Science.gov

Sample records for 1p 19q deletion

  1. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography

    PubMed Central

    Iwadate, Yasuo; Shinozaki, Natsuki; Matsutani, Tomoo; Uchino, Yoshio; Saeki, Naokatsu

    2016-01-01

    Objective Chromosome 1p/19q deletion is an established prognostic and predictive marker in the WHO grade III oligodendroglial tumours (OT). To estimate the genetic status preoperatively, the authors investigated the correlation between the uptake of 11C-methionine in positron emission tomography (PET) and the 1p/19q status in grades II and III OT. Methods We retrospectively reviewed 144 patients with gliomas who received 11C-methionine PET. 66 cases with grades II–III oligodendrogliomas or oligoastrocytomas underwent fluorescence in situ hybridisation to determine the 1p/19q status. The tissue uptake of 11C-methionine was expressed as the ratio of the maximum standardised uptake value (SUVmax) in tumour areas to the mean SUV (SUVmean) in the contralateral normal brain (tumour-to-normal tissue (T/N) ratio). Results The T/N ratio in 11C-methionine PET was significantly higher in grade III OT than in grade II tumours. The mean T/N ratio of the grade II tumours without 1p/19q deletion was significantly higher than that of the grade II tumours with 1p/19q deletion (mean 2.67 vs 1.94, respectively; p=0.0457). In grade III tumours, the mean T/N ratio of the tumours without 1p/19q deletion was also significantly higher than that of the tumours with 1p/19q deletion (mean 4.83 vs 3.49, respectively; p=0.0261). The rate of IDH1 mutation was lower and the rate of contrast enhancement on MRIs was higher in the 1p/19q non-deleted OT than those with 1p/19q deletion, which may contribute to the high T/N ratio. Conclusions Among suspected OT, 11C-methionine PET may help us preoperatively discriminate tumours with and without 1p/19q deletion. PMID:26848169

  2. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas

    PubMed Central

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien; Ducray, François; Adam, Clovis; Andraud, Marie; Aubriot-Lorton, Marie-Hélène; Bauchet, Luc; Beauchesne, Patrick; Bielle, Franck; Blechet, Claire; Campone, Mario; Carpentier, Antoine F.; Carpiuc, Ioana; Cazals-Hatem, Dominique; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Chinot, Olivier; Cohen-Moyal, Elisabeth; Colin, Philippe; Dam-Hieu, Phong; Desenclos, Christine; Desse, Nicolas; Dhermain, Frederic; Diebold, Marie-Danièle; Eimer, Sandrine; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Gaillard, Stéphane; Gauchotte, Guillaume; Gaultier, Claude; Ghiringhelli, François; Godard, Joel; Gueye, Edouard Marcel; Guillamo, Jean Sebastien; Hamdi-Elouadhani, Selma; Honnorat, Jerome; Kemeny, Jean Louis; Khallil, Toufik; Labrousse, François; Langlois, Olivier; Laquerriere, Annie; Larrieu-Ciron, Delphine; Lechapt-Zalcman, Emmanuelle; Guérinel, Caroline Le; Levillain, Pierre-Marie; Loiseau, Hugues; Loussouarn, Delphine; Maurage, Claude-Alain; Menei, Philippe; Motsuo Fotso, Marie Janette; Noel, Georges; Parker, Fabrice; Peoc'h, Michel; Polivka, Marc; Quintin-Roué, Isabelle; Ramirez, Carole; Ricard, Damien; Richard, Pomone; Rigau, Valérie; Rousseau, Audrey; Runavot, Gwenaelle; Sevestre, Henri; Tortel, Marie Christine; Vandenbos, Fanny; Vauleon, Elodie; Viennet, Gabriel; Villa, Chiara

    2016-01-01

    Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours. PMID:27090007

  3. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas.

    PubMed

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien; Ducray, François

    2016-01-01

    Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours. PMID:27090007

  4. P64QUANTITATIVE MGMT METHYLATION ANALYSIS BY PYROSEQUENCING REVEALS A STRONG CORRELATION BETWEEN 1P/19Q CO-DELETION AND HIGH LEVEL METHYLATION IN HIGH GRADE GLIOMAS

    PubMed Central

    Laxton, R.; Doey, L.; Aizpurua, M.; Bodi, I.; King, A.; Chandler, C.; Bhangoo, R.; Beaney, R.; Brazil, L.; Ashkan, K.; Al-Sarraj, S.

    2014-01-01

    INTRODUCTION: Pyrosequencing is a method that allows MGMT methylation to be measured in a quantitative manner. MGMT methylation, along with 1p/19q co-deletion and IDH1 mutation, is an important biomarker in high grade gliomas. MGMT methylation indicates an improved response to temozolomide chemotherapy; patients with 1p/19q co-deleted anaplastic oligodendrogliomas benefit from the addition of chemotherapy to radiotherapy. Aim: To compare the average MGMT promoter methylation level of high grade gliomas and correlate it with other clinical parameters and markers including IDH1&2 mutation and 1p/19q co-deletion. METHOD: For 171 high grade gliomas MGMT methylation analysis was performed by pyrosequencing, mutations to IDH1 and IDH2 genes were also detected by pyrosequencing, or immunohistochemistry (n = 166). Screening for 1p/19q deletion was by fluorescence in situ hybridisation (n = 46). Statistical analysis was performed using R-Stats v2.15.2. RESULTS: The results show that higher methylation was correlated with lower grade and mutation to either IDH1 or IDH2 (27.0% vs. 16.6% p = 0.008; and 27.5 vs. 16.1 p = 0.002 respectively). Interestingly 1p/19q co-deletion versus non co-deletion was associated with a particularly high level of methylation (42.2% vs. 17.7% p = 0.001). No significant differences were seen for age or gender. CONCLUSION: The results offer a potential explanation for the improved prognosis seen in glioma patients with 1p/19q co-deletion and when combined with IDH mutation status may provide an extra control to confirm true 1p/19q co-deletion.

  5. Analysis of IDH mutation, 1p/19q deletion, and PTEN loss delineates prognosis in clinical low-grade diffuse gliomas

    PubMed Central

    Sabha, Nesrin; Knobbe, Christiane B.; Maganti, Majula; Al Omar, Soha; Bernstein, Mark; Cairns, Rob; Çako, Besmira; von Deimling, Andreas; Capper, David; Mak, Tak W.; Kiehl, Tim-Rasmus; Carvalho, Philippe; Garrett, Evelyn; Perry, Arie; Zadeh, Gelareh; Guha, Abhijit; Croul, Sidney

    2014-01-01

    Background Grades II and III gliomas have unpredictable rates of progression, making management decisions difficult. Currently, several clinical and radiological characteristics are utilized to predict progression and survival but collectively are suboptimal. Methods In this study, we analyzed a set of 108 nonenhancing hemispheric grade II–III gliomas. Demographic variables, including patient age, tumor diameter, extent of resection, and performance status, were combined with molecular data (IDH mutation status [mIDH], 1p/19q codeletion, PTEN deletion, and EGFR amplification). A complete dataset for all variables was compiled for 70 of the 108 patients. Both univariable and multivariable analyses were performed to determine whether the molecular data singly or in combination offer advantages over tumor type and grade for prediction of overall survival (OS) and/or progression-free rate (PFR). Results Patient age, clinical variables (tumor diameter, extent of resection, performance status), and pathology (tumor type and grade) were not predictive of OS or PFR. IDH mutation status alone was predictive of longer OS and PFR for the entire group of tumors; 1p/19q deletion alone was predictive of OS but not PFR. In the multivariable analysis, none of the clinical or demographic factors were predictive of OS or PFR. IDH mutation status, 1p/19q codeletion, and PTEN deletion were predictive of OS (P = .003, P = .005, P = .02, respectively). Both mIDH (P < .001) and the interaction term of 1p/19q and PTEN (P < .001) were found to be predictive of PFR. Conclusions We conclude that the combination of mIDH, 1p/19q codeletion, and PTEN deletion may be particularly effective in discriminating good prognosis from poor prognosis hemispheric gliomas. We propose that such a scheme merits testing on larger prospective cohorts. Should our findings be confirmed, routine clinical analysis of hemispheric gliomas for mIDH, 1p/19q codeletion, and PTEN deletion would be justified. PMID

  6. [Diagnostic and prognostic values of 1p and 19q deletions in adult gliomas: critical review of the literature and implications in daily clinical practice].

    PubMed

    Fontaine, D; Vandenbos, F; Lebrun, C; Paquis, V; Frenay, M

    2008-01-01

    Losses of chromosomes 1p and 19q are deemed correlated with diagnosis of oligodendroglioma, higher chemosensitivity and better prognosis. We reviewed the literature to evaluate the usefulness of these correlations in daily clinical practice. The rates of deletions relative to histology (WHO classifications) were extracted from 33 studies, including 2666 patients. The 1p deletions and 1p19q codeletion mean rates were respectively 65.4 and 63.3% in oligodendrogliomas, 28.7 and 21.6% in oligoastrocytomas, 13.2 and 7.5% in astrocytomas, 11.6 and 2.9% in glioblastomas. The presence of 1p deletion and 1p19q codeletion were strongly correlated with the histological diagnosis corresponding to oligodendroglioma. Calculation of specificity, sensitivity, predictive positive values and false negative rates suggests that presence of deletion 1p or codeletion represents a strong argument in favor of the diagnosis of oligodendroglioma. However, considering the high false negative rate, absence of such deletions does not rule out the diagnosis. In grade 3 oligodendroglial tumors, the probability of responding to chemotherapy, and the duration of response, were higher when codeletions were present. This suggests that, in these tumors, the presence of codeletion is a strong argument in favor of adjuvant chemotherapy. However, chemotherapy should not be systematically excluded when codeletions are absent, as the chances of response are about 33% in this situation. Data concerning low-grade gliomas were more controversial. Oligodendroglial tumors with 1p deletion or 1p19q codeletion seemed to have a better prognosis, as five-year survival rates were 50% higher than in tumors without deletion. This might be explained by the correlation between 1p deletion and other identified prognosis factors: (1) higher chemosensitivity, (2) tumor location more frequently in the frontal lobe, leading to better resection and lower risk of neurological deficit, (3) slower growth rate, (4) higher risk

  7. Identification of a novel population in high-grade oligodendroglial tumors not deleted on 1p/19q using array CGH.

    PubMed

    Talagas, Matthieu; Marcorelles, Pascale; Uguen, Arnaud; Redon, Sylvia; Quintin-Roué, Isabelle; Costa, Sebastian; Férec, Claude; Morel, Frédéric; Hieu, Phong Dam; De Braekeleer, Marc

    2012-09-01

    Oligodendroglial tumors (ODTs) are primary tumors of the central nervous system that show recurrent codeletion of whole chromosome arms 1p and 19q. Non-1p/19q-deleted high-grade ODTs can present other genetic aberrations, CDKN2A deletion (9p21.3), EGFR amplification (7p11.2) and/or chromosome 10 loss, which are associated with a poor prognosis. The identification of these abnormalities allowed drafting a histo-molecular classification. The aim of this study was to precisely identify, using array CGH, the genomic hallmarks of these tumors, particularly those that are not deleted on 1p/19q. We studied 14 formalin-fixed paraffin-embedded high-grade ODTs using pangenomic oligonucleotide array CGH with an average resolution of 22.3 kb. The 1p/19q codeletion was found in five anaplastic oligodendrogliomas. The three genomic aberrations carrying a poor prognosis were found, most often associated, in five out of nine tumors not deleted on 1p/19q. In addition, four recurrent copy number alterations, involving genes that participate to cell growth and cycle, were found to be strongly associated in five tumors not deleted on 1p/19q: gain or amplification at 1q32.1 (MDM4, PIK3C2B genes), 12q14.1 (CDK4 gene), 12q14.3-q15 (MDM2 gene) and homozygous deletion at 22q13.1 (APOBEC3B gene). MDM2, MDM4, CDK4 and PIK3C2B are known for potentially being amplified or overexpressed in high-grade gliomas. However, the involvement of APOBEC3B, coding for mRNA edition enzyme, is described here for the first time. Our results show a strong association between these four alterations. Therefore, this can open a perspective for a novel subgroup in high-grade ODTs not deleted on 1p/19q. PMID:22825724

  8. Glioneuronal tumor with neuropil-like islands (GTNI): a report of 8 cases with chromosome 1p/19q deletion analysis.

    PubMed

    Barbashina, Violetta; Salazar, Paulo; Ladanyi, Marc; Rosenblum, Marc K; Edgar, Mark A

    2007-08-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is a rare neoplasm harboring circumscribed loci of neuronal differentiation and diffusely infiltrating astroglial and oligodendrocytelike components. We report 8 previously unpublished examples of GTNI, specifically studied for chromosome 1p and 19q allelic losses. All tumors showed characteristic histologic features and immunoprofile. One primary tumor displayed frankly malignant histology with frequent mitoses, microvascular proliferation, and necrosis. This tumor progressed within months of the initial resection. Three other tumors (2 low-grade and 1 showing only focal microvascular proliferation) recurred at 2 years, 3 years, and 1 year, respectively. All cases were evaluated for 1p/19q allelic losses by standard polymerase chain reaction-based loss of heterozygosity assays. No evidence of 1p/19q losses was found in 7 of 8 tumors. One tumor demonstrated small interstitial deletions at 1p36 (at D1S1612 and D1S513, but not at D1S548 or D1S1592) and a small interstitial deletion at 19q13 (at D19S219 and D19S412, but not at PLA2G4C). The lack of large, whole-arm 1p/19q losses (such as those found in oligodendroglial tumors), aberrant p53 expression, and the predominance of astroglial components may indicate a biologic relationship of the GTNI to diffuse astrocytoma. Although GTNI shares some morphologic features with recently reported cases of oligodendroglioma with neurocytic differentiation, the 2 tumors appear different at the molecular genetic level. PMID:17667543

  9. Diagnostic Detection of Allelic Losses and Imbalances by Next-Generation Sequencing: 1p/19q Co-Deletion Analysis of Gliomas.

    PubMed

    Dubbink, Hendrikus J; Atmodimedjo, Peggy N; van Marion, Ronald; Krol, Niels M G; Riegman, Peter H J; Kros, Johan M; van den Bent, Martin J; Dinjens, Winand N M

    2016-09-01

    Cancer cells are genomically unstable and accumulate tumor type-specific molecular aberrations, which may represent hallmarks for predicting prognosis and targets for therapy. Co-deletion of chromosomes 1p and 19q marks gliomas with an oligodendroglioma component and predicts a better prognosis and response to chemotherapy. In the current study, we present a novel method to detect chromosome 1p/19q co-deletion or loss of heterozygosity (LOH) in a diagnostic setting, based on single-nucleotide polymorphism (SNP) analysis and next-generation sequencing (NGS). We selected highly polymorphic SNPs distributed evenly over both chromosome arms. To experimentally determine the sensitivity and specificity of targeted SNP analysis, we used DNAs extracted from 49 routine formalin-fixed, paraffin-embedded glioma tissues and compared the outcome with diagnostic microsatellite-based LOH analysis and calculated estimates. We show that targeted SNP analysis by NGS allows reliable detection of 1p and/or 19q deletion in a background of 70% of normal cells according to calculated outcomes, is more sensitive than microsatellite-based LOH analysis, and requires much less DNA. This specific and sensitive SNP assay is broadly applicable for simultaneous allelic imbalance analysis of multiple genomic regions and can be incorporated easily into NGS mutation analyses. The combined mutation and chromosomal imbalance analysis in a single NGS assay is suited perfectly for routine glioma diagnostics and other diagnostic molecular pathology applications. PMID:27461031

  10. Homozygous deletion of TNFRSF4, TP73, PPAP2B and DPYD at 1p and PDCD5 at 19q identified by multiplex ligation-dependent probe amplification (MLPA) analysis in pediatric anaplastic glioma with questionable oligodendroglial component

    PubMed Central

    2014-01-01

    Background Pediatric oligodendrogliomas are rare and appear to show a different molecular profile from adult tumors. Some gliomas display allelic losses at 1p/19q in pediatric patients, although less frequently than in adult patients, but this is rare in tumors with an oligodendroglial component. The molecular basis of this genomic abnormality is unknown in pediatric gliomas, but it represents a relatively common finding in pediatric oligodendroglioma-like neoplasms with leptomeningeal dissemination. Results Multiplex ligation-dependent probe amplification (MLPA) analysis using SALSA P088-B1 for the analysis of the 1p/19q allelic constitution in a pediatric anaplastic (oligodendro)-glioma showed homozygous co-deletion for markers: TNFRSF4 (located at 1p36.33), TP73 (1p36.32), PPAP2B (1pter-p22.1), DPYD (1p21.3), and PDCD5 (19q13.12), and hemizygous deletion of BAX (19q13.3-q13.4). No sequence changes for R132 and R172 of the IDH1/2 genes were identified. Conclusions The molecular findings in this pediatric anaplastic glioma do not allow for a clearly definitive pathological diagnosis. However, the findings provide data on a number of 1p/19q genomic regions that, because of homozygotic deletion, might be the location of genes that are important for the development and clinical evolution of some malignant gliomas in children. PMID:24387276

  11. P17.01CHROMOSOME ARM 9P LOSS OF HETEROZYGOSITY IS A MARKER OF SHORTER SURVIVAL IN 1P/19Q CO-DELETED ANAPLASTIC OLIGODENDROGLIOMA. A POLA NETWORK STUDY

    PubMed Central

    Alentorn, A.; Dehais, C.; Carpentier, C.; Mokhtari, K.; Ducray, F.; Figarella-Branger, D.; Delattre, J.; Idbaih, A.; (POLA)”, POLA Network “Prise en charge des OLigodendrogliomes Anaplasiques

    2014-01-01

    Anaplastic or WHO grade III oligodendrogliomas (AO) are a heterogeneous subgroup of diffuse glial tumors in adults. Three major histomolecular subtypes with clinical relevance have been individualized: (i) 1p/19q co-deleted AO -80% of cases-, (ii) non 1p/19q co-deleted and IDH mutated AO -10% of cases- and (iii) non 1p/19q co-deleted and IDH wild-typeAO -10% of cases-. 1p/19q co-deleted AO, and to a lesser extent IDH mutated AO, have better prognosis and better response to treatment with a median survival of more than 10 years, as shown in two phase III international trials. We have recently shown that loss of heterozygosity (LOH) in chromosome arm 9p, with copy number loss -CL LOH- or without -Copy Neutral LOH- is a frequent event in AO. Interestingly, 9p CN LOH, inducing gene under-expression, has biological significance. In the present study, we address the prognostic value of 9p loss in 1p/19q co-deleted AO. In the present study, 228 AO exhibiting 1p/19q co-deletion were included. All tumors were centrally reviewed in the setting of the French national network for high-grade oligodendroglial tumors (POLA network) that recruits prospectively newly diagnosed anaplastic oligodendroglial tumors. Tumor DNA was analyzed using high-resolution single nucleotide polymorphism array analysis. In the entire series, 70/228 (1/3) harbored 9p loss including CN-LOH, homozygous loss or CL-LOH. 9p loss was associated with a worse prognosis in 1p19q co-deleted AO in univariate analysis (3-years OS of 98% vs. 74%, p < 0.001) whereas PFS at three years was not significantly different (3-years PFS of 88% vs. 66% p = 0.1). After adjustment for age, KPS, and treatment, multivariate analysis demonstrated 9p loss to be an independent prognostic factor for OS, p-value = 0.03, HR = 4.9 [1.2-16], but not for PFS. 1p19q co-deleted AO harboring 9p loss have shorter overall survival compared to their non 9p-lost counterparts in this prospective cohort. Further studies are needed to validate

  12. 1p/19q codeletion and RET rearrangements in small-cell lung cancer

    PubMed Central

    Lu, Hongyang; Xu, Haimiao; Xie, Fajun; Qin, Jing; Han, Na; Fan, Yun; Mao, Weimin

    2016-01-01

    The prognosis of small-cell lung cancer (SCLC) is poor despite reports suggesting modest improvement in survival. To date, chemotherapy remains the cornerstone treatment for SCLC patients, and many studies have focused on identifying the molecular characteristics of SCLC, which serve as the basis for precision treatments that improve the prognosis of SCLC. For instance, the therapeutic effect of temozolomide, recommended for patients with relapsed SCLC, is linked to 1p/19q codeletion in anaplastic oligodendroglial tumors. A subpopulation of SCLC patients may derive benefit from tyrosine kinase inhibitors targeting RET. In order to identify 1p/19q codeletion and RET rearrangement in SCLC patients, 32 SCLC resected specimens were retrospectively collected between 2008 and 2014 from the Zhejiang Cancer Hospital in People’s Republic of China. Fluorescence in situ hybridization was used to detect 1p/19q codeletion and RET rearrangement in the specimens. A 1p single deletion was detected in eight specimens, 19q single deletion was detected in three specimens, and only three specimens had a 1p/19q codeletion. None of the specimens had a RET rearrangement. The three patients whose specimens had a 1p/19q codeletion were alive after 58, 50, and 30 months of follow-up care. There was a trend toward prolonged overall survival for the patients with codeletion compared to no codeletion, 1p single deletion, 19q single deletion, and without 1p and 19q deletion (P=0.113, 0.168, 0.116, and 0.122, respectively). Our data showed that RET rearrangement may be not an ideal molecular target for SCLC therapies in People’s Republic of China. Instead, 1p/19q codeletion is a promising marker for a good prognosis and treatment with temozolomide in SCLC. PMID:27366094

  13. 1p/19q-driven prognostic molecular classification for high-grade oligodendroglial tumors.

    PubMed

    Jiang, Haihui; Zhang, Zhe; Ren, Xiaohui; Zeng, Wei; Jia, Wenqing; Wang, Junmei; Lin, Song

    2014-12-01

    The subjectivity in pathological diagnosis of anaplastic oligoastrocytoma (AOA) and uncertainty in designation of glioblastoma with oligodendroglioma component (GBMO) were two major dilemmas which puzzled neuro-pathologists and neurosurgeons. The present study was designed to project a molecular classification scheme based on the status of chromosome 1p and 19q. Patients (n = 117) with histological diagnosis of primary high-grade oligodendroglial tumors (HGOs) enrolled in the study. Fluorescence in situ hybridization (FISH) for chromosomes 1p and 19q was performed. Univariate analysis showed that higher tumor grade, 1p/19q maintenance and 1q/19p co polysomy were confirmed as risk factors in HGOs (P < 0.01). Accordingly, patients with HGOs were divided into four subtypes which conferred remarkably distinct prognosis based on the number of risk factors (0 risk factor: HGOs-1, 1 risk factor: HGOs-2, 2 risk factors: HGOs-3, 3 risk factors: HGOs-4). Cox regression model revealed that the tumor grade was no longer independently associated with survival, while the molecular classification scheme showed a marked prognostic significance (HR = 0.359, 95 % CI 0.261-0.494, P < 0.001 for progression-free survival (PFS); HR = 0.393, 95 % CI 0.283-0.546, P < 0.001 for overall survival (OS)). The classification scheme incorporating traditional pathology with molecular information can be served as a supplement of the current WHO classification system and contribute to the personalized treatment decision-making. PMID:25151507

  14. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas

    PubMed Central

    Leeper, Heather E.; Caron, Alissa A.; Decker, Paul A.; Jenkins, Robert B.; Lachance, Daniel H.; Giannini, Caterina

    2015-01-01

    Background Epigenetic, genetic, and molecular studies have identified several diagnostic and prognostic markers in diffuse gliomas. Their importance for evaluating WHO grade II gliomas has yet to be specifically delineated. Methods We analyzed markers, including IDH mutation(IDHmut), 1p19q codeletion(1p19qcodel), ATRX expression loss(ATRX loss) and p53 overexpression, and outcomes in 159 patients with WHO grade II oligodendroglioma, oligoastrocytoma, and astrocytoma (2003–2012). Results IDHmut was found in 141(91%) and ATRX loss in 64(87%) of IDHmut-noncodel tumors (p = 0.003). All codeleted tumors (n = 66) were IDHmut. Four subgroups were identified: IDHmut-codel, 66(43%); IDHmut-noncodel-ATRX loss, 60(39%); IDHmut-noncodel-ATRXwt, 9(6%); IDHwt, 14(9%). Median survival among 4 groups was significantly different (p = 0.038), particularly in IDHmut-codel (median survival 15.6 years) compared to the remaining 3 groups (p = 0.025). Survival by histology was not significant. Overall (OS), but not progression-free (PFS), survival was significantly longer with gross total resection vs. biopsy only (p = 0.042). Outcomes for patients with subtotal resection were not significantly different from those with biopsy only. Among these uniformly treated patients, OS far exceeds PFS, particularly in those with 1p/19q codeletion. Conclusions For WHO grade II diffuse glioma, molecular classification using 1p/19qcodel, IDHmut, and ATRX loss more accurately predicts outcome and should be incorporated in the neuropathologic evaluation. PMID:26210286

  15. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors

    PubMed Central

    Eckel-Passow, Jeanette E.; Lachance, Daniel H.; Molinaro, Annette M.; Walsh, Kyle M.; Decker, Paul A.; Sicotte, Hugues; Pekmezci, Melike; Rice, Terri; Kosel, Matt L.; Smirnov, Ivan V.; Sarkar, Gobinda; Caron, Alissa A.; Kollmeyer, Thomas M.; Praska, Corinne E.; Chada, Anisha R.; Halder, Chandralekha; Hansen, Helen M.; McCoy, Lucie S.; Bracci, Paige M.; Marshall, Roxanne; Zheng, Shichun; Reis, Gerald F.; Pico, Alexander R.; O’Neill, Brian P.; Buckner, Jan C.; Giannini, Caterina; Huse, Jason T.; Perry, Arie; Tihan, Tarik; Berger, Mitchell S.; Chang, Susan M.; Prados, Michael D.; Wiemels, Joseph; Wiencke, John K.; Wrensch, Margaret R.; Jenkins, Robert B.

    2015-01-01

    BACKGROUND The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triplepositive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. PMID:26061753

  16. Deletion of 19q13 reveals clinical overlap with Dubowitz syndrome.

    PubMed

    Urquhart, Jill E; Williams, Simon G; Bhaskar, Sanjeev S; Bowers, Naomi; Clayton-Smith, Jill; Newman, William G

    2015-12-01

    Dubowitz syndrome is a presumed autosomal recessive disorder characterized by multiple congenital abnormalities: microcephaly, learning and developmental delay, growth failure, and a predisposition to allergies and eczema. There have been more than 150 individuals reported to have this diagnosis, but no unifying genetic alteration has been identified indicating genetic heterogeneity. We report on a pair of monozygotic twins diagnosed clinically with Dubowitz syndrome by Professor Dubowitz over 30 years ago and identified to have a de novo heterozygous 3.2-Mb deletion at 19q13.11q13.12. Exome sequencing did not identify either a putative pathogenic variant on the trans allele supporting recessive inheritance or any other causative sequence variants. Comparison of the phenotype in our cases shows considerable overlap with the 19q13.11 microdeletion syndrome, suggesting that a subset of individuals diagnosed with Dubowitz syndrome may be due to deletions at 19q13. Our finding further reinforces the genetic and phenotypic heterogeneity of Dubowitz syndrome. PMID:26377242

  17. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma

    SciTech Connect

    Kraus, J.A.; Koopmann, J.; Kaskel, P.

    1995-01-01

    Loss of heterozygosity (LOH) in specific chromosomal regions, which are likely to harbor tumor suppressor genes, has been associated with human gliomas. In this study we have analyzed astrocytic and oligodendroglial tumors for LOH on chromosomes 1 and 19. By microsatellite analysis LOH was found on chromosome arm 1p in 6/15 oligodendrogliomas WHO grade II and III, 12/25 oligoastrocytomas WHO grade II and III, 6/79 glioblastomas WHO grade IV, 5/44 astrocytomas WHO grade II and III and 0/23 pilocystic astrocytomas WHO grade I. The high incidence of LOH on chromosome arm 1p in oligodendrogliomas and oligoastrocytomas indicates that a putative tumor suppressor gene in this region is involved in the formation of gliomas with oligodendroglial features. Furthermore, the frequent involvement of chromosome arm 1p in oligodendrogliomas and oligoastrocytomas, but not in astrocytomas, suggests that genetically oligoastrocytoma is more similar to oligodendroglioma than to astrocytoma. In order to support this hypothesis, oligodendroglial and astrocytic areas in three mixed oligoastrocytomas were examined differentially for LOH 1p and for LOH 19q, the second genetic region believed to be affected in these tumors. All three tumors had LOH of 1p and LOH of 19q in both areas of oligodendroglial and of astrocytic differentiation. These findings show that the astrocytic and oligodendroglial portions of oligoastrocytoma share molecular genetic features and probably are of monoclonal origin. 32 refs., 2 figs., 1 tab.

  18. Phenotypic and molecular characterization of 19q12q13.1 deletions: a report of five patients.

    PubMed

    Chowdhury, Shimul; Bandholz, Anne M; Parkash, Sandhya; Dyack, Sarah; Rideout, Andrea L; Leppig, Kathleen A; Thiese, Heidi; Wheeler, Patricia G; Tsang, Marilyn; Ballif, Blake C; Shaffer, Lisa G; Torchia, Beth S; Ellison, Jay W; Rosenfeld, Jill A

    2014-01-01

    A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome. PMID:24243649

  19. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression

    PubMed Central

    Reyes-Botero, German; Dehais, Caroline; Idbaih, Ahmed; Martin-Duverneuil, Nadine; Lahutte, Marion; Carpentier, Catherine; Letouzé, Eric; Chinot, Olivier; Loiseau, Hugues; Honnorat, Jerome; Ramirez, Carole; Moyal, Elisabeth; Figarella-Branger, Dominique; Ducray, François; Desenclos, Christine; Sevestre, Henri; Menei, Philippe; Michalak, Sophie; Al Nader, Edmond; Godard, Joel; Viennet, Gabriel; Carpentier, Antoine; Eimer, Sandrine; Dam-Hieu, Phong; Quintin-Roué, Isabelle; Guillamo, Jean-Sebastien; Lechapt-Zalcman, Emmanuelle; Kemeny, Jean-Louis; Verrelle, Pierre; Faillot, Thierry; Gaultier, Claude; Tortel, Marie Christine; Christov, Christo; Le Guerinel, Caroline; Aubriot-Lorton, Marie-Hélène; Ghiringhelli, Francois; Berger, François; Lacroix, Catherine; Parker, Fabrice; Dubois, François; Maurage, Claude-Alain; Gueye, Edouard-Marcel; Labrousse, Francois; Jouvet, Anne; Bauchet, Luc; Rigau, Valérie; Beauchesne, Patrick; Vignaud, Jean-Michel; Campone, Mario; Loussouarn, Delphine; Fontaine, Denys; Vandenbos, Fanny; Campello, Chantal; Roger, Pascal; Fesneau, Melanie; Heitzmann, Anne; Delattre, Jean-Yves; Elouadhani, Selma; Mokhtari, Karima; Polivka, Marc; Ricard, Damien; Levillain, Pierre-Marie; Wager, Michel; Colin, Philippe; Diebold, Marie-Danièle; Chiforeanu, Dan; Vauleon, Elodie; Langlois, Olivier; Laquerriere, Annie; Motsuo Fotso, Marie Janette; Peoc'h, Michel; Andraud, Marie; Mouton, Servane; Chenard, Marie-Pierre; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Amiel-Benouaich, Alexandra; Uro-Coste, Emmanuelle; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate MRI features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The MRI characteristics of 50 AO patients enrolled in the French national network for high-grade oligodendroglial tumors were analyzed. The genomic profiles and IDH mutational statuses were assessed using high-resolution single-nucleotide polymorphism arrays and direct sequencing, respectively. The gene expression profiles of 25 1p/19q-codeleted AOs were studied on Affymetrix expression arrays. Results Most of the cases were frontal lobe contrast-enhanced tumors (52%), but the radiological presentations of these cases were heterogeneous, ranging from low-grade glioma-like aspects (26%) to glioblastoma-like aspects (22%). The 1p/19q codeletion (n = 39) was associated with locations in the frontal lobe (P = .001), with heterogeneous intratumoral signal intensities (P = .003) and with no or nonmeasurable contrast enhancements (P = .01). The IDH wild-type AOs (n = 7) more frequently displayed ringlike contrast enhancements (P = .03) and were more frequently located outside of the frontal lobe (P = .01). However, no specific imaging pattern could be identified for the 1p/19q-codeleted AO or the IDH-mutated AO. Within the 1p/19q-codeleted AO, the contrast enhancement was associated with larger tumor volumes (P = .001), chromosome 9p loss and CDKN2A loss (P = .006), genomic instability (P = .03), and angiogenesis-related gene expression (P < .001), particularly for vascular endothelial growth factor A and angiopoietin 2. Conclusion In AOs, the 1p/19q codeletion and the IDH mutation are associated with preferential (but not with specific) imaging characteristics. Within 1p/19q-codeleted AO, imaging heterogeneity is related to additional molecular alterations, especially chromosome 9p loss, which is associated with contrast enhancement and larger tumor volume. PMID:24353325

  20. 1p36 deletion syndrome: an update

    PubMed Central

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. PMID:26345236

  1. Impact of 1p/19q Codeletion and Histology on Outcomes of Anaplastic Gliomas Treated With Radiation Therapy and Temozolomide

    SciTech Connect

    Speirs, Christina K.; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd A.; Tran, David D.; Linette, Gerry; Chicoine, Michael R.; Dacey, Ralph G.; Rich, Keith M.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H.; Huang, Jiayi

    2015-02-01

    Purpose: Anaplastic gliomas represent a heterogeneous group of primary high-grade brain tumors, and the optimal postoperative treatment remains controversial. In this report, we present our institutional data on the clinical outcomes of radiation therapy (RT) plus temozolomide (RT + TMZ) for anaplastic gliomas, stratified by histology and 1p/19q codeletion. Methods and Materials: A single-institution retrospective review was conducted of patients with supratentorial anaplastic oligodendroglioma (AO), mixed anaplastic oligoastrocytoma (AOA), and anaplastic astrocytoma (AA). After surgery, RT was delivered at a median total dose of 60 Gy (range, 31.6-63 Gy) in daily fractions. All patients received standard concurrent TMZ, with or without adjuvant TMZ. Histological/molecular subtypes were defined as codeleted AO/AOA, non-codeleted AO/AOA, and AA. Results: From 2000 to 2012, 111 cases met study criteria and were evaluable. Codeleted AO/AOA had superior overall survival (OS) to non-codeleted AO/AOA (91% vs 68% at 5 years, respectively, P=.02), whereas progression-free survival (PFS) was not significantly different (70% vs 46% at 5 years, respectively, P=.10). AA had inferior OS to non-codeleted AO/AOA (37% vs 68% at 5 years, respectively, P=.007) and inferior PFS (27% vs 46%, respectively, P=.03). On multivariate analysis, age, performance status, and histological or molecular subtype were independent predictors for both PFS and OS. Compared to historical controls, RT + TMZ provided comparable OS to RT with procarbazine, lomustine, and vincristine (RT + PCV) for codeleted AO/AOA, superior OS to RT alone for non-codeleted AO/AOA, and similar OS to RT alone for AA. Conclusions: RT + TMZ may be a promising treatment for both codeleted and non-codeleted AO/AOA, but its role for AA remains unclear.

  2. Mitotic index, microvascular proliferation, and necrosis define 3 groups of 1p/19q codeleted anaplastic oligodendrogliomas associated with different genomic alterations

    PubMed Central

    Figarella-Branger, Dominique; Mokhtari, Karima; Dehais, Caroline; Jouvet, Anne; Uro-Coste, Emmanuelle; Colin, Carole; Carpentier, Catherine; Forest, Fabien; Maurage, Claude-Alain; Vignaud, Jean-Michel; Polivka, Marc; Lechapt-Zalcman, Emmanuelle; Eimer, Sandrine; Viennet, Gabriel; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Loussouarn, Delphine; Lacroix, Catherine; Rigau, Valérie; Laquerrière, Annie; Vandenbos, Fanny; Michalak, Sophie; Sevestre, Henri; Peoch, Michel; Labrousse, François; Christov, Christo; Kemeny, Jean-Louis; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Ducray, François; Idbaih, Ahmed; Desenclos, Christine; Menei, Philippe; Al Nader, Edmond; Godard, Joel; Servagi-Vernat, Stéphanie; Carpentier, Antoine; Loiseau, Hugues; Dam-Hieu, Phong; Guillamo, Jean Sebastien; Emery, Evelyne; Verelle, Pierre; Durando, Xavier; Faillot, Thierry; Le Guerinel, Caroline; Ghiringhelli, François; Parker, Fabrice; Adam, Clovis; Dubois, François; Ramirez, Carole; Gueye, Edouard Marcel; Honnorat, Jerome; Chinot, Olivier; Bauchet, Luc; Beauchesne, Patrick; Campone, Mario; Frenel, Jean Sébastien; Fontaine, Denys; Campello, Chantal; Roger, Pascal; Heitzmann, Anne; Fesneau, Mélanie; Delattre, Jean Yves; Elouadhani-Hamdi, Selma; Ricard, Damien; Colin, Philippe; Vauléon, Elodie; Langlois, Olivier; Fotso, Marie Janette Motsuo; Andraud, Marie; Mouton, Servane; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Cohen-Moyal, Elisabeth; Lubrano, Vincent; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate histological features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The histological characteristics of 203 AO patients, enrolled in the French national network POLA, were analyzed. The genomic profiles of 191 cases were studied using genomic arrays. IDH mutational status was assessed by immunohistochemistry and direct sequencing. Results 1p/19q codeletion was present in 79% of cases and was associated with alpha-internexin expression (P < 10−4), IDH1/2 mutation (P < 10−4), chromosome 4 loss (P < 10−3), and better overall survival (P < 10−4). Based on mitotic index, microvascular proliferation (MVP), and necrosis, 3 groups of 1p/19q codeleted AOs were identified: (group 1) AO with more than 5 mitoses per 10-HPF, no MVP, and no necrosis; (group 2) AO with MVP and no necrosis; and (group 3) AO with MVP and necrosis. Compared with group 1, groups 2 and 3 AOs had a higher mean Ki-67 proliferation index and a higher rate of 9p and 9q losses. Compared with group 2, group 3 AOs had a higher number of chromosomal alterations including chromosome 4 loss. In the subgroup of 157 1p/19q codeleted AOs, chromosomal instability was associated with shorter progression-free survival (P = .024) and shorter overall survival (P = .023). Conclusions The present study shows that oligodendrogliomas with classic histological features remain a molecularly heterogeneous entity and should be stratified according to 1p/19q status because of its major prognostic relevance. Moreover, 1p/19q codeleted AOs are also heterogeneous. Interestingly, mitotic index, MVP, and necrosis help to classify them into 3 groups associated with distinct genomic alterations. PMID:24723566

  3. Radio-chemotherapy improves survival in IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma patients.

    PubMed

    Juratli, Tareq A; Lautenschläger, Tim; Geiger, Kathrin D; Pinzer, Thomas; Krause, Mechthild; Schackert, Gabriele; Krex, Dietmar

    2015-09-01

    Isocitrate dehydrogenase (IDH) mutations are beginning to drive decisions on therapy for glioma patients. Here we sought to determine the impact of adjuvant treatment in patients with IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma (sHGA) WHO grades III/IV. Clinical data of 109 sHGA patients grades III/IV, in addition to IDH mutation-, 1p/19q-codeletion- and MGMT-promoter methylation status-were retrospectively analyzed. Survival analysis in relation to adjuvant treatment modalities and molecular profiling were performed. Out of 109 patients, 88 patients (80.7 %) harbored IDH mutations, 30 patients had a 1p/19q-codeletion (27.5 %) and 69 patients (63.3 %) exhibited a methylated MGMT-promoter status. At a median follow-up of 9.8 years, 62 patients (57 %) died. The postsurgical treatment included: radio-chemotherapy (RT-CT; 54.5 %), RT alone (19.3 %), and CT alone (22.7 %). The median overall survival (OS) in the entire group was 3.4 years (1.9-6.7 years). Patients who received RT-CT had a significantly longer OS compared with those who underwent RT alone (6.5 vs. 1.2 years, HR 0.35, CI 0.32-0.51, p = 0.011). In the IDH-mutant 1p/19q non-codeleted sHGA subgroup the RT-CT cohort had a significantly longer OS in comparison to the RT cohort (6.4 vs. 1.2 years, HR 2.7, CI 1.1-6.5, p = 0.022). In the stepwise multivariable Cox model for OS of all 88 IDH-mutant sHGA patients, survival was strongly associated with only one factor, namely, adjuvant RT-CT at diagnosis of a sHGA. This retrospective long-term study demonstrates that RT and CT (mostly PCV) significantly improves progression-free and overall survival in IDH-mutant secondary high-grade astrocytoma patients, regardless of 1p/19q-codeletion status. PMID:26033545

  4. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade II and III gliomas.

    PubMed

    Saito, Taiichi; Muragaki, Yoshihiro; Maruyama, Takashi; Komori, Takashi; Tamura, Manabu; Nitta, Masayuki; Tsuzuki, Shunsuke; Kawamata, Takakazu

    2016-07-01

    Gliomas with 1p/19q loss of heterozygosity (LOH) are known to be associated with longer patient survival and higher sensitivity to treatment than tumors without 1p/19q LOH. This study was designed to clarify whether the preoperative finding of calcification on CT was correlated with 1p/19q LOH in patients with suspected WHO grade II and III gliomas. This study included 250 adult patients who underwent resection for primary supratentorial tumors at Tokyo Women's Medical University Hospital. The tumors were suspected, based on MRI findings, to be WHO grade II or III gliomas. The presence of calcification on the patients' CT images was qualitatively evaluated before treatment. After surgery, the resected tumors were examined to determine their 1p/19q status and mutations of IDH1 and p53. The presence of calcification was significantly correlated with 1p/19q LOH (P < 0.0001), with a positive predictive value of 91 %. The tumors of all the 78 patients with calcification were diagnosed as oligodendroglial tumors. Seventy of these patients showed classic oligodendroglial features, while 8 patients showed non-classic features. Calcification on CT is a simple and valuable preoperative indicator of 1p/19q LOH in supratentorial brain tumors that are suspected to be WHO grade II and III gliomas. PMID:26849373

  5. How to use molecular markers when caring for a patient with brain cancer: 1P/19Q as a predictive and prognostic marker in the neuro-oncology clinic.

    PubMed

    van den Bent, M J

    2013-01-01

    Although the central role of 1p/19q codeletion in oligodendroglioma was established almost two decades ago, apart from clear prognostic significance the implications for clinical care have been less clear. This has changed with the long-term follow-up analysis of the EORTC and RTOG trials on procarbazine, lomustine, and vincristine (PCV) chemotherapy in anaplastic oligodendroglioma. These have shown that 1p/19q loss in these tumors is predictive of overall survival benefit of the addition of PCV chemotherapy to radiotherapy. PMID:23714473

  6. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  7. A headache presenting in the emergency room, a clinical manifestation of an unfortunate diagnosis (grade III left frontal anaplastic ependymoma with 1p deletion)

    PubMed Central

    Flores-Robles, B J; Hurtarte-Sandoval, A R; Harrison, R M; Cuevas, C C

    2013-01-01

    An 18-year-old girl presented with a headache and behavioural changes. She was found to have a frontal mass. Neuroimaging revealed an intra-axial mass, located at the left frontal cortical/subcortical region approximately 6×7, 5×7, 5 cm (TxApxL), having a heterogeneous density with cysts and calcification. She had total gross excision of the neoplasm. Histopathological examination revealed an anaplastic ependymoma. Fluorescence in situ hybridisation, a molecular cytogenetic test, reported deletion of 1p without deletion of 19q. The patient had a good postoperative improvement. PMID:23912654

  8. A t(17;19)(q22;p13.3) Involving TCF3, a t(1;9)(p13;p13), and a 5' IGH Deletion in a Case of Adult B-cell Acute Lymphoblastic Leukemia.

    PubMed

    Chow, R; Shabsovich, D; Schiller, G; Kallen, M; Tirado, Carlos A

    2016-01-01

    TCF3 (19p13.3) abnormalities are relatively common in B-cell acute lymphoblastic leukemia (B-ALL). The t(1;19)(q23;p13) involving PBX1 is the most common of these rearrangements. The t(17;19)(q22;p13.3), resulting in the TCF3-HLF fusion gene, is also seen in B-ALL and is associated with an extremely poor prognosis. Herein, we present the case of a 25-year-old male diagnosed with B-ALL whose initial karyotype showed a t(17;19)(q22p13.3). FISH confirmed TCF3 involvement and also revealed a 5' IGH deletion. After treatment, the patient relapsed, at which point conventional cytogenetic studies showed a t(17;19), loss of the 5' IGH region, and a t(3;10) not seen in initial studies. After hematopoietic stem cell transplantation, the patient relapsed again, at which point conventional cytogenetic studies showed a complex karyotype with t(17;19), t(1;9)(p13;p13), and structural anomalies involving chromosomes 5, 7, and 14, but no IGH abnormalities by FISH. The t(1;9) has been shown to involve PAX5, which plays numerous regulatory roles in B-cell differentiation. Other PAX5 rearrangements have been detected in B-ALL cases of young adults and adolescents, but with unclear clinical significance. To the best of our knowledge, this is the first reported case of t(17;19)-ALL with concomitant 5' IGH deletion and t(1;9)(p13;p13) potentially involving PAX5, albeit at different time points in disease progression. This case provides insight into the clonal evolution of t(17;19)-ALL and the potential involvement of PAX5 and IGH aberrations in the evolution of this malignancy. PMID:27183380

  9. Genetics Home Reference: 1p36 deletion syndrome

    MedlinePlus

    ... 1p36, and clinical characterization of the syndrome. Am J Hum Genet. 2003 May;72(5):1200-12. Epub 2003 Apr 8. Citation on PubMed or Free article on PubMed Central Lahortiga I, Vázquez I, Belloni E, Román JP, Gasparini P, Novo FJ, Zudaire I, Pelicci PG, Hernández JM, Calasanz ...

  10. Novel airway findings in a patient with 1p36 deletion syndrome.

    PubMed

    Ferril, Geoffrey R; Barham, Henry P; Prager, Jeremy D

    2014-01-01

    1p36 deletion syndrome comprises a phenotypic presentation that includes central nervous system, cardiac, and craniofacial anomalies. There has been no report of associated airway anomalies with this syndrome. We present here a case report and literature review. Prenatally, amniocentesis for chromosomal analysis was performed on our patient, with results consistent with 1p36 deletion syndrome. Respiratory distress and unsuccessful attempts at intubation prompted transfer to Children's Hospital of Colorado. Microlaryngoscopy was subsequently performed, revealing a persistent buccopharyngeal membrane and unidentifiable larynx. Emergent tracheostomy was then performed to secure the airway. Airway anomalies may be associated with 1p36 deletion syndrome. PMID:24290305

  11. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay

    PubMed Central

    Seo, Go Hun; Kim, Ja Hye; Cho, Ja Hyang; Kim, Gu-Hwan; Seo, Eul-Ju; Lee, Beom Hee; Choi, Jin-Ho

    2016-01-01

    Purpose The 1p36 deletion syndrome is a microdeletion syndrome characterized by developmental delays/intellectual disability, craniofacial dysmorphism, and other congenital anomalies. To date, many cases of this syndrome have been reported worldwide. However, cases with this syndrome have not been reported in Korean populations anywhere. This study was performed to report the clinical and molecular characteristics of five Korean patients with the 1p36 deletion syndrome. Methods The clinical characteristics of the 5 patients were reviewed. Karyotyping and multiplex ligation-dependent probe amplification (MLPA) analyses were performed for genetic diagnoses. Results All 5 patients had typical dysmorphic features including frontal bossing, flat right parietal bone, low-set ears, straight eyebrows, down-slanting palpebral fissure, hypotelorism, flat nasal roots, midface hypoplasia, pointed chins, small lips, and variable degrees of developmental delay. Each patient had multiple and variable anomalies such as a congenital heart defect including ventricular septal defect, atrial septal defect, and patent duct arteriosus, ventriculomegaly, cryptorchism, or hearing loss. Karyotyping revealed the 1p36 deletion in only 1 patient, although it was confirmed in all 5 patients by MLPA analyses. Conclusion All the patients had the typical features of 1p36 deletion. These hallmarks can be used to identify other patients with this condition in their early years in order to provide more appropriate care. PMID:26893599

  12. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    PubMed Central

    Payne, Claire M; Crowley-Skillicorn, Cheray; Bernstein, Carol; Holubec, Hana; Bernstein, Harris

    2011-01-01

    Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss. PMID:21753893

  13. Is 1p36 deletion associated with anterior body wall defects?

    PubMed

    Çöllü, Medis; Yüksel, Şirin; Şirin, Başak Kumbasar; Abbasoğlu, Latif; Alanay, Yasemin

    2016-07-01

    Epispadias and exstrophy of the cloaca, also known as OEIS complex (omphalocele, exstrophy, imperforate anus, spinal defects), respectively constitute the most benign and severe ends of the bladder exstrophy-epispadias complex (BEEC) spectrum. In 2009, El-Hattab et al. reported the first patient with OEIS complex associated with a chromosome 1p36 deletion. Here we report a second patient with 1p36 deletion who also has classic bladder exstrophy, supporting the possible role of genes in this region in the development of BEEC. The absence of omphalocele and imperforate anus in our patient places him toward classic bladder exstrophy while presence of spina bifida and the absence of coccyx suggest an overlap with OEIS complex. An additional differential diagnosis is the pentalogy of Cantrell in our patient as he also has a diaphragmatic hernia and an incomplete sternum. This is the second observation of a ventral midline birth defect in association with 1p36 deletion syndrome, following El-Hattab et al.'s report [2009]. The three genes (NOCL2, DVL1, and MMP23B) discussed as possible candidates are also among the deleted ones in our patient, supporting the possible role of these genes in BEEC spectrum. © 2016 Wiley Periodicals, Inc. PMID:27144803

  14. Deletion mapping on chromosome 1p in well-differentiated gastric cancer.

    PubMed Central

    Ezaki, T.; Yanagisawa, A.; Ohta, K.; Aiso, S.; Watanabe, M.; Hibi, T.; Kato, Y.; Nakajima, T.; Ariyama, T.; Inazawa, J.; Nakamura, Y.; Horii, A.

