Fátima; Hogg, Timothy

    A variety of chemicals may enter our food supply, by means of intentional or unintentional addition, at different stages of the food chain. These chemicals include food additives, pesticide residues, environmental contaminants, mycotox-ins, flavoring substances, and micronutrients. Packaging systems and other food-contact materials are also a source of chemicals contaminating food products and beverages. Monitoring exposure to these chemicals has become an integral part of ensuring the safety of the food supply. Within the context of the risk analysis approach and more specifically as an integral part of risk assessment procedures, the exercise known as exposure assessment is crucial in providing data to allow sound judgments concerning risks to human health. The exercise of obtaining this data is part of the process of revealing sources of contamination and assessing the effectiveness of strategies for minimizing the risk from chemical contamination in the food supply (Lambe, 2002).

  8. Large area LED package

    NASA Astrophysics Data System (ADS)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  9. Quality assessment of packaged foods by optical oxygen sensing

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; O'Mahony, Fiach C.; Kerry, Joe P.; Ogurtsov, Vladimir I.

    2005-11-01

    A phase-fluorometric oxygen sensor system has been developed, which allows non-destructive measurement of residual oxygen levels in sealed containers such as packaged foods. It operates with disposable solid-state sensors incorporated in each pack, and a portable detector which interrogates with the sensors through a (semi)transparent packaging material. The system has been optimized for packaging applications and validated in small and medium scale trials with different types of food, including MAP hams, cheese, convenience foods, smoked fish, bakery. It has demonstrated high efficiency in monitoring package integrity, oxygen profiles in packs, performance of packaging process and many other research and quality control tasks, allowing control of 100% of packs. The low-cost batch-calibrated sensors have demonstrated reliability, safety, stability including direct contact with food, high efficiency in the low oxygen range. Another system, which also employs the fluorescence-based oxygen sensing approach, provides rapid assessment of microbial contamination (total viable counts) in complex samples such as food homogenates, industrial waste, environmental samples, etc. It uses soluble oxygen-sensitive probes, standard microtitter plates and fluorescence measurements on conventional plate reader to monitor growth of aerobic bacteria in small test samples (e.g. food homogenates) via their oxygen respiration. The assay provides high sample through put, miniaturization, speed, and can serve as alternative to the established methods such as agar plate colony counts and turbidimetry.

  10. COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    SciTech Connect

    Stefek, T.; Daugherty, W.; Estochen, E.; Leduc, D.

    2011-05-11

    Compaction of lower layers in the fiberboard overpack has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of (1) the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and (2) the behavior of the fiberboard during transport. In laboratory tests, higher moisture content has been shown to correspond to higher total compaction of fiberboard material, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted over a period of several months to acquire immediate and cumulative changes in geometric data for various moisture levels. Currently, one sample set has undergone a complete dynamic test regimen, while testing of another set is still in-progress. The dynamic input, data acquisition, test effects on sample dynamic parameters, and interim results from this test program will be summarized and compared to regulatory specifications for dynamic loading. This will provide a basis from which to evaluate the impact of moisture and fiberboard compaction on the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Documented Safety Analysis) at the Savannah River Site (SRS).

  11. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  12. Spack: the Supercomputing Package Manager

    SciTech Connect

    Gamblin, T.

    2013-11-09

    The HPC software ecosystem is growing larger and more complex, but software distribution mechanisms have not kept up with this trend. Tools, Libraries, and applications need to run on multiple platforms and build with multiple compliers. Increasingly, packages leverage common software components, and building any one component requires building all of its dependencies. In HPC environments, ABI-incompatible interfaces (likeMPI), binary-incompatible compilers, and cross-compiled environments converge to make the build process a combinatoric nightmare. This obstacle deters many users from adopting useful tools, and others waste countless hours building and rebuilding tools. Many package managers exist to solve these problems for typical desktop environments, but none suits the unique needs of supercomputing facilities or users. To address these problems, we have Spack, a package manager that eases the task of managing software for end-users, across multiple platforms, package versions, compilers, and ABI incompatibilities.

  13. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  14. Handling difficult materials: Aseptic packaging

    SciTech Connect

    Lieb, K.

    1994-03-01

    Since aseptic packages, or drink boxes, were introduced in the US in the early 1980s, they have been praised for their convenience and berated for their lack of recyclability. As a result, aseptic packaging collection has been linked with that of milk cartons to increase the volume. The intervening years since the introduction of aseptic packaging have seen the drink box industry aggressively trying to create a recycling market for the boxes. Communities and schools have initiated programs, and recycling firms have allocated resources to see whether recycling aseptic packaging can work. Drink boxes are now recycled in 2.3 million homes in 15 states, and in 1,655 schools in 17 states. They are typically collected in school and curbside programs with other polyethylene coated (laminated) paperboard products such a milk cartons, and then baled and shipped to five major paper companies for recycling at eight facilities.

  15. Packaged bulk micromachined triglyceride biosensor

    NASA Astrophysics Data System (ADS)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  16. Food Safety

    MedlinePlus

    ... cereals, produce, and chips. When buying packaged meat, poultry (chicken or turkey), or fish, check the expiration ... your cart. Separate any raw meat, fish, or poultry from vegetables, fruit, and other foods you'll ...

