Science.gov

Sample records for 1p 19q deletion

  1. Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas.

    PubMed

    Bielle, Franck; Ducray, François; Mokhtari, Karima; Dehais, Caroline; Adle-Biassette, Homa; Carpentier, Catherine; Chanut, Anaïs; Polivka, Marc; Poggioli, Sylvie; Rosenberg, Shai; Giry, Marine; Marie, Yannick; Duyckaerts, Charles; Sanson, Marc; Figarella-Branger, Dominique; Idbaih, Ahmed

    2016-08-20

    The integrated diagnosis of anaplastic oligodendroglioma, IDH mutant and 1p/19q co-deleted, grade III (O3(id) ) is a histomolecular entity that WHO 2016 classification distinguished from other diffuse gliomas by specific molecular alterations. In contrast, its cell portrait is less well known. The present study is focused on intertumor and intratumor, cell lineage-oriented, heterogeneity in O3(id) . Based on pathological, transcriptomic and immunophenotypic studies, a novel subgroup of newly diagnosed O3(id) overexpressing neuronal intermediate progenitor (NIP) genes was identified. This NIP overexpression pattern in O3(id) is associated with: (i) morphological and immunohistochemical similarities with embryonic subventricular zone, (ii) proliferating tumor cell subpopulation with NIP features including expression of INSM1 and no expression of SOX9, (iii) mutations in critical genes involved in NIP biology and, (iv) increased tumor necrosis. Interestingly, NIP tumor cell subpopulation increases in O3(id) recurrence compared with paired newly diagnosed tumors. Our results, validated in an independent cohort, emphasize intertumor and intratumor heterogeneity in O3(id) and identified a tumor cell subpopulation exhibiting NIP characteristics that is potentially critical in oncogenesis of O3(id) . A better understanding of spatial and temporal intratumor cell heterogeneity in O3(id) will open new therapeutic avenues overcoming resistance to current antitumor treatments.

  2. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion.

    PubMed

    Kawaguchi, Tomohiro; Sonoda, Yukihiko; Shibahara, Ichiyo; Saito, Ryuta; Kanamori, Masayuki; Kumabe, Toshihiro; Tominaga, Teiji

    2016-09-01

    The prognosis of patients with WHO grade III gliomas is highly dependent on their genomic status such as the isocitrate dehydrogenase (IDH) 1/2 mutation and1p/19q co-deletion. However, difficulties have been associated with determining which tumors have certain genomic profiles by preoperative radiographical modalities, and the role of surgical resection in achieving better outcomes remains unclear. This retrospective study included 124 consecutive patients with newly diagnosed grade III gliomas. The genomic status of IDH1/2 and 1p/19q was analyzed in these patients. Tumors were then divided into 3 subgroups based on their genomic status; the IDH 1/2 mutation with the 1p/19q co-deletion (1p/19q co-del), the IDH 1/2 mutation without the 1p/19q co-deletion (non-1p/19q co-del), and the IDH 1/2 wild type (IDH wt). Survival times were compared between patients who underwent gross total resection and those who did not (GTR versus non-GTR). The relationships between genomic statuses and MR imaging characteristics such as ring-like or nodular enhancements by gadolinium, and very low intensity on T1-weighted images with blurry enhancements (T1VL) were also examined. Among all patients with grade III gliomas, GTR patients had longer median survival and progression-free times than those of non-GTR patients (undefined versus 87 months, p = 0.097, and 124 versus 34 months, p = 0.059, respectively). No significant differences were observed in survival between GTR and non-GTR patients in the 1p/19q co-del group (p = 0.14), or between GTR and non-GTR patients in the IDH wt group (26 and 27 months, p = 0.29). On the other hand, in non-1p/19q co-del group, survival was significantly longer in GTR patients than in non-GTR patients (undefined versus 77 months, p = 0.005). Radiographically, T1VL was detected in most tumors in the non-1p/19q co-del group (78.2 %), but only 6 (21.4 %) and 17 (41.5 %) tumors in the 1p/19q co-del and IDH wt groups

  3. Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic

    PubMed Central

    Aibaidula, Abudumijiti; Chen, Hong; Tang, Qisheng; Li, Kay Ka-Wai; Chung, Nellie Yuk-Fei; Chan, Danny Tat-Ming; Poon, Wai Sang; Mao, Ying; Wu, Jinsong; Zhou, Liangfu; Chan, Aden Ka-yin; Ng, Ho-Keung

    2016-01-01

    Although 1p/19q codeletion is the genetic hallmark defining oligodendrogliomas, approximately 30-40% of oligodendroglial tumors have intact 1p/19q in the literature and they demonstrate a worse prognosis. This group of 1p/19q intact oligodendroglial tumors is frequently suggested to be astrocytic in nature with TP53 and ATRX mutations but actually remains under-investigated. In the present study, we provided evidence that not all 1p/19q intact oligodendroglial tumors are astrocytic through histologic and molecular approaches. We examined 1p/19q status by FISH in a large cohort of 337 oligodendroglial tumors and identified 39.8% lacking 1p/19q codeletion which was independently associated with poor prognosis. Among this 1p/19q intact oligodendroglial tumor cohort, 58 cases demonstrated classic oligodendroglial histology which showed older patient age, better prognosis, association with grade III histology, PDGFRA expression, TERTp mutation, as well as frequent IDH mutation. More than half of the 1p/19q intact oligodendroglial tumors showed lack of astrocytic defining markers, p53 expression and ATRX loss. TP53 mutational analysis was additionally conducted in 45 cases of the 1p/19q intact oligodendroglial tumors. Wild-type TP53 was detected in 71.1% of cases which was associated with classic oligodendroglial histology. Importantly, IDH and TERTp co-occurred in 75% of 1p/19q intact, TP53 wild-type oligodendrogliomas, highlighting the potential of the co-mutations in assisting diagnosis of oligodendrogliomas in tumors with clear cell morphology and non-codeleted 1p/19q status. In summary, our study demonstrated that not all 1p/19q intact oligodendroglial tumors are astrocytic and co-evaluation of IDH and TERTp mutation could potentially serve as an adjunct for diagnosing 1p/19q intact oligodendrogliomas. PMID:27556304

  4. ImmunoFISH Is a Reliable Technique for the Assessment of 1p and 19q Status in Oligodendrogliomas

    PubMed Central

    Duval, Céline; de Tayrac, Marie; Sanschagrin, François; Michaud, Karine; Gould, Peter Vincent; Saikali, Stéphan

    2014-01-01

    Objective To develop a new ImmunoFISH technique for the study of oligodendrogliomas by combining a standard immunohistochemical stain using MIB-1 antibody with a standard FISH technique using commercial 1p36 and 19q13 chromosomal probes. Methods Validation was performed by two observers on a series of 36 pre-selected oligodendrogliomas and compared to the results previously determined by FISH alone. Results The ImFISH technique is easy to perform and to analyze and is no more time-consuming than the usual FISH technique. Our results show that the inter-observer reliability of ImFISH is high (κ = 0.86 and 0.95 respectively for 1p and 19q). Compared to FISH, the ImFISH exhibits a very high sensitivity (∼100%) and specificity (∼90%) for 1p and/or 19q deleted cases. The sensitivity is high for normal cases (∼85%) and imbalanced cases (∼90%) with a specificity ranging between 50 and 85%. Finally, there were no significant differences between FISH and ImFISH results calculated on 60, 40 or 20 cells. Conclusion Our study demonstrates the reliability of the ImFISH technique in oligodendrogliomas and emphasizes its advantage in poorly cellular tumoral specimen. PMID:24949947

  5. Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors.

    PubMed

    Mur, Pilar; Mollejo, Manuela; Ruano, Yolanda; de Lope, Ángel Rodríguez; Fiaño, Concepción; García, Juan Fernando; Castresana, Javier S; Hernández-Laín, Aurelio; Rey, Juan A; Meléndez, Bárbara

    2013-08-01

    Oligodendroglial tumors (OTs) are primary brain tumors that show variable clinical and biological behavior. The 1p/19q codeletion is frequent in these tumors, indicating a better prognosis and/or treatment response. Recently, the prognostically favorable CpG island methylator phenotype (CIMP) in gliomas (G-CIMP+) was associated with mutations in the isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 (IDH) genes, as opposed to G-CIMP- tumors, highlighting the relevance of epigenetic mechanisms. We performed a whole-genome methylation study in 46 OTs, and a gene expression study of 25 tumors, correlating the methylation and transcriptomic profiles with molecular and clinical variables. Here, we identified two different epigenetic patterns within the previously described main G-CIMP+ profile. Both IDH mutation-associated methylation profiles featured one group of OTs with 1p/19q loss (CD-CIMP+), most of which were pure oligodendrogliomas, and a second group with intact 1p/19q and frequent TP53 mutation (CIMP+), most of which exhibited a mixed histopathology. A third group of OTs lacking the CIMP profile (CIMP-), and with a wild-type IDH and an intact 1p/19q, similar to the G-CIMP- subgroup, was also observed. The three CIMP groups presented a significantly better (CD-CIMP+), intermediate (CIMP+) or worse (CIMP-) prognosis. Furthermore, transcriptomic analyses revealed CIMP-specific gene expression signatures, indicating the impact of genetic status (IDH mutation, 1p/19q codeletion, TP53 mutation) on gene expression, and pointing to candidate biomarkers. Therefore, the CIMP profiles contributed to the identification of subgroups of OTs characterized by different prognoses, histopathologies, molecular features and gene expression signatures, which may help in the classification of OTs.

  6. Contribution of 1p, 19q, 9p and 10q Automated Analysis by FISH to the Diagnosis and Prognosis of Oligodendroglial Tumors According to WHO 2016 Guidelines

    PubMed Central

    Michaud, Karine; de Tayrac, Marie; D’Astous, Myreille; Duval, Céline; Paquet, Claudie; Samassekou, Oumar; Gould, Peter Vincent; Saikali, Stéphan

    2016-01-01

    Objective To study the feasibility and the diagnostic and prognostic interest of automated analysis of 1p, 19q, 9p and 10q status by FISH technique in oligodendroglial tumors. Methods We analyzed a retrospective series of 33 consecutive gliomas with oligodendroglial histology (originally diagnosed as 24 oligodendrogliomas and 9 oligoastrocytomas). For all cases, automated FISH analysis of 1p, 19q, 9p and 10q status were performed and compared to clinical and histological data, ATRX, IDH1R132H and alpha-internexin status (studied by immunohistochemistry) and overall survival (OS). Manual analysis of 9p and 10q status were also performed and compared to automated analysis to verify the concordance of the two methods. Results The 33 gliomas were reclassified into 13 low-grade oligodendrogliomas (OII), 10 anaplastic oligodendrogliomas (OIII), 3 diffuse astrocytomas (AII), 3 anaplastic astrocytomas (AIII) and 4 glioblastomas (GBM) according to the WHO 2016 histological criteria. The 1p and/or 19q imbalanced status were restricted to astrocytomas with no correlation to their grade or their OS. Chromosome 9p deletion was restricted to OIII (70%) and GBM (100%) and was correlated with a shorter OS in the total cohort (p = 0.0007), the oligodendroglioma cohort (p = 0.03) and the astrocytoma cohort (p = 0.001). Concordance between 9p manual and automated analysis was satisfactory (81%, κ = 0.69). Chromosome 10q deletion was restricted to GBMs (50%) and was correlated with a poor OS in both the total cohort (p = 0.003) and the astrocytoma (AS) cohort (p = 0.04). Concordance between manual and automated analysis was satisfactory (79%, κ = 0.62). Conclusion Automated analysis of 1p, 19q, 9p and 10q status by FISH is a reliable technique which allows for refined classification of oligodendroglial tumors. 1p and/or 19q imbalanced status is evidence of astrocytic differentiation. 9p deletion is found in high grade oligodendrogliomas and astrocytomas with a poor OS. 10q is

  7. Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas

    PubMed Central

    Alentorn, Agustí; Dehais, Caroline; Ducray, François; Carpentier, Catherine; Mokhtari, Karima; Figarella-Branger, Dominique; Chinot, Olivier; Cohen-Moyal, Elisabeth; Ramirez, Carole; Loiseau, Hugues; Elouahdani-Hamdi, Selma; Beauchesne, Patrick; Langlois, Olivier; Desenclos, Christine; Guillamo, Jean-Sébastien; Dam-Hieu, Phong; Ghiringhelli, François; Colin, Philippe; Godard, Joel; Parker, Fabrice; Dhermain, Frédéric; Carpentier, Antoine F.; Frenel, Jean-Sebastien; Menei, Philippe; Bauchet, Luc; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Motuo-Fotso, Marie-Jeannette; Vauleon, Elodie; Gaultier, Claude; Le Guerinel, Caroline; Gueye, Edouard-Marcel; Noel, Georges; Desse, Nicolas; Durando, Xavier; Barrascout, Eduardo; Wager, Michel; Ricard, Damien; Carpiuc, Ioana; Delattre, Jean-Yves

    2015-01-01

    Objectives: We aimed to study the potential clinical relevance of 9p allelic loss, with or without copy number variation, in 1p/19q codeleted anaplastic oligodendroglial tumors (AOTs). Methods: This study enrolled 216 patients with 1p/19q codeleted AOT. The prognostic value of 9p allelic loss was investigated using a French nation-wide prospective registry, POLA (prise en charge des tumeurs oligodendrogliales anaplasiques) and high-density single nucleotide polymorphism arrays. We validated our results using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) dataset. Results: The minimal common region of allelic loss in chromosome arm 9p was 9p21.3. Allelic loss of 9p21.3, detected in 41.7% of tumors, was associated with shorter progression-free and overall survival rates in univariate (p = 0.008 and p < 0.001, respectively) and multivariate analyses (p = 0.009 and p = 0.009, respectively). This finding was validated in the REMBRANDT dataset in univariate and multivariate analysis (p = 0.01 and p = 0.01, respectively). Conclusion: Our study highlights a novel potential prognostic biomarker in 1p/19q codeleted AOT. Further prospective studies are warranted to investigate our finding. PMID:26385879

  8. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma

    SciTech Connect

    Kraus, J.A.; Koopmann, J.; Kaskel, P.

    1995-01-01

    Loss of heterozygosity (LOH) in specific chromosomal regions, which are likely to harbor tumor suppressor genes, has been associated with human gliomas. In this study we have analyzed astrocytic and oligodendroglial tumors for LOH on chromosomes 1 and 19. By microsatellite analysis LOH was found on chromosome arm 1p in 6/15 oligodendrogliomas WHO grade II and III, 12/25 oligoastrocytomas WHO grade II and III, 6/79 glioblastomas WHO grade IV, 5/44 astrocytomas WHO grade II and III and 0/23 pilocystic astrocytomas WHO grade I. The high incidence of LOH on chromosome arm 1p in oligodendrogliomas and oligoastrocytomas indicates that a putative tumor suppressor gene in this region is involved in the formation of gliomas with oligodendroglial features. Furthermore, the frequent involvement of chromosome arm 1p in oligodendrogliomas and oligoastrocytomas, but not in astrocytomas, suggests that genetically oligoastrocytoma is more similar to oligodendroglioma than to astrocytoma. In order to support this hypothesis, oligodendroglial and astrocytic areas in three mixed oligoastrocytomas were examined differentially for LOH 1p and for LOH 19q, the second genetic region believed to be affected in these tumors. All three tumors had LOH of 1p and LOH of 19q in both areas of oligodendroglial and of astrocytic differentiation. These findings show that the astrocytic and oligodendroglial portions of oligoastrocytoma share molecular genetic features and probably are of monoclonal origin. 32 refs., 2 figs., 1 tab.

  9. Automated Analysis of 1p/19q Status by FISH in Oligodendroglial Tumors: Rationale and Proposal of an Algorithm

    PubMed Central

    Duval, Céline; de Tayrac, Marie; Michaud, Karine; Cabillic, Florian; Paquet, Claudie; Gould, Peter Vincent; Saikali, Stéphan

    2015-01-01

    Objective To propose a new algorithm facilitating automated analysis of 1p and 19q status by FISH technique in oligodendroglial tumors with software packages available in the majority of institutions using this technique. Methods We documented all green/red (G/R) probe signal combinations in a retrospective series of 53 oligodendroglial tumors according to literature guidelines (Algorithm 1) and selected only the most significant combinations for a new algorithm (Algorithm 2). This second algorithm was then validated on a prospective internal series of 45 oligodendroglial tumors and on an external series of 36 gliomas. Results Algorithm 2 utilizes 24 G/R combinations which represent less than 40% of combinations observed with Algorithm 1. The new algorithm excludes some common G/R combinations (1/1, 3/2) and redefines the place of others (defining 1/2 as compatible with normal and 3/3, 4/4 and 5/5 as compatible with imbalanced chromosomal status). The new algorithm uses the combination + ratio method of signal probe analysis to give the best concordance between manual and automated analysis on samples of 100 tumor cells (91% concordance for 1p and 89% concordance for 19q) and full concordance on samples of 200 tumor cells. This highlights the value of automated analysis as a means to identify cases in which a larger number of tumor cells should be studied by manual analysis. Validation of this algorithm on a second series from another institution showed a satisfactory concordance (89%, κ = 0.8). Conclusion Our algorithm can be easily implemented on all existing FISH analysis software platforms and should facilitate multicentric evaluation and standardization of 1p/19q assessment in gliomas with reduction of the professional and technical time required. PMID:26135922

  10. Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas.

    PubMed

    Lass, Ulrike; Hartmann, Christian; Capper, David; Herold-Mende, Christel; von Deimling, Andreas; Meiboom, Maren; Mueller, Wolf

    2013-05-01

    Recent studies imply the importance of rapid and reliable diagnostic assessment of 1p/19q status in oligodendroglial tumors. To date, fluorescence in situ hybridization (FISH) is the most commonly applied technique. FISH, however, has several technical shortcomings that are suboptimal for diagnostic applications: results must be viewed in a fluorescence microscope, results are usually evaluated by a single investigator only, and signal fading excludes physical archiving. Also, in gliomas, the distinction of diffusely infiltrating tumor cells from reactively altered normal tissue may be challenging in fluorescence microscopy. Dual-color chromogenic in situ hybridization (CISH) has started to replace FISH in some diagnostic tests performed in pathology. Here, we present the first single institute experience with a side-by-side analysis of 1p/19q FISH and CISH in a series of 42 consecutive gliomas. FISH and CISH produced identical results for 1p and 19q in 93% of cases (n = 39/42). Discrepant results were reevaluated by repeated FISH and a polymerase chain reaction (PCR)-based microsatellite marker analysis for loss of heterozygosity. Reevaluation confirmed CISH data in all three cases. We conclude that CISH is a reliable alternative in 1p/19q testing in paraffin-embedded tissues likely to be more sensitive to detect 1p/19q status than FISH analysis.

  11. Simultaneous de novo interstitial deletion of 16q21 and intercalary duplication of 19q in a retarded infant with minor dysmorphic features.

    PubMed Central

    Trautmann, U; Pfeiffer, R A; Seufert-Satomi, U; Tietze, H U

    1993-01-01

    We report on a retarded infant with minor dysmorphic features in whom deletion 16 and duplication 19q were discovered. The karyotype is 46,XX,del(16) (q13.08-21.05),dup(19)(q13.13-13.2). The origin and significance of the aberrant chromosomes are unknown. Images PMID:8487285

  12. Impact of 1p/19q Codeletion and Histology on Outcomes of Anaplastic Gliomas Treated With Radiation Therapy and Temozolomide

    SciTech Connect

    Speirs, Christina K.; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd A.; Tran, David D.; Linette, Gerry; Chicoine, Michael R.; Dacey, Ralph G.; Rich, Keith M.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H.; Huang, Jiayi

    2015-02-01

    Purpose: Anaplastic gliomas represent a heterogeneous group of primary high-grade brain tumors, and the optimal postoperative treatment remains controversial. In this report, we present our institutional data on the clinical outcomes of radiation therapy (RT) plus temozolomide (RT + TMZ) for anaplastic gliomas, stratified by histology and 1p/19q codeletion. Methods and Materials: A single-institution retrospective review was conducted of patients with supratentorial anaplastic oligodendroglioma (AO), mixed anaplastic oligoastrocytoma (AOA), and anaplastic astrocytoma (AA). After surgery, RT was delivered at a median total dose of 60 Gy (range, 31.6-63 Gy) in daily fractions. All patients received standard concurrent TMZ, with or without adjuvant TMZ. Histological/molecular subtypes were defined as codeleted AO/AOA, non-codeleted AO/AOA, and AA. Results: From 2000 to 2012, 111 cases met study criteria and were evaluable. Codeleted AO/AOA had superior overall survival (OS) to non-codeleted AO/AOA (91% vs 68% at 5 years, respectively, P=.02), whereas progression-free survival (PFS) was not significantly different (70% vs 46% at 5 years, respectively, P=.10). AA had inferior OS to non-codeleted AO/AOA (37% vs 68% at 5 years, respectively, P=.007) and inferior PFS (27% vs 46%, respectively, P=.03). On multivariate analysis, age, performance status, and histological or molecular subtype were independent predictors for both PFS and OS. Compared to historical controls, RT + TMZ provided comparable OS to RT with procarbazine, lomustine, and vincristine (RT + PCV) for codeleted AO/AOA, superior OS to RT alone for non-codeleted AO/AOA, and similar OS to RT alone for AA. Conclusions: RT + TMZ may be a promising treatment for both codeleted and non-codeleted AO/AOA, but its role for AA remains unclear.

  13. 1p36 deletion syndrome: an update.

    PubMed

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.

  14. 1p36 deletion syndrome: an update

    PubMed Central

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. PMID:26345236

  15. Mitotic index, microvascular proliferation, and necrosis define 3 groups of 1p/19q codeleted anaplastic oligodendrogliomas associated with different genomic alterations

    PubMed Central

    Figarella-Branger, Dominique; Mokhtari, Karima; Dehais, Caroline; Jouvet, Anne; Uro-Coste, Emmanuelle; Colin, Carole; Carpentier, Catherine; Forest, Fabien; Maurage, Claude-Alain; Vignaud, Jean-Michel; Polivka, Marc; Lechapt-Zalcman, Emmanuelle; Eimer, Sandrine; Viennet, Gabriel; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Loussouarn, Delphine; Lacroix, Catherine; Rigau, Valérie; Laquerrière, Annie; Vandenbos, Fanny; Michalak, Sophie; Sevestre, Henri; Peoch, Michel; Labrousse, François; Christov, Christo; Kemeny, Jean-Louis; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Ducray, François; Idbaih, Ahmed; Desenclos, Christine; Menei, Philippe; Al Nader, Edmond; Godard, Joel; Servagi-Vernat, Stéphanie; Carpentier, Antoine; Loiseau, Hugues; Dam-Hieu, Phong; Guillamo, Jean Sebastien; Emery, Evelyne; Verelle, Pierre; Durando, Xavier; Faillot, Thierry; Le Guerinel, Caroline; Ghiringhelli, François; Parker, Fabrice; Adam, Clovis; Dubois, François; Ramirez, Carole; Gueye, Edouard Marcel; Honnorat, Jerome; Chinot, Olivier; Bauchet, Luc; Beauchesne, Patrick; Campone, Mario; Frenel, Jean Sébastien; Fontaine, Denys; Campello, Chantal; Roger, Pascal; Heitzmann, Anne; Fesneau, Mélanie; Delattre, Jean Yves; Elouadhani-Hamdi, Selma; Ricard, Damien; Colin, Philippe; Vauléon, Elodie; Langlois, Olivier; Fotso, Marie Janette Motsuo; Andraud, Marie; Mouton, Servane; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Cohen-Moyal, Elisabeth; Lubrano, Vincent; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate histological features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The histological characteristics of 203 AO patients, enrolled in the French national network POLA, were analyzed. The genomic profiles of 191 cases were studied using genomic arrays. IDH mutational status was assessed by immunohistochemistry and direct sequencing. Results 1p/19q codeletion was present in 79% of cases and was associated with alpha-internexin expression (P < 10−4), IDH1/2 mutation (P < 10−4), chromosome 4 loss (P < 10−3), and better overall survival (P < 10−4). Based on mitotic index, microvascular proliferation (MVP), and necrosis, 3 groups of 1p/19q codeleted AOs were identified: (group 1) AO with more than 5 mitoses per 10-HPF, no MVP, and no necrosis; (group 2) AO with MVP and no necrosis; and (group 3) AO with MVP and necrosis. Compared with group 1, groups 2 and 3 AOs had a higher mean Ki-67 proliferation index and a higher rate of 9p and 9q losses. Compared with group 2, group 3 AOs had a higher number of chromosomal alterations including chromosome 4 loss. In the subgroup of 157 1p/19q codeleted AOs, chromosomal instability was associated with shorter progression-free survival (P = .024) and shorter overall survival (P = .023). Conclusions The present study shows that oligodendrogliomas with classic histological features remain a molecularly heterogeneous entity and should be stratified according to 1p/19q status because of its major prognostic relevance. Moreover, 1p/19q codeleted AOs are also heterogeneous. Interestingly, mitotic index, MVP, and necrosis help to classify them into 3 groups associated with distinct genomic alterations. PMID:24723566

  16. Monosomy 1p36 deletion syndrome.

    PubMed

    Gajecka, Marzena; Mackay, Katherine L; Shaffer, Lisa G

    2007-11-15

    Monosomy 1p36 results from a heterozygous deletion of the most distal chromosomal band on the short arm of chromosome 1. Occurring in approximately 1 in 5,000 live births, monosomy 1p36 is the most common terminal deletion observed in humans. Monosomy 1p36 is associated with mental retardation, developmental delay, hearing impairment, seizures, growth impairment, hypotonia, and heart defects. The syndrome is also characterized by several distinct dysmorphic features, including large anterior fontanels, microcephaly, brachycephaly, deep-set eyes, flat nose and nasal bridge, and pointed chin. Several genes have been proposed as causative for individual features of the phenotype. In addition, based upon molecular characterization of subjects with monosomy 1p36, several mechanisms for the generation and stabilization of terminal deletions have been proposed.

  17. Radio-chemotherapy improves survival in IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma patients.

    PubMed

    Juratli, Tareq A; Lautenschläger, Tim; Geiger, Kathrin D; Pinzer, Thomas; Krause, Mechthild; Schackert, Gabriele; Krex, Dietmar

    2015-09-01

    Isocitrate dehydrogenase (IDH) mutations are beginning to drive decisions on therapy for glioma patients. Here we sought to determine the impact of adjuvant treatment in patients with IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma (sHGA) WHO grades III/IV. Clinical data of 109 sHGA patients grades III/IV, in addition to IDH mutation-, 1p/19q-codeletion- and MGMT-promoter methylation status-were retrospectively analyzed. Survival analysis in relation to adjuvant treatment modalities and molecular profiling were performed. Out of 109 patients, 88 patients (80.7 %) harbored IDH mutations, 30 patients had a 1p/19q-codeletion (27.5 %) and 69 patients (63.3 %) exhibited a methylated MGMT-promoter status. At a median follow-up of 9.8 years, 62 patients (57 %) died. The postsurgical treatment included: radio-chemotherapy (RT-CT; 54.5 %), RT alone (19.3 %), and CT alone (22.7 %). The median overall survival (OS) in the entire group was 3.4 years (1.9-6.7 years). Patients who received RT-CT had a significantly longer OS compared with those who underwent RT alone (6.5 vs. 1.2 years, HR 0.35, CI 0.32-0.51, p = 0.011). In the IDH-mutant 1p/19q non-codeleted sHGA subgroup the RT-CT cohort had a significantly longer OS in comparison to the RT cohort (6.4 vs. 1.2 years, HR 2.7, CI 1.1-6.5, p = 0.022). In the stepwise multivariable Cox model for OS of all 88 IDH-mutant sHGA patients, survival was strongly associated with only one factor, namely, adjuvant RT-CT at diagnosis of a sHGA. This retrospective long-term study demonstrates that RT and CT (mostly PCV) significantly improves progression-free and overall survival in IDH-mutant secondary high-grade astrocytoma patients, regardless of 1p/19q-codeletion status.

  18. Genetics Home Reference: 1p36 deletion syndrome

    MedlinePlus

    ... Understand Genetics Home Health Conditions 1p36 deletion syndrome 1p36 deletion syndrome Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description 1p36 deletion syndrome is a disorder that typically causes severe intellectual ...

  19. Deferred radiotherapy and upfront procarbazine–ACNU–vincristine administration for 1p19q codeleted oligodendroglial tumors are associated with favorable outcome without compromising patient performance, regardless of WHO grade

    PubMed Central

    Hata, Nobuhiro; Yoshimoto, Koji; Hatae, Ryusuke; Kuga, Daisuke; Akagi, Yojiro; Suzuki, Satoshi O; Iwaki, Toru; Shono, Tadahisa; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    Recently updated phase III trials revealed the favorable effect of add-on procarbazine-lomustine-vincristine chemotherapy (CT) to radiotherapy (RT) in treating anaplastic oligodendrogliomas with 1p19q codeletion (codel). However, the underlying rationality of deferring RT and upfront CT administration for these tumors is yet to be elucidated. Here, we retrospectively analyzed the long-term outcome of our case series with oligodendroglial tumors treated with deferred RT and upfront procarbazine+nimustine+vincristine (PAV) in the introduction administration. We enrolled 36 patients with newly diagnosed oligodendroglial tumors (17, grade II and 19, grade III) treated during 1999–2012 and followed up for a median period of 69.0 months. Their clinical and genetic prognostic factors were analyzed, and progression-free survival, overall survival (OS), and deterioration-free survival (DFS) were evaluated. Regardless of the WHO grade, the 25 patients with 1p19q codel tumors never received RT initially, and of these 25, 23 received PAV treatment upfront. The 75% OS of patients with 1p19q codel tumor was 135.3 months (did not reach the median OS), indicating a favorable outcome. Multivariate analysis revealed that IDH mutation and 1p19q, not WHO grade, are independent prognostic factors; furthermore, IDH and 1p19q status stratified the cohort into 3 groups with significantly different OS. The DFS explained the prolonged survival without declining performance in patients with both grade II and III 1p19q codel tumors. Deferred RT and upfront PAV treatment for 1p19q codel oligodendrogliomas were associated with favorable outcomes without compromising performance status, regardless of WHO grade. PMID:27895504

  20. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas

    PubMed Central

    Ichimura, K; Vogazianou, AP.; Liu, L; Pearson, DM.; Bäcklund, LM; Plant, K; Baird, K; Langford, CF.; Gregory, SG.; Collins, VP

    2009-01-01

    Astrocytic, oligodendroglial and mixed gliomas are the commonest gliomas in adults. They have distinct phenotypes and clinical courses, but as they exist as a continuous histological spectrum differentiating them can be difficult. Co-deletions of total 1p and 19q are found in the majority of oligodendrogliomas and considered as a diagnostic marker and a prognostic indicator. The 1p status of astrocytomas has not yet been thoroughly examined. Using a chromosome 1 tile path array, we investigated 108 adult astrocytic tumours for copy number alterations. Total 1p deletions were rare (2%), however partial deletions involving 1p36 were frequently identified in anaplastic astrocytomas (22%) and glioblastomas (34%). Multivariate analysis showed that patients with total 1p deletions had significantly longer survival (p=0.005). In 9 glioblastomas homozygous deletions at 1p36 were identified. No somatic mutations were found among the 5 genes located in the homozygously deleted region. However, the CpG island of TNFRSF9 was hypermethylated in 19% of astrocytic tumours and 87% of glioma cell lines. TNFRSF9 expression was upregulated after demethylation of glioma cell lines. Akt3 amplifications were found in four glioblastomas. Our results indicate that 1p deletions are common anaplastic astrocytomas and glioblastomas but are distinct from the 1p abnormalities in oligodendrogliomas. PMID:17934521

  1. Growth patterns of patients with 1p36 deletion syndrome.

    PubMed

    Sangu, Noriko; Shimojima, Keiko; Shimada, Shino; Ando, Tomohiro; Yamamoto, Toshiyuki

    2014-05-01

    1p36 deletion syndrome is one of the most common subtelomeric deletion syndromes. Obesity is frequently observed in patients with this syndrome. Thus, it is important to evaluate the growth status of an individual patient. For this purpose, we accumulated recorded growth data from 44 patients with this syndrome and investigated the growth patterns of patients. Most of the patients showed weight parameters within normal limits, whereas a few of these patients showed intrauterine growth delay and microcephaly. The length of the patients after birth was under the 50th centile in most patients. Many patients showed poor weight gain after birth, and only two female patients were overweight. These findings indicate two different phenotypes of the 1p36 deletion syndrome. The overweight patients with 1p36 deletion started excessive weight gain after two years of life. This characteristic of the patients with 1p36 deletion syndrome is similar to Prader-Willi syndrome.

  2. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  3. [An updated review of 1p36 deletion (monosomy) syndrome].

    PubMed

    Bello, Sabina; Rodríguez-Moreno, Antonio

    The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level.

  4. A girl with 1p36 deletion syndrome and congenital fiber type disproportion myopathy.

    PubMed

    Okamoto, Nobuhiko; Toribe, Yasuhisa; Nakajima, Tohru; Okinaga, Takeshi; Kurosawa, Kenji; Nonaka, Ikuya; Shimokawa, Osamu; Matsumoto, Noamichi

    2002-01-01

    Chromosome 1p36 deletion syndrome is characterized by hypotonia, moderate to severe developmental and growth retardation, and characteristic craniofacial dysmorphism. Muscle hypotonia and delayed motor development are almost constant features of the syndrome. We report a 4-year-old Japanese girl with 1p36 deletion syndrome whose muscle pathology showed congenital fiber type disproportion (CFTD) myopathy. This is the first case report of 1p36 deletion associated with CFTD. This association may indicate that one of the CFTD loci is located at 1p36. Ski proto-oncogene -/- mice have phenotypes that resemble some of the features observed in patients with 1p36 deletion syndrome. Because fluorescent in situ hybridization analysis revealed that the human SKI gene is deleted in our patient, some genes in 1p36, including SKI proto-oncogene, may be involved in muscle hypotonia and delayed motor development in this syndrome.

  5. Abdominal paraganglioma in a young woman with 1p36 deletion syndrome.

    PubMed

    Murakoshi, Miki; Takasawa, Kei; Nishioka, Masato; Asakawa, Masahiro; Kashimada, Kenichi; Yoshimoto, Takanobu; Yamamoto, Toshiyuki; Takekoshi, Kazuhiro; Ogawa, Yoshihiro; Shimohira, Masayuki

    2017-02-01

    1p36 deletion syndrome is the most common terminal deletion syndrome, and the genomic regions that contribute to specific 1p36 deletion syndrome-related phenotypes were recently identified. Deletions in the 1p36 region have been documented in various tumor tissues, which indicates correlation between loss of heterozygosity of 1p36 and tumor development, and the existence of tumor suppressors in this region. Therefore, it was suspected that patients with 1p36 deletion syndrome have a higher risk of tumor development; however, only a few child cases of neuroblastoma with 1p36 deletion syndrome have been reported. We report the first case of 1p36 deletion syndrome with paraganglioma (PGL) and include genetic investigation. The 24-year-old woman with 1p36 deletion syndrome had severe intellectual disability, dilated cardiomyopathy, and distinct dysmorphic features, and presented with persistent vomiting accompanied by hypertension (178/115 mmHg). Abdominal CT revealed a 40 × 50 mm retroperitoneal mass and substantial elevations of plasma and urine norepinephrine (15.4 nmol/L and 1022 µmol/mol creatinine, respectively); abnormal uptake of (123) I-MIBG in the tumor led to PGL diagnosis. The patient was not able to have surgery because of substantial surgical risks; however, a combination of α- and β-blockade was effective for blood pressure control. Array CGH revealed a deletion over 4.5 Mb, from the 1p telomere but excluding the SDHB region. Comprehensive mutational analysis of PGL-associated genes (RET, VHL, TMEM127, MAX, and SDHA/B/C/D) was negative. These results indicate that the germline 1p36 deletion might be "1st hit" of tumor development, and PGL might be a novel complication of 1p36 deletion syndrome. © 2016 Wiley Periodicals, Inc.

  6. Mini-Review: Monosomy 1p36 syndrome: reviewing the correlation between deletion sizes and phenotypes.

    PubMed

    Rocha, C F; Vasques, R B; Santos, S R; Paiva, C L A

    2016-02-22

    The major clinical features of monosomy 1p36 deletion are developmental delay and hypotonia associated with short stature and craniofacial dysmorphisms. The objective of this study was to review the cases of 1p36 deletion that was reported between 1999 and 2014, in order to identify a possible correlation between the size of the 1p36-deleted segment and the clinical phenotype of the disease. Scientific articles published in the (National Center for Biotechnology Information; NCBI http://www.ncbi.nlm.nih.gov/pubmed) and Scientific Electronic Library Online (www.scielo.com.br) databases were searched using key word combinations, such as "1p36 deletion", "monosomy 1p36 deletion", and "1p36 deletion syndrome". Articles in English or Spanish reporting the correlation between deletion sizes and the respective clinical phenotypes were retrieved, while letters, reviews, guidelines, and studies with mouse models were excluded. Among the 746 retrieved articles, only 17 (12 case reports and 5 series of cases), comprising 29 patients (9 males and 20 females, aged 0 months (neonate) to 22 years) bearing the 1p36 deletions and whose clinical phenotypes were described, met the inclusion criteria. The genotype-phenotype correlation in monosomy 1p36 is a challenge because of the variability in the size of the deleted segment, as well as in the clinical manifestations of similar size deletions. Therefore, the severity of the clinical features was not always associated with the deletion size, possibly because of the other influences, such as stochastic factors, epigenetic events, or reduced penetration of the deleted genes.

  7. Epilepsy and neurological findings in 11 individuals with 1p36 deletion syndrome.

    PubMed

    Kurosawa, Kenji; Kawame, Hiroshi; Okamoto, Nobuhiko; Ochiai, Yukikatsu; Akatsuka, Akira; Kobayashi, Masahisa; Shimohira, Masayuki; Mizuno, Seiji; Wada, Kazuko; Fukushima, Yoshimitsu; Kawawaki, Hisashi; Yamamoto, Toshiyuki; Masuno, Mitsuo; Imaizumi, Kiyoshi; Kuroki, Yoshikazu

    2005-08-01

    The 1p36 deletion syndrome is a newly delineated multiple congenital anomalies/mental retardation syndrome characterized by mental retardation, growth delay, epilepsy, congenital heart defects, characteristic facial appearance, and precocious puberty. We analyzed 11 patients by fluorescence in situ hybridization (FISH) using commercially available bacterial artificial chromosome and P1-derived artificial chromosome genomic clones to define the chromosomal deletion responsible for the 1p36 deletion syndrome. Cytogenetic investigation revealed two cases with a terminal deletion of 1p36. Nine patients had an apparently normal karyotype with standard G-bands by trypsin using Giemsa (GTG), but FISH screening with the highly polymorphic genetic marker D1Z2, which is mapped to 1p36.3 and contains an unusual reiterated 40-bp variable number tandem repeat, revealed a submicroscopic deletion. All patients had severe to profound mental retardation. Based on the University of California Santa Cruz Genome Browser, we constructed a deletion map and analyzed the relationship between neurological findings and chromosomal deletions for the 11 cases. Six cases had intractable epilepsy and three had no seizures. The common deletion interval was about 1 million base pairs (Mbp) located between RP11-82D16 and RP4-785P20 (Rho guanine exchange factor (GEF) 16). The severity of clinical symptoms correlates with the size of the deletion. This is demonstrated by the 3 patients with at least 8Mbp deletions that display profound mental retardation and congenital heart defects. Although haploinsufficiency of the potassium channel beta-subunit (KCNAB2) is thought to be responsible for intractable seizures in the 1p36 deletion syndrome, this was not the case for 3 of the 11 patients in this study. Further investigation of the 1p36 region is necessary to allow identification of genes responsible for the 1p36 deletion syndrome.

  8. Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions.

    PubMed

    Wu, Y Q; Heilstedt, H A; Bedell, J A; May, K M; Starkey, D E; McPherson, J D; Shapira, S K; Shaffer, L G

    1999-02-01

    The deletion of chromosome 1p36 is a newly recognized, relatively common contiguous gene deletion syndrome with a variable phenotype. The clinical features have recently been delineated and molecular analysis indicates that the prevalence of certain phenotypic features appears to correlate with deletion size. Phenotype/genotype comparisons have allowed the assignment of certain clinical features to specific deletion intervals, significantly narrowing the regions within which to search for candidate genes. We have extensively characterized the deletion regions in 30 cases using microsatellite markers and fluorescence in situ hybridization analyses. The map order of 28 microsatellite markers spanning the deletion region was obtained by a combination of genotypic analysis and physical mapping. The deletion region was divided into six intervals and breakpoints were found to cluster in mainly two regions. Molecular analysis of the deletions showed that two patients had complex re-arrangements; these cases shared their distal and proximal breakpoints in the two common breakpoint regions. Of the de novo deletions ( n = 28) in whichparental samples were available and the analysis was informative ( n = 27), there were significantly morematernally derived deletions ( n = 21) than paternally derived deletions ( n = 6) (chi1(2) = 8.35, P < 0.0001). Phenotype/genotype correlations and refinements of critical regions in our naturally occurring deletion panel have delineated specific areas in which to focus the search for the causative genes for the features of this syndrome.

  9. Novel airway findings in a patient with 1p36 deletion syndrome.

    PubMed

    Ferril, Geoffrey R; Barham, Henry P; Prager, Jeremy D

    2014-01-01

    1p36 deletion syndrome comprises a phenotypic presentation that includes central nervous system, cardiac, and craniofacial anomalies. There has been no report of associated airway anomalies with this syndrome. We present here a case report and literature review. Prenatally, amniocentesis for chromosomal analysis was performed on our patient, with results consistent with 1p36 deletion syndrome. Respiratory distress and unsuccessful attempts at intubation prompted transfer to Children's Hospital of Colorado. Microlaryngoscopy was subsequently performed, revealing a persistent buccopharyngeal membrane and unidentifiable larynx. Emergent tracheostomy was then performed to secure the airway. Airway anomalies may be associated with 1p36 deletion syndrome.

  10. Identification of proximal 1p36 deletions using array-CGH: a possible new syndrome.

    PubMed

    Kang, S-H L; Scheffer, A; Ou, Z; Li, J; Scaglia, F; Belmont, J; Lalani, S R; Roeder, E; Enciso, V; Braddock, S; Buchholz, J; Vacha, S; Chinault, A C; Cheung, S W; Bacino, C A

    2007-10-01

    Monosomy 1p36 is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. Typically, the deletions span <10 Mb of 1pter-1p36.23 and result in mental retardation, developmental delay, sensorineural hearing loss, seizures, cardiomyopathy and cardiovascular malformations, and distinct facies including large anterior fontanel, deep-set eyes, straight eyebrows, flat nasal bridge, asymmetric ears, and pointed chin. We report five patients with 'atypical' proximal interstitial deletions from 1p36.23-1p36.11 using array-comparative genomic hybridization. Four patients carry large overlapping deletions of approximately 9.38-14.69 Mb in size, and one patient carries a small 2.97 Mb deletion. Interestingly, these patients manifest many clinical characteristics that are different from those seen in 'classical' monosomy 1p36 syndrome. The clinical presentation in our patients included: pre- and post-natal growth deficiency (mostly post-natal), feeding difficulties, seizures, developmental delay, cardiovascular malformations, microcephaly, limb anomalies, and dysmorphic features including frontal and parietal bossing, abnormally shaped and posteriorly rotated ears, hypertelorism, arched eyebrows, and prominent and broad nose. Most children also displayed hirsutism. Based on the analysis of the clinical and molecular data from our patients and those reported in the literature, we suggest that this chromosomal abnormality may constitute yet another deletion syndrome distinct from the classical distal 1p36 deletion syndrome.

  11. Mild developmental delay and obesity in two patients with mosaic 1p36 deletion syndrome.

    PubMed

    Shimada, Shino; Maegaki, Yoshihiro; Osawa, Makiko; Yamamoto, Toshiyuki

    2014-02-01

    We identified mosaic 1p36 deletions in two patients with developmental delay, distinctive features, and obesity, who can walk alone and communicate with others. Thus, their neurological defects are milder than those in typical patients with 1p36 deletion syndrome because most patients with 1p36 deletion cannot acquire expressive language. Chromosomal microarray testing revealed 3.0 and 4.5 Mb aberrations in the subtelomeric region of the short arm of chromosome 1. Mean signal ratios of the identified aberrations were -0.4 and -0.5, indicating mosaicism, which was confirmed by fluorescence in situ hybridization analysis with a mosaic ratio of 70% and 77%, respectively. Previous studies demonstrated that deletion of the distal 2-3 Mb region would be responsible for hyperphagia and obesity seen in patients. On the other hand, the severity of the neurological defect often correlates with the size of the terminal deletion of 1p36, and patients with larger deletions of 1p36 would usually show severely impaired developmental milestones and be immobile and aphasic. In such cases, hyperphagia and obesity could be clinically masked. In this study, two patients with mosaic deletions of 1p36 showed obesity as a consequence of hyperphagia. This study suggests that patients with 1p36 deletion would be at risk for hyperphagia and obesity when they have both risk factors, that is, (1) deletions including the 2-3 Mb critical region and (2) milder phenotypes that allow them to reach food on their own and to overeat.

  12. [Turner syndrome and monosomy 1p36 deletion syndrome misdiagnosed as thyropenia: report of one case].

    PubMed

    Meng, Xubiao; Li, Zhiming; Liu, Tingting; Wen, Zhiming

    2013-12-01

    A 21-year-old woman with a short stature presented with primary amenorrhoea and a 45X karyotype, and comparative genomic hybridization revealed 1p36 deletion and abnormal genes in multiple chromosomes to support the diagnosis of Turner syndrome and monosomy 1p36 deletion syndrome. The main clinical features of this condition include microsomia, poor sexual development, menoschesis, gigantorectum, absence of internal genitalia, sometimes with thyropenia and low intelligence. This disease can be easily diagnosed for its heterogeneous clinical manifestations.

  13. Polymicrogyria and infantile spasms in a patient with 1p36 deletion syndrome.

    PubMed

    Saito, Yoshiaki; Kubota, Masaya; Kurosawa, Kenji; Ichihashi, Izumi; Kaneko, Yuu; Hattori, Ayako; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2011-05-01

    A 3-months-old boy presented with partial seizures that soon evolved into infantile spasms. Magnetic resonance imaging revealed bilateral perisylvian polymicrogyria with right-sided predominance. ACTH therapy successfully controlled epilepsy and electroencephalograms were normalized. Conventional G-banded chromosomal analysis was performed due to his distinctive features and a derivative chromosome 1 derived from parental balanced translocation with a karyoptype of 46,XY,der(1)t(1;4)(p36.23;q35) was detected. Fluorescent in situ hybridization analysis confirmed the deleted region of 1p36 as large as 8.6Mb. This is the first delineation of concurrent complications of infantile spasms and polymicrogyria in patient with 1p36 deletion. 1p36 deletion syndrome should be broadly recognized as a differential diagnosis of regional polymicrogyria and/or infantile spasms.