    1996-01-01

    To define the region on the short arm of chromosome 1 that is thought to include one or more tumour-suppressor genes for gastric cancers, we carried out loss of heterozygosity (LOH) studies in 26 gastric adenocarcinomas, using three restriction fragment length polymorphism (RFLP) markers and nine microsatellite markers. All tumours were informative with at least one locus; three revealed replication errors (RERs) at multiple microsatellite loci, and interstitial or telomeric allelic deletions were observed in 12 cases. Deletion mapping of these tumours defined a commonly deleted region between two loci, D1S201 and D1S197, that are 13 cM apart. As two loci within the commonly deleted region, D1S57 (pYNZ2) and D1S62 (pTHI54), were mapped respectively to 1p35 and 1p34.3 by fluorescence in situ hybridisation, we conclude that a locus likely to contain a tumour-suppressor gene for gastric cancer is located within a 13 cM region encompassing two chromosomal bands. Images Figure 1 Figure 3 Figure 4 PMID:8595154

  15. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  16. 19q13.32 microdeletion syndrome: three new cases.

    PubMed

    Castillo, Angela; Kramer, Nancy; Schwartz, Charles E; Miles, Judith H; DuPont, Barbara R; Rosenfeld, Jill A; Graham, John M

    2014-01-01

    A previous report described a unique phenotype associated with an apparently de novo 732 kb 19q13.32 microdeletion, consisting of intellectual disability, facial asymmetry, ptosis, oculomotor abnormalities, orofacial clefts, cardiac defects, scoliosis and chronic constipation. We report three unrelated patients with developmental delay and dysmorphic features, who were all found to have interstitial 19q13.32 microdeletions of varying sizes. Both the previously reported patient and our Patient 1 with a larger, 1.3-Mb deletion have distinctive dysmorphic features and medical problems, allowing us to define a recognizable 19q13.32 microdeletion syndrome. Patient 1 was hypotonic and dysmorphic at birth, with aplasia of the posterior corpus callosum, bilateral ptosis, oculomotor paralysis, down-slanting palpebral fissures, facial asymmetry, submucosal cleft palate, micrognathia, wide-spaced nipples, right-sided aortic arch, hypospadias, bilateral inguinal hernias, double toenail of the left second toe, partial 2-3 toe syndactyly, kyphoscoliosis and colonic atony. Therefore, the common features of the 19q13.32 microdeletion syndrome include facial asymmetry, ptosis, oculomotor paralysis, orofacial clefting, micrognathia, kyphoscoliosis, aortic defects and colonic atony. These findings are probably related to a deletion of some combination of the 20-23 genes in common between these two patients, especially NPAS1, NAPA, ARHGAP35, SLC8A2, DHX34, MEIS3, and ZNF541. These candidate genes are expressed in the brain parenchyma, glia, heart, gastrointestinal tract and musculoskeletal system and likely play a fundamental role in the expression of this phenotype. This report delineates the phenotypic spectrum associated with the haploinsufficiency of genes found in 19q13.32. PMID:25230004

  17. Fine Mapping of the 1p36 Deletion Syndrome Identifies Mutation of PRDM16 as a Cause of Cardiomyopathy

    PubMed Central

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M. Khaled; Plovie, Eva R.; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, Andreas A.; Kalwa, Hermann; Heinig, Matthias; Padera, Robert F.; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, Paul J.; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, Stuart A.; MacRae, Calum A.; Klaassen, Sabine

    2013-01-01

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM. PMID:23768516

  18. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.

    PubMed

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M Khaled; Plovie, Eva R; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, Andreas A; Kalwa, Hermann; Heinig, Matthias; Padera, Robert F; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, Paul J; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, Stuart A; MacRae, Calum A; Klaassen, Sabine

    2013-07-11

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM. PMID:23768516

  19. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    PubMed

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-08-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27494202

  20. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    PubMed

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-01-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  1. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    PubMed Central

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D. J.

    2016-01-01

    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  2. 576 kb deletion in 1p36.33-p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy.

    PubMed

    Zhu, Xin; Zhang, Yi; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2013-10-10

    1p36 deletion (monosomy 1p36) is one of the most common terminal deletions observed in humans, characterized by special facial features, mental retardation, heart defects, development delay and epilepsy. Previously, we reported molecular findings in patients with limb, congenital heart disease (CHD) and other malformations with SNP-array. In a syndromic patient of the same cohort, we detected a small deletion of 1p36.33-p36.32 containing SKI (Sloan-Kettering Institute protooncoprotein). Recently, dominant mutations in SKI were identified to be correlated with Shprintzen-Goldberg syndrome. Retrospective examination revealed this patient with limb malformations, CHD, epilepsy and mild development delay. Together with previous reports, our study suggests that the 1p36.33-1p36.32 deletion encompassing SKI may represents a previous undescribed microdeletion disorder. PMID:23892090

  3. An 8.9 Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9 Mb 2q23.3q24.1 deletion containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q between-arm insertion

    PubMed Central

    Lybæk, Helle; ørstavik, Karen Helene; Prescott, Trine; Hovland, Randi; Breilid, Harald; Stansberg, Christine; Steen, Vidar Martin; Houge, Gunnar

    2009-01-01

    In a 2 and a half-year-old girl with onset of puberty before the age of 5 months, short stature, hand anomalies and severe mental retardation, an 8.9 Mb interstitial 19p13 duplication containing 215 predicted genes was detected. It was initially assumed that the duplication involved the kisspeptin receptor gene, GPR54, known to stimulate induction of puberty, but more refined duplication mapping excluded this possibility. In an attempt to further understand the genotype–phenotype correlation, global gene expression was measured in skin fibroblasts. The overall expression pattern was quite similar to controls, and only about 25% of the duplicated genes had an expression level that was increased by more than 1.3-fold, with no obvious changes that could explain the precocious puberty. The proband's mother carried a balanced between-arm insertion of the duplicated segment that resembled a pericentric inversion. The same insertion was found in several other family members, including one who had lost a daughter with severe mental retardation and menarche at the age of 10 years. Another close relative was severely mentally retarded, but neither dysmorphic nor microcephalic. His phenotype was initially ascribed to a presumed cryptic chromosome 19 imbalance caused by the 19p-into19q insertion, but subsequent array-CGH detected a 3.9-Mb deletion of 2q23.3q24.1. This novel microdeletion involves seven genes, of which FMNL2, a suggested regulator of Rho-GTPases, and NR4A2, an essential gene for differentiation of dopaminergic neurons, may be critical genes for the proposed 2q23q24 microdeletion syndrome. PMID:19156171

  4. Deletion of the transcriptional regulator opi1p decreases cardiolipin content and disrupts mitochondrial metabolism in Saccharomyces cerevisiae.

    PubMed

    Luévano-Martínez, Luis Alberto; Appolinario, Patricia; Miyamoto, Sayuri; Uribe-Carvajal, Salvador; Kowaltowski, Alicia J

    2013-11-01

    Cardiolipin, the main anionic phospholipid in the inner mitochondrial membrane, provides shape, charge and osmotic support to this membrane due to its biophysical properties. In addition, it helps form respiratory supercomplexes and provides functionality to mitochondrial proteins. Defects in the biosynthesis or remodeling of cardiolipin have been related to severe diseases, such as Barth syndrome. Opi1p, a transcriptional repressor for most enzymes in phospholipid biosynthesis found in Saccharomyces cerevisiae, has been demonstrated not to affect the biosynthesis of this mitochondrial phospholipid. However, we found that opi1 deletion compromises mitochondrial metabolism producing severe respiratory defects. The mechanism producing this phenotype was explored and found to be a mitochondrial cardiolipin depletion of almost 50%, resulting in low cytochrome content and high mitochondrial DNA instability. The origin of this low cardiolipin content strongly correlated with the overproduction of inositol, an intrinsic phenotype of this mutation. Overall, our results show that adequate regulation of phospholipid synthesis is essential for the maintenance of mitochondrial function. PMID:23578934

  5. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    PubMed

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  6. FISH analysis of a patient with a constitutional 1p36 deletion defines a region for a neuroblastoma tumor suppressor gene

    SciTech Connect

    Biegel, J.; Hilliard, C.; White, P.

    1994-09-01

    Molecular and cytogenetic studies of neuroblastoma have implicated the presence of one or more tumor suppressor genes on chromosome 1p. We previously reported a neuroblastoma patient with a constitutional interstitial deletion of 1p36. As one means of further defining the deleted region, we have analyzed a series of chromosome 1p36 specific probes by FISH to metaphase chromosomes from a lymphoblastoid cell line established from the patient. We have also tested these probes on a neuroblastoma cell line, NGP, which has a t(1;15) translocation involving 1p36. The probes analyzed to date in order from centromere to telomere include ID-3 (heir-1), D1S56, D1S160, and CDC2L1 (p58). Cosmids for ID-3 and D1S56 were present in 2 copies and proximal to the breakpoint in the constitutional case, and retained on the derivative 1 in NGP. CDC2L1 was also present in 2 copies in the constitutional case, but is distal to the deletion. In NGP, CDC2L1 was translocated to the derivative 15. The D1S160 locus was deleted from one of the chromosomes 1 in the constitutional case, and was present in three copies in NGP: on the normal chromosome 1, the derivative chromosome 1, and the derivative chromosome 15. Molecular studies have suggested that there is a duplication involving this region in NGP, and so it is not clear where the translocation breakpoint is in this cell line. These studies have localized a critical region for a neuroblastoma tumor suppressor gene to 1p36.2, distal to D1S56, proximal to CDC2L1, and including D1S160. This region overlaps with the smallest area of deletion defined by loss of heterozygosity studies of primary neuroblastomas and neuroblastoma cell lines. Additional studies with probes that flank the D1S160 locus will facilitate a molecular cloning approach for a neuroblastoma tumor suppressor gene.

  7. Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines.

    PubMed

    Yanada, Masashi; Yaoi, Takeshi; Shimada, Junichi; Sakakura, Chouhei; Nishimura, Motohiro; Ito, Kazuhiro; Terauchi, Kunihiko; Nishiyama, Katsuhiko; Itoh, Kyoko; Fushiki, Shinji

    2005-10-01

    Runt-related transcription factor 3 (RUNX3) has been recognized as a tumor suppressor gene in gastric cancer because its expression level was reduced or disappeared due to epigenetic changes. To evaluate the usefulness of the RUNX3 gene as a biomarker of lung cancer, we have analyzed the expression of the RUNX3 gene in 15 lung cancer cell lines by real-time reverse transcription-polymerase chain reaction (RT-PCR), and demonstrated that RUNX3 gene expression was reduced or disappeared in all cell lines examined (100%). In addition, we have attempted to classify all the cell lines into three groups according to the expression level; less than 10% (group I), 10-30% (group II) and approximately 50% (group III). We further investigated methylation status of the CpG sites in the exon 1 region of RUNX3 by methylation specific PCR (MSP), and studied the correlation between the expression level and hemizygous deletion as revealed by bicolor fluorescence in situ hybridization (FISH). The CpG sites were hypermethylated in 8 cell lines (53%) and the RUNX3 loci were hemizygously deleted in another 8 cell lines (53%). Furthermore group I, II, and III corresponded well to methylation-positive cell lines, cell lines showing hemizygous deletion, and the rest of cell lines without methylation or hemizygous deletion, respectively. These results suggest that a comprehensive study on RUNX3 using real-time RT-PCR, MSP, and FISH could be beneficial in understanding the pathogenetic mechanisms of human lung cancer at the molecular level. PMID:16142337

  8. Clinical presentation of two β-thalassemic Indian patients with 1p36 deletion syndrome: Case report

    PubMed Central

    De, Puspal; Chatterjee, Tridip; Chakravarty, Sudipa; Chakravarty, Amit

    2014-01-01

    Here, we present two thalassemic patients (one male and one female), having unusual clinical phenotypes. Both had mental retardation in which one was associated with microcephaly and other had congenital cataract. They were referred to our institute for clinical evaluation and cytogenetic testing. Both patients were tested for presence of abnormal hemoglobin by high performance liquid chromatography and found to be thalassemic. Their β-globin mutation was also determined by amplification refractory mutation system-polymerase chain reaction. The male patient was found to have intervening sequence 1-5 (G-C)/+, indicating β-thalassemia trait and the female was found to have Cod 26 (G-A)/IVS 1-5 (G-C), indicating hemoglobin E-β thalassemia. Their cytogenetic analysis of blood lymphocytes were studied with high-resolution GTG-banding analysis by using chromosome profiling (Cyto-vision software 3.6) on their chromosomes. Results revealed 46,XY,del(1)(p36.21) in the male and 46,XX,del(1)(p36.3) in the female. Their genotype variation showed (based on genome browser) significant gene loss which probably leads to marked phenotype variation. We believe, thalassemia with mental retardation associated with microcephaly and congenital cataract, both having loss in chromosome 1, p36 position, is reported probably first time from India. This report will definitely enlighten all concerns and add to the information in growing literature.

  9. A bovine herpesvirus 1 pUL51 deletion mutant shows impaired viral growth in vitro and reduced virulence in rabbits

    PubMed Central

    Raza, Sohail; Deng, Mingliang; Shahin, Farzana; Yang, Kui; Hu, Changmin; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) UL51 protein (pUL51) is a tegument protein of BoHV-1 whose function is currently unknown. Here, we aimed to illustrate the specific role of pUL51 in virion morphogenesis and its importance in BoHV-1 virulence. To do so, we constructed a BoHV-1 bacterial artificial chromosome (BAC). We used recombinant BAC and transgenic techniques to delete a major part of the UL51 open reading frame. Deletion of pUL51 resulted in severe viral growth defects, as evidenced by lower single and multi-step growth kinetics, reduced plaque size, and the accumulation of non-enveloped capsids in the cytoplasm of infected cells. Using tagged BoHV-1 recombinant viruses, it was determined that the pUL51 protein completely co-localized with the cis-Golgi marker protein GM-130. Taken altogether, pUL51 was demonstrated to play a critical role in BoHV-1 growth and it is involved in viral maturation and egress. Moreover, an in vivo analysis showed that the pUL51 mutant exhibited reduced virulence in rabbits, with no clinical signs, no nasal shedding of the virus, and no detectable serum neutralizing antibodies. Therefore, we conclude that the BoHV-1 pUL51 is indispensable for efficient viral growth in vitro and is essential for virulence in vivo. PMID:26934330

  10. Primary Cutaneous Follicle Center Lymphomas Expressing BCL2 Protein Frequently Harbor BCL2 Gene Break and May Present 1p36 Deletion: A Study of 20 Cases.

    PubMed

    Szablewski, Vanessa; Ingen-Housz-Oro, Saskia; Baia, Maryse; Delfau-Larue, Marie-Helene; Copie-Bergman, Christiane; Ortonne, Nicolas

    2016-01-01

    The classification of cutaneous follicular lymphoma (CFL) into primary cutaneous follicle center lymphoma (PCFCL) or secondary cutaneous follicular lymphoma (SCFL) is challenging. SCFL is suspected when tumor cells express BCL2 protein, reflecting a BCL2 translocation. However, BCL2 expression is difficult to assess in CFLs because of numerous BCL2+ reactive T cells. To investigate these issues and to further characterize PCFCL, we studied a series of 25 CFLs without any extracutaneous disease at diagnosis, selected on the basis of BCL2 protein expression using 2 BCL2 antibodies (clones 124 and E17) and BOB1/BCL2 double immunostaining. All cases were studied using interphase fluorescence in situ hybridization with BCL2, BCL6, IGH, IGK, IGL breakapart, IGH-BCL2 fusion, and 1p36/1q25 dual-color probes. Nineteen CFLs were BCL2 positive, and 6 were negative. After a medium follow-up of 24 (6 to 96) months, 5 cases were reclassified as SCFL and were excluded from a part of our analyses. Among BCL2+ PCFCLs, 60% (9/15) demonstrated a BCL2 break. BCL2-break-positive cases had a tendency to occur in the head and neck and showed the classical phenotype of nodal follicular lymphoma (CD10+, BCL6+, BCL2+, STMN+) compared with BCL2-break-negative PCFCLs. Del 1p36 was observed in 1 PCFCL. No significant clinical differences were observed between BCL2+ or BCL2- PCFCL. In conclusion, we show that a subset of PCFCLs harbor similar genetic alterations, as observed in nodal follicular lymphomas, including BCL2 breaks and 1p36 deletion. As BCL2 protein expression is usually associated with the presence of a BCL2 translocation, fluorescence in situ hybridization should be performed to confirm this hypothesis. PMID:26658664

  11. De novo translocation involving chromosomes 1 and 4 resulting in partial duplication of 4q and partial deletion of 1p

    SciTech Connect

    Legare, J.M.; Sekhon, G.S.; Laxova, R.

    1994-11-15

    We describe an infant boy with a unique de novo translocation involving chromosomes 1 and 4, resulting in dup(4q) and del(1p). His karyotype was 46,XY,-1,+der(1)t(1;4) (p36.2;q31.2). He had minor anomalies, congenital heart defect, respiratory distress, seizures, and central nervous system abnormalities. He died at age 11 weeks. The patient had manifestations of dup(4q) del(1p), and he was more seriously affected than patients having only one of these. No other patient with an identical chromosomal finding has been reported. 27 refs., 2 figs., 3 tabs.

  12. A 3 1/2 year old girl with distal trisomy 19q defined by FISH.

    PubMed Central

    James, C; Jauch, A; Robson, L; Watson, N; Smith, A

    1996-01-01

    A 3 1/2 year old girl was evaluated because of developmental delay. Short stature was evident with height between the 3rd and 10th centiles, while weight and head circumference were on the 50th centile. Dysmorphic features consisted of a high bossed forehead, pointed short ear lobes, small nose, bilateral convergent strabismus, left simian crease, a gap between the first and second toes bilaterally, mild clinodactyly, and a broad, barrel shaped thorax. Cytogenetic investigations showed an unbalanced karyotype, 46,XX,10q+, which was de novo in origin. Fluorescence in situ hybridisation (FISH) using three library probes (from chromosomes 10, 19, and 19q) and a YAC probe (from 10q telomere) showed that the additional material on 10q was derived from chromosome 19q. The patient had an unbalanced translocation, 46,XX,-10,+der(10)t(10;19)(q26.3; q13.3), which resulted in distal trisomy 19q. Few other cases of proven distal trisomy 19q are available for comparison of clinical features. Images PMID:8880586

  13. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  14. Role of Evaluating MGMT Status and 1p36 Deletion in Radiosurgery-Induced Anaplastic Ependymoma That Rapidly and Completely Resolved by Temozolomide Alone: Case Report and Review of the Literature

    PubMed Central

    Hirono, Seiichiro; Iwadate, Yasuo; Kambe, Michiyo; Hiwasa, Takaki; Takiguchi, Masaki; Nakatani, Yukio; Saeki, Naokatsu

    2015-01-01

    Stereotactic gamma knife surgery (GKS)-induced brain tumors are extremely rare, and no ependymal tumors induced by GKS have been reported. Therefore, little is known about their clinical, pathologic, and genetic features. In addition, a regimen of adjuvant chemotherapy for anaplastic ependymoma (AE) has not been established. A 77-year-old man presented with a gait disturbance and left-side cerebellar ataxia more than 19 years after GKS performed for a cerebellar arteriovenous malformation. Imaging studies demonstrated an enhancing mass in the irradiated field with signs of intraventricular dissemination. Surgical resection confirmed the diagnosis of AE. Temozolomide (TMZ) was administrated postoperatively because the methylated promoter region of O6-methylguanine-DNA methyltransferase (MGMT) and 1p36 deletion were observed. Surprisingly, images 16 days after TMZ initiation demonstrated a complete resolution of the residual tumor that was maintained after three cycles of TMZ. This first case report of GKS-induced AE emphasizes the importance of genetic evaluation of MGMT and chromosomal deletion of 1p36 that are not commonly performed in primary ependymal tumors. In addition, it is speculated that a GKS-induced tumor may have a different genetic background compared with the primary tumor because the pathogenesis of the tumors differed. PMID:26251808

  15. Role of Evaluating MGMT Status and 1p36 Deletion in Radiosurgery-Induced Anaplastic Ependymoma That Rapidly and Completely Resolved by Temozolomide Alone: Case Report and Review of the Literature.

    PubMed

    Hirono, Seiichiro; Iwadate, Yasuo; Kambe, Michiyo; Hiwasa, Takaki; Takiguchi, Masaki; Nakatani, Yukio; Saeki, Naokatsu

    2015-07-01

    Stereotactic gamma knife surgery (GKS)-induced brain tumors are extremely rare, and no ependymal tumors induced by GKS have been reported. Therefore, little is known about their clinical, pathologic, and genetic features. In addition, a regimen of adjuvant chemotherapy for anaplastic ependymoma (AE) has not been established. A 77-year-old man presented with a gait disturbance and left-side cerebellar ataxia more than 19 years after GKS performed for a cerebellar arteriovenous malformation. Imaging studies demonstrated an enhancing mass in the irradiated field with signs of intraventricular dissemination. Surgical resection confirmed the diagnosis of AE. Temozolomide (TMZ) was administrated postoperatively because the methylated promoter region of O(6)-methylguanine-DNA methyltransferase (MGMT) and 1p36 deletion were observed. Surprisingly, images 16 days after TMZ initiation demonstrated a complete resolution of the residual tumor that was maintained after three cycles of TMZ. This first case report of GKS-induced AE emphasizes the importance of genetic evaluation of MGMT and chromosomal deletion of 1p36 that are not commonly performed in primary ependymal tumors. In addition, it is speculated that a GKS-induced tumor may have a different genetic background compared with the primary tumor because the pathogenesis of the tumors differed. PMID:26251808

  16. Refinement of the cone-rod retinal dystrophy locus on chromosome 19q

    SciTech Connect

    Gregory, C.Y.; Evans, K.; Bhattacharya, S.S.; Whittaker, J.L.; Fryer, A.; Weissenbach, J.

    1994-11-01

    Cone-rod dystrophy (CRD) is a severe example of an inherited retinal dystrophy: ophthalmic diseases that as a group constitute the commonest causes of blindness in children in the developed world and account for a significant proportion of visual handicap in adults. Two case reports suggested loci for CRD-causing genes on chromosomes 18q and chromosome 17q. Recently, we reported the results of a total genome search that localized an autosomal dominant form of CRD to chromosome 19q in the region 19q13.1-q13.2. Since then, using data from a short tandem repeat-polymorphism linkage map of chromosome 19 and recently developed microsatellite markers in this region, we have been able to further refine the localization of the chromosome 19q CRD-causing gene. Seven new microsatellite markers were used to genotype 34 affected subjects, 22 unaffected subjects, and 15 spouses. Two-point, multipoint, and FASTMAP analyses were performed. 11 refs., 1 tab.

  17. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13.

    PubMed

    Cho, Michael H; Castaldi, Peter J; Wan, Emily S; Siedlinski, Mateusz; Hersh, Craig P; Demeo, Dawn L; Himes, Blanca E; Sylvia, Jody S; Klanderman, Barbara J; Ziniti, John P; Lange, Christoph; Litonjua, Augusto A; Sparrow, David; Regan, Elizabeth A; Make, Barry J; Hokanson, John E; Murray, Tanda; Hetmanski, Jacqueline B; Pillai, Sreekumar G; Kong, Xiangyang; Anderson, Wayne H; Tal-Singer, Ruth; Lomas, David A; Coxson, Harvey O; Edwards, Lisa D; MacNee, William; Vestbo, Jørgen; Yates, Julie C; Agusti, Alvar; Calverley, Peter M A; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D; Beaty, Terri H; Silverman, Edwin K

    2012-02-15

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior. PMID:22080838

  18. The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease

    PubMed Central

    Fu, Yi-Ping; Kohaar, Indu; Moore, Lee E.; Lenz, Petra; Figueroa, Jonine D.; Tang, Wei; Porter-Gill, Patricia; Chatterjee, Nilanjan; Scott-Johnson, Alexandra; Garcia-Closas, Montserrat; Muchmore, Brian; Baris, Dalsu; Paquin, Ashley; Ylaya, Kris; Schwenn, Molly; Apolo, Andrea B.; Karagas, Margaret R.; Tarway, McAnthony; Johnson, Alison; Mumy, Adam; Schned, Alan; Guedez, Liliana; Jones, Michael A.; Kida, Masatoshi; Monawar Hosain, GM; Malats, Nuria; Kogevinas, Manolis; Tardon, Adonina; Serra, Consol; Carrato, Alfredo; Garcia-Closas, Reina; Lloreta, Josep; Wu, Xifeng; Purdue, Mark; Andriole, Gerald L.; Grubb, Robert L.; Black, Amanda; Landi, Maria T.; Caporaso, Neil E.; Vineis, Paolo; Siddiq, Afshan; Bueno-de-Mesquita, H. Bas; Trichopoulos, Dimitrios; Ljungberg, Börje; Severi, Gianluca; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth C.; Tjønneland, Anne; Brennan, Paul; Chang-Claude, Jenny; Riboli, Elio; Prescott, Jennifer; Chen, Constance; De Vivo, Immaculata; Govannucci, Edward; Hunter, David; Kraft, Peter; Lindstrom, Sara; Gapstur, Susan M.; Jacobs, Eric J.; Diver, W. Ryan; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Kooperberg, Charles; Hohensee, Chancellor; Rodabough, Rebecca J.; Cortessis, Victoria K.; Conti, David V.; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Haiman, Christopher A.; Cussenot, Olivier; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Porru, Stefano; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Grossman, H. Barton; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Fraumeni, Joseph; Chanock, Stephen J.; Hewitt, Stephen M.; Silverman, Debra T.; Rothman, Nathaniel; Prokunina-Olsson, Ludmila

    2014-01-01

    A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell cycle protein. We performed genetic fine mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r2≥0.7) associated with increased bladder cancer risk. From this group we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWAS, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele odds ratio (OR) =1.18 (95%CI=1.09-1.27, p=4.67×10−5 vs. OR =1.01 (95%CI=0.93-1.10, p=0.79) for non-aggressive disease, with p=0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (p=0.013) and, independently, with each rs7257330-A risk allele (ptrend=0.024). Over-expression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E over-expression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models. PMID:25320178

  19. An informative panel of somatic cell hybrids for physical mapping on human chromosome 19q.

    PubMed Central

    Bachinski, L L; Krahe, R; White, B F; Wieringa, B; Shaw, D; Korneluk, R; Thompson, L H; Johnson, K; Siciliano, M J

    1993-01-01

    A panel of 22 somatic cell hybrids divides the q arm of human chromosome 19 into 22 ordered subregions. The panel was characterized with respect to 41 genetic markers. In most cases, a single fragment of chromosome 19 was present in each hybrid. In two cell lines the presence of multiple fragments of the chromosome was demonstrated by segregation of these fragments in subclones. On the basis of the results of marker analysis in this panel, the most likely order of the markers tested is MANB-D19S7-PEPD-D19S9-GPI-C/EBP-TGFB1++ +-(CYP2A,BCKDHA,CGM2,NCA)-PSG1-(D19S8, XRCC1)-(ATP1A3,D19S19)-(D19S37,APOC2)-C KM-ERCC2-ERCC1-(D19S116,D19S117)- (D19S118,D19S119, D19S63,p36.1,D19S112,D19S62,D19S51,D19S54, D19S55)-pW39-D19S6-(D19S50,TNNT1)-D19S2 2-(HRC,CGB,FTL,PRKCG)-qter. This gene order is generally consistent with published physical and genetic mapping orders, although some discrepancies exist. By means of a mapping function that relates the frequency of cosegregation of markers to the distance between them, estimates were made of the sizes, in megabases, of the 19q subregions. The relative physical distances between reference markers were compared with published genetic distances for 19q. Excellent correlation was observed, suggesting that the physical distances calculated by this method are predictive of genetic distances in this region of the genome and, therefore, are just as useful in estimating relative positions of markers. Images Figure 1 PMID:8430698

  20. 19q13.33→qter trisomy in a girl with intellectual impairment and seizures

    PubMed Central

    Carvalheira, Gianna; Oliveira, Mariana Moysés; Takeno, Sylvia; Lima, Fernanda Teresa de; Meloni, Vera Ayres; Melaragno, Maria Isabel

    2014-01-01

    Rearrangements in chromosome 19 are rare. Among the 35 patients with partial 19q trisomy described, only six have a breakpoint defined by array. The 19q duplication results in a variable phenotype, including dysmorphisms, intellectual disability and seizure. In a female patient, although G-banding at 550 band-resolution was normal, multiplex ligation-dependent probe amplification (MLPA) technique and genomic array showed a 10.6 Mb terminal duplication of chromosome 19q13. Fluorescent in situ hybridization (FISH) revealed that the duplicated region was attached to the short arm of chromosome 21 and silver staining showed four small acrocentrics with nucleolar organization region (NOR) activity, suggesting that the breakpoint in chromosome 21 was at p13. This is the first de novo translocation between 19q13.33 and 21p13 described in liveborn. The chromosome 19 is known to be rich in coding and non-coding regions, and chromosomal rearrangements involving this chromosome are very harmful. Furthermore, the 19q13.33→qter region is dense in pseudogenes and microRNAs, which are potent regulators of gene expression. The trisomic level of this region may contribute to deregulation of global gene expression, and consequently, may lead to abnormal development on the carriers of these rearrangements. PMID:25606462

  1. Amplifications and deletions in clinical ovarian cancer detected by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Sakunaga, H.; Sakamoto, M.; Kallioniemi, A.; Kallioniemi, O.; Sudar, D.; Pinkel, D.; Gray, I.W. ); Yang-Feng, T. )

    1993-01-01

    CGH is a new powerful method for surveying the whole genome for DNA sequence copy number changes in a single hybridization. The method is based on the competition between biotinylated total tumor DNA and a digoxigenin-labeled normal genomic reference DNA during hybridization to normal metaphase chromosomes. After immunofluorescent staining with avidin-FITC and antidigoxigenin Rhodamine, variation of DNA sequence copy numbers in the tumor are detected as variations in the ratios of green and red fluorescence along each chromosome. The authors applied CGH analysis to DNA extracted from surgically removed ovarian cancer specimens (27 cases). Seven amplified regions were identified by CGH analysis. Three loci, 1p32-p34 (most likely, MYCL), 8q23-q24 (MYC), 12q12 (KRAS2), were known to be amplified in solid tumors and four other loci (3q26, 6p22, 9q31-q33, 17q22) were previously unknown to be amplified. Many regions indicating physical deletions were also identified by the analysis. Chromosomal regions showing frequent deletion were 1p, 3p, 17p, 17q, 19p, 19q and Xp. There were also significant similarities of the regions with amplifications and deletions between bilateral ovarian tumors or among several different tumors form the same ovarian cancer cases, suggesting that the genetic changes observed might be relatively early events during the progression of ovarian cancer.

  2. Bimodal expressivity in dominant retinitis pigmentosa genetically linked to chromosome 19q.

    PubMed Central

    Evans, K; al-Maghtheh, M; Fitzke, F W; Moore, A T; Jay, M; Inglehearn, C F; Arden, G B; Bird, A C

    1995-01-01

    A clinical, psychophysical, and electrophysiologic study was undertaken of two autosomal dominant retinitis pigmentosa pedigrees with a genetic mutation assigned to chromosome 19q by linkage analysis. Members with the abnormal haplotype were either symptomatic with adolescent onset nyctalopia, restricted visual fields, and non-detectable electroretinographic responses by 30 years of age, or asymptomatic with normal fundus appearance and minimal or no psychophysical or electroretinographic abnormalities. There was no correlation in the severity in parents and their offspring. Pedigree analysis suggested that although the offspring of parents with the genetic mutation were at 50% risk of having the genetic defect, the risk of being symptomatic during a working lifetime was only 31%. Such bimodal phenotypic expressivity in these particular pedigrees may be explained by a second, allelic genetic influence and may be a phenomenon unique to this genetic locus. Genetic counselling in families expressing this phenotype can only be based on haplotype analysis since clinical investigations, even in the most elderly, would not preclude the presence of the mutant gene. PMID:7488604

  3. Polymorphism at 19q13.41 predicts breast cancer survival specifically after endocrine therapy

    PubMed Central

    Khan, Sofia; Fagerholm, Rainer; Rafiq, Sajjad; Tapper, William; Aittomäki, Kristiina; Liu, Jianjun

    2015-01-01

    Purpose Although most estrogen receptor (ER)-positive breast cancer patients benefit from endocrine therapies, a significant proportion do not. Our aim was to identify inherited genetic variations that might predict survival among patients receiving adjuvant endocrine therapies. Experimental Design We performed a meta-analysis of two genome-wide studies; Helsinki Breast Cancer Study, 805 patients, with 240 receiving endocrine therapy and Prospective study of Outcomes in Sporadic versus Hereditary breast cancer, 536 patients, with 155 endocrine therapy-patients, evaluating 486,478 single nucleotide polymorphisms (SNPs). The top four associations from the endocrine treatment subgroup were further investigated in two independent datasets totalling 5011 patients, with 3485 receiving endocrine therapy. Results A meta-analysis identified a common SNP rs8113308, mapped to 19q13.41, associating with reduced survival among endocrine treated patients (hazard ratio (HR) 1.69, 95% confidence interval (CI) 1.37-2.07, P = 6.34 ×10−7) and improved survival among ER-negative patients, with a similar trend in ER-positive cases not receiving endocrine therapy. In a multivariate analysis adjusted for conventional prognostic factors, we found a significant interaction between the rs8113308 and endocrine treatment indicating a predictive, treatment-specific effect of the SNP rs8113308 on breast cancer survival, with the per-allele HR for interaction 2.16 (95% CI 1.30 – 3.60, Pinteraction = 0.003) and HR=7.77 (95% CI 0.93 – 64.71) for the homozygous genotype carriers. A biological rationale is suggested by in silico functional analyses. Conclusions Our findings suggest carrying the rs8113308 rare allele may identify patients who will not benefit from adjuvant endocrine treatment. PMID:25964295

  4. Mechanisms leading to Prader-Willi syndrome in a patient with a de novo 46, XY, t(15; 19)(q12; q13.41)

    SciTech Connect

    Sun, Y.; Hainline, B.E.; Palmer, C.G.

    1994-09-01

    A three year and six month-old boy with Prader-Willi syndrome (PWS) was found to have a de novo 46, XY, t(15; 19) (q12; q13.41) karyotype. PCR studies of microsatellite loci showed heterozygosity, including biparental inheritance. Fluorescence in situ hybridization (FISH) studies were performed with cosmid probes D15S11, SNRPN, D15S10, and GABRB3 and no deletion was found. The chromosomal breakage occurred inside the SNRPN contig, which contains two overlapping cosmids. Each cosmid shows signals with FISH on both the der(15) and the der(19), and on the normal chromosome 15. Additional FISH studies using cosmid subfragments demonstrated that the breakage occurred upstream to coding exons of the SNRPN gene. SNRPN contains 10 exons, including two recently identified upstream exons, exon-1 and exon-0. A probe from an RT-PCR product (1020bp) of total human brain mRNA spanning exons 1-8 and an exon1-specific probe were used on genome DNA Southern hybridizaiton. An extra DNA band 20kb in size was detected specifically from our patients genomic DNA using BamHl when compared to his normal parents and normal individuals. Further studies revealed that the breakage occurred between exon 0 and exon 1 of the SNRPN gene.

  5. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human Chromosome 19q13.3

    PubMed Central

    Wolf, Rebecca M.; Draghi, Nicole; Liang, Xiquan; Dai, Chengkai; Uhrbom, Lene; Eklöf, Charlotta; Westermark, Bengt; Holland, Eric C.; Resh, Marilyn D.

    2003-01-01

    p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%–80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity. PMID:12600941

  6. Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma

    PubMed Central

    Chng, WJ; Gertz, MA; Chung, T-H; Van Wier, S; Keats, JJ; Baker, A; Bergsagel, PL; Carpten, J; Fonseca, R

    2010-01-01

    In this study, we correlated array-comparative genomic hybridization-defined abnormalities with survival in two different cohorts of patients treated with therapy based on high-dose melphalan with autologous stem-cell transplantation (64 from the Mayo Clinic and 67 from the University of Arkansas Medical School) and identified that several regions of genomic gains and losses were significantly associated with poorer survival. Three noncontiguous survival relevant regions covering 1p31-33 and two noncontiguous regions covering 20p12.3-12.1 were common between the two datasets. The prognostic relevance of these hotspots was validated in an independent cohort using fluorescent in situ hybridization, which showed that 1p31-32 loss is significantly associated with shorter survival (24.5 months versus 40 months, log-rank P-value=0.01), whereas 20p12 loss has a trend toward shorter survival (26.3 months versus 40 months, log-rank P-value=0.06). On multivariate analysis, 1p31-32 loss is an independent prognostic factor. On further analysis, the prognostic impact of 1p31-32 loss is due to shortening of post-relapse survival as there is no impact on complete response rates and progression-free survival. PMID:20220778

  7. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1

    SciTech Connect

    Bisceglia, L.; Totaro, A.; Melchionda, S.

    1997-03-01

    Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (Z{sub max}) of 13.11 at a maximum recombination fraction ({theta}{sub max}) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant Z{sub max} = 3.11 at {theta}{sub max} of .00, with marker D19S225). 33 refs., 2 figs., 1 tab.

  8. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1.

    PubMed Central

    Bisceglia, L; Calonge, M J; Totaro, A; Feliubadaló, L; Melchionda, S; García, J; Testar, X; Gallucci, M; Ponzone, A; Zelante, L; Zorzano, A; Estivill, X; Gasparini, P; Nunes, V; Palacín, M

    1997-01-01

    Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225). PMID:9042921

  9. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3.

    PubMed

    Mahadevan, M S; Baird, S; Bailly, J E; Shutler, G G; Sabourin, L A; Tsilfidis, C; Neville, C E; Narang, M; Korneluk, R G

    1995-11-01

    We present the cloning and sequencing of the human gene for a novel G-protein coupled receptor (GPR4), from the critical myotonic dystrophy (DM) region on chromosome 19q13.3. The homologous porcine gene was isolated and sequenced as well. The genes of both species are intronless and contain an open reading frame encoding a protein of 362 amino acids. In human, two isoforms of GPR4 are expressed, differing in their 3' untranslated region due to the use of alternate polyadenylation signals and measuring approximately 2.8 and 1.8 kb, respectively. Northern blot analysis showed that GPR4 is widely expressed, with higher levels in kidney, heart, and especially lung, where it is at least fivefold greater than in other tissues. Sequence analysis suggests that GPR4 is a peptide receptor and shares strongest homologies with purinergic receptors and receptors for angiotensin II, platelet activating factor, thrombin, and bradykinin. PMID:8595909

  10. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2.

    PubMed

    Ryan, Dorothy M; Vincent, Thomas L; Salit, Jacqueline; Walters, Matthew S; Agosto-Perez, Francisco; Shaykhiev, Renat; Strulovici-Barel, Yael; Downey, Robert J; Buro-Auriemma, Lauren J; Staudt, Michelle R; Hackett, Neil R; Mezey, Jason G; Crystal, Ronald G

    2014-01-01

    Genome-wide association studies (GWAS) and candidate gene studies have identified a number of risk loci associated with the smoking-related disease COPD, a disorder that originates in the airway epithelium. Since airway basal cell (BC) stem/progenitor cells exhibit the earliest abnormalities associated with smoking (hyperplasia, squamous metaplasia), we hypothesized that smoker BC have a dysregulated transcriptome, enriched, in part, at known GWAS/candidate gene loci. Massive parallel RNA sequencing was used to compare the transcriptome of BC purified from the airway epithelium of healthy nonsmokers (n = 10) and healthy smokers (n = 7). The chromosomal location of the differentially expressed genes was compared to loci identified by GWAS to confer risk for COPD. Smoker BC have 676 genes differentially expressed compared to nonsmoker BC, dominated by smoking up-regulation. Strikingly, 166 (25%) of these genes are located on chromosome 19, with 13 localized to 19q13.2 (p<10⁻⁴ compared to chance), including 4 genes (NFKBIB, LTBP4, EGLN2 and TGFB1) associated with risk for COPD. These observations provide the first direct connection between known genetic risks for smoking-related lung disease and airway BC, the population of lung cells that undergo the earliest changes associated with smoking. PMID:24498427

  11. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3

    SciTech Connect

    Mahadevan, M.S.; Baird, S.; Bailly, J.E.

    1995-11-01

    We present the cloning and sequencing of the human gene for a novel G-protein coupled receptor (GPR4), from the critical myotonic dystrophy (DM) region on chromosome 19q13.3. The homologous porcine gene was isolated and sequenced as well. The genes of both species are intronless and contain an open reading frame encoding a protein of 362 amino acids. In human, two isoforms of GPR4 are expressed, differing in their 3{prime} untranslated region due to the use of alternate polyadenylation signals and measuring approximately 2.8 and 1.8 kb, respectively. Northern blot analysis showed that GPR4 is widely expressed, with higher levels in kidney, heart, and especially lung, where it is at least fivefold greater than in other tissues. Sequence analysis suggests that GPR4 is a peptide receptor and shares strongest homologies with purinergic receptors and receptors for angiotensin II, platelet activating factor, thrombin, and bradykinin. 25 refs., 3 figs., 1 tab.

  12. Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome bands 19q13.2-q13.3 by fluorescence in situ hybridization

    SciTech Connect

    Stoffel, M.; Fernald, A.A.; Bell, G.I.; Le Beau, M.M.

    1995-08-10

    The gastric inhibitory polypeptide receptor gene (GIPR) was localized, using fluorescence in situ hybridization (FISH), to human chromosome bands 19q13.2-q13.3. Gastric inhibitory polypeptide (GIP) is a potent stimulator of insulin secretion and mutations in the GIPR gene may be related to non-insulin-dependent diabetes mellitus (NIDDM). 13 refs., 1 fig.

  13. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  14. Severe Progressive Autism Associated with Two de novo Changes: A 2.6-Mb 2q31.1 Deletion and a Balanced t(14;21)(q21.1;p11.2) Translocation with Long-Range Epigenetic Silencing of LRFN5 Expression.

    PubMed

    de Bruijn, D R H; van Dijk, A H A; Pfundt, R; Hoischen, A; Merkx, G F M; Gradek, G A; Lybæk, H; Stray-Pedersen, A; Brunner, H G; Houge, G

    2010-02-01

    In a 19-year-old severely autistic and mentally retarded girl, a balanced de novo t(14;21)(q21.1;p11.2) translocation was found in addition to a de novo 2.6-Mb 2q31.1 deletion containing 15 protein-encoding genes. To investigate if the translocation might contribute to developmental stagnation at the age of 2 years with later regression of skills, i.e. a more severe phenotype than expected from the 2q31.1 deletion, the epigenetic status and expression of genes proximal and distal to the 14q21.1 breakpoint were investigated in Ebstein Barr Virus-transformed lymphoblast and primary skin fibroblast cells. The 14q21.1 breakpoint was found to be located between a cluster of 7 genes 0.1 Mb upstream, starting with FBXO33, and the single and isolated LRFN5 gene 2.1 Mb downstream. Only expression of LRFN5 appeared to be affected by its novel genomic context. In patient fibroblasts, LRFN5 expression was 10-fold reduced compared to LRFN5 expressed in control fibroblasts. In addition, a relative increase in trimethylated histone H3 lysine 9 (H3K9M3)-associated DNA starting exactly at the translocation breakpoint and going 2.5 Mb beyond the LRFN5 gene was found. At the LRFN5 promoter, there was a distinct peak of trimethylated histone H3 lysine 27 (H3K27M3)-associated DNA in addition to a diminished trimethylated histone H3 lysine 4 (H3K4M3) level. We speculate that dysregulation of LRFN5, a postsynaptic density-associated gene, may contribute to the patient's autism, even though 2 other patients with 14q13.2q21.3 deletions that included LRFN5 were not autistic. More significantly, we have shown that translocations may influence gene expression more than 2 Mb away from the translocation breakpoint. PMID:20648246

  15. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q.

    PubMed

    Zhang, Enjie; Cotton, Victoria E; Hidalgo-Bravo, Alberto; Huang, Yan; Bell, Adam J; Jarrett, Ruth F; Wilkie, Gavin S; Davison, Andrew J; Nacheva, Ellie P; Siebert, Reiner; Majid, Aneela; Kelpanides, Inga; Jayne, Sandrine; Dyer, Martin J; Royle, Nicola J

    2016-01-01

    Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers. PMID:26947392

  16. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q

    PubMed Central

    Zhang, Enjie; Cotton, Victoria E.; Hidalgo-Bravo, Alberto; Huang, Yan; J. Bell, Adam; F. Jarrett, Ruth; Wilkie, Gavin S.; Davison, Andrew J.; P. Nacheva, Ellie; Siebert, Reiner; Majid, Aneela; Kelpanides, Inga; Jayne, Sandrine; Dyer, Martin J.; Royle, Nicola J.

    2016-01-01

    Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers. PMID:26947392

  17. Gene expression profiling of 1p35-36 genes in neuroblastoma.

    PubMed

    Janoueix-Lerosey, Isabelle; Novikov, Eugene; Monteiro, Marta; Gruel, Nadège; Schleiermacher, Gudrun; Loriod, Béatrice; Nguyen, Catherine; Delattre, Olivier

    2004-08-01

    Deletion of the chromosome 1p36 region is a frequent abnormality in neuroblastoma. To gain further insights into the role of this alteration in oncogenesis, we have constructed a specific cDNA microarray representing most known genes and ESTs from the 1p35-36 region and analysed the expression profiles of 15 neuroblastoma cell lines and 28 neuroblastoma tumours. Hierarchical clustering using expression levels of 320 cDNAs from 1p35-36 separated localized or 4S cases without 1p deletion from advanced stages and cell lines. Supervised learning classification enabled to predict reliably the status of chromosome 1p according to its expression profile. Around 15% of the genes or ESTs presented a significantly decreased expression in samples with 1p deletion as compared to 1p-normal samples suggesting that 1p deletion results in a gene dosage effect on a subset of genes critical for the development of 1p-deleted neuroblastoma. Several genes presumed to have functions in neural differentiation (CDC42, VAMP3, CLSTN1), signal transduction in neural cells (GNB1) and cell cycle regulation (STMN1, RPA2, RBAF600, FBXO6, MAD2L2) exhibited a decreased expression in samples presenting 1p deletion. The identification of such genes provides baseline information for further studies to elucidate how these genes could individually or collectively play a critical role in neuroblastoma tumorigenesis. PMID:15195138

  18. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p

    PubMed Central

    De Smet, Cedric H.; Vittone, Elisa; Scherer, Max; Houweling, Martin; Liebisch, Gerhard; Brouwers, Jos F.; de Kroon, Anton I.P.M.

    2012-01-01

    The degree of fatty acid unsaturation, that is, the ratio of unsaturated versus saturated fatty acyl chains, determines membrane fluidity. Regulation of expression of the fatty acid desaturase Ole1p was hitherto the only known mechanism governing the degree of fatty acid unsaturation in Saccharomyces cerevisiae. We report a novel mechanism for the regulation of fatty acid desaturation that is based on competition between Ole1p and the glycerol-3-phosphate acyltransferase Sct1p/Gat2p for the common substrate C16:0-CoA. Deletion of SCT1 decreases the content of saturated fatty acids, whereas overexpression of SCT1 dramatically decreases the desaturation of fatty acids and affects phospholipid composition. Whereas overexpression of Ole1p increases desaturation, co-overexpression of Ole1p and Sct1p results in a fatty acid composition intermediate between those obtained upon overexpression of the enzymes separately. On the basis of these results, we propose that Sct1p sequesters C16:0-CoA into lipids, thereby shielding it from desaturation by Ole1p. Ta­king advantage of the growth defect conferred by overexpressing SCT1, we identified the acyltransferase Cst26p/Psi1p as a regulator of Sct1p activity by affecting the phosphorylation state and overexpression level of Sct1p. The level of Sct1p phosphorylation is increased when cells are supplemented with saturated fatty acids, demonstrating the physiological relevance of our findings. PMID:22323296

  19. Overexpression of CEBPA resulting from the translocation t(14;19)(q32;q13) of human precursor B acute lymphoblastic leukemia.

    PubMed

    Chapiro, Elise; Russell, Lisa; Radford-Weiss, Isabelle; Bastard, Christian; Lessard, Michel; Struski, Stephanie; Cave, Helene; Fert-Ferrer, Sandra; Barin, Carole; Maarek, Odile; Della-Valle, Veronique; Strefford, Jonathan C; Berger, Roland; Harrison, Christine J; Bernard, Olivier A; Nguyen-Khac, Florence

    2006-11-15

    Subtle variation in the expression or function of a small group of transcription factors can drive leukemogenesis. The CEBPA protein is known to regulate the balance between cell proliferation and differentiation during early hematopoietic development and myeloid differentiation. In human myeloid leukemia, CEBPA is frequently inactivated by mutation and indirect and posttranslational mechanisms, in keeping with tumor suppressor properties. We report that CEBPA is activated by juxtaposition to the immunoglobulin gene enhancer upon its rearrangement with the immunoglobulin heavy-chain locus in precursor B-cell acute lymphoblastic leukemia harboring t(14;19)(q32;q13). Overexpression of apparently normal CEBPA RNA or protein was observed in 6 patients. These data indicate that CEBPA may exhibit oncogenic as well as tumor suppressor properties in human leukemogenesis. PMID:16873674

  20. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1

    SciTech Connect

    Olsen, A.S.; Georgescu, A.; Johnson, S.; Carrano, A.V.