  17. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  18. Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials

    DTIC Science & Technology

    2010-05-01

    FINAL REPORT Polyhydroxyalkanoates (PHA) Bioplastic Packaging Materials SERDP Project WP-1478 MAY 2010 Dr.Chris Schwier Metabolix... Bioplastic Packaging Materials 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER SI 1478 Dr. Chris Schwier 5e. TASK...polymers were produced using blends of branched, long chain-length PHA polymers with linear PHA polymers.      15. SUBJECT TERMS Bioplastic

  19. Safety evaluation for packaging (onsite) singly encapsulated cesium chloride capsules

    SciTech Connect

    Smyth, W.W.

    1997-05-22

    Three nonstandard Waste Encapsulation and Storage Facility (WESF) cesium chloride capsules are being shipped from WESF (225B building) to the 324 building. They would normally be shipped in the Beneficial Uses Shipping System (BUSS) cask under its US Department of Energy (DOE) license (DOE 1996), but these capsules are nonstandard: one has a damaged or defective weld in the outer layer of encapsulation, and two have the outer encapsulation removed. The 3 capsules, along with 13 other capsules, will be overpacked in the 324 building to meet the requirements for storage in WESF`s pool.

  20. Health Instruction Packages: Consumer--Safety and Emergencies.

    ERIC Educational Resources Information Center

    Lown, Maris A.; And Others

    Texts, illustrations, and exercises are provided in these six learning modules which were designed to teach the general public how to deal with several emergency situations. The first module, "Cardio-Pulmonary Resuscitation (CPR)," was designed by Maris A. Lown to teach members of the public, nurses, and paramedics the techniques of…

  1. Design and Criticality Considerations for 9977 and 9978 Shipping Packages

    SciTech Connect

    Reed, R; Biswas, D; Abramczyk, G

    2008-11-25

    Savannah River National Laboratory (SRNL) has developed two new, Type B, state-of-the-art, general purpose, fissile material Shipping Packages, designated 9977 and 9978, as replacements for the U.S. DOT specification 6M container, phased out in September 30, 2008 due to non-compliance with current requirements 10CFR71 regulation. The packages accommodate plutonium, uranium and other special nuclear materials in bulk quantities and in many forms with capabilities exceeding those of the 6M. These packages provide a high degree of single containment and comply with 10CFR71, Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10CFR20 (As Low As Reasonably Achievable (ALARA)). Allowed package contents were determined accounting for nuclear criticality, radiation shielding, and decay heat rate. The Criticality Safety Index (CSI) for the package is 1.0. The package utilizes passive cooling to maintain internal temperatures within limits. Radiation shielding analyses have established the contents for which the packages can be shipped under non-exclusive use in the Safe-Secure Trailer or under exclusive use. The packages are designed to ship radioactive contents in several configurations; Radioisotope Thermoelectric Generators (RTGs), nested food-pack cans, site specific containers, and DOE-STD-3013 containers. Each shipping package includes a 35-gallon stainless steel outer drum, insulation, a drum liner, and a single containment vessel (CV). The 9977 includes a 6-inch ID CV while the 9978 includes a 5-inch ID CV. One inch of Fiberfrax{reg_sign} insulation is wrapped around and attached to the sides and bottom of the liner. The volume between the Fiberfrax{reg_sign} and the drum wall is filled with polyurethane foam. Top and bottom aluminum Load Distribution Fixtures (LDFs) within the drum liner cavity, above and below the CV, center the CV in the liner, stiffen the package radially, and distribute loads away from the CV. The 6CV fits directly into the LDFs while

  2. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  3. Auto Safety

    MedlinePlus

    ... kids by following simple safety measures and by teaching some basic rules. Importance of Child Safety Seats ... your child correctly — a small child in a large seat may not be the best option. Models ...

  4. Water Safety

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Water Safety KidsHealth > For Parents > Water Safety A A ... best measure of protection. previous continue Making Kids Water Wise It's important to teach your kids proper ...

  5. Water Safety

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Water Safety KidsHealth > For Teens > Water Safety A A ... tied to alcohol use. previous continue At the Water Park OK, so you do more splashing than ...

  6. Food Safety

    MedlinePlus

    ... the safety of fish caught in your local lakes, rivers, and coastal areas. Advisories may recommend that ... Charts Picky Eating Physical Activity Food Safety Resources Kids Students Adults Families Professionals Multiple Languages MyPlate, MyWins ...

  7. Water Safety

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Water Safety KidsHealth > For Parents > Water Safety Print A ... best measure of protection. previous continue Making Kids Water Wise It's important to teach your kids proper ...

  8. Water Safety

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Water Safety KidsHealth > For Teens > Water Safety Print A ... tied to alcohol use. previous continue At the Water Park OK, so you do more splashing than ...

  9. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    PubMed

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains.

  10. Think INSIDE the Box: Package Engineering

    ERIC Educational Resources Information Center

    Snyder, Mark; Painter, Donna

    2014-01-01

    Most products people purchase, keep in their homes, and often discard, are typically packaged in some way. Packaging is so prevalent in daily lives that many of take it for granted. That is by design-the expectation of good packaging is that it exists for the sake of the product. The primary purposes of any package (to contain, inform, display,…

  11. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  12. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  13. 49 CFR 173.29 - Empty packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of...

  14. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of...

  15. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of...

  16. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of...

  17. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of...

  18. Safety Handbook.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Safety policies, procedures, and related information are presented in this manual to assist school personnel in a continuing program of accident prevention. Chapter 1 discusses safety education and accident prevention in general. Chapter 2 covers traffic regulations relating to school safety patrols, school bus transportation, bicycles, and…

  19. INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G

    2008-06-04

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.

