Science.gov

Sample records for 1p 19q deletion

  1. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography

    PubMed Central

    Iwadate, Yasuo; Shinozaki, Natsuki; Matsutani, Tomoo; Uchino, Yoshio; Saeki, Naokatsu

    2016-01-01

    Objective Chromosome 1p/19q deletion is an established prognostic and predictive marker in the WHO grade III oligodendroglial tumours (OT). To estimate the genetic status preoperatively, the authors investigated the correlation between the uptake of 11C-methionine in positron emission tomography (PET) and the 1p/19q status in grades II and III OT. Methods We retrospectively reviewed 144 patients with gliomas who received 11C-methionine PET. 66 cases with grades II–III oligodendrogliomas or oligoastrocytomas underwent fluorescence in situ hybridisation to determine the 1p/19q status. The tissue uptake of 11C-methionine was expressed as the ratio of the maximum standardised uptake value (SUVmax) in tumour areas to the mean SUV (SUVmean) in the contralateral normal brain (tumour-to-normal tissue (T/N) ratio). Results The T/N ratio in 11C-methionine PET was significantly higher in grade III OT than in grade II tumours. The mean T/N ratio of the grade II tumours without 1p/19q deletion was significantly higher than that of the grade II tumours with 1p/19q deletion (mean 2.67 vs 1.94, respectively; p=0.0457). In grade III tumours, the mean T/N ratio of the tumours without 1p/19q deletion was also significantly higher than that of the tumours with 1p/19q deletion (mean 4.83 vs 3.49, respectively; p=0.0261). The rate of IDH1 mutation was lower and the rate of contrast enhancement on MRIs was higher in the 1p/19q non-deleted OT than those with 1p/19q deletion, which may contribute to the high T/N ratio. Conclusions Among suspected OT, 11C-methionine PET may help us preoperatively discriminate tumours with and without 1p/19q deletion. PMID:26848169

  2. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.

    PubMed

    Jenkins, Robert B; Blair, Hilary; Ballman, Karla V; Giannini, Caterina; Arusell, Robert M; Law, Mark; Flynn, Heather; Passe, Sandra; Felten, Sara; Brown, Paul D; Shaw, Edward G; Buckner, Jan C

    2006-10-15

    Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms, suggesting a t(1;19)(q10;p10). Using stem cell medium, we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture, one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas, the prevalence of fusion was 81%. Among NCCTG patients, CEP1/19p12 fusion prevalence was 55%, 47%, and 0% among the oligodendrogliomas, mixed oligoastrocytomas, and astrocytomas, respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P < 0.001, chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion, the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.

  3. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p.

    PubMed Central

    Reifenberger, J.; Reifenberger, G.; Liu, L.; James, C. D.; Wechsler, W.; Collins, V. P.

    1994-01-01

    The molecular genetic alterations of oligodendroglial tumors and mixed gliomas of the central nervous system were studied in a series of 37 cases (8 oligodendrogliomas, 13 anaplastic oligodendrogliomas, 8 oligoastrocytomas, and 8 anaplastic oligoastrocytomas). A total of 180 polymorphic loci and 5 nonpolymorphic gene loci, distributed over all chromosomes, were examined by restriction fragment length polymorphism analysis. Loss of heterozygosity was most frequently observed for loci on 19q with a commonly deleted region at 19q13.2-q13.4 distal to the CYP2a gene and proximal to the D19S22 locus. The incidence of allelic loss on 19q was particularly high (81%) in oligodendroglial tumors and equal to 31% in mixed gliomas. More than 75% of the tumors with allelic deletions on 19q also showed loss of heterozygosity for loci on 1p with one tumor showing only loss of alleles distal to the NGFB gene (1p13-pter). Seven (19%) tumors had lost alleles from 17p with the deleted region including the TP53 tumor suppressor gene in all cases. Sequencing of the TP53 transcripts from exons 2 to 10, however, did not reveal mutations of the remaining allele in any of these tumors. Anaplastic oligodendrogliomas and anaplastic oligoastrocytomas demonstrated an increased incidence of additional allelic losses involving most frequently chromosomes 9p and 10. Gene amplification was detected in two anaplastic tumors, affecting the epidermal growth factor receptor gene in both cases, with additional amplification of the renin gene at 1q32 in one of these cases. In total our results indicate both differences and similarities between the molecular genetic alterations in tumors with oligodendroglial and astrocytic differentiation. The loss of genetic information from 19q and 1p as well as the rarity of TP53 mutations in oligodendroglial tumors suggests that the early events in their oncogenesis are distinct from those associated with astrocytic tumors. However, similarities are indicated by the