    1996-06-01

    We describe the assembly of a 1-Mb cosmid contig and restriction map spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. The map was constructed from 16 smaller contigs assembled by fingerprinting, a BAC and a PAC clone, and 42 previously unmapped cosmids. In most cases, single-step cosmid walks were sufficient to join two previously assembled contigs, and all but one gap was filled from this cosmid contig library. The remaining gap of about 19 kb was spanned with a single BAC and a single PAC clone. EcoRI mapping of a dense set of overlapping clones validated the assembly of the map and indicated a length of 1040 kb for the contig. This high-resolution clone map provides an ideal resource for gene identification through cDNA selection, exon trapping, and DNA sequencing. 10 refs., 1 fig.

  1. Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4.

    PubMed Central

    Mehenni, H; Blouin, J L; Radhakrishna, U; Bhardwaj, S S; Bhardwaj, K; Dixit, V B; Richards, K F; Bermejo-Fenoll, A; Leal, A S; Raval, R C; Antonarakis, S E

    1997-01-01

    Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease with variable expression and incomplete penetrance, characterized by mucocutaneous pigmentation and hamartomatous polyposis. Patients with PJS have increased frequency of gastrointestinal and extraintestinal malignancies (ovaries, testes, and breast). In order to map the locus (or loci) associated with PJS, we performed a genomewide linkage analysis, using DNA polymorphisms in six families (two from Spain, two from India, one from the United States, and one from Portugal) comprising a total of 93 individuals, including 39 affected and 48 unaffected individuals and 6 individuals with unknown status. During this study, localization of a PJS gene to 19p13.3 (around marker D19S886) had been reported elsewhere. For our families, marker D19S886 yielded a maximum LOD score of 4.74 at a recombination fraction (theta) of .045; multipoint linkage analysis resulted in a LOD score of 7.51 for the interval between D19S886 and 19 pter. However, markers on 19q13.4 also showed significant evidence for linkage. For example, D19S880 resulted in a maximum LOD score of 3.8 at theta = .13. Most of this positive linkage was contributed by a single family, PJS07. These results confirm the mapping of a common PJS locus on 19p13.3 but also suggest the existence, in a minority of families, of a potential second PJS locus, on 19q13.4. Positional cloning and characterization of the PJS mutations will clarify the genetics of the syndrome and the implication of the gene(s) in the predisposition to neoplasias. PMID:9399902

  2. Skp1p and the F-Box Protein Rcy1p Form a Non-SCF Complex Involved in Recycling of the SNARE Snc1p in Yeast

    PubMed Central

    Galan, Jean-Marc; Wiederkehr, Andreas; Seol, Jae Hong; Haguenauer-Tsapis, Rosine; Deshaies, Raymond J.; Riezman, Howard; Peter, Matthias

    2001-01-01

    Skp1p–cullin–F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins. PMID:11287615

  3. Constitutional Ip36 deletion in a child with neuroblastoma

    SciTech Connect

    Biegel, J.A.; Zackai, E.H.; Scher, C.D.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia ); White, P.S.; Marshall, H.N.; Fujimori, Minoru; Brodeur, G.M. )

    1993-01-01

    The authors describe a child with dysmorphic features, as well as developmental and growth delay, who developed neuroblastoma at 5 mo of age. Cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 1p36.1 [r arrow] 1p36.2, which was apparent only with high-resolution banding. Molecular analysis with a collection of polymorphic DNA probes for 1p confirmed an interstitial deletion involving subbands of 1p36. Deletions of this region are a common finding in neuroblastoma cells from patients with advanced stages of disease. Therefore, these results (a) suggest that constitutional deletion of this region predisposed the patient to the development of neuroblastoma and (b) support the localization of a neuroblastoma tumor-suppressor locus to 1p36. 48 refs., 2 figs.

  4. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    SciTech Connect

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequences in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.

  5. Breakpoint characterization of the der(19)t(11;19)(q13;p13) in the ovarian cancer cell line SKOV-3.

    PubMed

    Onkes, Wiebke; Fredrik, Regina; Micci, Francesca; Schönbeck, Benjamin J; Martin-Subero, Jose I; Ullmann, Reinhard; Hilpert, Felix; Bräutigam, Karen; Janssen, Ottmar; Maass, Nicolai; Siebert, Reiner; Heim, Sverre; Arnold, Norbert; Weimer, Jörg

    2013-05-01

    About 20% of ovarian carcinomas show alterations of 19p13 and/or 19q13 in the form of added extra material whose origin often is from chromosome 11. Based on earlier spectral karyotype analysis of the ovarian cancer cell line SKOV-3, which shows an unbalanced translocation der(19)t(11;19), the aim of this study was to determine the precise breakpoints of that derivative chromosome. After rough delimitation of the breakpoints of microdissected derivative chromosomes by array analysis, we designed a matrix of primers spanning 11q13.2 and 19p13.2 detecting multiple amplicons on genomic and cDNA. Sequencing the amplicons, accurate localization of both breakpoints on both chromosomes was possible and we found that exon 14 of HOOK2 from chromosome 19 and exon 2 of ACTN3 from chromosome 11 were fused in the derivative chromosome. The breakpoint in the HOOK2 gene was in an intrinsic triplet of nucleic acids leading to a shift in the ACTN3 reading frame in the derivative chromosome. This frameshift alteration should give rise to an early stop codon causing a loss of function of ACTN3. Signals in two-dimensional Western blotting exactly match to calculated molecular mass and the isoelectric point of the fusion protein. PMID:23362175

  6. Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype.

    PubMed Central

    Al-Maghtheh, M.; Vithana, E.; Tarttelin, E.; Jay, M.; Evans, K.; Moore, T.; Bhattacharya, S.; Inglehearn, C. F.

    1996-01-01

    Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (ARP), accounting for approximately 25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This "bimodal expressivity" contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus. PMID:8808602

  7. Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11), and association with a unique bimodal expressivity phenotype

    SciTech Connect

    Al-Maghtheh, M.; Vithana, E.; Tarttelin, E.; Evans, K.

    1996-10-01

    Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (adRP), accounting for {approximately}25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This {open_quotes}bimodal expressivity{close_quotes} contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus. 27 refs., 3 figs., 1 tab.

  8. Cloning of ELL, a gene that fuses to MLL in a t(11; 19)(q23; p13. 1) in acute myeloid leukemia

    SciTech Connect

    Thirman, M.J.; Levitan, D.A.; Kobayashi, H.; Simon, M.C.; Rowley, J.D. )

    1994-12-06

    To characterize the functions of MLL fusion transcripts, we cloned the gene that fuses to MLL in the translocation t(11;19)(q23;p13.1). This translocation is distinct from another type of 11;19 translocation with a 19p13.3 breakpoint that results in the fusion of MLL to the ENL gene. By PCR screening of a cDNA library prepared from a patient's leukemia cells with this translocation, we obtained a fusion transcript containing exon 7 of MLL and sequence of an unknown gene. The sequence of this gene was amplified and used as a probe to screen a fetal brain cDNA library. On Northern blot analysis, this cDNA detected a 4.4-kb transcript that was abundant in peripheral blood leukocytes, skeletal muscle, placenta, and testis and expressed at lower levels in spleen, thymus, heart, brain, lung, kidney, liver, and ovary. In addition, a 2.8-kb transcript was present in peripheral blood, testis, and placenta. On [open quotes]zoo blots,[close quotes] this gene was shown to be evolutionarily conserved in 10 mammalian species as well as in chicken, frog, and fish. We have named this gene ELL (for eleven-nineteen lysine-rich leukemia gene). A highly basic, lysine-rich motif of the predicted ELL protein is homologous to similar regions of several proteins, including the DNA-binding domain of poly(ADP-ribose) polymerase. The characterization of the normal functions of ELL as well as its altered function when fused to MLL will be critical to further our understanding of the mechanisms of leukemogenesis. 30 refs., 7 figs.

  9. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia.

    PubMed Central

    Thirman, M J; Levitan, D A; Kobayashi, H; Simon, M C; Rowley, J D

    1994-01-01

    To characterize the functions of MLL fusion transcripts, we cloned the gene that fuses to MLL in the translocation t(11;19)(q23;p13.1). This translocation is distinct from another type of 11;19 translocation with a 19p13.3 breakpoint that results in the fusion of MLL to the ENL gene. By PCR screening of a cDNA library prepared from a patient's leukemia cells with this translocation, we obtained a fusion transcript containing exon 7 of MLL and sequence of an unknown gene. The sequence of this gene was amplified and used as a probe to screen a fetal brain cDNA library. On Northern blot analysis, this cDNA detected a 4.4-kb transcript that was abundant in peripheral blood leukocytes, skeletal muscle, placenta, and testis and expressed at lower levels in spleen, thymus, heart, brain, lung, kidney, liver, and ovary. In addition, a 2.8-kb transcript was present in peripheral blood, testis, and placenta. On "zoo blots," this gene was shown to be evolutionarily conserved in 10 mammalian species as well as in chicken, frog, and fish. We have named this gene ELL (for eleven-nineteen lysine-rich leukemia gene). A highly basic, lysine-rich motif of the predicted ELL protein is homologous to similar regions of several proteins, including the DNA-binding domain of poly(ADP-ribose) polymerase. The characterization of the normal functions of ELL as well as its altered function when fused to MLL will be critical to further our understanding of the mechanisms of leukemogenesis. Images PMID:7991593

  10. RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.

    PubMed

    Orozco, Helena; Sepúlveda, Ana; Picazo, Cecilia; Matallana, Emilia; Aranda, Agustín

    2016-06-01

    Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established. PMID:26846624

  11. Sec1p and Mso1p C-terminal tails cooperate with the SNAREs and Sec4p in polarized exocytosis

    PubMed Central

    Weber-Boyvat, Marion; Aro, Nina; Chernov, Konstantin G.; Nyman, Tuula; Jäntti, Jussi

    2011-01-01

    The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p. PMID:21119007

  12. Sec1p and Mso1p C-terminal tails cooperate with the SNAREs and Sec4p in polarized exocytosis.

    PubMed

    Weber-Boyvat, Marion; Aro, Nina; Chernov, Konstantin G; Nyman, Tuula; Jäntti, Jussi

    2011-01-15

    The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2-1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1-657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1-657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p. PMID:21119007

  13. Four Novel Loci (19q13, 6q24, 12q24, and 5q14) Influence the Microcirculation In Vivo

    PubMed Central

    Ikram, M. Arfan; Wang, Jie Jin; Klein, Ronald; Klein, Barbara E. K.; Breteler, Monique M. B.; Cheung, Ning; Liew, Gerald; Mitchell, Paul; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hofman, Albert; de Jong, Paulus T. V. M.; van Duijn, Cornelia M.; Kao, Linda; Cheng, Ching-Yu; Smith, Albert Vernon; Glazer, Nicole L.; Lumley, Thomas; McKnight, Barbara; Psaty, Bruce M.; Jonasson, Fridbert; Eiriksdottir, Gudny; Aspelund, Thor; Harris, Tamara B.; Launer, Lenore J.; Taylor, Kent D.; Li, Xiaohui; Iyengar, Sudha K.; Xi, Quansheng; Sivakumaran, Theru A.; Mackey, David A.; MacGregor, Stuart; Martin, Nicholas G.; Young, Terri L.; Bis, Josh C.; Wiggins, Kerri L.; Heckbert, Susan R.; Hammond, Christopher J.; Andrew, Toby; Fahy, Samantha; Attia, John; Holliday, Elizabeth G.; Scott, Rodney J.; Islam, F. M. Amirul; Rotter, Jerome I.; McAuley, Annie K.; Boerwinkle, Eric; Tai, E. Shyong; Gudnason, Vilmundur; Siscovick, David S.; Vingerling, Johannes R.; Wong, Tien Y.

    2010-01-01

    There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10−8) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%–3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10−25, within the RASIP1 locus), rs225717 (6q24; p = 1.25×10−16, adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10−13, in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10−16, adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease. PMID

  14. Laa1p, a Conserved AP-1 Accessory Protein Important for AP-1 Localization in Yeast

    PubMed Central

    Fernández, G. Esteban

    2006-01-01

    AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent α-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes. PMID:16687571

  15. Partial monosomy of chromosome 1p36.3: A distinctive phenotype

    SciTech Connect

    Reish, O.; Berry, S.A.; King. R.A.

    1994-09-01

    We describe a series of five patients with a partial monosomy of 1p36.3 presenting with a similar syndromic appearance. The phenotype of deletion 1p36.3 patients includes abnormal facies, multiple congenital malformations, and mental retardation.The ages of the patients in our series ranged from 3 to 50 years. As the deletion is very small, detection in the present cases relied upon high resolution G-band analyses and was confirmed with FISH in cases 3 and 5. Patients 2 and 3 were diagnosed as adults; thus smaller deletions in 1p36.33 may be associated with longer life expectancy, but include the critical region for the above phenotype. We noted that the dysmorphic features of the patients are more prominent with older age and are difficult to appreciate in infancy. Observation of this specific 1p36 appears as a white, terminal G-band; detection of a small partial deletion or rearrangement may require greater than 550 band level resolution. FISH utilizing a probe to 1pter can facilitate and confirm these analyses.

  16. Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells

    SciTech Connect

    Savelyeva, L.; Corvi, R.; Schwab, M. )

    1994-08-01

    Human neuroblastoma cells often are monosomic for the distal portion of 1p (1p36). The authors report that the deleted 1p material in cells of neuroblastoma lines is preferentially replaced by material from chromosome 17, resulting from an unbalanced 1;17 translocation. Chromosome 17 often acquires instability, followed by the integration of fragments into various marker chromosomes. As a consequence, 17q material can increase over 17p material. The nonrandom frequency of 1;17 translocations appears to indicate an as-yet-undefined contribution to neuroblastoma development. 35 refs., 4 figs., 1 tab.

  17. 3p deletion syndrome.

    PubMed

    Kaur, Anupam; Khetarpal, S

    2013-08-01

    3p deletion is a rare cytogenetic finding. Here we describe a 3 months old male with congenital malformations. His karyotype revealed 3p deletion 46,XY,del(3)(p25-pter). The child had flexion deformity of wrist and elbow which has never been reported before. PMID:24036645

  18. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  19. Ceramide signalling impinges on Sit4p and Hog1p to promote mitochondrial fission and mitophagy in Isc1p-deficient cells.

    PubMed

    Teixeira, Vitor; Medeiros, Tânia C; Vilaça, Rita; Pereira, Andreia T; Chaves, Susana R; Côrte-Real, Manuela; Moradas-Ferreira, Pedro; Costa, Vítor

    2015-09-01

    Mitochondria function as the powerhouses of the cell for energy conversion through the oxidative phosphorylation process. Accumulation of dysfunctional mitochondria promotes a bioenergetic crisis and cell death by apoptosis. Yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit mitochondrial dysfunction and shortened lifespan associated with the accumulation of specific ceramide species and activation of the PP2A-like protein phosphatase Sit4p and of the Hog1p kinase. Here, we show that isc1Δ cells display hyperactivation of mitophagy that is suppressed by downregulating Sit4p, Hog1p or the TORC1-Sch9p pathway. Notably, isc1Δ cells also have high levels of Dnm1p associated with unbalanced mitochondrial fission, leading to mitochondrial fragmentation, and DNM1 deletion suppressed the oxidative stress sensitivity and shortened lifespan of isc1Δ cells. Moreover, Isc1p and Dnm1p physically interact, suggesting a possible regulatory role for Isc1p in mitochondrial dynamics. Overall, our work demonstrates that Isc1p-mediated ceramide signalling regulates mitophagy and mitochondrial dynamics in yeast with impact on mitochondrial function and lifespan. Since ceramides have been implicated in ageing and diseases associated with mitochondrial dysfunction, our findings suggest that therapeutic strategies targeting ceramide signalling may improve mitochondrial function and human healthspan. PMID:26079297

  20. Morbid obesity in a child with monosomy 1p36 syndrome

    PubMed Central

    Zagalo, Ana; Dias, Patricia; Pereira, Carla; Sampaio, Maria de Lurdes

    2012-01-01

    The monosomy 1p36 syndrome is a cause of syndromic obesity. It is characterised by psychomotor delay, hypotonia and typical craniofacial dysmorphism. Other features commonly associated are behavioural anomalies including hyperphagia and self-injuring, seizures, congenital heart disease and hypothyroidism. The authors report the case of a 9-year and 5-month-boy referred to the paediatric endocrinology clinics for morbid obesity. Clinical findings were generalised obesity with a body mass index >95th centile, acanthosis nigricans of the neck, arms with self inflicted lesions, deep-set eyes, straight eyebrows, broad nasal bridge and pointed chin. He was unable to walk and had no expressive language. Cytogenetic analysis identified 1p36.33-pter deletion (~139 Mb terminal deletion in chromosome 1 short arm) and Y chromosome duplication. The blood analysis showed insulin resistance and dyslipidaemia. The authors emphasise the need to consider monosomy 1p36 as a cause of severe psychomotor delay and obesity. PMID:22605691

  1. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway.

    PubMed

    Ketela, T; Brown, J L; Stewart, R C; Bussey, H

    1998-09-01

    Activation and control of the yeast HOG (High Osmolarity Glycerol) MAP kinase cascade is accomplished, in part, by a two-component sensory-response circuit comprised of the osmosensing histidine protein kinase Sln1p, the phospho-relay protein Ypd1p, and the response regulator protein Ssk1p. We found that deletion of SLN1 and/or YPD1 reduces reporter gene transcription driven by a second two-component response regulator -- Skn7p. The effect of sln1delta and ypd1delta mutations upon Skn7p activity is dependent on a functional two-component phosphorylation site (D427) in Skn7p, suggesting that Sln1p and Ypd1p may act as phosphodonors for Skn7p. We also observed that loss of PTC1 (a protein serine/threonine phosphatase implicated in negative control of the HOG pathway) in a skn7delta background results in severely retarded growth and in morphological defects. Deletion of either PBS2 or HOG1 alleviates the slow growth phenotype of ptc1delta skn7delta cells, suggesting that Skn7p may participate, in concert with known regulatory components, in modulating HOG pathway activity. The contribution of Skn7p to HOG pathway regulation appears to be modulated by the receiver domain, since non-phosphorylatable Skn7pD427N is unable to fully restore growth to ptc1/skn7 cells. PMID:9790591

  2. Carboxyarabinitol-1-P phosphatase of Phaseolus vulgaris

    SciTech Connect

    Kobza, J.; Moore, B.d.; Seemann, J.R. )

    1990-05-01

    The activity of carboxyarabinitol-1-P (CA1P) phosphatase was detected in clarified stromal extracts by the generation of {sup 14}C-carboxyarabinitol from {sup 14}C-CA1P. Carboxyribitol-1-P dependent activity was 3% of the CA1P dependent activity, indicating the enzyme was specific for CA1P. Inclusion of DTT in the assay was required for maximum velocity, but it appears that the enzyme is not regulated by thioredoxin in vivo. Activity o f the CA1P phosphatase was stimulated by RuBP, NADPH and FBP, though the latter two metabolites were required at nonphysiological concentrations in order to achieve significant stimulation. Contrary to a previous report on purified tobacco enzyme, ATP stimulated the CA1P phosphatase activity. In the presence of 1 mM RuBP or ATP, rates of 2 or 3 {mu}mol mg{sup {minus}1} Chl h{sup {minus}1}, respectively, were observed at 1 mM CA1P. These rates were 3-4 fold higher than the rate observed in the absence of effectors and are 2-4 times the in vivo rate of degradation of CA1P during dark/light transitions. The rates from bean were about 7 fold higher than rates reported for the enzyme from tobacco. Changes in the levels of ATP and RuBP associated with dark/light transitions could modulate the enzyme activity in vivo, but it remains to be established if this is the only mechanism for the required regulation of the enzyme.

  3. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects.

    PubMed

    Varela, Monica Castro; Kok, Fernando; Otto, Paulo Alberto; Koiffmann, Celia Priszkulnik

    2004-12-01

    Angelman syndrome (AS) can result from either a 15q11-q13 deletion (del), paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. Here, we describe the phenotypic and behavioral variability detected in 49 patients with different classes of deletions and nine patients with UPD. Diagnosis was made by methylation pattern analysis of exon 1 of the SNRPN-SNURF gene and by microsatellite profiling of loci within and outside the 15q11-q13 region. There were no major phenotypic differences between the two main classes (BP1-BP3; BP2-BP3) of AS deletion patients, except for the absence of vocalization, more prevalent in patients with BP1-BP3 deletions, and for the age of sitting without support, which was lower in patients with BP2-BP3 deletions. Our data suggest that gene deletions (NIPA1, NIPA2, CYF1P1, GCP5) mapped to the region between breakpoints BP1 and BP2 may be involved in the severity of speech impairment, since all BP1-BP3 deletion patients showed complete absence of vocalization, while 38.1% of the BP2-BP3 deletion patients were able to pronounce syllabic sounds, with doubtful meaning. Compared to UPD patients, deletion patients presented a higher incidence of swallowing disorders (73.9% del x 22.2% UPD) and hypotonia (73.3% del x 28.57% UPD). In addition, children with UPD showed better physical growth, fewer or no seizures, a lower incidence of microcephaly, less ataxia and higher cognitive skills. As a consequence of their milder or less typical phenotype, AS may remain undiagnosed, leading to an overall underdiagnosis of the disease. PMID:15470370

  4. Proper Interval Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Villanger, Yngve

    Deleting a minimum number of vertices from a graph to obtain a proper interval graph is an NP-complete problem. At WG 2010 van Bevern et al. gave an O((14k + 14) k + 1 kn 6) time algorithm by combining iterative compression, branching, and a greedy algorithm. We show that there exists a simple greedy O(n + m) time algorithm that solves the Proper Interval Vertex Deletion problem on \\{claw,net,allowbreak tent,allowbreak C_4,C_5,C_6\\}-free graphs. Combining this with branching on the forbidden structures claw,net,tent,allowbreak C_4,C_5, and C 6 enables us to get an O(kn 6 6 k ) time algorithm for Proper Interval Vertex Deletion, where k is the number of deleted vertices.

  5. Functional inactivation of the conserved Sem1p in yeast by intrabodies.

    PubMed

    Reinman, Mirka; Jäntti, Jussi; Alfthan, Kaija; Keränen, Sirkka; Söderlund, Hans; Takkinen, Kristiina

    2003-09-01

    Intrabody technology was applied to characterize the function and intracellular localization of a highly conserved Saccharomyces cerevisiae Sem1 protein. DSS1, the mammalian homologue of Sem1p, is functionally conserved between yeast and mammalian cells, and in mammalian cells physically interacts with the strong tumour supressor BRCA2. Yeast and the generated intrabodies are thus expected to offer a useful system for studies on Sem1p/DSS1 function. Sem1p-specific antibody isolated from a phage display library was expressed intracellularily and targeted to either the cytosol or the nucleus of yeast cells. Analysis of the applicability of different antibody fragments as intrabodies showed that the Fab intrabody was expressed most efficiently. Expression of nuclear-targeted anti-Sem1p Fab intrabodies inhibited the growth of the sigma1278b yeast strain in a manner similar to deletion of the SEM1 gene. This indicates that the Fab intrabodies interact in vivo with Sem1p and result in inactivation of Sem1p. Localization of the Fab intrabody with or without the nuclear localization signal to the nucleus in Sem1p-dependent manner suggests that Sem1p mediates the nuclear transport of the intrabody without any targeting signal. Our results suggest that Sem1p function in yeast cells is in part manifested in the nucleus. PMID:12961755

  6. Role of the α-Glucanase Agn1p in Fission-Yeast Cell Separation

    PubMed Central

    Dekker, Nick; Speijer, Dave; Grün, Christian H.; van den Berg, Marlene; de Haan, Annett; Hochstenbach, Frans

    2004-01-01

    Cell division in the fission yeast Schizosaccharomyces pombe yields two equal-sized daughter cells. Medial fission is achieved by deposition of a primary septum flanked by two secondary septa within the dividing cell. During the final step of cell division, cell separation, the primary septum is hydrolyzed by an endo-(1,3)-β-glucanase, Eng1p. We reasoned that the cell wall material surrounding the septum, referred to here as the septum edging, also must be hydrolyzed before full separation of the daughter cells can occur. Because the septum edging contains (1,3)-α-glucan, we investigated the cellular functions of the putative (1,3)-α-glucanases Agn1p and Agn2p. Whereas agn2 deletion results in a defect in endolysis of the ascus wall, deletion of agn1 leads to clumped cells that remained attached to each other by septum-edging material. Purified Agn1p hydrolyzes (1,3)-α-glucan predominantly into pentasaccharides, indicating an endo-catalytic mode of hydrolysis. Furthermore, we show that the transcription factors Sep1p and Ace2p regulate both eng1 and agn1 expression in a cell cycle-dependent manner. We propose that Agn1p acts in concert with Eng1p to achieve efficient cell separation, thereby exposing the secondary septa as the new ends of the daughter cells. PMID:15194814

  7. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites

    SciTech Connect

    Tanihigashi, Haruna; Yamada, Ayako; Igawa, Emi; Ikeda, Shogo . E-mail: ikeda@dbc.ous.ac.jp

    2006-09-08

    In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-{alpha},{beta}-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1{delta} cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1{delta} cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2{delta} cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1{delta} and apn2{delta} cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.

  8. Role of Plc1p in regulation of Mcm1p-dependent genes

    PubMed Central

    Guzinska, Katarzyna; Varghese, Roger; Vancura, Ales

    2009-01-01

    In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) and several inositol polyphosphate kinases represent a nuclear pathway for synthesis of inositol polyphosphates (InsPs) that are involved in several aspects of DNA and RNA metabolism, including transcriptional regulation. Plc1p-produced InsP3 is phosphorylated by Ipk2p/Arg82p to yield InsP4/InsP5. Ipk2p/Arg82p is also a component of ArgR-Mcm1p complex that regulates transcription of genes involved in arginine metabolism. The role of Ipk2p/Arg82p in this complex is to stabilize the essential MADS box protein Mcm1p. Consequently, ipk2Δ cells display reduced level of Mcm1p and attenuated expression of Mcm1p-dependent genes. Since plc1Δ cells display aberrant expression of several groups of genes, including genes involved in stress response, the objective of this study was to determine whether Plc1p also affects expression of Mcm1p-dependent genes. We report here that not only ipk2Δ, but also plc1Δ cells display decreased expression of Mcm1p-dependent genes. However, Plc1p is not involved in stabilization of Mcm1p and affects transcription of Mcm1p-dependent genes by a different mechanism, probably involving regulation of chromatin remodeling complexes. PMID:19459978

  9. Histone chaperone Chz1p regulates H2B ubiquitination and subtelomeric anti-silencing

    PubMed Central

    Wan, Yakun; Chiang, Jung-Hsien; Lin, Chan-Hsien; Arens, Christina E.; Saleem, Ramsey A.; Smith, Jennifer J.; Aitchison, John D.

    2010-01-01

    Chz1p is a histone chaperone that interacts physically and functionally with the histone variant Htz1p, which has been implicated in establishing and maintaining boundaries between transcriptionally inactive heterochromatin and active euchromatin. To investigate the role of Chz1p in chromatin organization, we performed genome-wide expression arrays and chromatin immunoprecipitations of SIR complex components and modified histones in a CHZ1 deletion strain. Deletion of CHZ1 led to reduced ubiquitination of subtelomere-associated H2B, reduced subtelomeric H3K79 di-methylation, and increased binding of Sir3p, and Sir4p at telomere-distal euchromatin regions, correlating with decreased gene expression in subtelomeric regions. This anti-silencing defect appears to be mediated by enhanced association of de-ubiquitinase Ubp10p with subtelomeric DNA, as detected by chromatin immunoprecipitation analysis. In support of this, we show that deletion of UBP10 can antagonize the subtelomeric silencing phenotype of Δchz1. Taken together, the results demonstrate a novel role for Chz1p in epigenetic regulation, through H2B de-ubiquitination by Ubp10p. PMID:20008511

  10. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  11. A Complex Containing RNA Polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p Plays a Role in Protein Kinase C Signaling

    PubMed Central

    Chang, Meiping; French-Cornay, Delores; Fan, Hua-ying; Klein, Hannah; Denis, Clyde L.; Jaehning, Judith A.

    1999-01-01

    Yeast contains at least two complex forms of RNA polymerase II (Pol II), one including the Srbps and a second biochemically distinct form defined by the presence of Paf1p and Cdc73p (X. Shi et al., Mol. Cell. Biol. 17:1160–1169, 1997). In this work we demonstrate that Ccr4p and Hpr1p are components of the Paf1p-Cdc73p-Pol II complex. We have found many synthetic genetic interactions between factors within the Paf1p-Cdc73p complex, including the lethality of paf1Δ ccr4Δ, paf1Δ hpr1Δ, ccr4Δ hpr1Δ, and ccr4Δ gal11Δ double mutants. In addition, paf1Δ and ccr4Δ are lethal in combination with srb5Δ, indicating that the factors within and between the two RNA polymerase II complexes have overlapping essential functions. We have used differential display to identify several genes whose expression is affected by mutations in components of the Paf1p-Cdc73p-Pol II complex. Additionally, as previously observed for hpr1Δ, deleting PAF1 or CDC73 leads to elevated recombination between direct repeats. The paf1Δ and ccr4Δ mutations, as well as gal11Δ, demonstrate sensitivity to cell wall-damaging agents, rescue of the temperature-sensitive phenotype by sorbitol, and reduced expression of genes involved in cell wall biosynthesis. This unusual combination of effects on recombination and cell wall integrity has also been observed for mutations in genes in the Pkc1p-Mpk1p kinase cascade. Consistent with a role for this novel form of RNA polymerase II in the Pkc1p-Mpk1p signaling pathway, we find that paf1Δ mpk1Δ and paf1Δ pkc1Δ double mutants do not demonstrate an enhanced phenotype relative to the single mutants. Our observation that the Mpk1p kinase is fully active in a paf1Δ strain indicates that the Paf1p-Cdc73p complex may function downstream of the Pkc1p-Mpk1p cascade to regulate the expression of a subset of yeast genes. PMID:9891041

  12. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    SciTech Connect

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  13. Genetic variants at 1q32.1, 10q11.2 and 19q13.41 are associated with prostate-specific antigen for prostate cancer screening in two Korean population-based cohort studies.

    PubMed

    Kim, Soriul; Shin, Chol; Jee, Sun Ha

    2015-02-10

    Prostate-specific antigen (PSA) levels are affected by non-cancerous conditions such as benign prostatic hyperplasia, inflammations, and inherited factors. To search for genetic variants associated with PSA levels, we conducted a genome-wide association study (GWAS) using a two-stage design. A total of 554 men from the Korean Cancer Prevention Study-II were used as a discovery stage and 1575 men collected by the Korean Genome Epidemiology Study were used as a replication stage. Analysis by Genome-wide Human single-nucleotide polymorphism (SNP) array 5.0 was performed by using DNAs derived from venous blood. We analyzed the association between genetic variants and PSA levels using multivariate linear regression models, including age as a covariate. We detected 12 genome-wide significant signals on chromosome 1q32.1, 10q11.2, and 19q13.41 between PSA levels and SNPs. The top SNP associated with log PSA levels was rs2153904 in SLC45A3 (p values, 5.24×10(-9) to 2.00×10(-6)). We also investigated GWAS using 754 subjects from KCPS-II cohort whether our genome-wide significant loci were associated with a risk of prostate cancer (PCa) (200 PCa cases and 554 controls). Three of the SNPs on 10q11.2, rs7077830, rs2611489, and rs4631830, were associated with a risk of PCa. However, two loci, 1q32.1 and 19q13, were not significantly associated with a PCa risk. We suggest that our results for some but not all PCa risk SNPs to be associated with PSA levels could be used as an evidence for the advance of individual PCa screening strategies, such as applying a personalized cutoff value for PSA. PMID:25434496

  14. Transcriptional Auto-Regulation of RUNX1 P1 Promoter

    PubMed Central

    Martinez, Milka; Hinojosa, Marcela; Trombly, Daniel; Morin, Violeta; Stein, Janet; Stein, Gary; Javed, Amjad; Gutierrez, Soraya E.

    2016-01-01

    RUNX1 a member of the family of runt related transcription factors (RUNX), is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5’UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription. PMID:26901859

  15. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.

    PubMed

    Martinez, Milka; Hinojosa, Marcela; Trombly, Daniel; Morin, Violeta; Stein, Janet; Stein, Gary; Javed, Amjad; Gutierrez, Soraya E

    2016-01-01

    RUNX1 a member of the family of runt related transcription factors (RUNX), is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5'UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription. PMID:26901859

  16. The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response

    PubMed Central

    Johnson, Cole; Kweon, Hye Kyong; Sheidy, Daniel; Shively, Christian A.; Mellacheruvu, Dattatreya; Nesvizhskii, Alexey I.; Andrews, Philip C.; Kumar, Anuj

    2014-01-01

    The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans. PMID:24603354

  17. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time

    PubMed Central

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T.

    2014-01-01

    ABSTRACT The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1+, a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  18. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time.

    PubMed

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T

    2014-01-01

    The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1(+), a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  19. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  20. Cometary gas relations 1P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos R.

    Photographic and photoelectric observations of comet 1P/Halley's ionised gas coma from CO+ at 4,250 Å and neutral gas coma from CN at 3,880 Å were part of the Bochum Halley Monitoring Program, conducted at the European Southern Observatory, La Silla, Chile, from February 17 to April 17, 1986. In this spectral range it is possible to see the continuum formation, motion and expansion of plasma and neutral gas structures. To observe the morphology of these structures, 32 CO+ photos (glass plates) from comet 1P/Halley obtained by means of an interference filter have been analysed. They have a field of view of 28.6 × 28.6 degrees and were obtained from March 29 to April 17, 1986 with exposure times between 20 and 120 minutes. All photos were digitised with a PDS 2020 GM microdensitometer. After digitisation, the data were reduced to relative intensities, and those with proper calibrations were also converted to absolute intensities, expressed in terms of column densities. The CO+ absolute intensity values still contain the continuum intensity. To calculate the CO+ column density it is necessary to subtract this continuum intensity. The relations between CO+ and CN in average column density values (NCO+/NCN) are 11.6 for a circular diaphragm with average diameter (Φ) of 6.1 arcminutes which corresponds to a distance from the nucleus (ρ) equal to 6.3 × 104 km; 20.0 for Φ = 7.1 arcminutes and ρ = 7.3 × 104 km; 8.1 for Φ = 8.5 arcminutes and ρ = 8.7 × 104 km; 35.6 for Φ = 11.9 arcminutes and ρ = 1.2 × 105 km; and 31.3 for Φ = 16.7 arcminutes and ρ = 1.7 × 105 km. These values are in perfect agreement with the data for short distances (ρ from 3.9 × 103 to 1.2 × 104 km) and small slit diameters (Φ from 0.4 to 1.2 arcminutes). With the use of diaphragms with large diameters it is possible to get some information about the outer coma of the comet (in this paper, from 60,000 until 170,000 km away from the nucleus). At these distances, the CO+ column density

  1. Identification and functional analysis of the essential and regulatory light chains of the only type II myosin Myo1p in Saccharomyces cerevisiae

    PubMed Central

    Luo, Jianying; Vallen, Elizabeth A.; Dravis, Christopher; Tcheperegine, Serguei E.; Drees, Becky; Bi, Erfei

    2004-01-01

    Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p–Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p–Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes. PMID:15210731

  2. Combined Dup(7)(q22.1q32.2), Inv(7)(q31.31q31.33), and Ins(7;19)(q22.1;p13.2p13.2) in a 12-year-old boy with developmental delay and various dysmorphism.

    PubMed

    Frühmesser, Anne; Erdel, Martin; Duba, Hans-Christoph; Fauth, Christine; Amberger, Albert; Utermann, Gerd; Zschocke, Johannes; Kotzot, Dieter

    2013-07-01

    De novo combined duplications/inversions are very rare chromosomal rearrangements. For chromosome 7 just some dozen cases of duplications of various parts of the long arm have been published. We report on a 12-year-old boy with muscular hypotonia, global developmental delay, short stature, and various facial dysmorphism including frontal bossing, temporal narrowing, slightly down-slanting palpebral fissures, a broad nasal root, a long philtrum, a thin and tented upper lip, a drooping lower lip, micrognathia, prominent ears, a short neck, and a low posterior hairline. Karyotype analysis and molecular investigations revealed a complex de novo chromosomal rearrangement on 7q. FISH analysis with locus specific YACs and BACs and SNP array with the Illumina(®) HumanOmni1-Quad v1.0 BeadChip disclosed a direct duplication in the long arm of chromosome 7 (q22.1→q32.2) and an inversion located at the breakpoint between the two copies of the duplication (q31.31→q31.33). In addition, breakpoint characterization at the molecular level revealed a 386 bp insertion carrying two Alu elements of chromosome 19p13.2 between the two copies of the duplication. By a comparison of the SNP haplotypes of the derivative chromosome of the patient and both parents a two-step formation during spermatogenesis was suggested as the most likely mechanism of formation. PMID:23608969

  3. Paediatric B-cell precursor acute lymphoblastic leukaemia with t(1;19)(q23;p13): clinical and cytogenetic characteristics of 47 cases from the Nordic countries treated according to NOPHO protocols.

    PubMed

    Andersen, Mette K; Autio, Kirsi; Barbany, Gisela; Borgström, Georg; Cavelier, Lucia; Golovleva, Irina; Heim, Sverre; Heinonen, Kristina; Hovland, Randi; Johannsson, Johann H; Johansson, Bertil; Kjeldsen, Eigil; Nordgren, Ann; Palmqvist, Lars; Forestier, Erik

    2011-10-01

    The translocation t(1;19)(q23;p13)/der(19)t(1;19) is a risk stratifying aberration in childhood B-cell precursor acute lymphoblastic leukaemia (BCP ALL) in the Nordic countries. We have identified 47 children/adolescents with t(1;19)/der(19)t(1;19)-positive BCP ALL treated on two successive Nordic Society of Paediatric Haematology and Oncology (NOPHO) protocols between 1992 and 2007 and have reviewed the clinical and cytogenetic characteristics of these cases, comprising 1·8% of all cases. The translocation was balanced in 15 cases (32%) and unbalanced in 29 cases (62%). The most common additional chromosome abnormalities were del(9p), i(9q), del(6q), and del(13q). The median age was 7 years, the median white blood cell (WBC) count was 16 × 10(9)/l, and the female/male ratio was 1·2. The predicted event-free survival (EFS) at 5 and 10 years was 0·79, whereas the predicted overall survival (OS) at 5 and 10 years was 0·85 and 0·82, respectively. Nine patients had a bone marrow relapse after a median of 23 months; no patient had a central nervous system relapse. Additional cytogenetic abnormalities, age, gender, WBC count or whether the t(1;19) was balanced or unbalanced did not influence EFS or OS. Compared to cases with t(12,21) and high hyperdiploidy, EFS was similar, but overall survival was worse in patients with t(1;19)/der(19)t(1;19) (P = 0·004). PMID:21902680

  4. The IPP gene is assigned to human chromosome 1p32-1p22

    SciTech Connect

    Chang-Yeh, A.; Huang, R.C.C. ); Jabs, E.W.; Li, Xiang ); Dracopoli, N.C. )

    1993-01-01

    We previously reported the isolation and characterization of a novel mouse gene that is promoted by an intracisternal A-particle (IAP) LTR and is expressed in placental tissue (mouse IAP-promoted placenta gene, Ipp). Based on restriction fragment length polymorphism (RFLP) studies using inbred strains and recombinant inbred (RI) mice, we have established the linkage between the Ipp gene and several loci on distal mouse chromosome 4. In this publication, we report the partial sequence of a human cDNA clone isolated from a human placental library that has 83% identity to the 3[prime]region of the Ipp cDNA. For human chromosome mapping, two 20-base oligonucleotides within the homologous region were used as primers for polymerase chain reactions (PCR) to chromosome-specific DNAs from two somatic cell hybrid panels and several hybrid cell lines carrying breakpoints on human chromosome 1p. We have assigned this human homolog of the Ipp (IPP) gene to chromosome 1 at 1p32-1p22, based on analysis of PCR products. With this assignment, the homology between mouse chromosome 4 and human chromosome 1 is maintained (5). 7 refs., 1 fig.

  5. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling

    PubMed Central

    Moon, Eunjung; Han, Jeong Eun; Jeon, Sejin; Ryu, Jong Hoon; Choi, Ji Woong; Chun, Jerold

    2015-01-01

    Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain. PMID:26576074

  6. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    SciTech Connect

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  7. Unbalanced three-way chromosomal translocation leading to deletion 18q and duplication 20p.

    PubMed

    Oegema, Renske; van Zutven, Laura J C M; van Hassel, Daniella A C M; Huijbregts, Guido C M; Hoogeboom, A Jeannette M

    2012-04-01

    In 1980, a case report on a boy with cleft palate, club feet, dysmorphic features, and developmental delay was published by Bijlsma as a possible distinct syndrome. This case is listed in the London Medical Databases version 1.0. We have reevaluated this patient at adult age. Using high resolution karyotyping and Affymetrix 250k SNP array analysis we identified an unbalanced three-way translocation with breakpoints at 17q22, 18q22.1, and 20p12.2 leading to deletion 18q and duplication 20p. Also, a 715 kb duplication in 1p34.2 and a 245 kb deletion at 1p21.1 were found. Mental retardation, cleft palate, and club feet have repeatedly been reported in deletion 18q patients and therefore we conclude that most of the patient's features can be explained by an 18q deletion. PMID:22406089

  8. Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p.

    PubMed

    Lazard, Myriam; Ha-Duong, Nguyet-Thanh; Mounié, Stéphanie; Perrin, Romary; Plateau, Pierre; Blanquet, Sylvain

    2011-11-01

    The Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p is involved in heavy metal detoxification by mediating the ATP-dependent transport of glutathione-metal conjugates to the vacuole. In the case of selenite toxicity, deletion of YCF1 was shown to confer increased resistance, rather than sensitivity, to selenite exposure [Pinson B, Sagot I & Daignan-Fornier B (2000) Mol Microbiol36, 679-687]. Here, we show that when Ycf1p is expressed from a multicopy plasmid, the toxicity of selenite is exacerbated. Using secretory vesicles isolated from a sec6-4 mutant transformed either with the plasmid harbouring YCF1 or the control plasmid, we establish that the glutathione-conjugate selenodigluthatione is a high-affinity substrate of this ATP-binding cassette transporter and that oxidized glutathione is also efficiently transported. Finally, we show that the presence of Ycf1p impairs the glutathione/oxidized glutathione ratio of cells subjected to a selenite stress. Possible mechanisms by which Ycf1p-mediated vacuolar uptake of selenodiglutathione and oxidized glutathione enhances selenite toxicity are discussed. PMID:21880115

  9. Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3.

    PubMed

    Tölle, M; Klöckl, L; Wiedon, A; Zidek, W; van der Giet, M; Schuchardt, M

    2016-08-01

    Endothelial nitric oxide synthase (eNOS) plays a crucial role in vascular homeostasis. Lysophospholipid interaction with sphingosine 1-phosphat (S1P) receptors results in eNOS activation in different cells. In endothelial cells, eNOS activation via S1P1 or S1P3 was shown controversially. The aim of this study is to investigate the meaning of both S1P receptors for eNOS activation in human endothelial cells. Therefore, several S1P1 and S1P3 agonists in combination with antagonists and specific RNAi approach were used. eNOS activation was measured in human umbilical vein endothelial cells (HUVEC) via DAF2-DA-based fluorescence microscopy. For investigation of the signaling pathway, agonists/antagonist studies, RNAi approach, Luminex™ multiplex, and Western Blot were used. In HUVEC, both the S1P1 agonist AUY954 as well as the S1P1,3 agonist FTY720P induced eNOS activation in a time- and dose-dependent manner. Other S1P1 agonists activated eNOS to a lesser extent. The AUY954-induced eNOS activation was blocked by the S1P1 antagonist W146, the combination of W146 and the S1P3 antagonist CAY10444 and the S1P1,3 antagonist VPC23019, but not by CAY10444 indicating the meaning of S1P1 for the AUY954-induced eNOS activation. The FTY720P-induced eNOS activation was blocked only by the combination of W146 and CAY10444 and the combined S1P1,3 antagonist VPC23019, but not by W146 or CAY10444 indicating the importance of both S1P1 and S1P3 for FTY720-induced eNOS activation. These results were confirmed using specific siRNA against S1P1 and S1P3. The S1P1,3 activation results in Akt phosphorylation and subsequent activation of eNOS via phosphorylation at serine(1177) and dephosphorylation at threonine(495). Beside former investigations with rather unspecific S1P receptor activation these data show potent selective S1P1 activation by using AUY954 and with selective S1P receptor inhibition evidence was provided that both S1P1 and S1P3 lead to downstream activation of eNOS in

  10. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation

    PubMed Central

    Galvani, Sylvain; Sanson, Marie; Blaho, Victoria A.; Swendeman, Steven L.; Obinata, Hideru; Conger, Heather; Dahlbäck, Björn; Kono, Mari; Proia, Richard L.; Smith, Jonathan D.; Hla, Timothy

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1P1) is abundant in endothelial cells, where it regulates vascular development and microvascular barrier function. In investigating the role of endothelial cell S1P1 in adult mice, we found that the endothelial S1P1 signal was enhanced in regions of the arterial vasculature experiencing inflammation. The abundance of proinflammatory adhesion proteins, such as ICAM-1, was enhanced in mice with endothelial cell–specific deletion of S1pr1 and suppressed in mice with endothelial cell–specific overexpression of S1pr1, suggesting a protective function of S1P1 in vascular disease. The chaperones ApoM+HDL (HDL) or albumin bind to sphingosine 1-phosphate (S1P) in the circulation; therefore, we tested the effects of S1P bound to each chaperone on S1P1 signaling in cultured human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to ApoM+HDL-S1P, but not to albumin-S1P, promoted the formation of a cell surface S1P1–β-arrestin 2 complex and attenuated the ability of the proinflammatory cytokine TNFα to activate NF-κB and increase ICAM-1 abundance. Although S1P bound to either chaperone induced MAPK activation, albumin-S1P triggered greater Gi activation and receptor endocytosis. Endothelial cell–specific deletion of S1pr1 in the hypercholesterolemic Apoe−/− mouse model of atherosclerosis enhanced atherosclerotic lesion formation in the descending aorta. We propose that the ability of ApoM+HDL to act as a biased agonist on S1P1 inhibits vascular inflammation, which may partially explain the cardiovascular protective functions of HDL. PMID:26268607

  11. Determinants of Swe1p Degradation in Saccharomyces cerevisiae

    PubMed Central

    McMillan, John N.; Theesfeld, Chandra L.; Harrison, Jacob C.; Bardes, Elaine S. G.; Lew, Daniel J.

    2002-01-01

    Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCFMet30 acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCFMet30) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist. PMID:12388757

  12. RAP1GA1: A candidate tumor suppressor locus in 1p36.1

    SciTech Connect

    Ranade, K.; Hussussian, C.J.; Higgins, P.

    1994-09-01

    The rap1/Krev-1 gene (RAP1A) encodes a p21-related protein that suppresses transformation by activated p21{sup ras}. The GTPase activating protein (GAP) gene for p21{sup rap1A} (RAP1GA1) has recently been assigned to chromosome 1p36.1-p35, a region of the genome that is frequently involved in deletions and rearrangements in several different tumors including breast, colon and hepatocellular carcinomas, melanoma, and neuroblastoma. GAP genes negatively regulate the activity of p21 proteins by catalyzing the conversion of the active GTP-bound forms to the inactive GDP-bound forms. The physiological function of p21{sup rap1A}-GAP makes it a strong candidate as a tumor suppressor gene that may have a role in the development of one or more of these malignancies. We have refined the localization of RAP1GA1 by linkage analysis with a highly informative (CA){sub n} repeat contained within the gene, and demonstrated that it is within the minimal deleted region for breast and colon carcinomas, and that it is excluded from the minimally deleted region in melanoma and neuroblastoma. Genetic mapping in the mouse demonstrated that Rap1ga1 is located {approximately}10 cM proximal to Pnd and therefore maps within the interval containing the modifier of Min gene (Mom-1) and the plasmocytoma susceptibility locus (Pcts). The human RAP1GA1 gene contains at least 27 exons. The coding region contains 22 exons, and there are at least five 5{prime}-UT exons that are assembled in a complex pattern of alternative splicing in different tissues. The localization of RAP1GA1 makes it a very strong candidate for a role as a modifier gene involved in the common secondary abnormalities involving 1p36 in several different carcinomas. The potential role of RAP1GA1 in these malignancies is currently being investigated by sequence analysis of breast and colon carcinomas with loss of heterozygosity in 1p36.