  20. SHIPMENT OF NON-TRADITIONAL CONTENTS IN THE 9977 TYPE B PACKAGE

    SciTech Connect

    Abramczyk, G.; Loftin, B.; Bellamy, S.; Nathan, S.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. These materials are typically confined within metallic containers designed for ease of handling and to prevent the spread of contamination. The Pacific Northwest National Laboratory (PNNL) uses Pu and U sources for the training of domestic and international customs agents in the identification and detection of radioactive materials (RAM). These materials are packed in polycarbonate containers which permit the trainees to view the RAM. The safety basis was made to authorize the use of these unusual containers. The inclusion of the PNNL Training Source Contents into the 9977 Packaging imposed unique conditions previously unanalyzed. The use of polycarbonate as a content container material, while different from any configuration previously considered, does not raise any safety issues with the package which continues to operate with a large safety margin for temperatures, pressures, containment, dose rates, and subcriticality.

  1. Green Packaging Management of Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Guirong; Zhao, Zongjian

    From the connotation of green logistics management, we discuss the principles of green packaging, and from the two levels of government and enterprises, we put forward a specific management strategy. The management of green packaging can be directly and indirectly promoted by laws, regulations, taxation, institutional and other measures. The government can also promote new investment to the development of green packaging materials, and establish specialized institutions to identify new packaging materials, standardization of packaging must also be accomplished through the power of the government. Business units of large scale through the packaging and container-based to reduce the use of packaging materials, develop and use green packaging materials and easy recycling packaging materials for proper packaging.

  2. Antimicrobial Packaging for Extending the Shelf Life of Bread-A Review.

    PubMed

    Jideani, V A; Vogt, K

    2016-06-10

    Antimicrobial packaging is an important form of active packaging that can release antimicrobial substances for enhancing the quality and safety of food during extended storage. It is in response to consumers demand for preservative-free food as well as more natural, disposable, biodegradable, and recyclable food-packaging materials. The potential of a combination of allyl isothiocyanate and potassium sorbate incorporated into polymers in providing the needed natural antimicrobial protection for bread products is discussed. The role of double extrusion process as a means for obtaining a homogeneous mix of the sorbate into the polymer (polyethylene or ethylenevinyalcohol), is highlighted.

  3. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk...

  4. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings and... which they may be used. The material to be transported in the packagings may be replaced by a non... the tests. (c) If the material to be transported is replaced for test purposes by a...

  5. Packaging and transportation-related occurrence reports - January-March 1994

    SciTech Connect

    Welch, M.J.; Dickerson, L.S.; Jennings, S.D.

    1994-06-01

    The Oak Ridge National Lab. (ORNL) Packaging and Transportation Safety Program (PATS), which is sponsored by the US Department of Energy (DOE) Office of Environment, Safety and Health Transportation and Packaging Safety Division, EH-332, has been charged with the responsibility of retrieving reports and information pertaining to transportation or packaging incidents or accidents from the Occurrence Reporting and Processing System (ORPS). These selected reports are being analyzed for trends, impact on EH-332 policies and concerns, and lessons learned concerning transportation and packaging safety. This task is designed not only to keep EH-332 aware of what is occurring on DOE sites and potential transportation and packaging problems that may need attention, but also it is intended to allow future dissemination of lessons learned to the Operations Offices and subsequently to management and operating contractors. This report, which covers the first quarter of 1994, includes the weekly tabular reports OR-91-1 through OR-94-13, which were submitted to EH-332 for its information and use. Thirteen reports containing 43 selected occurrences were transmitted during this quarter.

  6. Destructive Examination of Shipping Package 9975-02019

    SciTech Connect

    Daugherty, W. L.

    2016-06-13

    Destructive and non-destructive examinations have been performed on the components of shipping package 9975-02019 as part of a comprehensive SRS surveillance program for plutonium material stored in the K-Area Complex (KAC). During the field surveillance inspection of this package in KAC, two non-conforming conditions were noted: the axial gap of 1.577 inch exceeded the 1 inch maximum criterion, and two areas of dried glue residue were noted on the upper fiberboard subassembly. This package was subsequently transferred to SRNL for more detailed inspection and destructive examination. In addition to the conditions noted in KAC, the following conditions were noted: - Numerous small spots of corrosion were observed along the bottom edge of the drum. - In addition to the smeared glue residue on the upper fiberboard subassembly, there was also a small dark stain. - Mold was present on the side and bottom of the lower fiberboard subassembly. Dark stains from elevated moisture content were also present in these areas. - A dark spot with possible light corrosion was observed on the primary containment vessel flange, and corresponding rub marks were observed on the secondary containment vessel ID. - The fiberboard thermal conductivity in the radial orientation was above the specified range. When the test was repeated with slightly lower moisture content, the result was acceptable. The moisture content for both tests was within a range typical of other packages in storage. The observed conditions must be fully evaluated by KAC to ensure the safety function of the package is being maintained. Several factors can contribute to the concentration of moisture in the fiberboard, including higher than average initial moisture content, higher internal temperature (due to internal heat load and placement within the array of packages), and the creation of additional moisture as the fiberboard begins to degrade.

  7. Flexible packaging for PV modules

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  8. Truss Performance and Packaging Metrics

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M.; Collins, Timothy J.; Doggett, William; Dorsey, John; Watson, Judith

    2006-01-01

    In the present paper a set of performance metrics are derived from first principals to assess the efficiency of competing space truss structural concepts in terms of mass, stiffness, and strength, for designs that are constrained by packaging. The use of these performance metrics provides unique insight into the primary drivers for lowering structural mass and packaging volume as well as enabling quantitative concept performance evaluation and comparison. To demonstrate the use of these performance metrics, data for existing structural concepts are plotted and discussed. Structural performance data is presented for various mechanical deployable concepts, for erectable structures, and for rigidizable structures.