  14. Recurrent interstitial 1p36 deletions: Evidence for germline mosaicism and complex rearrangement breakpoints.

    PubMed

    Gajecka, Marzena; Saitta, Sulagna C; Gentles, Andrew J; Campbell, Lindsey; Ciprero, Karen; Geiger, Elizabeth; Catherwood, Anne; Rosenfeld, Jill A; Shaikh, Tamim; Shaffer, Lisa G

    2010-12-01

    Deletions of chromosome 1p36 are one of the most frequently encountered subtelomeric alterations. Clinical features of monosomy 1p36 include neurocognitive impairment, hearing loss, seizures, cardiac defects, and characteristic facial features. The majority of cases have occurred sporadically, implying that genomic instability plays a role in the prevalence of the syndrome. Here, we report two siblings with mild phenotypic features of the deletion syndrome, including developmental delay, hearing loss, and left ventricular non-compaction (LVNC). Microarray analysis using bacterial artificial chromosome and oligonucleotide microarrays indicated the deletions were identical, suggesting germline mosaicism. Parental phenotypes were normal, and analysis by fluorescence in situ hybridization (FISH) did not show mosaicism. These small interstitial deletions were not detectable by conventional subtelomeric FISH analysis. To investigate the mechanism of deletion further, the breakpoints were cloned and sequenced, demonstrating the presence of a complex rearrangement. Sequence analysis of genes in the deletion interval did not reveal any mutations on the intact homologue that may have contributed to the LVNC seen in both children. This is the first report of apparent germline mosaicism for this disorder. Thus, our findings have important implications for diagnostic approaches and for recurrence risk counseling in families with a child with monosomy 1p36. In addition, our results further refine the minimal critical region for LVNC and hearing loss.

  15. Delineating the phenotype of 1p36 deletion in adolescents and adults.

    PubMed

    Brazil, Ashley; Stanford, Kevin; Smolarek, Teresa; Hopkin, Robert

    2014-10-01

    1p36 deletion is the most common telomeric deletion syndrome, with an incidence of 1/5,000-1/10,000. A variety of clinical complications have been reported including seizures, hypotonia, heart malformations, cardiomyopathy, vision problems, and hearing loss. Approximately 90% are reported to have severe to profound intellectual disability and 75% to have absent expressive language. Little is known about long-term outcomes. The current literature suggests a poor prognosis for most patients. This study attempted to assess medical conditions and function of adolescent and adult patients with 1p36 deletion. A survey was distributed through three support groups to identify patients >12 years of age to assess functional status and medical problems in older patients with 1p36 deletion syndrome. 40 patients were identified between 12 and 46 years old. Among our survey sample, medical complications including seizures, hypotonia, structural heart defects, hearing loss, and vision problems, were similar to previous reports. However, functional skills were better than anticipated, with an overwhelming majority reported to independently sit, walk, and receive the majority of nutrition orally. Forty-four percent were reported to use complex speech abilities. While medical problems in patients with 1p36 deletion were similar to those that have been previously reported, we also demonstrated these same concerns persist into adolescence and adulthood. Additionally, patients were reported to have better functional skills than anticipated. Thus, quality of life and level of function appear to be better than anticipated from previous studies. © 2014 Wiley Periodicals, Inc.

  16. Alterations of the RRAS and ERCC1 genes at 19q13 in gemistocytic astrocytomas.

    PubMed

    Ohta, Takashi; Kim, Young-Ho; Oh, Ji-Eun; Satomi, Kaishi; Nonoguchi, Naosuke; Keyvani, Kathy; Pierscianek, Daniela; Sure, Ulrich; Mittelbronn, Michel; Paulus, Werner; Vital, Anne; Yokoo, Hideaki; McDonald, Kerrie; Kleihues, Paul; Nazaret, Nicolas; Barbet, Fabienne; Lachuer, Joel; Ohgaki, Hiroko

    2014-10-01

    Gemistocytic astrocytoma (World Health Organization grade II) is a rare variant of diffuse astrocytoma that is characterized by the presence of neoplastic gemistocytes and has a significantly less favorable prognosis. Other than frequent TP53 mutations (>80%), little is known about its molecular profile. Here, we show that gemistocytic astrocytomas carry a lower frequency of IDH mutations than fibrillary astrocytomas (74% vs 92%; p = 0.0255) but have profiles similar to those of fibrillary astrocytomas with respect to TERT promoter mutations (5% vs 0%), 1p/19q loss (10% vs 8%), and loss of heterozygosity 10q (10% vs 12%). Exome sequencing in 5 gemistocytic astrocytomas revealed homozygous deletion of genes at 19q13 (i.e. RRAS [related RAS viral oncogene homolog; 2 cases] and ERCC1 [excision repair cross-complementing rodent repair deficiency, complementation group 1; 1 case]). Further screening showed RRAS homozygous deletion in 7 of 42 (17%) gemistocytic astrocytomas and in 3 of 24 (13%) IDH1 mutated secondary glioblastomas. Patients with gemistocytic astrocytoma and secondary glioblastoma with an RRAS deletion tended to have shorter survival rates than those without deletion. Differential polymerase chain reaction and methylation-specific polymerase chain reaction revealed an ERCC1 homozygous deletion or promoter methylation in 10 of 42 (24%) gemistocytic astrocytomas and in 8 of 24 (33%) secondary glioblastomas. Alterations in RRAS and ERCC1 appear to be typical in gemistocytic astrocytomas and secondary glioblastomas, since they were not present in 49 fibrillary astrocytomas or 30 primary glioblastomas.

  17. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay

    PubMed Central

    Seo, Go Hun; Kim, Ja Hye; Cho, Ja Hyang; Kim, Gu-Hwan; Seo, Eul-Ju; Lee, Beom Hee; Choi, Jin-Ho

    2016-01-01

    Purpose The 1p36 deletion syndrome is a microdeletion syndrome characterized by developmental delays/intellectual disability, craniofacial dysmorphism, and other congenital anomalies. To date, many cases of this syndrome have been reported worldwide. However, cases with this syndrome have not been reported in Korean populations anywhere. This study was performed to report the clinical and molecular characteristics of five Korean patients with the 1p36 deletion syndrome. Methods The clinical characteristics of the 5 patients were reviewed. Karyotyping and multiplex ligation-dependent probe amplification (MLPA) analyses were performed for genetic diagnoses. Results All 5 patients had typical dysmorphic features including frontal bossing, flat right parietal bone, low-set ears, straight eyebrows, down-slanting palpebral fissure, hypotelorism, flat nasal roots, midface hypoplasia, pointed chins, small lips, and variable degrees of developmental delay. Each patient had multiple and variable anomalies such as a congenital heart defect including ventricular septal defect, atrial septal defect, and patent duct arteriosus, ventriculomegaly, cryptorchism, or hearing loss. Karyotyping revealed the 1p36 deletion in only 1 patient, although it was confirmed in all 5 patients by MLPA analyses. Conclusion All the patients had the typical features of 1p36 deletion. These hallmarks can be used to identify other patients with this condition in their early years in order to provide more appropriate care. PMID:26893599

  18. OEIS complex associated with chromosome 1p36 deletion: a case report and review.

    PubMed

    El-Hattab, Ayman W; Skorupski, Josh C; Hsieh, Michael H; Breman, Amy M; Patel, Ankita; Cheung, Sau Wai; Craigen, William J

    2010-02-01

    OEIS complex (Omphalocele, Exstrophy of the cloaca, Imperforate anus, and Spine abnormalities) is a rare defect with estimated incidence of 1 in 200,000 live births. Most cases are sporadic, with no obvious cause. However, it has been rarely reported in patients with family members having similar malformations or with chromosomal anomalies. In addition, OEIS complex has been observed in association with environmental exposures, twinning, and in vitro fertilization. Monosomy 1p36 is the most common terminal deletion syndrome, with a prevalence of 1 in 5,000 newborns. It is characterized by specific facial features, developmental delay, and heart, skeletal, genitourinary, and neurological defects. We describe an infant with OEIS complex and 1p36 deletion who had features of both disorders, including omphalocele, cloacal exstrophy, imperforate anus, sacral multiple segmentation, renal malposition and malrotation, genital anomalies, diastasis of the symphysis pubis, microbrachycephaly, large anterior fontanel, cardiac septal defects, rib fusion, a limb deformity, developmental delay, and typical facial features. Chromosomal microarray analysis detected a 2.4 Mb terminal deletion of chromosome 1p. This is the first reported case with OEIS complex in association with a chromosome 1p36 deletion.

  19. Is 1p36 deletion associated with anterior body wall defects?

    PubMed

    Çöllü, Medis; Yüksel, Şirin; Şirin, Başak Kumbasar; Abbasoğlu, Latif; Alanay, Yasemin

    2016-07-01

    Epispadias and exstrophy of the cloaca, also known as OEIS complex (omphalocele, exstrophy, imperforate anus, spinal defects), respectively constitute the most benign and severe ends of the bladder exstrophy-epispadias complex (BEEC) spectrum. In 2009, El-Hattab et al. reported the first patient with OEIS complex associated with a chromosome 1p36 deletion. Here we report a second patient with 1p36 deletion who also has classic bladder exstrophy, supporting the possible role of genes in this region in the development of BEEC. The absence of omphalocele and imperforate anus in our patient places him toward classic bladder exstrophy while presence of spina bifida and the absence of coccyx suggest an overlap with OEIS complex. An additional differential diagnosis is the pentalogy of Cantrell in our patient as he also has a diaphragmatic hernia and an incomplete sternum. This is the second observation of a ventral midline birth defect in association with 1p36 deletion syndrome, following El-Hattab et al.'s report [2009]. The three genes (NOCL2, DVL1, and MMP23B) discussed as possible candidates are also among the deleted ones in our patient, supporting the possible role of these genes in BEEC spectrum. © 2016 Wiley Periodicals, Inc.

  20. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.

    PubMed

    Wei, Na; Xu, Haiqing; Kim, Soo Rin; Jin, Yong-Su

    2013-05-01

    Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD(+)/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.

  1. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  2. Dying at 23 with 1p36 deletion syndrome: Laura's family story.

    PubMed

    Tandy, P A

    2012-09-01

    Laura was unusual. She had always been different and at times difficult. She was born with a genetic disorder, diagnosed as 1p36 deletion syndrome when she was 21 years old. At 23 she suffered her first cardiac arrest at home and entered the hospital system for the first time apart from infancy. After initially appearing to do well, she suffered a second cardiac arrest 10 weeks after admission. This was followed by an irreversible deterioration and she died 14 weeks after admission. We her family had been with her throughout her traumatic experience. This is our story.

  3. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome.

    PubMed

    Zanardo, Évelin Aline; Piazzon, Flavia Balbo; Dutra, Roberta Lelis; Dias, Alexandre Torchio; Montenegro, Marília Moreira; Novo-Filho, Gil Monteiro; Costa, Thaís Virgínia Moura Machado; Nascimento, Amom Mendes; Kim, Chong Ae; Kulikowski, Leslie Domenici

    2014-12-01

    Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease. We here report one case of a patient with atypical clinical features of the 1p36 syndrome and the use of cytogenomic techniques to characterize the genomic alterations. Analysis by multiplex ligation-dependent probe amplification and array revealed a complex rearrangement in the 1p36.3 region with deletions and duplication interspaced by normal sequences. We also suggest that chromoanagenesis could be a possible mechanism involved in the repair and stabilization of this rearrangement.

  4. [Effect of carbamazepine on epilepsy with 1p36 deletion syndrome].

    PubMed

    Nabatame, Shin; Okinaga, Takeshi; Imai, Katsumi; Kamio, Noriko; Kagitani-Shimono, Kuriko; Nagai, Toshisaburo; Kurosawa, Kenji; Ozono, Keiichi

    2007-07-01

    The 1p36 deletion syndrome is caused by submicroscopic deletion in the subtelomeric region of chromosome 1. Epilepsy is one of the most important features of the syndrome, in addition to the characteristic facial appearance, cardiac anomaly, dysphagia, deafness, mental retardation and growth delay. We identified three patients with this syndrome and assessed the features of complicated epilepsy. In all cases, epilepsy developed during infancy. The seizure types were mainly focal seizure and multiple seizure types including tonic seizure and tonic-clonic seizure. Interictal electroencephalogram showed focal abnormalities. Noticeably, two developed epileptic spasms and hypsarrhythmia in electroencephalogram, just after the administration of carbamazepine (CBZ). Including cases showing epileptic spasms, their epilepsy was easily tractable with anti-epileptic drugs, which could be withdrawn as they aged. All had deleted potassium channel beta subunit (KCNAB2) and gamma-aminobutyric acid A receptor delta (GABRD). CBZ may aggravate various epileptic syndromes, especially, those caused by GABA-A receptor gene mutation. Our cases may suggest the novel correspondence of GABA-A receptor-related epilepsy syndrome and exacerbation of epilepsy triggered by CBZ.

  5. Refinement of causative genes in monosomy 1p36 through clinical and molecular cytogenetic characterization of small interstitial deletions.

    PubMed

    Rosenfeld, Jill A; Crolla, John A; Tomkins, Susan; Bader, Patricia; Morrow, Bernice; Gorski, Jerome; Troxell, Robin; Forster-Gibson, Cynthia; Cilliers, Deirdre; Hislop, R Gordon; Lamb, Allen; Torchia, Beth; Ballif, Blake C; Shaffer, Lisa G

    2010-08-01

    Monosomy 1p36 is the most common terminal deletion syndrome seen in humans, occurring in approximately 1 in 5,000 live births. Common features include mental retardation, characteristic dysmorphic features, hypotonia, seizures, hearing loss, heart defects, cardiomyopathy, and behavior abnormalities. Similar phenotypes are seen among patients with a variety of deletion sizes, including terminal and interstitial deletions, complex rearrangements, and unbalanced translocations. Consequently, critical regions harboring causative genes for each of these features have been difficult to identify. Here we report on five individuals with 200-823 kb overlapping deletions of proximal 1p36.33, four of which are apparently de novo. They present with features of monosomy 1p36, including developmental delay and mental retardation, dysmorphic features, hypotonia, behavioral abnormalities including hyperphagia, and seizures. The smallest region of deletion overlap is 174 kb and contains five genes; these genes are likely candidates for some of the phenotypic features in monosomy 1p36. Other genes deleted in a subset of the patients likely play a contributory role in the phenotypes, including GABRD and seizures, PRKCZ and neurologic features, and SKI and dysmorphic and neurologic features. Characterization of small deletions is important for narrowing critical intervals and for the identification of causative or candidate genes for features of monosomy 1p36 syndrome.

  6. Refined FISH characterization of a de novo 1p22-p36.2 paracentric inversion and associated 1p21-22 deletion in a patient with signs of 1p36 microdeletion syndrome.

    PubMed

    Finelli, P; Giardino, D; Russo, S; Gottardi, G; Cogliati, F; Grugni, G; Natacci, F; Larizza, L

    2001-04-01

    We report on a 10-year-old boy presenting with obesity, moderate mental retardation, large anterior fontanelle at birth, mild physical anomalies including mid-face hypoplasia, deep-set eyes, long philtrum, and small mouth. He was found to carry a paracentric inversion inv(1)(p22p36.2) associated with a 10 cM deletion at the proximal breakpoint. By YAC FISH, the boundaries of the deletion were established at IB1028 (1p21) and WI-5166 (1p22) STSs contained in YACs 781E8 and 954F6, respectively. This large region, covering about 10 cM, contains the COL11A1 and AMY2B genes, whose haploinsufficiency does not seem to contribute significantly to the clinical phenotype. On the other hand, the patient's clinical manifestations, also including visual problems and moderate mental retardation, are those typically observed in the 1p36 deletion syndrome. Refined mapping of the telomeric 1p36.2 inversion breakpoint was obtained by FISH of a PAC contig constructed to encompass this subinterval of the 1p36 microdeletion syndrome region. PACs 1024B10 and 884E7 were found to span the breakpoint, suggesting that the clinical signs of the 1p36 microdeletion syndrome might be due to disruption of a sequence lying at 1p36.2.

  7. Mild craniosynostosis with 1p36.3 trisomy and 1p36.3 deletion syndrome caused by familial translocation t(Y;1).

    PubMed

    Hiraki, Yoko; Fujita, Hiroko; Yamamori, Shunji; Ohashi, Hirofumi; Eguchi, Maki; Harada, Naoki; Mizuguchi, Takeshi; Matsumoto, Naomichi

    2006-08-15

    We report on a 20-year-old man and a 16-year-old woman with a chromosomal imbalance derived from a balanced translocation, t(Y;1)(q12;p36.3) of the father. The man had a partial trisomy for 1p36.3-pter [46,X,der(Y)t(Y:1)(q12;p36.3)] and mild craniosynostosis of metopic and sagittal sutures as well as a borderline mental impairment, while the woman with a deletion for 1p36.3-pter [46,XX,der(1)t(Y;1)(q12;p36.3)] showed dysmorphic face with large anterior fontanel and severe developmental delay. Fluorescence in situ hybridization (FISH) showed that his trisomy spanned the 5.3-Mb region from 1p telomere harboring the critical region for craniosynostosis. To our knowledge, the man is the first case of a pure type of simple 1p36.3 trisomy as the effect of heterochromatic Yq12-qter deletion likely does not affect phenotype.

  8. 1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

    PubMed Central

    Kang, Dong Soo; Shin, Eunsim

    2016-01-01

    Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000–10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year- and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia. PMID:28018437

  9. 1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis.

    PubMed

    Kang, Dong Soo; Shin, Eunsim; Yu, Jeesuk

    2016-11-01

    Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year- and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.

  10. FISH analysis of hematological neoplasias with 1p36 rearrangements allows the definition of a cluster of 2.5 Mb included in the minimal region deleted in 1p36 deletion syndrome.

    PubMed

    Lahortiga, Idoya; Vázquez, Iria; Belloni, Elena; Román, José P; Gasparini, Patrizia; Novo, Francisco J; Zudaire, Isabel; Pelicci, Pier G; Hernández, Jesús M; Calasanz, María J; Odero, María D

    2005-05-01

    Rearrangements in the distal region of the short arm of chromosome 1 are recurrent aberrations in a broad spectrum of human neoplasias. However, neither the location of the breakpoints (BP) on 1p36 nor the candidate genes have been fully determined. We have characterized, by fluorescence in situ hybridization (FISH), the BP in 26 patients with hematological neoplasias and 1p36 rearrangements in the G-banding karyotype. FISH allowed a better characterization of all samples analyzed. Nine cases (35%) showed reciprocal translocations, 15 (58%) unbalanced rearrangements, and two (7%) deletions. We describe two new recurrent aberrations. In 18 of the 26 cases analyzed the BP were located in band 1p36, which is 25.5 Mb long. In 14 of these 18 cases (78%) and without distinction between myeloid and lymphoid neoplasias, the BP clustered in a 2.5 Mb region located between 1p36.32 and the telomere. Interestingly, this region is contained in the 10.5 Mb cluster on 1p36.22-1pter defined in cases with 1p36 deletion syndrome. The 2.5 Mb region, located on 1p36.32-1pter, has a higher frequency of occurrence of tandem repeats and segmental duplications larger than 1 kb, when compared with the 25.5 Mb of the complete 1p36 band. This could explain its proneness for involvement in chromosomal rearrangements in hematological neoplasias.

  11. Pathologic features of dilated cardiomyopathy with localized noncompaction in a child with deletion 1p36 syndrome.

    PubMed

    Pearce, F Bennett; Litovsky, Silvio H; Dabal, Robert J; Robin, Nathaniel; Dure, Leon J; George, James F; Kirklin, James K

    2012-01-01

    Dilated cardiomyopathy and ventricular noncompaction have been reported in association with deletion 1p36 syndrome. Previous descriptions include echocardiographic and/or gross pathologic descriptions. There are no previous reports of microscopic findings. We report a case with descriptions of echocardiographic, gross pathologic, and microscopic findings.

  12. [A case of partial 1p36.1 deletion and partial trisomy 6p diagnosed by karyotype].

    PubMed

    Fernández Pineda, Monica; Ramírez-Cheyne, Julián; Isaza, Carolina; Saldarriaga, Wilmar

    The deletion of chromosomal region 1p36 is one of the most common sub-telomeric microdeletion syndromes and has distinctive dysmorphic features. On the other hand, partial trisomy of the short arm of chromosome 6 is a rare chromosomal abnormality with a variable phenotype.

  13. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.

    PubMed

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M Khaled; Plovie, Eva R; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, Andreas A; Kalwa, Hermann; Heinig, Matthias; Padera, Robert F; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, Paul J; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, Stuart A; MacRae, Calum A; Klaassen, Sabine

    2013-07-11

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.

  14. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    PubMed Central

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D. J.

    2016-01-01

    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  15. Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions.

    PubMed

    Ballif, Blake C; Yu, Wei; Shaw, Chad A; Kashork, Catherine D; Shaffer, Lisa G

    2003-09-01

    Terminal deletions of 1p36 result in a mental retardation syndrome that is presumably caused by haploinsufficiency of a number of genes. Although monosomy 1p36 is the most commonly observed terminal deletion syndrome in humans, the molecular mechanism(s) that generates and stabilizes terminal deletions of 1p36 is not completely understood. Our previous molecular analysis of a large cohort of monosomy 1p36 subjects demonstrated that deletion sizes vary widely from approximately 1 Mb to >10.5 Mb in the most distal portion of 1p36 with no single common breakpoint. In this report, we have identified the precise breakpoint junctions in three subjects with apparently pure terminal deletions of 1p36 ranging from 2.5 to 4.25 Mb. These junctions revealed one deletion to be stabilized by telomeric repeat sequences and two to have terminal deletions associated with cryptic interrupted inverted duplications at the ends of the chromosomes. These interrupted inverted duplication/deletion breakpoints are reminiscent of those seen in tumor cell lines that have undergone breakage-fusion-bridge (BFB) cycles leading to gene amplification. We propose a pre-meiotic model for the formation of these deletions in which a terminally deleted chromosome is generated in the germ line and passes through at least one BFB cycle to produce gametes with terminal deletions associated with interrupted inverted duplications. These data suggest that, on a molecular level, seemingly pure terminal deletions visualized cytogenetically may be more complex, and BFB cycles may play an important role in generating terminal deletions associated with genetic disease in humans.

  16. Neurodevelopmental profile of a new dysmorphic syndrome associated with submicroscopic partial deletion of 1p36.3.

    PubMed

    Knight-Jones, E; Knight, S; Heussler, H; Regan, R; Flint, J; Martin, K

    2000-03-01

    We describe four children with dysmorphic syndrome with severe learning disability (SLD). Their chromosomes had been normal on conventional cytogenetic examination. However, screening using a multiprobe fluorescence in situ hybridisation (FISH) technique for subtelomeric abnormalities revealed a deletion of the p arm of chromosome 1. The physical features include body asymmetry, microcephaly, distinctive facies with deep-set eyes, sharply defined eye sockets, and mid-face hypoplasia; the neurodevelopmental profile was characterised by SLD, motor delay with hypotonia, markedly delayed visual maturation, and postural asymmetry together with epilepsy. This phenotype is consistent with that described for partial monosomy for 1p36.3.

  17. 576 kb deletion in 1p36.33-p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy.

    PubMed

    Zhu, Xin; Zhang, Yi; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2013-10-10

    1p36 deletion (monosomy 1p36) is one of the most common terminal deletions observed in humans, characterized by special facial features, mental retardation, heart defects, development delay and epilepsy. Previously, we reported molecular findings in patients with limb, congenital heart disease (CHD) and other malformations with SNP-array. In a syndromic patient of the same cohort, we detected a small deletion of 1p36.33-p36.32 containing SKI (Sloan-Kettering Institute protooncoprotein). Recently, dominant mutations in SKI were identified to be correlated with Shprintzen-Goldberg syndrome. Retrospective examination revealed this patient with limb malformations, CHD, epilepsy and mild development delay. Together with previous reports, our study suggests that the 1p36.33-1p36.32 deletion encompassing SKI may represents a previous undescribed microdeletion disorder.

  18. Left-ventricular non-compaction (LVNC): a clinical feature more often observed in terminal deletion 1p36 than previously expected.

    PubMed

    Cremer, Kirsten; Lüdecke, Hermann-Josef; Ruhr, Frauke; Wieczorek, Dagmar

    2008-01-01

    Deletion of 1p36 (OMIM 607872) is estimated to be the most common distal terminal deletion syndrome. We describe a previously unreported, typically affected two-month-old girl with this microdeletion syndrome, who additionally suffers from left-ventricular non-compaction (LVNC). Recently, this congenital heart defect, characterized by prominent left-ventricular trabeculae and deep intertrabecular recesses, was reported in 12 further patients (excluding those reported only in abstract form) with terminal deletion of 1p36, leading to the conclusion that this cardiomyopathy is common in patients with this chromosomal aberration. We hypothesize that a gene in 1p36 might be responsible for LVNC.

  19. Chromosome 1p31.1p31.3 Deletion in a Patient with Craniosynostosis, Central Nervous System and Renal Malformation: Case Report and Review of the Literature.

    PubMed

    Rivera-Pedroza, Carlos I; Barraza-García, Jimena; Paumard-Hernández, Beatriz; Nevado, Julian; Orbea-Gallardo, Carlos; Sánchez Del Pozo, Jaime; Heath, Karen E

    2017-01-01

    Interstitial deletions in the short arm of chromosome 1 are infrequent. We report a female with a 1p31.1p31.3 deletion and cloverleaf skull, who presented with renal and central nervous system malformations, cleft palate, severe ocular anomalies, and cutis laxa, in addition to the previously described clinical data present in other cases with deletions encompassing this region, such as developmental delay, seizures, round face with a prominent nose, micro/retrognathia, half-opened mouth, short neck, hand/foot malformations, hernia, congenital heart malformations, and abnormal external genitalia. The deletion spanned ∼18.6 Mb and included a total of 68 OMIM protein coding genes. We have reviewed 17 cases previously described in the literature and in DECIPHER involving the chromosomal region 1p31.1p31.3. Only 3 of these affect the whole region, 9 are partial deletions of this region, and 5 are much smaller deletions. Taking into account the MORBID ID and the haploinsufficiency score of the genes, we go on to propose which genes may explain particular clinical features observed in the patient. IL23R may be responsible for the craniosynostosis, FOXD2 for the renal anomalies, LHX8 for closure defects of the palate, and ST6GALNAC3 for skin anomalies. In summary, we have identified a chromosome 1p31.1p31.3 deletion in a patient with an atypical presentation of craniosynostosis amongst other more typical features observed in individuals with similar deletions.

  20. An 8.9 Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9 Mb 2q23.3q24.1 deletion containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q between-arm insertion.

    PubMed

    Lybaek, Helle; Ørstavik, Karen Helene; Prescott, Trine; Hovland, Randi; Breilid, Harald; Stansberg, Christine; Steen, Vidar Martin; Houge, Gunnar

    2009-07-01

    In a 2 and a half-year-old girl with onset of puberty before the age of 5 months, short stature, hand anomalies and severe mental retardation, an 8.9 Mb interstitial 19p13 duplication containing 215 predicted genes was detected. It was initially assumed that the duplication involved the kisspeptin receptor gene, GPR54, known to stimulate induction of puberty, but more refined duplication mapping excluded this possibility. In an attempt to further understand the genotype-phenotype correlation, global gene expression was measured in skin fibroblasts. The overall expression pattern was quite similar to controls, and only about 25% of the duplicated genes had an expression level that was increased by more than 1.3-fold, with no obvious changes that could explain the precocious puberty. The proband's mother carried a balanced between-arm insertion of the duplicated segment that resembled a pericentric inversion. The same insertion was found in several other family members, including one who had lost a daughter with severe mental retardation and menarche at the age of 10 years. Another close relative was severely mentally retarded, but neither dysmorphic nor microcephalic. His phenotype was initially ascribed to a presumed cryptic chromosome 19 imbalance caused by the 19p-into19q insertion, but subsequent array-CGH detected a 3.9-Mb deletion of 2q23.3q24.1. This novel microdeletion involves seven genes, of which FMNL2, a suggested regulator of Rho-GTPases, and NR4A2, an essential gene for differentiation of dopaminergic neurons, may be critical genes for the proposed 2q23q24 microdeletion syndrome.

  1. Bilateral perisylvian polymicrogyria, periventricular nodular heterotopia, and left ventricular noncompaction in a girl with 10.5-11.1 Mb terminal deletion of 1p36.

    PubMed

    Saito, Shoji; Kawamura, Rie; Kosho, Tomoki; Shimizu, Takashi; Aoyama, Koki; Koike, Kenichi; Wada, Takahito; Matsumoto, Naomichi; Kato, Mitsuhiro; Wakui, Keiko; Fukushima, Yoshimitsu

    2008-11-15

    Monosomy 1p36 is a common subtelomeric microdeletion syndrome, characterized by craniofacial dysmorphisms, developmental delay, mental retardation, hypotonia, epilepsy, cardiovascular complications, and hearing impairment; deleted regions have been mapped within 10.0 Mb from the telomere in most documented cases. We report on a girl with a 10.5-11.1 Mb terminal deletion of 1p36 shown by fluorescence in situ hybridization (FISH). She had three distinct structural abnormalities: bilateral perisylvian polymicrogyria, periventricular nodular heterotopia, and left ventricular noncompaction. She died in early infancy with intractable epilepsy, progressive congestive heart failure and pulmonary hypertension. To date, this is the first case with monosomy 1p36, complicated by this combination of manifestations; she is also the first who had possibly a simple terminal deletion of 1p36 and died in early infancy. An atypically large deletion in this patient might be the basis for the development of these features and the severe clinical course.

  2. Deletion of the mouse homolog of KCNAB2, a gene linked to monosomy 1p36, results in associative memory impairments and amygdala hyperexcitability.

    PubMed

    Perkowski, John J; Murphy, Geoffrey G

    2011-01-05

    Ablation of the distal end of the short arm of chromosome 1 [1p36 deletion syndrome (1p36DS)] is one of the most commonly occurring terminal deletion syndromes in humans, occurring in ∼1 in 5000 newborns. Subjects with 1p36DS manifest a wide range of clinical features including growth delay, congenital heart defects, and craniofacial dysmorphism. In addition, individuals with 1p36DS often exhibit some form of neurological abnormality and are typically cognitively impaired. Although there is significant variability with regard to the extent of the deletion, several genes have been mapped to region 1p36 that are known to regulate neuronal function. One such gene--KCNAB2--encodes the potassium channel auxiliary subunit Kvβ2, which has been previously shown to modulate voltage-gated potassium currents in heterologous expression systems. Here, we present experiments characterizing mice in which the ortholog of KCNAB2 was deleted. We find that deletion of Kcnab2 in mice leads to deficits in associative learning and memory. In addition, using whole-cell current-clamp, we find that deletion of Kcnab2 leads to a reduction in the slow afterhyperpolarization following a burst of action potentials and a concomitant increase in neuronal excitability in projection neurons in the lateral nucleus of the amygdala. Our results suggest that loss of Kvβ2 likely contributes to the cognitive and neurological impairments observed in 1p36DS patients.

  3. A gene truncation strategy generating N- and C-terminal deletion variants of proteins for functional studies: mapping of the Sec1p binding domain in yeast Mso1p by a Mu in vitro transposition-based approach

    PubMed Central

    Poussu, Eini; Jäntti, Jussi; Savilahti, Harri

    2005-01-01

    Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5′-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79–N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector. PMID:16006618

  4. Cytogenetic and array CGH characterization of de novo 1p36 duplications and deletion in a patient with congenital cataracts, hearing loss, choanal atresia, and mental retardation.

    PubMed

    Chen, Emily; Obolensky, Elise; Rauen, Katherine A; Shaffer, Lisa G; Li, Xu

    2008-11-01

    We describe a 14-year-old boy with congenital bilateral cataracts, blepharophimosis, ptosis, choanal atresia, sensorineural hearing loss, short, webbed neck, poor esophageal motility, severe growth and mental retardation, skeletal anomalies, seizures, and no speech. As an infant, he had transient hypogammaglobulinemia requiring IVIG therapy. Cytogenetic studies show an apparently de novo visible duplication at 1p36.3. Fluorescence in situ hybridization (FISH) studies confirm that the common region for the 1p36 deletion syndrome (p58) is duplicated. Probes for D1Z2 at 1p36.3 and the subtelomeric region of 1p (TEL1p) are also duplicated. Array comparative genomic hybridization (aCGH) studies were done at three separate laboratories, each with somewhat different results. BAC whole genome array CGH suggests a single clone gain at the 1p terminus and a single clone deletion at 1p36.3. A targeted BAC array panel with higher resolution at the distal 1p36 region detects a telomeric duplication and an interstitial deletion. Oligonucleotide whole genomic aCGH shows the highest resolution and a more complex rearrangement: two duplications, an interstitial deletion, and a normal region. The MMP23A/B "matrix metalloproteinase 23A/B" genes are within the distal duplication region in our patient, and this patient does not have craniosynostosis. This is the first association of congenital cataracts, choanal atresia, and transient immune abnormalities with 1p36 duplication/deletion. This case illustrates the limitations of different cytogenetic technologies, and shows how three separate aCGH platforms allow for refined delineation and interpretation of the complex cytogenetic rearrangement which would not have been discovered by standard high-resolution chromosome analysis.

  5. Monosomy 1p36 breakpoints indicate repetitive DNA sequence elements may be involved in generating and/or stabilizing some terminal deletions.

    PubMed

    Ballif, Blake C; Gajecka, Marzena; Shaffer, Lisa G

    2004-01-01

    Monosomy 1p36 is the most commonly observed terminal deletion syndrome in humans. Our previous molecular studies on a large cohort of subjects suggest that monosomy 1p36 can result from a variety of chromosomal rearrangements including terminal truncations, interstitial deletions, derivative chromosomes, inverted duplications, and complex rearrangements. However, the mechanism(s) by which rearrangements of 1p36 are generated and/or stabilized is not understood. Sequence analysis of breakpoint junctions may provide valuable clues to the underlying mechanisms of many chromosomal aberrations. In this report, we analyze the breakpoints at the DNA-sequence level in four subjects with variable-sized deletions of 1p36. All four breakpoints fall within repetitive DNA-sequence elements (LINEs, SINEs, etc). This suggests that repetitive DNA-sequence elements may play an important role in generating and/or stabilizing terminal deletions of 1p36. Mechanisms by which repetitive elements may be involved in the process of terminal deletion formation and stabilization are discussed.

  6. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions

    PubMed Central

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K.; Cho, Megan T.; Schnur, Rhonda E.; Monaghan, Kristin G.; Juusola, Jane; Rosenfeld, Jill A.; Bhoj, Elizabeth; Zackai, Elaine H.; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G.M.; de Vries, Bert B.A.; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R.; van Haelst, Mieke M.; van Gassen, Koen L.I.; van Binsbergen, Ellen; Barkovich, A. James; Scott, Daryl A.; Sherr, Elliott H.

    2016-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  7. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    PubMed

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-05

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.

  8. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice.

    PubMed

    Colmenares, Clemencia; Heilstedt, Heidi A; Shaffer, Lisa G; Schwartz, Stuart; Berk, Michael; Murray, Jeffrey C; Stavnezer, Ed

    2002-01-01

    Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.

  9. FISH analysis of a patient with a constitutional 1p36 deletion defines a region for a neuroblastoma tumor suppressor gene

    SciTech Connect

    Biegel, J.; Hilliard, C.; White, P.

    1994-09-01

    Molecular and cytogenetic studies of neuroblastoma have implicated the presence of one or more tumor suppressor genes on chromosome 1p. We previously reported a neuroblastoma patient with a constitutional interstitial deletion of 1p36. As one means of further defining the deleted region, we have analyzed a series of chromosome 1p36 specific probes by FISH to metaphase chromosomes from a lymphoblastoid cell line established from the patient. We have also tested these probes on a neuroblastoma cell line, NGP, which has a t(1;15) translocation involving 1p36. The probes analyzed to date in order from centromere to telomere include ID-3 (heir-1), D1S56, D1S160, and CDC2L1 (p58). Cosmids for ID-3 and D1S56 were present in 2 copies and proximal to the breakpoint in the constitutional case, and retained on the derivative 1 in NGP. CDC2L1 was also present in 2 copies in the constitutional case, but is distal to the deletion. In NGP, CDC2L1 was translocated to the derivative 15. The D1S160 locus was deleted from one of the chromosomes 1 in the constitutional case, and was present in three copies in NGP: on the normal chromosome 1, the derivative chromosome 1, and the derivative chromosome 15. Molecular studies have suggested that there is a duplication involving this region in NGP, and so it is not clear where the translocation breakpoint is in this cell line. These studies have localized a critical region for a neuroblastoma tumor suppressor gene to 1p36.2, distal to D1S56, proximal to CDC2L1, and including D1S160. This region overlaps with the smallest area of deletion defined by loss of heterozygosity studies of primary neuroblastomas and neuroblastoma cell lines. Additional studies with probes that flank the D1S160 locus will facilitate a molecular cloning approach for a neuroblastoma tumor suppressor gene.

  10. The human glia maturation factor-gamma gene: genomic structure and mutation analysis in gliomas with chromosome 19q loss.

    PubMed

    Peters, N; Smith, J S; Tachibana, I; Lee, H K; Pohl, U; Portier, B P; Louis, D N; Jenkins, R B

    1999-09-01

    Human glia maturation factor-gamma (hGMF-gamma) is a recently identified gene that may be involved in glial differentiation, neural regeneration, and inhibition of tumor cell proliferation. The gene maps to the long arm of chromosome 19 at band q13.2, a region that is frequently deleted in human malignant gliomas and is thus suspected to harbor a glioma tumor suppressor gene. Given the putative role of hGMF-gamma in cell differentiation and proliferation and its localization to chromosome 19q13, this gene is an interesting candidate for the chromosome 19q glioma tumor suppressor gene. To evaluate this possibility, we determined the genomic structure of human hGMF-gamma and performed mutation screening in a series of 41 gliomas with and without allelic loss of chromosome 19q. Mutations were not detected, which suggests that hGMF-gamma is not the chromosome 19q glioma suppressor gene. However, the elucidation of the genomic structure of hGMF-gamma may prove useful in future investigations of hGMF-gamma in the normal adult and developing human nervous system.

  11. Clinical presentation of two β-thalassemic Indian patients with 1p36 deletion syndrome: Case report.

    PubMed

    De, Puspal; Chatterjee, Tridip; Chakravarty, Sudipa; Chakravarty, Amit

    2014-09-01

    Here, we present two thalassemic patients (one male and one female), having unusual clinical phenotypes. Both had mental retardation in which one was associated with microcephaly and other had congenital cataract. They were referred to our institute for clinical evaluation and cytogenetic testing. Both patients were tested for presence of abnormal hemoglobin by high performance liquid chromatography and found to be thalassemic. Their β-globin mutation was also determined by amplification refractory mutation system-polymerase chain reaction. The male patient was found to have intervening sequence 1-5 (G-C)/+, indicating β-thalassemia trait and the female was found to have Cod 26 (G-A)/IVS 1-5 (G-C), indicating hemoglobin E-β thalassemia. Their cytogenetic analysis of blood lymphocytes were studied with high-resolution GTG-banding analysis by using chromosome profiling (Cyto-vision software 3.6) on their chromosomes. Results revealed 46,XY,del(1)(p36.21) in the male and 46,XX,del(1)(p36.3) in the female. Their genotype variation showed (based on genome browser) significant gene loss which probably leads to marked phenotype variation. We believe, thalassemia with mental retardation associated with microcephaly and congenital cataract, both having loss in chromosome 1, p36 position, is reported probably first time from India. This report will definitely enlighten all concerns and add to the information in growing literature.

  12. Type II diabetes and impaired glucose tolerance due to severe hyperinsulinism in patients with 1p36 deletion syndrome and a Prader-Willi-like phenotype

    PubMed Central

    2014-01-01

    Background Deletion of the subtelomeric region of 1p36 is one of the most common subtelomeric deletion syndromes. In monosomy 1p36, the presence of obesity is poorly defined, and glucose metabolism deficiency is rarely reported. However, the presence of a typical Prader-Willi-like phenotype in patients with monosomy 1p36 is controversial. Case presentation In this report, we describe two female patients, one who is 6 years 2 months of age and another who is 10 years 1 month of age, both referred to our hospital for obesity and a Prader-Willi-like phenotype. These patients presented with severe obesity (body mass index [BMI] was 26.4 and 27.7, respectively), hyperphagia and developmental delay. Analysis of basal hormone levels showed normal thyroid function and adrenal function but considerable basal hyperinsulinism (the insulin levels were 54.5 and 49.2 μU/ml, respectively). In patient 1, glycaemia was 75 mg/dl (HOMA-R 10.09), and the HbA1c level was 6.1%; in patient 2, glycaemia was 122 mg/dl, and the HbA1c level was 6.6% (HOMA-R 14.82). An oral glucose tolerance test demonstrated impaired glucose tolerance and diabetes mellitus with marked insulin resistance (the peak insulin level for each patient was 197 and 279 μU/mL, respectively, while the 120’ insulin level of each patient was 167 and 234 μU/mL, respectively). Conclusion some patients with monosomy 1p36 may show Prader-Willi-like physical and physiologic characteristics such as obesity and hyperinsulinism with impaired glucose metabolism, which can cause type II diabetes mellitus. Further studies are necessary to evaluate these findings. PMID:24479866

  13. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity.

    PubMed

    D'Angelo, Carla S; Moller Dos Santos, Mauren F; Alonso, Luis G; Koiffmann, Celia P

    2015-07-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified 'new' microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD.

  14. Two New Cases of 1p21.3 Deletions and an Unbalanced Translocation t(8;12) among Individuals with Syndromic Obesity

    PubMed Central

    D'Angelo, Carla S.; Moller dos Santos, Mauren F.; Alonso, Luis G.; Koiffmann, Celia P.

    2015-01-01

    Obesity is a highly heritable but genetically heterogeneous disorder. Various well-known microdeletion syndromes (e.g. 1p36, 2q37, 6q16, 9q34, 17p11.2) can cause this phenotype along with intellectual disability (ID) and other findings. Chromosomal microarrays have identified ‘new’ microdeletion/duplication syndromes often associated with obesity. We report on 2 unrelated patients with an overlapping region of deletion at 1p21.3p21.2, and a third patient with a de novo recurrent unbalanced translocation der(8)t(8;12)(p23.1;p13.31), detected by 180K array CGH in a prospective cohort of syndromic obesity patients. Deletion of 1p21.3 is a rare condition, and there have been only 11 cases of the same recurrent translocation between chromosomes 8 and 12 [t(8;12)] reported to date. The former has been associated with ID, autistic spectrum disorder (ASD) and mild dysmorphic features, and in 4 patients who were obese or had a tendency to obesity, a minimal overlapping region of 2 genes, DPYD and MIR137, was detected; t(8;12) has recently been recognized to cause a childhood obesity syndrome due to duplication of the GNB3 gene. Thus, our findings add to the existing literature on the clinical description of these new syndromes, providing additional support that these loci are associated with syndromic obesity. We suggest that heterozygous loss of MIR137 may contribute to obesity as well as ID and ASD. PMID:26279650

  15. Interstitial deletion 1p36.32 in two brothers with a distinct phenotype--overgrowth, macrocephaly and nearly normal intellectual function.

    PubMed

    Di Donato, N; Klink, B; Hahn, G; Schrock, E; Hackmann, K

    2014-09-01

    We report on two adult patients, who both presented with overgrowth and one of them additionally with macrocephaly while carrying an 1p36 microdeletion of about 2.1 Mb. They are full brothers born to unaffected parents. Although both brothers attended special schools, they lived independently without a legal guardian and were able to succeed in regular jobs. One of the brothers received a professional education. Genetic analysis of the parents revealed neither the microdeletion nor a cryptical translocation or inversion. We suggest that the recurrent deletion is a result of germline mosaicism, a phenomenon reported only once in the context of the 1p36 microdeletion syndrome. Our report confirms the recurrence of the apparently de novo 1p36 microdeletion due to a likely germline mosaicism of one of the parents. Furthermore, it illustrates the possibility of the distinct phenotype with a nearly normal intellectual outcome of the 1p36 microdeletion syndrome that might be due to the region involved in our patients.

  16. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions.

    PubMed

    Kim, Bum Jun; Zaveri, Hitisha P; Shchelochkov, Oleg A; Yu, Zhiyin; Hernández-García, Andrés; Seymour, Michelle L; Oghalai, John S; Pereira, Fred A; Stockton, David W; Justice, Monica J; Lee, Brendan; Scott, Daryl A

    2013-01-01

    Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala), which we identified in an N-ethyl-N-nitrosourea (ENU)-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN)-positive hippocampal neurons, hearing loss, cardiovascular malformations-aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects-spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute-alone or in conjunction with other genetic, environmental, or stochastic factors-to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the proximal region of

  17. Regional deletion and amplification on chromosome 6 in a uveal melanoma case without abnormalities on chromosomes 1p, 3 and 8.

    PubMed

    van Gils, Walter; Kilic, Emine; Brüggenwirth, Hennie T; Vaarwater, Jolanda; Verbiest, Michael M; Beverloo, Berna; van Til-Berg, Marjan E; Paridaens, Dion; Luyten, Gregorius P; de Klein, Annelies

    2008-02-01

    Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Loss of the long arm and gain of the short arm of chromosome 6 are frequently observed chromosomal aberrations in UM, together with loss of chromosome 1p36, loss of chromosome 3 and gain of chromosome 8. This suggests the presence of one or more oncogenes on 6p and tumor suppressor genes at 6q that are involved in UM development. Both regions, however, have not been well defined yet. Furthermore in other neoplasms gain of 6p and loss of 6q are frequently occurring events. In this case report, we describe the delineation of a partial gain on chromosome 6p and a partial deletion on 6q in a UM with the objective to pinpoint smaller candidate regions on chromosome 6 involved in UM development. Conventional cytogenetics, comparative genomic hybridization (CGH) and fluorescence in-situ hybridization (FISH) were used to delineate regions of loss and gain on chromosome 6 in this UM patient. With conventional cytogenetics a deleted region was found on chromosome 6q that was further delineated to a region ranging from 6q16.1 to 6q22 using CGH and FISH. A region of gain from 6pter to 6p21.2 was also demarcated with CGH and FISH. No other deletions or amplifications on recurrently involved chromosomes were found in this patient. This study indicates the presence of one or more tumor suppressor genes on chromosomal region 6q16.1-6q22 and the presence of one or more oncogenes on chromosomal region 6pter-6p21.2, which are likely to be important in UM and other tumors.

  18. Prader-Willi-like phenotype: investigation of 1p36 deletion in 41 patients with delayed psychomotor development, hypotonia, obesity and/or hyperphagia, learning disabilities and behavioral problems.

    PubMed

    D'Angelo, Carla S; Da Paz, José A; Kim, Chong A; Bertola, Débora R; Castro, Claudia I E; Varela, Monica C; Koiffmann, Célia P

    2006-01-01

    Monosomy 1p36 is one of the most commonly observed mental retardation (MR) syndromes that results in a clinically recognizable phenotype including delayed psychomotor development and/or MR, hypotonia, epilepsy, hearing loss, growth delay, microcephaly, deep-set eyes, flat nasal bridge and pointed chin. Besides, a Prader-Willi syndrome (PWS)-like phenotype has been described in patients with 1p36 monosomy. Forty-one patients presenting hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who tested negative for PWS were investigated by FISH and/or microsatellite markers. Twenty-six were analyzed with a 1p-specific subtelomeric probe, and one terminal deletion was identified. Thirty patients (15 of which also studied by FISH) were investigated by microsatellite markers, and no interstitial 1p36 deletion was found. Our patient presenting the 1p36 deletion did not have the striking features of this monosomy, but her clinical and behavioral features were quite similar to those observed in patients with PWS, except for the presence of normal sucking at birth. The extent of the deletion could be limited to the most terminal 2.5 Mb of 1p36, within the chromosomal region 1p36.33-1p36.32, that is smaller than usually seen in monosomy 1p36 patients. Therefore, chromosome 1p36.33 deletion should be investigated in patients with hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who test negative for PWS.