  13. Roles for lysophospholipid S1P receptors in multiple sclerosis.

    PubMed

    Noguchi, Kyoko; Chun, Jerold

    2011-02-01

    Sphingosine 1-phosphate (S1P) signaling in the treatment of multiple sclerosis (MS) has been highlighted by the efficacy of FTY720 (fingolimod), which upon phosphorylation can modulate S1P receptor activities. FTY720 has become the first oral treatment for relapsing MS that was approved by the FDA in September 2010. Phosphorylated FTY720 modulates four of the five known S1P receptors (S1P(1), S1P(3), S1P(4), and S1P(5)) at high affinity. Studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have revealed that FTY720 exposure alters lymphocyte trafficking via sequestration of auto-aggressive lymphocytes within lymphoid organs, representing the current understanding of its mechanism of action. These effects primarily involve S1P(1), which is thought to attenuate inflammatory insults in the central nervous system (CNS). In addition, FTY720's actions may involve direct effects on S1P receptor-mediated signaling in CNS cells, based upon the known expression of S1P receptors in CNS cell types relevant to MS, access to the CNS through the blood-brain barrier (BBB), and in vitro studies. These data implicate lysophospholipid signaling--via S1P(1) and perhaps other lysophospholipid receptors--in therapeutic approaches to MS and potentially other diseases with immunological and/or neurological components. PMID:20979571

  14. Functional Analysis of Phosphorylation on Saccharomyces cerevisiae Syntaxin 1 Homologues Sso1p and Sso2p

    PubMed Central

    Yuan, Qiang; Jäntti, Jussi

    2010-01-01

    Background The Saccharomyces cerevisiae syntaxin1 homologues Sso1p and Sso2p perform an essential function in membrane fusion in exocytosis. While deletion of either SSO1 or SSO2 causes no obvious phenotype in vegetatively grown cells, deletion of both genes is lethal. In sporulating diploid S. cerevisiae cells only Sso1p, but not Sso2p, is needed for membrane fusion during prospore membrane formation. Mass spectrometry and in vivo labeling data suggest that serines 23, 24, and 79 in Sso1p and serines 31 and 34 in Sso2p can be phosphorylated in vivo. Here we set out to assess the contribution of phosphorylation on Sso protein in vivo function. Principal Findings Different mutant versions of SSO1 and SSO2 were generated to target the phosphorylation sites in Sso1p and Sso2p. Basal or overexpression of phospho-mimicking or putative non-phosphorylated Sso1p or Sso2p mutants resulted in no obvious growth phenotype. However, S79A and S79E mutations caused a mild defect in the ability of Sso1p to complement the temperature-sensitive growth phenotype of sso2-1 sso1Δ cells. Combination of all mutations did not additionally compromise Sso1p in vivo function. When compared to the wild type SSO1 and SSO2, the phosphoamino acid mutants displayed similar genetic interactions with late acting sec mutants. Furthermore, diploid cells expressing only the mutant versions of Sso1p had no detectable sporulation defects. In addition to sporulation, also pseudohyphal and invasive growth modes are regulated by the availability of nutrients. In contrast to sporulating diploid cells, deletion of SSO1 or SSO2, or expression of the phospho-mutant versions of SSO1 or SSO2 as the sole copies of SSO genes caused no defects in haploid or diploid pseudohyphal and invasive growth. Conclusions The identified phosphorylation sites do not significantly contribute to the in vivo functionality of Sso1p and Sso2p in S. cerevisiae. PMID:20948969

  15. Stationary phase deletions in Escherichia coli. II. Mutations which stimulate stationary phase deletions in plasmid pMC874.

    PubMed

    Balbinder, E

    2001-08-01

    Deletions in the plasmid pMC874 take place in resting cells incubating on McConkey's or minimal lactose agar and are time rather than generation dependent. These deletions join the km(r) promoter to a promoterless lac operon giving rise to Lac(+) papillae on McConkey's lactose agar, and can occur in the absence of sequence homologies such as direct or inverted repeats. Using this as a selective screen we isolated 31 mutants designated dli (for deletion increase), which enhanced to different extents the frequency of this unusual class of deletions. Six of these were characterized by phenotypic tests and their ability to stimulate other deletion events such as the excision of Tn10 from various chromosomal sites and the loss of cloned fragments between two EcoR1 sites in the gene for chloramphenicol resistance (cat) of plasmid pBR325. Two of them showed contrasting phenotypes and were studied further: one (dli1) stimulated Lac(+) deletions in pMC874 in resting cells but not Tn10 excision from chromosomal locations in log phase cells, and the other one (dli2) did exactly the reverse, i.e. it enhanced Tn10 excision but not Lac(+) deletion incidence. Mapping and complementation tests showed that dli1 is a null mutation in recC and was renamed recC2251. This is strong evidence that resting phase deletions in pMC874 are stimulated by the absence of a functional RecBCD enzyme. The dli2 mutation was identified by mapping and phenotypic tests as a mutation in uvrD, the gene for helicase II, and it was tentatively designated uvrD(-)dli2. These results show that (1) pMC874 is an excellent system to select mutants for genetic functions involved in the generation of resting phase deletions, and (2) there are at least two major deletion pathways in E. coli, one active in resting and the other in actively dividing cells. PMID:11470479

  16. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating.

    PubMed Central

    Nelson, Bryce; Parsons, Ainslie B; Evangelista, Marie; Schaefer, Karen; Kennedy, Kathy; Ritchie, Steven; Petryshen, Tracey L; Boone, Charles

    2004-01-01

    Cell fusion in the budding yeast Saccharomyces cerevisiae is a temporally and spatially regulated process that involves degradation of the septum, which is composed of cell wall material, and occurs between conjugating cells within a prezygote, followed by plasma membrane fusion. The plasma membrane protein Fus1p is known to be required for septum degradation during cell fusion, yet its role at the molecular level is not understood. We identified Sho1p, an osmosensor for the HOG MAPK pathway, as a binding partner for Fus1 in a two-hybrid screen. The Sho1p-Fus1p interaction occurs directly and is mediated through the Sho1p-SH3 domain and a proline-rich peptide ligand on the Fus1p COOH-terminal cytoplasmic region. The cell fusion defect associated with fus1Delta mutants is suppressed by a sho1Delta deletion allele, suggesting that Fus1p negatively regulates Sho1p signaling to ensure efficient cell fusion. A two-hybrid matrix containing fusion proteins and pheromone response pathway signaling molecules reveals that Fus1p may participate in a complex network of interactions. In particular, the Fus1p cytoplasmic domain interacts with Chs5p, a protein required for secretion of specialized Chs3p-containing vesicles during bud development, and chs5Delta mutants were defective in cell surface localization of Fus1p. The Fus1p cytoplasmic domain also interacts with the activated GTP-bound form of Cdc42p and the Fus1p-SH3 domain interacts with Bni1p, a yeast formin that participates in cell fusion and controls the assembly of actin cables to polarize secretion in response to Cdc42p signaling. Taken together, our results suggest that Fus1p acts as a scaffold for the assembly of a cell surface complex involved in polarized secretion of septum-degrading enzymes and inhibition of HOG pathway signaling to promote cell fusion. PMID:15020407

  17. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.

    PubMed

    Kobor, M S; Simon, L D; Omichinski, J; Zhong, G; Archambault, J; Greenblatt, J

    2000-10-01

    Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo. PMID:11003641

  18. A Motif Shared by TFIIF and TFIIB Mediates Their Interaction with the RNA Polymerase II Carboxy-Terminal Domain Phosphatase Fcp1p in Saccharomyces cerevisiae

    PubMed Central

    Kobor, Michael S.; Simon, Lisa D.; Omichinski, Jim; Zhong, Guoqing; Archambault, Jacques; Greenblatt, Jack

    2000-01-01

    Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo. PMID:11003641

  19. A Role for Lsm1p in Response to Ultraviolet-Radiation Damage in Saccharomyces cerevisiae

    PubMed Central

    Spicakova, Tatiana; McCann, Kelly; Brown, J. Martin

    2008-01-01

    A genome-wide screen in Saccharomyces cerevisiae identified LSM1 as a new gene affecting sensitivity to ultraviolet (UV) radiation. Lsm1p is a member of a cytoplasmic complex composed of Lsm1p–7p that interacts with the yeast mRNA degradation machinery. To investigate the potential role of Lsm1p in response to UV radiation, we constructed double mutant strains in which LSM1 was deleted in combination with a representative gene from each of three known yeast DNA repair pathways. Our results show that lsm1Δ increases the UV-radiation sensitivity of the rad1Δ and rad51Δ mutants, but not the rad18Δ mutant, placing LSM1 within the post-replication repair/damage tolerance pathway (PRR). When combined with other deletions affecting PRR, lsm1Δ increases the UV-radiation sensitivity of the rev3Δ, rad30Δ and pol30-K164R mutants but not rad5Δ. Furthermore, the UV-radiation sensitivity phenotype of lsm1Δ is partially rescued by mutations in genes involved in 3′ to 5′ mRNA degradation, and mutations predicted to function in RNA interactions confer the most UV-radiation sensitivity. Together, these results suggest that Lsm1p may confer protection against UV-radiation damage by protecting the 3′ ends of mRNAs from exosome-dependent 3′ to 5′ degradation as part of a novel RAD5-mediated, PCNA-K164 ubiquitylation-independent subpathway of PRR. PMID:19024647

  20. Clinicopathologic Features of Pediatric Oligodendrogliomas

    PubMed Central

    Rodriguez, Fausto J.; Tihan, Tarik; Lin, Doris; McDonald, William; Nigro, Janice; Feuerstein, Burt; Jackson, Sadhana; Cohen, Kenneth; Burger, Peter C.

    2015-01-01

    Oligodendrogliomas are an important adult form of diffuse gliomas with a distinctive clinical and genetic profile. Histologically similar tumors occurring rarely in children are incompletely characterized. We studied 50 patients with oligodendrogliomas (median age at diagnosis 8 y, range 7mo to 20 y). Tumors resembling dysembryoplastic neuroepithelial tumors or pilocytic astrocytomas or those having a “mixed” histology were excluded. Tumors at first diagnosis were low grade (n=38) or anaplastic (n=12). Histologic features included uniform round cells with perinuclear halos (100%), secondary structures (predominantly perineuronal satellitosis) (90%), calcifications (46%), and microcysts (44%). Sequential surgical specimens were obtained in 8 low-grade oligodendroglioma patients, with only 1 progressing to anaplasia. Studies for 1p19q performed in 40 cases demonstrated intact 1p19q loci in 29 (73%), 1p19q codeletion in 10 (25%), and 1p deletion with intact 19q in 1 (2%). Except for 2 young patients (3 and 11 y of age), patients with 1p19q codeletion were older than 16 years at diagnosis. Mutant IDH1 (R132H) protein immunohistochemistry was positive in 4 (of 22) (18%) cases, 3 of which also had 1p19q codeletion, whereas 1p19q status was not available on the fourth case. There was a nonsignificant trend for worse overall survival in grade III tumors, but no significant association with age, extent of resection, or 1p19q status. In summary, oligodendrogliomas with classic histology occur in the pediatric population but lack 1p19q codeletion and IDH1 (R132H) mutations in most instances. They are predominantly low grade, recur/clinically progress in a subset, but demonstrate a relatively low frequency of histologic progression. PMID:24805856

  1. Clinicopathologic features of pediatric oligodendrogliomas: a series of 50 patients.

    PubMed

    Rodriguez, Fausto J; Tihan, Tarik; Lin, Doris; McDonald, William; Nigro, Janice; Feuerstein, Burt; Jackson, Sadhana; Cohen, Kenneth; Burger, Peter C

    2014-08-01

    Oligodendrogliomas are an important adult form of diffuse gliomas with a distinctive clinical and genetic profile. Histologically similar tumors occurring rarely in children are incompletely characterized. We studied 50 patients with oligodendrogliomas (median age at diagnosis 8 y, range 7 mo to 20 y). Tumors resembling dysembryoplastic neuroepithelial tumors or pilocytic astrocytomas or those having a "mixed" histology were excluded. Tumors at first diagnosis were low grade (n=38) or anaplastic (n=12). Histologic features included uniform round cells with perinuclear halos (100%), secondary structures (predominantly perineuronal satellitosis) (90%), calcifications (46%), and microcysts (44%). Sequential surgical specimens were obtained in 8 low-grade oligodendroglioma patients, with only 1 progressing to anaplasia. Studies for 1p19q performed in 40 cases demonstrated intact 1p19q loci in 29 (73%), 1p19q codeletion in 10 (25%), and 1p deletion with intact 19q in 1 (2%). Except for 2 young patients (3 and 11 y of age), patients with 1p19q codeletion were older than 16 years at diagnosis. Mutant IDH1 (R132H) protein immunohistochemistry was positive in 4 (of 22) (18%) cases, 3 of which also had 1p19q codeletion, whereas 1p19q status was not available on the fourth case. There was a nonsignificant trend for worse overall survival in grade III tumors, but no significant association with age, extent of resection, or 1p19q status. In summary, oligodendrogliomas with classic histology occur in the pediatric population but lack 1p19q codeletion and IDH1 (R132H) mutations in most instances. They are predominantly low grade, recur/clinically progress in a subset, but demonstrate a relatively low frequency of histologic progression. PMID:24805856

  2. A Novel Microdeletion in 1(p34.2p34.3), Involving the "SLC2A1" ("GLUT1") Gene, and Severe Delayed Development

    ERIC Educational Resources Information Center

    Vermeer, Sascha; Koolen, David A; Visser, Gepke; Brackel, Hein J. L.; van der Burgt, Ineke; de Leeuw, Nicole; Willemsen, Michel A. A. P.; Sistermans, Erik A.; Pfundt, Rolph; de Vries, Bert B. A.

    2007-01-01

    A "de novo" 4.1-megabase microdeletion of chromosome 1p34.2p34.3 has been identified by array-based comparative genomic hybridization in a young male with severely delayed development, microcephaly, pronounced hypotonia, and facial dysmorphism. The deleted region encompasses 48 genes, among them the glucose transporter 1 ("SLC2A1" or "GLUT1")…

  3. Cap1p attenuates the apoptosis of Candida albicans.

    PubMed

    Dai, Bao-Di; Wang, Yan; Zhao, Lan-Xue; Li, De-Dong; Li, Ming-Bang; Cao, Yong-Bing; Jiang, Yuan-Ying

    2013-06-01

    Candida albicans is the most common opportunistic fungal pathogen and its apoptosis is inducible by environmental stress. Based on our previous finding that transcription factor Cap1p was involved in baicalein-induced apoptosis, the present study aimed to further clarify the role of Cap1p in apoptosis by observing the impact of CAP1 deletion on cell fate. It was found that apoptotic stimulation with amphotericin B, acetic acid and hydrogen peroxide increased the number of apoptotic and necrotic cells, caspase activity and the accumulation of reactive oxygen species, whereas it decreased the mitochondrial membrane potential and intracellular ATP level in the cap1Δ/Δ mutant. The cell fate was, at least partly, caused by glutathione depletion and attenuation of the expression of the glutathione reductase gene in the cap1Δ/Δ mutant. Collectively, our data suggest that Cap1p participated in the apoptosis of C. albicans by regulating the expression of the glutathione reductase gene and glutathione content. PMID:23517286

  4. ATLAS DQ2 Deletion Service

    NASA Astrophysics Data System (ADS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-12-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  5. Subunits Rip1p and Cox9p of the respiratory chain contribute to diclofenac-induced mitochondrial dysfunction.

    PubMed

    van Leeuwen, Jolanda S; Orij, Rick; Luttik, Marijke A H; Smits, Gertien J; Vermeulen, Nico P E; Vos, J Chris

    2011-03-01

    The widely used drug diclofenac can cause serious heart, liver and kidney injury, which may be related to its ability to cause mitochondrial dysfunction. Using Saccharomyces cerevisiae as a model system, we studied the mechanisms of diclofenac toxicity and the role of mitochondria therein. We found that diclofenac reduced cell growth and viability and increased levels of reactive oxygen species (ROS). Strains increasingly relying on respiration for their energy production showed enhanced sensitivity to diclofenac. Furthermore, oxygen consumption was inhibited by diclofenac, suggesting that the drug inhibits respiration. To identify the site of respiratory inhibition, we investigated the effects of deletion of respiratory chain subunits on diclofenac toxicity. Whereas deletion of most subunits had no effect, loss of either Rip1p of complex III or Cox9p of complex IV resulted in enhanced resistance to diclofenac. In these deletion strains, diclofenac did not increase ROS formation as severely as in the wild-type. Our data are consistent with a mechanism of toxicity in which diclofenac inhibits respiration by interfering with Rip1p and Cox9p in the respiratory chain, resulting in ROS production that causes cell death. PMID:21148204

  6. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients

    PubMed Central

    2012-01-01

    Background Specific genetic contributions for preeclampsia (PE) are currently unknown. This genome-wide association study (GWAS) aims to identify maternal single nucleotide polymorphisms (SNPs) and copy-number variants (CNVs) involved in the etiology of PE. Methods A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and Blood Institute guidelines) and 116 normotensive controls. White female study subjects from Iowa were genotyped on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye, Canary, PennCNV, and QuantiSNP) were merged using CNVision and screened with stringent prioritization criteria. Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR. Results The top four SNP candidates had an allelic or genotypic p-value between 10-5 and 10-6, however, none surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls), which encompasses the PSG11 gene contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed. Conclusions CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in PE genetics. PMID:22748001

  7. Structural Characterization of Tip20p and Dsl1p, Subunits of the Dsl1p Vesicle Tethering Complex

    SciTech Connect

    Tripathi, A.; Ren, Y; Jeffrey, P; Hughson, F

    2009-01-01

    Multisubunit tethering complexes are essential for intracellular trafficking and have been proposed to mediate the initial interaction between vesicles and the membranes with which they fuse. Here we report initial structural characterization of the Dsl1p complex, whose three subunits are essential for trafficking from the Golgi apparatus to the endoplasmic reticulum (ER). Crystal structures reveal that two of the three subunits, Tip20p and Dsl1p, resemble known subunits of the exocyst complex, establishing a structural connection among several multisubunit tethering complexes and implying that many of their subunits are derived from a common progenitor. We show, moreover, that Tip20p and Dsl1p interact directly via N-terminal alpha-helices. Finally, we establish that different Dsl1p complex subunits bind independently to different ER SNARE proteins. Our results map out two alternative protein-interaction networks capable of tethering COPI-coated vesicles, via the Dsl1p complex, to ER membranes.

  8. Genetics Home Reference: 18q deletion syndrome

    MedlinePlus

    ... Veltman JA, van Ravenswaaij-Arts CM. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array ... L, Pihko H. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am J Med ...

  9. Familial partial duplication (1)(p21p31)

    SciTech Connect

    Hoechstetter, L.; Soukup, S.; Schorry, E.K.

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  10. Control of Swe1p degradation by the morphogenesis checkpoint.

    PubMed Central

    Sia, R A; Bardes, E S; Lew, D J

    1998-01-01

    In the budding yeast Saccharomyces cerevisiae, a cell cycle checkpoint coordinates mitosis with bud formation. Perturbations that transiently depolarize the actin cytoskeleton cause delays in bud formation, and a 'morphogenesis checkpoint' detects the actin perturbation and imposes a G2 delay through inhibition of the cyclin-dependent kinase, Cdc28p. The tyrosine kinase Swe1p, homologous to wee1 in fission yeast, is required for the checkpoint-mediated G2 delay. In this report, we show that Swe1p stability is regulated both during the normal cell cycle and in response to the checkpoint. Swe1p is stable during G1 and accumulates to a peak at the end of S phase or in early G2, when it becomes unstable and is degraded rapidly. Destabilization of Swe1p in G2 and M phase depends on the activity of Cdc28p in complexes with B-type cyclins. Several different perturbations of actin organization all prevent Swe1p degradation, leading to the persistence or further accumulation of Swe1p, and cell cycle delay in G2. PMID:9822611

  11. Crystal Structure of the Yeast Nicotinamidase Pnc1p

    PubMed Central

    Hu, Gang; Taylor, Alexander B.; McAlister-Henn, Lee; Hart, P. John

    2007-01-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9 Å resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni2+-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth. PMID:17382284

  12. 75 FR 16757 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions From the Procurement List. SUMMARY: The Committee is proposing to delete from the Procurement List services...

  13. 75 FR 19945 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ] ACTION: Proposed deletions from the Procurement List. SUMMARY: The Committee is proposing to delete from the Procurement List services...

  14. 77 FR 66181 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products from the Procurement List that...

  15. 78 FR 46927 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products and services from the Procurement...

  16. 76 FR 9555 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  17. 76 FR 22680 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... INFORMATION: Deletions On 2/25/2011 (76 FR 10571), the Committee for Purchase From People Who Are Blind or... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  18. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2.

    PubMed

    Corradi, Gerardo R; Czysezon, Nicolas A; Mazzitelli, Luciana R; Sarbia, Nicolas; Adamo, Hugo P

    2016-04-01

    P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeastSaccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg(2+), and EGTA. Low concentrations of Ca(2+)in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn(2+)nor Mg(2+)had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca(2+) TheKmfor ATP in the phosphorylation reaction was ∼1 μmand did not significantly change in the presence of Ca(2+) Half-maximal phosphorylation was attained at 8 μmMg(2+), but higher concentrations partially protected from Ca(2+)inhibition. In conditions similar to those used for phosphorylation, Ca(2+)had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle. PMID:26858246

  19. The Mtm1p carrier and pyridoxal 5′-phosphate cofactor trafficking in yeast mitochondria *

    PubMed Central

    Whittaker, Mei M.; Penmatsa, Aravind; Whittaker, James W.

    2015-01-01

    Biochemical communication between the cytoplasmic and mitochondrial subsystems of the cell depends on solute carriers in the mitochondrial inner membrane that transport metabolites between the two compartments. We have expressed and purified a yeast mitochondrial carrier protein (Mtm1p, YGR257cp), originally identified as a manganese ion carrier, for biochemical characterization aimed at resolving its function. High affinity, stoichiometric pyridoxal 5′-phosphate (PLP) cofactor binding was characterized by fluorescence titration and calorimetry, and the biochemical effects of mtm1 gene deletion on yeast mitochondria were investigated. The PLP status of the mitochondrial proteome (the mitochondrial ‘PLP-ome’) was probed by immunoblot analysis of mitochondria isolated from wild type (MTM1+) and knockout (MTM1−) yeast, revealing depletion of mitochondrial PLP in the latter. A direct activity assay of the enzyme catalyzing the first committed step of heme biosynthesis, the PLP-dependent mitochondrial enzyme 5-aminolevulinate synthase, extends these results, providing a specific example of PLP cofactor limitation. Together, these experiments support a role for Mtm1p in mitochondrial PLP trafficking and highlight the link between PLP cofactor transport and iron metabolism, a remarkable illustration of metabolic integration. PMID:25637770

  20. The Yeast hnRNP-Like Proteins Yra1p and Yra2p Participate in mRNA Export through Interaction with Mex67p

    PubMed Central

    Zenklusen, Daniel; Vinciguerra, Patrizia; Strahm, Yvan; Stutz, Françoise

    2001-01-01

    Yra1p is an essential nuclear protein which belongs to the evolutionarily conserved REF (RNA and export factor binding proteins) family of hnRNP-like proteins. Yra1p contributes to mRNA export in vivo and directly interacts with RNA and the shuttling mRNP export receptor Mex67p in vitro. Here we describe a second nonessential Saccharomyces cerevisiae family member, called Yra2p, which is able to complement a YRA1 deletion when overexpressed. Like other REF proteins, Yra1p and Yra2p consist of two highly conserved N- and C-terminal boxes and a central RNP-like RNA-binding domain (RBD). These conserved regions are separated by two more variable regions, N-vr and C-vr. Surprisingly, the deletion of a single conserved box or the deletion of the RBD in Yra1p does not affect viability. Consistently, neither the conserved N and C boxes nor the RBD is required for Mex67p and RNA binding in vitro. Instead, the N-vr and C-vr regions both interact with Mex67p and RNA. We further show that Yra1 deletion mutants which poorly interact with Mex67p in vitro affect the association of Mex67p with mRNP complexes in vivo and are paralleled by poly(A)+ RNA export defects. These observations support the idea that Yra1p promotes mRNA export by facilitating the recruitment of Mex67p to the mRNP. PMID:11390651

  1. Central 22q11.2 deletions.

    PubMed

    Rump, Patrick; de Leeuw, Nicole; van Essen, Anthonie J; Verschuuren-Bemelmans, Corien C; Veenstra-Knol, Hermine E; Swinkels, Mariëlle E M; Oostdijk, Wilma; Ruivenkamp, Claudia; Reardon, Willie; de Munnik, Sonja; Ruiter, Mariken; Frumkin, Ayala; Lev, Dorit; Evers, Christina; Sikkema-Raddatz, Birgit; Dijkhuizen, Trijnie; van Ravenswaaij-Arts, Conny M

    2014-11-01

    22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum. PMID:25123976

  2. Novel approach to identifying the hepatitis B virus pre-S deletions associated with hepatocellular carcinoma

    PubMed Central

    Zhao, Zhi-Mei; Jin, Yan; Gan, Yu; Zhu, Yu; Chen, Tao-Yang; Wang, Jin-Bing; Sun, Yan; Cao, Zhi-Gang; Qian, Geng-Sun; Tu, Hong

    2014-01-01

    AIM: To develop a novel non-sequencing method for the detection of hepatitis B virus (HBV) pre-S deletion mutants in HBV carriers. METHODS: The entire region of HBV pre-S1 and pre-S2 was amplified by polymerase chain reaction (PCR). The size of PCR products was subsequently determined by capillary gel electrophoresis (CGE). CGE were carried out in a PACE-MDQ instrument equipped with a UV detector set at 254 nm. The samples were separated in 50 μm ID eCAP Neutral Coated Capillaries using a voltage of 6 kV for 30 min. Data acquisition and analysis were performed using the 32 Karat Software. A total of 114 DNA clones containing different sizes of the HBV pre-S gene were used to determine the accuracy of the CGE method. One hundred and fifty seven hepatocellular carcinoma (HCC) and 160 non-HCC patients were recruited into the study to assess the association between HBV pre-S deletion and HCC by using the newly-established CGE method. Nine HCC cases with HBV pre-S deletion at the diagnosis year were selected to conduct a longitudinal observation using serial serum samples collected 2-9 years prior to HCC diagnosis. RESULTS: CGE allowed the separation of PCR products differing in size > 3 bp and was able to identify 10% of the deleted DNA in a background of wild-type DNA. The accuracy rate of CGE-based analysis was 99.1% compared with the clone sequencing results. Using this assay, pre-S deletion was more frequently found in HCC patients than in non-HCC controls (47.1% vs 28.1%, P < 0.001). Interestingly, the increased risk of HCC was mainly contributed by the short deletion of pre-S. While the deletion ≤ 99 bp was associated with a 2.971-fold increased risk of HCC (95%CI: 1.723-5.122, P < 0.001), large deletion (> 99 bp) did not show any association with HCC (P = 0.918, OR = 0.966, 95%CI: 0.501-1.863). Of the 9 patients who carried pre-S deletions at the stage of HCC, 88.9% (8/9) had deletions 2-5 years prior to HCC, while only 44.4%4 (4/9) contained such deletions 6

  3. Get1p and Get2p are required for maintenance of mitochondrial morphology and normal cardiolipin levels.

    PubMed

    Joshi, Amit S; Fei, Naomi; Greenberg, Miriam L

    2016-05-01

    Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes. CL deficiency leads to defects in mitochondrial function. Using a targeted synthetic lethality screen to identify defects that exacerbate CL deficiency, we determined that deletion of mitochondrial morphology genes in cells lacking CL leads to severe growth defects. We show that ER membrane proteins Get1p and Get2p are required for maintaining normal levels of CL. We propose that these proteins regulate the level of CL by maintaining wild type-like tubular mitochondrial morphology. The genetic interactions observed in this study identify novel physiological modifiers that are required for maintenance of CL levels and mitochondrial morphology. PMID:26926495

  4. Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact.

    PubMed

    Kiel, J A; Hilbrands, R E; van der Klei, I J; Rasmussen, S W; Salomons, F A; van der Heide, M; Faber, K N; Cregg, J M; Veenhuis, M

    1999-08-01

    We have cloned the Hansenula polymorpha PEX1 and PEX6 genes by functional complementation of the corresponding peroxisome-deficient (pex) mutants. The gene products, HpPex1p and HpPex6p, are ATPases which both belong to the AAA protein family. Cells deleted for either gene (Deltapex1 or Deltapex6) were characterized by the presence of small peroxisomal remnants which contained peroxisomal membrane proteins and minor amounts of matrix proteins. The bulk of the matrix proteins, however, resided in the cytosol. In cell fractionation studies HpPex1p and HpPex6p co-sedimented with the peroxisomal membrane protein HpPex3p in both wild-type cells and in Deltapex4, Deltapex8 or Deltapex14 cells. Both proteins are loosely membrane-bound and face the cytosol. Furthermore, HpPex1p and HpPex6p physically and functionally interact in vivo. Overexpression of PEX6 resulted in defects in peroxisomal matrix protein import. By contrast, overexpression of PEX1 was not detrimental to the cells. Interestingly, co-overproduction of HpPex1p rescued the protein import defect caused by HpPex6p overproduction. Overproduced HpPex1p and HpPex6p remained predominantly membrane-bound, but only partially co-localized with the peroxisomal membrane protein HpPex3p. Our data indicate that HpPex1p and HpPex6p function in a protein complex associated with the peroxisomal membrane and that overproduced, mislocalized HpPex6p prevents HpPex1p from reaching its site of activity. PMID:10455230

  5. Multimodal Assessment of Protein Functional Deficiency Supports Pathogenicity of BRCA1 p.V1688del

    PubMed Central

    De Nicolo, Arcangela; Parisini, Emilio; Zhong, Quan; Palma, Maurizia Dalla; Stoeckert, Kathryn A.; Domchek, Susan M.; Nathanson, Katherine L.; Caligo, Maria A.; Vidal, Marc; Cusick, Michael E.; Garber, Judy E.

    2009-01-01

    Unequivocal discrimination between neutral variants and deleterious mutations is crucial for appropriate counseling of individuals with a BRCA1 or BRCA2 sequence change. An increasing number of variants of uncertain significance (VUSs) are being identified, whose unclassified biological effect poses clinical concerns. A multifactorial likelihood-based approach recently suggested disease causality for BRCA1 p.V1688del, a VUS recurrent in Italian breast/ovarian cancer families. Whether and how this single amino acid deletion in the BRCA1 BRCT domain affects the function of the mutant protein (ΔValBRCA1) has not been elucidated. We undertook comprehensive functional characterization of ΔValBRCA1, comprising comparative structural modeling, analysis of protein stability and associations, and analysis of DNA repair function. Our model predicted BRCT domain destabilization and folding disruption caused by BRCA1 p.V1688del. Consistently, the recombinant ΔValBRCA1 was less stable than wtBRCA1 and, unlike the latter, failed to associate with BRIP1, CtIP, and Rap80, and to re-localize to sites of DNA damage. Yeast two-hybrid analysis revealed a compromised interaction with FHL2 and with KPNA2, which is likely responsible for improper subcellular localization of ΔValBRCA1. In addition, we found four new breast/ovarian cancer families of Italian ancestry who carried this sequence alteration. These results provide the first evidence of the effect of BRCA1 p.V1688del on protein stability and function, supporting the view that it is a deleterious mutation. Multimodal analyses like ours could advance understanding of tumor suppression by BRCA1, and ultimately contribute to developing efficient strategies for screening and characterization of VUSs. PMID:19706752

  6. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p)

    SciTech Connect

    Mandel, Corey R.; Gebauer, Damara; Zhang, Hailong; Tong, Liang

    2006-10-01

    Proteolysis in situ by a protease secreted by a contaminating fungus is essential for the crystallization of yeast CPSF-100. The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3′-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.

  7. A Serendipitous Discover that in situ Proteolysis is Essential for the Crystallization of Yeast CPSF-100 (Ydh1p)

    SciTech Connect

    Mandel,C.; Gebauer, D.; Zhang, H.; Tong, L.

    2006-01-01

    The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.

  8. Structural biology of the S1P1 receptor.

    PubMed

    Hanson, Michael A; Peach, Robert

    2014-01-01

    The sphingosine 1 phosphate receptor family has been studied widely since the initial discovery of its first member, endothelium differentiation gene 1. Since this initial discovery, the family has been renamed and the primary member of the family, the S1P1 receptor, has been targeted for a variety of disease indications and successfully drugged for the treatment of patients with relapsing multiple sclerosis. Recently, the three-dimensional structure of the S1P1 receptor has been determined by X-ray crystallography and the specifics of the sphingosine 1 phosphate ligand binding pocket mapped. Key structural features for the S1P1 receptor will be reviewed and the potential binding modes of additional pharmacologically active agents against the receptor will be analyzed in an effort to better understand the structural basis of important receptor-ligand interactions. PMID:24728592

  9. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability

    PubMed Central

    2013-01-01

    Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to

  10. Opposite roles of the F-box protein Rcy1p and the GTPase-activating protein Gyp2p during recycling of internalized proteins in yeast.

    PubMed Central

    Lafourcade, Céline; Galan, Jean-Marc; Peter, Matthias

    2003-01-01

    The F-box protein Rcy1p is part of a non-SCF (Skp1p-cullin-F-box protein) complex involved in recycling of internalized material. Like rcy1Delta, cells lacking the Rab-GTPase Ypt6p or its heterodimeric GEFs Rgp1p and Ric1p are unable to recycle the v-SNARE Snc1p. Here we provide genetic evidence suggesting that Rcy1p is a positive regulator of Ypt6p. Deletion of the GAP Gyp2p restores recycling in rcy1Delta, while overexpression of an active form of Ypt6p partially suppresses the recycling defect of rcy1Delta cells. Conversely, overexpression of Gyp2p in wild-type cells interferes with recycling of GFP-Snc1p, and the cells accumulate membrane structures as evidenced by electron microscopy. Gyp2p-GFP is distributed throughout the cytoplasm and accumulates in punctate structures, which concentrate in an actin-dependent manner at sites of polarized growth. Taken together, our results suggest that the F-box protein Rcy1p may activate the Ypt6p GTPase module during recycling. PMID:12807768

  11. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein.

    PubMed Central

    Chantrel, Y; Gaisne, M; Lions, C; Verdière, J

    1998-01-01

    We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function. PMID:9504906

  12. Spectroscopic and Biochemical Characterization of Heme Binding to Yeast Dap1p and Mouse PGRMC1p+

    PubMed Central

    Ghosh, Kaushik; Thompson, Alisha M.; Oh, Eric; Shi, Xiaoli; Goldbeck, Robert A.; Zhiwu, Zhu; Vulpe, Chris; Holman, Theodore R.

    2008-01-01

    Yeast damage associated response protein (Dap1p) and mouse progesterone receptor membrane component-1 protein (mPGRMC1p) belong to a highly conserved class of putative membrane-associated progesterone binding proteins (MAPR), with Dap1p and inner zone antigen (IZA), the rat homologue of mPGRMC1p, recently being reported to bind heme. While primary structure analysis reveals similarities to the cytochrome b5 motif, neither of the two axial histidines responsible for ligation to the heme are present in any of the MAPR proteins. In the current paper, EPR, MCD, CD, UV-vis and general biochemical methods have been used to characterize the nature of heme binding in both Dap1p and a His-tagged, membrane anchor-truncated mPGRMC1p. As isolated, Dap1p is a tetramer which can be converted to a dimer upon addition of 150 mM salt. The heme is non-covalently attached, with a maximal, in vitro, heme loading of approximately 30%, for both proteins. CD and fluorescence spectroscopies indicate a well ordered structure, suggesting the low heme loading is probably not due to improperly folded protein. EPR confirmed a five coordinate, high-spin, ferric resting state for both proteins, indicating one axial amino acid ligand, in contrast to the six coordinate, low-spin, ferric state of cytochrome b5. The MCD spectrum confirmed this conclusion for Dap1p and indicated the axial ligand is most likely a tyrosine and not a histidine, nor a cysteine, however an aspartic acid residue could not be conclusively ruled out. Potential axial ligands, which are conserved in all MAPR’s, were mutated (Y78F, D118A and Y138F) and purified to homogeneity. The mutants Y78F and D118A were found to bind heme, however, Y138F did not. This result is consistent with the MCD data and indicates that Tyr138 is most likely the axial ligand to the heme in Dap1p. PMID:16342963

  13. The Fps1p aquaglyceroporin facilitates the use of small aliphatic amides as a nitrogen source by amidase-expressing yeasts.

    PubMed

    Shepherd, Andrew; Piper, Peter W

    2010-08-01

    Saccharomyces cerevisiae acquires a resistance to high, toxic levels of acetic acid by destabilizing Fps1p, the plasma membrane aquaglyceroporin through which this acid - in its undissociated state - enters the cell. In this study, Fps1p loss was shown to confer resistances to acetic acid, acrolein and allyl alcohol, not just in S. cerevisiae but also in the osmotolerant spoilage yeast Zygosaccharomyces rouxii. However, in Z. rouxii, the loss of Fps1p severely compromised the use of acetamide and several other small amides as sources of nitrogen, an indication that these amides enter the cells of this yeast by passive diffusion through the Fps1p pore. Saccharomyces cerevisiae cannot grow on acetamide, but was conferred with an ability to use this and other small amides as nitrogen sources by heterologous expression of a Z. rouxii ORF (ZrAMD1) with protein sequence identity to the amdS-encoded amidase of Aspergillus nidulans. This capacity of ZrAMD1-expressing S. cerevisiae to assimilate amide nitrogen was severely compromised by the loss of Fps1p. ZrAMD1 appears to encode the major amidase of Z. rouxii as a Zramd1Delta deletant mutant had, like the Zrfps1Delta deletant, lost the ability to assimilate small amides as sources of nitrogen. PMID:20491941

  14. TVENT1P. Gas-Dynamic Transients Flow Networks

    SciTech Connect

    Eyberger, L.

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used for constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.

  15. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.

    PubMed Central

    Cheng, C; Kacherovsky, N; Dombek, K M; Camier, S; Thukral, S K; Rhim, E; Young, E T

    1994-01-01

    Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p. Images PMID:8196627

  16. Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.

    PubMed

    Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M

    2016-01-15

    Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders. PMID:26687487

  17. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.

    PubMed

    Hamasaki-Katagiri, Nobuko; Molchanova, Tatiana; Takeda, Kazuyo; Ames, James B

    2004-03-26

    The neuronal calcium sensor (NCS) proteins (e.g. recoverin, neurocalcins, and frequenin) are expressed at highest levels in excitable cells, and some of them regulate desensitization of G protein-coupled receptors. Here we present NMR analysis and genetic functional studies of an NCS homolog in fission yeast (Ncs1p). Ncs1p binds three Ca2+ ions at saturation with an apparent affinity of 2 microm and Hill coefficient of 1.9. Analysis of NMR and fluorescence spectra of Ncs1p revealed significant Ca2+-induced protein conformational changes indicative of a Ca2+-myristoyl switch. The amino-terminal myristoyl group is sequestered inside a hydrophobic cavity of the Ca2+-free protein and becomes solvent-exposed in the Ca2+-bound protein. Subcellular fractionation experiments showed that myristoylation and Ca2+ binding by Ncs1p are essential for its translocation from cytoplasm to membranes. The ncs1 deletion mutant (ncs1Delta) showed two distinct phenotypes: nutrition-insensitive sexual development and a growth defect at high levels of extracellular Ca2+ (0.1 m CaCl(2)). Analysis of Ncs1p mutants lacking myristoylation (Ncs1p(G2A)) or deficient in Ca2+ binding (Ncs1p(E84Q/E120Q/E168Q)) revealed that Ca2+ binding was essential for both phenotypes, while myristoylation was less critical. Exogenous cAMP, a key regulator for sexual development, suppressed conjugation and sporulation of ncs1Delta, suggesting involvement of Ncs1p in the adenylate cyclase pathway turned on by the glucose-sensing G protein-coupled receptor Git3p. Starvation-independent sexual development of ncs1Delta was also complemented by retinal recoverin, which controls Ca2+-regulated desensitization of rhodopsin. In contrast, the Ca2+-intolerance of ncs1Delta was not affected by cAMP or recoverin, suggesting that the two ncs1Delta phenotypes are mechanistically independent. We propose that Schizosaccharomyces pombe Ncs1p negatively regulates sporulation perhaps by controlling Ca2+-dependent desensitization

  18. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed Central

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-01-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  19. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-05-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  20. Mso1p regulates membrane fusion through interactions with the putative N-peptide-binding area in Sec1p domain 1.

    PubMed

    Weber, Marion; Chernov, Konstantin; Turakainen, Hilkka; Wohlfahrt, Gerd; Pajunen, Maria; Savilahti, Harri; Jäntti, Jussi

    2010-04-15

    Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p-Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion. PMID:20181830

  1. S1P metabolism in cancer and other pathological conditions

    PubMed Central

    Leong, Weng In

    2010-01-01

    Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to its cognate receptors for autocrine and paracrine fashion and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated by three enzymes that include sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in S1P levels as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed. PMID:20167244

  2. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.

    PubMed

    Zhao, H; Eide, D J

    1997-09-01

    Zinc ion homeostasis in Saccharomyces cerevisiae is controlled primarily through the transcriptional regulation of zinc uptake systems in response to intracellular zinc levels. A high-affinity uptake system is encoded by the ZRT1 gene, and its expression is induced more than 30-fold in zinc-limited cells. A low-affinity transporter is encoded by the ZRT2 gene, and this system is also regulated by zinc. We used a genetic approach to isolate mutants whose ZRT1 expression is no longer repressed in zinc-replete cells, and a new gene, ZAP1, was identified. ZAP1 encodes a 93-kDa protein with sequence similarity to transcriptional activators; the C-terminal 174 amino acids contains five C2H2 zinc finger domains, and the N terminus (residues 1 to 706) has two potential acidic activation domains. The N-terminal region also contains 12% histidine and cysteine residues. The mutant allele isolated, ZAP1-1up, is semidominant and caused high-level expression of ZRT1 and ZRT2 in both zinc-limited and zinc-replete cells. This phenotype is the result of a mutation that substitutes a serine for a cysteine residue in the N-terminal region. A zap1 deletion mutant grew well on zinc-replete media but poorly on zinc-limiting media. This mutant had low-level ZRT1 and ZRT2 expression in zinc-limited as well as zinc-replete cells. These data indicate that Zap1p plays a central role in zinc ion homeostasis by regulating transcription of the zinc uptake system genes in response to zinc. Finally, we present evidence that Zap1p regulates transcription of its own promoter in response to zinc through a positive autoregulatory mechanism. PMID:9271382

  3. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.

    PubMed Central

    Soares-Silva, Isabel; Schuller, Dorit; Andrade, Raquel P; Baltazar, Fátima; Cássio, Fernanda; Casal, Margarida

    2003-01-01

    In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a V (max) of 2.1 nmol x s(-1) x mg of dry weight(-1). Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest V (max) (0.84 nmol x s(-1) x mg of dry weight(-1)) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels. PMID:12962538

  4. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression.

    PubMed Central

    Giusani, Angela D; Vinces, Marcelo; Kumamoto, Carol A

    2002-01-01

    Filamentation of Candida albicans occurs in response to many environmental cues. During growth within matrix, Efg1p represses filamentation and Czf1p relieves this repression. We propose that Czf1p interacts with Efg1p, altering its function. The complex regulation of filamentation may reflect the versatility of C. albicans as a pathogen. PMID:11973327

  5. Mso1p Regulates Membrane Fusion through Interactions with the Putative N-Peptide–binding Area in Sec1p Domain 1

    PubMed Central

    Weber, Marion; Chernov, Konstantin; Turakainen, Hilkka; Wohlfahrt, Gerd; Pajunen, Maria; Savilahti, Harri

    2010-01-01

    Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p–Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion. PMID:20181830

  6. 78 FR 56679 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... 8/2/2013 (78 FR 46927-46928), the Committee for Purchase From People Who Are Blind or Severely... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  7. The Morphogenesis Checkpoint in Saccharomyces cerevisiae: Cell Cycle Control of Swe1p Degradation by Hsl1p and Hsl7p

    PubMed Central

    McMillan, John N.; Longtine, Mark S.; Sia, Rey A. L.; Theesfeld, Chandra L.; Bardes, Elaine S. G.; Pringle, John R.; Lew, Daniel J.

    1999-01-01

    In Saccharomyces cerevisiae, the Wee1 family kinase Swe1p is normally stable during G1 and S phases but is unstable during G2 and M phases due to ubiquitination and subsequent degradation. However, perturbations of the actin cytoskeleton lead to a stabilization and accumulation of Swe1p. This response constitutes part of a morphogenesis checkpoint that couples cell cycle progression to proper bud formation, but the basis for the regulation of Swe1p degradation by the morphogenesis checkpoint remains unknown. Previous studies have identified a protein kinase, Hsl1p, and a phylogenetically conserved protein of unknown function, Hsl7p, as putative negative regulators of Swe1p. We report here that Hsl1p and Hsl7p act in concert to target Swe1p for degradation. Both proteins are required for Swe1p degradation during the unperturbed cell cycle, and excess Hsl1p accelerates Swe1p degradation in the G2-M phase. Hsl1p accumulates periodically during the cell cycle and promotes the periodic phosphorylation of Hsl7p. Hsl7p can be detected in a complex with Swe1p in cell lysates, and the overexpression of Hsl7p or Hsl1p produces an effective override of the G2 arrest imposed by the morphogenesis checkpoint. These findings suggest that Hsl1p and Hsl7p interact directly with Swe1p to promote its recognition by the ubiquitination complex, leading ultimately to its destruction. PMID:10490630

  8. A conserved amphipathic helix is required for membrane tubule formation by Yop1p

    PubMed Central

    Brady, Jacob P.; Claridge, Jolyon K.; Smith, Peter G.; Schnell, Jason R.

    2015-01-01

    The integral membrane proteins of the DP1 (deleted in polyposis) and reticulon families are responsible for maintaining the high membrane curvature required for both smooth endoplasmic reticulum (ER) tubules and the edges of ER sheets, and mutations in these proteins lead to motor neuron diseases, such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain reticulon homology domains (RHDs) that have unusually long hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilize membrane curvature. We have characterized the secondary structure and dynamics of the DP1 family protein produced from the YOP1 gene (Yop1p) and identified a C-terminal conserved amphipathic helix (APH) that, on its own, interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming APHs. Together, these results indicate that APHs play a previously unrecognized role in RHD membrane curvature stabilization. PMID:25646439

  9. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans.

    PubMed

    Léger, Thibaut; Garcia, Camille; Camadro, Jean-Michel

    2016-07-01

    Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes

  10. Usa1p Is Required for Optimal Function and Regulation of the Hrd1p Endoplasmic Reticulum-associated Degradation Ubiquitin Ligase*

    PubMed Central

    Carroll, Sarah M.; Hampton, Randolph Y.

    2010-01-01

    Usa1p is a recently discovered member of the HRD ubiquitin ligase complex. The HRD pathway is a conserved route of ubiquitin-dependent, endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous lumenal (ERAD-L) and membrane-anchored (ERAD-M) substrates. We have investigated Usa1p to understand its importance in HRD complex action. Usa1p was required for the optimal function of the Hrd1p E3 ubiquitin ligase; its loss caused deficient degradation of both membrane-associated and lumenal proteins. Furthermore, Usa1p functioned in regulation of Hrd1p by two mechanisms. First, Hrd1p self-degradation, which serves to limit the levels of uncomplexed E3, is absolutely dependent on Usa1p and the ubiquitin-like (Ubl) domain of Usa1p. We found that Usa1p allows Hrd1p degradation by promoting trans interactions between Hrd1p molecules. The Ubl domain of Usa1p was required specifically for Hrd1p self-ubiquitination but not for degradation of either ERAD-L or ERAD-M substrates. In addition, Usa1p was able to attenuate the activity-dependent toxicity of Hrd1p without compromising substrate degradation, indicating a separate role in ligase regulation that operates in parallel to stability control. Many of the described actions of Usa1p are distinct from those of Der1p, which is recruited to the HRD complex by Usa1p. Thus, this novel, conserved factor is broadly involved in the function and regulation of the HRD pathway of ERAD. PMID:19940128

  11. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions

    PubMed Central

    1995-01-01

    The NUM1 gene is involved in the control of nuclear migration in Saccharomyces cerevisiae. The content of NUM1 mRNA fluctuates during the cell cycle, reaching a maximum at S/G2 phase, and the translation product Num1p associates with the cortex of mother cells mainly during S, G2, and mitosis, as seen by indirect immunofluorescence. The nuclear spindle in NUM1-deficient large-budded cells often fails to align along the mother/bud axis, while abnormally elongated astral microtubules emanate from both spindle pole bodies. A num1 null mutation confers temperature sensitivity to the cold-sensitive alpha-tubulin mutant tub1- 1, and shows synthetic lethality with the beta-tubulin mutant alleles tub2-402, tub2-403, tub2-404, and tub2-405. Deletion mapping has defined three functionally important Num1p regions: a potential EF hand Ca2+ binding site, a cluster of potential phosphorylation sites and a pleckstrin homology domain. The latter domain appears to be involved in targeting Num1p to the mother cell cortex. Our data suggest that the periodically expressed NUM1 gene product controls nuclear migration by affecting astral microtubule functions. PMID:7490278

  12. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    SciTech Connect

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined. We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.

  13. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.