  9. The role of packaging film permselectivity in modified atmosphere packaging.

    PubMed

    Al-Ati, Tareq; Hotchkiss, Joseph H

    2003-07-02

    Modified atmosphere packaging (MAP) is commercially used to increase the shelf life of packaged produce by reducing the produce respiration rate, delaying senescence, and inhibiting the growth of many spoilage organisms, ultimately increasing product shelf life. MAP systems typically optimize O(2) levels to achieve these effects while preventing anaerobic fermentation but fail to optimize CO(2) concentrations. Altering film permselectivity (i.e., beta, which is the ratio of CO(2)/O(2) permeation coefficients) could be utilized to concurrently optimize levels of both CO(2) and O(2) in MAP systems. We investigated the effect of modifying film permselectivity on the equilibrium gas composition of a model MAP produce system packaged in containers incorporating modified poly(ethylene) ionomer films with CO(2)/O(2) permselectivites between 4-5 and 0.8-1.3. To compare empirical to calculated data of the effect of permselectivity on the equilibrium gas composition of the MAP produce system, a mathematical model commonly used to optimize MAP of respiring produce was applied. The calculated gas composition agreed with observed values, using empirical respiration data from fresh cut apples as a test system and permeability data from tested and theoretical films. The results suggest that packaging films with CO(2)/O(2) permselectivities lower than those commercially available (<3) would further optimize O(2) and CO(2) concentration in MAP of respiring produce, particularly highly respiring and minimally processed produce.

  10. Vacuum-Packaging Technology for IRFPAs

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Tokuda, Takayuki; Tsutinaga, Akinobu; Kimata, Masafumi; Abe, Hideyuki; Tokashiki, Naotaka

    We developed vacuum-packaging equipment and low-cost vacuum packaging technology for IRFPAs. The equipment is versatile and can process packages with various materials and structures. Getters are activated before vacuum packaging, and we can solder caps/ceramic-packages and caps/windows in a high-vacuum condition using this equipment. We also developed a micro-vacuum gauge to measure pressure in vacuum packages. The micro-vacuum gauge uses the principle of thermal conduction of gases. We use a multi-ceramic package that consists of six packages fabricated on a ceramic sheet, and confirm that the pressure in the processed packages is sufficiently low for high-performance IRFPA.

  11. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

    1998-08-04

    A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

  12. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.

    1998-01-01

    A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

  13. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  14. Active food packaging evolution: transformation from micro- to nanotechnology.

    PubMed

    Imran, Muhammad; Revol-Junelles, Anne-Marie; Martyn, Agnieszka; Tehrany, Elmira Arab; Jacquot, Muriel; Linder, Michel; Desobry, Stéphane

    2010-10-01

    Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.

  15. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    SciTech Connect

    Dunn, K.; Abramczyk, G.; Bellamy, S.; Daugherty, W.; Hackney, B.; Hoffman, E.; Skidmore, E.; Stefek, T.

    2012-06-12

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping package results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.

  16. Product Safety: "An Ounce of Prevention". Health and the Consumer.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Elementary and Secondary Education.

    Secondary level students learn about product safety in this consumer education learning activity package, which is one of a series. While the majority of products are safe, there remains a small percentage of consumer goods which reach the market place containing a real or potential hazard to the consumer's safety. This module is designed to make…

  17. Medication safety.

    PubMed

    Keohane, Carol A; Bates, David W

    2008-03-01

    Patient safety is a state of mind, not a technology. The technologies used in the medical setting represent tools that must be properly designed, used well, and assessed on an on-going basis. Moreover, in all settings, building a culture of safety is pivotal for improving safety, and many nontechnologic approaches, such as medication reconciliation and teaching patients about their medications, are also essential. This article addresses the topic of medication safety and examines specific strategies being used to decrease the incidence of medication errors across various clinical settings.

  18. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect

    Blanton, P.; Eberl, K.

    2008-09-14

    container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

  19. ULFEM time series analysis package

    USGS Publications Warehouse

    Karl, Susan M.; McPhee, Darcy K.; Glen, Jonathan M. G.; Klemperer, Simon L.

    2013-01-01

    This manual describes how to use the Ultra-Low-Frequency ElectroMagnetic (ULFEM) software package. Casual users can read the quick-start guide and will probably not need any more information than this. For users who may wish to modify the code, we provide further description of the routines.

  20. The Macro - Games Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    Part of an Economic Education Series, the course package is designed to teach basic concepts and fundamental principles of macroeconomics and how they can be applied to various world problems. For use with college students, learning is gained through lectures, discussion, simulation games, programmed learning, and text. Time allotment is a 15-week…

  1. Food Nanotechnology: Food Packaging Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part the impetus for this predicted growth is the e...

  2. Food Nanotechnology - Food Packaging Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part, the impetus for this predicted growth is the ...

  3. RAGG - R EPISODIC AGGREGATION PACKAGE

    EPA Science Inventory

    The RAGG package is an R implementation of the CMAQ episodic model aggregation method developed by Constella Group and the Environmental Protection Agency. RAGG is a tool to provide climatological seasonal and annual deposition of sulphur and nitrogen for multimedia management. ...

  4. COLDMON -- Cold File Analysis Package

    NASA Astrophysics Data System (ADS)

    Rawlinson, D. J.