  19. Proximal interstitial 1p36 deletion syndrome: the most proximal 3.5-Mb microdeletion identified on a dysmorphic and mentally retarded patient with inv(3)(p14.1q26.2).

    PubMed

    Shimojima, Keiko; Páez, Marco T; Kurosawa, Kenji; Yamamoto, Toshiyuki

    2009-09-01

    From the investigation by microarray-based comparative genomic hybridization (aCGH), a new syndrome with "atypical" proximal interstitial deletion of 1p36.23-36.11 has been suggested. Here, we report on an 8.5-year-old girl with psychomotor developmental delay and a dysmorphic appearance. Although her G-banded chromosomal analysis showed inv(3)(p14.1q26.2), detailed FISH analyses denied pathogenic deletions around the breakpoints of chromosome 3. Accordingly, aCGH analysis was performed to identify a genomic aberration related to her phenotype, and a 3.5-Mb interstitial deletion of 1p36.13-36.12 was revealed. This deletion was the most proximal interstitial deletion of 1p36. Compared to the previously reported patients, abnormally shaped teeth, delayed tooth eruption, and leg malformation are unique phenotypes only to this patient, which might be due to the centromeric unique deletion region with 0.8-Mb.

  20. 40 Mb duplication in chromosome band 5p13.1p15.33 with 800 kb terminal deletion in a foetus with mild phenotypic features.

    PubMed

    Izzo, A; Genesio, R; Ronga, V; Nocera, V; Marullo, L; Cicatiello, R; Sglavo, G; Paladini, D; Conti, A; Nitsch, L

    2012-02-01

    Large duplication of the short arm of chromosome 5 is a rare condition normally associated to severe phenotype anomalies including heart and brain malformations. We report a prenatal case of a large 5p duplication with sub-telomeric deletion in a foetus with very mild phenotypic abnormalities. Foetal ultrasonographic examination at 22 weeks of gestation showed short femur, clubfeet, pielectasy, and facial dysmorphisms. Chromosome investigations revealed an inverted duplication of the short arm of chromosome 5 from 5p13.1 to 5p15.33 and a 800 kb deletion at 5pter. The absence of severe anomalies such as cardiac and cerebral defects, observed so far in all large 5p duplications, and the comparison to previous cases described both in literature and in DECIPHER database suggest that the critical region for the severe phenotype in 5p duplication syndrome might be smaller than that previously described, excluding half of the 5p13 band. This might help in prenatal genetic counselling.

  1. Detailed comparative map of human chromosome 19q and related regions of the mouse genome.

    PubMed

    Stubbs, L; Carver, E A; Shannon, M E; Kim, J; Geisler, J; Generoso, E E; Stanford, B G; Dunn, W C; Mohrenweiser, H; Zimmermann, W; Watt, S M; Ashworth, L K

    1996-08-01

    One of the larger contiguous blocks of mouse-human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent "transpositions" of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and human regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3-q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse-human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species.

  2. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization.

    PubMed

    Jules, Matthieu; Beltran, Gemma; François, Jean; Parrou, Jean Luc

    2008-02-01

    In the yeast Saccharomyces cerevisiae, the synthesis of endogenous trehalose is catalyzed by a trehalose synthase complex, TPS, and its hydrolysis relies on a cytosolic/neutral trehalase encoded by NTH1. In this work, we showed that NTH2, a paralog of NTH1, encodes a functional trehalase that is implicated in trehalose mobilization. Yeast is also endowed with an acid trehalase encoded by ATH1 and an H+/trehalose transporter encoded by AGT1, which can together sustain assimilation of exogenous trehalose. We showed that a tps1 mutant defective in the TPS catalytic subunit cultivated on trehalose, or on a dual source of carbon made of galactose and trehalose, accumulated high levels of intracellular trehalose by its Agt1p-mediated transport. The accumulated disaccharide was mobilized as soon as cells entered the stationary phase by a process requiring a coupling between its export and immediate extracellular hydrolysis by Ath1p. Compared to what is seen for classical growth conditions on glucose, this mobilization was rather unique, since it took place prior to that of glycogen, which was postponed until the late stationary phase. However, when the Ath1p-dependent mobilization of trehalose identified in this study was impaired, glycogen was mobilized earlier and faster, indicating a fine-tuning control in carbon storage management during periods of carbon and energy restriction.

  3. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age*

    PubMed Central

    Gorski, Jeff P.; Huffman, Nichole T.; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V.; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G.; Bonewald, Lynda; Brotto, Marco

    2016-01-01

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10–12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  4. Cryptic trisomy 5q35.2qter and deletion 1p36.3 characterised using FISH and array-based CGH.

    PubMed

    Utine, Eda G; Alanay, Yasemin; Aktas, Dilek; Alikasifoglu, Mehmet; Boduroglu, Koray; Vermeesch, Joris; Tuncbilek, Ergul; Fryns, Jean-Pierre

    2008-01-01

    A 10(6/12)-year-old boy was referred to the genetics department because of mental retardation and dysmorphic findings including microcephaly, flat face, down-slanting palpebral fissures, strabismus, prominent ears, bulbous nasal tip, down-turned corners of the mouth, narrow palate, clinodactyly of the fifth fingers and generalised eczema. Cytogenetic analysis revealed a karyotype of 47,XY,+mar of paternal origin. Multicolour FISH showed the marker chromosome to be derived from chromosome 15. For further elucidation of the phenotype, array-based comparative genomic hybridisation (aCGH) was performed, which revealed dup(5)(q35.2qter) and del(1)(p36.3). Parental FISH analysis revealed that the translocation occurred de novo. Despite the presence of a clinical phenotype along with a microscopically visible chromosomal aberration, a complex cryptic cytogenetic abnormality was causative for the phenotype of the patient. Elucidation of this complex aberration required combination of the whole cytogenetic toolbox.

  5. Functional characterization of the 19q12 amplicon in grade III breast cancers

    PubMed Central

    2012-01-01

    Introduction The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. Methods We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. Results 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. Conclusions The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a

  6. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma

    PubMed Central

    Brečević, Lukrecija; Rinčić, Martina; Krsnik, Željka; Sedmak, Goran; Hamid, Ahmed B.; Kosyakova, Nadezda; Galić, Ivan; Liehr, Thomas; Borovečki, Fran

    2015-01-01

    We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave

  7. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13.

    PubMed

    Cho, Michael H; Castaldi, Peter J; Wan, Emily S; Siedlinski, Mateusz; Hersh, Craig P; Demeo, Dawn L; Himes, Blanca E; Sylvia, Jody S; Klanderman, Barbara J; Ziniti, John P; Lange, Christoph; Litonjua, Augusto A; Sparrow, David; Regan, Elizabeth A; Make, Barry J; Hokanson, John E; Murray, Tanda; Hetmanski, Jacqueline B; Pillai, Sreekumar G; Kong, Xiangyang; Anderson, Wayne H; Tal-Singer, Ruth; Lomas, David A; Coxson, Harvey O; Edwards, Lisa D; MacNee, William; Vestbo, Jørgen; Yates, Julie C; Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D; Beaty, Terri H; Silverman, Edwin K

    2012-02-15

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.

  8. Are Angelman and Prader-Willi syndromes more similar than we thought? Food-related behavior problems in Angelman, Cornelia de Lange, fragile X, Prader-Willi and 1p36 deletion syndromes.

    PubMed

    Welham, Alice; Lau, Johnny; Moss, Joanna; Cullen, Jenny; Higgs, Suzanne; Warren, Gemma; Wilde, Lucy; Marr, Abby; Cook, Faye; Oliver, Chris

    2015-03-01

    Food-related behavior problems are well documented in Prader-Willi syndrome (PWS), with impaired satiety, preoccupation with food and negative food-related behaviors (such as taking and storing food) frequently reported as part of the behavioral phenotype of older children and adults. Food-related behavior problems in other genetic neurodevelopmental syndromes remain less well studied, including those seen in Angelman Syndrome (AS), the 'sister imprinted disorder' of PWS. Food-related behavior problems were assessed in 152 participants each with one of five genetic neurodevelopmental syndromes – PWS, AS, 1p36 deletion, Cornelia de Lange, and fragile X. Predictably, levels of food-related behavior problems reported in participants with PWS significantly exceeded those of at least one other groups in most areas (impaired satiety; preoccupation with food; taking and storing food; composite negative behavior). However, in some areas people with AS were reported to display food-related problems at least as severe as those with PWS, with the AS group reported to display significantly more food-related behavior problems than at least one comparison group on measures of taking and storing food, composite negative behaviors, impaired satiety and preoccupation with food. Over 50% of participants in the AS group scored above the median point of the distribution of PWS scores on a measure of taking and storing food. These findings indicate further investigation of eating problems in AS are warranted and have implications for current theoretical interpretations of the behavioral differences between AS and PWS.

  9. The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease

    PubMed Central

    Fu, Yi-Ping; Kohaar, Indu; Moore, Lee E.; Lenz, Petra; Figueroa, Jonine D.; Tang, Wei; Porter-Gill, Patricia; Chatterjee, Nilanjan; Scott-Johnson, Alexandra; Garcia-Closas, Montserrat; Muchmore, Brian; Baris, Dalsu; Paquin, Ashley; Ylaya, Kris; Schwenn, Molly; Apolo, Andrea B.; Karagas, Margaret R.; Tarway, McAnthony; Johnson, Alison; Mumy, Adam; Schned, Alan; Guedez, Liliana; Jones, Michael A.; Kida, Masatoshi; Monawar Hosain, GM; Malats, Nuria; Kogevinas, Manolis; Tardon, Adonina; Serra, Consol; Carrato, Alfredo; Garcia-Closas, Reina; Lloreta, Josep; Wu, Xifeng; Purdue, Mark; Andriole, Gerald L.; Grubb, Robert L.; Black, Amanda; Landi, Maria T.; Caporaso, Neil E.; Vineis, Paolo; Siddiq, Afshan; Bueno-de-Mesquita, H. Bas; Trichopoulos, Dimitrios; Ljungberg, Börje; Severi, Gianluca; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth C.; Tjønneland, Anne; Brennan, Paul; Chang-Claude, Jenny; Riboli, Elio; Prescott, Jennifer; Chen, Constance; De Vivo, Immaculata; Govannucci, Edward; Hunter, David; Kraft, Peter; Lindstrom, Sara; Gapstur, Susan M.; Jacobs, Eric J.; Diver, W. Ryan; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Kooperberg, Charles; Hohensee, Chancellor; Rodabough, Rebecca J.; Cortessis, Victoria K.; Conti, David V.; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Haiman, Christopher A.; Cussenot, Olivier; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Porru, Stefano; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Grossman, H. Barton; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Fraumeni, Joseph; Chanock, Stephen J.; Hewitt, Stephen M.; Silverman, Debra T.; Rothman, Nathaniel; Prokunina-Olsson, Ludmila

    2014-01-01

    A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell cycle protein. We performed genetic fine mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r2≥0.7) associated with increased bladder cancer risk. From this group we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWAS, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele odds ratio (OR) =1.18 (95%CI=1.09-1.27, p=4.67×10−5 vs. OR =1.01 (95%CI=0.93-1.10, p=0.79) for non-aggressive disease, with p=0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (p=0.013) and, independently, with each rs7257330-A risk allele (ptrend=0.024). Over-expression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E over-expression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models. PMID:25320178

  10. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    PubMed Central

    Cho, Michael H.; Castaldi, Peter J.; Wan, Emily S.; Siedlinski, Mateusz; Hersh, Craig P.; Demeo, Dawn L.; Himes, Blanca E.; Sylvia, Jody S.; Klanderman, Barbara J.; Ziniti, John P.; Lange, Christoph; Litonjua, Augusto A.; Sparrow, David; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Murray, Tanda; Hetmanski, Jacqueline B.; Pillai, Sreekumar G.; Kong, Xiangyang; Anderson, Wayne H.; Tal-Singer, Ruth; Lomas, David A.; Coxson, Harvey O.; Edwards, Lisa D.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter M.A.; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D.; Beaty, Terri H.; Silverman, Edwin K.

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior. PMID:22080838

  11. Mechanisms leading to Prader-Willi syndrome in a patient with a de novo 46, XY, t(15; 19)(q12; q13.41)

    SciTech Connect

    Sun, Y.; Hainline, B.E.; Palmer, C.G.

    1994-09-01

    A three year and six month-old boy with Prader-Willi syndrome (PWS) was found to have a de novo 46, XY, t(15; 19) (q12; q13.41) karyotype. PCR studies of microsatellite loci showed heterozygosity, including biparental inheritance. Fluorescence in situ hybridization (FISH) studies were performed with cosmid probes D15S11, SNRPN, D15S10, and GABRB3 and no deletion was found. The chromosomal breakage occurred inside the SNRPN contig, which contains two overlapping cosmids. Each cosmid shows signals with FISH on both the der(15) and the der(19), and on the normal chromosome 15. Additional FISH studies using cosmid subfragments demonstrated that the breakage occurred upstream to coding exons of the SNRPN gene. SNRPN contains 10 exons, including two recently identified upstream exons, exon-1 and exon-0. A probe from an RT-PCR product (1020bp) of total human brain mRNA spanning exons 1-8 and an exon1-specific probe were used on genome DNA Southern hybridizaiton. An extra DNA band 20kb in size was detected specifically from our patients genomic DNA using BamHl when compared to his normal parents and normal individuals. Further studies revealed that the breakage occurred between exon 0 and exon 1 of the SNRPN gene.

  12. Genomic Instability and Copy-Number Heterogeneity of Chromosome 19q, Including the Kallikrein Locus, in Ovarian Carcinomas

    PubMed Central

    Bayani, Jane; Marrano, Paula; Graham, Cassandra; Zheng, Yingye; Li, Lin; Katsaros, Dionyssios; Lassus, Heini; Butzow, Ralf; Squire, Jeremy A.; Diamandis, Eleftherios P.

    2011-01-01

    Many tissue kallikrein (KLK) genes and proteins are candidate diagnostic, prognostic and predictive biomarkers for ovarian cancer (OCa). We previously demonstrated that the KLK locus (19q13.3/4) is subject to copy-number gains and structural rearrangements in a pilot study of cell lines and ovarian cancer primary tissues, shown to overexpress KLK gene family members. To determine the overall frequency of genomic instability and copy-number changes, a retrospective study was conducted using formalin-fixed paraffin embedded (FFPE) tissues. Eighty-one chemotherapy naïve serous OCas were examined using 3-colour fluorescence in situ hybridization (FISH) to identify structural and numerical changes on 19q, including the KLK locus; in addition to immunohistochemistry (IHC) for KLK6, which has been shown to be overexpressed in OCa. The KLK locus was subject to copy-number changes in ~83% of cases: net gain in 51%, net loss in 30% and amplified in 2%; and found to be chromosomally unstable (p<0.001). All cases showed a wide range of immuoreactivity for KLK6 by IHC. Although no strong correlation could be found with copy number, the latter was contributing factor to the observed KLK6 protein overexpression. Moreover, univariate and multivariate analyses showed an association between the net loss of the KLK locus with longer disease-free survival. Interestingly, FISH analyses indicated that chromosome 19q was subject to structural rearrangement in 62% of cases and was significantly correlated to tumor grade (p<0.001). We conclude that numerical and structural aberrations of chromosome 19q, affect genes including the KLK gene members, may contributing to ovarian carcinoma progression and aggressiveness. PMID:20800559

  13. Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma

    PubMed Central

    Chng, WJ; Gertz, MA; Chung, T-H; Van Wier, S; Keats, JJ; Baker, A; Bergsagel, PL; Carpten, J; Fonseca, R

    2010-01-01

    In this study, we correlated array-comparative genomic hybridization-defined abnormalities with survival in two different cohorts of patients treated with therapy based on high-dose melphalan with autologous stem-cell transplantation (64 from the Mayo Clinic and 67 from the University of Arkansas Medical School) and identified that several regions of genomic gains and losses were significantly associated with poorer survival. Three noncontiguous survival relevant regions covering 1p31-33 and two noncontiguous regions covering 20p12.3-12.1 were common between the two datasets. The prognostic relevance of these hotspots was validated in an independent cohort using fluorescent in situ hybridization, which showed that 1p31-32 loss is significantly associated with shorter survival (24.5 months versus 40 months, log-rank P-value=0.01), whereas 20p12 loss has a trend toward shorter survival (26.3 months versus 40 months, log-rank P-value=0.06). On multivariate analysis, 1p31-32 loss is an independent prognostic factor. On further analysis, the prognostic impact of 1p31-32 loss is due to shortening of post-relapse survival as there is no impact on complete response rates and progression-free survival. PMID:20220778

  14. Loss-of-heterozygosity on chromosome 19q in early-stage serous ovarian cancer is associated with recurrent disease

    PubMed Central

    2012-01-01

    Background Ovarian cancer is a heterogeneous disease and prognosis for apparently similar cases of ovarian cancer varies. Recurrence of the disease in early stage (FIGO-stages I-II) serous ovarian cancer results in survival that is comparable to those with recurrent advanced-stage disease. The aim of this study was to investigate if there are specific genomic aberrations that may explain recurrence and clinical outcome. Methods Fifty-one women with early stage serous ovarian cancer were included in the study. DNA was extracted from formalin fixed samples containing tumor cells from ovarian tumors. Tumor samples from thirty-seven patients were analysed for allele-specific copy numbers using OncoScan single nucleotide polymorphism arrays from Affymetrix and the bioinformatic tool Tumor Aberration Prediction Suite. Genomic gains, losses, and loss-of-heterozygosity that associated with recurrent disease were identified. Results The most significant differences (p < 0.01) in Loss-of-heterozygosity (LOH) were identified in two relatively small regions of chromosome 19; 8.0-8,8 Mbp (19 genes) and 51.5-53.0 Mbp (37 genes). Thus, 56 genes on chromosome 19 were potential candidate genes associated with clinical outcome. LOH at 19q (51-56 Mbp) was associated with shorter disease-free survival and was an independent prognostic factor for survival in a multivariate Cox regression analysis. In particular LOH on chromosome 19q (51-56 Mbp) was significantly (p < 0.01) associated with loss of TP53 function. Conclusions The results of our study indicate that presence of two aberrations in TP53 on 17p and LOH on 19q in early stage serous ovarian cancer is associated with recurrent disease. Further studies related to the findings of chromosomes 17 and 19 are needed to elucidate the molecular mechanism behind the recurring genomic aberrations and the poor clinical outcome. PMID:22967087

  15. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7.

    PubMed

    Shannon, M; Ashworth, L K; Mucenski, M L; Lamerdin, J E; Branscomb, E; Stubbs, L

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes.

  16. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1

    SciTech Connect

    Bisceglia, L.; Totaro, A.; Melchionda, S.

    1997-03-01

    Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (Z{sub max}) of 13.11 at a maximum recombination fraction ({theta}{sub max}) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant Z{sub max} = 3.11 at {theta}{sub max} of .00, with marker D19S225). 33 refs., 2 figs., 1 tab.

  17. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients.

    PubMed

    Thean, Lai Fun; Wong, Yu Hui; Lo, Michelle; Loi, Carol; Chew, Min Hoe; Tang, Choong Leong; Cheah, Peh Yean

    2017-01-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3'UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms.

  18. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients

    PubMed Central

    Thean, Lai Fun; Wong, Yu Hui; Lo, Michelle; Loi, Carol; Chew, Min Hoe; Tang, Choong Leong; Cheah, Peh Yean

    2017-01-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3’UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms. PMID:28306719

  19. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome.

    PubMed

    Heilstedt, Heidi A; Ballif, Blake C; Howard, Leslie A; Lewis, Richard A; Stal, Samuel; Kashork, Catherine D; Bacino, Carlos A; Shapira, Stuart K; Shaffer, Lisa G

    2003-05-01

    Monosomy 1p36 is the most common terminal deletion syndrome. This contiguous gene deletion syndrome is presumably caused by haploinsufficiency of a number of genes. We have constructed a contig of overlapping large-insert clones for the most distal 10.5 Mb of 1p36, evaluated the deletion sizes in 61 subjects with monosomy 1p36 from 60 families, and created a natural deletion panel. We found pure terminal deletions, interstitial deletions, derivative chromosomes, and more complex rearrangements. Breakpoints were "binned" into 0.5-Mb regions. Analyses revealed some clustering of breakpoints but no single common breakpoint. Determination of the parental origin showed that 60% of de novo 1p36 terminal deletions arose from the maternally inherited chromosome. Of the 61 subjects, 30 were examined systematically through a protocol at the Texas Children's Hospital General Clinical Research Center. Specifically, we report hearing evaluations, palatal and ophthalmological examinations, echocardiograms, neurological assessments, and thyroid function tests. To our knowledge, this systematic molecular and clinical characterization of monosomy 1p36 is the largest and most comprehensive study of this deletion syndrome to date. Many cytogenetically visible, apparent terminal deletions are more complex than anticipated by cytogenetics, as revealed at the molecular level by our study. Our clinical findings allow for the more accurate recognition of the syndrome and for proper medical evaluation.

  20. Del 1p36 syndrome: a newly emerging clinical entity.

    PubMed

    Battaglia, Agatino

    2005-08-01

    Monosomy 1p36 is a recently delineated contiguous gene syndrome, which is now considered to be the most common subtelomeric microdeletion syndrome. From the recent literature it appears as if 1p36 deletions account for 0.5-1.2% of idiopathic mental retardation. The deletions can be detected by high resolution cytogenetic studies in a minority of patients, and fluorescence in situ hybridisation (FISH) is required in most. The deletions' parent of origin seems still unclear, although in one large series it was shown to be maternal. 1p36 deletion syndrome is characterized by distinct craniofacial features, associated with developmental delay/mental retardation, hypotonia, muscle hypotrophy, seizures, brain abnormalities, and heart defects. To help child neurologists and other professionals in the recognition of this emerging and common chromosomal syndrome, we have reviewed published articles on patients with this deletion.

  1. Assignment of the human ZNF83 (HPF1) zinc finger gene to chromosome 19q13. 3-q13. 4

    SciTech Connect

    Marine, J.C.; Lecoq, P.J.; Poncelet, D.A.; Martial, J.A. ); Bellefroid, E.J.; Bourguignon, C. ); Riviere, M.; Szpirer, J.; Szpirer, C. )

    1994-05-01

    The authors have isolated a collection of human ZFPs encoding cDNAs (HPF1 to -9) by hybridization with a finger motif oligonucleotide probe. Here, they describe the localization of a chromosome 19-linked human ZFP gene (HPF1/ZNF83). They first assigned the ZNF83 gene on chromosome 19 by the screening of a human x rodent hybrid panel by DNA hybridization with a fragment of a previously cloned cDNA (data not shown). To further localize the gene within chromosome 19, the regional assignment of the ZNF83 gene was determined by fluorescence in situ hybridization and digital imaging microscopy as described elsewhere. Human metaphase spreads were hybridized with biotinylated ZNF83 cDNA, and hybridization was detected with fluorescein isothiocyanate-conjugated avidin-DCS. Chromosomes were identified by staining with 4,6-diamino-2-phenylindol dihydrochloride. The fractional length (Flpter) distance of the signal to the p arm terminus relative to the total chromosome length gave a Flpter value between 82.8 and 89.9, which is consistent with an assignment of the ZNF83 gene in ISCN region 19q13.3-q13.4. 14 refs., 1 fig.

  2. Assignment of the locus for PLO-SL, a frontal-lobe dementia with bone cysts, to 19q13.

    PubMed Central

    Pekkarinen, P; Hovatta, I; Hakola, P; Järvi, O; Kestilä, M; Lenkkeri, U; Adolfsson, R; Holmgren, G; Nylander, P O; Tranebjaerg, L; Terwilliger, J D; Lönnqvist, J; Peltonen, L

    1998-01-01

    PLO-SL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy) is a recessively inherited disorder characterized by systemic bone cysts and progressive presenile frontal-lobe dementia, resulting in death at <50 years of age. Since the 1960s, approximately 160 cases have been reported, mainly in Japan and Finland. The pathogenesis of the disease is unknown. In this article, we report the assignment of the locus for PLO-SL, by random genome screening using a modification of the haplotype-sharing method, in patients from a genetically isolated population. By screening five patient samples from 2 Finnish families, followed by linkage analysis of 12 Finnish families, 3 Swedish families, and 1 Norwegian family, we were able to assign the PLO-SL locus to a 9-cM interval between markers D19S191 and D19S420 on chromosome 19q13. The critical region was further restricted, to approximately 1.8 Mb, by linkage-disequilibrium analysis of the Finnish families. According to the haplotype analysis, one Swedish and one Norwegian PLO-SL family are not linked to the chromosome 19 locus, suggesting that PLO-SL is a heterogeneous disease. In this chromosomal region, one potential candidate gene for PLO-SL, the gene encoding amyloid precursor-like protein 1, was analyzed, but no mutations were detected in the coding region. PMID:9463329

  3. Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome bands 19q13.2-q13.3 by fluorescence in situ hybridization

    SciTech Connect

    Stoffel, M.; Fernald, A.A.; Bell, G.I.; Le Beau, M.M.

    1995-08-10

    The gastric inhibitory polypeptide receptor gene (GIPR) was localized, using fluorescence in situ hybridization (FISH), to human chromosome bands 19q13.2-q13.3. Gastric inhibitory polypeptide (GIP) is a potent stimulator of insulin secretion and mutations in the GIPR gene may be related to non-insulin-dependent diabetes mellitus (NIDDM). 13 refs., 1 fig.

  4. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  5. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q.

    PubMed

    Zhang, Enjie; Cotton, Victoria E; Hidalgo-Bravo, Alberto; Huang, Yan; Bell, Adam J; Jarrett, Ruth F; Wilkie, Gavin S; Davison, Andrew J; Nacheva, Ellie P; Siebert, Reiner; Majid, Aneela; Kelpanides, Inga; Jayne, Sandrine; Dyer, Martin J; Royle, Nicola J

    2016-03-07

    Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers.

  6. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q

    PubMed Central

    Zhang, Enjie; Cotton, Victoria E.; Hidalgo-Bravo, Alberto; Huang, Yan; J. Bell, Adam; F. Jarrett, Ruth; Wilkie, Gavin S.; Davison, Andrew J.; P. Nacheva, Ellie; Siebert, Reiner; Majid, Aneela; Kelpanides, Inga; Jayne, Sandrine; Dyer, Martin J.; Royle, Nicola J.

    2016-01-01

    Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers. PMID:26947392

  7. Severe lysosomal storage disease of liver in del(1)(p36): a new presentation.

    PubMed

    Haimi, Motti; Iancu, Theodore C; Shaffer, Lisa G; Lerner, Aaron

    2011-01-01

    1p36 deletion is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. The deletion is of variable size. It usually involves less than 10 Mb in the 1pter-1p36.23 interval. Variability of the phenotype is partially related to the extent of the deletion. Some children with a 1p36 deletion were reported with obesity and hyperphagia, raising the question of possible phenotypic overlap with Prader-Willi syndrome. Correlation between presence of obesity and the size of the deletion has only been documented in one case. We report a 11-year-old girl with 1p36 deletion and the classical dysmorphological features. In late infancy, she developed an uncontrolled voracious appetite, overweight, truncal obesity and elevated serum transaminases. Liver biopsy disclosed severe steatosis. The hepatocytes contained accumulation of lipofuscins. Lipolysosomes were abnormally numerous and extremely enlarged. These features have not been previously reported in 1p36 deletion. Oligonucleotide-based microarray analysis showed a subtelomeric 2.2 Mb deletion at 1p36.33p36.32. This suggests that this chromosome segment is a critical region for obesity and hyperphagia. The accumulation in the liver with abnormal ultrastructure may be an additional feature of this form of syndromal obesity. 1p36 deletion syndrome should be considered in patients with obesity, hyperphagia and liver fat accumulation.

  8. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae.

    PubMed

    Kuravi, Kasinath; Nagotu, Shirisha; Krikken, Arjen M; Sjollema, Klaas; Deckers, Markus; Erdmann, Ralf; Veenhuis, Marten; van der Klei, Ida J

    2006-10-01

    Saccharomyces cerevisiae contains three dynamin-related-proteins, Vps1p, Dnm1p and Mgm1p. Previous data from glucose-grown VPS1 and DNM1 null mutants suggested that Vps1p, but not Dnm1p, plays a role in regulating peroxisome abundance. Here we show that deletion of DNM1 also results in reduction of peroxisome numbers. This was not observed in glucose-grown dnm1 cells, but was evident in cells grown in the presence of oleate. Similar observations were made in cells lacking Fis1p, a protein involved in Dnm1p function. Fluorescence microscopy of cells producing Dnm1-GFP or GFP-Fis1p demonstrated that both proteins had a dual localization on mitochondria and peroxisomes. Quantitative analysis revealed a greater reduction in peroxisome number in oleate-induced vps1 cells relative to dnm1 or fis1 cells. A significant fraction of oleate-induced vps1 cells still contained two or more peroxisomes. Conversely, almost all cells of a dnm1 vps1 double-deletion strain contained only one, enlarged peroxisome. This suggests that deletion of DNM1 reinforces the vps1 peroxisome phenotype. Time-lapse imaging indicated that during budding of dnm1 vps1 cells, the single peroxisome present in the mother cell formed long protrusions into the developing bud. This organelle divided at a very late stage of the budding process, possibly during cytokinesis.

  9. 1p36 tumor suppression--a matter of dosage?

    PubMed

    Henrich, Kai-Oliver; Schwab, Manfred; Westermann, Frank

    2012-12-01

    A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic "two-hit" manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes.

  10. Young-Simpson syndrome (YSS), a variant of del(1)(p36) syndrome?

    PubMed

    Robinson, Deanne Mraz; Meagher, Cecilia C; Orlowski, Craig C; Lagoe, Erin Caine; Fong, Chin-To

    2008-06-15

    The Young-Simpson syndrome (YSS) and 1p36 deletion syndrome are both characterized by facial and heart abnormalities, congenital hypothyroidism, and severe growth and developmental retardation. However, the YSS is characterized by the presence of blepharophimosis and epicanthus inversus, findings not described in monosomy 1p36 patients. We describe a girl with YSS, who presented with the typical facial findings, global retardation, congenital hypothyroidism, and congenital dilated cardiomyopathy. Comparative genomic hybridization chromosomal microarray analysis showed a 1p36.3 deletion, a finding not previously reported in other YSS cases. We propose that YSS is a variant of the 1p36 deletion syndrome.

  11. Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor.

    PubMed

    Wilson, Joshua D; Thompson, Sarah L; Barlowe, Charles

    2011-05-01

    Lipid sensing mechanisms at the endoplasmic reticulum (ER) coordinate an array of biosynthetic pathways. A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Cells grown in the absence of inositol sequester Scs2p-Opi1p at the ER and derepress target genes including INO1. We recently reported that Yet1p and Yet3p, the yeast homologues of BAP29 and BAP31, are required for normal growth in the absence of inositol. Here we show that the Yet1p-Yet3p complex acts in derepression of INO1 through physical association with Scs2p-Opi1p. Yet complex binding to Scs2p-Opi1p was enhanced by inositol starvation, although the interaction between Scs2p and Opi1p was not influenced by YET1 or YET3 deletion. Interestingly, live-cell imaging analysis indicated that Opi1p does not efficiently relocalize to the ER during inositol starvation in yet3Δ cells. Together our data demonstrate that a physical association between the Yet complex and Scs2p-Opi1p is required for proper localization of the Opi1p repressor to ER membranes and subsequent INO1 derepression.

  12. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  13. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13.

    PubMed

    Leslie, Elizabeth J; Carlson, Jenna C; Shaffer, John R; Feingold, Eleanor; Wehby, George; Laurie, Cecelia A; Jain, Deepti; Laurie, Cathy C; Doheny, Kimberly F; McHenry, Toby; Resick, Judith; Sanchez, Carla; Jacobs, Jennifer; Emanuele, Beth; Vieira, Alexandre R; Neiswanger, Katherine; Lidral, Andrew C; Valencia-Ramirez, Luz Consuelo; Lopez-Palacio, Ana Maria; Valencia, Dora Rivera; Arcos-Burgos, Mauricio; Czeizel, Andrew E; Field, L Leigh; Padilla, Carmencita D; Cutiongco-de la Paz, Eva Maria C; Deleyiannis, Frederic; Christensen, Kaare; Munger, Ronald G; Lie, Rolv T; Wilcox, Allen; Romitti, Paul A; Castilla, Eduardo E; Mereb, Juan C; Poletta, Fernando A; Orioli, Iêda M; Carvalho, Flavia M; Hecht, Jacqueline T; Blanton, Susan H; Buxó, Carmen J; Butali, Azeez; Mossey, Peter A; Adeyemo, Wasiu L; James, Olutayo; Braimah, Ramat O; Aregbesola, Babatunde S; Eshete, Mekonen A; Abate, Fikre; Koruyucu, Mine; Seymen, Figen; Ma, Lian; de Salamanca, Javier Enríquez; Weinberg, Seth M; Moreno, Lina; Murray, Jeffrey C; Marazita, Mary L

    2016-07-01

    Orofacial clefts (OFCs), which include non-syndromic cleft lip with or without cleft palate (CL/P), are among the most common birth defects in humans, affecting approximately 1 in 700 newborns. CL/P is phenotypically heterogeneous and has a complex etiology caused by genetic and environmental factors. Previous genome-wide association studies (GWASs) have identified at least 15 risk loci for CL/P. As these loci do not account for all of the genetic variance of CL/P, we hypothesized the existence of additional risk loci. We conducted a multiethnic GWAS in 6480 participants (823 unrelated cases, 1700 unrelated controls and 1319 case-parent trios) with European, Asian, African and Central and South American ancestry. Our GWAS revealed novel associations on 2p24 near FAM49A, a gene of unknown function (P = 4.22 × 10(-8)), and 19q13 near RHPN2, a gene involved in organizing the actin cytoskeleton (P = 4.17 × 10(-8)). Other regions reaching genome-wide significance were 1p36 (PAX7), 1p22 (ARHGAP29), 1q32 (IRF6), 8q24 and 17p13 (NTN1), all reported in previous GWASs. Stratification by ancestry group revealed a novel association with a region on 17q23 (P = 2.92 × 10(-8)) among individuals with European ancestry. This region included several promising candidates including TANC2, an oncogene required for development, and DCAF7, a scaffolding protein required for craniofacial development. In the Central and South American ancestry group, significant associations with loci previously identified in Asian or European ancestry groups reflected their admixed ancestry. In summary, we have identified novel CL/P risk loci and suggest new genes involved in craniofacial development, confirming the highly heterogeneous etiology of OFCs.

  14. The human homolog of a mouse-imprinted gene, Peg3, maps to a zinc finger gene-rich region of human chromosome 19q13.4.

    PubMed

    Kim, J; Ashworth, L; Branscomb, E; Stubbs, L

    1997-05-01

    Peg3 (paternally expressed gene 3) is the first imprinted gene detected in the proximal region of mouse chromosome 7. Because imprinting is a trait that is generally conserved among mammals, and imprinted domains generally encompass several adjacent genes, expression patterns and chromosomal environment of the human counterpart of Peg3 are of special interest. In this study we have localized human PEG3 approximately 2 Mb proximal of the telomere of chromosome 19q, within a region known to carry large numbers of tandemly clustered Krüppel-type zinc finger-containing (ZNF) genes. Peg3 also encodes a Krüppel-type ZNF protein but one that is distinguished from other ZNF gene products by the fact that it carries two novel proline-rich motifs. Comparison between mouse Peg3 and partial human PEG3 gene sequences revealed a high level of conservation between the two species, despite the fact that one of the two proline-rich repeats is absent from the human gene. Our data demonstrate that the human gene is expressed at highest levels in ovary and placenta; mouse Peg3, by contrast, is transcribed at highest levels in the adult brain. These comparative mapping, sequencing, and expression data provide the first clues to the potential activities of PEG3, and generate new tools to aid in the analysis of structure and function of a potentially new imprinted domain located in human chromosome 19q13.4 and mouse chromosome 7.

  15. A patient with monosomy 1p36, atypical features and phenotypic similarities with Cantu syndrome.

    PubMed

    Tan, Tiong Yang; Bankier, Agnes; Slater, Howard R; Northrop, Emma L; Zacharin, Margaret; Savarirayan, Ravi

    2005-12-15

    We report on a 16-year-old boy with a distal 1p36 deletion with some clinical features consistent with Cantu syndrome (OMIM#239850). He also has hypercholesterolemia, type II diabetes, recurrent bony fractures, and non-alcoholic steatohepatitis, not previously described in either condition. The 1p36 deletion was detected in a screen of all chromosome subtelomeres using multiplex ligation-dependent probe amplification and was verified using FISH with a region-specific BAC clone. We suggest that patients suspected of having Cantu syndrome, especially those with unusual or more severe manifestations be analyzed for distal 1p36 deletions.

  16. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1

    SciTech Connect

    Olsen, A.S.; Georgescu, A.; Johnson, S.; Carrano, A.V.

    1996-06-01

    We describe the assembly of a 1-Mb cosmid contig and restriction map spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. The map was constructed from 16 smaller contigs assembled by fingerprinting, a BAC and a PAC clone, and 42 previously unmapped cosmids. In most cases, single-step cosmid walks were sufficient to join two previously assembled contigs, and all but one gap was filled from this cosmid contig library. The remaining gap of about 19 kb was spanned with a single BAC and a single PAC clone. EcoRI mapping of a dense set of overlapping clones validated the assembly of the map and indicated a length of 1040 kb for the contig. This high-resolution clone map provides an ideal resource for gene identification through cDNA selection, exon trapping, and DNA sequencing. 10 refs., 1 fig.

  17. Molecular characterization of a monosomy 1p36 presenting as an Aicardi syndrome phenocopy.

    PubMed

    Bursztejn, Anne-Claire; Bronner, Myriam; Peudenier, Sylviane; Grégoire, Marie-José; Jonveaux, Philippe; Nemos, Christophe

    2009-11-01

    Monosomy 1p36 is the most frequent terminal deletion known in Humans. Typical craniofacial features, developmental delay/mental retardation, seizures and sensorineural defects characterize 1p36 deletion syndrome. Aicardi syndrome (AIS) is a rare genetic disorder characterized by chorioretinal lacunae, corpus callosum agenesis and infantile spasms responsible for mental retardation. By screening DNA from diagnosed AIS patients with oligonucleotide array-based comparative genomic hybridization (aCGH), we report a 1p36 monosomy in this study. There were no other deletions or duplications. Regarding clinical criteria, the patient did not have the typical facial appearance commonly described for 1p36 monosomy patients. We showed that this 1p36 monosomy corresponded to combined interstitial and terminal de novo deletions of the chromosome 1 leading to an 11.73 Mb deletion confirmed with qPCR. By microsatellite markers and FISH analyses, we have concluded that this deletion occurred on maternal chromosome 1 during oogenesis. We did find some clinical features shared by the 1p36 monosomy and AIS: infantile spasms, corpus callosum dysgenesis, ophthalmological abnormalities, and skeletal malformations. To date, no relationship between these two phenotypes has been established. We conclude that the monosomy 1p36 should be considered in the differential diagnosis of AIS.

  18. Choroid plexus hyperplasia and monosomy 1p36: report of new findings.

    PubMed

    Puvabanditsin, Surasak; Garrow, Eugene; Patel, Neisha; D'Elia, Alexis; Zaafran, Ahmed; Phattraprayoon, Nanthida; Davis, Suzanne Elizabeth

    2008-08-01

    Monosomy 1p36 is a newly delineated multiple congenital anomalies/mental retardation syndrome characterized by mental retardation, growth delay, epilepsy, congenital heart defects, characteristic facial appearance, and precocious puberty. It is now considered to be one of the most common subtelomeric micro-deletion syndromes. This article reports new findings of choroid plexus hyperplasia and dextrocardia with situs solitus in a patient who had deletion of chromosome 1p26.33 with a brief review of the literature.

  19. Functional Characterization of Candida albicans ABC Transporter Cdr1p

    PubMed Central

    Shukla, Suneet; Saini, Preeti; Smriti; Jha, Sudhakar; Ambudkar, Suresh V.; Prasad, Rajendra

    2003-01-01

    In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p. Cdr1p was subjected to site-directed mutational analysis. Among many mutant variants of Cdr1p, the phenotypes of F774A and ΔF774 were particularly interesting. The analysis of GFP-tagged mutant variants of Cdr1p revealed that a conserved F774, in predicted transmembrane segment 6, when changed to alanine showed increased binding of both photoaffinity analogues, while its deletion (ΔF774), as revealed by confocal microscopic analyses, led to mislocalization of the protein. The mislocalized ΔF774 mutant Cdr1p could be rescued to the plasma membrane as a functional transporter by growth in the presence of a Cdr1p substrate, cycloheximide. Our data for the first time show that the drug substrate-binding sites of Cdr1p exhibit striking similarities with those of mammalian drug-transporting P-glycoproteins and despite differences in topological organization, the transmembrane segment 6 in Cdr1p is also a major contributor to drug substrate-binding site(s). PMID:14665469

  20. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1

    SciTech Connect

    Chen, Ling-Sing K.; Lo, C.F.; Numann, R.; Cuddy, M.

    1997-05-01

    Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na{sup +}/K{sup +}-ATPase {gamma} subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution. 34 refs., 4 figs.

  1. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1.

    PubMed

    Chen, L S; Lo, C F; Numann, R; Cuddy, M

    1997-05-01

    Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na+/K(+)-ATPase gamma subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution.

  2. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    SciTech Connect

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequences in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.

  3. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p.

    PubMed

    Motley, Alison M; Ward, Gemma P; Hettema, Ewald H

    2008-05-15

    Yeast peroxisomes multiply by fission. Fission requires two dynamin-related proteins, Dnm1p and Vps1p. Using an in vivo fission assay, we show that Dnm1p-dependent peroxisome fission requires Fis1p, Caf4p and Mdv1p. Fluorescence microscopy of cells expressing GFP-tagged Caf4p and Mdv1p revealed that their association with peroxisomes relies on Fis1p. Vps1p-dependent peroxisome fission occurs independently of these factors. Vps1p contributes most to fission of peroxisomes when cells are grown on glucose. Overexpression of Dnm1p suppresses the fission defect as long as Fis1p and either Mdv1p or Caf4p are present. Conversely, overexpression of Dnm1p does not restore the vacuolar fusion defect of vps1 cells and Vps1p overexpression does not restore the mitochondrial fission defect of dnm1 cells. These data show that Vps1p and Dnm1p are part of independent fission machineries. Because the contribution of Dnm1p to peroxisome fission appears to be more pronounced in cells that proliferate peroxisomes in response to mitochondrial dysfunction, Dnm1p might be part of the mechanism that coordinates mitochondrial and peroxisomal biogenesis.

  4. Cloning of ELL, a gene that fuses to MLL in a t(11; 19)(q23; p13. 1) in acute myeloid leukemia

    SciTech Connect

    Thirman, M.J.; Levitan, D.A.; Kobayashi, H.; Simon, M.C.; Rowley, J.D. )

    1994-12-06

    To characterize the functions of MLL fusion transcripts, we cloned the gene that fuses to MLL in the translocation t(11;19)(q23;p13.1). This translocation is distinct from another type of 11;19 translocation with a 19p13.3 breakpoint that results in the fusion of MLL to the ENL gene. By PCR screening of a cDNA library prepared from a patient's leukemia cells with this translocation, we obtained a fusion transcript containing exon 7 of MLL and sequence of an unknown gene. The sequence of this gene was amplified and used as a probe to screen a fetal brain cDNA library. On Northern blot analysis, this cDNA detected a 4.4-kb transcript that was abundant in peripheral blood leukocytes, skeletal muscle, placenta, and testis and expressed at lower levels in spleen, thymus, heart, brain, lung, kidney, liver, and ovary. In addition, a 2.8-kb transcript was present in peripheral blood, testis, and placenta. On [open quotes]zoo blots,[close quotes] this gene was shown to be evolutionarily conserved in 10 mammalian species as well as in chicken, frog, and fish. We have named this gene ELL (for eleven-nineteen lysine-rich leukemia gene). A highly basic, lysine-rich motif of the predicted ELL protein is homologous to similar regions of several proteins, including the DNA-binding domain of poly(ADP-ribose) polymerase. The characterization of the normal functions of ELL as well as its altered function when fused to MLL will be critical to further our understanding of the mechanisms of leukemogenesis. 30 refs., 7 figs.

  5. A molecular cytogenetic study of imprinting effect in childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13)

    SciTech Connect

    Knops, J.F.; Han, J.; Finley, W.H.

    1994-09-01

    Genomic imprinting (the functional difference between homologous alleles dependent upon parent of origin) seems to play an important role in some forms of recessive tumors as well as in the genetic predisposition to cancer. Recently, this phenomenon has been implicated in reciprocal translocations found in hematological malignancies. Cytogenetic polymorphism studies on the t(9;22) chromosome in chronic myelogenous leukemia have shown chromosome 9 to be paternal in origin while chromosome 22 is maternally derived in all the cases studied. We developed a molecular technique using chromosome microdissection and polymerase chain reaction (CMPCR) to study the possible involvement of genomic imprinting in childhood acute lymphoblastic leukemia (ALL) with the t(1;19). This technique has an advantage over conventional molecular techniques because it can distinguish the translocated chromosome from the normal homologue. Amplification of highly polymorphic microsatellite loci was performed on the microdissected translocated chromosomes and compared with parental alleles to assess the parent of origin of the chromosome 1 and chromosome 19 involved in the translocation. Parental origin of the derivative chromosomes 1 and 19 has been evaluated in six children with pre-B cell ALL and t(1;19)(q23;p13). The ratio of maternal:paternal:uncertain origin was 3:2:1 for chromosome 1 and 1:3:2 for chromosome 19. Thus far, the data do not indicate a strong parent of origin bias for this specific ALL associated translocation. Although genomic imprinting does not appear to be involved in this subgroup of childhood ALL patients, this technique can be used to determine parental origin of aberrant chromosomes in other hematological malignancies.

  6. Constitutional Ip36 deletion in a child with neuroblastoma

    SciTech Connect

    Biegel, J.A.; Zackai, E.H.; Scher, C.D.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia ); White, P.S.; Marshall, H.N.; Fujimori, Minoru; Brodeur, G.M. )

    1993-01-01

    The authors describe a child with dysmorphic features, as well as developmental and growth delay, who developed neuroblastoma at 5 mo of age. Cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 1p36.1 [r arrow] 1p36.2, which was apparent only with high-resolution banding. Molecular analysis with a collection of polymorphic DNA probes for 1p confirmed an interstitial deletion involving subbands of 1p36. Deletions of this region are a common finding in neuroblastoma cells from patients with advanced stages of disease. Therefore, these results (a) suggest that constitutional deletion of this region predisposed the patient to the development of neuroblastoma and (b) support the localization of a neuroblastoma tumor-suppressor locus to 1p36. 48 refs., 2 figs.