    PubMed

    D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P

    2009-06-01

    The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements. PMID:19271239

  14. The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p.

    PubMed

    Kucharczyk, R; Dupre, S; Avaro, S; Haguenauer-Tsapis, R; Słonimski, P P; Rytka, J

    2000-12-01

    CCZ1 was previously identified by the sensitivity of ccz1(delta) mutants to high concentrations of Caffeine and the divalent ions Ca(2+ )and Zn(2+). In this paper we show that deletion of CCZ1 leads to aberrant vacuole morphology, similar to the one reported for the family of vacuolar protein sorting (vps) mutants of class B. The ccz1(&Dgr;) cells display severe vacuolar protein sorting defects for both the soluble carboxipeptidase Y and the membrane-bound alkaline phosphatase, which are delivered to the vacuole by distinct routes. Ccz1p is a membranous protein and the vast majority of Ccz1p resides in late endosomes. These results, along with a functional linkage found between the CCZ1 and YPT7 genes, indicate that the site of Ccz1p function is at the last step of fusion of multiple transport intermediates with the vacuole. PMID:11069774

  15. Dissection of the DNA binding domain of yeast Zn-finger protein Rme1p, a repressor of meiotic activator IME1.

    PubMed

    Shimizu, M; Hara, M; Murase, A; Shindo, H; Mitchell, A P

    1997-01-01

    A series of deletion mutants of the yeast Zn-finger protein Rme1p (Repressor of Meiosis) fused with maltose binding protein (MBP) were constructed, purified, and characterized to examine the DNA binding domain. It was shown by gel retardation assay that the DNA binding domain of Rme1p was attributed to C-terminal amino acid residues 171 to 300. All three Zn-fingers are involved in the DNA binding domain, but they are not sufficient for DNA binding ability. Notably, the C-terminal region (residues 285-300) is essential for DNA binding. Provided that the region folds into alpha-helix, the basic amino acid residues may form a ridge on one side of the helix, whereas the hydrophobic residues may form it on the other side. Thus, the DNA binding domain of Rme1p would be dissected two regions. The roles of C-terminal region in DNA recognition will be discussed. PMID:9586056

  16. Gas relations in comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    Photographic and photoelectric observations of comet 1P/Halley's ionised gas coma from CO+ and neutral gas coma from CN were part of the Bochum Halley Monitoring Program, conducted at the European Southern Observatory, La Silla, Chile, from February 17 to April 17, 1986. In this spectral range it is possible to see the continuum formation and expansion of plasma and neutral gas structures. To observe the morphology of these structures, 32 CO+ photos from comet 1P/Halley obtained by means of an interference filter have been analysed. The data were reduced to relative intensities, and those with proper calibrations were also converted to absolute intensities, expressed in terms of column densities. The relations between CO+ and CN in average column density values are 11.6 for a circular diaphragm with an average diameter (Φ) of 6.1 arcminutes which corresponds to a distance from the nucleus (ρ) equal to 6.3 × 104 km. These values are in perfect agreement with the data for short distances and small slit diameters. With the use of diaphragms with large diameters it is possible to get some information about the outer coma of the comet. At these distances, the CO+ column density changes only due to the geometrical dilution, because the CO+ parent molecules are already photoionised or photodissociated.

  17. Molecular Oxygen in Oort Cloud Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Altwegg, K.; van Dishoeck, E. F.; Schwehm, G.

    2015-12-01

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O2/H2O = 3.80 ± 0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O2 abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.

  18. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis.

    PubMed Central

    Ooi, C E; Rabinovich, E; Dancis, A; Bonifacino, J S; Klausner, R D

    1996-01-01

    The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are grown in low concentrations of copper, but that exposure of cells to high concentrations of copper (10 microM) triggers degradation of cell surface Ctr1p. This degradation appears to be specific for Ctr1p and does not occur with another yeast plasma membrane protein tested. Internalization of some Ctr1p can be seen when cells are exposed to copper. However, yeast mutant strains defective in endocytosis (end3, end4 and chc1-ts) and vacuolar degradation (pep4) exhibit copper-dependent Ctr1p degradation, indicating that internalization and delivery to the vacuole is not the principal mechanism responsible for degradation. In addition, a variant Ctr1p with a deletion in the cytosolic tail is not internalized upon exposure of cells to copper, but is nevertheless degraded. These observations indicate that proteolysis at the plasma membrane most likely explains copper-dependent turnover of Ctr1p and point to the existence of a novel pathway in yeast for plasma membrane protein turnover. Images PMID:8670854

  19. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    SciTech Connect

    Takeshita, Harunori; Kitano, Masayasu; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto; Miyazawa, Keiji; Hla, Timothy; Sano, Hajime

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  20. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA

    PubMed Central

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-01-01

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by a ChIP experiment showed that Hho1p is required for maximal pol I processivity during rDNA transcription. Psoralen accessibility experiments indicated that Hho1p is necessary for normal rDNA compaction. DNA array expression analysis comparing RNA transcripts in wild-type and hho1 strains before and after a heat-shock showed that Hho1p is necessary to achieve wild-type mRNA levels of transcripts that encode ribosomal components. Taken together, our results suggest that Hho1p is involved in rDNA compaction, and like core histones, is required for efficient rDNA transcription by pol I. PMID:18687885

  1. Evidence against the Bm1P1 protein as a positive transcription factor for barbiturate-mediated induction of cytochrome P450BM-1 in bacillus megaterium.

    PubMed

    Shaw, G C; Sung, C C; Liu, C H; Lin, C H

    1998-04-01

    The Bm1P1 protein was previously proposed to act as a positive transcription factor involved in barbiturate-mediated induction of cytochrome P450BM-1 in Bacillus megaterium. We now report that the bm1P1 gene encodes a protein of 217 amino acids, rather than the 98 amino acids as reported previously. In vitro gel shift assays indicate that the Bm1P1 protein did not interact with probes comprising the regulatory regions of the P450BM-1 gene. Moreover, disruption of the bm1P1 gene did not markedly affect barbiturate induction of P450BM-1 expression. A multicopy plasmid harboring only the P450BM-1 promoter region could increase expression of the chromosome-encoded P450BM-1. The level of expression is comparable with that shown by a multicopy plasmid harboring the P450BM-1 promoter region along with the bm1P1 gene. These results strongly suggest that the Bm1P1 protein is unlikely to act as a positive regulator for barbiturate induction of P450BM-1 expression. Finally, deletion of the Barbie box did not markedly diminish the effect of pentobarbital on expression of a reporter gene transcriptionally fused to the P450BM-1 promoter. This suggests that the Barbie box is unlikely to be a key element in barbiturate-mediated induction of P450BM-1. PMID:9525898

  2. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  3. Congenital adrenal hyperplasia, ovarian failure and Ehlers-Danlos syndrome due to a 6p deletion.

    PubMed

    Moysés-Oliveira, Mariana; Mancini, Tatiane I; Takeno, Sylvia S; Rodrigues, Andressa D S; Bachega, Tania A S S; Bertola, Debora; Melaragno, Maria Isabel

    2014-01-01

    Cryptic deletions in balanced de novo translocations represent a frequent cause of abnormal phenotypes, including Mendelian diseases. In this study, we describe a patient with multiple congenital abnormalities, such as late-onset congenital adrenal hyperplasia (CAH), primary ovarian failure and Ehlers-Danlos syndrome (EDS), who carries a de novo t(6;14)(p21;q32) translocation. Genomic array analysis identified a cryptic 1.1-Mb heterozygous deletion, adjacent to the breakpoint on chromosome 6, extending from 6p21.33 to 6p21.32 and affecting 85 genes, including CYP21A2,TNXB and MSH5. Multiplex ligation-dependent probe amplification analysis of the 6p21.3 region was performed in the patient and her family and revealed a 30-kb deletion in the patient's normal chromosome 6, inherited from her mother, resulting in homozygous loss of genes CYP21A1P and C4B. CYP21A2 sequencing showed that its promoter region was not affected by the 30-kb deletion, suggesting that the deletion of other regulatory sequences in the normal chromosome 6 caused a loss of function of the CYP21A2 gene. EDS and primary ovarian failure phenotypes could be explained by the loss of genes TNXB and MSH5, a finding that may contribute to the characterization of disease-causing genes. The detection of this de novo microdeletion drastically reduced the estimated recurrence risk for CAH in the family. PMID:24970489

  4. Novel Protein Kinases Ark1p and Prk1p Associate with and Regulate the Cortical Actin Cytoskeleton in Budding Yeast

    PubMed Central

    Cope, M.Jamie T.V.; Yang, Shirley; Shang, Ching; Drubin, David G.

    1999-01-01

    Ark1p (actin regulating kinase 1) was identified as a yeast protein that binds to Sla2p, an evolutionarily conserved cortical actin cytoskeleton protein. Ark1p and a second yeast protein, Prk1p, contain NH2-terminal kinase domains that are 70% identical. Together with six other putative kinases from a number of organisms, these proteins define a new protein kinase family that we have named the Ark family. Lack of both Ark1p and Prk1p resulted in the formation of large cytoplasmic actin clumps and severe defects in cell growth. These defects were rescued by wild-type, but not by kinase-dead versions of the proteins. Elevated levels of either Ark1p or Prk1p caused a number of actin and cell morphological defects that were not observed when the kinase-dead versions were overexpressed instead. Ark1p and Prk1p were shown to localize to actin cortical patches, making these two kinases the first signaling proteins demonstrated to be patch components. These results suggest that Ark1p and Prk1p may be downstream effectors of signaling pathways that control actin patch organization and function. Furthermore, results of double-mutant analyses suggest that Ark1p and Prk1p function in overlapping but distinct pathways that regulate the cortical actin cytoskeleton. PMID:10087264

  5. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors

    PubMed Central

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E.; O’Carroll, Simon J.; Graham, E. Scott

    2016-01-01

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors. PMID:26813587

  6. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae.

    PubMed

    Didion, T; Regenberg, B; Jørgensen, M U; Kielland-Brandt, M C; Andersen, H A

    1998-02-01

    Amino acid transporters of the yeast plasma membrane (permeases) belong to a family of integral membrane proteins with pronounced structural similarity. We present evidence that a member of this family, encoded by the open reading frame (ORF) YDR160w (SSY1), is required for the expression of a set of transporter genes. Thus, deletion of the SSY1 gene causes loss of leucine-inducible transcription of the amino acid permease genes BAP2, TAT1 and BAP3 (ORF YDR046c) and the peptide transporter, PTR2. D-leucine can generate the signal without entering the cell. We propose that Ssy1p is situated in the plasma membrane and is involved in sensing leucine in the medium. PMID:9489675

  7. The effect of the bioactive sphingolipids S1P and C1P on multipotent stromal cells--new opportunities in regenerative medicine.

    PubMed

    Marycz, Krzysztof; Śmieszek, Agnieszka; Jeleń, Marta; Chrząstek, Klaudia; Grzesiak, Jakub; Meissner, Justyna

    2015-09-01

    Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) belong to a family of bioactive sphingolipids that act as important extracellular signaling molecules and chemoattractants. This study investigated the influence of S1P and C1P on the morphology, proliferation activity and osteogenic properties of rat multipotent stromal cells derived from bone marrow (BMSCs) and subcutaneous adipose tissue (ASCs). We show that S1P and C1P can influence mesenchymal stem cells (MSCs), each in a different manner. S1P stimulation promoted the formation of cellular aggregates of BMSCs and ASCs, while C1P had an effect on the regular growth pattern and expanded intercellular connections, thereby increasing the proliferative activity. Although osteogenic differentiation of MSCs was enhanced by the addition of S1P, the effectiveness of osteoblast differentiation was more evident in BMSCs, particularly when biochemical and molecular marker levels were considered. The results of the functional osteogenic differentiation assay, which includes an evaluation of the efficiency of extracellular matrix mineralization (SEM-EDX), revealed the formation of numerous mineral aggregates in BMSC cultures stimulated with S1P. Our data demonstrated that in an appropriate combination, the bioactive sphingolipids S1P and C1P may find wide application in regenerative medicine, particularly in bone regeneration with the use of MSCs. PMID:26110483

  8. The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; García, Patricia; Sunnerhagen, Per; Sánchez, Yolanda

    2014-01-01

    Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes. PMID:24478458

  9. The Yeast Hrs1 Gene Encodes a Polyglutamine-Rich Nuclear Protein Required for Spontaneous and Hpr1-Induced Deletions between Direct Repeats

    PubMed Central

    Santos-Rosa, H.; Clever, B.; Heyer, W. D.; Aguilera, A.

    1996-01-01

    The hrs1-1 mutation was isolated as an extragenic suppressor of the hyperrecombination phenotype of hpr1Δ cells. We have cloned, sequenced and deleted from the genome the HRS1 gene. The DNA sequence of the HRS1 gene reveals that it is identical to PGD1, a gene with no reported function, and that the Hrs1p protein contains polyglutamine stretches typically found in transcription factors. We have purified a His(6) tagged version of Hrs1p protein from E. coli and have obtained specific anti-Hrs1p polyclonal antibodies. We show that Hrs1p is a 49-kD nuclear protein, as determined by indirect immunofluorescence microscopy and Western blot analysis. The hrs1Δ null mutation reduces the frequency of deletions in wild-type and hpr1Δ backgrounds sevenfold below wild-type and rad52 levels. Furthermore, hrs1Δ cells show reduced induction of the GAL1,10 promoter relative to wild-type cells. Our results suggest that Hrs1p is required for the formation of deletions between direct repeats and that it may function in gene expression. This suggests a connection between gene expression and direct repeat recombination. In this context, we discuss the possible roles of Hrs1p and Hpr1p in initiation of direct-repeat recombination. PMID:8849881

  10. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae.

    PubMed Central

    Sekiya-Kawasaki, Mariko; Abe, Mitsuhiro; Saka, Ayaka; Watanabe, Daisuke; Kono, Keiko; Minemura-Asakawa, Masayo; Ishihara, Satoru; Watanabe, Takahide; Ohya, Yoshikazu

    2002-01-01

    In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss of the catalytic activity. To identify upstream regulators of 1,3-beta-glucan synthesis, we isolated multicopy suppressors of the GS mutation. We demonstrate that all of the multicopy suppressors obtained (WSC1, WSC3, MTL1, ROM2, LRE1, ZDS1, and MSB1) and the constitutively active RHO1 mutations tested restore 1,3-beta-glucan synthesis in the GS mutant. A deletion of either ROM2 or WSC1 leads to a significant defect of 1,3-beta-glucan synthesis. Analyses of the degree of Mpk1p phosphorylation revealed that among the multicopy suppressors, WSC1, ROM2, LRE1, MSB1, and MTL1 act positively on the Pkc1p-MAPK pathway, another signaling pathway regulated by Rho1p, while WSC3 and ZDS1 do not. We have also found that MID2 acts positively on Pkc1p without affecting 1,3-beta-glucan synthesis. These results suggest that distinct networks regulate the two effector proteins of Rho1p, Fks1p and Pkc1p. PMID:12399379

  11. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human

    PubMed Central

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3–4 compared to those with 0–2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  12. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    PubMed

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  13. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  14. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  15. Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes.

    PubMed

    Tanaka, Naoko; Mukai, Yukio

    The yeast Cyc8p-Tup1p complex is known to serve primarily as a transcriptional corepressor in a variety of biological processes. However, less is known about its function as a coactivator. Herein, we found tryptophan transporter genes, TAT1 and TAT2, that, when overexpressed, suppressed the slow growth of Δcyc8. We observed that the addition of tryptophan to Δcyc8 cultures partially restored cell growth, and the deletion of CYC8 and TUP1 reduced transcriptional levels of TAT1 and TAT2. Tup1p bound to the promoter region of TAT1 and TAT2 genes that were dependent on STP1 and STP2 (encoding DNA-binding activator proteins) for expression. Similarly, transcription of the other Stp1/2p-dependent amino acid transporter (AAT) genes also required CYC8 and TUP1 gene functions. These data indicate that Cyc8p-Tup1p plays a role as a transcriptional coactivator for AAT genes via Stp1/2p activators and that lowering intracellular tryptophan by CYC8 deletion causes slow growth. PMID:26546823

  16. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation.

    PubMed

    Masuda, Miki; Oshima, Ayaka; Noguchi, Tetsuko; Kagiwada, Satoshi

    2016-03-01

    In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease. PMID:26590299

  17. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor.

    PubMed

    Schlisio, Susanne; Kenchappa, Rajappa S; Vredeveld, Liesbeth C W; George, Rani E; Stewart, Rodney; Greulich, Heidi; Shahriari, Kristina; Nguyen, Nguyen V; Pigny, Pascal; Dahia, Patricia L; Pomeroy, Scott L; Maris, John M; Look, A Thomas; Meyerson, Matthew; Peeper, Daniel S; Carter, Bruce D; Kaelin, William G

    2008-04-01

    VHL, NF-1, c-Ret, and Succinate Dehydrogenase Subunits B and D act on a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells and requires the EglN3 prolyl hydroxylase as a downstream effector. Germline mutations of these genes cause familial pheochromocytoma and other neural crest-derived tumors. Using an unbiased shRNA screen we found that the kinesin KIF1Bbeta acts downstream from EglN3 and is both necessary and sufficient for neuronal apoptosis when NGF becomes limiting. KIF1Bbeta maps to chromosome 1p36.2, which is frequently deleted in neural crest-derived tumors including neuroblastomas. We identified inherited loss-of-function KIF1Bbeta missense mutations in neuroblastomas and pheochromocytomas and an acquired loss-of-function mutation in a medulloblastoma, arguing that KIF1Bbeta is a pathogenic target of these deletions. PMID:18334619

  18. Characterization of the human gene for microfibril-associated glycoprotein (MFAP2), assignment to chromosome 1p36.1-p35, and linkage to D1S170

    SciTech Connect

    Faraco, J.; Bashir, M.; Rosenbloom, J.

    1995-02-10

    Microfibril-associated glycoprotein, MAGP (gene symbol MFAP2), is a component of connective tissue microfibrils and a candidate for involvement in the etiology of inherited connective tissue diseases. We have cloned a human MAGP cDNA that is highly homologous to the previously characterized bovine and murine genes. Like the bovine and murine loci, the human gene has eight coding exons, but it contains two alternatively used 5{prime} untranslated exons, whereas only one untranslated exon was described in the bovine and murine Magp genes. By using rodent x human somatic cell hybrid panels and fluorescence chromosomal in situ hybridization, we have assigned the locus to human chromosome 1p36.1-p35. An insertion/ deletion polymorphism has been identified within intron 7. Linkage analysis between this polymorphism and markers on distal chromosome 1 revealed that MAGP is tightly linked to the anonymous marker D1S170. Physical mapping revealed a distance of <100 kb between the two markers. This information can be used to screen for linkage in families with microfibrillar abnormalities that are not linked to the fibrillin genes on chromosomes 15 or 5. 24 refs., 5 figs., 1 tab.

  19. Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses.

    PubMed

    Carrozzo, R; Hirano, M; Fromenty, B; Casali, C; Santorelli, F M; Bonilla, E; DiMauro, S; Schon, E A; Miranda, A F

    1998-01-01

    Multiple mitochondrial DNA (mtDNA) deletions have been described in patients with autosomal dominant progressive external ophthalmoplegia (AD-PEO) and in autosomal recessive disorders including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and autosomal recessive cardiomyopathy ophthalmoplegia (ARCO). The pathogenic bases of these disorders are unknown. We studied three patients with AD-PEO and three patients with autosomal recessive (AR)-PEO (two patients with MNGIE and one patient with ARCO). Histochemistry and Southern blot analyses of DNA were performed in skeletal muscle from the patients. Muscle mtDNA was used to characterize the pattern and amounts of the multiple mtDNA rearrangements; PCR analysis was performed to obtain finer maps of the deleted regions in both conditions. The patients with AD-PEO had myopathic features; the patients with AR-PEO had multisystem disorders. The percentage of ragged-red and cytochrome c oxidase-negative fibers tended to be higher in muscle from the patients with AD-PEO (19% +/- 13.9, 29.7 +/- 26.3) than in muscle from the patients with AR-PEO (1.4% +/- 1.4, 3.3% +/- 3.2; p < 0.10). The sizes of the multiple mtDNA deletions ranged from approximately 4.0 to 10.0 kilobases in muscle from both groups of patients, and in both groups, we identified only deleted and no duplicated mtDNA molecules. Patients with AD-PEO harbored a greater proportion of deleted mtDNA species in muscle (31% +/- 5.3) than did patients with AR-PEO (9.7% +/- 9.1; p < 0.05). In the patients with AD-PEO, we identified a deletion that included the mtDNA heavy strand promoter (HSP) region, which had been previously described as the HSP deletion. The HSP deletion was not present in the patients with AR-PEO. Our findings show the clinical, histologic, and molecular genetic heterogeneity of these complex disorders. In particular, the proportions of multiple mtDNA deletions were higher in muscle samples from patients with AD-PEO than in those from

  20. The Photometric lightcurve of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  1. Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation.

    PubMed

    Liu, Yi-Chang; Fujimori, Danica Galonić; Weissman, Jonathan S

    2016-07-12

    Our understanding of how the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery efficiently targets terminally misfolded proteins while avoiding the misidentification of nascent polypeptides and correctly folded proteins is limited. For luminal N-glycoproteins, demannosylation of their N-glycan to expose a terminal α1,6-linked mannose is necessary for their degradation via ERAD, but whether this modification is specific to misfolded proteins is unknown. Here we report that the complex of the mannosidase Htm1p and the protein disulfide isomerase Pdi1p (Htm1p-Pdi1p) acts as a folding-sensitive mannosidase for catalyzing this first committed step in Saccharomyces cerevisiae We reconstitute this step in vitro with Htm1p-Pdi1p and model glycoprotein substrates whose structural states we can manipulate. We find that Htm1p-Pdi1p is a glycoprotein-specific mannosidase that preferentially targets nonnative glycoproteins trapped in partially structured states. As such, Htm1p-Pdi1p is suited to act as a licensing factor that monitors folding in the ER lumen and preferentially commits glycoproteins trapped in partially structured states for degradation. PMID:27357682

  2. The C-terminal silencing domain of Rap1p is essential for the repression of ribosomal protein genes in response to a defect in the secretory pathway.

    PubMed Central

    Mizuta, K; Tsujii, R; Warner, J R; Nishiyama, M

    1998-01-01

    We have previously shown that a functional secretory pathway is essential for continued ribosome synthesis in Saccharomyces cerevisiae. When a temperature-sensitive mutant defective in the secretory pathway is transferred to the non-permissive temperature, transcription of both rRNA genes and ribosomal protein genes is nearly abolished. In order to define the cis -acting element(s) of ribosomal protein genes sensitive to a defect in the secretory pathway, we have constructed a series of fusion genes containing the CYH2 promoter region, with various deletions, fused to lacZ. Each fusion gene for which transcription is detected is subject to the repression. Rap1p is the transcriptional activator for most ribosomal protein genes, as well as having an important role in silencing in the vicinity of telomeres and at the silent mating-type loci. To assess its role in the repression of transcription by the defect in the secretory pathway, we have introduced rap1 mutations. The replacement of wild-type Rap1p by Rap1p truncated at the C-terminal region caused substantial attenuation of the repression. Furthermore, we have demonstrated that the Rap1p-truncation affects the repression of TCM1 , encoding ribosomal protein L3, which has no Rap1p-binding site in its upstream regulatory region. These results suggest that the repression of transcription of ribosomal protein genes by a secretory defect is mediated through Rap1p, but does not require a Rap1p-binding site within the UAS. PMID:9461469

  3. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  4. 9q22 Deletion - First Familial Case

    PubMed Central

    2011-01-01

    Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400) due to haploinsufficiency of the PTCH1 gene (MIM *601309). Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K). The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337) which causing both brachydactyly type 1 (MIM #113000) and Robinow syndrome (MIM #268310), and the immunologically active SYK gene (MIM *600085). The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling. PMID:21693067

  5. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  6. IAP gene deletion and conditional knockout models.

    PubMed

    Silke, John; Vaux, David L

    2015-03-01

    Gene deletion studies have helped reveal the unique and overlapping roles played by IAP proteins. Crossing IAP mutant mice has helped unravel the complex feed-back regulatory circuits in which cIAP1, cIAP2 and XIAP allow innate defensive responses to microbial pathogens, without the development of auto-inflammatory syndromes. Deletion of genes for Survivin and its homologs in yeasts, invertebrates and mammals has shown that it functions differently, as it is not a regulator of innate immunity or apoptosis, but acts together with INCENP, aurora kinase B and Borealin to allow chromosome segregation during mitosis. PMID:25545814

  7. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    PubMed Central

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  8. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast.

    PubMed Central

    He, F; Brown, A H; Jacobson, A

    1996-01-01

    Rapid turnover of nonsense-containing mRNAs in the yeast Saccharomyces cerevisiae is dependent on the products of the UPF1 (Upf1p), NMD2/UPF2 (Nmd2p) and UPF3 (Upf3p) genes. Mutations in each of these genes lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. NMD2 was recently identified in a two-hybrid screen as a gene that encodes a Upf1p-interacting protein. To identify the amino acids essential to this interaction, we used two-hybrid analysis as well as missense, nonsense, and deletion mutants of NMD2, and mapped the Upf1p-interacting domain of Nmd2p to a 157-amino acid segment at its C-terminus. Mutations in this domain that disrupt interaction with Upf1p also disrupt nonsense-mediated mRNA decay. A dominant-negative deletion allele of NMD2 identified previously includes the Upf1p-interacting domain. However, mutations in the Upf1p-interacting domain do not affect dominant-negative inhibition of mRNA decay caused by this allele, suggesting interaction with yet another factor. These results, and the observation that deletion of a putative nuclear localization signal and a putative transmembrane domain also inactivate nonsense-mediated mRNA decay, suggest that Nmd2p may contain as many as four important functional domains. PMID:8601282

  9. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    SciTech Connect

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally; Kerscher, Oliver; Benton, Michael G.; Basrai, Munira A.

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.

  10. Two novel PRPF31 premessenger ribonucleic acid processing factor 31 homolog mutations including a complex insertion-deletion identified in Chinese families with retinitis pigmentosa

    PubMed Central

    Dong, Bing; Chen, Jieqiong; Zhang, Xiaohui; Pan, Zhe; Bai, Fengge

    2013-01-01

    Objective To identify the causative mutations in two Chinese families with retinitis pigmentosa (RP), and to describe the associated phenotype. Methods Individuals from two unrelated families underwent full ophthalmic examinations. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. Linkage analysis was performed on the known genetic loci for autosomal dominant retinitis pigmentosa with a panel of polymorphic markers in the two families, and then all coding exons of the PRP31 premessenger ribonucleic acid processing factor 31 homolog (PRPF31) gene were screened for mutations with direct sequencing of PCR-amplified DNA fragments. Allele-specific PCR was used to validate a substitution in all available family members and 100 normal controls. A large deletion was detected with real-time quantitative PCR (RQ-PCR) using a panel of primers from regions around the PRPF31 gene. Long-range PCR, followed by DNA sequencing, was used to define the breakpoints. Results Clinical examination and pedigree analysis revealed two four-generation families (RP24 and RP106) with autosomal dominant retinitis pigmentosa. A significant two-point linkage odd disequilibrium score was generated at marker D19S926 (Zmax=3.55, θ=0) for family RP24 and D19S571 (Zmax=3.21, θ=0) for family RP106, and further linkage and haplotype studies confined the disease locus to chromosome 19q13.42 where the PRPF31 gene is located. Mutation screening of the PRPF31 gene revealed a novel deletion c.1215delG (p.G405fs+7X) in family RP106. The deletion cosegregated with the family’s disease phenotype, but was not found in 100 normal controls. No disease-causing mutation was detected in family RP24 with PCR-based sequencing analysis. RQ-PCR and long-range PCR analysis revealed a complex insertion-deletion (indel) in the patients of family RP24. The deletion is more than 19 kb and encompasses part of the PRPF31 gene (exons 1–3), together with three adjacent

  11. Sphingosine 1-Phosphate (S1P) Receptor Agonists Mediate Pro-fibrotic Responses in Normal Human Lung Fibroblasts via S1P2 and S1P3 Receptors and Smad-independent Signaling

    PubMed Central

    Sobel, Katrin; Menyhart, Katalin; Killer, Nina; Renault, Bérengère; Bauer, Yasmina; Studer, Rolf; Steiner, Beat; Bolli, Martin H.; Nayler, Oliver; Gatfield, John

    2013-01-01

    Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways. PMID:23589284

  12. Cargo sequences are important for Som1p-dependent signal peptide cleavage in yeast mitochondria.

    PubMed

    Liang, Haobo; Luo, Wentian; Green, Neil; Fang, Hong

    2004-09-17

    The inner membrane protease (IMP) has two catalytic subunits, Imp1p and Imp2p, that exhibit nonoverlapping substrate specificity in mitochondria of the yeast Saccharomyces cerevisiae. The IMP also has at least one noncatalytic subunit, Som1p, which is required to cleave signal peptides from a subset of Imp1p substrates. To understand how Som1p mediates Imp1p substrate specificity, we addressed the possibility that Som1p functions as a molecular chaperone, which binds to specific substrates and directs them to the catalytic site. Our results show that cargo sequences attached to the signal peptide are important for Som1p-dependent presequence cleavage; however, no specific cargo sequence is required. Indeed, we show that a substrate normally destined for Imp2p is cleaved in a Som1p-dependent manner when the substrate is directed to Imp1p. These results argue against the notion that Som1p is a molecular chaperone. Instead, we propose that the cargo of some Imp1p substrates can assume a conformation incompatible with presequence cleavage. Som1p could thus act through Imp1p to improve cleavage efficiency early during substrate maturation. PMID:15254042

  13. Deletion 5q35.3

    SciTech Connect

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G.; Young, R.S.

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  14. 78 FR 77106 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... INFORMATION: Deletions On 11/8/2013 (78 FR 67129-67130) and 11/15/2013 (78 FR 68823- 68824), the Committee for... Building and Courthouse, 205 4th Street, Coeur d'Alene, ID, U.S. Federal Building, St. Maries, ID NPA: TESH, Inc., Coeur d'Alene, ID Contracting Activity: GENERAL SERVICES ADMINISTRATION, FPDS AGENCY...

  15. Deletion of GPIHBP1 causing severe chylomicronemia.

    PubMed

    Rios, Jonathan J; Shastry, Savitha; Jasso, Juan; Hauser, Natalie; Garg, Abhimanyu; Bensadoun, André; Cohen, Jonathan C; Hobbs, Helen H

    2012-05-01

    Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1. PMID:22008945

  16. 78 FR 23543 - Procurement List Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Deletions On 3/8/2013 (78 FR 15000) and 11/2/2012 (77 FR 66181... NSN: 6545-01-168-6893--First Aid Kit, ] Small Craft NSN: 6545-01-141-9476--Medical Equipment Set...--Medical Equipment Set, X-Ray, Field NSN: 6545-00-920-7125--First Aid Kit, Gun Crew NPA: Ontario...

  17. Interstitial deletion (6)q13q15

    SciTech Connect

    Gershoni-Baruch, R.; Mandel, H.; Bar El, H.; Bar-Nizan, N.; Borochowitz, Z.; Dar, Hanna

    1996-04-24

    We report on a 2-year-old child with psychomotor retardation, facial and urogenital anomalies. His chromosome constitution was 46,XY,del(6)(q13q15). This case further contributes to the karyotype-phenotype correlation of proximal deletion 6q syndromes. 18 refs., 3 figs., 1 tab.

  18. 76 FR 65501 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement.... Comments Must Be Received On or Before: 11/21/2011. ADDRESSES: Committee for Purchase From People Who...

  19. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  20. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast.

    PubMed

    Boumann, Henry A; de Kruijff, Ben; Heck, Albert J R; de Kroon, Anton I P M

    2004-07-01

    In yeast, the aminoalcohol phosphotransferases Ept1p and Cpt1p catalyze the final steps in the CDP-ethanolamine and CDP-choline routes leading to phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively. To determine how these enzymes contribute to the molecular species profiles of PE and PC in vivo, wild-type, cpt1Delta, and ept1Delta cells were pulse labeled with deuterated ethanolamine and choline. Analysis of newly synthesized PE and PC using electrospray ionization tandem mass spectrometry revealed that PE and PC produced by Ept1p and Cpt1p have different species compositions, demonstrating that the enzymes consume distinct sets of diacylglycerol species in vivo. Using the characteristic phospholipid species profiles produced by Ept1p and Cpt1p as molecular fingerprints, it was also shown that in vivo CDP-monomethylethanolamine is preferentially used as substrate by Ept1p, whereas CDP-dimethylethanolamine and CDP-propanolamine are converted by Cpt1p. PMID:15225629

  1. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications

    PubMed Central

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction. PMID:26539121

  2. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae

    PubMed Central

    Pernice, Wolfgang M.; Vevea, Jason D.; Pon, Liza A.

    2016-01-01

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. PMID:26839174

  3. Identification and characterization of three large deletions and a deletion/polymorphism in the CFTR gene.

    PubMed

    Chevalier-Porst, F; Souche, G; Bozon, D

    2005-05-01

    Cystic fibrosis (CF) is mainly caused by small molecular lesions of the CFTR gene; mutation detection methods based on conventional PCR do not allow the identification of all CF alleles in a population and large deletions may account for a number of these unidentified molecular lesions. It is only recently that the availability of quantitative PCR methodologies made the search for large gene rearrangements easier in autosomal diseases. Using a combination of different methods, nine of the 37 unidentified CF alleles (24%) were found to harbor large deletions in our cohort of 1600 CF alleles. Three are new deletions, and we report the breakpoints of the previously described EX4_EX10del40kb deletion. An intronic deletion polymorphism affecting intron 17b was also found on almost 1% of "normal" chromosomes. Examination of the breakpoint sequences confirmed that intron 17b is indeed a hot spot for deletions, and that most of these rearrangements are caused by non-homologous recombination. PMID:15841482

  4. Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme.

    PubMed Central

    Shi, X; Chang, M; Wolf, A J; Chang, C H; Frazer-Abel, A A; Wade, P A; Burton, Z F; Jaehning, J A

    1997-01-01

    The products of the yeast CDC73 and PAF1 genes were originally identified as RNA polymerase II-associated proteins. Paf1p is a nuclear protein important for cell growth and transcriptional regulation of a subset of yeast genes. In this study we demonstrate that the product of CDC73 is a nuclear protein that interacts directly with purified RNA polymerase II in vitro. Deletion of CDC73 confers a temperature-sensitive phenotype. Combination of the cdc73 mutation with the more severe paf1 mutation does not result in an enhanced phenotype, indicating that the two proteins may function in the same cellular processes. To determine the relationship between Cdc73p and Paf1p and the recently described holoenzyme form of RNA polymerase II, we created yeast strains containing glutathione S-transferase (GST)-tagged forms of CDC73, PAF1, and TFG2 functionally replacing the chromosomal copies of the genes. Isolation of GST-tagged Cdc73p and Paf1p complexes has revealed a unique form of RNA polymerase II that contains both Cdc73p and Paf1p but lacks the Srbps found in the holoenzyme. The Cdc73p-Paf1p-RNA polymerase II-containing complex also includes Gal11p, and the general initiation factors TFIIB and TFIIF, but lacks TBP, TFIIH, and transcription elongation factor TFIIS as well as the Srbps. The Srbp-containing holoenzyme does not include either Paf1p or Cdc73p, demonstrating that these two forms of RNA polymerase II are distinct. In confirmation of the hypothesis that the two forms coexist in yeast cells, we found that a TFIIF-containing complex isolated via the GST-tagged Tfg2p construct contains both (i) the Srbps and (ii) Cdc73p and Paf1p. The Srbps and Cdc73p-Paf1p therefore appear to define two complexes with partially redundant, essential functions in the yeast cell. Using the technique of differential display, we have identified several genes whose transcripts require Cdc73p and/or Paf1p for normal levels of expression. Our analysis suggests that there are multiple RNA

  5. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes

    PubMed Central

    Hildebrandt, Emily R; Cheng, Michael; Zhao, Peng; Kim, June H; Wells, Lance; Schmidt, Walter K

    2016-01-01

    The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI: http://dx.doi.org/10.7554/eLife.15899.001 PMID:27525482

  6. Limits to the role of palindromy in deletion formation.

    PubMed Central

    Weston-Hafer, K; Berg, D E

    1991-01-01

    We tested the effect of palindromy on deletion formation. This involved a study of reversion of insertion mutations in the pBR322 amp gene at a site where deletions end either in 9-bp direct repeats or in adjoining 4-bp direct repeats. Inserts of palindromic DNAs ranging from 10 to more than 26 bp and related nonpalindromic DNAs were compared. The frequency of deletions (selected as Ampr revertants) was stimulated by palindromy only at lengths greater than 26 bp. The 4-bp direct repeats, one component of which is located in the palindromic insert, were used preferentially as deletion endpoints with palindromes of at least 18 bp but not of 16 or 10 bp. We interpret these results with a model of slippage during DNA replication. Because deletion frequency and deletion endpoint location depend differently on palindrome length, we propose that different factors commit a molecule to undergo deletion and determine exactly where deletion endpoints will be. PMID:1846137

  7. A 10.46 Mb 12p11.1-12.1 interstitial deletion coincident with a 0.19 Mb NRXN1 deletion detected by array CGH in a girl with scoliosis and autism.

    PubMed

    Soysal, Yasemin; Vermeesch, Joris; Davani, Nooshin Ardeshir; Hekimler, Kuyaş; Imirzalioğlu, Necat

    2011-07-01

    We present a 12-year-old girl with de novo karyotype 46,XX,del(12)(p11.1p12.1). Array CGH revealed in addition to a 10.466 Mb interstitial deletion on 12p11.1→12p12.1 a 0.191 Mb deletion on 2p16.3. The girl presented with mild facial dysmorphism consisting of microcephaly, hypertelorism, downslanting palpebral fissures, strabismus, broad nasal base, bulbous nose, short philtrum, micro/retrognathia, irregular tooth arrangement, phalangeal deformity in distal phalanges of hands, 5th finger camptodactyly, brachydactyly in feet, history of joint hypermobility, and scoliosis. She was considered to have mild to moderate mental retardation and ascertained for an autism spectrum disorder(ASD). Short arm of chromosome 12 interstitial deletions are rarely reported whereas point mutations and deletions of NRXN1, which is located on chromosome 2p16.3, are associated with ASDs. In this article we present and discuss the phenotypic consequences of a patient who was affected by deletions of two different chromosomal regions. PMID:21626680

  8. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations.

    PubMed

    Siddiqi, Imran N; Friedman, Julia; Barry-Holson, Keegan Q; Ma, Charles; Thodima, Venkata; Kang, Irene; Padmanabhan, Raghavendra; Dias, Lizalynn M; Kelly, Kevin R; Brynes, Russell K; Kamalakaran, Sitharthan; Houldsworth, Jane

    2016-06-01

    A predominantly diffuse growth pattern and CD23 co-expression are uncommon findings in nodal follicular lymphoma and can create diagnostic challenges. A single case series in 2009 (Katzenberger et al) proposed a unique morphologic variant of nodal follicular lymphoma, characterized by a predominantly diffuse architecture, lack of the t(14;18) IGH/BCL2 translocation, presence of 1p36 deletion, frequent inguinal lymph node involvement, CD23 co-expression, and low clinical stage. Other studies on CD23+ follicular lymphoma, while associating inguinal location, have not specifically described this architecture. In addition, no follow-up studies have correlated the histopathologic and cytogenetic/molecular features of these cases, and they remain a diagnostic problem. We identified 11 cases of diffuse, CD23+ follicular lymphoma with histopathologic features similar to those described by Katzenberger et al. Along with pertinent clinical information, we detail their histopathology, IGH/BCL2 translocation status, lymphoma-associated chromosomal gains/losses, and assessment of mutations in 220 lymphoma-associated genes by massively parallel sequencing. All cases showed a diffuse growth pattern around well- to ill-defined residual germinal centers, uniform CD23 expression, mixed centrocytic/centroblastic cytology, and expression of at least one germinal center marker. Ten of 11 involved inguinal lymph nodes, 5 solely. By fluorescence in situ hybridization analysis, the vast majority lacked IGH/BCL2 translocation (9/11). Deletion of 1p36 was observed in five cases and included TNFRSF14. Of the six cases lacking 1p36 deletion, TNFRSF14 mutations were identified in three, highlighting the strong association of 1p36/TNFRSF14 abnormalities with this follicular lymphoma variant. In addition, 9 of the 11 cases tested (82%) had STAT6 mutations and nuclear P-STAT6 expression was detectable in the mutated cases by immunohistochemistry. The proportion of STAT6 mutations is higher than

  9. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q11.2 deletion syndrome 22q11.2 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q11.2 deletion syndrome (which is also known by several ...

  10. Genetics Home Reference: 22q13.3 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q13.3 deletion syndrome 22q13.3 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q13.3 deletion syndrome , which is also commonly known as ...

  11. Characterization of five partial deletions of the factor VIII gene

    SciTech Connect

    Youssoufian, H.; Antonarakis, S.E.; Aronis, S.; Tsiftis, G.; Phillips, D.G.; Kazazian, H.H. Jr.

    1987-06-01

    Hemophilia A is an X-linked disorder of coagulation caused by a deficiency of factor VIII. By using cloned DNA probes, the authors have characterized the following five different partial deletions of the factor VIII gene from a panel of 83 patients with hemophilia A: (i) a 7-kilobase (kb) deletion that eliminates exon 6; (ii) a 2.5-kb deletion that eliminates 5' sequences of exon 14; (iii) a deletion of at least 7 kb that eliminates exons 24 and 25; (iv) a deletion of at least 16 kb that eliminates exons 23-25; and (v) a 5.5-kb deletion that eliminates exon 22. The first four deletions are associated with severe hemophilia A. By contrast, the last deletion is associated with moderate disease, possibly because of in-frame splicing from adjacent exons. None of those patients with partial gene deletions had circulating inhibitors to factor VIII. One deletion occurred de novo in a germ cell of the maternal grandmother, while a second deletion occurred in a germ cell of the maternal grandfather. These observations demonstrate that de novo deletions of X-linked genes can occur in either male or female gametes.

  12. 76 FR 14942 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ..., XRAW7M8 USPFO Activity IA ARNG, Johnston, IA. ] Deletions On 1/21/2011 (76 FR 3879-3880), the Committee... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to and deletions from...

  13. Human Diallelic Insertion/Deletion Polymorphisms

    PubMed Central

    Weber, James L.; David, Donna; Heil, Jeremy; Fan, Ying; Zhao, Chengfeng; Marth, Gabor

    2002-01-01

    We report the identification and characterization of 2,000 human diallelic insertion/deletion polymorphisms (indels) distributed throughout the human genome. Candidate indels were identified by comparison of overlapping genomic or cDNA sequences. Average confirmation rate for indels with a ⩾2-nt allele-length difference was 58%, but the confirmation rate for indels with a 1-nt length difference was only 14%. The vast majority of the human diallelic indels were monomorphic in chimpanzees and gorillas. The ratio of deletion:insertion mutations was 4.1. Allele frequencies for the indels were measured in Europeans, Africans, Japanese, and Native Americans. New alleles were generally lower in frequency than old alleles. This tendency was most pronounced for the Africans, who are likely to be closest among the four groups to the original modern human population. Diallelic indels comprise ∼8% of all human polymorphisms. Their abundance and ease of analysis make them useful for many applications. PMID:12205564

  14. Duplication/deletion of chromosome 8p

    SciTech Connect

    Priest, J.H.

    1995-09-11

    The article by Guo et al. provides evidence for deletion of D8S596 loci (assigned to 8p23) in at least some patients with inverted duplications of 8p. Cytogenetic break points forming the inverted duplication are remarkably similar among most of their patients and those reported previously, suggesting a common mechanism for this interesting rearrangement. Why should similar breaks occur in 8p and why is a FISH signal absent in the distal short arm when the ONCOR digoxigenin-labeled probe for loci D8S596 is used? Other studies also indicate that duplication for the region 8p12-p22 is associated with a deletion distal to the duplication itself. 4 refs.

  15. S1P lyase in skeletal muscle regeneration and satellite cell activation: Exposing the hidden lyase☆

    PubMed Central

    Saba, Julie D.; de la Garza-Rodea, Anabel S.

    2013-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves asamuscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C2–3, resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. PMID:22750505

  16. The Clinically-tested S1P Receptor Agonists, FTY720 and BAF312, Demonstrate Subtype-Specific Bradycardia (S1P1) and Hypertension (S1P3) in Rat

    PubMed Central

    Fryer, Ryan M.; Muthukumarana, Akalushi; Harrison, Paul C.; Nodop Mazurek, Suzanne; Chen, Rong Rhonda; Harrington, Kyle E.; Dinallo, Roger M.; Horan, Joshua C.; Patnaude, Lori; Modis, Louise K.; Reinhart, Glenn A.

    2012-01-01

    Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1PX receptor agonist) produces modest hypertension in patients (2–3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.g. bradycardia, hypertension), and perhaps even species-dependent since functional differences in rodent, rabbit, and human have been suggested. Thus, we characterized the S1P receptor subtype specificity for each compound in vitro and, in vivo, the cardiovascular effects of FTY720 and the more selective S1P1,5 agonist, BAF312, were tested during acute i.v. infusion in anesthetized rats and after oral administration for 10 days in telemetry-instrumented conscious rats. Acute i.v. infusion of FTY720 (0.1, 0.3, 1.0 mg/kg/20 min) or BAF312 (0.5, 1.5, 5.0 mg/kg/20 min) elicited acute bradycardia in anesthetized rats demonstrating an S1P1 mediated mechanism-of-action. However, while FTY720 (0.5, 1.5, 5.0 mg/kg/d) elicited dose-dependent hypertension after multiple days of oral administration in rat at clinically relevant plasma concentrations (24-hr mean blood pressure = 8.4, 12.8, 16.2 mmHg above baseline vs. 3 mmHg in vehicle controls), BAF312 (0.3, 3.0, 30.0 mg/kg/d) had no significant effect on blood pressure at any dose tested suggesting that hypertension produced by FTY720 is mediated S1P3 receptors. In summary, in vitro selectivity results in combination with studies performed in anesthetized and conscious rats administered two clinically tested S1P agonists, FTY720 or BAF312, suggest that S1P1 receptors mediate bradycardia while hypertension is mediated by S1P3 receptor activation. PMID:23285242

  17. 78 FR 37525 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... . SUPPLEMENTARY INFORMATION: Deletions On 4/12/2013 (78 FR 21916); 4/26/2013 (78 FR 24732-24733); 5/3/2013 (78 FR 25970-25971); and 5/10/2013 (78 FR 27368-27369), the Committee for Purchase From People Who Are Blind or..., Black NSN: 7530-01-587-8929L--DAYMAX System, 2012, JR Deluxe Planner, 6- hole, Black w/logo NSN:...

  18. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    PubMed Central

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2008-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by β-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, β-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles. PMID:17921358

  19. Carboxyl terminal deletion analysis of tryptophan hydroxylase.

    PubMed

    Mockus, S M; Kumer, S C; Vrana, K E

    1997-10-17

    Tryptophan hydroxylase (TPH) catalyzes the rate-limiting step in the synthesis of serotonin and participates (in a non-rate-limiting fashion) in melatonin biosynthesis. In rabbit, TPH exists as a tetramer of four identical 51007 dalton (444 amino acids) protein subunits. An intersubunit binding domain responsible for tetramer formation of TPH was identified by assessing the role of a carboxyl terminal leucine heptad and 4-3 hydrophobic repeat. These repeats are conserved in all of the aromatic amino acid hydroxylases and have been shown to be required for the assembly of tyrosine hydroxylase tetramers. Polymerase chain reaction was utilized to create three TPH carboxyl terminal deletions (C delta8, C delta12 and C delta17) that sequentially remove members of the leucine heptad and 4-3 hydrophobic repeat. Each deletion and full-length recombinant TPH was expressed in bacteria to obtain soluble enzyme extracts for subsequent activity and structural analysis. It was found that removal of 8, 12 or 17 amino acids from the carboxyl terminus of TPH did not significantly alter enzymatic activity when compared to full-length recombinant TPH. However, the macromolecular structure of the deletions was dramatically affected as determined by dimeric and monomeric profiles on size exclusion chromatography. It can be concluded that amino acids 428-444 (the C-terminal 17 amino acids) comprise an intersubunit binding domain that is required for tetramer formation of TPH, but that tetramer assembly is not essential for full enzymatic activity. PMID:9392522

  20. Probabilistic phylogenetic inference with insertions and deletions.

    PubMed

    Rivas, Elena; Eddy, Sean R

    2008-01-01

    A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm. PMID:18787703

  1. A review of 18p deletions.

    PubMed

    Hasi-Zogaj, Minire; Sebold, Courtney; Heard, Patricia; Carter, Erika; Soileau, Bridgette; Hill, Annice; Rupert, David; Perry, Brian; Atkinson, Sidney; O'Donnell, Louise; Gelfond, Jon; Lancaster, Jack; Fox, Peter T; Hale, Daniel E; Cody, Jannine D

    2015-09-01

    Since 18p- was first described in 1963, much progress has been made in our understanding of this classic deletion condition. We have been able to establish a fairly complete picture of the phenotype when the deletion breakpoint occurs at the centromere, and we are working to establish the phenotypic effects when each gene on 18p is hemizygous. Our aim is to provide genotype-specific anticipatory guidance and recommendations to families with an 18p- diagnosis. In addition, establishing the molecular underpinnings of the condition will potentially suggest targets for molecular treatments. Thus, the next step is to establish the precise effects of specific gene deletions. As we look forward to deepening our understanding of 18p-, our focus will continue to be on the establishment of robust genotype-phenotype correlations and the penetrance of these phenotypes. We will continue to follow our 18p- cohort closely as they age to determine the presence or absence of some of these diagnoses, including spinocerebellar ataxia (SCA), facioscapulohumeral muscular dystrophy (FSHD), and dystonia. We will also continue to refine the critical regions for other phenotypes as we enroll additional (hopefully informative) participants into the research study and as the mechanisms of the genes in these regions are elucidated. Mouse models will also be developed to further our understanding of the effects of hemizygosity as well as to serve as models for treatment development. PMID:26250845

  2. Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae

    SciTech Connect

    Hoffman-Sommer, Marta; Migdalski, Andrzej; Rytka, Joanna; Kucharczyk, Roza . E-mail: roza@ibb.waw.pl

    2005-04-01

    The CCZ1 (YBR131w) gene encodes a protein required for fusion of various transport intermediates with the vacuole. Ccz1p, in a complex with Mon1p, is a close partner of Ypt7p in the processes of fusion of endosomes to vacuoles and homotypic vacuole fusion. In this work, we exploited the Ca{sup 2+}-sensitivity of the ccz1{delta} mutant to identify genes specifically interacting with CCZ1, basing on functional multicopy suppression of calcium toxicity. The presented results indicate that Ccz1p functions in the cell either in association with Mon1p and Ypt7p in fusion at the vacuolar membrane, or-separately-with Arl1p at early steps of vacuolar transport. We also show that suppression of calcium toxicity by the calcium pumps Pmr1p and Pmc1p is restricted only to the subset of mutants defective in vacuole morphology. The mechanisms of Ca{sup 2+}-pump-mediated suppression also differ from each other, since the action of Pmr1p, but not Pmc1p, appears to require Arl1p function.