    The COLDMON package has been written to allow system managers to identify those items of software that are not used (or used infrequently) on their systems. It consists of a few command procedures and a Fortran program to analyze the results. It makes use of the AUDIT facility and security ACLs in VMS.

  5. STS safety approval process for small self-contained payloads

    NASA Technical Reports Server (NTRS)

    Gum, Mary A.

    1988-01-01

    The safety approval process established by the National Aeronautics and Space Administration for Get Away Special (GAS) payloads is described. Although the designing organization is ultimately responsible for the safe operation of its payload, the Get Away Special team at the Goddard Space Flight Center will act as advisors while iterative safety analyses are performed and the Safety Data Package inputs are submitted. This four phase communications process will ultimately give NASA confidence that the GAS payload is safe, and successful completion of the Phase 3 package and review will clear the way for flight aboard the Space Transportation System orbiter.

  6. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

  7. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  8. Solidifying Safety

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2003-01-01

    Contents include the following: 1. Solidifying Safety: NASA s new safety organization spools up, as the 1SS program grapples with long-term risk. 2. Earth to Orbit O'Keefe telling skeptical lawmakers Orbital Space Plan (OSP) will cover exploration vision. China's rapid pace.

  9. Safety Systems

    ERIC Educational Resources Information Center

    Halligan, Tom

    2009-01-01

    Colleges across the country are rising to the task by implementing safety programs, response strategies, and technologies intended to create a secure environment for teachers and students. Whether it is preparing and responding to a natural disaster, health emergency, or act of violence, more schools are making campus safety a top priority. At…

  10. Lab Safety.

    ERIC Educational Resources Information Center

    West, Sandra S.

    1991-01-01

    In response to the Texas Hazardous Communication Act (THCA) of 1986 which raised many new health and liability issues regarding students in science laboratories, a laboratory safety survey was generated for use in evaluating laboratory safety. This article contains the easy-to-use survey. (ZWH)

  11. Safety First

    ERIC Educational Resources Information Center

    Taft, Darryl

    2011-01-01

    Ned Miller does not take security lightly. As director of campus safety and emergency management at the Des Moines Area Community College (DMACC), any threat requires serious consideration. As community college administrators adopt a more proactive approach to campus safety, many institutions are experimenting with emerging technologies, including…

  12. Final Report for the Center for Advanced Processing and Packaging Studies (CAPPS)

    DTIC Science & Technology

    2010-11-30

    assure food safety. The objectives of CAPPS are to enhance safety and quality of aseptic and extended shelf - life products, to characterize emerging ...aseptic and extended shelf - life processes, and to assure the integrity and functionality of aseptic and extended shelf - life packaging. Examples of new...and Nutritional Quality of Fresh-Cut Fruits and Vegetables : Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing

  13. Cleanup Verification Package for the 118-F-3, Minor Construction Burial Ground

    SciTech Connect

    M. J. Appel

    2007-01-04

    This cleanup verification package documents completion of remedial action for the 118-F-3, Minor Construction Burial Ground waste site. This site was an open field covered with cobbles, with no vegetation growing on the surface. The site received irradiated reactor parts that were removed during conversion of the 105-F Reactor from the Liquid 3X to the Ball 3X Project safety systems and received mostly vertical safety rod thimbles and step plugs.

  14. Automated packaging employing real-time vision

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Chung; Wu, Chia-Hung

    2016-07-01

    Existing packaging systems rely on human operation to position a box in the packaging device perform do the packaging task. Current facilities are not capable of handling boxes with different sizes in a flexible way. In order to improve the above-mentioned problems, an eye-to-hand visual servo automated packaging approach is proposed in this paper. The system employs two cameras to observe the box and the gripper mounted on the robotic manipulator to precisely control the manipulator to complete the packaging task. The system first employs two-camera vision to determine the box pose. With appropriate task encoding, a closed-loop visual servoing controller is designed to drive a manipulator to accomplish packaging tasks. The proposed approach can be used to complete automated packaging tasks in the case of uncertain location and size of the box. The system has been successfully validated by experimenting with an industrial robotic manipulator for postal box packaging.

  15. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  16. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Device packaging. 820.130 Section 820.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each...

  17. 27 CFR 19.186 - Package scales.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Package scales. 19.186... Package Scale and Pipeline Requirements § 19.186 Package scales. Proprietors must ensure that scales used.... However, if a scale is not used during a 6-month period, it is only necessary to test the scale prior...

  18. 27 CFR 19.186 - Package scales.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Package scales. 19.186... Package Scale and Pipeline Requirements § 19.186 Package scales. Proprietors must ensure that scales used.... However, if a scale is not used during a 6-month period, it is only necessary to test the scale prior...

  19. 27 CFR 19.186 - Package scales.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Package scales. 19.186... Package Scale and Pipeline Requirements § 19.186 Package scales. Proprietors must ensure that scales used.... However, if a scale is not used during a 6-month period, it is only necessary to test the scale prior...

  20. 27 CFR 19.276 - Package scales.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Package scales. 19.276... Package scales. Proprietors shall ensure the accuracy of scales used for weighing packages of spirits through tests conducted at intervals of not more than 6 months or whenever scales are adjusted or...

  1. 27 CFR 19.186 - Package scales.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Package scales. 19.186... Package Scale and Pipeline Requirements § 19.186 Package scales. Proprietors must ensure that scales used.... However, if a scale is not used during a 6-month period, it is only necessary to test the scale prior...

  2. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Combination packaging. 6..., DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and distributing distilled spirits, wine, or malt beverages in...