  7. Fine-mapping markers of lung cancer susceptibility in a sub-region of chromosome 19q13.3 among Chinese

    PubMed Central

    Yin, Jiaoyang; Wang, Huiwen; Vogel, Ulla; Wang, Chunhong; Ma, Yegang; Hou, Wei; Zhang, Ying; Guo, Li; Li, Xinxin

    2016-01-01

    Linkage disequilibrium-mapping studies in Caucasians have indicated anassociation of Chr19q13.3 sub-region spanning ERCC2, PPP1R13L, CD3EAP and ERCC1 with several cancers. To refine the region of association and identify potential causal variations among Asians, we performed a fine-mapping study using 32 (39) SNPs in a 71.654kb sub-region. The study included 384 Chinese lung cancer cases and 387 controls. Seven closely situated SNPs showed significant associations with lung cancer risk in five different genetic models of single-locus associations (adjusted for smoking duration). These were PPP1R13L rs1970764 [OR (95% CI) = 1.58 (1.09-2.29), P = 0.014] in a recessive model and PPP1R13L rs1005165 [OR (95% CI) = 1.25 (1.01-1.54), P = 0.036], CD3EAP rs967591 [OR (95% CI) = 1.40 (1.13-1.75), P = 0.0023], rs735482 [OR (95% CI) = 1.29 (1.03-1.61), P = 0.026], rs1007616 [OR (95% CI) = 0.78 (0.61-1.00), P = 0.046], and rs62109563 [OR (95% CI) = 1.28 (1.03-1.59), P = 0.024] in a log-additive model and ERCC1 rs3212965 [OR (95% CI) = 0.70 (0.52-0.94), P = 0.019] in an over-dominant model. Six-haplotype blocks were determined in the sub-region. Using an alternative approach where we performed a haplotype analysis of all significant polymorphisms, rs1970764 was found to be most consistently associated with lung cancer risk. The combined data suggest that the sub-region with the strongest association to lung cancer susceptibility might locate to the 23.173kb from PPP1R13L intron8 rs1970764 to rs62109563 3′ to CD3EAP. Limited risk loci and span on lung cancer in this sub-region are initially defined among Asians. PMID:27183913

  8. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons

    PubMed Central

    Andrieux, Joris; Roubertoux, Pierre L.; Metwaly, Mehdi; Jacq, Bernard; Fatmi, Ahmed; Had-Aissouni, Laurence; Kwan, Kenneth Y.; Salin, Pascal; Carlier, Michèle; Liedén, Agne; Rudd, Eva; Shinawi, Marwan; Vincent-Delorme, Catherine; Cuisset, Jean-Marie; Lemaitre, Marie-Pierre; Abderrehamane, Fatimetou; Duban, Bénédicte; Lemaitre, Jean-François; Woolf, Adrian S.; Bockenhauer, Detlef; Severac, Dany; Dubois, Emeric; Zhu, Ying; Sestan, Nenad; Garratt, Alistair N.; Kerkerian-Le Goff, Lydia; Fasano, Laurent

    2016-01-01

    TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, mice heterozygous for Tshz3 deletion show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. PMID:27668656

  9. RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.

    PubMed

    Orozco, Helena; Sepúlveda, Ana; Picazo, Cecilia; Matallana, Emilia; Aranda, Agustín

    2016-06-01

    Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.

  10. Passenger Deletions Generate Therapeutic Vulnerabilities in Cancer

    PubMed Central

    Muller, Florian L.; Colla, Simona; Aquilanti, Elisa; Manzo, Veronica; Genovese, Giannicola; Lee, Jaclyn; Eisenson, Dan; Narurkar, Rujuta; Deng, Pingna; Nezi, Luigi; Lee, Michelle; Hu, Baoli; Hu, Jian; Sahin, Ergun; Ong, Derrick; Fletcher-Sananikone, Eliot; Ho, Dennis; Kwong, Lawrence; Brennan, Cameron; Wang, Y. Alan; Chin, Lynda; DePinho, Ronald A.

    2013-01-01

    Inactivation of tumor suppressor genes via homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighboring genes. We hypothesized that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities in the case where the collaterally deleted gene is a member of a functionally redundant family of genes exercising an essential function. The glycolytic gene Enolase 1 (ENO1) in the 1p36 locus is deleted in Glioblastoma (GBM), which is tolerated by expression of ENO2. We demonstrate that shRNA-mediated extinction of ENO2 selectively inhibits growth, survival, and tumorigenic potential of ENO1-deleted GBM cells and that the enolase inhibitor phosphonoacetohydroxamate (PhAH) is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger deleted genes encoding functionally-redundant essential activities and provide an effective treatment strategy for cancers harboring such genomic events. PMID:22895339

  11. Prenatal diagnosis and prenatal imaging features of fetal monosomy 1p36.

    PubMed

    Lissauer, D; Larkins, S A; Sharif, S; MacPherson, L; Rhodes, C; Kilby, M D

    2007-09-01

    Deletion of the distal end of the short arm of chromosome 1 (1p36) is thought to be a common terminal chromosomal deletion. However, few cases prospectively diagnosed prenatally have been reported. In this case, prenatal ultrasound at 21 weeks of gestation noted the fetus to have mild ventriculomegaly (Vhanterior = 11 mm and Vhposterior = 12 mm) and increased nuchal edema (6 mm). Maternal serum alpha-fetoprotein was normal unlike in a majority of previously described cases. The prenatal ultrasound features were further clarified with fetal MRI. Chromosome analysis following amniocentesis demonstrated a 1p36 deletion, which was confirmed by fluorescence in situ hybridization (FISH). The syndrome associated with 1p36 deletion is well described in infants and is characterized by typical facial features (prominent forehead, straight eyebrows. deep-set eyes, flat nasal bridge and a pointed chin). Other associated features are neurodevelopmental delay, seizures, cardiomyopathy and neurosensory hearing impairment. This case supplements our knowledge of the prenatal features of 1p36. Identification of this deletion by direct chromosomal analysis can be technically difficult and vigilance is required to improve diagnosis. FISH analysis is an important diagnostic adjunct where the diagnosis is suspected following classical G-banding techniques. However, in this chromosomal anomaly there remain few characteristic prenatal signs that are readily diagnosed with prenatal imaging.

  12. Left-ventricular non-compaction in a patient with monosomy 1p36.

    PubMed

    Thienpont, Bernard; Mertens, Luc; Buyse, Gunnar; Vermeesch, Joris R; Devriendt, Koen

    2007-01-01

    We report on a new-born girl with left ventricular non-compaction (LVNC), dysmorphism and epilepsy. Array-CGH at 1 Mb resolution revealed a deletion of the terminal 4.6 to 5.9 Mb of the short arm of chromosome 1. Cardiac abnormalities such as dilated cardiomyopathy and structural cardiac defects are common findings in patients with monosomy 1p36. This is however the first report describing LVNC in association with the 1p36 deletion syndrome, broadening the spectrum of cardiac anomalies found in association with this syndrome.

  13. S1P control of endothelial integrity.

    PubMed

    Xiong, Yuquan; Hla, Timothy

    2014-01-01

    Sphingosine 1-phosphate (S1P), a lipid mediator produced by sphingolipid metabolism, promotes endothelial cell spreading, vascular maturation/stabilization, and barrier function. S1P is present at high concentrations in the circulatory system, whereas in tissues its levels are low. This so-called vascular S1P gradient is essential for S1P to regulate much physiological and pathophysiological progress such as the modulation of vascular permeability. Cellular sources of S1P in blood has only recently begun to be identified. In this review, we summarize the current understanding of S1P in regulating vascular integrity. In particular, we discuss the recent discovery of the endothelium-protective functions of HDL-bound S1P which is chaperoned by apolipoprotein M.

  14. Monosomy 1p36 uncovers a role for OX40 in survival of activated CD4+ T cells.

    PubMed

    Suhoski, M M; Perez, E E; Heltzer, M L; Laney, A; Shaffer, L G; Saitta, S; Nachman, S; Spinner, N B; June, C H; Orange, J S

    2008-08-01

    Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in- situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4+ T cells, providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF costimulatory molecules in monosomy 1p36.

  15. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium.

    PubMed

    Harijith, Anantha; Pendyala, Srikanth; Ebenezer, David L; Ha, Alison W; Fu, Panfeng; Wang, Yue-Ting; Ma, Ke; Toth, Peter T; Berdyshev, Evgeny V; Kanteti, Prasad; Natarajan, Viswanathan

    2016-08-01

    Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.

  16. Biophysical Characterization of the Iron in Mitochondria from Atm1p-depleted Saccharomyces cerevisiae

    PubMed Central

    Miao, Ren; Kim, Hansoo; Koppolu, Uma Mahendra Kumar; Ellis, E. Ann; Scott, Robert A.; Lindahl, Paul A.

    2009-01-01

    Atm1p is an ABC transporter localized in the mitochondrial inner membrane; it functions to export an unknown species into the cytosol and is involved in cellular iron metabolism. Depletion or deletion of Atm1p causes Fe accumulation in mitochondria and a defect in cytosolic Fe/S cluster assembly, but reportedly not a defect in mitochondrial Fe/S cluster assembly. In this study the nature of the accumulated Fe was examined using Mössbauer spectroscopy, EPR, electronic absorption spectroscopy, X-ray absorption spectroscopy, and electron microscopy. The Fe that accumulated in aerobically grown cells was in the form of Fe(III) phosphate nanoparticles similar to that which accumulates in yeast frataxin Yfh1p-deleted or yeast ferredoxin Yah1p-depleted cells. Relative to WT mitochondria, Fe/S cluster and heme levels in Atm1p-depleted mitochondria from aerobic cells were significantly diminished. Atm1p-depletion also caused a build-up of nonheme Fe(II) ions in the mitochondria and an increase in oxidative damage. Atm1p-depleted mitochondria isolated from anaerobically grown cells exhibited WT levels of Fe/S clusters and hemes, and they did not hyper-accumulate Fe. Atm1p-depleted cells lacked Leu1p activity, regardless of whether they were grown aerobically or anaerobically. These results indicate that Atm1p does not participate in mitochondrial Fe/S cluster assembly, and that the species exported by Atm1p is required for cytosolic Fe/S cluster assembly. The Fe/S cluster defect and the Fe-accumulation phenotype, resulting from the depletion of Atm1p in aerobic cells (but not in anaerobic cells), may be secondary effects that are observed only when cells are exposed to oxygen during growth. Reactive oxygen species generated under these conditions might degrade iron-sulfur clusters and lower heme levels in the organelle. PMID:19761223

  17. Carboxyarabinitol-1-P phosphatase of Phaseolus vulgaris

    SciTech Connect

    Kobza, J.; Moore, B.d.; Seemann, J.R. )

    1990-05-01

    The activity of carboxyarabinitol-1-P (CA1P) phosphatase was detected in clarified stromal extracts by the generation of {sup 14}C-carboxyarabinitol from {sup 14}C-CA1P. Carboxyribitol-1-P dependent activity was 3% of the CA1P dependent activity, indicating the enzyme was specific for CA1P. Inclusion of DTT in the assay was required for maximum velocity, but it appears that the enzyme is not regulated by thioredoxin in vivo. Activity o f the CA1P phosphatase was stimulated by RuBP, NADPH and FBP, though the latter two metabolites were required at nonphysiological concentrations in order to achieve significant stimulation. Contrary to a previous report on purified tobacco enzyme, ATP stimulated the CA1P phosphatase activity. In the presence of 1 mM RuBP or ATP, rates of 2 or 3 {mu}mol mg{sup {minus}1} Chl h{sup {minus}1}, respectively, were observed at 1 mM CA1P. These rates were 3-4 fold higher than the rate observed in the absence of effectors and are 2-4 times the in vivo rate of degradation of CA1P during dark/light transitions. The rates from bean were about 7 fold higher than rates reported for the enzyme from tobacco. Changes in the levels of ATP and RuBP associated with dark/light transitions could modulate the enzyme activity in vivo, but it remains to be established if this is the only mechanism for the required regulation of the enzyme.

  18. Characterization of Vta1p, a class E Vps protein in Saccharomyces cerevisiae.

    PubMed

    Shiflett, Shelly L; Ward, Diane McVey; Huynh, Dinh; Vaughn, Michael B; Simmons, Jennifer C; Kaplan, Jerry

    2004-03-19

    We identified VTA1 in a screen for mutations that result in altered vacuole morphology. Deletion of VTA1 resulted in delayed trafficking of the lipophilic dye FM4-64 to the vacuole and altered vacuolar morphology when cells were exposed to the dye 5-(and 6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). Deletion of class E vacuolar protein sorting (VPS) genes, which encode proteins that affect multivesicular body formation, also showed altered vacuolar morphology upon exposure to high concentrations of CDCFDA. These results suggest a VPS defect for Deltavta1 cells. Deletion of VTA1 did not affect growth on raffinose and only mildly affected carboxypeptidase S sorting. Turnover of the surface protein Ste3p, the a-factor receptor, was affected in Deltavta1 cells with the protein accumulating on the vacuolar membrane. Likewise the alpha-factor receptor Ste2p accumulated on the vacuolar membrane in Deltavta1 cells. We demonstrated that many class E VPS deletion strains are hyper-resistant to the cell wall disruption agent calcofluor white. Deletion of VTA1 or VPS60, another putative class E gene, resulted in calcofluor white hypersensitivity. A Vta1p-green fluorescent protein fusion protein transiently associated with a Pep12p-positive compartment. This localization was altered by deletion of many of the class E VPS genes, indicating that Vta1p binds to endosomes in a manner dependent on the assembly of the endosomal sorting complexes required for transport. Membrane-associated Vta1p co-purified with Vps60p, suggesting that Vta1p is a class E Vps protein that interacts with Vps60p on a prevacuolar compartment.

  19. Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells

    SciTech Connect

    Savelyeva, L.; Corvi, R.; Schwab, M. )

    1994-08-01

    Human neuroblastoma cells often are monosomic for the distal portion of 1p (1p36). The authors report that the deleted 1p material in cells of neuroblastoma lines is preferentially replaced by material from chromosome 17, resulting from an unbalanced 1;17 translocation. Chromosome 17 often acquires instability, followed by the integration of fragments into various marker chromosomes. As a consequence, 17q material can increase over 17p material. The nonrandom frequency of 1;17 translocations appears to indicate an as-yet-undefined contribution to neuroblastoma development. 35 refs., 4 figs., 1 tab.

  20. Characterizing the Role of 1p36 Deletion in Breast Cancer and Identifying Candidate Tumor Suppressors

    DTIC Science & Technology

    2008-04-01

    Cheng N, Ford J, Smith J, Murray JE, Flemming C, Lastowska M, Jackson MS, Hackett CS, Weiss WA, Marshall GM, Kees UR, Norris MD, Haber M. Cell lines...Natalie Blades, Gary Churchill, Javed Khan, Pui-Yan Kwok, Allan Balmain, and William A. Weiss. AACR Mouse Models of Cancer Conference October 25-28

  1. Characterizing the Role of 1p36 Deletion in Breast Cancer and Identifying Candidate Tumor Suppressors

    DTIC Science & Technology

    2009-04-01

    Flemming C, Lastowska M, Jackson MS, Hackett C S, Weiss W A, Marshall GM, Kees UR, Norris M D, Haber M . Cell lines from MYCN transgenic murine...Timothy K. Starr, Lara S. Collier, Gary Churchill, Fernando Pardo-Manuel de Villena, Javed Khan, Pui-Yan Kwok, David Largaespada, Allan B almain, a nd W

  2. Identification of a pepducin acting as S1P3 receptor antagonist.

    PubMed

    Severino, Beatrice; Incisivo, Giuseppina Maria; Fiorino, Ferdinando; Bertolino, Antonio; Frecentese, Francesco; Barbato, Francesco; Manganelli, Serena; Maggioni, Giada; Capasso, Domenica; Caliendo, Giuseppe; Santagada, Vincenzo; Sorrentino, Raffaella; Roviezzo, Fiorentina; Perissutti, Elisa

    2013-11-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein-coupled receptors, named S1P(1-5). Among them, S1P(3) has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX-725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P(3). Here, aiming to identify novel S1P(3) antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C- and N-terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala-scan derived compounds (2-10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose-dependent manner, both pepducin 1-induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities.

  3. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  4. Morbid obesity in a child with monosomy 1p36 syndrome.

    PubMed

    Zagalo, Ana; Dias, Patricia; Pereira, Carla; Sampaio, Maria de Lurdes

    2012-03-20

    The monosomy 1p36 syndrome is a cause of syndromic obesity. It is characterised by psychomotor delay, hypotonia and typical craniofacial dysmorphism. Other features commonly associated are behavioural anomalies including hyperphagia and self-injuring, seizures, congenital heart disease and hypothyroidism. The authors report the case of a 9-year and 5-month-boy referred to the paediatric endocrinology clinics for morbid obesity. Clinical findings were generalised obesity with a body mass index >95th centile, acanthosis nigricans of the neck, arms with self inflicted lesions, deep-set eyes, straight eyebrows, broad nasal bridge and pointed chin. He was unable to walk and had no expressive language. Cytogenetic analysis identified 1p36.33-pter deletion (~139 Mb terminal deletion in chromosome 1 short arm) and Y chromosome duplication. The blood analysis showed insulin resistance and dyslipidaemia. The authors emphasise the need to consider monosomy 1p36 as a cause of severe psychomotor delay and obesity.

  5. Morbid obesity in a child with monosomy 1p36 syndrome

    PubMed Central

    Zagalo, Ana; Dias, Patricia; Pereira, Carla; Sampaio, Maria de Lurdes

    2012-01-01

    The monosomy 1p36 syndrome is a cause of syndromic obesity. It is characterised by psychomotor delay, hypotonia and typical craniofacial dysmorphism. Other features commonly associated are behavioural anomalies including hyperphagia and self-injuring, seizures, congenital heart disease and hypothyroidism. The authors report the case of a 9-year and 5-month-boy referred to the paediatric endocrinology clinics for morbid obesity. Clinical findings were generalised obesity with a body mass index >95th centile, acanthosis nigricans of the neck, arms with self inflicted lesions, deep-set eyes, straight eyebrows, broad nasal bridge and pointed chin. He was unable to walk and had no expressive language. Cytogenetic analysis identified 1p36.33-pter deletion (~139 Mb terminal deletion in chromosome 1 short arm) and Y chromosome duplication. The blood analysis showed insulin resistance and dyslipidaemia. The authors emphasise the need to consider monosomy 1p36 as a cause of severe psychomotor delay and obesity. PMID:22605691

  6. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p.

    PubMed

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y; Toshima, Jiro

    2014-01-10

    Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V(o) subunit of vacuolar-type H(+)-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  7. Monosomy1p36.3 and trisomy 19p13.3 in a child with periventricular nodular heterotopia.

    PubMed

    Descartes, Maria; Mikhail, Fady M; Franklin, Judith C; McGrath, Tony M; Bebin, Martina

    2011-10-01

    Monosomy 1p36 is a clinically recognizable syndrome that is considered to be the most common terminal deletion syndrome. It has characteristic clinical features that include craniofacial dysmorphism, congenital anomalies, hearing deficits, developmental delay, mental retardation, hypotonia, seizures, and brain anomalies. Brain anomalies in patients with 1p36 deletion are frequent but inconsistent. To date, 2 cases with monosomy 1p36 associated with periventricular nodular heterotopia (PNH) have been reported. We report a 2-month-old boy with multiple congenital anomalies; brain magnetic resonance imaging revealed PNH. The first 2 described cases were pure terminal deletions, whereas our patient carried unbalanced translocation due to an adjacent 1 segregation of a balanced maternal translocation, resulting in monosomy 1p36.3 and trisomy 19p13.3 identified by whole-genome array comparative genomic hybridization analysis. Our patient, with a smaller deletion that the 2 previously reported cases, can help narrow the critical region for PNH in association with the 1p36 deletion. Several potential candidate genes are discussed.

  8. Monosomy 1p36 - a multifaceted and still enigmatic syndrome: four clinically diverse cases with shared white matter abnormalities.

    PubMed

    Õiglane-Shlik, Eve; Puusepp, Sanna; Talvik, Inga; Vaher, Ulvi; Rein, Reet; Tammur, Pille; Reimand, Tiia; Teek, Rita; Žilina, Olga; Tomberg, Tiiu; Õunap, Katrin

    2014-05-01

    Monosomy 1p36 is the most common subtelomeric deletion syndrome seen in humans. Uniform features of the syndrome include early developmental delay and consequent intellectual disability, muscular hypotonia, and characteristic dysmorphic facial features. The gene-rich nature of the chromosomal band, inconsistent deletion sizes and overlapping clinical features have complicated relevant genotype-phenotype correlations. We describe four patients with isolated chromosome 1p36 deletions. All patients shared white matter abnormalities, allowing us to narrow the critical region for white matter involvement to the deletion size of up to 2.5 Mb from the telomere. We hypothesise that there might be a gene(s) responsible for myelin development in the 1p36 subtelomeric region. Other significant clinical findings were progressive spastic paraparesis, epileptic encephalopathy, various skeletal anomalies, Prader-Willi-like phenotype, neoplastic changes - a haemangioma and a benign skin tumour, and in one case, sleep myoclonus, a clinical entity not previously described in association with 1p36 monosomy. Combined with prior studies, our results suggest that the clinical features seen in monosomy 1p36 have more complex causes than a classical contiguous gene deletion syndrome.

  9. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects.

    PubMed

    Varela, Monica Castro; Kok, Fernando; Otto, Paulo Alberto; Koiffmann, Celia Priszkulnik

    2004-12-01

    Angelman syndrome (AS) can result from either a 15q11-q13 deletion (del), paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. Here, we describe the phenotypic and behavioral variability detected in 49 patients with different classes of deletions and nine patients with UPD. Diagnosis was made by methylation pattern analysis of exon 1 of the SNRPN-SNURF gene and by microsatellite profiling of loci within and outside the 15q11-q13 region. There were no major phenotypic differences between the two main classes (BP1-BP3; BP2-BP3) of AS deletion patients, except for the absence of vocalization, more prevalent in patients with BP1-BP3 deletions, and for the age of sitting without support, which was lower in patients with BP2-BP3 deletions. Our data suggest that gene deletions (NIPA1, NIPA2, CYF1P1, GCP5) mapped to the region between breakpoints BP1 and BP2 may be involved in the severity of speech impairment, since all BP1-BP3 deletion patients showed complete absence of vocalization, while 38.1% of the BP2-BP3 deletion patients were able to pronounce syllabic sounds, with doubtful meaning. Compared to UPD patients, deletion patients presented a higher incidence of swallowing disorders (73.9% del x 22.2% UPD) and hypotonia (73.3% del x 28.57% UPD). In addition, children with UPD showed better physical growth, fewer or no seizures, a lower incidence of microcephaly, less ataxia and higher cognitive skills. As a consequence of their milder or less typical phenotype, AS may remain undiagnosed, leading to an overall underdiagnosis of the disease.

  10. Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae.

    PubMed

    Walter, David; Matter, Anja; Fahrenkrog, Birthe

    2010-06-01

    BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitylation of histone H2B at lysine 123 (K123). Ubiquitylation of this histone residue is involved in a variety of cellular processes including gene activation and gene silencing. Abolishing histone H2B ubiquitylation also confers X-ray sensitivity and abrogates checkpoint activation after DNA damage. Here we show that Saccharomyces cerevisiae Bre1p exhibits anti-apoptotic activity in yeast and that this is linked to histone H2B ubiquitylation. We found that enhanced levels of Bre1p protect from hydrogen-peroxide-induced cell death, whereas deletion of BRE1 enhances cell death. Moreover, cells lacking Bre1p show reduced lifespan during chronological ageing, a physiological apoptotic condition in yeast. Importantly, the resistance against apoptosis is conferred by histone H2B ubiquitylation mediated by the E3 ligase activity of Bre1p. Furthermore, we found that the death of Deltabre1 cells depends on the yeast caspase Yca1p, because Deltabre1 cells exhibit increased caspase activity when compared with wild-type cells, and deletion of YCA1 leads to reduced apoptosis sensitivity of cells lacking Bre1p.

  11. Extending the phenotype of monosomy 1p36 syndrome and mapping of a critical region for obesity and hyperphagia.

    PubMed

    D'Angelo, Carla S; Kohl, Ilana; Varela, Monica Castro; de Castro, Cláudia I E; Kim, Chong A; Bertola, Débora R; Lourenço, Charles M; Koiffmann, Célia P

    2010-01-01

    Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of approximately 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36.

  12. Partial monosomy of chromosome 1p36.3: Characterization of the critical region and delineation of a syndrome

    SciTech Connect

    Reish, O.; Berry, S.A.; Hirsch, B.

    1995-12-04

    We describe 5 patients ranging in age from 3 to 47 years, with karyotypic abnormalities resulting in monosomy for portion of 1p36.3, microcephaly, mental retardation, prominent forehead, deep-set eyes, depressed nasal bridge, flat midface, relative prognathism, and abnormal ears. Four patients have small hands and feet. All exhibited selfabusive behavior. Additional findings in some of the patients include brain anomalies, optic atrophy, hearing loss and skeletal deformities. The breakpoints within chromosome 1 were designated at 1p36.31 (3 cases), 1p36.32 (1 case) and 1p36.33 (1 case). Thus, the smallest region of deletion overlap is 1p36.33{r_arrow}pter. Detection of the abnormal 1 relied on high resolution G-band analysis. Fluorescence in situ hybridization (FISH) utilizing a DNA probe (Oncor D1Z2) containing the repetitive sequences in distal 1p36, confirmed a deletion of one 1 homologue in all 5 cases. The abnormal 1 resulted from a de novo deletion in only one patient. The remaining patients were either confirmed (3 cases) or suspected (1 case) to have unbalanced translocations. Despite the additional genetic imbalance present in these four cases, monosomy of 1p36.33 appears to be responsible for a specific clinical phenotype. Characterization of this phenotype should assist in the clinical diagnosis of this chromosome abnormality. 26 refs., 4 figs., 2 tabs.

  13. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  14. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  15. RACK1/Asc1p, a Ribosomal Node in Cellular Signaling

    PubMed Central

    Rachfall, Nicole; Schmitt, Kerstin; Bandau, Susanne; Smolinski, Nadine; Ehrenreich, Armin; Valerius, Oliver; Braus, Gerhard H.

    2013-01-01

    RACK1/Asc1p and its essential orthologues in higher eukaryotes, such as RACK1 in metazoa, are involved in several distinct cellular signaling processes. The implications of a total deletion have never been assessed in a comprehensive manner. This study reveals the major cellular processes affected in a Saccharomyces cerevisiae Δasc1 deletion background via de novo proteome and transcriptome analysis, as well as subsequent phenotypical characterizations. The deletion of ASC1 reduces iron uptake and causes nitrosative stress, both known indicators for hypoxia, which manifests in a shift of energy metabolism from respiration to fermentation in the Δasc1 strain. Asc1p further impacts cellular metabolism through its regulative role in the MAP kinase signal transduction pathways of invasive/filamentous growth and cell wall integrity. In the Δasc1 mutant strain, aberrations from the expected cellular response, mediated by these pathways, can be observed and are linked to changes in protein abundances of pathway-targeted transcription factors. Evidence of the translational regulation of such transcription factors suggests that ribosomal Asc1p is involved in signal transduction pathways and controls the biosynthesis of the respective final transcriptional regulators. PMID:23071099

  16. Prolidase Deficiency in a Mexican-American Patient Identified by Array CGH Reveals a Novel and the Largest PEPD Gene Deletion

    PubMed Central

    Hintze, Jonathan P.; Kirby, Amelia; Torti, Erin; Batanian, Jacqueline R.

    2016-01-01

    Prolidase deficiency (PD) is a rare genetic disorder caused by mutations in the peptidase D (PEPD) gene, affecting collagen degradation. Features include lower extremity ulcers, facial dysmorphism, frequent respiratory infections, and intellectual disability, though there is significant intra- and interfamilial variability. Twenty-eight mutations have been previously reported, all either small deletions/duplications or point mutations discovered by enzyme or DNA assays. PD has been reported in patients of various ethnic backgrounds, but never in the Mexican-American population. We describe the first Mexican-American patient with PD, who presented with typical facial features, developmental delay, microcephaly, and xerosis. Chromosome microarray analysis (CMA) revealed a homozygous deletion in the region of 19q13.11, estimated to be between 124.79 and 195.72 kb in size, representing the largest PEPD gene deletion reported to date and the first discovered by CMA. PMID:27385964

  17. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.

    PubMed

    Martinez, Milka; Hinojosa, Marcela; Trombly, Daniel; Morin, Violeta; Stein, Janet; Stein, Gary; Javed, Amjad; Gutierrez, Soraya E

    2016-01-01

    RUNX1 a member of the family of runt related transcription factors (RUNX), is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5'UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription.

  18. 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours.

    PubMed

    Lo Vasco, Vincenza Rita

    2011-07-01

    Deletions in the distal region of the short arm of chromosome 1 (1p36) are widely diffuse, both in congenital 1p36 Deletion Syndrome and as somatic abnormalities in tumours. Rearrangements in 1p36 have been described in a broad spectrum of human neoplasias in addition to other chromosomal abnormalities. In neuroblastomas, wide hemizygous deletions in 1p36.23-1p36.32 have been described suggesting that the 1p36 region contains a tumour-suppressor gene involved in malignancy. A role for phosphoinositide (PI)-specific phospholipase C (PLC) η2, whose gene maps on 1p36.32, was suggested. PI-PLC η2 belongs to a family of enzymes related to the phosphoinositide signalling pathway, which provide an important intracellular signalling system involved in a variety of cell functions such as hormone secretion, neurotransmitter signal transduction, cell growth, membrane trafficking, ion channel activity, regulation of the cytoskeleton, cell cycle control and apoptosis. Expression of PI-PLC η2 occurs after birth and continues throughout the life. Synapse formation occurs during a short period of postnatal development. Thus, it is likely that PI-PLC η2 acts in formation and maintenance of the neuronal network in the brain. The fact that PI-PLC η2, a highly neuron-specific isozyme, is abundantly expressed in the postnatal brain suggests the importance of PI-PLC η2 in formation and maintenance of the neuronal network in the postnatal brain. Further studies are required to verify the possible involvement of PI-PLC η2 mutation/deletion in central nervous tumour tissues presenting abnormalities of the 1p36 chromosomal band.

  19. Adding and Deleting Images

    EPA Pesticide Factsheets

    Images are added via the Drupal WebCMS Editor. Once an image is uploaded onto a page, it is available via the Library and your files. You can edit the metadata, delete the image permanently, and/or replace images on the Files tab.

  20. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    SciTech Connect

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  1. Lack of evidence for monosomy 1p36 in patients with Prader-Willi-like phenotype.

    PubMed

    Rodríguez, V R; Mazzucato, L F; Pina-Neto, J M

    2008-08-01

    Monosomy 1p36 is the most common subtelomeric microdeletion syndrome with an incidence rate estimated to be 1 in 5000 births. A hypothesis of a similarity between patients with 1p36 deletion and those with Prader-Willi syndrome and the existence of two different phenotypes for 1p36 microdeletion has been suggested. The main objective of the present study was to determine the existence of 1p36 microdeletion in a sample of patients with mental retardation, obesity and hyperphagia who tested negative by the methylation test for Prader-Willi syndrome. Sixteen patients (7 females, 9 males), 16-26 years old, were evaluated with high-resolution cytogenetic analysis at 550-850 band levels and with 11 polymorphic microsatellite markers located in the 1p36 region. All patients had normal cytogenetic and molecular results. The results obtained by high-resolution cytogenetic methodology were confirmed by the molecular analyses. We did not detect a 1p36 microdeletion in 16 subjects with the Prader-Willi-like phenotype, which reinforces that no correlation seems to exist between Prader-Willi-like phenotype and the 1p36 microdeletion syndrome.

  2. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    PubMed

    Johnson, Cole; Kweon, Hye Kyong; Sheidy, Daniel; Shively, Christian A; Mellacheruvu, Dattatreya; Nesvizhskii, Alexey I; Andrews, Philip C; Kumar, Anuj

    2014-03-01

    The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  3. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    PubMed

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates.

  4. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  5. Cometary gas relations 1P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos R.

    Photographic and photoelectric observations of comet 1P/Halley's ionised gas coma from CO+ at 4,250 Å and neutral gas coma from CN at 3,880 Å were part of the Bochum Halley Monitoring Program, conducted at the European Southern Observatory, La Silla, Chile, from February 17 to April 17, 1986. In this spectral range it is possible to see the continuum formation, motion and expansion of plasma and neutral gas structures. To observe the morphology of these structures, 32 CO+ photos (glass plates) from comet 1P/Halley obtained by means of an interference filter have been analysed. They have a field of view of 28.6 × 28.6 degrees and were obtained from March 29 to April 17, 1986 with exposure times between 20 and 120 minutes. All photos were digitised with a PDS 2020 GM microdensitometer. After digitisation, the data were reduced to relative intensities, and those with proper calibrations were also converted to absolute intensities, expressed in terms of column densities. The CO+ absolute intensity values still contain the continuum intensity. To calculate the CO+ column density it is necessary to subtract this continuum intensity. The relations between CO+ and CN in average column density values (NCO+/NCN) are 11.6 for a circular diaphragm with average diameter (Φ) of 6.1 arcminutes which corresponds to a distance from the nucleus (ρ) equal to 6.3 × 104 km; 20.0 for Φ = 7.1 arcminutes and ρ = 7.3 × 104 km; 8.1 for Φ = 8.5 arcminutes and ρ = 8.7 × 104 km; 35.6 for Φ = 11.9 arcminutes and ρ = 1.2 × 105 km; and 31.3 for Φ = 16.7 arcminutes and ρ = 1.7 × 105 km. These values are in perfect agreement with the data for short distances (ρ from 3.9 × 103 to 1.2 × 104 km) and small slit diameters (Φ from 0.4 to 1.2 arcminutes). With the use of diaphragms with large diameters it is possible to get some information about the outer coma of the comet (in this paper, from 60,000 until 170,000 km away from the nucleus). At these distances, the CO+ column density

  6. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase.

    PubMed

    Bozaquel-Morais, Bruno L; Madeira, Juliana B; Venâncio, Thiago M; Pacheco-Rosa, Thiago; Masuda, Claudio A; Montero-Lomeli, Monica

    2017-01-01

    Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were "transcriptional regulation", "protein post-translational modifications" and "lipid metabolism". Further investigation of the "transcriptional regulation" cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators.

  7. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase

    PubMed Central

    Bozaquel-Morais, Bruno L.; Madeira, Juliana B.; Venâncio, Thiago M.; Pacheco-Rosa, Thiago; Masuda, Claudio A.; Montero-Lomeli, Monica

    2017-01-01

    Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were “transcriptional regulation”, “protein post-translational modifications” and “lipid metabolism”. Further investigation of the “transcriptional regulation” cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators. PMID:28076367

  8. The dynamin-like protein Vps1p of the yeast Saccharomyces cerevisiae associates with peroxisomes in a Pex19p-dependent manner.

    PubMed

    Vizeacoumar, Franco J; Vreden, Wanda N; Fagarasanu, Monica; Eitzen, Gary A; Aitchison, John D; Rachubinski, Richard A

    2006-05-05

    Dynamins and dynamin-like proteins play important roles in organelle division. In Saccharomyces cerevisiae, the dynamin-like protein Vps1p (vacuolar protein sorting protein 1) is involved in peroxisome fission, as cells deleted for the VPS1 gene contain reduced numbers of enlarged peroxisomes. What relationship Vps1p has with peroxisomes remains unclear. Here we show that Vps1p interacts with Pex19p, a peroxin that acts as a shuttling receptor for peroxisomal membrane proteins or as a chaperone assisting the assembly/stabilization of proteins at the peroxisome membrane. Vps1p contains two putative Pex19p recognition sequences at amino acids 509-523 and 633-647. Deletion of the first (but not the second) sequence results in reduced numbers of enlarged peroxisomes in cells, as in vps1delta cells. Deletion of either sequence has no effect on vacuolar morphology or vacuolar protein sorting, suggesting that the peroxisome and vacuole biogenic functions of Vps1p are separate and separable. Substitution of proline for valine at position 516 of Vps1p abrogates Pex19p binding and gives the peroxisome phenotype of vps1delta cells. Microscopic analysis showed that overexpression of Pex19p or redirection of Pex19p to the nucleus does not affect the normal cellular distribution of Vps1p in the cytosol and in punctate structures that are not peroxisomes, suggesting that Pex19p does not function in targeting Vps1p to peroxisomes. Subcellular fractionation showed that a fraction of Vps1p is associated with peroxisomes and that deletion or mutation of the first Pex19p recognition sequence abrogates this association. Our results are consistent with Pex19p acting as a chaperone to stabilize the association of Vps1p with peroxisomes and not as a receptor involved in targeting Vps1p to peroxisomes.

  9. The functional roles of S1P in immunity.

    PubMed

    Hisano, Yu; Nishi, Tsuyoshi; Kawahara, Atsuo

    2012-10-01

    The lipid mediator sphingosine-1-phosphate (S1P) is generated within cells from sphingosine by two sphingosine kinases (SPHK1 and SPHK2). Intracellularly synthesized S1P is released into the extracellular fluid by S1P transporters, including SPNS2. Released S1P binds specifically to the G protein-coupled S1P receptors (S1PR1/S1P(1)-S1PR5/S1P(5)), which activate a diverse range of downstream signalling pathways. Recent studies have proposed that one of the central physiological functions of intercellular S1P signalling is in lymphocyte trafficking in vivo because genetic disruption of SPHK1/2, SPNS2 or S1PR1/S1P(1) in mice induces a lymphopenia phenotype. In this review, we discuss the current understanding of intercellular S1P signalling in the context of immunity.

  10. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  11. The IPP gene is assigned to human chromosome 1p32-1p22

    SciTech Connect

    Chang-Yeh, A.; Huang, R.C.C. ); Jabs, E.W.; Li, Xiang ); Dracopoli, N.C. )

    1993-01-01

    We previously reported the isolation and characterization of a novel mouse gene that is promoted by an intracisternal A-particle (IAP) LTR and is expressed in placental tissue (mouse IAP-promoted placenta gene, Ipp). Based on restriction fragment length polymorphism (RFLP) studies using inbred strains and recombinant inbred (RI) mice, we have established the linkage between the Ipp gene and several loci on distal mouse chromosome 4. In this publication, we report the partial sequence of a human cDNA clone isolated from a human placental library that has 83% identity to the 3[prime]region of the Ipp cDNA. For human chromosome mapping, two 20-base oligonucleotides within the homologous region were used as primers for polymerase chain reactions (PCR) to chromosome-specific DNAs from two somatic cell hybrid panels and several hybrid cell lines carrying breakpoints on human chromosome 1p. We have assigned this human homolog of the Ipp (IPP) gene to chromosome 1 at 1p32-1p22, based on analysis of PCR products. With this assignment, the homology between mouse chromosome 4 and human chromosome 1 is maintained (5). 7 refs., 1 fig.

  12. Pheromone responsiveness is regulated by components of the Gpr1p-mediated glucose sensing pathway in Saccharomyces cerevisiae.

    PubMed

    Willhite, D Grant; Brigati, Jennifer R; Selcer, Katie E; Denny, Joshua E; Duck, Zachary A; Wright, Stephen E

    2014-09-01

    Many fungi have evolved mechanisms to assess environmental nutrient availability prior to the energy-intensive process of mating. In this study, we examined one such system in Saccharomyces cerevisiae, involving a glucose-sensing pathway mediated by Gpr1p and the pheromone-induced mating pathway. Initially we observed that the mating pathway in MATa cells is sensitive to environmental glucose depletion. This phenomenon can be partially reversed with a high glucose spike, but not with the addition of low levels of glucose. Deletion of the low-affinity glucose receptor, Gpr1p, eliminated this glucose-induced recovery of pheromone responsiveness. We then determined the impact of GPR1 deletion on the mating pathway and observed that, in all end points studied, the mating pathway response to pheromone is reduced in the absence of Gpr1p. Similarly, elimination of the Gα for Gpr1p, Gpa2p, resulted in reduction in pheromone sensitivity in all assays studied. The negative effect of removing Gpr1p on mating pathway activation could be recovered by overexpressing the mating receptor, Ste2p. Furthermore, Ste2p levels are reduced in the absence of glucose and GPR1. These data suggest that activity of the GPCR-mediated mating pathway in S. cerevisiae is modulated by extracellular glucose concentrations through the only other GPCR in MATa cells, Gpr1p.

  13. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling.

    PubMed

    Moon, Eunjung; Han, Jeong Eun; Jeon, Sejin; Ryu, Jong Hoon; Choi, Ji Woong; Chun, Jerold

    2015-01-01

    Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain.

  14. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    SciTech Connect

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  15. Baseline characteristics, chromosomal alterations, and treatment affecting prognosis of deletion 17p in newly diagnosed myeloma.

    PubMed

    Merz, Maximilian; Hielscher, Thomas; Seckinger, Anja; Hose, Dirk; Mai, Elias K; Raab, Marc S; Goldschmidt, Hartmut; Jauch, Anna; Hillengass, Jens

    2016-11-01

    Deletion 17p13, del(17p), is associated with poor outcome in myeloma but some patients show long-term survival. With the current study we intended to identify factors impacting outcome of such high risk patients. We analyzed 110 newly diagnosed, symptomatic patients with del(17p) detected by fluorescence in situ hybridization (FISH) in CD138-purified myeloma cells to identify prognostic factors for survival. Age >65 years, ISS III, and elevated LDH negatively impacted survival. Patients with subclonal (10-60% of plasma cells) del(17p) had longer progression-free survival (PFS) than patients with del(17p) in >60% of plasma cells (26 vs. 19 months, P = 0.03). Additional gain of 1q21 was associated with shorter PFS (17 vs. 25 months, P = 0.01). Hyperdiploidy did not ameliorate impact of del(17p), but gain 19q13 predicted longer PFS (30 vs. 18 months, P = 0.01) and overall survival (50 vs. 29 months, P = 0.01). Multivariate analysis in transplant eligible patients (≤65 years) revealed better survival for patients treated with upfront autologous transplantation (hazard ratio, [95% confidence interval]: 0.15 [0.04, 0.58], P = 0.006). Application of maintenance therapy was associated with better survival in transplant-eligible patients (0.30 [0.09, 0.99], P = 0.05). We demonstrate heterogeneous outcome of patients with del(17p) according to baseline characteristics and treatment. 19q13 should be included in routine FISH panel, since gains were associated with better survival. Am. J. Hematol. 91:E473-E477, 2016. © 2016 Wiley Periodicals, Inc.

  16. The Extracellular Domain of the Saccharomyces cerevisiae Sln1p Membrane Osmolarity Sensor Is Necessary for Kinase Activity

    PubMed Central

    Ostrander, Darin B.; Gorman, Jessica A.

    1999-01-01

    The function of the extracellular domain (ECD) of Sln1p, a plasma membrane two-transmembrane domain (TMD) sensor of the high-osmolarity glycerol (HOG) response pathway, has been studied in the yeast Saccharomyces cerevisiae. Truncations of SLN1 that retain an intact kinase domain are capable of complementing the lethality of an sln1Δ strain. By observing levels of Hog1p phosphorylation as well as the phosphorylation state of Sln1p, the kinase activities of various SLN1 constructions were determined. In derivatives that do not contain the first TMD, Sln1p activity was no longer dependent on medium osmolarity but appeared to be constitutively active even under conditions of high osmolarity. Removal of the first TMD (ΔTMD1 construct) gave a protein that was strongly phosphorylated whereas Hog1p was largely dephosphorylated, as expected if the active form of Sln1p is phosphorylated. When both TMDs as well as the ECD were deleted, so that the kinase domain is cytosolic, Sln1p was not phosphorylated whereas Hog1p became constitutively hyperphosphorylated. Surprisingly, this hyperactivity of the HOG mitogen-activated protein kinase signaling pathway was not sufficient to result in cell lethality. When the ECD of the ΔTMD1 construct was replaced with a leucine zipper motif, Sln1p was hyperactive, so that Hog1p became mostly unphosphorylated. In contrast, when the Sln1p/leucine zipper construct was crippled by a mutation of one of the internal leucines, the Sln1 kinase was inactive. These experiments are consistent with the hypothesis that the ECD of Sln1p functions as a dimerization and activation domain but that osmotic regulation of activity requires the presence of the first TMD. PMID:10198019

  17. Chemical and genetic tools to explore S1P biology.

    PubMed

    Cahalan, Stuart M

    2014-01-01

    The zwitterionic lysophospholipid Sphingosine 1-Phosphate (S1P) is a pleiotropic mediator of physiology and pathology. The synthesis, transport, and degradation of S1P are tightly regulated to ensure that S1P is present in the proper concentrations in the proper location. The binding of S1P to five G protein-coupled S1P receptors regulates many physiological systems, particularly the immune and vascular systems. Our understanding of the functions of S1P has been aided by the tractability of the system to both chemical and genetic manipulation. Chemical modulators have been generated to affect most of the known components of S1P biology, including agonists of S1P receptors and inhibitors of enzymes regulating S1P production and degradation. Genetic knockouts and manipulations have been similarly engineered to disrupt the functions of individual S1P receptors or enzymes involved in S1P metabolism. This chapter will focus on the development and utilization of these chemical and genetic tools to explore the complex biology surrounding S1P and its receptors, with particular attention paid to the in vivo findings that these tools have allowed for.

  18. Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells

    PubMed Central

    Teixeira, Vitor; Medeiros, Tânia C.; Vilaça, Rita; Moradas-Ferreira, Pedro; Costa, Vítor

    2014-01-01

    The target of rapamycin (TOR) is an important signaling pathway on a hierarchical network of interacting pathways regulating central biological processes, such as cell growth, stress response and aging. Several lines of evidence suggest a functional link between TOR signaling and sphingolipid metabolism. Here, we report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of TOR1 or SCH9 abolishes the premature aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by isc1Δ cells and this is correlated with the suppression of the autophagic flux defect exhibited by the mutant strain. The protective effect of TOR1 deletion, as opposed to that of SCH9 deletion, is not associated with the attenuation of Hog1p hyperphosphorylation, which was previously implicated in isc1Δ phenotypes. Our data support a model in which Isc1p regulates mitochondrial function and chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p and TORC1 also seem to act through independent pathways, as isc1Δtor1Δ phenotypes are intermediate to those displayed by isc1Δ and tor1Δ cells. We also provide evidence that TORC1 downstream effectors, the type 2A protein phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate mitochondrial function and lifespan in yeast. Overall, our results show that TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature aging of isc1Δ cells. PMID:28357207

  19. Ebstein anomaly: Genetic heterogeneity and association with microdeletions 1p36 and 8p23.1.

    PubMed

    Digilio, Maria Cristina; Bernardini, Laura; Lepri, Francesca; Giuffrida, Maria Grazia; Guida, Valentina; Baban, Anwar; Versacci, Paolo; Capolino, Rossella; Torres, Barbara; De Luca, Alessandro; Novelli, Antonio; Marino, Bruno; Dallapiccola, Bruno

    2011-09-01

    Ebstein anomaly is an uncommon congenital heart defect (CHD), characterized by downward displacement of the tricuspid valve into the right ventricle. To uncover the genetic associations with Ebstein anomaly, we have searched chromosomal imbalances using standard cytogenetic and array-CGH analysis, and single gene conditions associated with syndromic Ebstein anomaly (with extracardiac anomalies), and screened GATA4 and NKX2.5 mutations in nonsyndromic patients (without extracardiac anomalies). Between January 1997 and September 2009, 44 consecutive patients with Ebstein anomaly were evaluated in two centers of Pediatric Cardiology. Ebstein anomaly was syndromic in 12 (27%) patients, and nonsyndromic in 32 (73%). A recognizable syndrome or complex was diagnosed by clinical criteria in seven patients. In one syndromic patient an 18q deletion was diagnosed by standard cytogenetic analysis. Array-CGH analysis performed in 10 of the 12 syndromic patients detected an interstitial deletion of about 4 Mb at 8p23.1 in one patient, and a deletion 1pter > 1p36.32/dup Xpter- > Xp22.32 in another patient. In the 28 of 32 nonsyndromic patients who underwent molecular testing, no mutation in GATA4 and NKX2.5 genes were detected. We conclude that Ebstein anomaly is a genetically heterogeneous defect, and that deletion 1p36 and deletion 8p23.1 are the most frequent chromosomal imbalances associated with Ebstein anomaly. Candidate genes include the GATA4 gene (in patients with del 8p23.1), NKX2.5 (based on published patients with isolated Ebstein anomaly) and a hypothetical gene in patients with del 1p36).