  3. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    PubMed

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP. PMID:25807935

  4. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation.

    PubMed

    Musa, Hanny; Meek, Stephen; Gautel, Mathias; Peddie, Dianna; Smith, Andrew J H; Peckham, Michelle

    2006-10-15

    Titin, a multifunctional protein that stretches from the Z-disk to the M-band in heart and skeletal muscle, contains a kinase domain, phosphorylation sites and multiple binding sites for structural and signalling proteins in the M-band. To determine whether this region is crucial for normal sarcomere development, we created mouse embryonic stem cell (ES) lines in which either one or both alleles contained a targeted deletion of the entire M-band-coding region, leaving Z-disk-binding and myosin-filament-binding sites intact. ES cells were differentiated into cardiomyocytes, and myofibrillogenesis investigated by immunofluorescence microscopy. Surprisingly, deletion of one allele did not markedly affect differentiation into cardiomyocytes, suggesting that a single intact copy of the titin gene is sufficient for normal myofibrillogenesis. By contrast, deletion of both alleles resulted in a failure of differentiation beyond an early stage of myofibrillogenesis. Sarcomeric myosin remained in non-striated structures, Z-disk proteins, such as alpha-actinin, were mainly found in primitive dot-like structures on actin stress fibres, M-band-associated proteins (myomesin, obscurin, Nbr1, p62 and MURF2) remained punctate. These results show that integration of the M-band region of titin is required for myosin filament assembly, M-band formation and maturation of the Z-disk. PMID:17038546

  5. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism

    PubMed Central

    Gsell, Martina; Fankl, Ariane; Klug, Lisa; Mascher, Gerald; Schmidt, Claudia; Hrastnik, Claudia; Zellnig, Günther; Daum, Günther

    2015-01-01

    In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism. PMID:26327557

  6. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    PubMed

    Gsell, Martina; Fankl, Ariane; Klug, Lisa; Mascher, Gerald; Schmidt, Claudia; Hrastnik, Claudia; Zellnig, Günther; Daum, Günther

    2015-01-01

    In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism. PMID:26327557

  7. Phenotypic characterization of rare interstitial deletion of chromosome 4

    PubMed Central

    Ismail, Samira; Helmy, Nivine A.; Mahmoud, Wael M.; El-Ruby, Mona O.

    2012-01-01

    Interstitial deletion of the long arm of chromosome 4 is rare. Patients with interstitial deletion of the long arm of chromosome 4 differ from those with terminal deletions. Phenotypes may be variable, depending upon the specific length and location of the deleted portion. Here, we report on a boy exhibiting most of the congenital malformations encountered in terminal 4q syndrome. The conventional karyotyping and Fluorescence in-situ hybridization revealed a de novo interstitial del (4)(q31q32). The current report is a further document highlighting that deletion of segment q31 could be contributing to the expression of most of the phenotype of 4q deletion syndrome. Using array comparative genome hybridization methodology is recommended for investigating further cases with similar segmental interstitial deletions to support and delineate findings and to define genes implicated in the pathogenesis of the disorder.

  8. Synthesis of new ligands for targeting the S1P1 receptor.

    PubMed

    Schilson, Stefanie S; Keul, Petra; Shaikh, Rizwan S; Schäfers, Michael; Levkau, Bodo; Haufe, Günter

    2015-03-01

    Sphingosine-1-phosphate (S1P) influences various fundamental biological processes by interacting with a family of five G protein-coupled receptors (S1P1-5). FTY720, a sphingosine analogue, which was approved for treatment of relapsing forms of multiple sclerosis, is phosphorylated in vivo and acts as an agonist of four of the five S1P receptor subtypes. Starting from these lead structures we developed new agonists for the S1P1 receptor. The biological activity was tested in vivo and promising ligands were fluorinated at different positions to identify candidates for positron emission tomography (PET) imaging after [(18)F]-labelling. The radioligands shall enable the imaging of S1P1 receptor expression in vivo and thus may serve as novel imaging markers of S1P-related diseases. PMID:25656338

  9. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Dulermo, Thierry; Thevenieau, France; Nicaud, Jean-Marc

    2014-09-01

    In order to live, cells need to import different molecules, such as sugars, amino acids or lipids, using transporters. In Saccharomyces cerevisiae, the ScFAT1 gene encodes the long-chain fatty acid transporter; however, the transport of fatty acids (FAs) in the oleaginous yeast Yarrowia lipolytica has not yet been studied. In contrast to what has previously been found for ΔScfat1 strains, ΔYlfat1 yeast was still able to grow on substrates containing short-, medium- or long-chain FAs. We observed a notable difference in cell lipid content between wild-type (WT) and deletion mutant strains after 24 h of culture in minimal oleate medium: in the WT strain, lipids represented 24% of cell dry weight (CDW), while they accounted for 37% of CDW in the ΔYlfat1 strain. This result indicates that YlFat1p is not involved in cell lipid uptake. Moreover, we also observed that fatty acid remobilisation was decreased in the ΔYlfat1 strain and that fluorescence-tagged YlFat1p proteins localised to the interfaces between lipid bodies, which suggests that YlFat1p may play a role in the export of FAs from lipid bodies. PMID:24945074

  10. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol.

    PubMed

    Ueno, Kazuma; Nagano, Makoto; Shimizu, Shigeki; Toshima, Junko Y; Toshima, Jiro

    2016-07-01

    Lipid droplets (LDs) are ubiquitous organelles, enclosed in a monolayer of phospholipid, which store excess fatty acids as neutral lipids such as triacylglycerol and sterol esters. Previous studies have revealed that LDs contain many proteins with various functions required for lipid metabolism and vesicular trafficking. Among them, Lds (Lipid Droplet in Sporulation) proteins, Lds1p and Lds2p, are reportedly induced and localized to LDs during yeast sporulation, but their cellular function has not been clarified. Here we show that the Lds proteins, Lds1p, Lds2p and Rrt8p, are expressed and localized at LDs in vegetative cells, being required for proper localization of plasma membrane proteins. We found that deletion of Lds genes led to mis-sorting of Wsc1p, a cell wall stress sensor, from the plasma membrane to the vacuole. We also demonstrated that lack of these proteins partially suppressed the growth defect and mis-sorting of the high-affinity tryptophan transporter Tat2p, induced by impairment of ergosterol biosynthesis. Furthermore, we identified Sec39p/Dsl3p, a component of the DSL1 tethering complex that mediates the interaction with COPI vesicles, as a binding partner for Lds2p. These results suggest a possible role of Lds proteins in maintenance of membrane lipid homeostasis and accompanying membrane protein transport. PMID:27216456

  11. TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs.

    PubMed

    Bachman, Nurjana; Gelbart, Marnie E; Tsukiyama, Toshio; Boeke, Jef D

    2005-04-15

    Retrotransposons are RNA elements that reverse transcribe their RNA genomes and make a cDNA copy that is inserted back into a new genomic location by the element-encoded integrase protein. Ty1 is a long terminal repeat (LTR) retrotransposon in Saccharomyces cerevisiae that inserts into an approximately 700-bp integration window upstream of tRNA genes with a periodicity of approximately 80 bp. ATP-dependent chromatin remodeling by Isw2 upstream of tRNA genes leads to changes in chromatin structure and Ty1 integration site selection. We show that the N terminus of Bdp1p, a component of the RNA polymerase III transcription factor TFIIIB, is required for periodic integration of Ty1 into the integration window. Deletion of the Bdp1p N terminus and mutation of ISW2 result in similar disruption of nucleosome positioning upstream of some tRNA genes, and the N-terminal domain of Bdp1p is required for targeting of Isw2 complex to tRNA genes. This study provides the first example for recruitment of an ATP-dependent chromatin-remodeling factor by a general transcription factor in vivo. PMID:15833918

  12. Yeast TFIID Serves as a Coactivator for Rap1p by Direct Protein-Protein Interaction▿

    PubMed Central

    Garbett, Krassimira A.; Tripathi, Manish K.; Cencki, Belgin; Layer, Justin H.; Weil, P. Anthony

    2007-01-01

    In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UASRAP1 enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UASRAP1 enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription. PMID:17074814

  13. Optical model potential for deuteron elastic scattering with 1 p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pang, D. Y.; Lou, J. L.

    2016-07-01

    A set of global optical potential parameters, DA1p, for deuterons with the 1 p -shell nuclei is obtained by simultaneously fitting 67 sets of experimental data of deuteron elastic scattering from 6Li, 9Be, 10B, 11B, 12C, 13C, 14N, 16O, and 18O with incident energies between 5.25 and 170 MeV. DA1p improves the description of the deuteron elastic scattering from the 1 p -shell nuclei with respect to the existing systematic deuteron potentials and can give satisfactory reproduction of the experimental data with radiative nuclei such as 9Li, 10Be, 14C, and 14O.

  14. A role of the sphingosine-1-phosphate (S1P)–S1P receptor 2 pathway in epithelial defense against cancer (EDAC)

    PubMed Central

    Yamamoto, Sayaka; Yako, Yuta; Fujioka, Yoichiro; Kajita, Mihoko; Kameyama, Takeshi; Kon, Shunsuke; Ishikawa, Susumu; Ohba, Yusuke; Ohno, Yusuke; Kihara, Akio; Fujita, Yasuyuki

    2016-01-01

    At the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown. In this study, we investigated a role for the sphingosine-1-phosphate (S1P)–S1P receptor 2 (S1PR2) pathway in EDAC. First, we show that addition of the S1PR2 inhibitor significantly suppresses apical extrusion of RasV12-transformed cells that are surrounded by normal cells. In addition, knockdown of S1PR2 in normal cells induces the same effect, indicating that S1PR2 in the surrounding normal cells plays a positive role in the apical elimination of the transformed cells. Of importance, not endogenous S1P but exogenous S1P is involved in this process. By using FRET analyses, we demonstrate that S1PR2 mediates Rho activation in normal cells neighboring RasV12-transformed cells, thereby promoting accumulation of filamin, a crucial regulator of EDAC. Collectively these data indicate that S1P is a key extrinsic factor that affects the outcome of cell competition between normal and transformed epithelial cells. PMID:26631556

  15. Basic Helix-Loop-Helix Transcription Factor Heterocomplex of Yas1p and Yas2p Regulates Cytochrome P450 Expression in Response to Alkanes in the Yeast Yarrowia lipolytica▿

    PubMed Central

    Endoh-Yamagami, Setsu; Hirakawa, Kiyoshi; Morioka, Daisuke; Fukuda, Ryouichi; Ohta, Akinori

    2007-01-01

    The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes. PMID:17322346

  16. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity

    PubMed Central

    Chittaranjan, Suganthi; Chan, Susanna; Yang, Cindy; Yang, Kevin C.; Chen, Vincent; Moradian, Annie; Firme, Marlo; Song, Jungeun; Go, Nancy E.; Blough, Michael D.; Chan, Jennifer A.; Cairncross, J. Gregory; Gorski, Sharon M.; Morin, Gregg B.; Yip, Stephen; Marra, Marco A.

    2014-01-01

    The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples. PMID:25277207

  17. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae

    PubMed Central

    Fagarasanu, Monica; Fagarasanu, Andrei; Tam, Yuen Yi C.; Aitchison, John D.; Rachubinski, Richard A.

    2005-01-01

    Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance. PMID:15928207

  18. Yeast Mn2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting.

    PubMed Central

    Eguez, Lorena; Chung, Young-Sook; Kuchibhatla, Ajay; Paidhungat, Madan; Garrett, Stephen

    2004-01-01

    Conditional cdc1(Ts) mutants of S. cerevisiae arrest with a phenotype similar to that exhibited by Mn(2+)-depleted cells. Sequence similarity between Cdc1p and a class of Mn(2+)-dependent phosphoesterases, as well as the observation that conditional cdc1(Ts) growth can be ameliorated by Mn(2+) supplement, suggests that Cdc1p activity is sensitive to intracellular Mn(2+) levels. This article identifies several previously uncharacterized cdc1(Ts) suppressors as class E vps (vacuolar protein sorting) mutants and shows that these, as well as other vps mutants, accumulate high levels of intracellular Mn(2+). Yeast VPS genes play a role in delivery of membrane transporters to the vacuole for degradation, and we show that the vps mutants accumulate elevated levels of the high-affinity Mn(2+) transporter Smf1p. cdc1(Ts) conditional growth is also alleviated by mutations, including doa4 and ubc4, that compromise protein ubiquitination, and these ubiquitination defects are associated with Smf1p accumulation. Epistasis studies show that these suppressors require functional Smf1p to alleviate the cdc1(Ts) growth defect, whereas Smf1p is dispensable for cdc1(Ts) suppression by a mutation (cos16/per1) that does not influence intracellular Mn(2+) levels. Because Smf1p is ubiquitinated in vivo, we propose that Smf1p is targeted to the vacuole for degradation by ubiquitination-dependent protein sorting. PMID:15166140

  19. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  20. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  1. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  2. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  3. Low frequency of the CYP21A2 deletion in ethnic Chinese (Taiwanese) patients with 21-hydroxylase deficiency.

    PubMed

    Lee, Hsien-Hsiung; Lee, Yann-Jinn; Wang, Yu-Mei; Chao, Hsiang-Tai; Niu, Dau-Ming; Chao, Mei-Chyn; Tsai, Fuu-Jen; Lo, Fu-Sung; Lin, Shio-Jean

    2008-04-01

    Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder which causes more than 90% of CAH cases due to defects in the steroid 21-hydroxylase gene (CYP21A2). The frequency of large mutations was determined in 200 ethnic Chinese (i.e., Taiwanese) CAH patients belonging to 200 families with different clinical forms of CYP21A2 deficiency over 10 years of molecular diagnoses. For a large-gene deletion (or conversion) and the CYP21A2 deletion identification, a PCR product covering the TNXB gene and the 5'-end of the CYP21A2 gene with TaqI endonuclease digestion was analyzed by electrophoresis on agarose gels. For CYP21A2 mutational analysis, secondary PCR amplification of the amplification-created restriction site method was applied. From the results of the analysis, we found that large-gene deletions (or conversions) occurred in 7.5% of the alleles including three different types of the chimeric CYP21A1P/CYP21A2 genes and the haplotype of IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation). The CYP21A2 deletion occurred in 2.0% of the alleles which contained three types of the chimeric TNXA/TNXB genes with two novel ones. We concluded that the CYP21A2 deletion in the ethnic Chinese (Taiwanese) patients exhibits a low occurrence, with the haplotype of the IVS2-12A/C>G in combination with the 707-714del mutation (without the P30L mutation) being prevalent among large gene deletions or conversions. PMID:18039588

  4. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice.

    PubMed

    Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald

    2016-05-01

    Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable

  5. A conserved regulatory mode in exocytic membrane fusion revealed by Mso1p membrane interactions.

    PubMed

    Weber-Boyvat, Marion; Zhao, Hongxia; Aro, Nina; Yuan, Qiang; Chernov, Konstantin; Peränen, Johan; Lappalainen, Pekka; Jäntti, Jussi

    2013-02-01

    Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion. We identify two membrane-binding sites on Mso1p. The N-terminal region inserts into the lipid bilayer and appears to interact with the plasma membrane, whereas the C-terminal region of the protein binds phospholipids mainly through electrostatic interactions and may associate with secretory vesicles. The Mso1p membrane interactions are essential for correct subcellular localization of Mso1p-Sec1p complexes and for membrane fusion in Saccharomyces cerevisiae. These characteristics are conserved in the phosphotyrosine-binding (PTB) domain of β-amyloid precursor protein-binding Mint1, the mammalian homologue of Mso1p. Both Mint1 PTB domain and Mso1p induce vesicle aggregation/clustering in vitro, supporting a role in a membrane-associated process. The results identify Mso1p as a novel lipid-interacting protein in the SNARE complex assembly machinery. Furthermore, our data suggest that a general mode of interaction, consisting of a lipid-binding protein, a Rab family GTPase, and a Sec1/Munc18 family protein, is important in all SNARE-mediated membrane fusion events. PMID:23197474

  6. Group II Intron-Anchored Gene Deletion in Clostridium

    PubMed Central

    Jia, Kaizhi; Zhu, Yan; Zhang, Yanping; Li, Yin

    2011-01-01

    Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron “ClosTron” system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493–1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established. PMID:21304965

  7. Assessing Trace Evidence Left by Secure Deletion Programs

    NASA Astrophysics Data System (ADS)

    Burke, Paul; Craiger, Philip

    Secure deletion programs purport to permanently erase files from digital media. These programs are used by businesses and individuals to remove sensitive information from media, and by criminals to remove evidence of the tools or fruits of illegal activities. This paper focuses on the trace evidence left by secure deletion programs. In particular, five Windows-based secure deletion programs are tested to determine if they leave identifiable signatures after deleting a file. The results show that the majority of the programs leave identifiable signatures. Moreover, some of the programs do not completely erase file metadata, which enables forensic investigators to extract the name, size, creation date and deletion date of the "deleted" files.

  8. Hepatitis B virus: DNA polymerase activity of deletion mutants.

    PubMed

    Kim, Y; Hong, Y B; Jung, G

    1999-02-01

    The hepadnavirus P gene product is a multifunctional protein with priming, DNA- and RNA-dependent DNA polymerase, and RNase H activities. Nested N- or C-terminal deletion mutations and deletions of domain(s) in human HBV polymerase have been made. Wild-type and deletion forms of MBP-fused HBV polymerase were expressed in E. coli, purified by amylose column chromatography, and the DNA-dependent DNA polymerase activities of the purified proteins were compared. Deletion of the terminal protein or spacer regions reduced enzyme activity to 70%, respectively. However, deletion of the RNase H domain affected polymerase activity more than that of the terminal protein or spacer region. The polymerase domain alone or the N-terminal deletion of the polymerase domain still exhibited enzymatic activity. In this report, it is demonstrated that the minimal domain for the polymerizing activity of the HBV polymerase is smaller than the polymerase domain. PMID:10205676

  9. Are there ethnic differences in deletions in the dystrophin gene?

    SciTech Connect

    Banerjee, M.; Verma, I.C.

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  10. Chromosome 22q11 deletion presenting as the Potter sequence.

    PubMed

    Devriendt, K; Moerman, P; Van Schoubroeck, D; Vandenberghe, K; Fryns, J P

    1997-05-01

    A female fetus with the Potter sequence, caused by unilateral renal agenesis and contralateral multicystic renal dysplasia, was found to have a submicroscopic deletion in chromosome 22q11. The only associated anomaly was agenesis of the uterus and oviducts (Von Mayer-Rokitansky-Küster anomaly). The deletion was inherited from the father, who presented the typical velocardiofacial syndrome phenotype, but no urological anomalies. This observation further extends the clinical spectrum associated with a deletion in 22q11. PMID:9152843

  11. Analysis of partial AZFc deletions in Malaysian infertile male subjects.

    PubMed

    Almeamar, Hussein Ali; Ramachandran, Vasudevan; Ismail, Patimah; Nadkarni, Prashan; Fawzi, Nora

    2013-04-01

    Complete deletions in the AZF (a, b, and c) sub-regions of the Y-chromosome have been shown to contribute to unexplained male infertility. However, the role of partial AZFc deletions in male infertility remains to be verified. Three types of partial AZFc deletions have been identified. They are gr/gr, b1/b3, and b2/b3 deletions. A recent meta-analysis showed that ethnic and geographical factors might contribute to the association of partial AZFc deletions with male infertility. This study analyzed the association of partial AZFc deletions in Malaysian infertile males. Fifty two oligozoospermic infertile males and 63 fertile controls were recruited to this study. Screening for partial AZFc deletions was done using the two sequence-tagged sites approach (SY1291 and SY1191) which were analyzed using both the conventional PCR gel-electrophoresis and the high resolution melt, HRM method. Gr/gr deletions were found in 11.53% of the cases and 9.52% of the controls (p = 0.725). A B2/b3 deletion was found in one of the cases (p = 0.269). No B1/b3 deletions were identified in this study. The results of HRM analysis were consistent with those obtained using the conventional PCR gel-electrophoresis method. The HRM analysis was highly repeatable (95% limit of agreement was -0.0879 to 0.0871 for SY1191 melting temperature readings). In conclusion, our study showed that partial AZFc deletions were not associated with male infertility in Malaysian subjects. HRM analysis was a reliable, repeatable, fast, cost-effective, and semi-automated method which can be used for screening of partial AZFc deletions. PMID:23231020

  12. Deletions of the elastin gene in Williams Syndrome

    SciTech Connect

    Greenberg, F.; Nickerson, E.; McCaskill, C.

    1994-09-01

    To investigate deletions in the elastin gene in patients with Williams Syndrome (WS), we screened 37 patients and their parents for deletions in the elastin gene by both fluorescence in situ hybridization (FISH) using cosmid cELN272 containing the 5{prime} end of the elastin gene and by polymerase chain reaction (PCR) using a primer pair which amplifies intron 17 in the elastin gene, producing a polymorphic amplification product. Thirty-two patients have been investigated by both the FISH and PCR techniques, one patient was studied only by PCR, and 4 patients were studied only by FISH. Overall, 34 of 37 patients (92%) were deleted for the elastin gene. Using the PCR marker, 14 patients were informative and 12 were shown to be deleted [maternal (n=5) and paternal (n=7)]. Using cosmid cELN272, 33 of 36 patients demonstrated a deletion of chromosome 7q11.23. In one family, both the mother and daughter were deleted due to an apparently de novo deletion arising in the mother. Three patients were not deleted using the elastin cosmid; 2 of these patients have classic WS. Another non-deleted patient has the typical facial features and hypercalcemia but normal intelligence. These three patients will be important in delineating the critical region(s) responsible for the facial features, hypercalcemia, mental retardation and supravalvular aortic stenosis (SVAS). There was not an absolute correlation between deletions in elastin and SVAS, although these individuals may be at risk for other cardiovascular complications such as hypertention. Since the majority of WS patients are deleted for a portion of the elastin gene, most likely this marker will be an important diagnostic tool, although more patients will need to be studied. Those patients who are not deleted but clinically have WS will be missed using only this one marker. Expansion of the critical region to other loci and identification of additional markers will be essential for identifying all patients with WS.

  13. A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue.

    PubMed

    Oki, M; Nishimoto, T

    1998-12-22

    We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Deltamog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1-1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway. PMID:9860978

  14. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  15. 77 FR 40344 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ..., Fort Gordon, GA. Deletion Regulatory Flexibility Act Certification I certify that the following action... Housekeeping Services, Winn Army Community Hospital, 1061 Harmon Avenue, Fort Stewart, GA. NPA:...

  16. The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence

    SciTech Connect

    Van Dyke, Natalya; Chanchorn, Ekkawit; Van Dyke, Michael W.

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Stm1p confers increased resistance to the macrolide starvation-mimic rapamycin. Black-Right-Pointing-Pointer Stm1p maintains 80S ribosome integrity during stationary phase-induced quiescence. Black-Right-Pointing-Pointer Stm1p facilitates polysome formation following quiescence exit. Black-Right-Pointing-Pointer Stm1p facilitates protein synthesis following quiescence exit. Black-Right-Pointing-Pointer Stm1p is a ribosome preservation factor under conditions of nutrient deprivation. -- Abstract: Once cells exhaust nutrients from their environment, they enter an alternative resting state known as quiescence, whereby proliferation ceases and essential nutrients are obtained through internal stores and through the catabolism of existing macromolecules and organelles. One example of this is ribophagy, the degradation of ribosomes through the process of autophagy. However, some ribosomes need to be preserved for an anticipated recovery from nutrient deprivation. We found that the ribosome-associated protein Stm1p greatly increases the quantity of 80S ribosomes present in quiescent yeast cells and that these ribosomes facilitate increased protein synthesis rates once nutrients are restored. These findings suggest that Stm1p can act as a ribosome preservation factor under conditions of nutrient deprivation and restoration.

  17. Evidence that the Yeast Desaturase Ole1p Exists as a Dimer In Vivo

    SciTech Connect

    Lou, Y.; Shanklin, J.

    2010-06-18

    Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the {Delta}{sup o}-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an {approx}75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional.

  18. The vascular S1P gradient—Cellular sources and biological significance

    PubMed Central

    Hla, Timothy; Venkataraman, Krishnan; Michaud, Jason

    2009-01-01

    Sphingosine 1-phosphate (S1P), a product of sphingomyelin metabolism, is enriched in the circulatory system whereas it is estimated to be much lower in interstitial fluids of tissues. This concentration gradient, termed the vascular S1P gradient appears to form as a result of substrate availability and the action of metabolic enzymes. S1P levels in blood and lymph are estimated to be in the μM range. In the immune system, the S1P gradient is needed as a spatial cue for lymphocyte and hematopoietic cell trafficking. During inflammatory reactions in which enhanced vascular permeability occurs, a burst of S1P becomes available to its receptors in the extravascular compartment, which likely contributes to the tissue reactions. Thus, the presence of the vascular S1P gradient is thought to contribute to physiological and pathological conditions. From an evolutionary perspective, S1P receptors may have co-evolved with the advent of a closed vascular system and the trafficking paradigms for hematopoietic cells to navigate in and out of the vascular system. PMID:18674637

  19. Regulation of a formin complex by the microtubule plus end protein tea1p.

    PubMed

    Feierbach, Becket; Verde, Fulvia; Chang, Fred

    2004-06-01

    The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end-binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3Deltabud6Deltatea1Delta triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth. PMID:15184402

  20. Prognostic Relevance of Histomolecular Classification of Diffuse Adult High-Grade Gliomas with Necrosis.

    PubMed

    Figarella-Branger, Dominique; Mokhtari, Karima; Colin, Carole; Uro-Coste, Emmanuelle; Jouvet, Anne; Dehais, Caroline; Carpentier, Catherine; Villa, Chiara; Maurage, Claude-Alain; Eimer, Sandrine; Polivka, Marc; Vignaud, Jean-Michel; Laquerriere, Annie; Sevestre, Henri; Lechapt-Zalcman, Emmanuelle; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Viennet, Gabriel; Adam, Clovis; Loussouarn, Delphine; Michalak, Sophie; Rigau, Valérie; Heitzmann, Anne; Vandenbos, Fanny; Forest, Fabien; Chiforeanu, Danchristian; Tortel, Marie-Claire; Labrousse, François; Chenard, Marie-Pierre; Nguyen, Anh Tuan; Varlet, Pascale; Kemeny, Jean Louis; Levillain, Pierre-Marie; Cazals-Hatem, Dominique; Richard, Pomone; Delattre, Jean-Yves

    2015-07-01

    Diffuse adult high-grade gliomas (HGGs) with necrosis encompass anaplastic oligodendrogliomas (AOs) with necrosis (grade III), glioblastomas (GBM, grade IV) and glioblastomas with an oligodendroglial component (GBMO, grade IV). Here, we aimed to search for prognostic relevance of histological classification and molecular alterations of these tumors. About 210 patients were included (63 AO, 56 GBM and 91 GBMO). GBMO group was split into "anaplastic oligoastrocytoma (AOA) with necrosis grade IV/GBMO," restricted to tumors showing intermingled astrocytic and oligodendroglial component, and "GBM/GBMO" based on tumors presenting oligodendroglial foci and features of GBM. Genomic arrays, IDH1 R132H expression analyses and IDH direct sequencing were performed. 1p/19q co-deletion characterized AO, whereas no IDH1 R132H expression and intact 1p/19q characterized both GBM and GBM/GBMO. AOA with necrosis/GBMO mainly demonstrated IDH1 R132H expression and intact 1p/19q. Other IDH1 or IDH2 mutations were extremely rare. Both histological and molecular classifications were predictive of progression free survival (PFS) and overall survival (OS) (P < 10(-4) ). Diffuse adult HGGs with necrosis can be split into three histomolecular groups of prognostic relevance: 1p/19q co-deleted AO, IDH1 R132H-GBM and 1p/19q intact IDH1 R132H+ gliomas that might be classified as IDH1 R132H+ GBM. Because of histomolecular heterogeneity, we suggest to remove the name GBMO. PMID:25407774

  1. A conserved regulatory mode in exocytic membrane fusion revealed by Mso1p membrane interactions

    PubMed Central

    Weber-Boyvat, Marion; Zhao, Hongxia; Aro, Nina; Yuan, Qiang; Chernov, Konstantin; Peränen, Johan; Lappalainen, Pekka; Jäntti, Jussi

    2013-01-01

    Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex–mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion. We identify two membrane-binding sites on Mso1p. The N-terminal region inserts into the lipid bilayer and appears to interact with the plasma membrane, whereas the C-terminal region of the protein binds phospholipids mainly through electrostatic interactions and may associate with secretory vesicles. The Mso1p membrane interactions are essential for correct subcellular localization of Mso1p–Sec1p complexes and for membrane fusion in Saccharomyces cerevisiae. These characteristics are conserved in the phosphotyrosine-binding (PTB) domain of β-amyloid precursor protein–binding Mint1, the mammalian homologue of Mso1p. Both Mint1 PTB domain and Mso1p induce vesicle aggregation/clustering in vitro, supporting a role in a membrane-associated process. The results identify Mso1p as a novel lipid-interacting protein in the SNARE complex assembly machinery. Furthermore, our data suggest that a general mode of interaction, consisting of a lipid-binding protein, a Rab family GTPase, and a Sec1/Munc18 family protein, is important in all SNARE-mediated membrane fusion events. PMID:23197474

  2. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme

    PubMed Central

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W.S.; Rauch, Bernhard H.

    2016-01-01

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient's survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient's survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells. In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation. PMID:26887055

  3. The identification and characterization of a novel splicing protein, Isy1p, of Saccharomyces cerevisiae.

    PubMed Central

    Dix, I; Russell, C; Yehuda, S B; Kupiec, M; Beggs, J D

    1999-01-01

    We have identified a novel splicing factor, Isy1p, through two-hybrid screens for interacting proteins involved in nuclear pre-mRNA splicing. Isy1p was tagged and demonstrated to be part of the splicing machinery, associated with spliceosomes throughout the splicing reactions. At least a portion of the Isy1 protein population is associated with snRNAs; low levels of U5 and U6 snRNAs are coimmunoprecipitated specifically with Isy1p. When the ISY1 gene was knocked out, no defect in vegetative growth was observed. Using a sensitive in vivo splicing assay, however, we observed lower splicing efficiency in the isy1 null mutant compared to wild-type, indicating that Isy1 p is important in the optimization of splicing. PMID:10094305

  4. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis.

    PubMed

    Debelyy, Mykhaylo O; Thoms, Sven; Connerth, Melanie; Daum, Günther; Erdmann, Ralf

    2011-06-01

    Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels. PMID:21478434

  5. Observation of {chi}{sub bJ}(1P,2P) decays to light hadrons

    SciTech Connect

    Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Tatishvili, G.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.

    2008-11-01

    Analyzing {upsilon}(nS) decays acquired with the CLEO detector operating at the CESR e{sup +}e{sup -} collider, we measure for the first time the product branching fractions B[{upsilon}(nS){yields}{gamma}{chi}{sub bJ}((n-1)P)]B[{chi}{sub bJ}(n-1)P){yields}X{sub i}] for n=2 and 3, where X{sub i} denotes, for each i, one of the 14 exclusive light-hadron final states for which we observe significant signals in both {chi}{sub bJ}(1P) and {chi}{sub bJ}(2P) decays. We also determine upper limits for the electric dipole (E1) transitions {upsilon}(3S){yields}{gamma}{chi}{sub bJ}(1P)

  6. Pathway specific modulation of S1P1 receptor signalling in rat and human astrocytes

    PubMed Central

    Healy, Luke M; Sheridan, Graham K; Pritchard, Adam J; Rutkowska, Aleksandra; Mullershausen, Florian; Dev, Kumlesh K

    2013-01-01

    Background and Purpose The sphingosine 1-phosphate receptor subtype 1 (S1P1R) is modulated by phosphorylated FTY720 (pFTY720), which causes S1P1R internalization preventing lymphocyte migration thus limiting autoimmune response. Studies indicate that internalized S1P1Rs continue to signal, maintaining an inhibition of cAMP, thus raising question whether the effects of pFTY720 are due to transient initial agonism, functional antagonism and/or continued signalling. To further investigate this, the current study first determined if continued S1P1R activation is pathway specific. Experimental Approach Using human and rat astrocyte cultures, the effects of S1P1R activation on cAMP, pERK and Ca2+ signalling was investigated. In addition, to examine the role of S1P1R redistribution on these events, a novel biologic (MNP301) that prevented pFTY720-mediated S1P1R redistribution was engineered. Key Results The data showed that pFTY720 induced long-lasting S1P1R redistribution and continued cAMP signalling in rat astrocytes. In contrast, pFTY720 induced a transient increase of Ca2+ in astrocytes and subsequent antagonism of Ca2+ signalling. Notably, while leaving pFTY720-induced cAMP signalling intact, the novel MNP301 peptide attenuated S1P1R-mediated Ca2+ and pERK signalling in cultured rat astrocytes. Conclusions and Implications These findings suggested that pFTY720 causes continued cAMP signalling that is not dependent on S1P1R redistribution and induces functional antagonism of Ca2+ signalling after transient stimulation. To our knowledge, this is the first report demonstrating that pFTY720 causes continued signalling in one pathway (cAMP) versus functional antagonism of another pathway (Ca2+) and which also suggests that redistributed S1P1Rs may have differing signalling properties from those expressed at the surface. PMID:23587004

  7. Tfs1p, a Member of the PEBP Family, Inhibits the Ira2p but Not the Ira1p Ras GTPase-Activating Protein in Saccharomyces cerevisiae

    PubMed Central

    Chautard, Hélène; Jacquet, Michel; Schoentgen, Françoise; Bureaud, Nicole; Bénédetti, Hélène

    2004-01-01

    Ras proteins are guanine nucleotide-binding proteins that are highly conserved among eukaryotes. They are involved in signal transduction pathways and are tightly regulated by two sets of antagonistic proteins: GTPase-activating proteins (GAPs) inhibit Ras proteins, whereas guanine exchange factors activate them. In this work, we describe Tfs1p, the first physiological inhibitor of a Ras GAP, Ira2p, in Saccharomyces cerevisiae. TFS1 is a multicopy suppressor of the cdc25-1 mutation in yeast and corresponds to the so-called Ic CPY cytoplasmic inhibitor. Moreover, Tfs1p belongs to the phosphatidylethanolamine-binding protein (PEBP) family, one member of which is RKIP, a kinase and serine protease inhibitor and a metastasis inhibitor in prostate cancer. In this work, the results of (i) a two-hybrid screen of a yeast genomic library, (ii) glutathione S-transferase pulldown experiments, (iii) multicopy suppressor tests of cdc25-1 mutants, and (iv) stress resistance tests to evaluate the activation level of Ras demonstrate that Tfs1p interacts with and inhibits Ira2p. We further show that the conserved ligand-binding pocket of Tfs1—the hallmark of the PEBP family—is important for its inhibitory activity. PMID:15075275

  8. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis.

    PubMed Central

    Park, Chong Jin; Song, Sukgil; Lee, Philip R; Shou, Wenying; Deshaies, Raymond J; Lee, Kyung S

    2003-01-01

    In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis. PMID:12586693

  9. A Role for Myosin-I in Actin Assembly through Interactions with Vrp1p, Bee1p, and the Arp2/3 Complex

    PubMed Central

    Evangelista, Marie; Klebl, Bert M.; Tong, Amy H.Y.; Webb, Bradley A.; Leeuw, Thomas; Leberer, Ekkehard; Whiteway, Malcolm; Thomas, David Y.; Boone, Charles

    2000-01-01

    Type I myosins are highly conserved actin-based molecular motors that localize to the actin-rich cortex and participate in motility functions such as endocytosis, polarized morphogenesis, and cell migration. The COOH-terminal tail of yeast myosin-I proteins, Myo3p and Myo5p, contains an Src homology domain 3 (SH3) followed by an acidic domain. The myosin-I SH3 domain interacted with both Bee1p and Vrp1p, yeast homologues of human WASP and WIP, adapter proteins that link actin assembly and signaling molecules. The myosin-I acidic domain interacted with Arp2/3 complex subunits, Arc40p and Arc19p, and showed both sequence similarity and genetic redundancy with the COOH-terminal acidic domain of Bee1p (Las17p), which controls Arp2/3-mediated actin nucleation. These findings suggest that myosin-I proteins may participate in a diverse set of motility functions through a role in actin assembly. PMID:10648568

  10. Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe.

    PubMed Central

    Liu, J; Wang, H; McCollum, D; Balasubramanian, M K

    1999-01-01

    Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin-based contractile ring. A division septum is formed centripetally, concomitant with ring constriction. Although several genes essential for cytokinesis have been described previously, enzymes that participate in the assembly of the division septum have not been identified. Here we describe a temperature-sensitive mutation, drc1-191, that prevents division septum assembly and causes mutant cells to arrest with a stable actomyosin ring. Unlike the previously characterized cytokinesis mutants, which undergo multiple mitotic cycles, drc1-191 is the first cytokinesis mutant that arrests with two interphase nuclei. Interestingly, unlike drc1-191, drc1-null mutants proceed through multiple mitotic cycles, leading to the formation of large cells with many nuclei. drc1 is allelic to cps1, which encodes a 1,3-beta-glucan synthase subunit. We conclude that Drc1p/Cps1p is not required for cell elongation and cell growth, but plays an essential role in assembly of the division septum. Furthermore, it appears that constriction of the actomyosin ring might depend on assembly of the division septum. We discuss possible mechanisms that account for the differences in the phenotypes of the drc1-191 and the drc1-null mutants and also reflect the potential links between Drc1p and other cytokinesis regulators. PMID:10545452

  11. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart

    PubMed Central

    Bandhuvula, Padmavathi; Honbo, Norman; Wang, Guan-Ying; Jin, Zhu-Qiu; Fyrst, Henrik; Zhang, Meng; Borowsky, Alexander D.; Dillard, Lisa; Karliner, Joel S.

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P1 and S1P3 receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury. PMID:21335477

  12. FXR1P is a GSK3β substrate regulating mood and emotion processing

    PubMed Central

    Del’Guidice, Thomas; Latapy, Camille; Rampino, Antonio; Khlghatyan, Jivan; Lemasson, Morgane; Gelao, Barbara; Quarto, Tiziana; Rizzo, Giuseppe; Barbeau, Annie; Lamarre, Claude; Bertolino, Alessandro; Blasi, Giuseppe; Beaulieu, Jean-Martin

    2015-01-01

    Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role. PMID:26240334

  13. 23 CFR 658.11 - Additions, deletions, exceptions, and restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Additions, deletions, exceptions, and restrictions. 658.11 Section 658.11 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.11 Additions, deletions, exceptions,...

  14. 75 FR 16755 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... INFORMATION: Additions On 1/15/2010 (75 FR 2510) and 2/5/2010 (75 FR 5970-5971), the Committee for Purchase... Installation Contracting Command, Ft. Lewis, WA. Deletions On 2/5/2010 (75 FR 5970-5971), the Committee for... products are deleted from the Procurement List: Products Inkjet Cartridge NSN: 7510-01-544-0833 NSN:...

  15. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  16. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  17. 76 FR 82282 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletion AGENCY... Deletion from the Procurement List. SUMMARY: The Committee is proposing to add services to the Procurement List that will be provided by nonprofit agencies employing persons who are blind or have other...

  18. 75 FR 18164 - Procurement List: Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List: Proposed Additions and Deletions AGENCY... Deletions From the Procurement List. SUMMARY: The Committee is proposing to add to the Procurement List... connection with the products and services proposed for addition to the Procurement List. Comments on...

  19. 75 FR 27313 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... INFORMATION: Additions On 3/12/2010 (75 FR 11863-11864) and 3/26/2010 (75 FR 14575-14576), the Committee for..., PA. ] Deletions On 3/5/2010 (75 FR 10223-10224) and 3/12/2010 (75 FR 11863-11864), the Committee for... products are deleted from the Procurement List: Products USB Flash Drive, Flip Style NSN:...

  20. 5 CFR 1631.17 - Deletion of exempted information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RECORDS Production or Disclosure of Records Under the Freedom of Information Act, 5 U.S.C. 552 § 1631.17 Deletion of exempted information. Where requested records contain matters which are exempted under 5 U.S.C... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information....

  1. 78 FR 56680 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement... following service is proposed for addition to the Procurement List for production by the nonprofit...

  2. 78 FR 70022 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind...

  3. 78 FR 34350 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... deletions from the procurement list. SUMMARY: The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  4. 75 FR 52723 - Procurement List; Proposed Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletion AGENCY... deletion from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement... connection with the service proposed for addition to the Procurement List. Comments on this certification...

  5. 77 FR 22288 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... . SUPPLEMENTARY INFORMATION: Additions On 2/17/2012 (77 FR 9631), the Committee for Purchase From People Who Are..., Office of Acquisitions, Alexandria, VA. Deletions On 2/17/2012 (77 FR 9631), the Committee for Purchase... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee...

  6. 77 FR 9631 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... deletions from the Procurement List. SUMMARY: The Committee is proposing to add services to the Procurement... services proposed for addition to the Procurement List. Comments on this certification are...

  7. 76 FR 6451 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement... proposed for addition to the Procurement List. Comments on this certification are invited....

  8. 75 FR 13262 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... . SUPPLEMENTARY INFORMATION: Additions On 1/11/2010 (75 FR 1354-1355) and 1/15/2010 (75 FR 2510), the Committee.... Deletions On 1/11/2010 (75 FR 1354-1355), the Committee for Purchase From People Who Are Blind or Severely... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee...

  9. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  10. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  11. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  12. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  13. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Adding, deleting, or... OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding... add, substitute or delete a basis, unless the applicant meets the requirements for...

  14. Limits to the role of palindromy in deletion formation

    SciTech Connect

    Weston-Hafer, K.; Berg, D.E. )

    1991-01-01

    The authors tested the effect of palindromy on deletion formation. This involved a study of reversion of insertion mutations in the pBR322 amp gene at a site where deletions and either in 9-bp direct repeats or in adjoining 4-bp direct repeats. Inserts of palindromic DNAs ranging from 10 to more than 26 bp and related nonpalindromic DNAs were compared. The frequency of deletions (selected as Amp{sup r} revertants) was stimulated by palindromy only at lengths greater than 26 bp. The 4-bp direct repeats, one component of which is located in the palindromic insert, were used preferentially as deletion endpoints with palindromes of at least 18 bp but not of 16 or 10 bp. The authors interpret these results with a model of slippage during DNA replication. Because deletion frequency and deletion endpoint location depend differently on palindrome length, the authors propose that different factors commit a molecule to undergo deletion and determine exactly where deletion endpoints will be.

  15. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    ERIC Educational Resources Information Center

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  16. 78 FR 75912 - Procurement List; Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... INFORMATION: Addition On 6/28/2013 (78 FR 38952-38953), the Committee for Purchase From People Who Are Blind... Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for Purchase... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Addition and Deletion AGENCY: Committee...

  17. 49 CFR 7.6 - Deletion of identifying detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6... To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to be necessary to prevent a clearly unwarranted invasion of personal privacy, identifying details will be...

  18. Measurements of branching fractions for electromagnetic transitions involving the χbJ(1P) states

    NASA Astrophysics Data System (ADS)

    Kornicer, M.; Mitchell, R. E.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Hietala, J.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Xiao, T.; Brisbane, S.; Martin, L.; Powell, A.; Spradlin, P.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Pearson, L. J.; Thorndike, E. H.; Yang, F.; Ricciardi, S.; Thomas, C.; Artuso, M.; Blusk, S.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Randrianarivony, K.; Tatishvili, G.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Das, S.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Kreinick, D. L.; Kuznetsov, V. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Libby, J.

    2011-03-01

    Using (9.32, 5.88) million Υ(2S,3S) decays taken with the CLEO III detector, we obtain five product branching fractions for the exclusive processes Υ(2S)→γχb0,1,2(1P)→γγΥ(1S) and Υ(3S)→γχb1,2(1P)→γγΥ(1S). We observe the transition χb0(1P)→γΥ(1S) for the first time. Using the known branching fractions for B[Υ(2S)→γχbJ(1P)], we extract values for B[χbJ(1P)→γΥ(1S)] for J=0, 1, 2. In turn, these values can be used to unfold the Υ(3S) product branching fractions to obtain values for B[Υ(3S)→γχb1,2(1P)] for the first time individually. Comparison of these with each other and with the branching fraction B[Υ(3S)→γχb0] previously measured by CLEO provides tests of relativistic corrections to electric dipole matrix elements.

  19. Hyaluroan-regulated lymphatic permeability through S1P receptors is crucial for cancer metastasis.

    PubMed

    Yu, Mengsi; He, Pingqing; Liu, Yiwen; He, Yiqing; Du, Yan; Wu, Man; Zhang, Guoliang; Yang, Cuixia; Gao, Feng

    2015-01-01

    Disruption of cancer lymphatic vessel barrier function occurs has been reported to involve in cancer lymphatic metastasis. Hyaluronan (HA), a major glycosaminoglycan component of the extracellular matrix, is associated with cancer metastasis. We investigated the effect of high/low molecular weight hyaluronan (HMW-HA/LMW-HA) on regulation of barrier function and tight junctions in cancer lymphatic endothelial cell (LEC) monolayer. Results showed that LMW-HA increased the permeability of cancer LEC monolayers and induced disruption of Zonula Occludens-1 (ZO-1)-mediated intercellular tight junction and actin stress fiber formation. HMW-HA treatment decreased permeability in cancer LEC monolayers and cortical actin ring formation. As reported, sphingosine 1-phosphate (S1P) receptors are involved in vascular integrity. After silencing of lymphatic vessel endothelial hyaluronan receptor (LYVE-1), upregulation of S1P receptors (S1P1 and S1P3) induced by HMW-HA/LMW-HA were inhibited, respectively. With S1P3 silenced, the disruption of ZO-1 as well as stress fiber formation and the ROCK1/RhoA signaling pathway induced by LMW-HA was not observed in cancer LEC. These results suggested that S1P receptors may play an important role in HMW-HA-/LMW-HA-mediated regulation of cancer lymphatic vessel integrity, which might be the initial step of cancer lymphatic metastasis and a useful intervention of cancer progression. PMID:25428387

  20. Loss of APD1 in Yeast Confers Hydroxyurea Sensitivity Suppressed by Yap1p Transcription Factor

    PubMed Central

    Tang, Hei-Man Vincent; Pan, Kewu; Kong, Ka-Yiu Edwin; Hu, Ligang; Chan, Ling-Chim; Siu, Kam-Leung; Sun, Hongzhe; Wong, Chi-Ming; Jin, Dong-Yan

    2015-01-01

    Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU. PMID:25600293

  1. Highly efficient targeted chromosome deletions using CRISPR/Cas9.

    PubMed

    He, Zuyong; Proudfoot, Chris; Mileham, Alan J; McLaren, David G; Whitelaw, C Bruce A; Lillico, Simon G

    2015-05-01

    The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes. PMID:25362885

  2. Attenuation of Monkeypox Virus by Deletion of Genomic Regions

    PubMed Central

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. PMID:25462353

  3. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  4. Molecular Mimicry and Clonal Deletion: A Fresh Look

    PubMed Central

    Rose, Noel R.

    2014-01-01

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous “black holes”, in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease. PMID:25172771

  5. Molecular mimicry and clonal deletion: A fresh look.

    PubMed

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease. PMID:25172771

  6. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth.

    PubMed Central

    Frederick, D L; Tatchell, K

    1996-01-01

    The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase. PMID:8649403

  7. Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    PubMed Central

    Robinson, J. Elliott; Wolfe, Stephanie M.; Kaiser-Rogers, Kathleen; Greenwood, Robert S.

    2016-01-01

    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background. PMID:27199890

  8. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas.