  3. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  4. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  5. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Packaging conditions. 355.20 Section 355.20 Food... HUMAN USE ANTICARIES DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 355.20 Packaging... accord with § 355.60. (b) Tight container packaging. To minimize moisture contamination, all...

  6. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  7. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  8. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those...

  9. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those...

  10. 7 CFR 993.22 - Consumer package.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Consumer package. 993.22 Section 993.22 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 993.22 Consumer package. Consumer package means: (a)...

  11. 7 CFR 65.130 - Consumer package.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Consumer package. 65.130 Section 65.130 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards..., PEANUTS, AND GINSENG General Provisions Definitions § 65.130 Consumer package. Consumer package means...

  12. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... fissile material package, the allowable number of packages that may be transported in the same vehicle in accordance with § 71.59; and (c) For a fissile material shipment, any proposed special controls...

  13. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device packaging. 820.130 Section 820.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each...

  14. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  15. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  16. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  17. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  18. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  19. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions...-shore supply vessel; (3) Cargo compartment of a cargo vessel; or (4) Passenger-carrying aircraft used to...) criteria for reclassification as limited quantity material for transportation by highway, rail or...

  20. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... waste, marine pollutant, or is offered for transportation and transported byaircraft or vessel... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions...-shore supply vessel; (3) Cargo compartment of a cargo vessel; or (4) Passenger-carrying aircraft used...

  1. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions...-shore supply vessel; (3) Cargo compartment of a cargo vessel; or (4) Passenger-carrying aircraft used to... hazardous substance, hazardous waste, marine pollutant, or is offered for transportation and transported...

  2. EDExpress Packaging Training, 2001-2002.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    Packaging is the process of finding the best combination of aid to meet a student's financial need for college, given limited resources and the institutional constraints that vary from school to school. This guide to packaging under the EDExpress software system outlines three steps to packaging. The first is determining the student's need for…

  3. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the...

  4. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the...

  5. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the...

  6. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the...

  7. 7 CFR 993.22 - Consumer package.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Consumer package. 993.22 Section 993.22 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 993.22 Consumer package. Consumer package means: (a)...

  8. 7 CFR 65.130 - Consumer package.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Consumer package. 65.130 Section 65.130 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards..., PEANUTS, AND GINSENG General Provisions Definitions § 65.130 Consumer package. Consumer package means...

  9. Optical sensors for application in intelligent food-packaging technology

    NASA Astrophysics Data System (ADS)

    McEvoy, Aisling K.; Von Bueltzingsloewen, Christoph; McDonagh, Colette M.; MacCraith, Brian D.; Klimant, Ingo; Wolfbeis, Otto S.

    2003-03-01

    Modified Atmosphere Packaged (MAP) food employs a protective gas mixture, which normally contains selected amounts of carbon dioxide (CO2) and oxygen (O2), in order to extend the shelf life of food. Conventional MAP analysis of package integrity involves destructive sampling of packages followed by carbon dioxide and oxygen detection. For quality control reasons, as well as to enhance food safety, the concept of optical on-pack sensors for monitoring the gas composition of the MAP package at different stages of the distribution process is very attractive. The objective of this work was to develop printable formulations of oxygen and carbon dioxide sensors for use in food packaging. Oxygen sensing is achieved by detecting the degree of quenching of a fluorescent ruthenium complex entrapped in a sol-gel matrix. In particular, a measurement technique based on the quenching of the fluorescence decay time, phase fluorometric detection, is employed. A scheme for detecting CO2 has been developed which is compatible with the oxygen detection scheme. It is fluorescence-based and uses the pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) indicator dye encapsulated in an organically modified silica (ORMOSIL) glass matrix. Dual Luminophore Referencing (DLR) has been employed as an internal referencing scheme, which provides many of the advantages of lifetime-based fluorometric methods. Oxygen cross-sensitivity was minimised by encapsulating the reference luminophore in dense sol-gel microspheres. The sensor performance compared well with standard methods for both oxygen and carbon dioxide detection. The results of preliminary on-pack print trials are presented and a preliminary design of an integrated dual gas optical read-out device is discussed.

  10. Chip Scale Package Implementation Challenges

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    1998-01-01

    The JPL-led MicrotypeBGA Consortium of enterprises representing government agencies and private companies have jointed together to pool in-kind resources for developing the quality and reliability of chip scale packages (CSPs) for a variety of projects. In the process of building the Consortium CSP test vehicles, many challenges were identified regarding various aspects of technology implementation. This paper will present our experience in the areas of technology implementation challenges, including design and building both standard and microvia boards, and assembly of two types of test vehicles. We also discuss the most current package isothermal aging to 2,000 hours at 100 C and 125 C and thermal cycling test results to 1,700 cycles in the range of -30 to 100 C.

  11. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Bulk Packaging for Hazardous...

  12. Transportation and packaging resource guide

    SciTech Connect

    Arendt, J.W.; Gove, R.M.; Welch, M.J.