  20. The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae.

    PubMed

    Jandrositz, Anita; Petschnigg, Julia; Zimmermann, Robert; Natter, Klaus; Scholze, Hubert; Hermetter, Albin; Kohlwein, Sepp D; Leber, Regina

    2005-06-15

    Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.

  1. Ip deletions in human pheochromocytomas share a common pericentromeric breakpoint and do not involve imprinting

    SciTech Connect

    Moley, J.F.; Marshall, H.N.

    1994-09-01

    We previously reported that loss of heterozygosity (LOH) of 1p is found in all pheochromocytomas from patients with the Multiple Endocrine Neoplasia type 2 syndromes and in 40% of sporadic pheochromocytomas. We used 24 polymorphic DNA markers to map the deleted region in 27 tumors and found that in all tumors with 1p LOH, the deletion involves the entire short arm. LOH of 1q has not been found. The common breakpoint in these tumors is between D1S514 and D1S442 which defines a 2 centiMorgan interval which includes the centromere. To determine whether genomic imprinting plays a role in 1p deletion in these tumors, parental DNA was obtained for eight individuals with pheochromocytomas and the parental DNA was obtained for eight individuals with pheochromocytomas and the parental origin of allelic loss determined. In four cases the paternal allele was lost and in four cases, the maternal allele was lost. In addition, allelic loss was examined in multifocal or bilateral tumors from five individuals. 1p LOH was demonstrated in all tumors examined, but in two patients, tumors from different sites demonstrated opposite patterns of allelic loss, indicating that either maternal or paternal alleles may be lost in different tumors from the same individual. These data show that deletion of 1p is a significant event in the development of human pheochromocytomas, and involves a common breakpoint in the pericentromeric area. Allelic deletion is not influenced by the parent of origin.

  2. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies.

    PubMed

    Gamba, Bruno Faulin; Richieri-Costa, Antônio; Costa, Silvia; Rosenberg, Carla; Ribeiro-Bicudo, Lucilene Arilho

    2015-12-01

    Terminal deletion in the short arm of chromosome 1 results in a disorder described as 1p36 deletion syndrome. The resulting phenotype varies among patients including mental retardation, developmental delay, sensorineural hearing loss, seizures, heart defects, and distinct facies. In the present case, we performed array-comparative genomic hybridization in a boy with multiple congenital malformations presenting some features overlapping the 1p36 deletion phenotype for whom chromosomal analysis did not reveal a terminal deletion in 1p. Results showed complex chromosome rearrangements involving the 1p36.33-p35.3 region. While the mechanism of origin of these rearrangements is still unclear, chromothripsis-a single catastrophic event leading to shattering chromosomes or chromosome regions and rejoining of the segments-has been described to occur in a fraction of cancers. The presence of at least 12 clustered breaks at 1p and apparent lack of mosaicism in the present case suggests that a single event like chromothripsis occurred. This finding suggests that chromothripsis is responsible for some constitutive complex chromosome rearrangements.

  3. The MAPK Hog1p Modulates Fps1p-dependent Arsenite Uptake and Tolerance in Yeast

    PubMed Central

    Thorsen, Michael; Di, Yujun; Tängemo, Carolina; Morillas, Montserrat; Ahmadpour, Doryaneh; Van der Does, Charlotte; Wagner, Annemarie; Johansson, Erik; Boman, Johan; Posas, Francesc; Wysocki, Robert

    2006-01-01

    Arsenic is widely distributed in nature and all organisms possess regulatory mechanisms to evade toxicity and acquire tolerance. Yet, little is known about arsenic sensing and signaling mechanisms or about their impact on tolerance and detoxification systems. Here, we describe a novel role of the S. cerevisiae mitogen-activated protein kinase Hog1p in protecting cells during exposure to arsenite and the related metalloid antimonite. Cells impaired in Hog1p function are metalloid hypersensitive, whereas cells with elevated Hog1p activity display improved tolerance. Hog1p is phosphorylated in response to arsenite and this phosphorylation requires Ssk1p and Pbs2p. Arsenite-activated Hog1p remains primarily cytoplasmic and does not mediate a major transcriptional response. Instead, hog1Δ sensitivity is accompanied by elevated cellular arsenic levels and we demonstrate that increased arsenite influx is dependent on the aquaglyceroporin Fps1p. Fps1p is phosphorylated on threonine 231 in vivo and this phosphorylation critically affects Fps1p activity. Moreover, Hog1p is shown to affect Fps1p phosphorylation. Our data are the first to demonstrate Hog1p activation by metalloids and provides a mechanism by which this kinase contributes to tolerance acquisition. Understanding how arsenite/antimonite uptake and toxicity is modulated may prove of value for their use in medical therapy. PMID:16885417

  4. Targeting sphingosine 1-phosphate (S1P) levels and S1P receptor functions for therapeutic immune interventions.

    PubMed

    Gräler, Markus H

    2010-01-01

    Sphingosine 1-phosphate (S1P) is an important regulator of many different immune functions including lymphocyte circulation, antigen presentation, and T cell development. It stimulates five G protein-coupled receptors designated S1P(1-5), which are also expressed by immune cells. S1P receptors couple to different heterotrimeric G proteins including G alpha i, q, and 12/13, and elicit cellular signalling events by activating the small GTPases Rac and Rho and protein kinases Akt, ERK, and JNK, and by inducing cellular calcium flux and inhibiting cAMP accumulation, amongst others. S1P is the exit signal for lymphocytes leaving lymphoid organs and present in blood and lymph at high nanomolar concentrations due to the S1P-producing activity of sphingosine kinases (SK). The S1P-degrading enzyme S1P-lyase maintains low amounts of S1P in lymphoid organs. Disrupting this concentration difference by S1P receptor agonists and antagonists like FTY720, SEW2871, and VPC23019, by an anti-S1P antibody, or by inhibiting the S1P-lyase has therapeutic potential for autoimmune diseases like multiple sclerosis (MS) and rheumatoid arthritis and for many other disorders like cancer, fibrosis, inflammation, macular degeneration, diabetic retinopathy, and glaucoma. This report aims to provide a brief overview of concepts, approaches, pharmaceutical compounds, and targets that are currently used to modulate S1P-driven immune functions.

  5. RAP1GA1: A candidate tumor suppressor locus in 1p36.1

    SciTech Connect

    Ranade, K.; Hussussian, C.J.; Higgins, P.

    1994-09-01

    The rap1/Krev-1 gene (RAP1A) encodes a p21-related protein that suppresses transformation by activated p21{sup ras}. The GTPase activating protein (GAP) gene for p21{sup rap1A} (RAP1GA1) has recently been assigned to chromosome 1p36.1-p35, a region of the genome that is frequently involved in deletions and rearrangements in several different tumors including breast, colon and hepatocellular carcinomas, melanoma, and neuroblastoma. GAP genes negatively regulate the activity of p21 proteins by catalyzing the conversion of the active GTP-bound forms to the inactive GDP-bound forms. The physiological function of p21{sup rap1A}-GAP makes it a strong candidate as a tumor suppressor gene that may have a role in the development of one or more of these malignancies. We have refined the localization of RAP1GA1 by linkage analysis with a highly informative (CA){sub n} repeat contained within the gene, and demonstrated that it is within the minimal deleted region for breast and colon carcinomas, and that it is excluded from the minimally deleted region in melanoma and neuroblastoma. Genetic mapping in the mouse demonstrated that Rap1ga1 is located {approximately}10 cM proximal to Pnd and therefore maps within the interval containing the modifier of Min gene (Mom-1) and the plasmocytoma susceptibility locus (Pcts). The human RAP1GA1 gene contains at least 27 exons. The coding region contains 22 exons, and there are at least five 5{prime}-UT exons that are assembled in a complex pattern of alternative splicing in different tissues. The localization of RAP1GA1 makes it a very strong candidate for a role as a modifier gene involved in the common secondary abnormalities involving 1p36 in several different carcinomas. The potential role of RAP1GA1 in these malignancies is currently being investigated by sequence analysis of breast and colon carcinomas with loss of heterozygosity in 1p36.

  6. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines

    PubMed Central

    Chandel, Avinash; Das, Krishna K.; Bachhawat, Anand K.

    2016-01-01

    Glutathione depletion and calcium influx into the cytoplasm are two hallmarks of apoptosis. We have been investigating how glutathione depletion leads to apoptosis in yeast. We show here that glutathione depletion in yeast leads to the activation of two cytoplasmically inward-facing channels: the plasma membrane, Cch1p, and the vacuolar calcium channel, Yvc1p. Deletion of these channels partially rescues cells from glutathione depletion–induced cell death. Subsequent investigations on the Yvc1p channel, a homologue of the mammalian TRP channels, revealed that the channel is activated by glutathionylation. Yvc1p has nine cysteine residues, of which eight are located in the cytoplasmic regions and one on the transmembrane domain. We show that three of these cysteines, Cys-17, Cys-79, and Cys-191, are specifically glutathionylated. Mutation of these cysteines to alanine leads to a loss in glutathionylation and a concomitant loss in calcium channel activity. We further investigated the mechanism of glutathionylation and demonstrate a role for the yeast glutathione S-transferase Gtt1p in glutathionylation. Yvc1p is also deglutathionylated, and this was found to be mediated by the yeast thioredoxin, Trx2p. A model for redox activation and deactivation of the yeast Yvc1p channel is presented. PMID:27708136

  7. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  8. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  9. Exit Strategies: S1P Signaling and T Cell Migration.

    PubMed

    Baeyens, Audrey; Fang, Victoria; Chen, Cynthia; Schwab, Susan R

    2015-12-01

    Whereas the role of sphingosine 1-phosphate receptor 1 (S1PR1) in T cell egress and the regulation of S1P gradients between lymphoid organs and circulatory fluids in homeostasis are increasingly well understood, much remains to be learned about S1P signaling and distribution during an immune response. Recent data suggest that the role of S1PR1 in directing cells from tissues into circulatory fluids is reprised again and again, particularly in guiding activated T cells from non-lymphoid tissues into lymphatics. Conversely, S1P receptor 2 (S1PR2), which antagonizes migration towards chemokines, confines cells within tissues. Here we review the current understanding of the roles of S1P signaling in activated T cell migration. In this context, we outline open questions, particularly regarding the shape of S1P gradients in different tissues in homeostasis and inflammation, and discuss recent strategies to measure S1P.

  10. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating.

    PubMed Central

    Nelson, Bryce; Parsons, Ainslie B; Evangelista, Marie; Schaefer, Karen; Kennedy, Kathy; Ritchie, Steven; Petryshen, Tracey L; Boone, Charles

    2004-01-01

    Cell fusion in the budding yeast Saccharomyces cerevisiae is a temporally and spatially regulated process that involves degradation of the septum, which is composed of cell wall material, and occurs between conjugating cells within a prezygote, followed by plasma membrane fusion. The plasma membrane protein Fus1p is known to be required for septum degradation during cell fusion, yet its role at the molecular level is not understood. We identified Sho1p, an osmosensor for the HOG MAPK pathway, as a binding partner for Fus1 in a two-hybrid screen. The Sho1p-Fus1p interaction occurs directly and is mediated through the Sho1p-SH3 domain and a proline-rich peptide ligand on the Fus1p COOH-terminal cytoplasmic region. The cell fusion defect associated with fus1Delta mutants is suppressed by a sho1Delta deletion allele, suggesting that Fus1p negatively regulates Sho1p signaling to ensure efficient cell fusion. A two-hybrid matrix containing fusion proteins and pheromone response pathway signaling molecules reveals that Fus1p may participate in a complex network of interactions. In particular, the Fus1p cytoplasmic domain interacts with Chs5p, a protein required for secretion of specialized Chs3p-containing vesicles during bud development, and chs5Delta mutants were defective in cell surface localization of Fus1p. The Fus1p cytoplasmic domain also interacts with the activated GTP-bound form of Cdc42p and the Fus1p-SH3 domain interacts with Bni1p, a yeast formin that participates in cell fusion and controls the assembly of actin cables to polarize secretion in response to Cdc42p signaling. Taken together, our results suggest that Fus1p acts as a scaffold for the assembly of a cell surface complex involved in polarized secretion of septum-degrading enzymes and inhibition of HOG pathway signaling to promote cell fusion. PMID:15020407

  11. The role of Cdh1p in maintaining genomic stability in budding yeast.

    PubMed Central

    Ross, Karen E; Cohen-Fix, Orna

    2003-01-01

    Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G(1) transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1delta and mad2delta single mutants, the mad2delta cdh1delta double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2delta cdh1delta and pds1delta cdh1dDelta strains were rescued by overexpressing Swe1p, a G(2)/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1delta mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation. PMID:14573464

  12. S1P and the birth of platelets.

    PubMed

    Hla, Timothy; Galvani, Sylvain; Rafii, Shahin; Nachman, Ralph

    2012-11-19

    Recent work has highlighted the multitude of biological functions of sphingosine 1-phosphate (S1P), which include roles in hematopoietic cell trafficking, organization of immune organs, vascular development, and neuroinflammation. Indeed, a functional antagonist of S1P(1) receptor, FTY720/Gilenya, has entered the clinic as a novel therapeutic for multiple sclerosis. In this issue of the JEM, Zhang et al. highlight yet another function of this lipid mediator: thrombopoiesis. The S1P(1) receptor is required for the growth of proplatelet strings in the bloodstream and the shedding of platelets into the circulation. Notably, the sharp gradient of S1P between blood and the interstitial fluids seems to be essential to ensure the production of platelets, and S1P appears to cooperate with the CXCL12-CXCR4 axis. Pharmacologic modulation of the S1P(1) receptor altered circulating platelet numbers acutely, suggesting a potential therapeutic strategy for controlling thrombocytopenic states. However, the S1P(4) receptor may also regulate thrombopoiesis during stress-induced accelerated platelet production. This work reveals a novel physiological action of the S1P/S1P(1) duet that could potentially be harnessed for clinical translation.

  13. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    PubMed

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  14. Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein.

    PubMed

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L; Babu, Jeganathan Ramesh

    2012-08-24

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH(2) domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1.

  15. The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation

    PubMed Central

    Sasser, Terry L.; Padolina, Mark; Fratti, Rutilio A.

    2013-01-01

    Ybt1p is a class C ABC transporter (ATP-binding cassette transporter) that is localized to the vacuole of Saccharomyces cerevisiae. Although Ybt1p was originally identified as a bile acid transporter, it has also been found to function in other capacities, including the translocation of phosphatidylcholine to the vacuole lumen, and the regulation of Ca2+ homoeostasis. In the present study we found that deletion of YBT1 enhanced in vitro homotypic vacuole fusion by up to 50 % relative to wild-type vacuoles. The increased vacuole fusion was not due to aberrant protein sorting of SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) or recruitment of factors from the cytosol such as Ypt7p and the HOPS (homotypic fusion and vacuole protein sorting) tethering complex. In addition, ybt1Δ vacuoles displayed no observable differences in the formation of SNARE complexes, interactions between SNAREs and HOPS, or formation of vertex microdomains. However, the absence of Ybt1p caused significant changes in Ca2+ transport during fusion. One difference was the prolonged Ca2+ influx exhibited by ybt1Δ vacuoles at the start of the fusion reaction. We also observed a striking delay in SNARE-dependent Ca2+ efflux. As vacuole fusion can be inhibited by high Ca2+ concentrations, we suggest that the delayed efflux in ybt1Δ vacuoles leads to the enhanced SNARE function. PMID:22970809

  16. Binding properties of monoclonal antibodies recognizing external epitopes of the human MDR1 P-glycoprotein.

    PubMed

    Schinkel, A H; Arceci, R J; Smit, J J; Wagenaar, E; Baas, F; Dollé, M; Tsuruo, T; Mechetner, E B; Roninson, I B; Borst, P

    1993-09-30

    Monoclonal antibodies (MAbs) recognizing external epitopes of the human MDR1 P-glycoprotein have been used both for the detection of multidrug-resistant cells and as specific inhibitors of P-glycoprotein-mediated multidrug resistance. Using a panel of recently developed transfected or transgenic cell lines containing variants of the human MDR1 and MDR3 P-glycoproteins, we have compared the specificity and binding properties of the previously isolated MAbs MRK16, HYB-241, UIC2 and 4E3, and of the newly isolated MAb 7G4. The removal of 1, 2 or all 3 of the N-glycosylation sites present in the first extracellular loop of MDR1 P-glycoprotein did not significantly affect the binding of these MAbs. In contrast, 20 amino acid deletion in the first extracellular loop of MDR1 P-glycoprotein completely abolished binding of UIC2, whereas the binding of all other MAbs was hardly affected. None of the MAbs tested bound detectably to cell lines containing a high level of the human MDR3 P-glycoprotein. The differences in the binding specificity between UIC2 and the other tested antibodies parallel the reported functional differences in the ability of these antibodies to inhibit P-glycoprotein-mediated drug efflux.

  17. Sequestosome 1/p62, a Scaffolding Protein, Is a Newly Identified Partner of IRS-1 Protein*

    PubMed Central

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2012-01-01

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH2 domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1. PMID:22761437

  18. A Novel Microdeletion in 1(p34.2p34.3), Involving the "SLC2A1" ("GLUT1") Gene, and Severe Delayed Development

    ERIC Educational Resources Information Center

    Vermeer, Sascha; Koolen, David A; Visser, Gepke; Brackel, Hein J. L.; van der Burgt, Ineke; de Leeuw, Nicole; Willemsen, Michel A. A. P.; Sistermans, Erik A.; Pfundt, Rolph; de Vries, Bert B. A.

    2007-01-01

    A "de novo" 4.1-megabase microdeletion of chromosome 1p34.2p34.3 has been identified by array-based comparative genomic hybridization in a young male with severely delayed development, microcephaly, pronounced hypotonia, and facial dysmorphism. The deleted region encompasses 48 genes, among them the glucose transporter 1 ("SLC2A1" or "GLUT1")…

  19. The caspase-generated cleavage product of Ets-1 p51 and Ets-1 p27, Cp17, induces apoptosis.

    PubMed

    Choul-Li, Souhaila; Tulasne, David; Aumercier, Marc

    2016-11-04

    The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis. However, the caspase cleavage of the second spliced variant Ets-1 p27 remains to investigate. In the present study, we demonstrate that Ets-1 p27 is a cleavage substrate of caspases. We show that Ets-1 p27 is processed in vitro by caspase-3, resulting in three C-terminal fragments Cp20, Cp17 and Cp14. Similarly, Ets-1 p27 was cleaved during apoptotic cell death induced by anisomycin, producing fragments consistent with those observed in in vitro cleavage assay. These fragments are generated by cleavage at three sites located in the exon VII-encoded region of Ets-1 p27. As a functional consequences, Cp17 fragment, the major cleavage product generated during apoptosis, induced itself apoptosis when transfected into cells. Our results show that Ets-1 p27 is cleaved in the same manner as Ets-1 p51 within the exon VII-encoded region, thus generating a stable C-terminal fragment that induces cell death by initiating apoptosis.

  20. Rat1p maintains RNA polymerase II CTD phosphorylation balance

    PubMed Central

    Jimeno-González, Silvia; Schmid, Manfred; Malagon, Francisco; Haaning, Line Lindegaard; Jensen, Torben Heick

    2014-01-01

    In S. cerevisiae, the 5′-3′ exonuclease Rat1p partakes in transcription termination. Although Rat1p-mediated RNA degradation has been suggested to play a role for this activity, the exact mechanisms by which Rat1p helps release RNA polymerase II (RNAPII) from the DNA template are poorly understood. Here we describe a function of Rat1p in regulating phosphorylation levels of the C-terminal domain (CTD) of the largest RNAPII subunit, Rpb1p, during transcription elongation. The rat1-1 mutant exhibits highly elevated levels of CTD phosphorylation as well as RNAPII distribution and transcription termination defects. These phenotypes are all rescued by overexpression of the CTD phosphatase Fcp1p, suggesting a functional relationship between the absence of Rat1p activity, elevated CTD phosphorylation, and transcription defects. We also demonstrate that rat1-1 cells display increased RNAPII transcription kinetics, a feature that may contribute to the cellular phenotypes of the mutant. Consistently, the rat1-1 allele is synthetic lethal with the rpb1-E1103G mutation, causing increased RNAPII speed, and is suppressed by the rpb2-10 mutation, causing slowed transcription. Thus, Rat1p plays more complex roles in controlling transcription than previously thought. PMID:24501251

  1. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation.

    PubMed

    Tsai, Hsing-Chuan; Han, May H

    2016-07-01

    Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are ubiquitously expressed. S1P-S1PR signaling has been well characterized in immune trafficking and activation in innate and adaptive immune systems. However, the full extent of its involvement in the pathogenesis of autoimmune diseases is not well understood. FTY720 (fingolimod), a non-selective S1PR modulator, significantly decreased annualized relapse rates in relapsing-remitting multiple sclerosis (MS). FTY720, which primarily targets S1P receptor 1 as a functional antagonist, arrests lymphocyte egress from secondary lymphoid tissues and reduces neuroinflammation in the central nervous system (CNS). Recent studies suggest that FTY720 also decreases astrogliosis and promotes oligodendrocyte differentiation within the CNS and may have therapeutic benefit to prevent brain atrophy. Since S1P signaling is involved in multiple immune functions, therapies targeting S1P axis may be applicable to treat autoimmune diseases other than MS. Currently, over a dozen selective S1PR and S1P pathway modulators with potentially superior therapeutic efficacy and better side-effect profiles are in the pipeline of drug development. Furthermore, newly characterized molecules such as apolipoprotein M (ApoM) (S1P chaperon) and SPNS2 (S1P transporter) are also potential targets for treatment of autoimmune diseases. Finally, the application of therapies targeting S1P and S1P signaling pathways may be expanded to treat several other immune-mediated disorders (such as post-infectious diseases, post-stroke and post-stroke dementia) and inflammatory conditions beyond their application in primary autoimmune diseases.

  2. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination.

    PubMed

    Dichtl, Bernhard; Blank, Diana; Sadowski, Martin; Hübner, Wolfgang; Weiser, Stefan; Keller, Walter

    2002-08-01

    RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted beta-propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

  3. A role for Yip1p in COPII vesicle biogenesis

    PubMed Central

    Heidtman, Matthew; Chen, Catherine Z.; Collins, Ruth N.; Barlowe, Charles

    2003-01-01

    Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis. PMID:14557247

  4. A role for Yip1p in COPII vesicle biogenesis.

    PubMed

    Heidtman, Matthew; Chen, Catherine Z; Collins, Ruth N; Barlowe, Charles

    2003-10-13

    Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.

  5. Structural Characterization of Tip20p and Dsl1p, Subunits of the Dsl1p Vesicle Tethering Complex

    SciTech Connect

    Tripathi, A.; Ren, Y; Jeffrey, P; Hughson, F

    2009-01-01

    Multisubunit tethering complexes are essential for intracellular trafficking and have been proposed to mediate the initial interaction between vesicles and the membranes with which they fuse. Here we report initial structural characterization of the Dsl1p complex, whose three subunits are essential for trafficking from the Golgi apparatus to the endoplasmic reticulum (ER). Crystal structures reveal that two of the three subunits, Tip20p and Dsl1p, resemble known subunits of the exocyst complex, establishing a structural connection among several multisubunit tethering complexes and implying that many of their subunits are derived from a common progenitor. We show, moreover, that Tip20p and Dsl1p interact directly via N-terminal alpha-helices. Finally, we establish that different Dsl1p complex subunits bind independently to different ER SNARE proteins. Our results map out two alternative protein-interaction networks capable of tethering COPI-coated vesicles, via the Dsl1p complex, to ER membranes.

  6. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    PubMed

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats.

  7. Measurement of CA1P and CA in leaves

    SciTech Connect

    Moore, B.d.; Kobza, J.; Seemann, J.R. )

    1990-05-01

    Carboxyarabinitol-1-phosphate (CA1P) and carboxyarabinitol (CA) were assayed in leaves by isotope dilution. {sup 14}C-labeled standards were synthesized from (2-{sup 14}C) CABP using acid (CA1P) or alkaline (CA) phosphatase. Either was added to boiling 80% EtOH along with liquid N{sub 2}-killed leaves. Each was largely purified by anion exchange chromatography. CA1P samples were subjected to 2D-TLE/TLC. The specific activity of the {sup 14}C-containing spot was measured using alkaline phosphatase. CA samples were run on an HPLC and the specific activity was determined using a UV monitor and a flow-through radioisotope detector. In 3 of the tested species, light/dark amount of CA1P (nmol/mg Chl) were kidney bean, 0.7/67; sugar beet, 0.8/33; and Alocasia, 0/3.4. Light/dark CA levels (nmol/mg Chl) in these respective species were 897/653, 3.2/3.5, and 5.7/4.6. These results support the hypothesis that CA is a product of CA1P metabolism in vivo under high light, but also indicate that CA is not the only intermediate involved in CA1P synthesis under low light/dark conditions.

  8. SCFCdc4-mediated Degradation of the Hac1p Transcription Factor Regulates the Unfolded Protein Response in Saccharomyces cerevisiae

    PubMed Central

    Pal, Bhupinder; Chan, Nickie C.; Helfenbaum, Leon; Tan, Kaeling; Tansey, William P.

    2007-01-01

    The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of ∼5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of ∼1.5 min. Here, we have shown that Hac1p harbors a functional PEST degron and that degradation of Hac1p by the proteasome involves the E2 ubiquitin-conjugating enzyme Ubc3/Cdc34p and the SCFCdc4 E3 complex. Consistent with the known nuclear localization of Cdc4p, rapid degradation of Hac1p requires the presence of a functional nuclear localization sequence, which we demonstrated to involve basic residues in the sequence 29RKRAKTK35. Two-hybrid analysis demonstrated that the PEST-dependent interaction of Hac1p with Cdc4p requires Ser146 and Ser149. Turnover of Hac1p may be dependent on transcription because it is inhibited in cell mutants lacking Srb10 kinase, a component of the SRB/mediator module of the RNA polymerase II holoenzyme. Stabilization of Hac1p by point mutation or deletion, or as the consequence of defects in components of the degradation pathway, results in increased unfolded protein response element-dependent transcription and improved cell viability under ER stress conditions. PMID:17108329

  9. SCFCdc4-mediated degradation of the Hac1p transcription factor regulates the unfolded protein response in Saccharomyces cerevisiae.

    PubMed

    Pal, Bhupinder; Chan, Nickie C; Helfenbaum, Leon; Tan, Kaeling; Tansey, William P; Gething, Mary-Jane

    2007-02-01

    The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of approximately 5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of approximately 1.5 min. Here, we have shown that Hac1p harbors a functional PEST degron and that degradation of Hac1p by the proteasome involves the E2 ubiquitin-conjugating enzyme Ubc3/Cdc34p and the SCF(Cdc4) E3 complex. Consistent with the known nuclear localization of Cdc4p, rapid degradation of Hac1p requires the presence of a functional nuclear localization sequence, which we demonstrated to involve basic residues in the sequence (29)RKRAKTK(35). Two-hybrid analysis demonstrated that the PEST-dependent interaction of Hac1p with Cdc4p requires Ser146 and Ser149. Turnover of Hac1p may be dependent on transcription because it is inhibited in cell mutants lacking Srb10 kinase, a component of the SRB/mediator module of the RNA polymerase II holoenzyme. Stabilization of Hac1p by point mutation or deletion, or as the consequence of defects in components of the degradation pathway, results in increased unfolded protein response element-dependent transcription and improved cell viability under ER stress conditions.

  10. Allelic imbalance and instability of microsatellite loci on chromosome 1p in human non-small-cell lung cancer.

    PubMed Central

    Gasparian, A. V.; Laktionov, K. K.; Belialova, M. S.; Pirogova, N. A.; Tatosyan, A. G.; Zborovskaya, I. B.

    1998-01-01

    The mapping of allelic loss on the short arm of chromosome 1 has been performed in non-small-cell lung cancer. We used a set of 11 microsatellite loci spanning 1p to examine the frequency of allelic imbalance in a panel of 58 tumours. Fifty-one of 58 (87.9%) cases have shown somatic allelic loss at one or more loci tested. The two shortest regions of the overlap (SRO) of the deletions have been identified: SRO 1 at 1p13.1 and SRO 2 at 1p32-pter. Allelic losses at these regions have been compared among adenocarcinoma and squamous cell carcinoma and no difference has been found. In contrast to SRO 1, deletions at SRO 2 significantly correlated with advanced stage of the disease as well as post-operative metastasizing and relapse. These data may suggest that SRO 1 and SRO 2 can harbour tumour-supressor genes (TSGs) involved in different stages of NSCLC development. SRO 2 is still quite large and its refined mapping should help attempts to clone and identify the putative TSG(s). Microsatellite instability (replication errors) affecting only 6 (10.3%) of 58 tumour samples is an infrequent genetic alteration at the loci tested. Images Figure 2 PMID:9635835

  11. AtPng1p. The first plant transglutaminase.

    PubMed

    Della Mea, Massimiliano; Caparrós-Ruiz, David; Claparols, Inmaculada; Serafini-Fracassini, Donatella; Rigau, Joan

    2004-08-01

    Studies have revealed in plant chloroplasts, mitochondria, cell walls, and cytoplasm the existence of transglutaminase (TGase) activities, similar to those known in animals and prokaryotes having mainly structural roles, but no protein has been associated to this type of activity in plants. A recent computational analysis has shown in Arabidopsis the presence of a gene, AtPng1p, which encodes a putative N-glycanase. AtPng1p contains the Cys-His-Asp triad present in the TGase catalytic domain. AtPng1p is a single gene expressed ubiquitously in the plant but at low levels in all light-assayed conditions. The recombinant AtPng1p protein could be immuno-detected using animal TGase antibodies. Furthermore, western-blot analysis using antibodies raised against the recombinant AtPng1p protein have lead to its detection in microsomal fraction. The purified protein links polyamines-spermine (Spm) > spermidine (Spd) > putrescine (Put)-and biotin-cadaverine to dimethylcasein in a calcium-dependent manner. Analyses of the gamma-glutamyl-derivatives revealed that the formation of covalent linkages between proteins and polyamines occurs via the transamidation of gamma-glutamyl residues of the substrate, confirming that the AtPng1p gene product acts as a TGase. The Ca(2+)- and GTP-dependent cross-linking activity of the AtPng1p protein can be visualized by the polymerization of bovine serum albumine, obtained, like the commercial TGase, at basic pH and in the presence of dithiotreitol. To our knowledge, this is the first reported plant protein, characterized at molecular level, showing TGase activity, as all its parameters analyzed so far agree with those typically exhibited by the animal TGases.

  12. S1P-Dependent Trafficking of Intracellular Yersinia pestis through Lymph Nodes Establishes Buboes and Systemic Infection

    PubMed Central

    St. John, Ashley L.; Ang, W.X. Gladys; Huang, Min-Nung; Kunder, Christian A.; Chan, Elizabeth W.; Gunn, Michael D.; Abraham, Soman N.

    2015-01-01

    SUMMARY Pathologically swollen lymph nodes (LNs), or buboes, characterize Yersinia pestis infection, yet how they form and function is unknown. We report that colonization of the draining LN (dLN) occurred due to trafficking of infected dendritic cells and monocytes in temporally distinct waves in response to redundant chemotactic signals, including through CCR7, CCR2, and sphingosine-1-phospate (S1P) receptors. Retention of multiple subsets of phagocytes within peripheral LNs using the S1P receptor agonist FTY720 or S1P1-specific agonist SEW2871 increased survival, reduced colonization of downstream LNs, and limited progression to transmission-associated septicemic or pneumonic disease states. Conditional deletion of S1P1 in mononuclear phagocytes abolished node-to-node trafficking of infected cells. Thus, Y. pestis-orchestrated LN remodeling promoted its dissemination via host cells through the lymphatic system but can be blocked by prevention of leukocyte egress from DLNs. These findings define a novel trafficking route of mononuclear phagocytes and identify S1P as a therapeutic target during infection. PMID:25238098

  13. N-Terminal Deletion of Peptide:N-Glycanase Results in Enhanced Deglycosylation Activity

    PubMed Central

    Wang, Shengjun; Xin, Fengxue; Liu, Xiaoyue; Wang, Yuxiao; An, Zhenyi; Qi, Qingsheng; Wang, Peng George

    2009-01-01

    Peptide:N-glycanase catalyzes the detachment of N-linked glycan chains from glycopeptides or glycoproteins by hydrolyzing the β-aspartylglucosaminyl bond. Peptide:N-glycanase in yeast binds to Rad23p through its N-terminus. In this study, the complex formed between Peptide:N-glycanase and Rad23p was found to exhibit enhanced deglycosylation activity, which suggests an important role for this enzyme in the misfolded glycoprotein degradation pathway in vivo. To investigate the role of this enzyme in this pathway, we made stepwise deletions of the N-terminal helices of peptide:N-glycanase. Enzymatic analysis of the deletion mutants showed that deletion of the N-terminal H1 helix (Png1p-ΔH1) enhanced the deglycosylation activity of N-glycanase towards denatured glycoproteins. In addition, this mutant exhibited high deglycosylation activity towards native glycoproteins. Dynamic simulations of the wild type and N-terminal H1 deletion mutant implied that Png1p-ΔH1 is more flexible than wild type Png1p. The efficient deglycosylation of Png1p-ΔH1 towards native and non-native glycoproteins offers a potential biotechnological application. PMID:20016784

  14. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2+*

    PubMed Central

    Corradi, Gerardo R.; Czysezon, Nicolas A.; Mazzitelli, Luciana R.; Sarbia, Nicolas; Adamo, Hugo P.

    2016-01-01

    P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeast Saccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg2+, and EGTA. Low concentrations of Ca2+ in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn2+ nor Mg2+ had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca2+. The Km for ATP in the phosphorylation reaction was ∼1 μm and did not significantly change in the presence of Ca2+. Half-maximal phosphorylation was attained at 8 μm Mg2+, but higher concentrations partially protected from Ca2+ inhibition. In conditions similar to those used for phosphorylation, Ca2+ had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle. PMID:26858246

  15. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2.

    PubMed

    Corradi, Gerardo R; Czysezon, Nicolas A; Mazzitelli, Luciana R; Sarbia, Nicolas; Adamo, Hugo P

    2016-04-01

    P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeastSaccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg(2+), and EGTA. Low concentrations of Ca(2+)in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn(2+)nor Mg(2+)had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca(2+) TheKmfor ATP in the phosphorylation reaction was ∼1 μmand did not significantly change in the presence of Ca(2+) Half-maximal phosphorylation was attained at 8 μmMg(2+), but higher concentrations partially protected from Ca(2+)inhibition. In conditions similar to those used for phosphorylation, Ca(2+)had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle.

  16. Loss of heterozygosity at chromosomes 1p35-pter, 4q, and 18q and protein expression differences between adenocarcinomas of the distal stomach and gastric cardia.

    PubMed

    Xu, Yan; Man, Xiaohui; Lv, Zhi; Li, Deming; Sun, Zhe; Chen, Hong; Wang, Zhenning; Luo, Yang; Xu, Huimian

    2012-12-01

    Loss of heterozygosity of 1p35-pter, 4q, and 18q is frequent in gastric carcinoma, suggesting that these regions harbor tumor suppressor genes. However, the differences in these genetic alterations between adenocarcinoma of the gastric cardia and adenocarcinoma of the distal stomach remain unclear. In this study, loss of heterozygosity at chromosomes 1p35-pter, 4q, and 18q were analyzed in adenocarcinoma of the gastric cardia and adenocarcinoma of the distal stomach samples acquired by laser capture microdissection. The expression of several tumor suppressor gene proteins, runt-related transcription factor 3 (1p36), annexin A10 (4q33), SMAD family member 4 (18q21.1), and deleted in colorectal carcinoma (18q21.3), was evaluated immunohistochemically. The adenocarcinoma of the distal stomach and adenocarcinoma of the gastric cardia lesions had a similar trend in total deletion frequency for chromosomes 1p35-pter (36.5% for adenocarcinoma of the distal stomach and 32.5% for adenocarcinoma of the gastric cardia), 4q (42.3% for adenocarcinoma of the distal stomach and 47.5% for adenocarcinoma of the gastric cardia), and 18q (38.5% for adenocarcinoma of the distal stomach and 45% for adenocarcinoma of the gastric cardia). However, loss of heterozygosity patterns were clearly different in the 2 adenocarcinomas. Deletion mapping indicated that 4q32.2-4q34.3, 18q21.2-21.31, 18q22.3-23, and 1p35.2-1p36.13 were involved in adenocarcinoma of the distal stomach, whereas 4q13.3-4q22.3, 4q31.21-4q32.2, 18q21.31-18q22.1, and 1p35.2-1p36.13 were involved in adenocarcinoma of the gastric cardia. Expression of ANXA10 (P = .038), SMAD family member 4 (P = .028), and deleted in colorectal carcinoma (P = .004) was less common in adenocarcinoma of the distal stomach than in adenocarcinoma of the gastric cardia. Expression of runt-related transcription factor 3 (P = .795) showed no significant difference in the 2 tumors. The tumors differed in the profile of genetic alterations and

  17. Isc1p Plays a Key Role in Hydrogen Peroxide Resistance and Chronological Lifespan through Modulation of Iron Levels and Apoptosis

    PubMed Central

    Almeida, Teresa; Marques, Marta; Mojzita, Dominik; Amorim, Maria A.; Silva, Rui D.; Almeida, Bruno; Rodrigues, Pedro; Ludovico, Paula; Hohmann, Stefan; Moradas-Ferreira, Pedro; Côrte-Real, Manuela

    2008-01-01

    The inositolphosphosphingolipid phospholipase C (Isc1p) of Saccharomyces cerevisiae belongs to the family of neutral sphingomyelinases that generates the bioactive sphingolipid ceramide. In this work the role of Isc1p in oxidative stress resistance and chronological lifespan was investigated. Loss of Isc1p resulted in a higher sensitivity to hydrogen peroxide that was associated with an increase in oxidative stress markers, namely intracellular oxidation, protein carbonylation, and lipid peroxidation. Microarray analysis showed that Isc1p deficiency up-regulated the iron regulon leading to increased levels of iron, which is known to catalyze the production of the highly reactive hydroxyl radicals via the Fenton reaction. In agreement, iron chelation suppressed hydrogen peroxide sensitivity of isc1Δ mutants. Cells lacking Isc1p also displayed a shortened chronological lifespan associated with oxidative stress markers and aging of parental cells was correlated with a decrease in Isc1p activity. The analysis of DNA fragmentation and caspase-like activity showed that Isc1p deficiency increased apoptotic cell death associated with oxidative stress and aging. Furthermore, deletion of Yca1p metacaspase suppressed the oxidative stress sensitivity and premature aging phenotypes of isc1Δ mutants. These results indicate that Isc1p plays an important role in the regulation of cellular redox homeostasis, through modulation of iron levels, and of apoptosis. PMID:18162582

  18. Get1p and Get2p are required for maintenance of mitochondrial morphology and normal cardiolipin levels.

    PubMed

    Joshi, Amit S; Fei, Naomi; Greenberg, Miriam L

    2016-05-01

    Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes. CL deficiency leads to defects in mitochondrial function. Using a targeted synthetic lethality screen to identify defects that exacerbate CL deficiency, we determined that deletion of mitochondrial morphology genes in cells lacking CL leads to severe growth defects. We show that ER membrane proteins Get1p and Get2p are required for maintaining normal levels of CL. We propose that these proteins regulate the level of CL by maintaining wild type-like tubular mitochondrial morphology. The genetic interactions observed in this study identify novel physiological modifiers that are required for maintenance of CL levels and mitochondrial morphology.

  19. Deletion 14q and pericentric inversion 14.

    PubMed Central

    Nielsen, J; Homma, A; Rasmussen, K; Ried, E; Sorensen, K; Saldana-Garcia, P

    1978-01-01

    A woman with deletion 14q as well as inversion 14 is presented, and physical signs are compared with those of patients with deletion long arm 13. No previous case of deletion long arm 14 has been published. Images PMID:671492

  20. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p)

    PubMed Central

    Mandel, Corey R.; Gebauer, Damara; Zhang, Hailong; Tong, Liang

    2006-01-01

    The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3′-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant. PMID:17012808

  1. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p)

    SciTech Connect

    Mandel, Corey R.; Gebauer, Damara; Zhang, Hailong; Tong, Liang

    2006-10-01

    Proteolysis in situ by a protease secreted by a contaminating fungus is essential for the crystallization of yeast CPSF-100. The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3′-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.

  2. A Serendipitous Discover that in situ Proteolysis is Essential for the Crystallization of Yeast CPSF-100 (Ydh1p)

    SciTech Connect

    Mandel,C.; Gebauer, D.; Zhang, H.; Tong, L.

    2006-01-01

    The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.

  3. Molecular cloning and chromosomal localization of the human cyclin C (CCNC) and cyclin E (CCNE) genes: Deletion of the CCNC gene in human tumors

    SciTech Connect

    Li, Haimin; Lahti, J.M.; Kidd, V.J.

    1996-03-01

    The human G1-phase cyclins are important regulators of cell cycle progression that interact with various cyclin-dependent kinases and facilitate entry into S-phase. We have confirmed the localization of the human cyclin C (CCNC) gene to chromosome 6q21 and of human cyclin E (CCNE to 19q12). The CCNC gene structure was also determined, and we have shown that it is deleted in a subset of acute lymphoblastic leukemias, including a patient sample containing a t(2;6)(p21;q15), with no apparent cytogenetic deletion. Single-strand conformational polymorphism analysis of the remaining CCNC allele from patients with a deletion of one allele established that there were no further mutations within the exons or the flanking intronic sequences. These results suggest either that haploinsufficiency of the cyclin C protein is sufficient to promote tumorigenesis or that the important tumor suppressor gene is linked to the CCNC locus. 48 refs., 4 figs., 1 tab.

  4. Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.

    PubMed

    Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M

    2016-01-15

    Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders.

  5. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability

    PubMed Central

    2013-01-01

    Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to

  6. Novel approach to identifying the hepatitis B virus pre-S deletions associated with hepatocellular carcinoma

    PubMed Central

    Zhao, Zhi-Mei; Jin, Yan; Gan, Yu; Zhu, Yu; Chen, Tao-Yang; Wang, Jin-Bing; Sun, Yan; Cao, Zhi-Gang; Qian, Geng-Sun; Tu, Hong

    2014-01-01

    AIM: To develop a novel non-sequencing method for the detection of hepatitis B virus (HBV) pre-S deletion mutants in HBV carriers. METHODS: The entire region of HBV pre-S1 and pre-S2 was amplified by polymerase chain reaction (PCR). The size of PCR products was subsequently determined by capillary gel electrophoresis (CGE). CGE were carried out in a PACE-MDQ instrument equipped with a UV detector set at 254 nm. The samples were separated in 50 μm ID eCAP Neutral Coated Capillaries using a voltage of 6 kV for 30 min. Data acquisition and analysis were performed using the 32 Karat Software. A total of 114 DNA clones containing different sizes of the HBV pre-S gene were used to determine the accuracy of the CGE method. One hundred and fifty seven hepatocellular carcinoma (HCC) and 160 non-HCC patients were recruited into the study to assess the association between HBV pre-S deletion and HCC by using the newly-established CGE method. Nine HCC cases with HBV pre-S deletion at the diagnosis year were selected to conduct a longitudinal observation using serial serum samples collected 2-9 years prior to HCC diagnosis. RESULTS: CGE allowed the separation of PCR products differing in size > 3 bp and was able to identify 10% of the deleted DNA in a background of wild-type DNA. The accuracy rate of CGE-based analysis was 99.1% compared with the clone sequencing results. Using this assay, pre-S deletion was more frequently found in HCC patients than in non-HCC controls (47.1% vs 28.1%, P < 0.001). Interestingly, the increased risk of HCC was mainly contributed by the short deletion of pre-S. While the deletion ≤ 99 bp was associated with a 2.971-fold increased risk of HCC (95%CI: 1.723-5.122, P < 0.001), large deletion (> 99 bp) did not show any association with HCC (P = 0.918, OR = 0.966, 95%CI: 0.501-1.863). Of the 9 patients who carried pre-S deletions at the stage of HCC, 88.9% (8/9) had deletions 2-5 years prior to HCC, while only 44.4%4 (4/9) contained such deletions 6

  7. The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress

    PubMed Central

    2012-01-01

    Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp’s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104. Conclusions The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain

  8. Opposite roles of the F-box protein Rcy1p and the GTPase-activating protein Gyp2p during recycling of internalized proteins in yeast.

    PubMed Central

    Lafourcade, Céline; Galan, Jean-Marc; Peter, Matthias

    2003-01-01

    The F-box protein Rcy1p is part of a non-SCF (Skp1p-cullin-F-box protein) complex involved in recycling of internalized material. Like rcy1Delta, cells lacking the Rab-GTPase Ypt6p or its heterodimeric GEFs Rgp1p and Ric1p are unable to recycle the v-SNARE Snc1p. Here we provide genetic evidence suggesting that Rcy1p is a positive regulator of Ypt6p. Deletion of the GAP Gyp2p restores recycling in rcy1Delta, while overexpression of an active form of Ypt6p partially suppresses the recycling defect of rcy1Delta cells. Conversely, overexpression of Gyp2p in wild-type cells interferes with recycling of GFP-Snc1p, and the cells accumulate membrane structures as evidenced by electron microscopy. Gyp2p-GFP is distributed throughout the cytoplasm and accumulates in punctate structures, which concentrate in an actin-dependent manner at sites of polarized growth. Taken together, our results suggest that the F-box protein Rcy1p may activate the Ypt6p GTPase module during recycling. PMID:12807768

  9. The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback

    PubMed Central

    Aligianni, Sofia; Lackner, Daniel H.; Klier, Steffi; Rustici, Gabriella; Wilhelm, Brian T.; Marguerat, Samuel; Codlin, Sandra; Brazma, Alvis; de Bruin, Robertus A. M.; Bähler, Jürg

    2009-01-01

    The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident. PMID:19714215

  10. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides.

    PubMed

    Klutts, J Stacey; Doering, Tamara L

    2008-05-23

    The opportunistic yeast Cryptococcus neoformans causes serious disease in humans and expresses a prominent polysaccharide capsule that is required for its virulence. Little is known about how this capsule is synthesized. We previously identified a beta1,2-xylosyltransferase (Cxt1p) with in vitro enzymatic activity appropriate for involvement in capsule synthesis. Here, we investigate C. neoformans strains in which the corresponding gene has been deleted (cxt1Delta). Loss of CXT1 does not affect in vitro growth of the mutant cells or the general morphology of their capsules. However, NMR structural analysis of the two main capsule polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), showed that both were missing beta1,2-xylose residues. There was an approximately 30% reduction in the abundance of this residue in GXM in mutant compared with wild-type strains, and mutant GalXM was almost completely devoid of beta1,2-linked xylose. The GalXM from the mutant strain was also missing a beta1,3-linked xylose residue. Furthermore, deletion of CXT1 led to attenuation of cryptococcal growth in a mouse model of infection, suggesting that the affected xylose residues are important for normal host-pathogen interactions. Cxt1p is the first glycosyltransferase with a defined role in C. neoformans capsule biosynthesis, and cxt1Delta is the only strain identified to date with structural alterations of the capsule polysaccharide GalXM.