    PubMed

    Martin-Guerrero, Idoia; Salaverria, Itziar; Burkhardt, Birgit; Szczepanowski, Monika; Baudis, Michael; Bens, Susanne; de Leval, Laurence; Garcia-Orad, Africa; Horn, Heike; Lisfeld, Jasmin; Pellissery, Shoji; Klapper, Wolfram; Oschlies, Ilske; Siebert, Reiner

    2013-08-01

    Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease. PMID:23445872

  9. PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast.

    PubMed

    Johansson, Magnus; Chen, Xin; Milanova, Stefina; Santos, Cristiano; Petranovic, Dina

    2016-03-01

    Polyunsaturated fatty acids (PUFA) such as linoleic acid (LA, n-6, C18:2) and γ-linolenic acid (GLA, n-6, C18:3) are essential and must be obtained from the diet. There has been a growing interest in establishing a bio-sustainable production of PUFA in several microorganisms, e.g. in yeast Saccharomyces cerevisiae. However, PUFAs can also be toxic to cells because of their susceptibility to peroxidation. Here we investigated the negative effects of LA and GLA production on S. cerevisiae by characterizing a strain expressing active Δ6 and Δ12 desaturases from the fungus Mucor rouxii. Previously, we showed that the PUFA-producing strain has low viability, down-regulated genes for oxidative stress response, and decreased proteasome activity. Here we show that the PUFA strain accumulates high levels of reactive oxygen species (ROS) and lipid peroxides, and accumulates damaged proteins. The PUFA strain also showed great increase in metacaspase Yca1p activity, suggesting cells could die by caspase-mediated cell death. When treated with antioxidant vitamin C, ROS, lipid peroxidation and protein carbonylation were greatly reduced, and the activity of the metacaspase was significantly decreased too, ultimately doubling the lifespan of the PUFA strain. When deleting YCA1, the caspase-like activity and the oxidative stress decreased and although the lifespan was slightly prolonged, the phenotype could not be fully reversed, pointing that Yca1p was not the main executor of cell death. PMID:26833421

  10. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication

    PubMed Central

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Introduction Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. Case report We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Discussion Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. Conclusion To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and

  11. Deletion of the entire NF1 gene detected by FISH: Four deletion patients associated with severe manifestations

    SciTech Connect

    Wi, Bai-Lin; Austin, M.A.; Schneider, G.H.; Boles, R.G.; Korf, B.R.

    1995-12-04

    Genetic analysis of NF1 has indicated a wide diversity of mutations, including chromosome rearrangements, deletions, insertions, duplications, and point mutations. Recently, five severely affected individuals have been found by Kayes et al. to have deletions encompassing the entire gene. These deletions were detected by quantitative Southern analysis. To simplify deletion detection, we have employed fluorescence in situ hybridization (FISH) using intragenic probes. Thirteen unrelated individuals with NF1 have been studied. Among six with severe manifestations, four have been found to have deletions detected by probes cFF13, cFB5D, cP5, yA43A9, yA113D7 and yD8F4. All four deletion patients have severe developmental delay, minor and major anomalies (including one with bilateral iris colobomas), and multiple cutaneous neurofibromas or plexiform neurofibromas which were present before age 5 years. FISH provides a simple and rapid means of identification of NF1 gene deletions and will allow more rigorous testing of the hypothesis that such deletions are associated with severe manifestations. 15 refs., 3 figs., 2 tabs.

  12. Low-grade and anaplastic oligodendroglioma.

    PubMed

    Van Den Bent, Martin J; Bromberg, Jacolien E C; Buckner, Jan

    2016-01-01

    Anaplastic oligodendrogliomas have long attracted interest because of their sensitivity to chemotherapy, in particular in the subset of 1p/19q co-deleted tumors. Recent molecular studies have shown that all 1p/19q co-deleted tumors have IDH mutations and most of them also have TERT mutations. Because of the presence of similar typical genetic alterations in astrocytoma and glioblastoma, the current trend is to diagnose these tumors on the basis of their molecular profile. Further long-term follow-up analysis of both EORTC and RTOG randomized studies on (neo)adjuvant procarbazine, lomustine, vincristine (PCV) chemotherapy have shown that adjuvant chemotherapy indeed improves outcome, and this is now standard of care. It is also equally clear that benefit to PCV chemotherapy is not limited to the 1p/19q co-deleted cases; potential other predictive factors are IDH mutations and MGMT promoter methylation. Moreover, a recent RTOG study on low-grade glioma also noted an improved outcome after adjuvant PCV chemotherapy, thus making (PCV) chemotherapy now standard of care for all 1p/19q co-deleted tumors regardless of grade. It remains unclear whether temozolomide provides the same survival benefit, as no data from well-designed clinical trials on adjuvant temozolomide in this tumor type are available. Another question that remains is whether one can safely leave out radiotherapy as part of initial treatment to avoid cognitive side-effects of radiotherapy. The current data suggest that delaying radiotherapy and treatment with chemotherapy only may be detrimental for overall survival. PMID:26948366

  13. Triadin Deletion Induces Impaired Skeletal Muscle Function*

    PubMed Central

    Oddoux, Sarah; Brocard, Julie; Schweitzer, Annie; Szentesi, Peter; Giannesini, Benoit; Brocard, Jacques; Fauré, Julien; Pernet-Gallay, Karine; Bendahan, David; Lunardi, Joël; Csernoch, Laszlo; Marty, Isabelle

    2009-01-01

    Triadin is a multiple proteins family, some isoforms being involved in muscle excitation-contraction coupling, and some having still unknown functions. To obtain clues on triadin functions, we engineered a triadin knock-out mouse line and characterized the physiological effect of triadin ablation on skeletal muscle function. These mice presented a reduced muscle strength, which seemed not to alter their survival and has been characterized in the present work. We first checked in these mice the expression level of the different proteins involved in calcium homeostasis and observed in fast muscles an increase in expression of dihydropyridine receptor, with a large reduction in calsequestrin expression. Electron microscopy analysis of KO muscles morphology demonstrated the presence of triads in abnormal orientation and a reduction in the sarcoplasmic reticulum terminal cisternae volume. Using calcium imaging on cultured myotubes, we observed a reduction in the total amount of calcium stored in the sarcoplasmic reticulum. Physiological studies have been performed to evaluate the influence of triadin deletion on skeletal muscle function. Muscle strength has been measured both on the whole animal model, using hang test or electrical stimulation combined with NMR analysis and strength measurement, or on isolated muscle using electrical stimulation. All the results obtained demonstrate an important reduction in muscle strength, indicating that triadin plays an essential role in skeletal muscle function and in skeletal muscle structure. These results indicate that triadin alteration leads to the development of a myopathy, which could be studied using this new animal model. PMID:19843516

  14. Fungal ABC transporter deletion and localization analysis.

    PubMed

    Kovalchuk, Andriy; Weber, Stefan S; Nijland, Jeroen G; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological function. Among different approaches available, the localization analysis based on the expression of GFP fusions is commonly used as a relatively fast and cost-efficient method that allows visualization of proteins of interest in both live and fixed cells. In addition, inactivation of transporter genes is an important tool to resolve their specific function. Here we provide a detailed protocol for the deletion and localization analysis of ABC transporters in the filamentous fungus Penicillium chrysogenum. It includes construction of expression plasmids, their transformation into fungal strains, cultivation of transformants, microscopy analysis, as well as additional protocols on staining of fungal cells with organelle-specific dyes like Hoechst 33342, MitoTracker DeepRed, and FM4-64. PMID:22183644

  15. Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae.

    PubMed

    Johnson, Adam J; Veljanoski, Filip; O'Doherty, Patrick J; Zaman, Mohammad S; Petersingham, Gayani; Bailey, Trevor D; Münch, Gerald; Kersaitis, Cindy; Wu, Ming J

    2016-02-01

    Arsenic is omnipresent in soil, air, food and water. Chronic exposure to arsenic is a serious problem to human health. In-depth understanding of this metalloid's toxicity is a fundamental step towards development of arsenic-free foods and measures for bioremediation. By screening the complete set of gene deletion mutants (4873) of Saccharomyces cerevisiae, this study uncovered 75 sensitive and 39 resistant mutants against arsenite [As(III)]. Functional analysis of the corresponding genes revealed the molecular details for its uptake, toxicity and detoxification. On the basis of the hypersensitivity of yap3Δ, the transcription factor, Yap3p, is for the first time linked to the cell's detoxification against As(III). Apart from confirming the previously described role of the mitogen-activated protein kinase (MAPK) Hog1 pathway in combating arsenic toxicity, the results show that the regulatory subunits (Ckb1p and Ckb2p) of protein kinase CK2 are also involved in the process, suggesting possible crosstalk between the two key protein kinases. The sensitivity to As(III) conferred by deletion of the genes involved in protein degradation and chromatin remodelling demonstrates protein damage is the key mode of toxicity for the metalloid. Furthermore, the resistant phenotype of fps1Δ, snf3Δ and pho81Δ against As(III) links arsenic uptake with the corresponding plasma membrane-bound transporters-aquaglyceroporin (Fps1p), hexose (Snf3p) and phosphate transporters. The molecular details obtained in this screen for As(III) uptake, detoxification and toxicity provide the basis for future investigations into arsenic-related problems in the environment, agriculture and human health. PMID:26688044

  16. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    PubMed Central

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  17. Ptc1p regulates cortical ER inheritance via Slt2p.

    PubMed

    Du, Yunrui; Walker, Lee; Novick, Peter; Ferro-Novick, Susan

    2006-10-01

    Studies in the yeast Saccharomyces cerevisiae have shown that the inheritance of endoplasmic reticulum (ER), mitochondria, and vacuoles involves the capture of a tubular structure at the bud tip. Ptc1p, a serine/threonine phosphatase, has previously been shown to regulate mitochondrial inheritance by an unknown mechanism. Ptc1p regulates the high osmolarity glycerol mitogen-activated protein kinase (MAPK) pathway and has also been implicated in the cell wall integrity (CWI) MAPK pathway. Here we show that the loss of Ptc1p or the Ptc1p binding protein, Nbp2p, causes a prominent delay in the delivery of ER tubules to the periphery of daughter cells and results in a dramatic increase in the level of phosphorylated Slt2p, the MAPK in the CWI pathway. Either loss of Slt2p or inhibition of the CWI pathway by addition of sorbitol, suppresses the ER inheritance defect in the ptc1Delta and nbp2Delta mutants. Our findings indicate that Ptc1p and Nbp2p regulate ER inheritance through the CWI MAPK pathway by modulating the MAPK, Slt2p. PMID:16977319

  18. Optical model potential of A =3 projectiles for 1 p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Dean, W. M.; Mukhamedzhanov, A. M.

    2015-02-01

    A set of global optical potential parameters describing the A =3 particles (3He and 3H ) elastic scattering from 1 p -shell nuclei, HT 1 p , is obtained by simultaneously fitting 118 sets of experimental data of 3He and 3H elastic scattering from 9Be,10B ,11B ,12C ,13C ,14C ,14N ,15N ,16O ,17O , and 18O with incident energies from 4 ≤E ≤118.5 MeV and 24 sets of elastic scattering data with the 6Li and 7Li targets from 3 ≤E ≤44 MeV. HT 1 p is found to be superior to GDP08 [D. Y. Pang, P. Roussel-Chomaz, H. Savajols, R. L. Varner, and R. Wolski, Phys. Rev. C 79, 024615 (2009), 10.1103/PhysRevC.79.024615], which is a systematic potential designed for the heavy-target region, in the reproduction of the angular distributions of elastic scattering cross sections of 3He and 3H from 1 p -shell nuclei at energies below 100 MeV. At energies above 100 MeV, GDP08 is found to be better than HT1p.

  19. Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space.

    PubMed Central

    Amutha, Boominathan; Pain, Debkumar

    2003-01-01

    Nucleoside diphosphate kinase (NDPK) is a highly conserved multifunctional enzyme. It catalyses the transfer of gamma phosphates from nucleoside triphosphates to nucleoside diphosphates by a mechanism that involves formation of an autophosphorylated enzyme intermediate. The phosphate is usually supplied by ATP. NDPK activity in different subcellular compartments may regulate the crucial balance between ATP and GTP or other nucleoside triphosphates. NDPKs are homo-oligomeric proteins and are predominantly localized in the cytosol. In this paper, we demonstrate that in Saccharomyces cerevisiae a small fraction of total NDPK activity encoded by YNK1 is present in the intermembrane space (IMS) of mitochondria, and the corresponding protein Ynk1p in the IMS represents approx. 0.005% of total mitochondrial proteins. Ynk1p, synthesized as a single gene product, must therefore be partitioned between cytoplasm and mitochondrial IMS fractions. A mechanism for this partitioning is suggested by our observations that interaction with a 40 kDa protein of the translocase of outer mitochondrial membrane (Tom40p), occurs preferentially with unfolded, unphosphorylated forms of Ynk1p. A population of newly translated, but not yet folded or autophosphorylated, Ynk1p intermediates may be imported into the IMS of mitochondria and trapped there by subsequent folding and oligomerization. Within the small volume of the IMS, Ynk1p may be more concentrated and may be required to supply GTP to several important proteins in this compartment. PMID:12472466

  20. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis.

    PubMed

    Gordon, Oren; Taxis, Christof; Keller, Philipp J; Benjak, Aleksander; Stelzer, Ernst H K; Simchen, Giora; Knop, Michael

    2006-08-23

    Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB. PMID:16888627

  1. Hypothalamic S1P/S1PR1 axis controls energy homeostasis.

    PubMed

    Silva, Vagner R R; Micheletti, Thayana O; Pimentel, Gustavo D; Katashima, Carlos K; Lenhare, Luciene; Morari, Joseane; Mendes, Maria Carolina S; Razolli, Daniela S; Rocha, Guilherme Z; de Souza, Claudio T; Ryu, Dongryeol; Prada, Patrícia O; Velloso, Lício A; Carvalheira, José B C; Pauli, José Rodrigo; Cintra, Dennys E; Ropelle, Eduardo R

    2014-01-01

    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats. PMID:25255053

  2. Novel S1P(1) receptor agonists--part 3: from thiophenes to pyridines.

    PubMed

    Bolli, Martin H; Abele, Stefan; Birker, Magdalena; Bravo, Roberto; Bur, Daniel; de Kanter, Ruben; Kohl, Christopher; Grimont, Julien; Hess, Patrick; Lescop, Cyrille; Mathys, Boris; Müller, Claus; Nayler, Oliver; Rey, Markus; Scherz, Michael; Schmidt, Gunther; Seifert, Jürgen; Steiner, Beat; Velker, Jörg; Weller, Thomas

    2014-01-01

    In preceding communications we summarized our medicinal chemistry efforts leading to the identification of potent, selective, and orally active S1P1 agonists such as the thiophene derivative 1. As a continuation of these efforts, we replaced the thiophene in 1 by a 2-, 3-, or 4-pyridine and obtained less lipophilic, potent, and selective S1P1 agonists (e.g., 2) efficiently reducing blood lymphocyte count in the rat. Structural features influencing the compounds' receptor affinity profile and pharmacokinetics are discussed. In addition, the ability to penetrate brain tissue has been studied for several compounds. As a typical example for these pyridine based S1P1 agonists, compound 53 showed EC50 values of 0.6 and 352 nM for the S1P1 and S1P3 receptor, respectively, displayed favorable PK properties, and penetrated well into brain tissue. In the rat, compound 53 maximally reduced the blood lymphocyte count for at least 24 h after oral dosing of 3 mg/kg. PMID:24367923

  3. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    PubMed Central

    de Rooij, Jasmijn D.E.; Beuling, Eva; van den Heuvel-Eibrink, Marry M.; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1–0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1–4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7 PMID:26069293

  4. Genomic subtraction for cloning DNA corresponding to deletion mutations.

    PubMed Central

    Straus, D; Ausubel, F M

    1990-01-01

    We have developed a technique, called genomic subtraction, for isolating the DNA that is absent in deletion mutants. The method removes from wild-type DNA the sequences that are present in both the wild-type and the deletion mutant genomes. The DNA that corresponds to the deleted region remains. Enrichment for the deleted sequences is achieved by allowing a mixture of denatured wild-type and biotinylated mutant DNA to reassociate. After reassociation, the biotinylated sequences are removed by binding to avidin-coated beads. This subtraction process is then repeated several times. In each cycle we hybridize the unbound wild-type DNA from the previous round with fresh biotinylated deletion mutant DNA. The unbound DNA from the final cycle is ligated to adaptors and amplified by using one strand of the adaptor as a primer in the polymerase chain reaction. The amplified sequences can then be used to probe a genomic library. We applied genomic subtraction to a yeast strain that has a 5-kilobase deletion, corresponding to 1/4000th of the genome. In the experiment reported here, three rounds of subtraction were sufficient to accurately identify genomic clones containing sequences that are missing in the deletion mutant. We discuss the limitations and some potential applications of the method. Images PMID:2408039

  5. A strong deletion bias in nonallelic gene conversion.

    PubMed

    Assis, Raquel; Kondrashov, Alexey S

    2012-01-01

    Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic) or paralogous (nonallelic) genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs. PMID:22359514

  6. Targeted chromosomal deletions in human cells using zinc finger nucleases.

    PubMed

    Lee, Hyung Joo; Kim, Eunji; Kim, Jin-Soo

    2010-01-01

    We present a novel approach for generating targeted deletions of genomic segments in human and other eukaryotic cells using engineered zinc finger nucleases (ZFNs). We found that ZFNs designed to target two different sites in a human chromosome could introduce two concurrent DNA double-strand breaks (DSBs) in the chromosome and give rise to targeted deletions of the genomic segment between the two sites. Using this method in human cells, we were able to delete predetermined genomic DNA segments in the range of several-hundred base pairs (bp) to 15 mega-bp at frequencies of 10(-3) to 10(-1). These high frequencies allowed us to isolate clonal populations of cells, in which the target chromosomal segments were deleted, by limiting dilution. Sequence analysis revealed that many of the deletion junctions contained small insertions or deletions and microhomologies, indicative of DNA repair via nonhomologous end-joining. Unlike other genome engineering tools such as recombinases and meganucleases, ZFNs do not require preinsertion of target sites into the genome and allow precise manipulation of endogenous genomic scripts in animal and plant cells. Thus, ZFN-induced genomic deletions should be broadly useful as a novel method in biomedical research, biotechnology, and gene therapy. PMID:19952142

  7. Molecular cytogenetic and clinical characterization of a patient with a 5.6-Mb deletion in 7p15 including HOXA cluster.

    PubMed

    Jun, Kyung Ran; Seo, Eul-Ju; Lee, Jin-Ok; Yoo, Han-Wook; Park, In-Sook; Yoon, Hye-Kyung

    2011-03-01

    Here, we describe the clinical features of a boy with a 5.6-Mb deletion at chromosome 7p15.1-p15.3. He has mild facial anomalies, hand-foot abnormalities, hypospadias, congenital heart defects, and supernumerary nipples. This deletion was detected by array comparative genomic hybridization and verified by fluorescence in situ hybridization using BACs selected from the USCS genome browser. This deletion was not found in subsequent FISH analysis of the parental chromosomes. The deleted region contains several genes, including contiguous developmental genes on the HOXA cluster, which play a role in regulating aspects of morphogenesis during normal embryonic development. The patient's limb and urogenital features were similar to those observed in hand-foot-genital syndrome, which is caused by haploinsufficiency of HOXA13, whereas the congenital heart defect may reflect the deletion of HOXA3. We hypothesized that many clinical features of the patient were due to combined haploinsufficiency of the HOXA cluster. Our study also demonstrates the clinical usefulness of a molecular cytogenetic tool that is capable of detecting imbalances in the genome. PMID:21344639

  8. Familial interstitial deletion of the short arm of chromosome 4 (p15.33-p16.3) characterized by molecular cytogenetic analysis.

    PubMed

    Basinko, Audrey; Douet-Guilbert, Nathalie; Parent, Philippe; Blondin, Gilles; Mingam, M; Monot, Françoise; Morel, Frédéric; Le Bris, Marie-Josée; De Braekeleer, Marc

    2008-04-01

    This 15-month boy was expressed at the cytogenetic laboratory because of psychomotor development delay. He was tall and had plagiocephaly, micrognathia, high nasal bridge, anteverted nostrils and pectus excavatum. A 46,XY,del(4)(p16.1p16.3) karyotype was found using high-resolution R-banding technique. FISH studies using the LSI Wolf-Hirschhorn dual color 4p16.3 and the TelVysion 4p probes showed no deletion. Using BACs, the distal breakpoint was located in 4p16.3, between RP11-165K4 and RP11-717M10 and the proximal breakpoint in 4p15.33, between RP11-74M11 and RP11-1J7; therefore, approximately 7.96 Mb of the short arm were deleted. The maternal karyotype showed the same deletion, but in a mosaic status. Two distinct phenotypes have been recognized on the basis of the chromosomal bands involved in 4p deletion: the Wolf-Hirschhorn syndrome (WHS) and a proximal 4p deletion syndrome (4p15.2-p15.32). Our observation confirms that the basic WHS phenotype maps distally to this region. PMID:18302281

  9. Impact of partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility.

    PubMed

    Zhang, Yuening; Li, Muyan; Xiao, Feifan; Teng, Ruobing; Zhang, Chengdong; Lan, Aihua; Gu, Kailong; Li, Jiatong; Wang, Di; Li, Hongtao; Jiang, Li; Zeng, Siping; He, Min; Huang, Yi; Guo, Peifen; Zhang, Xinhua; Yang, Xiaoli

    2015-10-15

    This study aims to investigate the effect of the partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility through a comprehensive literature search. All case-control studies related to partial DAZ1/2 and DAZ3/4 deletions and male infertility risk were included in our study. Odd ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association and its precision, respectively. Eleven partial DAZ1/2 deletion and nine partial DAZ3/4 deletion studies were included. Partial DAZ1/2 deletion was significantly associated with male infertility risk in the overall analysis (ORs=2.58, 95%CI: 1.60-4.18, I(2)=62.1%). Moreover, in the subgroup analysis stratified by ethnicity, partial DAZ1/2 deletion was significantly associated with male infertility risk in the East Asian populations under the random effect model (ORs=2.96, 95%CI: 1.87-4.71, I(2)=51.3%). Meanwhile, the analysis suggested that partial DAZ3/4 deletion was not associated with male infertility risk in East-Asian ethnicity (ORs=1.02, 95%CI: 0.54-1.92, I(2)=71.3%), but not in Non-East Asian under the random effect model (ORs=3.56, 95%CI: 1.13-11.23, I(2)=0.0%,). More interestingly, partial DAZ1/2 deletion was associated with azoospermia (ORs=2.63, 95%CI: 1.19-5.81, I(2)=64.7%) and oligozoospermia (ORs=2.53, 95%CI: 1.40-4.57, I(2)=51.8%), but partial DAZ3/4 deletion was not associated with azoospermia (ORs=0.71, 95%CI: 0.23-2.22, I(2)=71.7%,) and oligozoospermia (ORs=1.21, 95%CI: 0.65-2.24, I(2)=55.5%). In our meta-analysis, partial DAZ1/2 deletion is a risk factor for male infertility and different ethnicities have different influences, whereas partial DAZ3/4 deletion has no effect on fertility but partial DAZ3/4 deletion might have an impact on Non-East Asian male. PMID:26232607

  10. Anaplastic astrocytoma.

    PubMed

    Grimm, Sean A; Chamberlain, Marc C

    2016-07-01

    Anaplastic astrocytoma (AA) is a diffusely infiltrating, malignant, astrocytic, primary brain tumor. AA is currently defined by histology although future classification schemes will include molecular alterations. AA can be separated into subgroups, which share similar molecular profiles, age at diagnosis and median survival, based on 1p/19q co-deletion status and IDH mutation status. AA with co-deletion of chromosomes 1p and 19q and IDH mutation have the best prognosis. AA with IDH mutation and no 1p/19q co-deletion have intermediate prognosis and AA with wild-type IDH have the worst prognosis and share many molecular alterations with glioblastoma. Treatment of noncodeleted AA based on preliminary results from the CATNON clinical trial consists of maximal safe resection followed by radiotherapy with post-radiotherapy temozolomide (TMZ) chemotherapy. The role of concurrent TMZ and whether IDH1 subgroups benefit from TMZ is currently being evaluated in the recently completed randomized, prospective Phase III clinical trial, CATNON. PMID:27230974

  11. Dynamical Relativistic Effects in Quasielastic 1p -Shell Proton Knockout from O{sup 16}

    SciTech Connect

    Gao, J.; Anderson, B. D.; Aniol, K. A.; Auerbach, L.; Baker, F. T.; Berthot, J.; Bertin, P.-Y.; Boeglin, W. U.

    2000-04-10

    We have measured the cross section for quasielastic 1p -shell proton knockout in the {sup 16}O( e, e{sup '}p) reaction at {omega}=0.439 GeV and Q{sup 2}=0.8 (GeV/c){sup 2} for missing momentum P{sub miss}{<=}355 MeV /c . We have extracted the response functions R{sub L+TT} , R{sub T} , R{sub LT} , and the left-right asymmetry, A{sub LT} , for the 1p{sub 1/2} and the 1p{sub 3/2} states. The data are well described by relativistic distorted wave impulse approximation calculations. At large P{sub miss} , the structure observed in A{sub LT} indicates the existence of dynamical relativistic effects. (c) 2000 The American Physical Society.

  12. Hunt for the 1/sup 1/P/sub 1/ bound state of charmonium

    SciTech Connect

    Porter, F.C.

    1982-02-01

    Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' ..-->.. ..pi../sup 01/P/sub 1/, where /sup 1/P/sub 1/ is the predicted spin-singlet p-wave bound state of charmonium. For a /sup 1/P/sub 1/ state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' ..-->.. ..pi../sup 01/P/sub 1/) < 0.55%, BR(psi' ..-->.. ..pi../sup 01/P/sub 1/)BR(/sup 1/P/sub 1/ ..-->.. ..gamma..n/sub c/ < 0.14%. These limits are compared with simple theoretical predictions.

  13. Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P.

    PubMed

    Morris, Samuel A; Wheatley, Paul S; Položij, Miroslav; Nachtigall, Petr; Eliášová, Pavla; Čejka, Jiří; Lucas, Tim C; Hriljac, Joseph A; Pinar, Ana B; Morris, Russell E

    2016-09-28

    The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination. PMID:27527381

  14. Electron-impact excitation of the n 1P levels of helium - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cartwright, David C.; Csanak, George; Trajmar, Sandor; Register, D. F.

    1992-01-01

    New experimental electron-energy-loss data have been used to extract differential and integral cross sections for excitation of the 2 1P level, and for the overlapping (3 1P, 3 1D, 3 3D) levels of helium, at 30-, 50-, and 100-eV incident electron energies. First-order many-body theory (FOMBT) has been used to calculate the differential and integral cross sections for excitation of the n 1P (n = 2,...,6) levels of helium by electron impact, for incident electron energies from threshold to 500 eV. Detailed comparisons between these two new sets of data are made as well as comparisons with appropriate published experimental and theoretical results. A simple scaling relationship is derived from the FOMBT results for n = 2,...,6 that provides differential and integral cross sections for all symmetry final levels of helium with n = 6 or greater.

  15. FHA domain boundaries of the dun1p and rad53p cell cycle checkpoint kinases.

    PubMed

    Hammet, A; Pike, B L; Mitchelhill, K I; Teh, T; Kobe, B; House, C M; Kemp, B E; Heierhorst, J

    2000-04-14

    Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues). In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks. This indicates that the non-catalytic FHA domain plays an important role in the transcriptional function of the Dun1p protein kinase. PMID:10767410

  16. Electron impact excitation of the 3s3p 1P1 state in magnesium

    NASA Astrophysics Data System (ADS)

    Predojević, Branko

    2006-12-01

    Differential cross sections (DCSs) for electron-impact excitation of the 3s3p 1P1 resonance state of magnesium have been measured at 10, 15, 20, 40, 60, 80 and 100 eV incident electron energies (Eo). Scattered-electron intensities were measured over wide range of scattering angles from 2° to 150°. The absolute DCS scale for the 1P1 state was determined through normalizations of its relative DCSs to optical oscillator strength using forward scattering function method, except at Eo ⩽ 15 eV where the excitation function of the 3s3p 1P1 state experimentally obtained by Leep and Gallagher (1976 Phys. Rev. A 13 148) was utilized for normalization. These absolute DCSs were extrapolated to 0° and 180° and numerically integrated to yield integral, momentum transfer and viscosity cross sections. Our results are compared with available experimental and theoretical data.

  17. Molecular characterization of CPS1 deletions by array CGH

    PubMed Central

    Wang, Jing; Shchelochkov, Oleg A.; Zhan, Hongli; Li, Fangyuan; Chen, Li-Chieh; Brundage, Ellen K.; Pursley, Amber N.; Schmitt, Eric S.; Häberle, Johannes; Wong, Lee-Jun C.

    2016-01-01

    CPSI deficiency usually results in severe hyperammonemia presenting in the first days of life warranting prompt diagnosis. Most CPS1 defects are non-recurrent, private mutations, including point mutation, small insertions and deletions. In this study, we report the detection of large deletions varying from 1.4 kb to >130 kb in the CPS1 gene of 4 unrelated patients by targeted array CGH. These results underscore the importance of analysis of large deletions when only one mutation or no mutations are identified in cases where CPSI deficiency is strongly indicated. PMID:20855223

  18. Ectrodactyly and proximal/intermediate interstitial deletion 7q

    SciTech Connect

    McElveen, C.; Carvajal, M.V.; Moscatello, D.

    1995-03-13

    We report on an individual with severe mental retardation, seizures, microcephaly, unusual face, scoliosis, and cleft feet and cleft right hand. The chromosomal study showed a proximal interstitial deletion 7q (q11.23q22). From our review of the literature, 11 patients have been reported with ectrodactyly (split hand/split foot malformation) and proximal/intermediate interstitial deletions or rearrangements of 7q. The critical segment for ectrodactyly seems to be located between 7q21.2 and 7q22.1. This malformation is present in 41% of the patients whose deletion involves the critical segment. 37 refs., 3 figs., 1 tab.

  19. Measurement of the χ b (3 P) mass and of the relative rate of χ b1(1 P) and χ b2(1 P) production

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Lespinasse, M.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-10-01

    The production of χ b mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of =7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb-1. The χ b mesons are identified through their decays to ϒ(1 S) γ and ϒ(2 S) γ using photons that converted to e + e - pairs in the detector. The relative prompt production rate of χ b1(1 P) and χ b2(1 P) mesons is measured as a function of the ϒ(1 S) transverse momentum in the χ b rapidity range 2.0 < y <4.5. A precise measurement of the χ b (3 P) mass is also performed. Assuming a mass splitting between the χ b1(3 P) and the χ b2(3 P) states of 10.5 MeV/c2, the measured mass of the χ b1(3 P) meson is

  20. Voa1p Functions in V-ATPase Assembly in the Yeast Endoplasmic Reticulum

    PubMed Central

    Ryan, Margret; Graham, Laurie A.

    2008-01-01

    The yeast Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is a multisubunit complex divided into two sectors: the V1 sector catalyzes ATP hydrolysis and the V0 sector translocates protons, resulting in acidification of its resident organelle. Four protein factors participate in V0 assembly. We have discovered a fifth V0 assembly factor, Voa1p (YGR106C); an endoplasmic reticulum (ER)-localized integral membrane glycoprotein. The role of Voa1p in V0 assembly was revealed in cells expressing an ER retrieval-deficient form of the V-ATPase assembly factor Vma21p (Vma21pQQ). Loss of Voa1p in vma21QQ yeast cells resulted in loss of V-ATPase function; cells were unable to acidify their vacuoles and exhibited growth defects typical of cells lacking V-ATPase. V0 assembly was severely compromised in voa1 vma21QQ double mutants. Isolation of V0–Vma21p complexes indicated that Voa1p associates most strongly with Vma21p and the core proteolipid ring of V0 subunits c, c′, and c″. On assembly of the remaining three V0 subunits (a, d, and e) into the V0 complex, Voa1p dissociates from the now fully assembled V0–Vma21p complex. Our results suggest Voa1p functions with Vma21p early in V0 assembly in the ER, but then it dissociates before exit of the V0–Vma21p complex from the ER for transport to the Golgi compartment. PMID:18799613

  1. Conservation of Histone Binding and Transcriptional Repressor Functions in a Schizosaccharomyces pombe Tup1p Homolog

    PubMed Central

    Mukai, Yukio; Matsuo, Eri; Roth, Sharon Y.; Harashima, Satoshi

    1999-01-01

    The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned from Kluyveromyces lactis (TUP1) and Schizosaccharomyces pombe (tup11+). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11+ gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, an S. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiae corresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11+ in combination with a disruption of tup12+, another TUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1+, suggesting that S. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species. PMID:10567571

  2. Three unrelated cases of paracentric inversions of 1p in individuals with abnormal phenotypes

    SciTech Connect

    Estop, A.M.; Karlin, S.M.; Wenger, S.L.; Steele, M.W.; Bansal, V.; Surti, U.; Lin, A.; Levinson, F.

    1994-02-15

    Paracentric inversions, involving a rearrangement within one chromosome arm, are rare. Although carriers of balanced paracentric inversions should theoretically not be at risk for abnormal offspring, such cases have been reported. The authors report on 2 unrelated cases of inherited paracentric inversions of 1p with breakpoints at p32 and p36.1 and p32.3 and p36.22 in individuals with abnormal phenotypes. Another case of 2 abnormal monozygotic twins with a de novo paracentric inversion of 1p with breakpoints at p22 and p34 is presented as well. 21 refs., 2 figs., 1 tab.

  3. Fluorescence-linked Antigen Quantification (FLAQ) Assay for Fast Quantification of HIV-1 p24Gag

    PubMed Central

    Gesner, Marianne; Maiti, Mekhala; Grant, Robert; Cavrois, Marielle

    2016-01-01

    The fluorescence-linked antigen quantification (FLAQ) assay allows a fast quantification of HIV-1 p24Gag antigen. Viral supernatant are lysed and incubated with polystyrene microspheres coated with polyclonal antibodies against HIV-1 p24Gag and detector antibodies conjugated to fluorochromes (Figure 1). After washes, the fluorescence of microspheres is measured by flow cytometry and reflects the abundance of the antigen in the lysate. The speed, simplicity, and wide dynamic range of the FLAQ assay are optimum for many applications performed in HIV-1 research laboratories.

  4. Excitations of {sup 1}P levels of zinc by electron impact on the ground state

    SciTech Connect

    Fursa, Dmitry V.; Bray, Igor; Panajotovic, R.; Sevic, D.; Pejcev, V.; Marinkovic, B.P.; Filipovic, D.M.

    2005-07-15

    We present results of a joint theoretical and experimental investigation of electron scattering from the 4s{sup 2} {sup 1}S ground state of zinc. The 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} differential cross sections were measured at scattering angles between 10 degree sign and 150 degree sign and electron-energies of 15, 20, 25, 40, and 60 eV. Corresponding convergent close-coupling calculations have been performed and are compared with experiment.

  5. Optimization of a Potent, Orally Active S1P1 Agonist Containing a Quinolinone Core

    PubMed Central

    2011-01-01

    The optimization of a series of S1P1 agonists with limited activity against S1P3 is reported. A polar headgroup was used to improve the physicochemical and pharmacokinetic parameters of lead quinolinone 6. When dosed orally at 1 and 3 mg/kg, the azahydroxymethyl analogue 22 achieved statistically significant lowering of circulating blood lymphocytes 24 h postdose. In rats, a dose-proportional increase in exposure was measured when 22 was dosed orally at 2 and 100 mg/kg. PMID:24900374

  6. 22q11.2 deletion syndrome.

    PubMed

    McDonald-McGinn, Donna M; Sullivan, Kathleen E; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A S; Zackai, Elaine H; Emanuel, Beverly S; Vermeesch, Joris R; Morrow, Bernice E; Scambler, Peter J; Bassett, Anne S

    2015-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  7. 22q11.2 deletion syndrome

    PubMed Central

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  8. The Prevention of Repeat-Associated Deletions in Saccharomyces Cerevisiae by Mismatch Repair Depends on Size and Origin of Deletions

    PubMed Central

    Tran, H. T.; Gordenin, D. A.; Resnick, M. A.

    1996-01-01

    We have investigated the effects of mismatch repair on 1- to 61-bp deletions in the yeast Saccharomyces cerevisiae. The deletions are likely to involve unpaired loop intermediates resulting from DNA polymerase slippage. The mutator effects of mutations in the DNA polymerase δ (POL3) gene and the recombinational repair RAD52 gene were studied in combination with mismatch repair defects. The pol3-t mutation increased up to 1000-fold the rate of extended (7-61 bp) but not of 1-bp deletions. In a rad52 null mutant only the 1-bp deletions were increased (12-fold). The mismatch repair mutations pms1, msh2 and msh3 did not affect 31- and 61-bp deletions in the pol3-t but increased the rates of 7- and 1-bp deletions. We propose that loops less than or equal to seven bases generated during replication are subject to mismatch repair by the PMS1, MSH2, MSH3 system and that it cannot act on loops >=31 bases. In contrast to the pol3-t, the enhancement of 1-bp deletions in a rad52 mutant is not altered by a pms1 mutation. Thus, mismatch repair appears to be specific to errors of DNA synthesis generated during semiconservative replication. PMID:8844147

  9. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae

    PubMed Central

    1994-01-01

    Myo2 protein (Myo2p), an unconventional myosin in the budding yeast Saccharomyces cerevisiae, has been implicated in polarized growth and secretion by studies of the temperature-sensitive myo2-66 mutant. Overexpression of Smy1p, which by sequence is a kinesin-related protein, can partially compensate for defects in the myo2 mutant (Lillie, S. H. and S. S. Brown, 1992. Nature (Lond.). 356:358-361). We have now immunolocalized Smy1p and Myo2p. Both are concentrated in regions of active growth, as caps at incipient bud sites and on small buds, at the mother-bud neck just before cell separation, and in mating cells as caps on shmoo tips and at the fusion bridge of zygotes. Double labeling of cells with either Myo2p or Smy1p antibody plus phalloidin was used to compare the localization of Smy1p and Myo2p to actin, and by extrapolation, to each other. These studies confirmed that Myo2p and Smy1p colocalize, and are concentrated in the same general regions of the cell as actin spots. However, neither colocalizes with actin. We noted a correlation in the behavior of Myo2p, Smy1p, and actin, but not microtubules, under a number of circumstances. In cdc4 and cdc11 mutants, which produce multiple buds, Myo2p and Smy1p caps were found only in the subset of buds that had accumulations of actin. Mutations in actin or secretory genes perturb actin, Smy1p and Myo2p localization. The rearrangements of Myo2p and Smy1p correlate temporally with those of actin spots during the cell cycle, and upon temperature and osmotic shift. In contrast, microtubules are not grossly affected by these perturbations. Although wild-type Myo2p localization does not require Smy1p, Myo2p staining is brighter when SMY1 is overexpressed. The myo2 mutant, when shifted to restrictive temperature, shows a permanent loss in Myo2p localization and actin polarization, both of which can be restored by SMY1 overexpression. However, the lethality of MYO2 deletion is not overcome by SMY1 overexpression. We noted

  10. S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle.

    PubMed

    Germinario, Elena; Bondì, Michela; Cencetti, Francesca; Donati, Chiara; Nocella, Marta; Colombini, Barbara; Betto, Romeo; Bruni, Paola; Bagni, Maria Angela; Danieli-Betto, Daniela

    2016-06-01

    To examine the role of sphingosine 1-phosphate (S1P) receptor 3 (S1P3) in modulating muscle properties, we utilized transgenic mice depleted of the receptor. Morphological analyses of extensor digitorum longus (EDL) muscle did not show evident differences between wild-type and S1P3-null mice. The body weight of 3-mo-old S1P3-null mice and the mean cross-sectional area of transgenic EDL muscle fibers were similar to those of wild-type. S1P3 deficiency enhanced the expression level of S1P1 and S1P2 receptors mRNA in S1P3-null EDL muscle. The contractile properties of S1P3-null EDL diverge from those of wild-type, largely more fatigable and less able to recover. The absence of S1P3 appears responsible for a lower availability of calcium during fatigue. S1P supplementation, expected to stimulate residual S1P receptors and signaling, reduced fatigue development of S1P3-null muscle. Moreover, in the absence of S1P3, denervated EDL atrophies less than wild-type. The analysis of atrophy-related proteins in S1P3-null EDL evidences high levels of the endogenous regulator of mitochondria biogenesis peroxisome proliferative-activated receptor-γ coactivator 1α (PGC-1α); preserving mitochondria could protect the muscle from disuse atrophy. In conclusion, the absence of S1P3 makes the muscle more sensitive to fatigue and slows down atrophy development after denervation, indicating that S1P3 is involved in the modulation of key physiological properties of the fast-twitch EDL muscle. PMID:26718782

  11. Genetics Home Reference: 19p13.13 deletion syndrome

    MedlinePlus

    ... Resources (1 link) National Human Genome Research Institute: Chromosome Abnormalities Educational Resources (5 links) MalaCards: chromosome 19p13.13 deletion syndrome March of Dimes: Chromosomal ...

  12. 23 CFR 658.11 - Additions, deletions, exceptions, and restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS.... Changed conditions or additional information may require the deletion of a designated route or a...

  13. 23 CFR 658.11 - Additions, deletions, exceptions, and restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS.... Changed conditions or additional information may require the deletion of a designated route or a...

  14. 78 FR 71581 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ...This action adds products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes products and services previously furnished by such...

  15. 77 FR 12816 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Office, Sherwood Forest Staging Area, 2695 Sherwood Forest, Baton Rouge, LA. NPA: Louisiana Industries for the Disabled, Inc., Baton Rouge, LA. Contracting Activity: Department of Homeland Security, Federal Emergency Management Agency, Baton, LA. Deletions Regulatory Flexibility Act Certification...

  16. 78 FR 16475 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes a service previously provided by such an...

  17. 75 FR 31768 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ...The Committee is proposing to add to the Procurement List products and services to be furnished by nonprofit agencies employing persons who are blind or have other severe disabilities, and to delete services previously furnished by such...

  18. Deletion patterns of Duchenne and Becker muscular dystrophies in Greece.

    PubMed Central

    Florentin, L; Mavrou, A; Kekou, K; Metaxotou, C

    1995-01-01

    We present molecular data from 90 Greek boys with Duchenne or Becker muscular dystrophy using cDNA analysis or multiplex PCR or both. Deletions were detected in 63.3% of patients and were mainly clustered in two areas of the gene, one in the 3' and one in the 5' end of the gene (exons 3-19 and 44-53). Almost 17% of deletion breakpoints lay in intron 44 while 29% of deletions have a breakpoint in intron 50. Thus the distribution of deletions in our DMD/BMD patients differs from that previously reported. Furthermore a 1:4.35 proximal:distal ratio was observed in familial cases and a 1:2.45 ratio in isolated ones. PMID:7897627

  19. Additions and deletions to the known cerambycidae (Coleoptera) of Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An additional 137 species and two tribes are added to the known cerambycid fauna of Bolivia while 12 species are deleted. Comments and statistics regarding the growth of knowledge on the Bolivian Cerambycid fauna and species endemicity are included....

  20. 76 FR 41768 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...This action adds services to the Procurement List that will be provided by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes services from the Procurement List previously provided by such...

  1. 76 FR 16733 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    .... (Seattle Lighthouse), Seattle, WA. Contracting Activity: DEFENSE LOGISTICS AGENCY AVIATION, RICHMOND, VA... Allis, WI. Contracting Activity: MILITARY RESALE-DEFENSE COMMISSARY AGENCY, FORT LEE, VA. Coverage: C... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions...

  2. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ...The Committee is proposing to add products to the Procurement List that will be furnished by the nonprofit agencies employing persons who are blind or have other severe disabilities and to delete a product previously furnished by such...

  3. 78 FR 63967 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...: Social Vocational Services, Inc.--Deleted, San Jose, CA Contracting Activity: DEPT OF THE ARMY, W40M NATL... Management Service (inventory control, obsolescence identification, engineering support and some...

  4. 78 FR 43180 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ...The Committee is proposing to add services to the Procurement List that will be provided by nonprofit agencies employing persons who are blind or have other severe disabilities, and deletes products and services previously furnished by such...

  5. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    SciTech Connect

    Hough, C.A., White, B.N., Holden, J.A.

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  6. 77 FR 25146 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...The Committee is proposing to add products to the Procurement List that will be furnished by the nonprofit agency employing persons who are blind or have other severe disabilities, and deletes products previously furnished by such...

  7. 75 FR 7450 - Procurement List: Proposed Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Services Corporation, Colorado Springs, CO. Contracting Activity: DEPT OF THE ARMY, XR W6BA ACA, FT CARSON, COLORADO. Deletion Regulatory Flexibility Act Certification I certify that the following action will...

  8. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection.

    PubMed

    Blanchet, Matthieu; Sureau, Camille; Guévin, Carl; Seidah, Nabil G; Labonté, Patrick

    2015-03-01

    Worldwide, approximately 170 million individuals are afflicted with chronic hepatitis C virus (HCV) infection. To prevent the development of inherent diseases such as cirrhosis and hepatocellular carcinoma, tremendous efforts have been made, leading to the development of promising new treatments. However, their efficiency is still dependent on the viral genotype. Additionally, these treatments that target the virus directly can trigger the emergence of resistant variants. In a previous study, we have demonstrated that a long-term (72h) inhibition of SKI-1/S1P, a master lipogenic pathway regulator through activation of SREBP, resulted in impaired HCV genome replication and infectious virion secretion. In the present study, we sought to investigate the antiviral effect of the SKI-1/S1P small molecule inhibitor PF-429242 at the early steps of the HCV lifecycle. Our results indicate a very potent antiviral effect of the inhibitor early in the viral lifecycle and that the overall action of the compound relies on two different contributions. The first one is SREBP/SKI-1/S1P dependent and involves LDLR and NPC1L1 proteins, while the second one is SREBP independent. Overall, our study confirms that SKI-1/S1P is a relevant target to impair HCV infection and that PF-429242 could be a promising candidate in the field of HCV infection treatment. PMID:25573299

  9. Identification and characterization of Candida utilis multidrug efflux transporter CuCdr1p.

    PubMed

    Watanasrisin, Wittawan; Iwatani, Shun; Oura, Takahiro; Tomita, Yasuyuki; Ikushima, Shigehiro; Chindamporn, Ariya; Niimi, Masakazu; Niimi, Kyoko; Lamping, Erwin; Cannon, Richard D; Kajiwara, Susumu

    2016-06-01

    The edible, nitrate assimilating, yeast Candida utilis is a commercial food additive, and it is a potentially useful host for heterologous protein expression. A number of ATP-binding cassette (ABC) transporters are multidrug efflux pumps that can cause multidrug resistance in opportunistic pathogens. In order to develop optimal novel antimicrobial agents it is imperative to understand the structure, function and expression of these transporters. With the ultimate aim of developing an alternative yeast host for the heterologous expression of eukaryotic membrane transporters, and to identify ABC transporters potentially associated with C. utilis multidrug resistance, we classified the entire repertoire of 30 C. utilis ABC proteins. We named the open reading frame most similar to the archetype multidrug efflux pump gene C. albicans CDR1 as CuCDR1 Overexpression of CuCDR1 in Saccharomyces cerevisiae ADΔ caused multidrug resistance similar to that of cells overexpressing CaCDR1 Unlike CaCdr1p, however, the C-terminally green fluorescent protein (GFP) tagged CuCdr1p-GFP was functionally impaired and did not properly localize to the plasma membrane. CuCdr1p function could be recovered however by adding a 15 amino acid linker -GAGGSAGGSGGAGAG- between CuCdr1p and the C-terminal GFP tag. PMID:27188883

  10. Creation of a S1P Lyase bacterial surrogate for structure-based drug design.

    PubMed

    Argiriadi, Maria A; Banach, David; Radziejewska, Elzbieta; Marchie, Susan; DiMauro, Jennifer; Dinges, Jurgen; Dominguez, Eric; Hutchins, Charles; Judge, Russell A; Queeney, Kara; Wallace, Grier; Harris, Christopher M

    2016-05-01

    S1P Lyase (SPL) has been described as a drug target in the treatment of autoimmune diseases. It plays an important role in maintaining intracellular levels of S1P thereby affecting T cell egress from lymphoid tissues. Several groups have already published approaches to inhibit S1P Lyase with small molecules, which in turn increase endogenous S1P concentrations resulting in immunosuppression. The use of structural biology has previously aided SPL inhibitor design. Novel construct design is at times necessary to provide a reagent for protein crystallography. Here we present a chimeric bacterial protein scaffold used for protein X-ray structures in the presence of early small molecule inhibitors. Mutations were introduced to the bacterial SPL from Symbiobacterium thermophilum which mimic the human enzyme. As a result, two mutant StSPL crystal structures resolved to 2.8Å and 2.2Å resolutions were solved and provide initial structural hypotheses for an isoxazole chemical series, whose optimization is discussed in the accompanying paper. PMID:27013389

  11. Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p

    PubMed Central

    Hermann, Greg J.; Thatcher, John W.; Mills, John P.; Hales, Karen G.; Fuller, Margaret T.; Nunnari, Jodi; Shaw, Janet M.