    1994-12-01

    The purpose of this resource guide is to provide a convenient reference document of information that may be useful to the U.S. Department of Energy (DOE) and DOE contractor personnel involved in packaging and transportation activities. An attempt has been made to present the terminology of DOE community usage as it currently exists. DOE`s mission is changing with emphasis on environmental cleanup. The terminology or nomenclature that has resulted from this expanded mission is included for the packaging and transportation user for reference purposes. Older terms still in use during the transition have been maintained. The Packaging and Transportation Resource Guide consists of four sections: Sect. 1, Introduction; Sect. 2, Abbreviations and Acronyms; Sect. 3, Definitions; and Sect. 4, References for packaging and transportation of hazardous materials and related activities, and Appendices A and B. Information has been collected from DOE Orders and DOE documents; U.S Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) regulations; and International Atomic Energy Agency (IAEA) standards and other international documents. The definitions included in this guide may not always be a regulatory definition but are the more common DOE usage. In addition, the definitions vary among regulatory agencies. It is, therefore, suggested that if a definition is to be used in a regulatory or a legal compliance issue, the definition should be verified with the appropriate regulation. To assist in locating definitions in the regulations, a listing of all definition sections in the regulations are included in Appendix B. In many instances, the appropriate regulatory reference is indicated in the right-hand margin.

  13. Microwave thawing package and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  14. Superfund overview: Fact sheet package

    SciTech Connect

    Not Available

    1990-11-01

    The package consists of a series of one-page, concise, public-oriented discussions of the various Superfund issues. They are: The Challenge of Superfund, History of Superfund, The Superfund Cleanup Process, Superfund: Fact vs. Fiction, Progress in Cleanup: FY 1980 - FY 1990, FY '90 Superfund Successes, Who Pays for Superfund, Superfund Enforcement - Making Polluters Pay, Superfund Blueprint, Superfund Contracts, Superfund Technology, and Superfund: Future Strategy and Directions.

  15. Hydraulics Graphics Package. Users Manual

    DTIC Science & Technology

    1985-11-01

    Engineering Center, Corps of Engineers, Department of the Army, as the origin of the program(s). IT, i HGP -3!OO Ju ’ ŕ Dlst! 3pbo.i:, HYDRAULICS GRAPHICS...Davis, California 95616 (916) 551-1748 (FTS) 460-1748 HGP Hydraulics Graphics Package Users Manual TABLE OF CONTENTS Chapter Subject Page 1 Introduction...5 2.4 Use of Disk Files ........ ................ 6 3 HGP Free Format User Input 3.1 Command Language Syntax ...... ............. 8 3.2

  16. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  17. 9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Drying, blending, packaging, and heat treatment rooms and facilities. 590.548 Section 590.548 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG...

  18. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Liquid hazardous materials in non-bulk packagings. 172.312 Section 172.312 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  19. 49 CFR 172.301 - General marking requirements for non-bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false General marking requirements for non-bulk packagings. 172.301 Section 172.301 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  20. 49 CFR 172.316 - Packagings containing materials classed as ORM-D.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Packagings containing materials classed as ORM-D. 172.316 Section 172.316 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  1. 49 CFR 172.301 - General marking requirements for non-bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false General marking requirements for non-bulk packagings. 172.301 Section 172.301 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  2. 49 CFR 172.302 - General marking requirements for bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false General marking requirements for bulk packagings. 172.302 Section 172.302 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  3. 49 CFR 172.316 - Packagings containing materials classed as ORM-D.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings containing materials classed as ORM-D. 172.316 Section 172.316 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  4. 49 CFR 172.324 - Hazardous substances in non-bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous substances in non-bulk packagings. 172.324 Section 172.324 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  5. 49 CFR 172.302 - General marking requirements for bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false General marking requirements for bulk packagings. 172.302 Section 172.302 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  6. 49 CFR 172.316 - Packagings containing materials classed as ORM-D.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packagings containing materials classed as ORM-D. 172.316 Section 172.316 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  7. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Liquid hazardous materials in non-bulk packagings. 172.312 Section 172.312 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  8. 49 CFR 172.302 - General marking requirements for bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General marking requirements for bulk packagings. 172.302 Section 172.302 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  9. 49 CFR 172.324 - Hazardous substances in non-bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hazardous substances in non-bulk packagings. 172.324 Section 172.324 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  10. 49 CFR 172.301 - General marking requirements for non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General marking requirements for non-bulk packagings. 172.301 Section 172.301 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  11. 49 CFR 172.302 - General marking requirements for bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false General marking requirements for bulk packagings. 172.302 Section 172.302 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  12. 49 CFR 172.301 - General marking requirements for non-bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false General marking requirements for non-bulk packagings. 172.301 Section 172.301 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  13. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Liquid hazardous materials in non-bulk packagings. 172.312 Section 172.312 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  14. 49 CFR 172.324 - Hazardous substances in non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous substances in non-bulk packagings. 172.324 Section 172.324 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  15. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Liquid hazardous materials in non-bulk packagings. 172.312 Section 172.312 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  16. 49 CFR 172.324 - Hazardous substances in non-bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous substances in non-bulk packagings. 172.324 Section 172.324 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  17. 49 CFR 172.316 - Packagings containing materials classed as ORM-D.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Packagings containing materials classed as ORM-D. 172.316 Section 172.316 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  18. 49 CFR 173.431 - Activity limits for Type A and Type B packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Activity limits for Type A and Type B packages. 173.431 Section 173.431 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS...

  19. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  20. Designing packaging to support the safe use of medicines at home.

    PubMed

    Ward, James; Buckle, Peter; John Clarkson, P

    2010-09-01

    In the light of a number of serious incidents in the UK resulting from accidental overdoses of methotrexate, this study investigated how the design of methotrexate packaging can influence patient safety, and aimed to collect evidence to provide a basis for the development of new concepts for revised designs by the pharmaceutical industry. The research found that patients using methotrexate experience a number of difficulties in using their medicines packaging, and as a result, resourcefully adopt a variety of "coping strategies" which may increase the risk of dosing errors. By investigating both the practice of methotrexate users, and the design of the system that supports methotrexate use, additional problems were observed across the healthcare system, meaning that the function of medicines packaging in ensuring safety may be even more critical than first suspected. As a result of this research the National Patient Safety Agency responded with a UK-wide programme of work to improve safety for patients, and continues to work with the pharmaceutical industry to develop more user-friendly packaging and labelling.