  11. The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis.

    PubMed

    Jiang, Linghuo; Alber, Joerg; Wang, Jihong; Du, Wei; Yang, Xuexue; Li, Xichuan; Sanglard, Dominique; Geyer, Joachim

    2012-06-15

    Candida albicans RCH1 (regulator of Ca(2+) homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca(2+) and tolerance to azoles and Li(+), which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca(2+) pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca(2+) sensitivity, Ca(2+) uptake and cytosolic Ca(2+) level. The Ca(2+) hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca(2+)/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca(2+) homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.

  12. Further delineation of novel 1p36 rearrangements by array-CGH analysis: narrowing the breakpoints and clarifying the "extended" phenotype.

    PubMed

    Giannikou, Krinio; Fryssira, Helen; Oikonomakis, Vasilis; Syrmou, Areti; Kosma, Konstantina; Tzetis, Maria; Kitsiou-Tzeli, Sofia; Kanavakis, Emmanouel

    2012-09-15

    High resolution oligonucleotide array Comparative Genome Hybridization technology (array-CGH) has greatly assisted the recognition of the 1p36 contiguous gene deletion syndrome. The 1p36 deletion syndrome is considered to be one of the most common subtelomeric microdeletion syndromes and has an incidence of ~1 in 5000 live births, while respectively the "pure" 1p36 microduplication has not been reported so far. We present seven new patients who were referred for genetic evaluation due to Developmental Delay (DD), Mental Retardation (MR), and distinct dysmorphic features. They all had a wide phenotypic spectrum. In all cases previous standard karyotypes were negative. Array-CGH analysis revealed five patients with interstitial 1p36 microdeletion (four de novo and one maternal) and two patients with de novo reciprocal duplication of different sizes. These were the first reported "pure" 1p36 microduplication cases so far. Three of our patients carrying the 1p36 microdeletion syndrome were also found to have additional pathogenetic aberrations. These findings (del 3q27.1; del 4q21.22-q22.1; del 16p13.3; dup 21q21.2-q21.3; del Xp22.12) might contribute to the patients' severe phenotype, acting as additional modifiers of their clinical manifestations. We review and compare the clinical and array-CGH findings of our patients to previously reported cases with the aim of clearly delineating more accurate genotype-phenotype correlations for the 1p36 syndrome that could allow for a more precise prognosis.

  13. Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor.

    PubMed

    Vachal, Petr; Toth, Leslie M; Hale, Jeffrey J; Yan, Lin; Mills, Sander G; Chrebet, Gary L; Koehane, Carol A; Hajdu, Richard; Milligan, James A; Rosenbach, Mark J; Mandala, Suzanne

    2006-07-15

    Novel series of sphingosine-1-phosphate (S1P) receptor agonists were developed through a systematic SAR aimed to achieve high selectivity for a single member of the S1P family of receptors, S1P1. The optimized structure represents a highly S1P1-selective and efficacious agonist: S1P1/S1P2, S1P1/S1P3, S1P1/S1P4>10,000-fold, S1P1/S1P5>600-fold, while EC50 (S1P1) <0.2 nM. In vivo experiments are consistent with S1P1 receptor agonism alone being sufficient for achieving desired lymphocyte-lowering effect.

  14. A conserved amphipathic helix is required for membrane tubule formation by Yop1p

    PubMed Central

    Brady, Jacob P.; Claridge, Jolyon K.; Smith, Peter G.; Schnell, Jason R.

    2015-01-01

    The integral membrane proteins of the DP1 (deleted in polyposis) and reticulon families are responsible for maintaining the high membrane curvature required for both smooth endoplasmic reticulum (ER) tubules and the edges of ER sheets, and mutations in these proteins lead to motor neuron diseases, such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain reticulon homology domains (RHDs) that have unusually long hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilize membrane curvature. We have characterized the secondary structure and dynamics of the DP1 family protein produced from the YOP1 gene (Yop1p) and identified a C-terminal conserved amphipathic helix (APH) that, on its own, interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming APHs. Together, these results indicate that APHs play a previously unrecognized role in RHD membrane curvature stabilization. PMID:25646439

  15. Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease

    PubMed Central

    Du, Yifeng; Wooten, Michael C; Wooten, Marie W.

    2009-01-01

    Recently we reported that declined SQSTM1/p62 expression in Alzheimer disease brain was age-correlated with oxidative damage to the p62 promoter. The objective of this study was to examine whether oxidative damage to the p62 promoter is common to DNA recovered from brain of individuals with neurodegenerative disease. Increased 8-OHdG staining was observed in brain sections from Alzheimer’s disease (AD), Parkinson disease (PD), Huntington disease (HD), Frontotemporal dementia (FTD), and Pick’s disease compared to control subjects. In parallel, the p62 promoter exhibited elevated oxidative damage in samples from various diseases compared to normal brain, and damage was negatively correlated with p62 expression in FTD samples. Oxidative damage to the p62 promoter induced by H2O2 treatment decreased its transcriptional activity. In keeping with this observation, the transcriptional activity of a Sp-1 element deletion mutant displayed reduced stimulus-induced activity. These findings reveal that oxidative damage to the p62 promoter decreased its transcriptional activity and might therefore account for decreased expression of p62. Altogether these results suggest that pharmacological means to increase p62 expression may be beneficial in delaying the onset of neurodegeneration. PMID:19481605

  16. Molecular Oxygen in Oort Cloud Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Altwegg, K.; van Dishoeck, E. F.; Schwehm, G.

    2015-12-01

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80 ± 0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O2 abundance is peculiar to comet 67P/Churyumov-Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.

  17. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    SciTech Connect

    Rubin, M.; Altwegg, K.; Dishoeck, E. F. van; Schwehm, G.

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  18. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans.

    PubMed

    Léger, Thibaut; Garcia, Camille; Camadro, Jean-Michel

    2016-07-01

    Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes

  19. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers

    SciTech Connect

    Sulman, E.P.; Brodeur, G.M.; Ikegaki, N.

    1997-03-01

    Mouse eck, a member of the EPH gene family, has been mapped to mouse chromosome 4. The syntenic relationship between this chromosome and human chromosome 1 suggests that the human ECK gene maps to the distal short arm of human chromosome 1 (1p). Since this region is frequently deleted or altered in certain tumors of neuroectodermal origin, it is important to define the specific chromosomal localization of the human ECK gene. PCR screening of a rodent-human somatic cell hybrid panel by ECK-specific primers showed that ECK is indeed localized to human chromosome 1. Additional PCR screening of a regional screening panel for chromosome 1p indicated that ECK is localized to 1p36, distal to FUCA1. Furthermore, fluorescence in situ hybridization analysis with an ECK-specific P1 clone showed that ECK maps proximal to genetic marker D1S228. Taken together, the data suggest that ECK maps to 1p36.1, a region that is frequently deleted in neuroblastoma, melanoma, and other neuroectodermal tumors. 23 refs., 3 figs.

  20. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    SciTech Connect

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined. We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.

  1. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.

    PubMed

    D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P

    2009-06-01

    The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.

  2. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    SciTech Connect

    Takeshita, Harunori; Kitano, Masayasu; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto; Miyazawa, Keiji; Hla, Timothy; Sano, Hajime

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  3. The fission yeast cell wall stress sensor-like proteins Mtl2 and Wsc1 act by turning on the GTPase Rho1p but act independently of the cell wall integrity pathway.

    PubMed

    Cruz, Sandra; Muñoz, Sofía; Manjón, Elvira; García, Patricia; Sanchez, Yolanda

    2013-10-01

    Sensing stressful conditions that affect the cell wall reorganization is important for yeast survival. Here, we studied two proteins SpWsc1p and SpMtl2p with structural features indicative of plasma membrane-associated cell wall sensors. We found that Mtl2p and Wsc1p act by turning on the Rho1p GTPase. Each gene could be deleted individually without affecting viability, but the deletion of both was lethal and this phenotype was rescued by overexpression of the genes encoding either Rho1p or its GDP/GTP exchange factors (GEFs). In addition, wsc1Δ and mtl2Δ cells showed a low level of Rho1p-GTP under cell wall stress. Mtl2p-GFP (green fluorescent protein) localized to the cell periphery and was necessary for survival under different types of cell wall stress. Wsc1p-GFP was concentrated in patches at the cell tips, it interacted with the Rho-GEF Rgf2p, and its overexpression activated cell wall biosynthesis. Our results are consistent with the notion that cell wall assembly is regulated by two different networks involving Rho1p. One includes signaling from Mtl2p through Rho1p to Pck1p, while the second one implicates signaling from Wsc1p and Rgf2p through Rho1p to activate glucan synthase (GS). Finally, signaling through the mitogen-activated protein kinase (MAPK) Pmk1p remained active in mtl2Δ and wsc1Δ disruptants exposed to cell wall stress, suggesting that the cell wall stress-sensing spectrum of Schizosaccharomyces pombe sensor-like proteins differs from that of Saccharomyces cerevisiae.

  4. The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p.

    PubMed

    Kucharczyk, R; Dupre, S; Avaro, S; Haguenauer-Tsapis, R; Słonimski, P P; Rytka, J

    2000-12-01

    CCZ1 was previously identified by the sensitivity of ccz1(delta) mutants to high concentrations of Caffeine and the divalent ions Ca(2+ )and Zn(2+). In this paper we show that deletion of CCZ1 leads to aberrant vacuole morphology, similar to the one reported for the family of vacuolar protein sorting (vps) mutants of class B. The ccz1(&Dgr;) cells display severe vacuolar protein sorting defects for both the soluble carboxipeptidase Y and the membrane-bound alkaline phosphatase, which are delivered to the vacuole by distinct routes. Ccz1p is a membranous protein and the vast majority of Ccz1p resides in late endosomes. These results, along with a functional linkage found between the CCZ1 and YPT7 genes, indicate that the site of Ccz1p function is at the last step of fusion of multiple transport intermediates with the vacuole.

  5. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae.

    PubMed

    Mayer, M L; Gygi, S P; Aebersold, R; Hieter, P

    2001-05-01

    We have identified and characterized an alternative RFC complex RFC(Ctf18p, Ctf8p, Dcc1p) that is required for sister chromatid cohesion and faithful chromosome transmission. Ctf18p, Ctf8p, and Dcc1p interact physically in a complex with Rfc2p, Rfc3p, Rfc4p, and Rfc5p but not with Rfc1p or Rad24p. Deletion of CTF18, CTF8, or DCC1 singly or in combination (ctf18Deltactf8Deltadcc1Delta) leads to sensitivity to microtubule depolymerizing drugs and a severe sister chromatid cohesion defect. Furthermore, temperature-sensitive mutations in RFC4 result in precocious sister chromatid separation. Our results highlight a novel function of the RFC proteins and support a model in which sister chromatid cohesion is established at the replication fork via a polymerase switching mechanism and a replication-coupled remodeling of chromatin.

  6. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells.

    PubMed

    Völzke, Anja; Koch, Alexander; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2014-01-01

    Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases.

  7. Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection.

    PubMed

    Yung, Bryan S; Brand, Cameron S; Xiang, Sunny Y; Gray, Charles B B; Means, Christopher K; Rosen, Hugh; Chun, Jerold; Purcell, Nicole H; Brown, Joan Heller; Miyamoto, Shigeki

    2017-02-01

    Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.

  8. Yos1p is a novel subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex.

    PubMed

    Heidtman, Matthew; Chen, Catherine Z; Collins, Ruth N; Barlowe, Charles

    2005-04-01

    Yeast Yip1p is a member of a conserved family of transmembrane proteins that interact with Rab GTPases. Previous studies also have indicated a role for Yip1p in the biogenesis of endoplasmic reticulum (ER)-derived COPII transport vesicles. In this report, we describe the identification and characterization of the uncharacterized open reading frame YER074W-A as a novel multicopy suppressor of the thermosensitive yip1-4 strain. We have termed this gene Yip One Suppressor 1 (YOS1). Yos1p is essential for growth and for function of the secretory pathway; depletion or inactivation of Yos1p blocks transport between the ER and the Golgi complex. YOS1 encodes an integral membrane protein of 87 amino acids that is conserved in eukaryotes. Yos1p localizes to ER and Golgi membranes and is efficiently packaged into ER-derived COPII transport vesicles. Yos1p associates with Yip1p and Yif1p, indicating Yos1p is a novel subunit of the Yip1p-Yif1p complex.

  9. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    PubMed

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  10. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors

    PubMed Central

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E.; O’Carroll, Simon J.; Graham, E. Scott

    2016-01-01

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors. PMID:26813587

  11. Fission Yeast Myosin-I, Myo1p, Stimulates Actin Assembly by Arp2/3 Complex and Shares Functions with Wasp

    PubMed Central

    Lee, Wei-Lih; Bezanilla, Magdalena; Pollard, Thomas D.

    2000-01-01

    Fission yeast myo1+ encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1+ is not lethal, Δmyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1+ is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Δmyo1 defects. However, it fails to rescue the Δmyo1 Δwsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity. PMID:11076964

  12. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.

    PubMed

    Maeda, Yasuhiro; Yagi, Hideki; Takemoto, Kana; Utsumi, Hiroyuki; Fukunari, Atsushi; Sugahara, Kunio; Masuko, Takashi; Chiba, Kenji

    2014-05-01

    Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.

  13. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    PubMed

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs.

  14. Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist.

    PubMed

    Cahalan, Stuart M; Gonzalez-Cabrera, Pedro J; Nguyen, Nhan; Guerrero, Miguel; Cisar, Elizabeth A George; Leaf, Nora B; Brown, Steven J; Roberts, Edward; Rosen, Hugh

    2013-02-01

    Sphingosine 1-phosphate receptor 1 (S1P(1)) is a G protein-coupled receptor that is critical for proper lymphocyte development and recirculation. Agonists to S1P(1) are currently in use clinically for the treatment of multiple sclerosis, and these drugs may act on both S1P(1) expressed on lymphocytes and S1P(1) expressed within the central nervous system. Agonists to S1P(1) and deficiency in S1P(1) both cause lymphocyte sequestration in the lymph nodes. In the present study, we show that S1P(1) antagonism induces lymphocyte sequestration in the lymph nodes similar to that observed with S1P(1) agonists while upregulating S1P(1) on lymphocytes and endothelial cells. Additionally, we show that S1P(1) antagonism reverses experimental autoimmune encephalomyelitis in mice without acting on S1P(1) expressed within the central nervous system, demonstrating that lymphocyte sequestration via S1P(1) antagonism is sufficient to alleviate autoimmune pathology.

  15. HTLV-1 p30II: selective repressor of gene expression.

    PubMed

    Green, Patrick L

    2004-11-24

    Human T-lymphotropic virus type-1 (HTLV-1) is a complex retrovirus that causes adult T-cell leukemia/lymphoma (ATL) and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 pX ORF II encodes two proteins, p13II and p30II whose roles are beginning to be defined in the virus life cycle. Previous studies indicate the importance of these viral proteins in the ability of the virus to maintain viral loads and persist in an animal model of HTLV-1 infection. Intriguing new studies indicate that p30II is a multifunctional regulator that differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein (CBP)/p300 and specifically binds and represses tax/rex mRNA nuclear export. A new study characterized the role of p30II in regulation of cellular gene expression using comprehensive human gene arrays. Interestingly, p30II is an overall repressor of cellular gene expression, while selectively favoring the expression of regulatory gene pathways important to T lymphocytes. These new findings suggest that HTLV-1, which is associated with lymphoproliferative diseases, uses p30II to selectively repress cellular and viral gene expression to favor the survival of cellular targets ultimately resulting in leukemogenesis.

  16. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    PubMed

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-08-26

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.

  17. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  18. The Photometric lightcurve of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  19. 78 FR 21916 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Commissaryagency (DECA), Fort Lee, VA Deletions The following products and service are proposed for deletion from... Activity: Defense Commissaryagency (DECA), Fort Lee, VA Barry S. Lineback, Director, Business...

  20. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    PubMed

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  1. A better surgical resectability of WHO grade II gliomas is independent of favorable molecular markers.

    PubMed

    Cordier, Dominik; Gozé, Catherine; Schädelin, Sabine; Rigau, Valérie; Mariani, Luigi; Duffau, Hugues

    2015-01-01

    A higher extent of resection (EOR) in WHO grade II gliomas (GIIG) is correlated with longer survival. However, the molecular markers also feature prognostic relevance. Here, we examined whether maximal EOR was related to the genetic profile. We retrospectively investigated the predictive value of 1p19q, IDH1, 53 expression and Ki67 index for the EOR in 200 consecutive GIIGs (2007-2013). Data were modeled in a linear model. The analysis was performed with two statistical methods (arcsin-sqrt and Beta-regression model with logit link). There was no deletion 1p19q in 118 cases, codeletion 1p19q (57 cases), single deletion 1p (4 cases) or19q (16 cases). 155 patients had a mutation of IDH1. p53 was graded in 4 degrees (0:92 cases, 1:52 cases, 2:31 cases, 3:8 cases). Mean Ki67 index was 5.2 % (range 1-20 %). Mean preoperative tumor volume was 60.8 cm(3) (range 3.3-250 cm(3)) and mean EOR was 0.917 (range 0.574-1). The statistical analysis was significant for a lower EOR in patients with codeletion 1p19q (OR 0.738, p = 0.0463) and with a single deletion 19q (OR 0.641, p = 0.0168). There was no significant correlation between IDH1 or p53 and the EOR. Higher Ki67 was marginally associated with higher EOR (p = 0.0603). The study demonstrates in a large cohort of GIIG that a higher EOR is not attributable to favorable genetic markers. This original result supports maximal surgical resection as an important therapeutic factor per se to optimize prognosis, independently of the molecular pattern.

  2. Genomic findings in patients with clinical suspicion of 22q11.2 deletion syndrome.

    PubMed

    Koczkowska, Magdalena; Wierzba, Jolanta; Śmigiel, Robert; Sąsiadek, Maria; Cabała, Magdalena; Ślężak, Ryszard; Iliszko, Mariola; Kardaś, Iwona; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    2017-02-01

    Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ∼40 % phenotypic 22q11.2 deletion subjects.

  3. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    PubMed

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. .

  4. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  5. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae.

    PubMed Central

    Sekiya-Kawasaki, Mariko; Abe, Mitsuhiro; Saka, Ayaka; Watanabe, Daisuke; Kono, Keiko; Minemura-Asakawa, Masayo; Ishihara, Satoru; Watanabe, Takahide; Ohya, Yoshikazu

    2002-01-01

    In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p. PMID:12399379

  6. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae

    PubMed Central

    Lam, Mandy Hiu Yi; Snider, Jamie; Rehal, Monique; Wong, Victoria; Aboualizadeh, Farzaneh; Drecun, Luka; Wong, Olivia; Jubran, Bellal; Li, Meirui; Ali, Mehrab; Jessulat, Matthew; Deineko, Viktor; Miller, Rachel; Lee, Mid eum; Park, Hay-Oak; Davidson, Alan; Babu, Mohan; Stagljar, Igor

    2017-01-01

    Sho1p, an integral membrane protein, plays a vital role in the high-osmolarity glycerol (HOG) mitogen-activated protein kinase pathway in the yeast Saccharomyces cerevisiae. Activated under conditions of high osmotic stress, it interacts with other HOG pathway proteins to mediate cell signaling events, ensuring that yeast cells can adapt and remain viable. In an attempt to further understand how the function of Sho1p is regulated through its protein–protein interactions (PPIs), we identified 49 unique Sho1p PPIs through the use of membrane yeast two-hybrid (MYTH), an assay specifically suited to identify PPIs of full-length integral membrane proteins in their native membrane environment. Secondary validation by literature search, or two complementary PPI assays, confirmed 80% of these interactions, resulting in a high-quality Sho1p interactome. This set of putative PPIs included both previously characterized interactors, along with a large subset of interactors that have not been previously identified as binding to Sho1p. The SH3 domain of Sho1p was found to be important for binding to many of these interactors. One particular novel interactor of interest is the glycerol transporter Fps1p, which was shown to require the SH3 domain of Sho1p for binding via its N-terminal soluble regulatory domain. Furthermore, we found that Fps1p is involved in the positive regulation of Sho1p function and plays a role in the phosphorylation of the downstream kinase Hog1p. This study represents the largest membrane interactome analysis of Sho1p to date and complements past studies on the HOG pathway by increasing our understanding of Sho1p regulation. PMID:25644660

  7. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.

    PubMed

    Haberler, Christine; Wöhrer, Adelheid

    2014-01-01

    Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

  8. The 1p36 Tumor Suppressor KIF 1Bβ Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis.

    PubMed

    Li, Shuijie; Fell, Stuart M; Surova, Olga; Smedler, Erik; Wallis, Karin; Chen, Zhi Xiong; Hellman, Ulf; Johnsen, John Inge; Martinsson, Tommy; Kenchappa, Rajappa S; Uhlén, Per; Kogner, Per; Schlisio, Susanne

    2016-01-25

    KIF1Bβ is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bβ activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1Bβ affects mitochondrial dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondrial fission and apoptosis. Furthermore, KIF1Bβ actuates recognition of all known CN substrates, implying a general mechanism for KIF1Bβ in Ca(2+) signaling and how Ca(2+)-dependent signaling is executed by CN. Pathogenic KIF1Bβ mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1Bβ and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondrial dynamics contributes to high-risk and poor-prognosis neuroblastoma.

  9. Novel selective allosteric and bitopic ligands for the S1P(3) receptor.

    PubMed

    Jo, Euijung; Bhhatarai, Barun; Repetto, Emanuela; Guerrero, Miguel; Riley, Sean; Brown, Steven J; Kohno, Yasushi; Roberts, Edward; Schürer, Stephan C; Rosen, Hugh

    2012-12-21

    Sphingosine 1-phosphate (S1P) is a lysophospholipid signaling molecule that regulates important biological functions, including lymphocyte trafficking and vascular development, by activating G protein-coupled receptors for S1P, namely, S1P(1) through S1P(5). Here, we map the S1P(3) binding pocket with a novel allosteric agonist (CYM-5541), an orthosteric agonist (S1P), and a novel bitopic antagonist (SPM-242). With a combination of site-directed mutagenesis, ligand competition assay, and molecular modeling, we concluded that S1P and CYM-5541 occupy different chemical spaces in the ligand binding pocket of S1P(3). CYM-5541 allowed us to identify an allosteric site where Phe263 is a key gate-keeper residue for its affinity and efficacy. This ligand lacks a polar moiety, and the novel allosteric hydrophobic pocket permits S1P(3) selectivity of CYM-5541 within the highly similar S1P receptor family. However, a novel S1P(3)-selective antagonist, SPM-242, in the S1P(3) pocket occupies the ligand binding spaces of both S1P and CYM-5541, showing its bitopic mode of binding. Therefore, our coordinated approach with biochemical data and molecular modeling, based on our recently published S1P(1) crystal structure data in a highly conserved set of related receptors with a shared ligand, provides a strong basis for the successful optimization of orthosteric, allosteric, and bitopic modulators of S1P(3).

  10. Pub1p C-terminal RRM domain interacts with Tif4631p through a conserved region neighbouring the Pab1p binding site.

    PubMed

    Santiveri, Clara M; Mirassou, Yasmina; Rico-Lastres, Palma; Martínez-Lumbreras, Santiago; Pérez-Cañadillas, José Manuel

    2011-01-01

    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.

  11. Smad3 deficiency leads to mandibular condyle degradation via the sphingosine 1-phosphate (S1P)/S1P3 signaling axis.

    PubMed

    Mori, Hiroki; Izawa, Takashi; Tanaka, Eiji

    2015-10-01

    Temporomandibular joint osteoarthritis is a degenerative disease that is characterized by permanent cartilage destruction. Transforming growth factor (TGF)-β is one of the most abundant cytokines in the bone matrix and is shown to regulate the migration of osteoprogenitor cells. It is hypothesized that TGF-β/Smad3 signaling affects cartilage homeostasis by influencing sphingosine 1-phosphate (S1P)/S1P receptor signaling and chondrocyte migration. We therefore investigated the molecular mechanisms by which crosstalk may occur between TGF-β/Smad3 and S1P/S1P receptor signaling to maintain condylar cartilage and to prevent temporomandibular joint osteoarthritis. Abnormalities in the condylar subchondral bone, including dynamic changes in bone mineral density and microstructure, were observed in Smad3(-/-) mice by microcomputed tomography. Cell-free regions and proteoglycan loss characterized the cartilage degradation present, and increased numbers of apoptotic chondrocytes and matrix metalloproteinase 13(+) chondrocytes were also detected. Furthermore, expression of S1P receptor 3 (S1P3), but not S1P1 or S1P2, was significantly down-regulated in the condylar cartilage of Smad3(-/-) mice. By using RNA interference technology and pharmacologic tools, S1P was found to transactivate Smad3 in an S1P3/TGF-β type II receptor-dependent manner, and S1P3 was found to be required for TGF-β-induced migration of chondrocyte cells and downstream signal transduction via Rac1, RhoA, and Cdc42. Taken together, these results indicate that the Smad3/S1P3 signaling pathway plays an important role in the pathogenesis of temporomandibular joint osteoarthritis.

  12. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae.

    PubMed Central

    Kohno, H; Tanaka, K; Mino, A; Umikawa, M; Imamura, H; Fujiwara, T; Fujita, Y; Hotta, K; Qadota, H; Watanabe, T; Ohya, Y; Takai, Y

    1996-01-01

    The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p. Images PMID:8947028

  13. Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-like head-group interactions

    PubMed Central

    Gonzalez-Cabrera, Pedro J.; Jo, Euijung; Sanna, M. Germana; Brown, Steven; Leaf, Nora; Marsolais, David; Schaeffer, Marie-Therese; Chapman, Jacqueline; Cameron, Michael; Guerrero, Miguel; Roberts, Edward; Rosen, Hugh

    2008-01-01

    Strong evidence exists for interactions of zwitterionic phosphate and amine groups in Sphingosine-1 phosphate (S1P) to conserved R and E residues present at the extracellular face of transmembrane-3 (TM3) of S1P receptors. The contribution of R120 and E121 for high affinity ligand-receptor interactions is essential, as single-point R120A or E121A S1P1 mutants neither bind S1P nor transduce S1P function. Because S1P receptors are therapeutically interesting, identifying potent selective agonists with different binding modes and in vivo efficacy is of pharmacological importance. Here we describe a modestly water-soluble highly-selective S1P1 agonist (CYM-5442) that does not require R120 or E121 residues for activating S1P1-dependent p42/p44 MAPK phosphorylation, which defines a new hydrophobic pocket in S1P1. CYM-5442 is a full agonist in vitro for S1P1 internalization, phosphorylation and ubiquitination. Importantly, CYM-5442 was a full agonist for induction and maintenance of S1P1-dependent lymphopenia, decreasing B-lymphocytes by 65% and T-lymphocytes by 85% of vehicle. Induction of CYM-5442 lymphopenia was dose and time-dependent, requiring serum concentrations in the 50 nM range. In vitro measures of S1P1 activation by CYM-5442 were non-competitively inhibited by a specific S1P1 antagonist (W146), competitive for S1P, FTY720-P and SEW2871. In addition, lymphopenia by CYM-5442 was reversed by W146 administration or upon pharmacokinetic agonist clearance. Pharmacokinetics in mice also indicated that CYM-5442 partitions significantly in central nervous tissue. These data show that CYM-5442 activates S1P1-dependent pathways in vitro and to levels of full efficacy in vivo through a hydrophobic pocket, separable from the orthosteric site of S1P binding that is headgroup dependent. PMID:18708635

  14. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  15. Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: high density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1.

    PubMed

    Wilkerson, Brent A; Grass, G Daniel; Wing, Shane B; Argraves, W Scott; Argraves, Kelley M

    2012-12-28

    Sphingosine 1-phosphate (S1P) is a blood-borne lysosphingolipid that acts to promote endothelial cell (EC) barrier function. In plasma, S1P is associated with both high density lipoproteins (HDL) and albumin, but it is not known whether the carriers impart different effects on S1P signaling. Here we establish that HDL-S1P sustains EC barrier longer than albumin-S1P. We showed that the sustained barrier effects of HDL-S1P are dependent on signaling by the S1P receptor, S1P1, and involve persistent activation of Akt and endothelial NOS (eNOS), as well as activity of the downstream NO target, soluble guanylate cyclase (sGC). Total S1P1 protein levels were found to be higher in response to HDL-S1P treatment as compared with albumin-S1P, and this effect was not associated with increased S1P1 mRNA or dependent on de novo protein synthesis. Several pieces of evidence indicate that long term EC barrier enhancement activity of HDL-S1P is due to specific effects on S1P1 trafficking. First, the rate of S1P1 degradation, which is proteasome-mediated, was slower in HDL-S1P-treated cells as compared with cells treated with albumin-S1P. Second, the long term barrier-promoting effects of HDL-S1P were abrogated by treatment with the recycling blocker, monensin. Finally, cell surface levels of S1P1 and levels of S1P1 in caveolin-enriched microdomains were higher after treatment with HDL-S1P as compared with albumin-S1P. Together, the findings reveal S1P carrier-specific effects on S1P1 and point to HDL as the physiological mediator of sustained S1P1-PI3K-Akt-eNOS-sGC-dependent EC barrier function.

  16. Eap1p, a Novel Eukaryotic Translation Initiation Factor 4E-Associated Protein in Saccharomyces cerevisiae

    PubMed Central

    Cosentino, Gregory P.; Schmelzle, Tobias; Haghighat, Ashkan; Helliwell, Stephen B.; Hall, Michael N.; Sonenberg, Nahum

    2000-01-01

    Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m7G(5′)ppp(5′)N, where N is any nucleotide] present at the 5′ termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae. PMID:10848587

  17. Somatic mosaicism for a DMD gene deletion

    SciTech Connect

    Saito, Kayoko; Ikeya, Kiyoko; Kondo, Eri

    1995-03-13

    Mosaicism is a mixed state, with two cell populations of different genetic origins caused by a cell mutation occurring after fertilization. In the present case, DNA analysis of lymphocytes led to a DMD diagnosis before death. Postmortem immunocytochemical and DNA analysis showed somatic mosaicism. At age 18 years, blood lymphocyte DNA analysis showed a DMD gene deletion, upstream from exon 7 to the 5{prime} end containing both muscle and brain promoters. As the patient`s mother and elder sister had no deletions, he was considered to have a new mutation. Immunocytochemical studies of postmortem tissues showed that dystrophin was absent from the tongue, deltoid, intercostal, psoas and rectus femoris muscles, but there was a mix of dystrophin-positive and negative fibers in the rectus abdominis, cardiac, temporalis and sternocleidomastoid muscles. All diaphragm cells were dystrophin positive. Polymerase chain reaction (PCR) amplification from all tissues except the temporalis and sternocleidomastoid muscles, diaphragm and kidney, in which no deletion was found, showed the deletion from at least exon 6 to the 5{prime} end containing both muscle and brain promoters. In this case, a genomic deletion of the DMD gene contributed to the formation of tissues derived from both ectoderm and endoderm, and cells of mesodermal origin showed genotypic and phenotypic heterogeneity. Our results indicate a mutation of the present case may have occurred just before the period of germ layer formation. 34 refs., 7 figs.

  18. A Prokaryotic S1P Lyase Degrades Extracellular S1P In Vitro and In Vivo: Implication for Treating Hyperproliferative Disorders

    PubMed Central

    Huwiler, Andrea; Bourquin, Florence; Kotelevets, Nataliya; Pastukhov, Oleksandr; Capitani, Guido; Grütter, Markus G.; Zangemeister-Wittke, Uwe

    2011-01-01

    Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling. PMID:21829623

  19. Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling.

    PubMed

    Sobel, Katrin; Menyhart, Katalin; Killer, Nina; Renault, Bérengère; Bauer, Yasmina; Studer, Rolf; Steiner, Beat; Bolli, Martin H; Nayler, Oliver; Gatfield, John

    2013-05-24

    Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways.

  20. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  1. The yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p.

    PubMed

    Yu, Xianwen; Cai, Mingjie

    2004-08-01

    Recent studies have suggested that the function of the large GTPase dynamin in endocytosis in mammalian cells may comprise a modulation of actin cytoskeleton. The role of dynamin in actin cytoskeleton organization in the yeast Saccharomyces cerevisiae has remained undefined. In this report, we found that one of the yeast dynamin-related proteins, Vps1p, is required for normal actin cytoskeleton organization. At both permissive and non-permissive temperatures, the vps1 mutants exhibited various degrees of phenotypes commonly associated with actin cytoskeleton defects: depolarized and aggregated actin structures, hypersensitivity to the actin cytoskeleton toxin latrunculin-A, randomized bud site selection and chitin deposition, and impaired efficiency in the internalization of membrane receptors. Over-expression of the GTPase mutants of vps1 also led to actin abnormalities. Consistent with these actin-related defects, Vps1p was found to interact physically, and partially co-localize, with the actin-regulatory protein Sla1p. The normal cellular localization of Sla1p required Vps1p and could be altered by over-expression of a region of Vps1p that was involved in the interaction with Sla1p. The same region also promoted mis-sorting of the vacuolar protein carboxypeptidase Y upon over-expression. These findings suggest that the functions of the dynamin-related protein Vps1p in actin cytoskeleton dynamics and vacuolar protein sorting are probably related to each other.

  2. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p.

    PubMed

    Shin, H W; Shinotsuka, C; Torii, S; Murakami, K; Nakayama, K

    1997-09-01

    The dynamin family of GTP-binding proteins are implicated in vesicular transport. These include mammalian dynamins I, II, III, and yeast Vps1p and Dnm1p. Dynamin is involved in the formation of clathrin-coated vesicles at the plasma membrane. On the other hand, Vps1p and Dnm1p appear to be involved in transport from the late Golgi compartment to vacuoles and in an endocytic process, respectively. In this study, we identified a novel human protein, named Dnm1p/Vps1p-like protein (DVLP). It resembled more closely Dnm1p and Vps1p than dynamins not only in the primary structure but also in the domain organization. DVLP mRNA was expressed ubiquitously, suggesting that this protein plays a fundamental role in cellular function. Immunofluorescence analysis of cells expressing epitope-tagged DVLP revealed that it showed a diffused perinuclear staining pattern that was not superimposed on that of the marker protein for the Golgi apparatus, trans-Golgi network, lysosomes, endosomes, or endoplasmic reticulum. These data suggest that DVLP is not involved in the formation of known coated vesicles.

  3. Deletion 22q13.3 syndrome.

    PubMed

    Phelan, Mary C

    2008-05-27

    The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (CGH) is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy). Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements. Individuals with

  4. Identification of yeast IQGAP (Iqg1p) as an anaphase-promoting-complex substrate and its role in actomyosin-ring-independent cytokinesis.

    PubMed

    Ko, Nolan; Nishihama, Ryuichi; Tully, Gregory H; Ostapenko, Denis; Solomon, Mark J; Morgan, David O; Pringle, John R

    2007-12-01

    In the yeast Saccharomyces cerevisiae, a ring of myosin II forms in a septin-dependent manner at the budding site in late G1. This ring remains at the bud neck until the onset of cytokinesis, when actin is recruited to it. The actomyosin ring then contracts, septum formation occurs concurrently, and cytokinesis is soon completed. Deletion of MYO1 (the only myosin II gene) is lethal on rich medium in the W303 strain background and causes slow-growth and delayed-cell-separation phenotypes in the S288C strain background. These phenotypes can be suppressed by deletions of genes encoding nonessential components of the anaphase-promoting complex (APC/C). This suppression does not seem to result simply from a delay in mitotic exit, because overexpression of a nondegradable mitotic cyclin does not suppress the same phenotypes. Overexpression of either IQG1 or CYK3 also suppresses the myo1Delta phenotypes, and Iqg1p (an IQGAP protein) is increased in abundance and abnormally persistent after cytokinesis in APC/C mutants. In vitro assays showed that Iqg1p is ubiquitinated directly by APC/C(Cdh1) via a novel recognition sequence. A nondegradable Iqg1p (lacking this recognition sequence) can suppress the myo1Delta phenotypes even when expressed at relatively low levels. Together, the data suggest that compromise of APC/C function allows the accumulation of Iqg1p, which then promotes actomyosin-ring-independent cytokinesis at least in part by activation of Cyk3p.

  5. Genomic deletions in cell lines derived from primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Dallas, Peter B; Terry, Philippa A; Kees, Ursula R

    2005-06-01

    Extensive genomic deletions affecting a variety of chromosomes are a common finding in primitive neuroectodermal tumors of the central nervous system (CNS-PNETs), implicating the loss of multiple tumor suppressor genes in the pathogenesis of these tumors. We have used representational difference analysis, microsatellite mapping, and quantitative polymerase chain reaction to identify and verify the presence of genomic deletions on a number of chromosomes in CNS-PNET cell lines. This systematic approach has confirmed the importance of deletions at 10q, 16q, and 17p in PNET pathology and has revealed other regions of deletion not commonly described (e.g., Xq, 1p, 7p, and 13q). These data highlight the prevalence of hemizygous loss in CNS-PNET cells, suggesting that haploinsufficiency affecting multiple tumor suppressor genes may play a fundamental role in CNS-PNET pathogenesis. The identification of specific genes and signaling pathways that are compromised in CNS-PNET cells is crucial for development of more efficacious and less invasive treatments, as are urgently needed.

  6. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications.

    PubMed

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.

  7. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    SciTech Connect

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally; Kerscher, Oliver; Benton, Michael G.; Basrai, Munira A.

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.

  8. Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3.

    PubMed

    Lee, Hui Min; Lo, Kwok-Wai; Wei, Wenbin; Tsao, Sai Wah; Chung, Grace Tin Yun; Ibrahim, Maha Hafez; Dawson, Christopher W; Murray, Paul G; Paterson, Ian C; Yap, Lee Fah

    2017-02-27

    Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1 and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is over-expressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease.

  9. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes

    PubMed Central

    Hildebrandt, Emily R; Cheng, Michael; Zhao, Peng; Kim, June H; Wells, Lance; Schmidt, Walter K

    2016-01-01

    The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI: http://dx.doi.org/10.7554/eLife.15899.001 PMID:27525482

  10. S1P3 confers differential S1P migration by autoreactive and non-autoreactive immature B cells and is required for normal B cell development

    PubMed Central

    Donovan, Erin E.; Pelanda, Roberta; Torres, Raul M.

    2010-01-01

    SUMMARY During B cell development, immature B cell fate is determined by whether the B cell antigen receptor is engaged in the bone marrow. Immature B cells that are non-autoreactive continue maturation and emigrate from the marrow whereas autoreactive immature B cells remain and are tolerized. However, the microenvironment where these events occur and the chemoattractants responsible for immature B cell trafficking within and out of the bone marrow remain largely undefined. Sphingosine 1-phosphate (S1P) is a chemoattractant that directs lymphocyte trafficking and thymocyte egress and in this study we investigated whether S1P contributed to B cell development, egress and positioning within the bone marrow. Our findings show that immature B cells are chemotactic towards S1P but that this response is dependent on antigen receptor specificity: non-autoreactive, but not autoreactive, immature B cells migrate towards S1P and are shown to require S1P3 receptor for this response. Despite this response, S1P3 is shown not to facilitate immature B cell egress but is required for normal B cell development including the positioning of transitional B cells within bone marrow sinusoids. These data indicate that S1P3 signaling directs immature B cells to a bone marrow microenvironment important for both tolerance induction and maturation. PMID:20039302

  11. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  12. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  13. Nature of frequent deletions in CEBPA.

    PubMed

    Fuchs, Ota; Kostecka, Arnost; Provaznikova, Dana; Krasna, Blazena; Brezinova, Jana; Filkukova, Jitka; Kotlin, Roman; Kouba, Michal; Kobylka, Petr; Neuwirtova, Radana; Jonasova, Anna; Caniga, Miroslav; Schwarz, Jiri; Markova, Jana; Maaloufova, Jacqueline; Sponerova, Dana; Novakova, Ludmila; Cermak, Jaroslav

    2009-01-01

    C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.

  14. Deletion 5q35.3

    SciTech Connect

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G.; Young, R.S.

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  15. Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach.

    PubMed

    Gamberi, Tania; Puglia, Michele; Bianchi, Laura; Gimigliano, Anna; Landi, Claudia; Magherini, Francesca; Guidi, Francesca; Ranaldi, Francesco; Armini, Alessandro; Cipriano, Maria; Gagliardi, Assunta; Modesti, Alessandra; Bini, Luca

    2012-06-01

    The Saccharomyces cerevisiae gene SCO1 has been shown to play an essential role in copper delivery to cytochrome c oxidase. Biochemical studies demonstrated specific transfer of copper from Cox17p to Sco1p, and physical interactions between the Sco1p and Cox2p. Deletion of SCO1 yeast gene results in a respiratory deficient phenotype. This study aims to gain a more detailed insight on the effects of SCO1 deletion on S. cerevisiae metabolism. We compared, using a proteomic approach, the protein pattern of SCO1 null mutant strain and wild-type BY4741 strain grown on fermentable and on nonfermentable carbon sources. The analysis showed that on nonfermentable medium, the SCO1 mutant displayed a protein profile similar to that of actively fermenting yeast cells. Indeed, on 3% glycerol, this mutant displayed an increase of some glycolytic and fermentative enzymes such as glyceraldehyde-3-phosphate dehydrogenase 1, enolase 2, pyruvate decarboxylase 1, and alcohol dehydrogenase 1. These data were supported by immunoblotting and enzyme activity assay. Moreover, the ethanol assay and the oxygen consumption measurement demonstrated a fermentative activity in SCO1 mutant on respiratory medium. Our results suggest that on nonfermentable carbon source, the lack of Sco1p causes a metabolic shift from respiration to fermentation.

  16. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells

    PubMed Central

    Wang, Dongmei; Zhao, Zhenwen; Caperell-Grant, Andrea; Yang, Gong; Mok, Samuel C.; Liu, Jinsong; Bigsby, Robert M.; Xu, Yan

    2009-01-01

    Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and intra-peritoneal metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells, but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE, but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Even though S1P1 is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P2 is dominant in those cells. The cellular pre-existing stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Pre-existing stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC. PMID:18645009

  17. Interaction of integrin β4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement.

    PubMed

    Ni, Xiuqin; Epshtein, Yulia; Chen, Weiguo; Zhou, Tingting; Xie, Lishi; Garcia, Joe G N; Jacobson, Jeffrey R

    2014-06-01

    We previously reported sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF) augment endothelial cell (EC) barrier function and attenuate murine acute lung inury (ALI). While the mechanisms underlying these effects are not fully understood, S1P and HGF both transactivate the S1P receptor, S1PR1 and integrin β4 (ITGB4) at membrane caveolin-enriched microdomains (CEMs). In the current study, we investigated the roles of S1PR2 and S1PR3 in S1P/HGF-mediated EC signaling and their associations with ITGB4. Our studies confirmed ITGB4 and S1PR2/3 are recruited to CEMs in human lung EC in response to either S1P (1 µM, 5 min) or HGF (25 ng/ml, 5 min). Co-immunoprecipitation experiments identified an S1P/HGF-mediated interaction of ITGB4 with both S1PR2 and S1PR3. We then employed an in situ proximity ligation assay (PLA) to confirm a direct ITGB4-S1PR3 association induced by S1P/HGF although a direct association was not detectable between S1PR2 and ITGB4. S1PR1 knockdown (siRNA), however, abrogated S1P/HGF-induced ITGB4-S1PR2 associations while there was no effect on ITGB4-S1PR3 associations. Moreover, PLA confirmed a direct association between S1PR1 and S1PR2 induced by S1P and HGF. Finally, silencing of S1PR2 significantly attenuated S1P/HGF-induced EC barrier enhancement as measured by transendothelial resistance while silencing of S1PR3 significantly augmented S1P/HGF-induced barrier enhancement. These results confirm an important role for S1PR2 and S1PR3 in S1P/HGF-mediated EC barrier responses that are associated with their complex formation with ITGB4. Our findings elucidate novel mechanisms of EC barrier regulation that may ultimately lead to new therapeutic targets for disorders characterized by increased vascular permeability including ALI.

  18. The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.

    PubMed

    Du, Xianming; Rao, Malireddi R K Subba; Chen, Xue Qin; Wu, Wei; Mahalingam, Sundarasamy; Balasundaram, David

    2006-01-01

    Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a Deltagrn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue deltagrn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.

  19. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Vevea, Jason D.; Charalel, Joseph K.; Sapar, Maria L.; Pon, Liza A.

    2016-01-01

    Increasing the stability or dynamics of the actin cytoskeleton can extend lifespan in C. elegans and S. cerevisiae. Actin cables of budding yeast, bundles of actin filaments that mediate cargo transport, affect lifespan control through effects on mitochondrial quality control. Sir2p, the founding member of the Sirtuin family of lifespan regulators, also affects actin cable dynamics, assembly, and function in mitochondrial quality control. Here, we obtained evidence for novel interactions between Sir2p and Sum1p, a transcriptional repressor that was originally identified through mutations that genetically suppress sir2∆ phenotypes unrelated to lifespan. We find that deletion of SUM1 in wild-type cells results in increased mitochondrial function and actin cable abundance. Furthermore, deletion of SUM1 suppresses defects in actin cables and mitochondria of sir2∆ yeast, and extends the replicative lifespan and cellular health span of sir2∆ cells. Thus, Sum1p suppresses Sir2p function in control of specific aging determinants and lifespan in budding yeast. PMID:28357337

  20. The Isy1p component of the NineTeen complex interacts with the ATPase Prp16p to regulate the fidelity of pre-mRNA splicing.

    PubMed

    Villa, Tommaso; Guthrie, Christine

    2005-08-15

    Prp16p is a DEAH-box ATPase that transiently associates with the spliceosome to promote the structural transition required for the second chemical step. Yeast strains carrying the cold-sensitive allele prp16-302 stall the release of Prp16p at low temperatures, yet splice precursors with aberrant branchpoints at increased frequency. To identify new factors involved in the regulation of splicing fidelity, we sought suppressors of the prp16-302 growth phenotype. Deletion of the nonessential ISY1 gene (1) improves growth of prp16-302 strains, (2) alleviates stalling, and (3) restores fidelity of branchpoint usage to wild-type levels. Isy1p is a subunit of the NineTeen Complex containing Prp19p, an essential E3 ubiquitin ligase homolog required for splicing. Notably, Deltaisy1 PRP16 strains display reduced fidelity of 3'-splice site selection. Consistent with a recent two-state model of the spliceosome, our genetic and biochemical results suggest that Isy1p acts together with U6 snRNA to promote a spliceosomal conformation favorable for first-step chemistry. We propose that deletion of ISY1 favors the premature release of Prp16p, thus promoting second-step chemistry of precursors with inappropriate 3'-splice sites.

  1. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae.

    PubMed

    Pernice, Wolfgang M; Vevea, Jason D; Pon, Liza A

    2016-02-03

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity.

  2. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor.

    PubMed

    Candelore, Mari Rios; Wright, Michael J; Tota, Laurie M; Milligan, James; Shei, Gan-ju; Bergstrom, James D; Mandala, Suzanne M

    2002-09-27

    It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.

  3. S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase.

    PubMed

    Saba, Julie D; de la Garza-Rodea, Anabel S

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.

  4. Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme.