    1998-01-01

    Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during yeast mating. Fzo1p is a mitochondrial integral membrane protein with its GTPase domain exposed to the cytoplasm. Point mutations that alter conserved residues in the GTPase domain do not affect Fzo1p localization but disrupt mitochondrial fusion. Suborganellar fractionation suggests that Fzo1p spans the outer and is tightly associated with the inner mitochondrial membrane. This topology may be required to coordinate the behavior of the two mitochondrial membranes during the fusion reaction. We propose that the fuzzy onions family of transmembrane GTPases act as molecular switches to regulate a key step in mitochondrial membrane docking and/or fusion. PMID:9786948

  12. Increased sensitivity of HIV-1 p24 ELISA using a photochemical signal amplification system

    PubMed Central

    Bystryak, Simon; Santockyte, Rasa

    2016-01-01

    In this study we describe a photochemical signal amplification method (PSAM) for increasing of the sensitivity of enzyme-linked immunosorbent assay (ELISA) for determination of HIV-1 p24 antigen. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods. The photochemical signal amplification method is based on an autocatalytic photochemical reaction of a horseradish peroxidase (HRP) substrate, orthophenylenediamine (OPD). To compare the performance of PSAM-boosted ELISA with a conventional colorimetric ELISA for determination of HIV-1 p24 antigen we employed a PerkinElmer HIV-1 p24 ELISA kit, using conventional ELISA alongside ELISA + PSAM. In the present study, we show that PSAM technology allows one to increase the analytical sensitivity and dynamic range of a commercial HIV-1 p24 ELISA kit, with and without immune-complex disruption (ICD and Non-ICD ELISA), by a factor of approximately 40-fold. ELISA + PSAM is compatible with commercially available microtiter plate readers, requires only an inexpensive illumination device, and the PSAM amplification step takes no longer than 15 min. PMID:26090753

  13. Chromosomal deletions and tumor suppressor genes in prostate cancer.

    PubMed

    Dong, J T

    2001-01-01

    Chromosomal deletion appears to be the earliest as well as the most frequent somatic genetic alteration during carcinogenesis. It inactivates a tumor suppressor gene in three ways, that is, revealing a gene mutation through loss of heterozygosity as proposed in the two-hit theory, inducing haploinsufficiency through quantitative hemizygous deletion and associated loss of expression, and truncating a genome by homozygous deletion. Whereas the two-hit theory has guided the isolation of many tumor suppressor genes, the haploinsufficiency hypothesis seems to be also useful in identifying target genes of chromosomal deletions, especially for the deletions detected by comparative genomic hybridization (CGH). At present, a number of chromosomal regions have been identified for their frequent deletions in prostate cancer, including 2q13-q33, 5q14-q23, 6q16-q22, 7q22-q32, 8p21-p22, 9p21-p22, 10q23-q24, 12p12-13, 13q14-q21, 16q22-24, and 18q21-q24. Strong candidate genes have been identified for some of these regions, including NKX3.1 from 8p21, PTEN from 10q23, p27/Kip1 from 12p13, and KLF5 from 13q21. In addition to their location in a region with frequent deletion, there are functional and/or genetic evidence supporting the candidacy of these genes. Thus far PTEN is the most frequently mutated gene in prostate cancer, and KLF5 showed the most frequent hemizygous deletion and loss of expression. A tumor suppressor role has been demonstrated for NKX3.1, PTEN, and p27/Kip1 in knockout mice models. Such genes are important targets of investigation for the development of biomarkers and therapeutic regimens. PMID:12085961

  14. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations. PMID:26601658

  15. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    PubMed

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p < 0.01). Long time chronic suppurative otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media. PMID:26620342

  16. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2

    PubMed Central

    Gavrish, Ekaterina; Sit, Clarissa S.; Cao, Shugeng; Kandror, Olga; Spoering, Amy; Peoples, Aaron; Ling, Losee; Fetterman, Ashley; Hughes, Dallas; Bissell, Anthony; Torrey, Heather; Akopian, Tatos; Mueller, Andreas; Epstein, Slava; Goldberg, Alfred; Clardy, Jon; Lewis, Kim

    2014-01-01

    Summary Languishing antibiotic discovery and flourishing antibiotic resistance have prompted development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against M. tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally-encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2 catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for lassomycin's bacteriocidal activity. PMID:24684906

  17. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei

    PubMed Central

    Zhang, Hongmin; Lo, Raymond K. C.; Cai, Jian-Pao; Au-Yeung, Rex K. H.; Ng, Wing-Fung; Tse, Herman; Wong, Samson S. Y.; Xu, Simin; Lam, Wai Hei; Tse, Man-Kit; Sze, Kong Hung; Kao, Richard Y.; Reiner, Neil E.; Hao, Quan; Yuen, Kwok-Yung

    2016-01-01

    Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei

  18. Transcriptional Regulators Cph1p and Efg1p Mediate Activation of the Candida albicans Virulence Gene SAP5 during Infection

    PubMed Central

    Staib, Peter; Kretschmar, Marianne; Nichterlein, Thomas; Hof, Herbert; Morschhäuser, Joachim

    2002-01-01

    The opportunistic fungal pathogen Candida albicans can cause superficial as well as systemic infections. Successful adaptation to the different host niches encountered during infection requires coordinated expression of various virulence traits, including the switch between yeast and hyphal growth forms and secretion of aspartic proteinases. Using an in vivo expression technology that is based on genetic recombination as a reporter of gene activation during experimental candidiasis in mice, we investigated whether two signal transduction pathways controlling hyphal growth, a mitogen-activated protein kinase cascade ending in the transcriptional activator Cph1p and a cyclic AMP-dependent regulatory pathway that involves the transcription factor Efg1p, also control expression of the SAP5 gene, which encodes one of the secreted aspartic proteinases and is induced by host signals soon after infection. Our results show that both transcriptional regulators are important for SAP5 activation in vivo. SAP5 expression was reduced in a cph1 mutant, although filamentous growth in infected tissue was not detectably impaired. SAP5 expression was also reduced, but not eliminated, in an efg1 null mutant, although this strain grew exclusively in the yeast form in infected tissue, demonstrating that in contrast to in vitro conditions, SAP5 activation during infection does not depend on growth of C. albicans in the hyphal form. In a cph1 efg1 double mutant, however, SAP5 expression in infected mice was almost completely eliminated, suggesting that the two signal transduction pathways are important for SAP5 expression in vivo. The avirulence of the cph1 efg1 mutant seemed to be caused not only by the inability to form hyphae but also by a loss of expression of additional virulence genes in the host. PMID:11796627

  19. Sphingosine 1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors

    PubMed Central

    Inagaki, Yuichi; Pham, TrucChi T.; Fujiwara, Yuko; Kohno, Takayuki; Osborne, Daniel A.; Igarashi, Yasuyuki; Tigyi, Gabor; Parrill, Abby L.

    2005-01-01

    Synergistic computational and experimental studies provided previously unforeseen details concerning the structural basis of S1P (sphingosine 1-phosphate) recognition by the S1P4 G-protein-coupled receptor. Similarly to reports on the S1P1 receptor, cationic and anionic residues in the third transmembrane domain (R3.28 and E3.29 at positions 124 and 125) form ion pairs with the phosphate and ammonium of S1P, and alanine mutations at these positions abolished specific S1P binding, S1P-induced receptor activation and cell migration. Unlike findings on the S1P1 receptor, no cationic residue in the seventh transmembrane domain interacts with the phosphate. Additionally, two previously undiscovered interactions with the S1P polar headgroup have been identified. Trp186 at position 4.64 in the fourth transmembrane domain interacts by a cation-π interaction with the ammonium group of S1P. Lys204 at position 5.38 forms an ion pair with the S1P. The S1P4 and S1P1 receptors show differences in binding-pocket shape and electrostatic distributions that correlate with the published structure–activity relationships. In particular, the binding pocket of mS1P4 (mouse S1P4) has recognition sites for the anionic phosphate and cationic ammonium groups that are equidistant from the end of the non-polar tail. In contrast, the binding pocket of hS1P1 (human S1P4) places the ammonium recognition site 2 Å (1 Å=0.1 nm) closer to the end of the non-polar tail than the phosphate recognition site. PMID:15733055

  20. Megabase deletions of gene deserts result in viable mice

    SciTech Connect

    Nobrega, Marcelo A.; Zhu, Yiwen; Plajzer-Frick, Ingrid; Afzal,Veena; Rubin, Edward M.

    2004-05-01

    The functional importance of the approximately 98 percent of mammalian genomes not corresponding to protein coding sequences remain largely un-scrutinized 1. To test experimentally whether some extensive regions of non-coding DNA, referred to as gene deserts 2-4, contain critical functions essential for the viability of the organism, we deleted two large non-coding intervals, 1,511 kb and 845 kb in length, from the mouse genome. Viable mice homozygous for the deletions were generated and were indistinguishable from wild-type litter mates with regards to morphology, reproductive fitness, growth, longevity and a variety of parameters assaying general homeostasis. Further in-depth analysis of the expression of genes bracketing the deletions revealed similar expression characteristics in homozygous deletion and wild-type mice. Together, the two deleted segments harbour 1,243 non-coding sequences conserved between humans and rodents (>100bp, 70 percent identity). These studies demonstrate that some large-scale deletions of non-coding DNA can be well tolerated by an organism, bringing into question the role of many human-mouse conserved sequences 5,6, and further supports the existence of potentially ''disposable DNAi'' in the genomes of mammals.

  1. Developmental genetics of deleted mtDNA in mitochondrial oculomyopathy.

    PubMed

    Marzuki, S; Berkovic, S F; Saifuddin Noer, A; Kapsa, R M; Kalnins, R M; Byrne, E; Sasmono, T; Sudoyo, H

    1997-02-12

    Heteroplasmic populations of mtDNA, consisting of normal mtDNA and mtDNA with large deletions, are found in the skeletal muscle and other tissues of certain patients with mitochondrial respiratory chain deficiencies, particularly in those with the CPEO (chronic progressive external ophthalmoplegia) phenotype. To study the developmental genetics of this mitochondrial disorder, the distribution of the deleted mtDNA in a wide range of tissues of different embryonic origins (total 34 samples from 27 tissues obtained at autopsy) was investigated in a patient with the CPEO syndrome. Three species of partially deleted mtDNA were observed, with deletions of 2.3 kb, 5.0 kb and 6.4 kb. Their tissue distribution suggests that the mtDNA deletions have occurred very early during embryonic development, prior to the differentiation events that lead to the formation of the three primary embryonic germ layers, and that the partially deleted mtDNA species were segregated during development mainly to the skeletal muscle and to tissues of the central nervous system. PMID:9094043

  2. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-06-16

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27333265

  3. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  4. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  5. Overexpression of Chromatin Assembly Factor-1/p60 helps to predict the prognosis of melanoma patients

    PubMed Central

    2010-01-01

    Background Cutaneous melanoma (CM) is the most lethal form of skin malignancy, which registers a constant increase in incidence worldwide. The identification of molecular alteration(s) involved in its biological aggressiveness represents a major challenge for researchers, considering that existing therapies are ineffective to treat metastasizing cases. The epigenetic control of chromatin dynamics during DNA synthesis, replication, and repair is fundamental for the orderly progression of cell proliferation. The Chromatin Assembly Factor 1 (CAF-1) complex acts as a major regulator of this process; its intermediate (p60) subunit has been recently proposed as a novel proliferation and prognostic marker for several tumors. We aimed to establish if the evaluation of the expression of CAF-1/p60 in primary CM may help define the prevision of outcome of patients. Methods Immunohistochemistry with anti-CAF-1/p60 was performed on paraffin-embedded tissue sections of 130 cases of primary CM retrieved from the archive files of the Department of Biomorphological and Functional Sciences, Section of Pathology, University "Federico II" of Naples, Italy. Results were compared with histopathological and follow-up data of patients. Results CAF-1/p60 was expressed in all CM. A significant statistical association between the overexpression of the protein and the occurrence of skin, node and/or distant metastases (P < 0.05) emerged, independently from histopathological prognostic factors. Conclusions CAF-1/p60 looks promising as a new prognostic marker for CM and sheds new light on the molecular events associated with photocancerogenesis and melanoma biology. The screening for CAF-1/p60 might contribute to the molecular sub-classification of CM, with improved translational outcomes. PMID:20178651

  6. Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA

    PubMed Central

    Hellmuth, Klaus; Lau, Denise M.; Bischoff, F. Ralf; Künzler, Markus; Hurt, Ed; Simos, George

    1998-01-01

    Saccharomyces cerevisiae Los1p, which is genetically linked to the nuclear pore protein Nsp1p and several tRNA biogenesis factors, was recently grouped into the family of importin/karyopherin-β-like proteins on the basis of its sequence similarity. In a two-hybrid screen, we identified Nup2p as a nucleoporin interacting with Los1p. Subsequent purification of Los1p from yeast demonstrates its physical association not only with Nup2p but also with Nsp1p. By the use of the Gsp1p-G21V mutant, Los1p was shown to preferentially bind to the GTP-bound form of yeast Ran. Furthermore, overexpression of full-length or N-terminally truncated Los1p was shown to have dominant-negative effects on cell growth and different nuclear export pathways. Finally, Los1p could interact with Gsp1p-GTP, but only in the presence of tRNA, as revealed in an indirect in vitro binding assay. These data confirm the homology between Los1p and the recently identified human exportin for tRNA and reinforce the possibility of a role for Los1p in nuclear export of tRNA in yeast. PMID:9774653

  7. International retrospective study of over 1000 adults with anaplastic oligodendroglial tumors

    PubMed Central

    Lassman, Andrew B.; Iwamoto, Fabio M.; Cloughesy, Timothy F.; Aldape, Kenneth D.; Rivera, Andreana L.; Eichler, April F.; Louis, David N.; Paleologos, Nina A.; Fisher, Barbara J.; Ashby, Lynn S.; Cairncross, J. Gregory; Roldán, Gloria B.; Wen, Patrick Y.; Ligon, Keith L.; Schiff, David; Robins, H. Ian; Rocque, Brandon G.; Chamberlain, Marc C.; Mason, Warren P.; Weaver, Susan A.; Green, Richard M.; Kamar, Francois G.; Abrey, Lauren E.; DeAngelis, Lisa M.; Jhanwar, Suresh C.; Rosenblum, Marc K.; Panageas, Katherine S.

    2011-01-01

    Treatment for newly diagnosed anaplastic oligodendroglial tumors is controversial. Radiotherapy (RT) alone and in combination with chemotherapy (CT) are the most well studied strategies. However, CT alone is often advocated, especially in cases with 1p19q codeletion. We retrospectively identified 1013 adults diagnosed from 1981–2007 treated initially with RT alone (n = 200), CT + RT (n = 528), CT alone (n = 201), or other strategies (n = 84). Median overall survival (OS) was 6.3 years and time to progression (TTP) was 3.1 years. 1p19q codeletion correlated with longer OS and TTP than no 1p or 19q deletion. In codeleted cases, median TTP was longer following CT + RT (7.2 y) than following CT (3.9 y, P = .003) or RT (2.5 y, P < .001) alone but without improved OS; median TTP was longer following treatment with PCV alone than temozolomide alone (7.6 vs. 3.3 y, P = .019). In cases with no deletion, median TTP was longer following CT + RT (3.1 y) than CT (0.9 y, P = .0124) or RT (1.1 y, P < .0001) alone; OS also favored CT + RT (median 5.0 y) over CT (2.2 y, P = .02) or RT (1.9 y, P < .0001) alone. In codeleted cases, CT alone did not appear to shorten OS in comparison with CT + RT, and PCV appeared to offer longer disease control than temozolomide but without a clear survival advantage. Combined CT + RT led to longer disease control and survival than did CT or RT alone in cases with no 1p19q deletion. Ongoing trials will address these issues prospectively. PMID:21636710

  8. Correlations between long inverted repeat (LIR) features, deletion size and distance from breakpoint in human gross gene deletions

    PubMed Central

    Aygun, Nevim

    2015-01-01

    Long inverted repeats (LIRs) have been shown to induce genomic deletions in yeast. In this study, LIRs were investigated within ±10 kb spanning each breakpoint from 109 human gross deletions, using Inverted Repeat Finder (IRF) software. LIR number was significantly higher at the breakpoint regions, than in control segments (P < 0.001). In addition, it was found that strong correlation between 5′ and 3′ LIR numbers, suggesting contribution to DNA sequence evolution (r = 0.85, P < 0.001). 138 LIR features at ±3 kb breakpoints in 89 (81%) of 109 gross deletions were evaluated. Significant correlations were found between distance from breakpoint and loop length (r = −0.18, P < 0.05) and stem length (r = −0.18, P < 0.05), suggesting DNA strands are potentially broken in locations closer to bigger LIRs. In addition, bigger loops cause larger deletions (r = 0.19, P < 0.05). Moreover, loop length (r = 0.29, P < 0.02) and identity between stem copies (r = 0.30, P < 0.05) of 3′ LIRs were more important in larger deletions. Consequently, DNA breaks may form via LIR-induced cruciform structure during replication. DNA ends may be later repaired by non-homologous end-joining (NHEJ), with following deletion. PMID:25657065

  9. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    SciTech Connect

    Logan, Michael R.; Jones, Lynden; Eitzen, Gary

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  10. The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases

    PubMed Central

    Hodko, Domagoj; Ward, Taylor; Chanfreau, Guillaume

    2016-01-01

    Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3′UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5′-3′ DExD/H-box RNA helicase Dhh1p and the 3′-5′ exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases. PMID:26843527

  11. Prediction of (1)P Rydberg energy levels of beryllium based on calculations with explicitly correlated Gaussians.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2014-01-14

    Benchmark variational calculations are performed for the seven lowest 1s(2)2s np ((1)P), n = 2...8, states of the beryllium atom. The calculations explicitly include the effect of finite mass of (9)Be nucleus and account perturbatively for the mass-velocity, Darwin, and spin-spin relativistic corrections. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. Basis sets of up to 12,500 optimized Gaussians are used. The maximum discrepancy between the calculated nonrelativistic and experimental energies of 1s(2)2s np ((1)P) →1s(2)2s(2) ((1)S) transition is about 12 cm(-1). The inclusion of the relativistic corrections reduces the discrepancy to bellow 0.8 cm(-1). PMID:24437871

  12. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).

    PubMed

    Potì, Francesco; Simoni, Manuela; Nofer, Jerzy-Roch

    2014-08-01

    Numerous epidemiological studies documented an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and the extent of atherosclerotic disease. However, clinical interventions targeting HDL cholesterol failed to show clinical benefits with respect to cardiovascular risk reduction, suggesting that HDL components distinct from cholesterol may account for anti-atherogenic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P)-a lysosphingolipid exerting its biological activity via binding to specific G protein-coupled receptors and regulating a wide array of biological responses in a variety of different organs and tissues including the cardiovascular system-has been identified as an integral constituent of HDL particles. In the present review, we discuss current evidence from epidemiological studies, experimental approaches in vitro, and animal models of atherosclerosis, suggesting that S1P contributes to atheroprotective effects exerted by HDL particles. PMID:24891400

  13. Beam propagation method using a [(p- 1)/ p] Padé approximant of the propagator.

    PubMed

    Lu, Ya Yan; Ho, Pui Lin

    2002-05-01

    A new beam propagation method (BPM) is developed based on a direct approximation to the propagator by its [(p-1)/p] Padé approximant. The approximant is simple to construct and has the desired damping effect for the evanescent modes. The method is applied to a tapered waveguide for TM-polarized waves, based on the energy-conserving improvement of the one-way Helmholtz equation. Numerical results are compared with those obtained with other variants of the BPM. PMID:18007898

  14. The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission

    PubMed Central

    Opalinski, Lukasz; Landgraf, Christiane; Costello, Joseph; Schrader, Michael; Krikken, Arjen M.; Knoops, Kèvin; Kram, Anita M.; Volkmer, Rudolf; van der Klei, Ida J.

    2015-01-01

    The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function. PMID:25941407

  15. RPA regulates telomerase action by providing Est1p access to chromosome ends.

    PubMed

    Schramke, Vera; Luciano, Pierre; Brevet, Vanessa; Guillot, Sylvine; Corda, Yves; Longhese, Maria Pia; Gilson, Eric; Géli, Vincent

    2004-01-01

    Replication protein A (RPA) is a highly conserved single-stranded DNA-binding protein involved in DNA replication, recombination and repair. We show here that RPA is present at the telomeres of the budding yeast Saccharomyces cerevisiae, with a maximal association in S phase. A truncation of the N-terminal region of Rfa2p (associated with the rfa2Delta40 mutated allele) results in severe telomere shortening caused by a defect in the in vivo regulation of telomerase activity. Cells carrying rfa2Delta40 show impaired binding of the protein Est1p, which is required for telomerase action. In addition, normal telomere length can be restored by expressing a Cdc13-Est1p hybrid protein. These findings indicate that RPA activates telomerase by loading Est1p onto telomeres during S phase. We propose a model of in vivo telomerase action that involves synergistic action of RPA and Cdc13p at the G-rich 3' overhang of telomeric DNA. PMID:14702040

  16. Class I Histone Deacetylase Thd1p Promotes Global Chromatin Condensation in Tetrahymena thermophila▿

    PubMed Central

    Parker, Kathryn; Maxson, Julia; Mooney, Alissa; Wiley, Emily A.

    2007-01-01

    Class I histone deacetylases (HDACs) regulate DNA-templated processes such as transcription. They act both at specific loci and more generally across global chromatin, contributing to acetylation patterns that may underlie large-scale chromatin dynamics. Although hypoacetylation is correlated with highly condensed chromatin, little is known about the contribution of individual HDACs to chromatin condensation mechanisms. Using the ciliated protozoan Tetrahymena thermophila, we investigated the role of a specific class I HDAC, Τhd1p, in the reversible condensation of global chromatin. In this system, the normal physiological response to cell starvation includes the widespread condensation of the macronuclear chromatin and general repression of gene transcription. We show that the chromatin in Thd1p-deficient cells failed to condense during starvation. The condensation failure correlated with aberrant hyperphosphorylation of histone H1 and the overexpression of CDC2, encoding the major histone H1 kinase. Changes in the rate of acetate turnover on core histones and in the distribution of acetylated lysines 9 and 23/27 on histone H3 isoforms that were found to correlate with normal chromatin condensation were absent from Thd1p mutant cells. These results point to a role for a class I HDAC in the formation of reversible higher-order chromatin structures and global genome compaction through mechanisms involving the regulation of H1 phosphorylation and core histone acetylation/deacetylation kinetics. PMID:17715364

  17. On F-algebras M(p)   (1 < p < ∞) of holomorphic functions.

    PubMed

    Meštrović, Romeo

    2014-01-01

    We consider the classes M(p)  (1 < p < ∞) of holomorphic functions on the open unit disk in the complex plane. These classes are in fact generalizations of the class M introduced by Kim (1986). The space M (p) equipped with the topology given by the metric ρ p defined by ρp (f, g) = ||f - g|| p = (∫0(2π) log(p) (1 + M(f - g)(θ))(dθ/2π))(1/p), with f, g ∈ M (p) and Mf(θ) = sup 0 ⩽ r<1 ⁡|f(re(iθ))|, becomes an F-space. By a result of Stoll (1977), the Privalov space N(p)  (1 < p < ∞) with the topology given by the Stoll metric d p is an F-algebra. By using these two facts, we prove that the spaces M(p) and N(p) coincide and have the same topological structure. Consequently, we describe a general form of continuous linear functionals on M(p) (with respect to the metric ρp). Furthermore, we give a characterization of bounded subsets of the spaces M(p). Moreover, we give the examples of bounded subsets of M(p) that are not relatively compact. PMID:24672388

  18. Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p

    PubMed Central

    Liu, Dongmei

    2014-01-01

    The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p–Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2. PMID:25313406

  19. Comparing CN Features in Two Comets: 1P/Halley and 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Lejoly, Cassandra; Barrera, Jose; Mueller, Beatrice; Schleicher, David

    2015-11-01

    Comets 1P/Halley and 103P/Hartley 2 show distinct CN features in their respecive comae. Both comets are non-principal-axis rotators. 1P/Halley is the proto-type for Halley-type comets with the Oort Cloud as its possible source region, whereas 103P/Hartley 2 is a Jupiter-Family comet that possibly originated from the Kuiper Belt. Both comets were spacecraft targets and studied widely from both space and from the ground.We will discuss the properties of CN features, and in particular the behavior of the derived outflow velocities based on the CN features present in the groundbased coma images of these two comets. The corresponding heliocentric distances for CN images of comet 1P/Halley range from approximately 0.8 AU to 2.0 AU (during its post-perihelion leg of the 1986 apparition). For CN images of comet 103P/Hartley 2, the corresponding heliocentric distances range from 1.31 AU through the perihelion (at 1.06 AU) to 1.25 AU (during its 2010 apparition).Ultimately, these results will be used to understand the rotational states and the activity behaviors of these two comets.

  20. Duplication and deletion of chromosome band 2(p21p22) resulting from a familial interstitial insertion (2;11)(p21;p15)

    SciTech Connect

    Sawyer, J.R.; Jones, E.; Hawks, F.F.; Quirk, J.G. Jr.; Cunniff, C.

    1994-02-15

    Routine amniocentesis for advanced maternal age led to the prenatal diagnosis of a fetus with a karyotype of a 46,XX,del(2)(p21p22). At delivery the baby had holopresencephaly as the major clinical finding, which has been associated with a deletion of band 2p21 in several other case reports. Chromosome studies of the parents showed a normal 46,XY karyotype in the father, and a balanced interstitial insertion 46,XX dir ins (11;2)(p15.1;p21p22) in the mother. Subsequent chromosome studies of other relatives documented a 23-year-old half-brother of the proposita with a partial trisomy for the segment deleted in the proposita. The half-brother showed the derivative chromosome 11 from the mother, resulting in a 46,XY,der(11)dup(2)(p21p22) karyotype. Major clinical findings include short stature, mild development delay, and behavior abnormalities. A half-sister of the proposita is also a balanced carrier of the dir ins (11;2)(p15.1;p21p22.2). The association of the deletion chromosome band 2p21 and the clinical finding of holoprosencephaly is further supported by the findings in this family. 9 refs., 5 figs.

  1. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae.

    PubMed Central

    Hata, H; Mitsui, H; Liu, H; Bai, Y; Denis, C L; Shimizu, Y; Sakai, A

    1998-01-01

    The POP2 (Caf1) protein in Saccharomyces cerevisiae affects a variety of transcriptional processes and is a component of the Ccr4p complex. We have isolated five multicopy suppressor genes of a pop2 deletion mutation: CCR4, DHH1 (a putative RNA helicase), PKC1, STM1, and MPT5 (multicopy suppressor of pop two). Overexpression of either the CCR4 or DHH1 genes effectively suppressed phenotypes associated with pop2 mutant cells; overexpression of PKC1, STM1, or MPT5 genes produced only partial suppression. Disruption of the CCR4 or DHH1 genes resulted in phenotypes similar to those observed for pop2 cells. In addition, overexpression of the DHH1 gene also suppressed the ccr4 mutation, suggesting a close relationship between the POP2, CCR4, and DHH1 genes. Two-hybrid analysis and coimmunoprecipitation experiments revealed that Pop2p and Dhh1p interact physically, and these and other data suggest that Dhh1p is also a component of the Ccr4p complex. Finally, we investigated the genetic interaction between factors associated with POP2 and the PKC1 pathway. The temperature-sensitive growth defect of dhh1 or mpt5 cells was suppressed by overexpression of PKC1, and the defect of mpk1 cells was suppressed by overexpression of MPT5. These results and phenotypic analysis of double mutants from the POP2 and PKC1 pathways suggested that the POP2 and the PKC1 pathways are independent but have some overlapping functions. PMID:9504907

  2. Characterization of large deletions in the DHCR7 gene.

    PubMed

    Lanthaler, B; Hinderhofer, K; Maas, B; Haas, D; Sawyer, H; Burton-Jones, S; Carter, K; Suri, M; Witsch-Baumgartner, M

    2015-08-01

    Pathogenic variants in the DHCR7 gene cause Smith-Lemli-Opitz syndrome (SLOS), a defect of cholesterol biosynthesis resulting in an autosomal recessive congenital metabolic malformation disorder. In approximately 4% of patients, the second mutation remains unidentified. In this study, 12 SLOS patients diagnosed clinically and/or by elevated 7-dehydrocholesterol (7-DHC) have been investigated by customized multiplex ligation-dependent probe amplification (MLPA) analysis, because only one DHCR7 sequence variant has been detected. Two unrelated patients of this cohort carry different large deletions in the DHCR7 gene. One patient showed a deletion of exons 3-6. The second patient has a deletion of exons 1 and 2 (non-coding) and lacks the major part of the promoter. These two patients show typical clinical and biochemical phenotypes of SLOS. Second disease-causing mutations are p.(Arg352Trp) and p.(Thr93Met), respectively. Deletion breakpoints were characterized successfully in both cases. Such large deletions are rare in the DHCR7 gene but will resolve some of the patients in whom a second mutation has not been detected. PMID:25040602

  3. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. PMID:27587776

  4. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  5. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. Functional Consequences of Mitochondrial DNA Deletions in Human Skin Fibroblasts

    PubMed Central

    Majora, Marc; Wittkampf, Tanja; Schuermann, Bianca; Schneider, Maren; Franke, Susanne; Grether-Beck, Susanne; Wilichowski, Ekkehard; Bernerd, Françoise; Schroeder, Peter; Krutmann, Jean

    2009-01-01

    Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor β-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-α-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both β-aminopropionitrile and N-tert-butyl-α-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin. PMID:19661442

  7. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  8. Deletion 2q37 syndrome: Cognitive-behavioral trajectories and autistic features related to breakpoint and deletion size.

    PubMed

    Fisch, Gene S; Falk, Rena E; Carey, John C; Imitola, Jaime; Sederberg, Maria; Caravalho, Karen S; South, Sarah

    2016-09-01

    Subtelomeric deletions have been reported in ∼2.5% of individuals with developmental disabilities. Subtelomeric deletion 2q37 has been detected in many individuals diagnosed with intellectual disabilities (ID) and autism spectrum disorders (ASD). Previously, genotype-phenotype correspondences were examined for their relationship to breakpoints 37.1, 37.2, or 37.3. Our purpose was to ascertain whether there were phenotypic differences at these breakpoints, elucidate the cognitive-behavioral phenotype in del2q37, and examine the genotype-phenotype association in the deletion with respect to cognitive-behavioral profiles and ASD. We administered a comprehensive cognitive-behavioral battery to nine children diagnosed with del 2q37, ages 3.9-17.75 years. ID for five tested with the Stanford-Binet (4th Edition) (SBFE) ranged from severe to mild [IQ Range: 36-59]. Adaptive behavior scores from the Vineland Adaptive Behavior Scale (VABS) were much below adequate levels (DQ Range: floor value ["19"] to 55). Autism scores from the Child Autism Rating Scale (CARS) ranged from 22 [non-autistic] to 56 [extremely autistic]; 5/8 [63%] children received scores on the autism spectrum. Participants with the largest deletions, 10.1 and 9.5 Mb, attained the highest IQ and DQ scores while those with the smallest deletions, 7.9 and 6.6 Mb, made the lowest IQ and DQ scores. No association between deletion breakpoint and phenotype were found. Assessment of the various deleted regions suggested histone deacetylase 4 gene (HDAC4) was a likely candidate gene for ASD in our sample. However, two earlier reports found no association between HDAC4 haploinsufficiency and ASD. © 2016 Wiley Periodicals, Inc. PMID:27282419

  9. The Kar3-interacting protein Cik1p plays a critical role in passage through meiosis I in Saccharomyces cerevisiae.

    PubMed Central

    Shanks, R M; Kamieniecki, R J; Dawson, D S

    2001-01-01

    Meiosis I in Saccharomyces cerevisiae is dependent upon the motor protein Kar3. Absence of Kar3p in meiosis results in an arrest in prophase I. Cik1p and Vik1p are kinesin-associated proteins known to modulate the function of Kar3p in the microtubule-dependent processes of karyogamy and mitosis. Experiments were performed to determine whether Cik1p and Vik1p are also important for the function of Kar3p during meiosis. The meiotic phenotypes of a cik1 mutant were found to be similar to those of kar3 mutants. Cells without Cik1p exhibit a meiotic defect in homologous recombination and synaptonemal complex formation. Most cik1 mutant cells, like kar3 mutants, arrest in meiotic prophase; however, in cik1 mutants this arrest is less severe. These data are consistent with the model that Cik1p is necessary for some, but not all, of the roles of Kar3p in meiosis I. vik1 mutants sporulate at wild-type levels, but have reduced spore viability. This loss in viability is partially attributable to vegetative chromosome loss in vik1 diploids. Cellular localization experiments reveal that Kar3p, Cik1p, and Vik1p are present throughout meiosis and are consistent with Cik1p and Vik1p having different meiotic roles. PMID:11729143

  10. C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast.

    PubMed

    Celton-Morizur, Séverine; Bordes, Nicole; Fraisier, Vincent; Tran, Phong T; Paoletti, Anne

    2004-12-01

    mid1p is a key factor for the central positioning of the cytokinetic ring in Schizosaccharomyces pombe. In interphase and early mitosis, mid1p forms a medial cortical band overlying the nucleus, which may represent a landmark for cytokinetic ring assembly. It compacts before anaphase into a tight ring with other cytokinetic ring components. We show here that mid1p binds to the medial cortex by at least two independent means. First, mid1p C-terminus association with the cortex requires a putative amphipathic helix adjacent to mid1p nuclear localization sequence (NLS), which is predicted to insert directly into the lipid bilayer. This association is stabilized by the polybasic NLS. mid1p mutated within the helix and the NLS forms abnormal filaments in early mitosis that are not properly anchored to the medial cortex. Misplaced rings assemble in late mitosis, indicating that mid1p C-terminus binding to membranes stabilizes cytokinetic ring position. Second, the N terminus of mid1p has the ability to associate faintly with the medial cortex and is sufficient to form tight rings. In addition, we show that mid1p oligomerizes. We propose that membrane-bound oligomers of mid1p assemble recruitment "platforms" for cytokinetic ring components at the medial cortex and stabilize the ring position during its compaction. PMID:15572668

  11. MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells.

    PubMed

    Kalhori, Veronica; Törnquist, Kid

    2015-03-15

    The bioactive lipid sphingosine-1-phosphate (S1P) has emerged as a potent inducer of cancer cell migration and invasion. Previously, we have shown that S1P induces invasion of ML-1 follicular thyroid cancer cells via S1P receptors 1 and 3 (S1P1,3). Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes used by cells for degradation of the extracellular matrix during invasion and migration. In the present study, we examined the role of MMP2 and MMP9 for S1P-induced invasion of ML-1 cells, and found that S1P regulates the secretion and activity of MMP2 and MMP9 via S1P1,3. Both pharmacological inhibitors and siRNA knockdown of MMP2 and MMP9 could attenuate S1P-induced invasion. Additionally, we show that calpains and Rac1 mediate S1P-induced secretion of MMP2 and MMP9. In conclusion, MMP2 and MMP9 participate in S1P-evoked follicular ML-1 thyroid cancer cell invasion. PMID:25643979

  12. A case of duplication 17p13.1p13.3 confirmed by FISH

    SciTech Connect

    Stephenson, C.F.; Berger, C.S.; Bull, R.M.

    1994-09-01

    There are many reports in the literature of deletions of the p arm of chromosome 17 in the region of p13.3 due to the association with Miller-Dieker Syndrome. However, very little is known about duplications of 17p. We report a duplication of part of 17p in an 8-year-old girl with attention deficit disorder and mild mental retardation. Cytogenetically, the duplicated region appears to include 17p13.1 to p13.3. FISH with a cosmid probe to the Miller-Dieker region at 17p13.3 shows a double hybridization signal, confirming that the duplicated material does indeed include 17q13.3.

  13. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720.

    PubMed

    Tran, Hai B; Barnawi, Jameel; Ween, Miranda; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Reynolds, Paul N; Pitson, Stuart M; Davies, Lorena T; Haberberger, Rainer; Hodge, Sandra

    2016-07-01

    Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease. PMID

  14. Efficacy and patient-reported outcomes with dose-intense temozolomide in patients with newly diagnosed pure and mixed anaplastic oligodendroglioma: a phase II multicenter study.

    PubMed

    Ahluwalia, Manmeet S; Xie, Hao; Dahiya, Saurabh; Hashemi-Sadraei, Nooshin; Schiff, David; Fisher, Paul G; Chamberlain, Marc C; Pannullo, Susan; Newton, Herbert B; Brewer, Cathy; Wood, Laura; Prayson, Richard; Elson, Paul; Peereboom, David M

    2015-03-01

    Standard initial therapy for patients with pure and mixed anaplastic oligodendrogliomas (AO/MAO) includes chemotherapy and radiation therapy. Anaplastic oligodendrogliomas with 1p/19q co-deletion are more responsive to chemotherapy. There is concern for potential long-term CNS toxicity of radiation. Hence an approach using chemotherapy initially and reserving radiation for progressive disease is attractive. This multicenter phase II trial included patients with newly diagnosed AO/MAO with central pathology review and 1p/19q assay. Temozolomide was given 150 mg/m(2) days 1-7 and 15-21, every 28 days for 8 cycles. The primary endpoint was progression free survival (PFS). Secondary endpoints included response rate, overall survival (OS), treatment toxicity and health-related quality of life (HRQL). Data from 62 patients enrolled between December 2001 and April 2007 at seven centers were analyzed. Among patients with measurable disease, 8 % achieved complete remission, 56 % had stable disease and 36 % had progression. The median PFS and OS were 27.2 months (95 % CI 11.9-36.3) and 105.8 months (95 % CI 51.5-N/A), respectively. Both 1p loss and 1p/19q co-deletion were positive prognostic factors for PFS (p < 0.001) and OS (p < 0.001); and there was some suggestion that 1p/19q co-deletion also predicted better response to chemotherapy (p = 0.007). Grade 3/4 toxicities were mainly hematological. Significantly improved HRQL in the future uncertainty domain of the brain cancer module was seen after cycle 4 (p < 0.001). This trial achieved outcomes similar to those reported previously. Toxicities from dose-intense temozolomide were manageable. Improvement in at least one HRQL domain increased over time. This trial supports the further study of first-line temozolomide monotherapy as an alternative to radiation therapy for patients with newly diagnosed AO/MAO with 1p 19q co-deleted tumors. PMID:25534576

  15. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p.

    PubMed Central

    Cherkasova, V; Lyons, D M; Elion, E A

    1999-01-01

    In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition. PMID:10049917

  16. Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes.

    PubMed

    Faber, K N; Heyman, J A; Subramani, S

    1998-02-01

    Two peroxins of the AAA family, PpPex1p and PpPex6p, are required for peroxisome biogenesis in the yeast Pichia pastoris. Cells from the corresponding deletion strains (Pp delta pex1 and Pp delta pex6) contain only small vesicular remnants of peroxisomes, the bulk of peroxisomal matrix proteins is mislocalized to the cytosol, and these cells cannot grow in peroxisome-requiring media (J. A. Heyman, E. Monosov, and S. Subramani, J. Cell Biol. 127:1259-1273, 1994; A. P. Spong and S. Subramani, J. Cell Biol. 123:535-548, 1993). We demonstrate that PpPex1p and PpPex6p interact in an ATP-dependent manner. Genetically, the interaction was observed in a suppressor screen with a strain harboring a temperature-sensitive allele of PpPEX1 and in the yeast two-hybrid system. Biochemially, these proteins were coimmunoprecipitated with antibodies raised against either of the proteins, but only in the presence of ATP. The protein complex formed under these conditions was 320 to 400 kDa in size, consistent with the formation of a heterodimeric PpPex1p-PpPex6p complex. Subcellular fractionation revealed PpPex1p and PpPex6p to be predominantly associated with membranous subcellular structures distinct from peroxisomes. Based on their behavior in subcellular fractionation experiments including flotation gradients and on the fact that these structures are also present in a Pp delta pex3 strain in which no morphologically detectable peroxisomal remnants have been observed, we propose that these structures are small vesicles. The identification of vesicle-associated peroxins is novel and implies a role for these vesicles in peroxisome biogenesis. We discuss the possible role of the ATP-dependent interaction between PpPex1p and PpPex6p in regulating peroxisome biogenesis events. PMID:9447990

  17. SOCS3 deletion promotes optic nerve regeneration in vivo

    PubMed Central

    Smith, Patrice D.; Sun, Fang; Park, Kevin Kyungsuk; Cai, Bin; Wang, Chen; Kuwako, Kenichiro; Martinez-Carrasco, Irene; Connolly, Lauren; He, Zhigang

    2009-01-01

    SUMMARY Axon regeneration failure accounts for permanent functional deficits following CNS injury in adult mammals. However, the underlying mechanisms remain elusive. In analyzing axon regeneration in different mutant mouse lines, we discovered that deletion of suppressor of cytokine signaling 3 (SOCS3), in adult retinal ganglion cells (RGCs), promotes robust regeneration of injured optic nerve axons. This regeneration-promoting effect is efficiently blocked in SOCS3-gp130 double knockout mice, suggesting that SOCS3 deletion promotes axon regeneration via a gp130-dependent pathway. Consistently, a transient up-regulation of ciliary neurotrophic factor (CNTF) was observed within the retina following optic nerve injury. Intravitreal application of CNTF further enhances axon regeneration from SOCS3-deleted RGCs. Together, our results suggest that compromised responsiveness to injury-induced growth factors in mature neurons contributes significantly to regeneration failure. Thus, developing strategies to modulate negative signaling regulators may be an efficient strategy of promoting axon regeneration after CNS injury. PMID:20005819

  18. Molecular dissection of the 5q deletion in myelodysplastic syndrome

    PubMed Central

    Ebert, Benjamin L.

    2011-01-01

    The 5q- syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletions of Chromosome 5q. While no genes have been identified that undergo recurrent homozygous inactivation, functional studies have revealed individual genes that contribute to the clinical phenotype of MDS through haploinsufficient gene expression. Heterozygous loss of the RPS14 gene on 5q leads to activation of p53 in the erythroid lineage and the macrocytic anemia characteristic of the 5q- syndrome. The megakaryocytic and platelet phenotype of the 5q- syndrome has been attributed to heterozygous deletion of miR145 and miR146a. Murine models have implicated heterozygous loss of APC, EGR1, DIAPH1, and NPM1 in the pathophysiology of del(5q) MDS. These findings indicate that the phenotype of MDS patients with deletions of Chromosome 5q is due to haploinsufficiency of multiple genes. PMID:21943668

  19. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms.

    PubMed

    Wang, Qi; Yu, Wan-Ni; Chen, Xinyu; Peng, Xiao-Ding; Jeon, Sang-Min; Birnbaum, Morris J; Guzman, Grace; Hay, Nissim

    2016-04-11

    Akt is frequently hyperactivated in human cancers and is targeted for cancer therapy. However, the physiological consequences of systemic Akt isoform inhibition were not fully explored. We showed that while combined Akt1 and Akt3 deletion in adult mice is tolerated, combined Akt1 and Akt2 deletion induced rapid mortality. Akt2(-/-) mice survived hepatic Akt1 deletion but all developed spontaneous hepatocellular carcinoma (HCC), which is associated with FoxO-dependent liver injury and inflammation. The gene expression signature of HCC-bearing livers is similar to aggressive human HCC. Consistently, neither Akt1(-/-) nor Akt2(-/-) mice are resistant to diethylnitrosamine-induced hepatocarcinogenesis, and Akt2(-/-) mice display a high incidence of lung metastasis. Thus, in contrast to other cancers, hepatic Akt inhibition induces liver injury that could promote HCC. PMID:26996309

  20. Semilobar holoprosencephaly with 21q22 deletion: an autopsy report

    PubMed Central

    Mallick, Saumyaranjan; Panda, Shasanka Shekhar; Ray, Ruma; Shukla, Rashmi; Kabra, Madhulika; Agarwal, Ramesh

    2014-01-01

    Holoprosencephaly (HPE) is the most common forebrain developmental anomaly with a prevalence of 1:16 000 live-births. Possible aetiological agents include environmental factors and genetic defects such as trisomies (13, 18) and deletions (18p, 7q, 2p and 21q). This complex malformation is due to incomplete division of the cerebral hemisphere. The phenotypes of HPE include alobar, semilobar, lobar and midline interhemispheric fusion variants. Craniofacial anomalies occur in 80% of cases. Severely affected babies die in the neonatal period. Here we report an autopsied case of semilobar HPE with pituitary and adrenal agenesis with 21q22 deletion. Additional findings are noted that would help expand the spectrum of 21q22 deletion. PMID:24626384

  1. Large-scale selection of lines with deletions in chromosome 1 B in wheat and applications for fine deletion mapping.

    PubMed

    Tsujimoto, H; Yamada, T; Hasegawa, K; Usami, N; Kojima, T; Endo, T R; Ogihara, Y; Sasakuma, T

    2001-08-01

    Terminal deletions of chromosome 1B in common wheat were selected on a large scale. The gametocidal gene of Aegilops cylindrica was used as the inducer of chromosome breakage. First, genes for endosperm storage proteins located on both arms of chromosome 1B were used as the selection markers. However, it was found that the chromosome breakage occurred during female gametogenesis, causing genotypic inconsistency between the embryo and endosperm. Thus, we isolated plants with terminal deletions in chromosome 1B by C-banding. Of 1327 plants examined, 128 showed aberrations in chromosome 1B: 47 in the short arm, 76 in the long arm, and 5 in both arms. The present deletions tended to have the breakpoint at more proximal regions than those produced previously by T.R. Endo and B.S. Gill. Using 33 deletion lines produced in this study and 34 lines previously produced, we mapped 39 RFLP loci and a nucleolar organizer region (NOR) on a specific region of chromosome 1B. The NOR was found to consist of two subregions with different repetitive units, which were termed NOR-Bld and NOR-Blp. Based on this fine deletion map and genotypic inconsistency between embryo and endosperm, the features of the gametocidal gene are discussed. PMID:11550882

  2. Characterization of 14 novel deletions underlying Rubinstein-Taybi syndrome: an update of the CREBBP deletion repertoire.

    PubMed

    Rusconi, Daniela; Negri, Gloria; Colapietro, Patrizia; Picinelli, Chiara; Milani, Donatella; Spena, Silvia; Magnani, Cinzia; Silengo, Margherita Cirillo; Sorasio, Lorena; Curtisova, Vaclava; Cavaliere, Maria Luigia; Prontera, Paolo; Stangoni, Gabriela; Ferrero, Giovanni Battista; Biamino, Elisa; Fischetto, Rita; Piccione, Maria; Gasparini, Paolo; Salviati, Leonardo; Selicorni, Angelo; Finelli, Palma; Larizza, Lidia; Gervasini, Cristina

    2015-06-01

    Rubinstein-Taybi syndrome (RSTS) is a rare, clinically heterogeneous disorder characterized by cognitive impairment and several multiple congenital anomalies. The syndrome is caused by almost private point mutations in the CREBBP (~55% of cases) and EP300 (~8%) genes. The CREBBP mutational spectrum is variegated and characterized by point mutations (30-50 %) and deletions (~10%). The latter are diverse in size and genomic position and remove either the whole CREBBP gene and its flanking regions or only an intragenic portion. Here, we report 14 novel CREBBP deletions ranging from single exons to the whole gene and flanking regions which were identified by applying complementary cytomolecular techniques: fluorescence in situ hybridization, multiplex ligation-dependent probe amplification and array comparative genome hybridization, to a large cohort of RSTS patients. Deletions involving CREBBP account for 23% of our detected CREBBP mutations, making an important contribution to the mutational spectrum. Genotype-phenotype correlations revealed that patients with CREBBP deletions extending beyond this gene did not always have a more severe phenotype than patients harboring CREBBP point mutations, suggesting that neighboring genes play only a limited role in the etiopathogenesis of CREBBP-centerd contiguous gene syndrome. Accordingly, the extent of the deletion is not predictive of the severity of the clinical phenotype. PMID:25805166

  3. Prostate cancer and glutathione S-transferase deletions

    PubMed Central

    Malik, Saima Shakil; Masood, Nosheen; Yasmin, Azra

    2015-01-01

    GSTM1 and GSTT1 gene polymorphisms have been studied in many populations to evaluate their association with prostate cancer risk with contrasting results. The current study was aimed to find out the association of GSTM1 and GSTT1 gene polymorphisms with prostate cancer in Pakistani men. This case control study included pathologically confirmed prostate cancer patients and age matched male controls. Epidemiological data was collected by a standard questionnaire and presence or absence of GSTM1 and GSTT1 gene was observed by multiplex PCR using CYP1A1 as housekeeping gene. Prostate cancer was more prevalent in age of >60 years and most of the patients were at stage IV (70 %) and have undergone surgery. Family history of cancer, smoking, metastasis and surgery were found to be significant (P<0.05) risk factors in prostate cancer development. Gleason score 7 was most prevalent (40.5 %) in prostate cancer patients. Source of drinking water, residential area, occupation, eating habits and number of family members had no association (P>0.05) with prostate cancer risk. No significant association was found when comparing GSTM1 (OR=0.78) and GSTT1 (OR=0.89) gene deletions with prostate cancer risk. Smoking and TNM staging were also not associated with deletion of GSTM1 and GSTT1 genes. Comparison of dual null deletion of both genes with prostate cancer also showed non-significant associations. Deletion of GSTM1 gene at stage IV prostate cancer patients was significantly higher compared with other stages of cancer while no significance was shown by GSTT1 gene deletion. GSTM1, GSTT1 and deletion of both GSTM1 and GSTT1 genes do not contribute towards increased risk of prostate cancer in Pakistani population. PMID:26600754

  4. Dissecting the phenotypes of Dravet syndrome by gene deletion.

    PubMed

    Rubinstein, Moran; Han, Sung; Tai, Chao; Westenbroek, Ruth E; Hunker, Avery; Scheuer, Todd; Catterall, William A

    2015-08-01

    Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types. PMID:26017580

  5. Dissecting the phenotypes of Dravet syndrome by gene deletion

    PubMed Central

    Rubinstein, Moran; Han, Sung; Tai, Chao; Westenbroek, Ruth E.; Hunker, Avery; Scheuer, Todd

    2015-01-01

    Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types. PMID:26017580

  6. The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae.

    PubMed

    Wiederkehr, A; Avaro, S; Prescianotto-Baschong, C; Haguenauer-Tsapis, R; Riezman, H

    2000-04-17

    In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Delta is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Delta mutant is strongly defective in recycling. PMID:10769031

  7. The F-Box Protein Rcy1p Is Involved in