  1. 10 CFR 71.17 - General license: NRC-approved package.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL... licensee of the Commission to transport, or to deliver to a carrier for transport, licensed material in a...: ATTN: Document Control Desk, Director, Spent Fuel Project Office, Office of Nuclear Material Safety...

  2. 49 CFR 173.457 - Transportation of fissile material packages-specific requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transportation of fissile material packages-specific requirements. 173.457 Section 173.457 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL...

  3. 49 CFR 173.204 - Non-bulk, non-specification packagings for certain hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk, non-specification packagings for certain hazardous materials. 173.204 Section 173.204 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  4. 49 CFR 175.88 - Inspection, orientation and securing packages of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Inspection, orientation and securing packages of hazardous materials. 175.88 Section 175.88 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT...

  5. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS... rigid plastic Large Packaging must be manufactured from plastic material of known specifications and be of a strength relative to its capacity and to the service it is required to perform. In addition...

  6. The NASA Electronic Parts and Packaging (NEPP) Program - Presentation to Korean Aerospace Research Institute

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation will provide basic information about NASA's Electronic Parts and Packaging Program (NEPP), for sharing with representatives of the South Korean Aerospace Research Institute (KARI) as part of a larger presentation by Headquarters Office of Safety and Mission Assurance. The NEPP information includes mission and goals, history of the program, basic focus areas, strategies, deliverables and some examples of current tasks.

  7. Software safety

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy

    1987-01-01

    Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary: special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful.

  8. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    PubMed

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems.

  9. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  10. Generalized waste package containment model

    SciTech Connect

    Liebetrau, A.M.; Apted, M.J.

    1985-02-01

    The US Department of Energy (DOE) is developing a performance assessment strategy to demonstrate compliance with standards and technical requirements of the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) for the permanent disposal of high-level nuclear wastes in geologic repositories. One aspect of this strategy is the development of a unified performance model of the entire geologic repository system. Details of a generalized waste package containment (WPC) model and its relationship with other components of an overall repository model are presented in this paper. The WPC model provides stochastically determined estimates of the distributions of times-to-failure of the barriers of a waste package by various corrosion mechanisms and degradation processes. The model consists of a series of modules which employ various combinations of stochastic (probabilistic) and mechanistic process models, and which are individually designed to reflect the current state of knowledge. The WPC model is designed not only to take account of various site-specific conditions and processes, but also to deal with a wide range of site, repository, and waste package configurations. 11 refs., 3 figs., 2 tabs.

  11. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-02

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time.

  12. Waste Package Design Methodology Report

    SciTech Connect

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  13. Hazardous Material Packaging and Transportation

    SciTech Connect

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for a given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.

  14. Radioactive material package seal tests

    SciTech Connect

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

  15. Review of recent technological advances in high power LED packaging

    NASA Astrophysics Data System (ADS)

    Panahi, Allen S.

    2012-06-01

    High Power LED is poised to replace traditional lighting sources such as Fluorescent, HID, Halogen and conventional incandescent bulbs in many applications. Due to the solid state compact nature of the light source it is inherently rugged and reliable and has been the favored lighting source for most indoor and outdoor applications including many hazardous locations that impact, and safety environments including mining, bridge, Aerospace, Automotive . In order to accelerate this transition many enhancements and advances are taking place to improve on the reliability, and thermal performance of these devices. This paper explores the various improvements and advances made in the packaging of LEDs to enhance their performance

  16. ARPREC: An arbitrary precision computation package

    SciTech Connect

    Bailey, David H.; Yozo, Hida; Li, Xiaoye S.; Thompson, Brandon

    2002-09-01

    This paper describes a new software package for performing arithmetic with an arbitrarily high level of numeric precision. It is based on the earlier MPFUN package, enhanced with special IEEE floating-point numerical techniques and several new functions. This package is written in C++ code for high performance and broad portability and includes both C++ and Fortran-90 translation modules, so that conventional C++ and Fortran-90 programs can utilize the package with only very minor changes. This paper includes a survey of some of the interesting applications of this package and its predecessors.

  17. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  18. Examination of SR101 shipping packages

    SciTech Connect

    Daugherty, W. L.

    2015-03-01

    Four SR101 shipping packages were removed from service and provided for disassembly and examination of the internal fiberboard assemblies. These packages were 20 years old, and had experienced varying levels of degradation. Two of the packages were successfully disassembled and fiberboard samples were removed from these packages and tested. Mechanical and thermal property values are generally comparable to or higher than baseline values measured on fiberboard from 9975 packages, which differs primarily in the specified density range. While baseline data for the SR101 material is not available, this comparison with 9975 material suggests that the material properties of the SR101 fiberboard have not significantly degraded.

  19. UWV (Unmanned Water Vehicle) - Umbra Package v. 1.0

    SciTech Connect

    Fred Oppel, SNL 06134

    2012-09-13

    This package contains modules that model the mobility of systems moving in the water. This package currently models first order physics -basically a velocity integrator. This package depends on interface classes (typically base classes) that reside in the Mobility package.

  20. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Large Packaging. (d) A Large Packaging consisting of packagings within a framework must be so constructed that the packaging is not damaged by the framework and is retained within the framework at...