    PubMed Central

    Shi, X; Chang, M; Wolf, A J; Chang, C H; Frazer-Abel, A A; Wade, P A; Burton, Z F; Jaehning, J A

    1997-01-01

    The products of the yeast CDC73 and PAF1 genes were originally identified as RNA polymerase II-associated proteins. Paf1p is a nuclear protein important for cell growth and transcriptional regulation of a subset of yeast genes. In this study we demonstrate that the product of CDC73 is a nuclear protein that interacts directly with purified RNA polymerase II in vitro. Deletion of CDC73 confers a temperature-sensitive phenotype. Combination of the cdc73 mutation with the more severe paf1 mutation does not result in an enhanced phenotype, indicating that the two proteins may function in the same cellular processes. To determine the relationship between Cdc73p and Paf1p and the recently described holoenzyme form of RNA polymerase II, we created yeast strains containing glutathione S-transferase (GST)-tagged forms of CDC73, PAF1, and TFG2 functionally replacing the chromosomal copies of the genes. Isolation of GST-tagged Cdc73p and Paf1p complexes has revealed a unique form of RNA polymerase II that contains both Cdc73p and Paf1p but lacks the Srbps found in the holoenzyme. The Cdc73p-Paf1p-RNA polymerase II-containing complex also includes Gal11p, and the general initiation factors TFIIB and TFIIF, but lacks TBP, TFIIH, and transcription elongation factor TFIIS as well as the Srbps. The Srbp-containing holoenzyme does not include either Paf1p or Cdc73p, demonstrating that these two forms of RNA polymerase II are distinct. In confirmation of the hypothesis that the two forms coexist in yeast cells, we found that a TFIIF-containing complex isolated via the GST-tagged Tfg2p construct contains both (i) the Srbps and (ii) Cdc73p and Paf1p. The Srbps and Cdc73p-Paf1p therefore appear to define two complexes with partially redundant, essential functions in the yeast cell. Using the technique of differential display, we have identified several genes whose transcripts require Cdc73p and/or Paf1p for normal levels of expression. Our analysis suggests that there are multiple RNA

  5. Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy.

    PubMed

    Schneider, Gabriela; Bryndza, Ewa; Abdel-Latif, Ahmed; Ratajczak, Janina; Maj, Magdalena; Tarnowski, Maciej; Klyachkin, Yuri M; Houghton, Peter; Morris, Andrew J; Vater, Axel; Klussmann, Sven; Kucia, Magdalena; Ratajczak, Mariusz Z

    2013-07-01

    Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment.

  6. Prevalence of selected genomic deletions and duplications in a French–Canadian population-based sample of newborns

    PubMed Central

    Tucker, Tracy; Giroux, Sylvie; Clément, Valérie; Langlois, Sylvie; Friedman, Jan M; Rousseau, François

    2013-01-01

    Chromosomal microarray analysis has identified many novel microdeletions or microduplications that produce neurodevelopmental disorders with a recognizable clinical phenotype and that are not observed in normal individuals. However, imbalance of other genomic regions is associated with a variable phenotype with intellectual disability (ID) or autism in some individuals but are also observed in completely normal individuals. Several large studies have reported the prevalence of copy number (CN) variants in people with particular features (e.g., ID, autism, schizophrenia, or epilepsy); few studies have investigated the prevalence of genomic CN changes in the general population. We used a high-throughput method to screen 6813 consecutive cord blood samples from a predominantly French–Canadian population to assess genomic CN in five genomic regions: 1p36, 15q11-q13, 16p11.2, 16p11.2-p12.2, and 22q11.2. We identified one deletion and one duplication within 1p36, two deletions of 15q11-q13, eight deletions of 16p11.2-p12.2, two deletions and five duplications of 16p11.2, and six duplications of 22q11.2. This study provides estimates of the frequency of CN variants in an unselected population. Our findings have important implications for genetic counseling. PMID:24498606

  7. Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae

    SciTech Connect

    Hoffman-Sommer, Marta; Migdalski, Andrzej; Rytka, Joanna; Kucharczyk, Roza . E-mail: roza@ibb.waw.pl

    2005-04-01

    The CCZ1 (YBR131w) gene encodes a protein required for fusion of various transport intermediates with the vacuole. Ccz1p, in a complex with Mon1p, is a close partner of Ypt7p in the processes of fusion of endosomes to vacuoles and homotypic vacuole fusion. In this work, we exploited the Ca{sup 2+}-sensitivity of the ccz1{delta} mutant to identify genes specifically interacting with CCZ1, basing on functional multicopy suppression of calcium toxicity. The presented results indicate that Ccz1p functions in the cell either in association with Mon1p and Ypt7p in fusion at the vacuolar membrane, or-separately-with Arl1p at early steps of vacuolar transport. We also show that suppression of calcium toxicity by the calcium pumps Pmr1p and Pmc1p is restricted only to the subset of mutants defective in vacuole morphology. The mechanisms of Ca{sup 2+}-pump-mediated suppression also differ from each other, since the action of Pmr1p, but not Pmc1p, appears to require Arl1p function.

  8. nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants.

    PubMed

    Gomes, Fernando; Tahara, Erich B; Busso, Cleverson; Kowaltowski, Alicia J; Barros, Mario H

    2013-02-01

    Saccharomyces cerevisiae has three distinct inner mitochondrial membrane NADH dehydrogenases mediating the transfer of electrons from NADH to CoQ (coenzyme Q): Nde1p, Nde2p and Ndi1p. The active site of Ndi1p faces the matrix side, whereas the enzymatic activities of Nde1p and Nde2p are restricted to the intermembrane space side, where they are responsible for cytosolic NADH oxidation. In the present study we genetically manipulated yeast strains in order to alter the redox state of CoQ and NADH dehydrogenases to evaluate the consequences on mtDNA (mitochondrial DNA) maintenance. Interestingly, nde1 deletion was protective for mtDNA in strains defective in CoQ function. Additionally, the absence of functional Nde1p promoted a decrease in the rate of H2O2 release in isolated mitochondria from different yeast strains. On the other hand, overexpression of the predominant NADH dehydrogenase NDE1 elevated the rate of mtDNA loss and was toxic to coq10 and coq4 mutants. Increased CoQ synthesis through COQ8 overexpression also demonstrated that there is a correlation between CoQ respiratory function and mtDNA loss: supraphysiological CoQ levels were protective against mtDNA loss in the presence of oxidative imbalance generated by Nde1p excess or exogenous H2O2. Altogether, our results indicate that impairment in the oxidation of cytosolic NADH by Nde1p is deleterious towards mitochondrial biogenesis due to an increase in reactive oxygen species release.

  9. Duplication/deletion of chromosome 8p

    SciTech Connect

    Priest, J.H.

    1995-09-11

    The article by Guo et al. provides evidence for deletion of D8S596 loci (assigned to 8p23) in at least some patients with inverted duplications of 8p. Cytogenetic break points forming the inverted duplication are remarkably similar among most of their patients and those reported previously, suggesting a common mechanism for this interesting rearrangement. Why should similar breaks occur in 8p and why is a FISH signal absent in the distal short arm when the ONCOR digoxigenin-labeled probe for loci D8S596 is used? Other studies also indicate that duplication for the region 8p12-p22 is associated with a deletion distal to the duplication itself. 4 refs.

  10. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  11. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q11.2 deletion syndrome 22q11.2 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q11.2 deletion syndrome (which is also known by several ...

  12. Characterizing Deletion Transformations across Dialects using a Sophisticated Tying Mechanism

    DTIC Science & Technology

    2011-03-30

    suggest nrle candidates for further linguistic studies. Potential appli- cations include forensic phonetics, accent training, and dialect recognition...03-2011 Technical Paper MAR 2011 - APR 2011 Characterizing Deletion Transformations across Dialects using a Sophisticated Tying Mechanism FA8720-05...modeling deletion transformations between dialects . We empirically show that the proposed tying mechanism reduces deletion errors by 33% when compared to a

  13. A 10.46 Mb 12p11.1-12.1 interstitial deletion coincident with a 0.19 Mb NRXN1 deletion detected by array CGH in a girl with scoliosis and autism.

    PubMed

    Soysal, Yasemin; Vermeesch, Joris; Davani, Nooshin Ardeshir; Hekimler, Kuyaş; Imirzalioğlu, Necat

    2011-07-01

    We present a 12-year-old girl with de novo karyotype 46,XX,del(12)(p11.1p12.1). Array CGH revealed in addition to a 10.466 Mb interstitial deletion on 12p11.1→12p12.1 a 0.191 Mb deletion on 2p16.3. The girl presented with mild facial dysmorphism consisting of microcephaly, hypertelorism, downslanting palpebral fissures, strabismus, broad nasal base, bulbous nose, short philtrum, micro/retrognathia, irregular tooth arrangement, phalangeal deformity in distal phalanges of hands, 5th finger camptodactyly, brachydactyly in feet, history of joint hypermobility, and scoliosis. She was considered to have mild to moderate mental retardation and ascertained for an autism spectrum disorder(ASD). Short arm of chromosome 12 interstitial deletions are rarely reported whereas point mutations and deletions of NRXN1, which is located on chromosome 2p16.3, are associated with ASDs. In this article we present and discuss the phenotypic consequences of a patient who was affected by deletions of two different chromosomal regions.

  14. Immune function in patients with chromosome deletions.

    PubMed Central

    Nurmi, T; Uhari, M; Linna, S L; Silvennoinen-Kassinen, S; Koskela, M; Kiuttu, J; Tiilikainen, A

    1982-01-01

    Non-specific, cell-mediated and humoral immunity were evaluated in six patients with different autosomal deletions, and in two patients with X-chromosome deletions. Six had an increased number of bacterial, viral, and mycotic infections. Mild disturbances were found in the immunological functions of almost every patient. Granulocyte phagocytosis and killing of bacteria were normal in all patients. The chemotactic response was increased in two, and normal in the others. The responses to phytohaemagglutinin and pokeweed mitogen were normal in all patients and the response to concanavalin A was decreased in one patient. The lymphocyte response to purified protein derivative was decreased in the patients as a group when compared to the controls (P less than 0 . 005), but normal to oidiomycin. The number of acid-alpha-naphthyl acetate esterase positive cells was low in four patients. One had a high titre of antinuclear and antithyroid antibodies. One had a low concentration of serum IgA, C3 and C4. One had a high concentration of IgM. Two had elevated levels of C3 and C4. Our results show that several different chromosomal deletions are associated with immunological abnormality. PMID:6979446

  15. Chromosome 11q13 deletion syndrome

    PubMed Central

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the appearance of eye abnormalities, was also reported. In this report, we describe a 1-year-old girl presenting with ptosis of the left upper eyelid, right auricular deformity, high-arched palate, delayed dentition, simian line on the right hand, microcephaly, and developmental delay. In this patient, we identified a deletion in the chromosome 11q13.2-q13.3 (2.75 Mb) region by using an array-comparative genomic hybridization analysis. The deletion in chromosome 11q13 results in a syndrome characterized by variable clinical manifestations. Some of these manifestations involve craniofacial dysmorphology and require a functional workup for hearing, ophthalmic examinations, and long-term dental care. PMID:28018436

  16. Discovery of a novel series of potent S1P1 agonists.

    PubMed

    Crosignani, Stefano; Bombrun, Agnes; Covini, David; Maio, Maurizio; Marin, Delphine; Quattropani, Anna; Swinnen, Dominique; Simpson, Don; Sauer, Wolfgang; Françon, Bernard; Martin, Thierry; Cambet, Yves; Nichols, Anthony; Martinou, Isabelle; Burgat-Charvillon, Fabienne; Rivron, Delphine; Donini, Cristina; Schott, Olivier; Eligert, Valerie; Novo-Perez, Laurence; Vitte, Pierre-Alain; Arrighi, Jean-François

    2010-03-01

    The discovery of a novel series of S1P1 agonists is described. Starting from a micromolar HTS positive, iterative optimization gave rise to several single-digit nanomolar S1P1 agonists. The compounds were able to induce internalization of the S1P1 receptor, and a selected compound was shown to be able to induce lymphopenia in mice after oral dosing.

  17. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae*

    PubMed Central

    Effelsberg, Daniel; Cruz-Zaragoza, Luis Daniel; Tonillo, Jason; Schliebs, Wolfgang; Erdmann, Ralf

    2015-01-01

    Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD+ salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions. PMID:26276932

  18. A role of the sphingosine-1-phosphate (S1P)-S1P receptor 2 pathway in epithelial defense against cancer (EDAC).

    PubMed

    Yamamoto, Sayaka; Yako, Yuta; Fujioka, Yoichiro; Kajita, Mihoko; Kameyama, Takeshi; Kon, Shunsuke; Ishikawa, Susumu; Ohba, Yusuke; Ohno, Yusuke; Kihara, Akio; Fujita, Yasuyuki

    2016-02-01

    At the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown. In this study, we investigated a role for the sphingosine-1-phosphate (S1P)-S1P receptor 2 (S1PR2) pathway in EDAC. First, we show that addition of the S1PR2 inhibitor significantly suppresses apical extrusion of RasV12-transformed cells that are surrounded by normal cells. In addition, knockdown of S1PR2 in normal cells induces the same effect, indicating that S1PR2 in the surrounding normal cells plays a positive role in the apical elimination of the transformed cells. Of importance, not endogenous S1P but exogenous S1P is involved in this process. By using FRET analyses, we demonstrate that S1PR2 mediates Rho activation in normal cells neighboring RasV12-transformed cells, thereby promoting accumulation of filamin, a crucial regulator of EDAC. Collectively these data indicate that S1P is a key extrinsic factor that affects the outcome of cell competition between normal and transformed epithelial cells.

  19. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development

    PubMed Central

    Jung, Bongnam; Obinata, Hideru; Galvani, Sylvain; Mendelson, Karen; Ding, Bisen; Skoura, Athanasia; Kinzel, Bernd; Brinkmann, Volker; Rafii, Shahin; Evans, Todd; Hla, Timothy

    2012-01-01

    SUMMARY During angiogenesis, nascent vascular sprouts fuse to form vascular networks enabling efficient circulation. Mechanisms that stabilize the vascular plexus are not well understood. Sphingosine 1-phosphate (S1P) is a blood-borne lipid mediator implicated in the regulation of vascular and immune systems. Here we describe a mechanism by which the G protein-coupled S1P receptor-1 (S1P1) stabilizes the primary vascular network. A gradient of S1P1 expression from the mature regions of the vascular network to the growing vascular front was observed. In the absence of endothelial S1P1, adherens junctions are destabilized, barrier function is breached, and flow is perturbed resulting in abnormal vascular hypersprouting. Interestingly, S1P1 responds to S1P as well as laminar shear stress to transduce flow-mediated signaling in endothelial cells both in vitro and in vivo. These data demonstrate that blood flow and circulating S1P activate endothelial S1P1 to stabilize blood vessels in development and homeostasis. PMID:22975328

  20. Steps in reductive activation of the disulfide-generating enzyme Ero1p

    PubMed Central

    Heldman, Nimrod; Vonshak, Ohad; Sevier, Carolyn S; Vitu, Elvira; Mehlman, Tevie; Fass, Deborah

    2010-01-01

    Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 Å of the active site were observed. To determine how the C150—C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150—C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity. PMID:20669236

  1. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing.

    PubMed

    van Koningsbruggen, Silvana; Straasheijm, Kirsten R; Sterrenburg, Ellen; de Graaf, Natascha; Dauwerse, Hans G; Frants, Rune R; van der Maarel, Silvère M

    2007-02-01

    FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy. Moreover, upregulation of FRG1P was demonstrated to correlate with missplicing of specific pre-mRNAs. In this study, we have combined colocalization studies with yeast two-hybrid screens to identify proteins that associate with FRG1P. We demonstrate that artificially induced nucleolar aggregates of VSV-FRG1P specifically sequester proteins involved in pre-mRNA processing. In addition, we have identified SMN, PABPN1, and FAM71B, a novel speckle and Cajal body protein, as binding partners of FRG1P. All these proteins are, or seem to be, involved in RNA biogenesis. Our data confirm the presence of FRG1P in protein complexes containing human spliceosomes and support a potential role of FRG1P in either splicing or another step in nuclear RNA biogenesis. Intriguingly, among FRG1P-associated proteins are SMN and PABPN1, both being involved in neuromuscular disorders, possibly through RNA biogenesis-related processes.

  2. Hereditary fructose intolerance: functional study of two novel ALDOB natural variants and characterization of a partial gene deletion.

    PubMed

    Esposito, Gabriella; Imperato, Maria Rosaria; Ieno, Luigi; Sorvillo, Rosa; Benigno, Vincenzo; Parenti, Giancarlo; Parini, Rossella; Vitagliano, Luigi; Zagari, Adriana; Salvatore, Francesco

    2010-12-01

    Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease caused by impaired functioning of human liver aldolase (ALDOB). At least 54 subtle/point mutations and only two large intragenic deletions have been found in the ALDOB gene. Here we report two novel ALDOB variants (p.R46W and p.Y343H) and an intragenic deletion that we found in patients with suspected HFI. The residual catalytic activity of the recombinant p.R46W and p.Y343H variants toward F1P was particularly altered. We also characterized a large intragenic deletion that we found in six unrelated patients. This is the first report of six unrelated patients sharing the same ALDOB deletion, thus indicating a founder effect for this allele in our geographic area. Because this deletion involves ALDOB exon 5, it can mimic worldwide common pathogenic genotypes, that is, homozygous p.A150P and p.A175D. Finally, the identification of only one ALDOB mutation in symptomatic patients suggests that HFI symptoms can, albeit rarely, appear also in heterozygotes. Therefore, an excessive and continuous fructose dietary intake may have deleterious effects even in apparently asymptomatic HFI carriers.

  3. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE).

    PubMed

    Mumma, Jane Odhiambo; Chhay, Juliet S; Ross, Kerry L; Eaton, Jana S; Newell-Litwa, Karen A; Fridovich-Keil, Judith L

    2008-02-01

    Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.

  4. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism

    PubMed Central

    Bigaud, Marc; Dincer, Zuhal; Bollbuck, Birgit; Dawson, Janet; Beckmann, Nicolau; Beerli, Christian; Fishli-Cavelti, Gina; Nahler, Michaela; Angst, Daniela; Janser, Philipp; Otto, Heike; Rosner, Elisabeth; Hersperger, Rene; Bruns, Christian; Quancard, Jean

    2016-01-01

    Rational Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist. Results NIBR-0213 was tolerated at the efficacious oral dose of 30 mg/kg BID in the rat adjuvant-induced arthritis (AiA) model, with no sign of labored breathing. However, it induced dose-dependent acute vascular pulmonary leakage and pleural effusion that fully resolved within 3–4 days, as evidenced by MRI monitoring. At the supra-maximal oral dose of 300 mg/kg QD, NIBR-0213 impaired lung function (with increased breathing rate and reduced tidal volume) within the first 24 hrs. Two weeks of NIBR-0213 oral dosing at 30, 100 and 300 mg/kg QD induced moderate pulmonary changes, characterized by alveolar wall thickening, macrophage accumulation, fibrosis, micro-hemorrhage, edema and necrosis. In addition to this picture of chronic inflammation, perivascular edema and myofiber degeneration observed in the heart were also indicative of vascular leakage and its consequences. Conclusions Overall, these observations suggest that, in the rat, the lung is the main target organ for the S1P1 competitive antagonism-induced acute vascular leakage, which appears first as transient and asymptomatic but could lead, upon chronic dosing, to lung remodeling with functional impairments. Hence, this not only raises the question of organ specificity in the homeostasis of vascular barriers, but also provides insight into the pre-clinical evaluation of a potential safety window for S1P1 competitive antagonists as drug candidates. PMID:28005953

  5. Synthesis and evaluation of CS-2100, a potent, orally active and S1P(3)- sparing S1P(1) agonist.

    PubMed

    Nakamura, Tsuyoshi; Asano, Masayoshi; Sekiguchi, Yukiko; Mizuno, Yumiko; Tamaki, Kazuhiko; Nara, Futoshi; Kawase, Yumi; Yabe, Yoshiyuki; Nakai, Daisuke; Kamiyama, Emi; Urasaki-Kaneno, Yoko; Shimozato, Takaichi; Doi-Komuro, Hiromi; Kagari, Takashi; Tomisato, Wataru; Inoue, Ryotaku; Nagasaki, Miyuki; Yuita, Hiroshi; Oguchi-Oshima, Keiko; Kaneko, Reina; Nishi, Takahide

    2012-05-01

    Modulators of sphingosine phosphate receptor-1 (S1P(1)) have recently been focused as a suppressant of autoimmunity. We have discovered a 4-ethylthiophene-based S1P(1) agonist 1-({4-Ethyl-5-[5-(4-phenoxyphenyl)-1,2,4-oxadiazol-3-yl]-2-thienyl}methyl)azetidine-3-carboxylic acid (CS-2100, 8) showing potent S1P(1) agonist activity against S1P(3) and an excellent in vivo potency. We report herein the synthesis of CS-2100 (8) and pharmacological effects such as S1P(1) and S1P(3) agonist activity in vitro, peripheral blood lymphocyte lowering effects and the suppressive effects on adjuvant-induced arthritis and experimental autoimmune encephalomyelitis (EAE) in animal models. The pharmacokinetic data were also reported. CS-2100 (8) had >5000-fold greater agonist activity for human S1P(1) (EC(50); 4.0 nM) relative to S1P(3) (EC(50); >20,000 nM). Following administration of single oral doses of 0.1 and 1 mg/kg of CS-2100 (8) in rats, lymphocyte counts decreased significantly, with a nadir at 8 and/or 12 h post-dose and recovery to vehicle control levels by 24-48 h post-dose. CS-2100 (8) is efficacious in the adjuvant-induced arthritis model in rats (ID(50); 0.44 mg/kg). In the EAE model compared to the vehicle-treated group, significant decreases in the cumulative EAE scores were observed for 0.3 and 1 mg/kg CS-2100 (8) groups in mice. While CS-2100 (8) showed potent efficacy in various animal disease models, it was also revealed that the central 1,2,4-oxadiazole ring of CS-2100 (8) was decomposed by enterobacteria in intestine of rats and monkeys, implicating the latent concern about an external susceptibility in its metabolic process in the upcoming clinical studies.

  6. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol.

    PubMed

    Ueno, Kazuma; Nagano, Makoto; Shimizu, Shigeki; Toshima, Junko Y; Toshima, Jiro

    2016-07-08

    Lipid droplets (LDs) are ubiquitous organelles, enclosed in a monolayer of phospholipid, which store excess fatty acids as neutral lipids such as triacylglycerol and sterol esters. Previous studies have revealed that LDs contain many proteins with various functions required for lipid metabolism and vesicular trafficking. Among them, Lds (Lipid Droplet in Sporulation) proteins, Lds1p and Lds2p, are reportedly induced and localized to LDs during yeast sporulation, but their cellular function has not been clarified. Here we show that the Lds proteins, Lds1p, Lds2p and Rrt8p, are expressed and localized at LDs in vegetative cells, being required for proper localization of plasma membrane proteins. We found that deletion of Lds genes led to mis-sorting of Wsc1p, a cell wall stress sensor, from the plasma membrane to the vacuole. We also demonstrated that lack of these proteins partially suppressed the growth defect and mis-sorting of the high-affinity tryptophan transporter Tat2p, induced by impairment of ergosterol biosynthesis. Furthermore, we identified Sec39p/Dsl3p, a component of the DSL1 tethering complex that mediates the interaction with COPI vesicles, as a binding partner for Lds2p. These results suggest a possible role of Lds proteins in maintenance of membrane lipid homeostasis and accompanying membrane protein transport.

  7. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Dulermo, Thierry; Thevenieau, France; Nicaud, Jean-Marc

    2014-09-01

    In order to live, cells need to import different molecules, such as sugars, amino acids or lipids, using transporters. In Saccharomyces cerevisiae, the ScFAT1 gene encodes the long-chain fatty acid transporter; however, the transport of fatty acids (FAs) in the oleaginous yeast Yarrowia lipolytica has not yet been studied. In contrast to what has previously been found for ΔScfat1 strains, ΔYlfat1 yeast was still able to grow on substrates containing short-, medium- or long-chain FAs. We observed a notable difference in cell lipid content between wild-type (WT) and deletion mutant strains after 24 h of culture in minimal oleate medium: in the WT strain, lipids represented 24% of cell dry weight (CDW), while they accounted for 37% of CDW in the ΔYlfat1 strain. This result indicates that YlFat1p is not involved in cell lipid uptake. Moreover, we also observed that fatty acid remobilisation was decreased in the ΔYlfat1 strain and that fluorescence-tagged YlFat1p proteins localised to the interfaces between lipid bodies, which suggests that YlFat1p may play a role in the export of FAs from lipid bodies.

  8. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient.

    PubMed

    Liu, Jingjing; Hsu, Andrew; Lee, Jen-Fu; Cramer, Daniel E; Lee, Menq-Jer

    2011-01-26

    Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P(1), S1P(2) or S1P(3) receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.

  9. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling.

    PubMed

    Chew, Wee Siong; Wang, Wei; Herr, Deron R

    2016-11-01

    Sphingosine 1-phosphate (S1P) is an extracellular lipid signaling molecule that acts as a selective, high-affinity ligand for a family of five G protein-coupled receptors. This signaling system was first identified twenty years ago, and has since been shown to regulate a diverse range of physiological processes and disease states, such as cardiovascular development, immune function, hypoxic responses, and cancer. The therapeutic potential of targeting this system took center stage when it was demonstrated that the immune modulator, fingolimod (FTY720/Gilenya), exerts it lymphopenic effect by acting on S1P receptors, primarily on S1P receptor 1 (S1P1). In 2010, fingolimod became the first oral medication approved for the treatment of multiple sclerosis (MS). Since then, second-generation S1P receptor modulators have been under development in an effort to provide improved safety and efficacy profiles for MS, and to broaden their use to other autoimmune indications. Beyond the development of S1P1-modulators, there has been considerable effort in targeting other components of the S1P signaling pathway for the treatment of other diseases, such as cardiovascular disease, sepsis, and cancer. This manuscript provides an overview of the clinical and preclinical development of drugs targeting S1P signaling.

  10. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae.

    PubMed

    Fagarasanu, Monica; Fagarasanu, Andrei; Tam, Yuen Yi C; Aitchison, John D; Rachubinski, Richard A

    2005-06-06

    Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.

  11. Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p.

    PubMed Central

    Dong, B; Niwa, M; Walter, P; Silverman, R H

    2001-01-01

    RNase L and Ire1p are members of a superfamily of regulated endoribonucleases that play essential roles in mediating diverse types of cellular stress responses. 2'-5' oligoadenylates, produced in response to interferon treatment and viral double-stranded RNA, are necessary to activate RNase L. In contrast, unfolded proteins in the endoplasmic reticulum activate Ire1p, a transmembrane serine/threonine kinase and endoribonuclease. To probe their similarities and differences, molecular properties of wild-type and mutant forms of human RNase L and yeast Ire1p were compared. Surprisingly, RNase L and Ire1p showed mutually exclusive RNA substrate specificity and partially overlapping but not identical requirements for phylogenetically conserved amino acid residues in their nuclease domains. A functional model for RNase L was generated based on the comparative analysis with Ire1p that assigns novel roles for ankyrin repeats and kinase-like domains. PMID:11333017

  12. Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    SciTech Connect

    Lees, J.P.

    2011-08-12

    Using a sample of 122 million {Upsilon}(3S) events recorded with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC, we search for the h{sub b}(1P) spin-singlet partner of the P-wave {chi}{sub b}(1P) states in the sequential decay {Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}(1P), h{sub b}(1P) {yields} {gamma}{eta}{sub b}(1S). We observe an excess of events above background in the distribution of the recoil mass against the {pi}{sup 0} at mass 9902 {+-} 4(stat.) {+-} 1(syst.) MeV/c{sup 2}. The width of the observed signal is consistent with experimental resolution, and its significance is 3.0 {sigma}, including systematic uncertainties. We obtain the value (3.7 {+-} 1.1 (stat.) {+-} 0.7 (syst.)) x 10{sup -4} for the product branching fraction {Beta}({Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}) x {Beta}(h{sub b} {yields} {gamma}{eta}{sub b}).

  13. Submicroscopic deletions at 22q11.2: Variability of the clinical picture and delineation of a commonly deleted region

    SciTech Connect

    Lindsay, E.A.; Shaffer, L.G.; Greenberg, F.

    1995-03-27

    DiGeorge anomaly (DGA) and velo-cardio-facial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies from those with more classic phenotypes. We have used fluorescence in situ hybridization (FISH) to assess the deletion status of 85 individuals referred to us for molecular analysis, with a wide range of DGA-like or VCFS-like clinical features. The test probe used was the cosmid sc11.1, which detects two loci about 2 Mb apart in 22q11.2. Twenty-four patients carried the deletion. Of the deleted patients, most had classic DGA or VCFS phenotypes, but 6 deleted patients had mild phenotypes, including 2 with minor facial anomalies and velopharyngeal incompetence as the only presenting signs. Despite the great phenotypic variability among the deleted patients, none had a deletion smaller than the 2-Mb region defined by sc11.1. Smaller deletions were not detected in patients with particularly suggestive phenotypes who were not deleted for sc11.1, even when tested with two other probes from the DGA/VCFS region. 24 refs., 2 figs., 2 tabs.

  14. Writing and deleting single magnetic skyrmions.

    PubMed

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  15. Targeted gene deletion in Zygosaccharomyces bailii.

    PubMed

    Mollapour, M; Piper, P

    2001-01-30

    Yeasts of the genus Zygosaccharomyces are notable agents of large-scale food spoilage. Despite the economic importance of these organisms, little is known about the stress adaptations whereby they adapt to many of the more severe conditions of food preservation. In this study it was shown that genes of Z. bailii, a yeast notable for its high resistances to food preservatives and ethanol, can be isolated by complementation of the corresponding mutant strains of Saccharomyces cerevisiae. It was also discovered that the acquisition by S. cerevisiae of a single small Z. bailii gene (ZbYME2) was sufficient for the former yeast to acquire the ability to degrade two major food preservatives, benzoic acid and sorbic acid. Using DNA cassettes containing dominant selectable markers and methods originally developed for performing gene deletions in S. cerevisiae, the two copies of ZbYME2 in the Z. bailii genome were sequentially deleted. The resulting Zbyme2/Zbyme2 homozygous deletant strain had lost any ability to utilize benzoate as sole carbon source and was more sensitive to weak acid preservatives during growth on glucose. Thus, ZbYME2, probably the nuclear gene for a mitochondrial mono-oxygenase function, is essential for Z. bailii to degrade food preservatives. This ability to catabolize weak acid preservatives is a significant factor contributing to the preservative resistance of Z. bailii under aerobic conditions. This study is the first to demonstrate that it is possible to delete in Z. bailii genes that are suspected as being important for growth of this organism in preserved foods and beverages. With the construction of further mutant of Z. bailii strains, a clearer picture should emerge of how this yeast adapts to the conditions of food preservation. This information will, in turn, allow the design of new preservation strategies. GenBank Accession Nos: ZbURA3 (AF279259), ZbTIM9 (AF279260), ZbYME2 (AF279261), ZbTRP1 (AF279262), ZbHHT1(AF296170).

  16. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis

    PubMed Central

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco

    2015-01-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  17. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins.

    PubMed Central

    Du, J; Nasir, I; Benton, B K; Kladde, M P; Laurent, B C

    1998-01-01

    The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle. PMID:9799253

  18. AZF deletions in infertile men from the Republic of Macedonia.

    PubMed

    Plaseski, Toso; Novevski, Predrag; Kocevska, Borka; Dimitrovski, Cedomir; Efremov, Georgi D; Plaseska-Karanfilska, Dijana

    2006-07-01

    Y chromosome deletions in the three azoospermia factor (AZF) regions constitute the most common genetic cause of spermatogenic failure. The aim of this study was to estimate the length and boundaries of the AZF deletions and to correlate the AZF deletions with the sperm concentrations, testicular histology, Y haplogroups and the ethnic origin of the men with deletions. PCR analysis of STS loci in the three AZF regions was used to characterize the deletions. Y haplogroup was predicted from a set of 17 Y short tandem repeats (STR) marker values. A total of nine men out of 218 infertile/subfertile men showed the presence of Y microdeletions. In eight patients the results were consistent with the presence of AZFc deletions, while in one patient a larger deletion involving both AZFb and AZFc regions was detected. In two patients, the deletion, initially diagnosed as AZFc, involved part of the distal part of the AZFb region and in one of them the deletion also extended into the region distal to the AZFc. The 3.5 Mb AZFc deletion, due to homologous recombination between b2 and b4 amplicons, was detected in six men (66.7% of all Y deletions), thus being the most common type of AZF deletion among infertile men from the Republic of Macedonia. Patients with the 3.5 Mb AZFc deletion had azoospermia or severe oligozoospermia and variable histological results [Sertoly cell only syndrome (SCOS), maturity arrest (MA) and hypospermatogenesis (HSG)]. They were of different ethnic origin (Macedonian, Albanian and Romany) and belonged to different Y haplogroups (I1b, J2, E3b and G).

  19. Presence of Large Deletions in Kindreds with Autism

    PubMed Central

    Yu, Chang-En; Dawson, Geraldine; Munson, Jeffrey; D’Souza, Ian; Osterling, Julie; Estes, Annette; Leutenegger, Anne-Louise; Flodman, Pamela; Smith, Moyra; Raskind, Wendy H.; Spence, M. Anne; McMahon, William; Wijsman, Ellen M.; Schellenberg, Gerard D.

    2002-01-01

    Autism is caused, in part, by inheritance of multiple interacting susceptibility alleles. To identify these inherited factors, linkage analysis of multiplex families is being performed on a sample of 105 families with two or more affected sibs. Segregation patterns of short tandem repeat polymorphic markers from four chromosomes revealed null alleles at four marker sites in 12 families that were the result of deletions ranging in size from 5 to >260 kb. In one family, a deletion at marker D7S630 was complex, with two segments deleted (37 kb and 18 kb) and two retained (2,836 bp and 38 bp). Three families had deletions at D7S517, with each family having a different deletion (96 kb, 183 kb, and >69 kb). Another three families had deletions at D8S264, again with each family having a different deletion, ranging in size from <5.9 kb to >260 kb. At a fourth marker, D8S272, a 192-kb deletion was found in five families. Unrelated subjects and additional families without autism were screened for deletions at these four sites. Families screened included 40 families from Centre d'Etude du Polymorphisme Humaine and 28 families affected with learning disabilities. Unrelated samples were 299 elderly control subjects, 121 younger control subjects, and 248 subjects with Alzheimer disease. The deletion allele at D8S272 was found in all populations screened. For the other three sites, no additional deletions were identified in any of the groups without autism. Thus, these deletions appear to be specific to autism kindreds and are potential autism-susceptibility alleles. An alternative hypothesis is that autism-susceptibility alleles elsewhere cause the deletions detected here, possibly by inducing errors during meiosis. PMID:12058345

  20. The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence

    SciTech Connect

    Van Dyke, Natalya; Chanchorn, Ekkawit; Van Dyke, Michael W.

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Stm1p confers increased resistance to the macrolide starvation-mimic rapamycin. Black-Right-Pointing-Pointer Stm1p maintains 80S ribosome integrity during stationary phase-induced quiescence. Black-Right-Pointing-Pointer Stm1p facilitates polysome formation following quiescence exit. Black-Right-Pointing-Pointer Stm1p facilitates protein synthesis following quiescence exit. Black-Right-Pointing-Pointer Stm1p is a ribosome preservation factor under conditions of nutrient deprivation. -- Abstract: Once cells exhaust nutrients from their environment, they enter an alternative resting state known as quiescence, whereby proliferation ceases and essential nutrients are obtained through internal stores and through the catabolism of existing macromolecules and organelles. One example of this is ribophagy, the degradation of ribosomes through the process of autophagy. However, some ribosomes need to be preserved for an anticipated recovery from nutrient deprivation. We found that the ribosome-associated protein Stm1p greatly increases the quantity of 80S ribosomes present in quiescent yeast cells and that these ribosomes facilitate increased protein synthesis rates once nutrients are restored. These findings suggest that Stm1p can act as a ribosome preservation factor under conditions of nutrient deprivation and restoration.

  1. Sec1p Binds to Snare Complexes and Concentrates at Sites of Secretion

    PubMed Central

    Carr, Chavela M.; Grote, Eric; Munson, Mary; Hughson, Frederick M.; Novick, Peter J.

    1999-01-01

    Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion. PMID:10427089

  2. Evidence that the Yeast Desaturase Ole1p Exists as a Dimer In Vivo

    SciTech Connect

    Lou, Y.; Shanklin, J.

    2010-06-18

    Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the {Delta}{sup o}-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an {approx}75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional.

  3. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  4. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  5. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  6. Regulation of S1P receptors and sphingosine kinases expression in acute pulmonary endothelial cell injury

    PubMed Central

    Liu, Huiying; Zhang, Zili; Li, Puyuan; Yuan, Xin; Zheng, Jing; Liu, Jinwen

    2016-01-01

    Background Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) is a severe clinical syndrome with mortality rate as high as 30–40%. There is no treatment yet to improve pulmonary endothelial barrier function in patients with severe pulmonary edema. Developing therapies to protect endothelial barrier integrity and stabilizing gas exchange is getting more and more attention. Sphingosine-1-phosphate (S1P) is able to enhance the resistance of endothelial cell barrier. S1P at physiological concentrations plays an important role in maintaining endothelial barrier function. Proliferation, regeneration and anti-inflammatory activity that mesenchymal stem cells (MSCs) exhibit make it possible to regulate the homeostatic control of S1P. Methods By building a pulmonary endothelial cell model of acute injury, we investigated the regulation of S1P receptors and sphingosine kinases expression by MSCs during the treatment of acute lung injury using RT-PCR, and investigated the HPAECs Micro-electronics impedance using Real Time Cellular Analysis. Results It was found that the down-regulation of TNF-α expression was more significant when MSC was used in combination with S1P. The combination effection mainly worked on S1PR2, S1PR3 and SphK2. The results show that when MSCs were used in combination with S1P, the selectivity of S1P receptors was increased and the homeostatic control of S1P concentration was improved through regulation of expression of S1P metabolic enzymes. Discussions The study found that, as a potential treatment, MSCs could work on multiple S1P related genes simultaneously. When it was used in combination with S1P, the expression regulation result of related genes was not simply the superposition of each other, but more significant outcome was obtained. This study establishes the experimental basis for further exploring the efficacy of improving endothelial barrier function in acute lung injury, using MSCs in combination with S1P and their

  7. Are there ethnic differences in deletions in the dystrophin gene?

    SciTech Connect

    Banerjee, M.; Verma, I.C.

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  8. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis.

    PubMed Central

    Park, Chong Jin; Song, Sukgil; Lee, Philip R; Shou, Wenying; Deshaies, Raymond J; Lee, Kyung S

    2003-01-01

    In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis. PMID:12586693

  9. A Role for Myosin-I in Actin Assembly through Interactions with Vrp1p, Bee1p, and the Arp2/3 Complex

    PubMed Central

    Evangelista, Marie; Klebl, Bert M.; Tong, Amy H.Y.; Webb, Bradley A.; Leeuw, Thomas; Leberer, Ekkehard; Whiteway, Malcolm; Thomas, David Y.; Boone, Charles

    2000-01-01

    Type I myosins are highly conserved actin-based molecular motors that localize to the actin-rich cortex and participate in motility functions such as endocytosis, polarized morphogenesis, and cell migration. The COOH-terminal tail of yeast myosin-I proteins, Myo3p and Myo5p, contains an Src homology domain 3 (SH3) followed by an acidic domain. The myosin-I SH3 domain interacted with both Bee1p and Vrp1p, yeast homologues of human WASP and WIP, adapter proteins that link actin assembly and signaling molecules. The myosin-I acidic domain interacted with Arp2/3 complex subunits, Arc40p and Arc19p, and showed both sequence similarity and genetic redundancy with the COOH-terminal acidic domain of Bee1p (Las17p), which controls Arp2/3-mediated actin nucleation. These findings suggest that myosin-I proteins may participate in a diverse set of motility functions through a role in actin assembly. PMID:10648568

  10. NPL deletion policy for RCRA-regulated TSD facilities finalized

    SciTech Connect

    1995-05-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab.

  11. Observation of the h(c)(1P) Using e+ e- collisions above the DD threshold.

    PubMed

    Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Martin, L; Powell, A; Wilkinson, G; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Park, C S; Pearson, L J; Thorndike, E H; Ricciardi, S; Thomas, C; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Zhang, L M; Bonvicini, G; Cinabro, D; Lincoln, A; Smith, M J; Zhou, P; Zhu, J; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Randrianarivony, K; Tatishvili, G; Briere, R A; Vogel, H; Onyisi, P U E; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Shepherd, M R; Tarbert, C M; Besson, D

    2011-07-22

    Using 586  pb(-1) of e+ e- collision data at E(c.m.) = 4170  MeV, produced at the Cornell Electron Storage Ring collider and collected with the CLEO-c detector, we observe the process e+ e- → π+ π- h(c)(1P). We measure its cross section to be 15.6±2.3±1.9±3.0  pb, where the third error is due to the external uncertainty on the branching fraction of ψ(2S) → π0 h(c)(1P), which we use for normalization. We also find evidence for e+ e- → ηh(c)(1P) at 4170 MeV at the 3σ level and see hints of a rise in the e+ e- → π+ π- h(c)(1P) cross section at 4260 MeV.

  12. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice.

    PubMed

    Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald

    2016-05-01

    Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable

  13. FXR1P is a GSK3β substrate regulating mood and emotion processing

    PubMed Central

    Del’Guidice, Thomas; Latapy, Camille; Rampino, Antonio; Khlghatyan, Jivan; Lemasson, Morgane; Gelao, Barbara; Quarto, Tiziana; Rizzo, Giuseppe; Barbeau, Annie; Lamarre, Claude; Bertolino, Alessandro; Blasi, Giuseppe; Beaulieu, Jean-Martin

    2015-01-01

    Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role. PMID:26240334

  14. Second generation S1P pathway modulators: research strategies and clinical developments.

    PubMed

    Bigaud, Marc; Guerini, Danilo; Billich, Andreas; Bassilana, Frederic; Brinkmann, Volker

    2014-05-01

    Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.

  15. Cancer Stem Cells Contribute to Cisplatin Resistance in Brca1/p53–Mediated Mouse Mammary Tumors

    PubMed Central

    Shafee, Norazizah; Smith, Christopher R.; Wei, Shuanzeng; Kim, Yoon; Mills, Gordon B.; Hortobagyi, Gabriel N.; Stanbridge, Eric J.; Lee, Eva Y-H. P.

    2010-01-01

    The majority of BRCA1-associated breast cancers are basal cell–like, which is associated with a poor outcome. Using a spontaneous mouse mammary tumor model, we show that platinum compounds, which generate DNA breaks during the repair process, are more effective than doxorubicin in Brca1/p53–mutated tumors. At 0.5 mg/kg of daily cisplatin treatment, 80% primary tumors (n = 8) show complete pathologic response. At greater dosages, 100% show complete response (n = 19). However, after 2 to 3 months of complete remission following platinum treatment, tumors relapse and become refractory to successive rounds of treatment. Approximately 3.8% to 8.0% (mean, 5.9%) of tumor cells express the normal mammary stem cell markers, CD29hi24med, and these cells are tumorigenic, whereas CD29med24–/lo and CD29med24hi cells have diminished tumorigenicity or are nontumorigenic, respectively. In partially platinum-responsive primary transplants, 6.6% to 11.0% (mean, 8.8%) tumor cells are CD29hi24med; these populations significantly increase to 16.5% to 29.2% (mean, 22.8%; P < 0.05) in platinum-refractory secondary tumor transplants. Further, refractory tumor cells have greater colony-forming ability than the primary transplant–derived cells in the presence of cisplatin. Expression of a normal stem cell marker, Nanog, is decreased in the CD29hi24med populations in the secondary transplants. Top2A expression is also down-regulated in secondary drug-resistant tumor populations and, in one case, was accompanied by genomic deletion of Top2A. These studies identify distinct cancer cell populations for therapeutic targeting in breast cancer and implicate clonal evolution and expansion of cancer stem-like cells as a potential cause of chemoresistance. PMID:18451150

  16. Repressors and Upstream Repressing Sequences of the Stress-Regulated ENA1 Gene in Saccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation

    PubMed Central

    Proft, Markus; Serrano, Ramón

    1999-01-01

    The yeast ENA1/PMR2A gene encodes a cation extrusion ATPase in Saccharomyces cerevisiae which is essential for survival under salt stress conditions. One important mechanism of ENA1 transcriptional regulation is based on repression under normal growth conditions, which is relieved by either osmotic induction or glucose starvation. Analysis of the ENA1 promoter revealed a Mig1p-binding motif (−533 to −544) which was characterized as an upstream repressing sequence (URSMIG-ENA1) regulated by carbon source. Its function was abolished in a mig1 mig2 double-deletion strain as well as in either ssn6 or tup1 single mutants. A second URS at −502 to −513 is responsible for transcriptional repression regulated by osmotic stress and is similar to mammalian cyclic AMP response elements (CREs) that are recognized by CREB proteins. This URSCRE-ENA1 element requires for its repression function the yeast CREB homolog Sko1p (Acr1p) as well as the integrity of the Ssn6p-Tup1p corepressor complex. When targeted to the GAL1 promoter by fusing with the Gal4p DNA-binding domain, Sko1p acts as an Ssn6/Tup1p-dependent repressor regulated by osmotic stress. A glutathione S-transferase–Sko1 fusion protein binds specifically to the URSCRE-ENA1 element. Furthermore, a hog1 mitogen-activated protein kinase deletion strain could not counteract repression on URSCRE-ENA1 during osmotic shock. The loss of SKO1 completely restored ENA1 expression in a hog1 mutant and partially suppressed the osmotic stress sensitivity, qualifying Sko1p as a downstream effector of the HOG pathway. Our results indicate that different signalling pathways (HOG osmotic pathway and glucose repression pathway) use distinct promoter elements of ENA1 (URSCRE-ENA1 and URSMIG-ENA1) via specific transcriptional repressors (Sko1p and Mig1/2p) and via the general Ssn6p-Tup1p complex. The physiological importance of the relief from repression during salt stress was also demonstrated by the increased tolerance of sko1 or

  17. Molecular mapping within the mouse albino-deletion complex.

    PubMed

    Johnson, D K; Hand, R E; Rinchik, E M

    1989-11-01

    Induced germ-line deletion mutations in the mouse provide a malleable experimental system for in-depth molecular and functional analysis of large segments of the mammalian genome. To obtain an initial bank of molecular probes for the region of mouse chromosome 7 associated with the albino-deletion complex, random anonymous DNA clones, derived from a library constructed from flow-sorted chromosomes, were screened on DNAs from Mus musculus-Mus spretus F1 hybrids carrying large, multilocus, lethal albino deletions. Clones falling within a given deletion interval can easily be recognized because hybridization bands that represent restriction fragment length polymorphisms specific for the mutant (deleted) chromosome inherited from the M. musculus parent will be absent. Among 72 informative clones used as probes, one, which defines the locus D7OR1, mapped within two deletions that are 6-11 centimorgans in length. Submapping of this anonymous clone across a panel of 27 smaller deletions localized D7OR1 distal to a chromosomal subregion important for survival of the preimplantation embryo, proximal to globin [beta-chain (Hbb)], and near the shaker-1 (sh-1) locus. The results of these deletion-mapping experiments were also confirmed by standard three-point linkage analysis. This strategy for selection and rapid mapping of anonymous DNA probes to chromosomal segments corresponding to germ-line deletion mutations should contribute to the generation of more detailed physical and functional maps of genomic regions associated with mutant developmental phenotypes.

  18. Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes

    PubMed Central

    Flynn, Elizabeth K.; Kamat, Aparna; Lach, Francis P.; Donovan, Frank X.; Kimble, Danielle C.; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M.; Gillio, Alfred P.; Harris, Richard E.; MacMillan, Margaret L.; Wagner, John E.; Smogorzewska, Agata; Auerbach, Arleen D.; Ostrander, Elaine A.; Chandrasekharappa, Settara C.

    2014-01-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution Comparative Genome Hybridization arrays (arrayCGH), Single Nucleotide Polymorphism arrays (SNParrays) and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by Non-Allelic Homologous Recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. PMID:25168418

  19. Rtp1p is a karyopherin-like protein required for RNA polymerase II biogenesis.

    PubMed

    Gómez-Navarro, Natalia; Peiró-Chova, Lorena; Rodriguez-Navarro, Susana; Polaina, Julio; Estruch, Francisco

    2013-05-01

    The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its binding to the Rpb1p-containing subcomplex. Besides, Rtp1p has a molecular architecture characteristic of karyopherins, composed of HEAT repeats, and is able to interact with phenylalanine-glycine-containing nucleoporins. Our results define Rtp1p as a new component of the RNA pol II biogenesis machinery that plays roles in subunit assembly and likely in transport through the nuclear pore complex.

  20. Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control.

    PubMed

    Deplazes, Anna; Möckli, Natalie; Luke, Brian; Auerbach, Daniel; Peter, Matthias

    2009-05-20

    Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Delta cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Delta cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone-network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome-associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.

  1. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication

    PubMed Central

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Introduction Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. Case report We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Discussion Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. Conclusion To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and

  2. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells.

    PubMed

    Gao, Zhan; Wang, Hua; Xiao, Feng-Jun; Shi, Xue-Feng; Zhang, Yi-Kun; Xu, Qin Qin; Zhang, Xiao-Yan; Ha, Xiao-Qin; Wang, Li-Sheng

    2016-05-01

    Angiogenesis is one of the most important components of embryonic organ formation and vessel growth after birth. Sphingosine kinase 1 (Sphk1) and S1P has been confirmed to participate in various cell signaling pathways and physiological processes including neovascularisation. However, the mechanisms that Sphk1/S1P regulates neovascularisation remain unclear. In this study, we elucidated that Sphk1/S1P upregulates sirtuin 1 (SIRT1), a NAD+ dependent deacetylases protease which exerts multiple cellular functions, to regulate the proliferation and migration of endothelial cells. By using CCK8 and Transwell assays, we demonstrated that Sphk1 and SIRT1 knockdown could significantly decrease proliferation and migration of HUVEC cells. Sphk1 inhibition results in SIRT1 downregulation which could be reversed by exogenous S1P in HUVEC cells. Treatment of HUVECs with S1P reverses the impaired proliferation and migration caused by SIRT1 knockdown. Furthermore, Sphk1 knockdown inhibits the phosphorylation of P38 MAPK, ERK and AKT. Treatment of HUVECs with PD98059, SB203580 and Wortmannin, which are the inhibitors of ERK, P38 MAPK and AKT respectively, resulted in decreased SIRT1 expression and reduced migration of HUVEC cells. Thus, we conclude that Sphk1/S1P induces SIRT1 upregulation through multiple pathways including P38 MAPK, ERK and AKT signals. This is the first report to disclose the existence and roles of Sphk1/S1P/SIRT1 axis in regulation of endothelial cell proliferation and migration, which may provide a theoretical basis for angiogenesis.

  3. Effects of S1P on skeletal muscle repair/regeneration during eccentric contraction.

    PubMed

    Sassoli, Chiara; Formigli, Lucia; Bini, Francesca; Tani, Alessia; Squecco, Roberta; Battistini, Chiara; Zecchi-Orlandini, Sandra; Francini, Fabio; Meacci, Elisabetta

    2011-11-01

    Skeletal muscle regeneration is severely compromised in the case of extended damage. The current challenge is to find factors capable of limiting muscle degeneration and/or potentiating the inherent regenerative program mediated by a specific type of myoblastic cells, the satellite cells. Recent studies from our groups and others have shown that the bioactive lipid, sphingosine 1-phosphate (S1P), promotes myoblast differentiation and exerts a trophic action on denervated skeletal muscle fibres. In the present study, we examined the effects of S1P on eccentric contraction (EC)-injured extensor digitorum longus muscle fibres and resident satellite cells. After EC, skeletal muscle showed evidence of structural and biochemical damage along with significant electrophysiological changes, i.e. reduced plasma membrane resistance and resting membrane potential and altered Na(+) and Ca(2+) current amplitude and kinetics. Treatment with exogenous S1P attenuated the EC-induced tissue damage, protecting skeletal muscle fibre from apoptosis, preserving satellite cell viability and affecting extracellular matrix remodelling, through the up-regulation of matrix metalloproteinase 9 (MMP-9) expression. S1P also promoted satellite cell renewal and differentiation in the damaged muscle. Notably, EC was associated with the activation of sphingosine kinase 1 (SphK1) and with increased endogenous S1P synthesis, further stressing the relevance of S1P in skeletal muscle protection and repair/regeneration. In line with this, the treatment with a selective SphK1 inhibitor during EC, caused an exacerbation of the muscle damage and attenuated MMP-9 expression. Together, these findings are in favour for a role of S1P in skeletal muscle healing and offer new clues for the identification of novel therapeutic approaches to counteract skeletal muscle damage and disease.

  4. Deletion of 6q16-q21 in human lymphoid malignancies: a mapping and deletion analysis.

    PubMed

    Jackson, A; Carrara, P; Duke, V; Sinclair, P; Papaioannou, M; Harrison, C J; Foroni, L

    2000-06-01

    Two distinct regions of minimal deletion (RMD) have been identified at 6q25-q27 in non-Hodgkin's lymphoma (RMD-1), and at 6q21-q23 in acute lymphoblastic leukemia (ALL; RMD-2) by loss of heterozygosity and fluorescence in situ hybridization studies. In this study, 30 overlapping yeast artificial chromosomes (YACs), 1 expressed sequence tag, and 11 novel YAC ends were identified using bidirectional YAC walks between markers D6S447 (proximal) and D6S246 (distal) in RMD-2. The genes AF6q21, human homologue of the Drosophila tailless (HTLX), CD24 antigen, the Kruppel-like zinc finger BLIMP1, and cyclin C (CCNC), previously mapped to 6q21, were accurately positioned in a telomere-to-centromere orientation. Approximately 3.5 Mb were found to separate the BLIMP1 (adjacent to D6S447) and AF6q21 genes (telomeric to D6S246). Deletions of 6q were investigated in 21 cases of ALL using the newly characterized YAC clones in dual-color fluorescence in situ hybridization studies. A region centromeric to D6S447 (containing marker D6S283) and a region telomeric to marker CHLC.GGAT16CO2 (and containing marker D6S268) were identified as distinct and nonoverlapping regions of deletion in ALL.

  5. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas.

    PubMed

    Martin-Guerrero, Idoia; Salaverria, Itziar; Burkhardt, Birgit; Szczepanowski, Monika; Baudis, Michael; Bens, Susanne; de Leval, Laurence; Garcia-Orad, Africa; Horn, Heike; Lisfeld, Jasmin; Pellissery, Shoji; Klapper, Wolfram; Oschlies, Ilske; Siebert, Reiner

    2013-08-01

    Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

  6. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae.

    PubMed Central

    Nickas, M E; Yaffe, M P

    1996-01-01

    Yeast cells with mutations in BRO1 display phenotypes similar to those caused by deletion of BCK1, a gene encoding a MEK kinase that functions in a mitogen-activated protein kinase pathway mediating maintenance of cell integrity. bro1 cells exhibit a temperature-sensitive growth defect that is suppressed by the addition of osmotic stabilizers or Ca2+ to the growth medium or by additional copies of the BCK1 gene. At permissive temperatures, bro1 mutants are sensitive to caffeine and respond abnormally to nutrient limitation. A null mutation in BRO1 is synthetically lethal with null mutations in BCK1, MPK1, which encodes a mitogen-activated protein kinase that functions downstream of Bck1p, or PKC1, a gene encoding a protein kinase C homolog that activates Bck1p. Analysis of the isolated BRO1 gene revealed that it encodes a novel, 97-kDa polypeptide which contains a putative SH3 domain-binding motif and is homologous to a protein of unknown function in Caenorhabditis elegans. PMID:8649366

  7. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1

    PubMed Central

    Heeren, Gino; Rinnerthaler, Mark; Laun, Peter; von Seyerl, Phyllis; Kössler, Sonja; Klinger, Harald; Jarolim, Stefanie; Simon-Nobbe, Birgit; Hager, Matthias; Schüller, Christoph; Carmona-Gutierrez, Didac; Breitenbach-Koller, Lore; Mück, Christoph; Jansen-Dürr, Pidder; Criollo, Alfredo; Kroemer, Guido; Madeo, Frank; Breitenbach, Michael

    2009-01-01

    Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging. PMID:20157544

  8. The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1.

    PubMed

    Heeren, Gino; Rinnerthaler, Mark; Laun, Peter; von Seyerl, Phyllis; Kössler, Sonja; Klinger, Harald; Hager, Matthias; Bogengruber, Edith; Jarolim, Stefanie; Simon-Nobbe, Birgit; Schüller, Christoph; Carmona-Gutierrez, Didac; Breitenbach-Koller, Lore; Mück, Christoph; Jansen-Dürr, Pidder; Criollo, Alfredo; Kroemer, Guido; Madeo, Frank; Breitenbach, Michael

    2009-07-13

    Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.

  9. The novel DNA damage checkpoint protein ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in budding yeast.

    PubMed Central

    Longhese, M P; Paciotti, V; Fraschini, R; Zaccarini, R; Plevani, P; Lucchini, G

    1997-01-01

    The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Delta mutants are defective in delaying G1-S and G2-M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Delta strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene. PMID:9311982

  10. RAC1P29S is a spontaneously activating cancer-associated GTPase

    PubMed Central

    Davis, Matthew J.; Ha, Byung Hak; Holman, Edna C.; Halaban, Ruth; Schlessinger, Joseph; Boggon, Titus J.

    2013-01-01

    RAC1 is a small, Ras-related GTPase that was recently reported to harbor a recurrent UV-induced signature mutation in melanoma, resulting in substitution of P29 to serine (RAC1P29S), ranking this the third most frequently occurring gain-of-function mutation in melanoma. Although the Ras family GTPases are mutated in about 30% of all cancers, mutations in the Rho family GTPases have rarely been observed. In this study, we demonstrate that unlike oncogenic Ras proteins, which are primarily activated by mutations that eliminate GTPase activity, the activated melanoma RAC1P29S protein maintains intrinsic GTP hydrolysis and is spontaneously activated by substantially increased inherent GDP/GTP nucleotide exchange. Determination and comparison of crystal structures for activated RAC1 GTPases suggest that RAC1F28L—a known spontaneously activated RAC1 mutant—and RAC1P29S are self-activated in distinct fashions. Moreover, the mechanism of RAC1P29S and RAC1F28L activation differs from the common oncogenic mutations found in Ras-like GTPases that abrogate GTP hydrolysis. The melanoma RAC1P29S gain-of-function point mutation therefore represents a previously undescribed class of cancer-related GTPase activity. PMID:23284172

  11. A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen.

    PubMed

    Nemecek, Julie; Nakayashiki, Toru; Wickner, Reed B

    2009-02-10

    Saccharomyces cerevisiae can be infected with four amyloid-based prions: [URE3], [PSI(+)], [PIN(+)], and [SWI(+)], due to self-propagating aggregation of Ure2p, Sup35p, Rnq1p and Swi1p, respectively. We searched for new prions of yeast by fusing random segments of yeast DNA to SUP35MC, encoding the Sup35 protein lacking its own prion domain, selecting clones in which Sup35MC function was impaired. Three different clones contained parts of the Q/N-rich amino-terminal domain of Mca1p/Yca1p with the Sup35 part of the fusion protein partially inactive. This inactivity was dominant, segregated 4:0 in meiosis, and was efficiently transferred by cytoplasmic mixing. The inactivity was cured by overexpression of Hsp104, but the prion could arise again in the cured strain (reversible curing). Overproduction of the Mca1 N-terminal domain induced the de novo appearance of the prion form of the fusion. The prion state, which we name [MCA], was transmitted to the chromosomally encoded Mca1p based on genetic, cytological and biochemical tests.

  12. A Mouse Cytoplasmic Exoribonuclease (mXRN1p) with Preference for G4 Tetraplex Substrates

    PubMed Central

    Bashkirov, Vladimir I.; Scherthan, Harry; Solinger, Jachen A.; Buerstedde, Jean-Marie; Heyer, Wolf-Dietrich

    1997-01-01

    Exoribonucleases are important enzymes for the turnover of cellular RNA species. We have isolated the first mammalian cDNA from mouse demonstrated to encode a 5′–3′ exoribonuclease. The structural conservation of the predicted protein and complementation data in Saccharomyces cerevisiae suggest a role in cytoplasmic mRNA turnover and pre-rRNA processing similar to that of the major cytoplasmic exoribonuclease Xrn1p in yeast. Therefore, a key component of the mRNA decay system in S. cerevisiae has been conserved in evolution from yeasts to mammals. The purified mouse protein (mXRN1p) exhibited a novel substrate preference for G4 RNA tetraplex–containing substrates demonstrated in binding and hydrolysis experiments. mXRN1p is the first RNA turnover function that has been localized in the cytoplasm of mammalian cells. mXRN1p was distributed in small granules and was highly enriched in discrete, prominent foci. The specificity of mXRN1p suggests that RNAs containing G4 tetraplex structures may occur in vivo and may have a role in RNA turnover. PMID:9049243

  13. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  14. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  15. Exon deletions of the phenylalanine hydroxylase gene in Italian hyperphenylalaninemics

    PubMed Central

    Calì, Francesco; Ruggeri, Giuseppa; Vinci, Mirella; Meli, Concetta; Carducci, Carla; Leuzzi, Vincenzo; Pozzessere, Simone; Schinocca, Pietro; Ragalmuto, Alda; Chiavetta, Valeria; Miccichè, Salvatore

    2010-01-01

    A consistent finding of many studies describing the spectrum of mutant phenylalanine hydroxylase (PAH) alleles underlying hyperphenylalaninemia is the impossibility of achieving a 100% mutation ascertainment rate using conventional gene-scanning methods. These methods include denaturing gradient gel electrophoresis (DGGE), denaturing high performance liquid chromatography (DHPLC), and direct sequencing. In recent years, it has been shown that a significant proportion of undetermined alleles consist of large deletions overlapping one or more exons. These deletions have been difficult to detect in compound heterozygotes using gene-scanning methods due to a masking effect of the non-deleted allele. To date, no systematic search has been carried out for such exon deletions in Italian patients with phenylketonuria or mild hyperphenylalaninemia. We used multiplex ligation- dependent probe amplification (MLPA), comparative multiplex dosage analysis (CMDA), and real-time PCR to search for both large deletions and duplications of the phenylalanine hydroxylase gene in Italian hyperphenylalaninemia patients. Four deletions removing different phenylalanine hydroxylase (PAH) gene exons were identified in 12 patients. Two of these deletions involving exons 4-5-6-7-8 (systematic name c.353-?_912 + ?del) and exon 6 (systematic name c.510-?_706 + ?del) have not been reported previously. In this study, we show that exon deletion of the PAH gene accounts for 1.7% of all mutant PAH alleles in Italian hyperphenylalaninemics. PMID:19946181

  16. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  17. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  18. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  19. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  20. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  1. 78 FR 53733 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for Purchase from People Who are Blind or Severely Disabled. ACTION: Additions to and Deletions from the...: September 30, 2013. ADDRESSES: Committee for Purchase From People Who Are Blind or Severely Disabled, 1401...

  2. 19 CFR 142.49 - Deletion of C-4 Code.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with any justification and without prior notification in cases of willfulness or when public health... 19 Customs Duties 2 2011-04-01 2011-04-01 false Deletion of C-4 Code. 142.49 Section 142.49... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A...

  3. 19 CFR 142.49 - Deletion of C-4 Code.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with any justification and without prior notification in cases of willfulness or when public health... 19 Customs Duties 2 2012-04-01 2012-04-01 false Deletion of C-4 Code. 142.49 Section 142.49... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A...

  4. 19 CFR 142.49 - Deletion of C-4 Code.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with any justification and without prior notification in cases of willfulness or when public health... 19 Customs Duties 2 2013-04-01 2013-04-01 false Deletion of C-4 Code. 142.49 Section 142.49... TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.49 Deletion of C-4 Code. (a) By Customs. A...

  5. 75 FR 60739 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and Deletions... will be furnished by nonprofit agencies employing persons who are blind or have other...

  6. 76 FR 29209 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletions from the.... ADDRESSES: Committee for Purchase From People Who Are Blind or Severely Disabled, Jefferson Plaza 2,...

  7. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    ERIC Educational Resources Information Center

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  8. A Note On Deletion Rules in Fast Speech.

    ERIC Educational Resources Information Center

    Hewlett, Nigel

    In fast speech, certain segments pronounced in careful speech may be deleted. Rules of a generative phonology have been used to account for fast speech forms. An alternative approach is suggested which views fast speech deletions as merely limiting cases of segment reduction, under conditions of increased tempo and/or casualness. To complement…

  9. 78 FR 20622 - Procurement List, Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List, Proposed Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and... disabilities, and delete services previously provided by such agencies. Comments Must Be Received On or...

  10. 77 FR 12816 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed addition to and... disabilities and delete products previously furnished by such agencies. Comments Must Be Received On or...

  11. Towards earlier diagnosis of 22q11 deletions

    PubMed Central

    Tobias, E; Morrison, N; Whiteford, M; Tolmie, J

    1999-01-01

    Over a 7 year period, 551 patients were investigated for the presence of a chromosome 22q11 deletion by fluorescence in situ hybridisation. Analysis of the presenting features of the 67 individuals with this chromosome deletion permitted us to devise guidelines to facilitate early diagnosis.

 PMID:10569971

  12. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  13. Multivariate Variable Deletion Methods: Don't Do Stepwise

    ERIC Educational Resources Information Center

    Kadhi, TauGamba

    2003-01-01

    This paper explains the theory and methodology behind the use of variable deletion in canonical correlational analysis (CCA). Both the Capraro and Capraro (2002) and the Cantrell (1997) data tables are evaluated and explained in order to clarify strategies utilized. Understanding of variable deletion strategies and their proper usages in a CCA…

  14. Using Topic Modeling and Text Embeddings to Predict Deleted Tweets

    SciTech Connect

    Potash, Peter J.; Bell, Eric B.; Harrison, Joshua J.

    2016-02-29

    Predictive models for tweet deletion have been a relatively unexplored area of Twitter-related computational research. We first approach the deletion of tweets as a spam detection problem, applying a small set of handcrafted features to improve upon the current state-of-the- art in predicting deleted tweets. Next, we apply our approach to a dataset of deleted tweets that better reflects the current deletion rate. Since tweets are deleted for reasons beyond just the presence of spam, we apply topic modeling and text embeddings in order to capture the semantic content of tweets that can lead to tweet deletion. Our goal is to create an effective model that has a low-dimensional feature space and is also language-independent. A lean model would be computationally advantageous processing high-volumes of Twitter data, which can reach 9,885 tweets per second. Our results show that a small set of spam-related features combined with word topics and character-level text embeddings provide the best f1 when trained with a random forest model. The highest precision of the deleted tweet class is achieved by a modification of paragraph2vec to capture author identity.

  15. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    SciTech Connect

    Young, Nicholas; Van Brocklyn, James R. . E-mail: james.vanbrocklyn@osumc.edu

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.

  16. Lag1p and Lac1p Are Essential for the Acyl-CoA–dependent Ceramide Synthase Reaction in Saccharomyces cerevisae

    PubMed Central

    Schorling, Stefan; Vallée, Béatrice; Barz, Wolfgang P.; Riezman, Howard; Oesterhelt, Dieter

    2001-01-01

    Lag1p and Lac1p are two homologous transmembrane proteins of the endoplasmic reticulum in Saccharomyces cerevisiae. Homologous genes have been found in a wide variety of eukaryotes. In yeast, both genes, LAC1 and LAG1, are required for efficient endoplasmic reticulum-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. In this study, we show that lag1Δlac1Δ cells have reduced sphingolipid levels due to a block of the fumonisin B1-sensitive and acyl-CoA–dependent ceramide synthase reaction. The sphingolipid synthesis defect in lag1Δlac1Δ cells can be partially corrected by overexpression of YPC1 or YDC1, encoding ceramidases that have been reported to have acyl-CoA–independent ceramide synthesis activity. Quadruple mutant cells (lag1Δlac1Δypc1Δydc1Δ) do not make any sphingolipids, but are still viable probably because they produce novel lipids. Moreover, lag1Δlac1Δ cells are resistant to aureobasidin A, an inhibitor of the inositolphosphorylceramide synthase, suggesting that aureobasidin A may be toxic because it leads to increased ceramide levels. Based on these data, LAG1 and LAC1 are the first genes to be identified that are required for the fumonisin B1-sensitive and acyl-CoA–dependent ceramide synthase reaction. PMID:11694577

  17. Measurement of the χ b (3 P) mass and of the relative rate of χ b1(1 P) and χ b2(1 P) production

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Lespinasse, M.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-10-01

    The production of χ b mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of =7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb-1. The χ b mesons are identified through their decays to ϒ(1 S) γ and ϒ(2 S) γ using photons that converted to e + e - pairs in the detector. The relative prompt production rate of χ b1(1 P) and χ b2(1 P) mesons is measured as a function of the ϒ(1 S) transverse momentum in the χ b rapidity range 2.0 < y <4.5. A precise measurement of the χ b (3 P) mass is also performed. Assuming a mass splitting between the χ b1(3 P) and the χ b2(3 P) states of 10.5 MeV/c2, the measured mass of the χ b1(3 P) meson is

  18. Delineation of 14q32.3 deletion syndrome.

    PubMed

    Ortigas, A P; Stein, C K; Thomson, L L; Hoo, J J

    1997-06-01

    A patient with a 14q32.3 terminal band deletion and cat cry is reported. Review of four other 14q32.3 deletion cases suggests the possible presence of a recognisable 14q32.3 terminal deletion syndrome, which is characterised by (1) apparently postnatal onset of small head size in comparison to body size, (2) high forehead with lateral hypertrichosis, (3) epicanthic folds, (4) broad nasal bridge, (5) high arched palate, (6) single palmar crease, and (7) mild to moderate developmental delay. Although none of the above seven features in unique to this syndrome, and indeed are quite common in other chromosomal disorders or genetic syndromes, patients with a terminal 14q32.3 deletion do show a recognisable facial gestalt. Interestingly, unlike ring chromosome 14, the 14q32.3 terminal deletion has rarely been reported, possibly because it is harder to detect, and an optimal chromosome preparation is required for its identification.

  19. Molecular mimicry and clonal deletion: A fresh look.

    PubMed

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease.

  20. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  1. Hunt for the 1/sup 1/P/sub 1/ bound state of charmonium

    SciTech Connect

    Porter, F.C.

    1982-02-01

    Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' ..-->.. ..pi../sup 01/P/sub 1/, where /sup 1/P/sub 1/ is the predicted spin-singlet p-wave bound state of charmonium. For a /sup 1/P/sub 1/ state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' ..-->.. ..pi../sup 01/P/sub 1/) < 0.55%, BR(psi' ..-->.. ..pi../sup 01/P/sub 1/)BR(/sup 1/P/sub 1/ ..-->.. ..gamma..n/sub c/ < 0.14%. These limits are compared with simple theoretical predictions.

  2. Electron-impact excitation of the n 1P levels of helium - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cartwright, David C.; Csanak, George; Trajmar, Sandor; Register, D. F.

    1992-01-01

    New experimental electron-energy-loss data have been used to extract differential and integral cross sections for excitation of the 2 1P level, and for the overlapping (3 1P, 3 1D, 3 3D) levels of helium, at 30-, 50-, and 100-eV incident electron energies. First-order many-body theory (FOMBT) has been used to calculate the differential and integral cross sections for excitation of the n 1P (n = 2,...,6) levels of helium by electron impact, for incident electron energies from threshold to 500 eV. Detailed comparisons between these two new sets of data are made as well as comparisons with appropriate published experimental and theoretical results. A simple scaling relationship is derived from the FOMBT results for n = 2,...,6 that provides differential and integral cross sections for all symmetry final levels of helium with n = 6 or greater.

  3. Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P.

    PubMed

    Morris, Samuel A; Wheatley, Paul S; Položij, Miroslav; Nachtigall, Petr; Eliášová, Pavla; Čejka, Jiří; Lucas, Tim C; Hriljac, Joseph A; Pinar, Ana B; Morris, Russell E

    2016-09-28

    The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination.

  4. Dynamical Relativistic Effects in Quasielastic 1p -Shell Proton Knockout from O{sup 16}

    SciTech Connect

    Gao, J.; Anderson, B. D.; Aniol, K. A.; Auerbach, L.; Baker, F. T.; Berthot, J.; Bertin, P.-Y.; Boeglin, W. U.

    2000-04-10

    We have measured the cross section for quasielastic 1p -shell proton knockout in the {sup 16}O( e, e{sup '}p) reaction at {omega}=0.439 GeV and Q{sup 2}=0.8 (GeV/c){sup 2} for missing momentum P{sub miss}{<=}355 MeV /c . We have extracted the response functions R{sub L+TT} , R{sub T} , R{sub LT} , and the left-right asymmetry, A{sub LT} , for the 1p{sub 1/2} and the 1p{sub 3/2} states. The data are well described by relativistic distorted wave impulse approximation calculations. At large P{sub miss} , the structure observed in A{sub LT} indicates the existence of dynamical relativistic effects. (c) 2000 The American Physical Society.

  5. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex.

    PubMed

    Koyama, Masako; Shirai, Natsuki; Matsuura, Yoshiyuki

    2014-11-06

    Proteins and ribonucleoproteins containing a nuclear export signal (NES) assemble with the exportin Xpo1p (yeast CRM1) and Gsp1p-GTP (yeast Ran-GTP) in the nucleus and exit through the nuclear pore complex. In the cytoplasm, Yrb1p (yeast RanBP1) displaces NES from Xpo1p. Efficient export of NES-cargoes requires Yrb2p (yeast RanBP3), a primarily nuclear protein containing nucleoporin-like phenylalanine-glycine (FG) repeats and a low-affinity Gsp1p-binding domain (RanBD). Here, we show that Yrb2p strikingly accelerates the association of Gsp1p-GTP and NES to Xpo1p. We have solved the crystal structure of the Xpo1p-Yrb2p-Gsp1p-GTP complex, a key assembly intermediate that can bind cargo rapidly. Although the NES-binding cleft of Xpo1p is closed in this intermediate, our data suggest that preloading of Gsp1p-GTP onto Xpo1p by Yrb2p, conformational flexibility of Xpo1p, and the low affinity of RanBD enable active displacement of Yrb2p RanBD by NES to occur effectively. The structure also reveals the major binding sites for FG repeats on Xpo1p.

  6. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways.

    PubMed

    Yoon, Chang Min; Hong, Bok Sil; Moon, Hyung Geun; Lim, Seyoung; Suh, Pann-Ghill; Kim, Yoon-Keun; Chae, Chi-Bom; Gho, Yong Song

    2008-08-15

    The lymphatic system plays pivotal roles in mediating tissue fluid homeostasis and immunity, and excessive lymphatic vessel formation is implicated in many pathological conditions, which include inflammation and tumor metastasis. However, the molecular mechanisms that regulate lymphatic vessel formation remain poorly characterized. Sphingosine-1-phosphate (S1P) is a potent bioactive lipid that is implicated in a variety of biologic processes such as inflammatory responses and angiogenesis. Here, we first report that S1P acts as a lymphangiogenic mediator. S1P induced migration, capillary-like tube formation, and intracellular Ca(2+) mobilization, but not proliferation, in human lymphatic endothelial cells (HLECs) in vitro. Moreover, a Matrigel plug assay demonstrated that S1P promoted the outgrowth of new lymphatic vessels in vivo. HLECs expressed S1P1 and S1P3, and both RNA interference-mediated down-regulation of S1P1 and an S1P1 antagonist significantly blocked S1P-mediated lymphangiogenesis. Furthermore, pertussis toxin, U73122, and BAPTA-AM efficiently blocked S1P-induced in vitro lymphangiogenesis and intracellular Ca(2+) mobilization of HLECs, indicating that S1P promotes lymphangiogenesis by stimulating S1P1/G(i)/phospholipase C/Ca(2+) signaling pathways. Our results suggest that S1P is the first lymphangiogenic bioactive lipid to be identified, and that S1P and its receptors might serve as new therapeutic targets against inflammatory diseases and lymphatic metastasis in tumors.

  7. 'Deletion rescue' by mitotic 11q uniparental disomy in a family with recurrence of 11q deletion Jacobsen syndrome.

    PubMed

    Johnson, J P; Haag, M; Beischel, L; McCann, C; Phillips, S; Tunby, M; Hansen, J; Schwanke, C; Reynolds, J F

    2014-04-01

    We describe a family with recurrent 11q23-qter deletion Jacobsen syndrome in two affected brothers, with unique mosaic deletion 'rescue' through development of uniparental disomy (UPD) in the mother and one of the brothers. Inheritance studies show that the deleted chromosome is of maternal origin in both boys, and microarray shows a break near the ASAM gene. Parental lymphocyte chromosomes were normal. However, the mother is homozygous in lymphocytes for all loci within the deleted region in her sons, and presumably has UPD for this region. In addition, she is mosaic for the 11q deletion seen in her sons at a level of 20-30% in skin fibroblasts. We hypothesize that one of her #11 chromosomes shows fragility, that breakage at 11q23 occurred with telomeric loss in some cells, but 'rescue' from the deletion occurred in most cells by the development of mitotic UPD. She apparently carries the 11q deletion in her germ line resulting in recurrence of the syndrome. The older son is mosaic for the 11q cell line (70-88%, remainder 46,XY), and segmental UPD11 'rescue' apparently also occurred in his cytogenetically normal cells. This is a novel phenomenon restoring disomy to an individual with a chromosomal deletion.

  8. Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    PubMed Central

    Robinson, J. Elliott; Wolfe, Stephanie M.; Kaiser-Rogers, Kathleen; Greenwood, Robert S.

    2016-01-01

    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background. PMID:27199890

  9. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: Evidence for epistasis between 1p and IBD1

    PubMed Central

    Cho, Judy H.; Nicolae, Dan L.; Gold, Leslee H.; Fields, Carter T.; LaBuda, Michele C.; Rohal, Patrick M.; Pickles, Michael R.; Qin, Li; Fu, Yifan; Mann, Jasdeep S.; Kirschner, Barbara S.; Jabs, Ethylin Wang; Weber, James; Hanauer, Stephen B.; Bayless, Theodore M.; Brant, Steven R.

    1998-01-01

    The idiopathic inflammatory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 × 10−4), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 × 10−5), and at chromosome 1p (MLod = 2.65, P = 2.4 × 10−4) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 × 10−4), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 × 10−3), particularly among Ashkenazim (MLod = 1.51, P = 7.8 × 10−3); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC. PMID:9636179

  10. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection.

    PubMed

    Blanchet, Matthieu; Sureau, Camille; Guévin, Carl; Seidah, Nabil G; Labonté, Patrick

    2015-03-01

    Worldwide, approximately 170 million individuals are afflicted with chronic hepatitis C virus (HCV) infection. To prevent the development of inherent diseases such as cirrhosis and hepatocellular carcinoma, tremendous efforts have been made, leading to the development of promising new treatments. However, their efficiency is still dependent on the viral genotype. Additionally, these treatments that target the virus directly can trigger the emergence of resistant variants. In a previous study, we have demonstrated that a long-term (72h) inhibition of SKI-1/S1P, a master lipogenic pathway regulator through activation of SREBP, resulted in impaired HCV genome replication and infectious virion secretion. In the present study, we sought to investigate the antiviral effect of the SKI-1/S1P small molecule inhibitor PF-429242 at the early steps of the HCV lifecycle. Our results indicate a very potent antiviral effect of the inhibitor early in the viral lifecycle and that the overall action of the compound relies on two different contributions. The first one is SREBP/SKI-1/S1P dependent and involves LDLR and NPC1L1 proteins, while the second one is SREBP independent. Overall, our study confirms that SKI-1/S1P is a relevant target to impair HCV infection and that PF-429242 could be a promising candidate in the field of HCV infection treatment.

  11. Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells

    PubMed Central

    Smith, Matthew C A; Sumner, Edward R; Avery, Simon V

    2007-01-01

    Phenotypic heterogeneity among individual cells within isogenic populations is widely documented, but its consequences are not well understood. Here, cell-to-cell variation in the stress resistance of Saccharomyces cerevisiae, particularly to cadmium, was revealed to depend on the antioxidant glutathione. Heterogeneity was decreased strikingly in gsh1 mutants. Furthermore, cells sorted according to differing reduced-glutathione (GSH) contents exhibited differing stress resistances. The vacuolar GSH-conjugate pathway of detoxification was implicated in heterogeneous Cd resistance. Metabolic oscillations (ultradian rhythms) in yeast are known to modulate single-cell redox and GSH status. Gts1p stabilizes these oscillations and was found to be required for heterogeneous Cd and hydrogen-peroxide resistance, through the same pathway as Gsh1p. Expression of GTS1 from a constitutive tet-regulated promoter suppressed oscillations and heterogeneity in GSH content, and resulted in decreased variation in stress resistance. This enabled manipulation of the degree of gene expression noise in cultures. It was shown that cells expressing Gts1p heterogeneously had a competitive advantage over more-homogeneous cell populations (with the same mean Gts1p expression), under continuous and fluctuating stress conditions. The results establish a novel molecular mechanism for single-cell heterogeneity, and demonstrate experimentally fitness advantages that depend on deterministic variation in gene expression within cell populations. PMID:17919285

  12. Creation of a S1P Lyase bacterial surrogate for structure-based drug design.

    PubMed

    Argiriadi, Maria A; Banach, David; Radziejewska, Elzbieta; Marchie, Susan; DiMauro, Jennifer; Dinges, Jurgen; Dominguez, Eric; Hutchins, Charles; Judge, Russell A; Queeney, Kara; Wallace, Grier; Harris, Christopher M

    2016-05-01

    S1P Lyase (SPL) has been described as a drug target in the treatment of autoimmune diseases. It plays an important role in maintaining intracellular levels of S1P thereby affecting T cell egress from lymphoid tissues. Several groups have already published approaches to inhibit S1P Lyase with small molecules, which in turn increase endogenous S1P concentrations resulting in immunosuppression. The use of structural biology has previously aided SPL inhibitor design. Novel construct design is at times necessary to provide a reagent for protein crystallography. Here we present a chimeric bacterial protein scaffold used for protein X-ray structures in the presence of early small molecule inhibitors. Mutations were introduced to the bacterial SPL from Symbiobacterium thermophilum which mimic the human enzyme. As a result, two mutant StSPL crystal structures resolved to 2.8Å and 2.2Å resolutions were solved and provide initial structural hypotheses for an isoxazole chemical series, whose optimization is discussed in the accompanying paper.

  13. A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics.

    PubMed

    Lee, Robin E C; Puente, Lawrence G; Kaern, Mads; Megeney, Lynn A

    2008-08-13

    Caspase proteases are a conserved protein family predominantly known for engaging and executing apoptotic cell death. Nevertheless, in higher eukaryotes, caspases also influence a variety of cell behaviors including differentiation, proliferation and growth control. S. cerevisiae expresses a primordial caspase, yca1, and exhibits apoptosis-like death under certain stresses; however, the benefit of a dedicated death program to single cell organisms is controversial. In the absence of a clear rationale to justify the evolutionary retention of a death only pathway, we hypothesize that yca1 also influences non-apoptotic events. We report that genetic ablation and/or catalytic inactivation of Yca1p leads to a longer G1/S transition accompanied by slower growth in fermentation conditions. Downregulation of Yca1p proteolytic activity also results in failure to arrest during nocodazole treatment, indicating that Yca1p participates in the G2/M mitotic checkpoint. 20s proteasome activity and ROS staining of the Delta yca1 strain is indistinguishable from its isogenic control suggesting that putative regulation of the oxidative stress response by Yca1p does not instigate the cell cycle phenotype. Our results demonstrate multiple non-death roles for yca1 in the cell cycle.

  14. CDC64 Encodes Cytoplasmic Alanyl-tRNA Synthetase, Ala1p, of Saccharomyces cerevisiae

    PubMed Central

    Wrobel, Carolyn; Schmidt, Emmett V.; Polymenis, Michael

    1999-01-01

    The cdc64-1 mutation causes G1 arrest in Saccharomyces cerevisiae corresponding to a type II Start phenotype. We report that CDC64 encodes Ala1p, an alanyl-tRNA synthetase. Thus, cdc64-1 might affect charging of tRNAAla and thereby initiation of cell division. PMID:10601222

  15. Biochemical regulation of breast cancer cell expression of S1P2 (Edg-5) and S1P3 (Edg-3) G protein-coupled receptors for sphingosine 1-phosphate.

    PubMed

    Dolezalova, Hana; Shankar, Geetha; Huang, Mei-Chuan; Bikle, Daniel D; Goetzl, Edward J

    2003-03-01

    G protein-coupled receptors (GPCRs) for lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) transduce signals to many functions of normal cells. Most human cancer cells upregulate S1P and LPA GPCRs, in patterns distinctive for each type of tumor. The findings that 1-alpha, 25-dihydroxy-vitamin D(3) (VD3) and all-trans retinoic acid (RA) differentially alter expression of the predominant S1P(3) (Edg-3) R and S1P(2) (Edg-5) R in human breast cancer cells (BCCs) permitted analyses of their individual activities, despite a lack of selective pharmacological probes. S1P-evoked increases in [Ca(2+)](i) in S1P(3) R-predominant BCCs were suppressed by concentrations of VD3 and RA which decreased expression of S1P(3) Rs, despite RA-induced increases in S1P(2) Rs. S1P-elicited chemokinetic migration of S1P(3) R-predominant BCCs across a type IV collagen-coated micropore filter also was inhibited by concentrations of VD3 and RA which decreased expression of S1P(3) Rs. The RA-induced increase in expression of S1P(2) Rs did not prevent suppression by RA of S1P-elicited chemokinesis, which appears to be mediated by S1P(3) Rs, but instead exposed S1P(2) R-mediated inhibition of epidermal growth factor-stimulated chemotaxis of BCCs. In contrast, expression of the predominant LPA(2) Rs, LPA-evoked increase in [Ca(2+)](i) and LPA-stimulated chemokinetic migration were suppressed concomitantly by RA but not VD3. Thus two structurally-homologous S1P Rs of BCCs differ in coupling to [Ca(2+)](i) signaling and have opposite effects on protein growth factor-stimulated chemotaxis.

  16. Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything.

    PubMed

    Shamzhy, Mariya; Mazur, Michal; Opanasenko, Maksym; Roth, Wieslaw J; Čejka, Jiří

    2014-07-21

    The influence of swelling (i.e. the size of tetraalkylammonium surfactant molecule, the presence of tetrapropylammonium hydroxide (TPAOH), pH) and pillaring (i.e. the ratio between the swollen precursor IPC-1P and tetraethyl orthosilicate) conditions on the structure and textural properties of the resulting materials was studied in detail for IPC-1P, which is the layered precursor of zeolite PCR. The swelling of IPC-1P proceeds efficiently under basic conditions both in mixed C(n)H(2n+1)N(CH3)3Cl/TPAOH systems and in C(n)H(2n+1)N(CH3)3OH (n = 8, 10, 12, 14, 16, 18) solutions at pH = 13-14. The intercalation of C(n)H(2n+1)N(+)(CH3)3 in IPC-1P resulted in the formation of expanded materials with interlayer distances growing with increasing length of the alkyl chain in C(n)H(2n+1)N(CH3)3(+): 1.59-1.86 (n = 8) < 1.89-2.11 (10) < 2.05-2.26 (12) = 2.08-2.26 (14) < 2.37-2.43 (16) < 2.57-2.71 (18) Å. IPC-2 zeolite was formed during calcination of IPC-1P samples swollen in C(n)H(2n+1)N(CH3)3OH solution, while PCR zeolite can be obtained by calcination of IPC-1P treated with either C(n)H(2n+1)N(CH3)3Cl/TPAOH or C(n)H(2n+1)N(CH3)3Cl. The pillaring of IPC-1P samples swollen with C(n)H(2n+1)N(CH3)3OH provided mesoporous materials with narrow pore size distribution in the range 2.5-3.5 nm. Pillared materials derived from the samples swollen in the presence of TPAOH were characterized by a broader pore size distribution. The optimal TEOS/IPC-1PSW ratio being sufficient for the formation of well-ordered pillared derivatives characterized by improved textural properties (S(BET) = 878 m(2) g(-1), V(total) = 0.599 cm(3) g(-1)) was found to be 1 : 1.5.

  17. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei

    PubMed Central

    Zhang, Hongmin; Lo, Raymond K. C.; Cai, Jian-Pao; Au-Yeung, Rex K. H.; Ng, Wing-Fung; Tse, Herman; Wong, Samson S. Y.; Xu, Simin; Lam, Wai Hei; Tse, Man-Kit; Sze, Kong Hung; Kao, Richard Y.; Reiner, Neil E.; Hao, Quan; Yuen, Kwok-Yung

    2016-01-01

    Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei

  18. Enhanced Klebsiella pneumoniae carbapenemase (KPC) expression from a novel Tn4401 deletion.

    PubMed

    Cheruvanky, Anita; Stoesser, Nicole; Sheppard, Anna E; Crook, Derrick W; Hoffman, Paul S; Weddle, Erin; Carroll, Joanne; Sifri, Costi D; Chai, Weidong; Barry, Katie; Ramakrishnan, Girija; Mathers, Amy J

    2017-04-03

    The Klebsiella pneumoniae carbapenemase gene (blaKPC) is typically located within the mobile transposon Tn4401 Enhanced KPC expression has been associated with deletions in the putative promoter region upstream of blaKPC Illumina sequences from blaKPC-positive clinical isolates from a single institution were mapped to a Tn4401b reference sequence, which carries no deletions. The novel isoform Tn4401h (188bp deletion [lsqb]between istB and blaKPC[rsqb]) was present in 14% (39/281) clinical isolates. MICs for Escherichia coli strains containing plasmids with Tn4401a and Tn4401h were more resistant to meropenem (≥16, ≥16), ertapenem (≥8, 4) and cefepime (≥64, 4) than E. coli strains with Tn4401b (0.5, ≤0.5, ≤1). Quantitative RT-PCR demonstrated that Tn4401a had a 16-fold and Tn4401h a 4-fold increase in blaKPC mRNA levels compared to the reference Tn4401b. A lacZ reporter plasmid was used to test the activity of the promoter regions from the different variants and showed that the Tn4401a and Tn4401h promoter sequences generated higher β-galactosidase activity than the corresponding Tn4401b sequence. Further dissection of the promoter region demonstrated that putative promoter P1 was not functional. Activity of the isolated promoter P2 was greatly enhanced by inclusion of the P1-P2 intervening sequence. These studies indicate that gene expression could be an important consideration in understanding resistance phenotypes predicted by genetic signatures in the context of sequencing-based rapid diagnostics.

  19. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance.

    PubMed

    Fisk, H A; Yaffe, M P

    1997-08-11

    Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.

  20. Impact of partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility.

    PubMed

    Zhang, Yuening; Li, Muyan; Xiao, Feifan; Teng, Ruobing; Zhang, Chengdong; Lan, Aihua; Gu, Kailong; Li, Jiatong; Wang, Di; Li, Hongtao; Jiang, Li; Zeng, Siping; He, Min; Huang, Yi; Guo, Peifen; Zhang, Xinhua; Yang, Xiaoli

    2015-10-15

    This study aims to investigate the effect of the partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility through a comprehensive literature search. All case-control studies related to partial DAZ1/2 and DAZ3/4 deletions and male infertility risk were included in our study. Odd ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association and its precision, respectively. Eleven partial DAZ1/2 deletion and nine partial DAZ3/4 deletion studies were included. Partial DAZ1/2 deletion was significantly associated with male infertility risk in the overall analysis (ORs=2.58, 95%CI: 1.60-4.18, I(2)=62.1%). Moreover, in the subgroup analysis stratified by ethnicity, partial DAZ1/2 deletion was significantly associated with male infertility risk in the East Asian populations under the random effect model (ORs=2.96, 95%CI: 1.87-4.71, I(2)=51.3%). Meanwhile, the analysis suggested that partial DAZ3/4 deletion was not associated with male infertility risk in East-Asian ethnicity (ORs=1.02, 95%CI: 0.54-1.92, I(2)=71.3%), but not in Non-East Asian under the random effect model (ORs=3.56, 95%CI: 1.13-11.23, I(2)=0.0%,). More interestingly, partial DAZ1/2 deletion was associated with azoospermia (ORs=2.63, 95%CI: 1.19-5.81, I(2)=64.7%) and oligozoospermia (ORs=2.53, 95%CI: 1.40-4.57, I(2)=51.8%), but partial DAZ3/4 deletion was not associated with azoospermia (ORs=0.71, 95%CI: 0.23-2.22, I(2)=71.7%,) and oligozoospermia (ORs=1.21, 95%CI: 0.65-2.24, I(2)=55.5%). In our meta-analysis, partial DAZ1/2 deletion is a risk factor for male infertility and different ethnicities have different influences, whereas partial DAZ3/4 deletion has no effect on fertility but partial DAZ3/4 deletion might have an impact on Non-East Asian male.

  1. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome.

    PubMed

    Pizzuti, A; Novelli, G; Ratti, A; Amati, F; Mari, A; Calabrese, G; Nicolis, S; Silani, V; Marino, B; Scarlato, G; Ottolenghi, S; Dallapiccola, B

    1997-02-01

    The CATCH 22 acronym outlines the main clinical features of 22q11.2 deletions (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate and hypocalcemia), usually found in DiGeorge (DGS) and velo-cardio-facial (VCFS) syndromes. Hemizygosity of this region may also be the cause of over 100 different clinical signs. The CATCH 22 locus maps within a 1.5 Mb region, which encompasses several genes. However, no single defect in 22q11.2 hemizygous patients can be ascribed to any gene so far isolated from the critical region of deletion. We have identified a gene in the CATCH 22 critical region, whose functional features and tissue-specific expression suggest a distinct role in embryogenesis. This gene, UFD1L, encodes the human homolog of the yeast ubiquitin fusion degradation 1 protein (UFD1p), involved in the degradation of ubiquitin fusion proteins. Cloning and characterization of the murine homolog (Ufd1l) showed it to be expressed during embryogenesis in the eyes and in the linear ear primordia. These data suggest that the proteolytic pathway that recognizes ubiquitin fusion proteins for degradation is conserved in vertebrates and that the UFD1L gene hemizygosity is the cause of some of the CATCH 22-associated developmental defects.

  2. PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca(2+)]i increases in renal mesangial cells.

    PubMed

    Koch, Alexander; Völzke, Anja; Puff, Bianca; Blankenbach, Kira; Meyer Zu Heringdorf, Da