  4. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas.

    PubMed

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien; Ducray, François

    2016-01-01

    Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours. PMID:27090007

  5. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas

    PubMed Central

    Kamoun, Aurélie; Idbaih, Ahmed; Dehais, Caroline; Elarouci, Nabila; Carpentier, Catherine; Letouzé, Eric; Colin, Carole; Mokhtari, Karima; Jouvet, Anne; Uro-Coste, Emmanuelle; Martin-Duverneuil, Nadine; Sanson, Marc; Delattre, Jean-Yves; Figarella-Branger, Dominique; de Reyniès, Aurélien; Ducray, François; Adam, Clovis; Andraud, Marie; Aubriot-Lorton, Marie-Hélène; Bauchet, Luc; Beauchesne, Patrick; Bielle, Franck; Blechet, Claire; Campone, Mario; Carpentier, Antoine F.; Carpiuc, Ioana; Cazals-Hatem, Dominique; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Chinot, Olivier; Cohen-Moyal, Elisabeth; Colin, Philippe; Dam-Hieu, Phong; Desenclos, Christine; Desse, Nicolas; Dhermain, Frederic; Diebold, Marie-Danièle; Eimer, Sandrine; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Gaillard, Stéphane; Gauchotte, Guillaume; Gaultier, Claude; Ghiringhelli, François; Godard, Joel; Gueye, Edouard Marcel; Guillamo, Jean Sebastien; Hamdi-Elouadhani, Selma; Honnorat, Jerome; Kemeny, Jean Louis; Khallil, Toufik; Labrousse, François; Langlois, Olivier; Laquerriere, Annie; Larrieu-Ciron, Delphine; Lechapt-Zalcman, Emmanuelle; Guérinel, Caroline Le; Levillain, Pierre-Marie; Loiseau, Hugues; Loussouarn, Delphine; Maurage, Claude-Alain; Menei, Philippe; Motsuo Fotso, Marie Janette; Noel, Georges; Parker, Fabrice; Peoc'h, Michel; Polivka, Marc; Quintin-Roué, Isabelle; Ramirez, Carole; Ricard, Damien; Richard, Pomone; Rigau, Valérie; Rousseau, Audrey; Runavot, Gwenaelle; Sevestre, Henri; Tortel, Marie Christine; Vandenbos, Fanny; Vauleon, Elodie; Viennet, Gabriel; Villa, Chiara

    2016-01-01

    Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q co-deletion. Here we present an integrated analysis of the transcriptome, genome and methylome of 156 OT. Not only does our multi-omics classification match the current classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated with specific expression patterns of nervous system cell types: oligodendrocyte, oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these three subgroups using public datasets. Importantly, the OPC-like group is associated with more aggressive clinical and molecular patterns, including MYC activation. We show that the MYC activation occurs through various alterations, including MYC genomic gain, MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome independently of histological grade. Our study reveals previously unrecognized heterogeneity among 1p/19q co-deleted tumours. PMID:27090007

  6. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    PubMed

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  7. Co-Deletion of Chromosome 1p/19q and IDH1/2 Mutation in Glioma Subsets of Brain Tumors in Chinese Patients

    PubMed Central

    Ren, Xiaohui; Cui, Xiangli; Lin, Song; Wang, Junmei; Jiang, Zhongli; Sui, Dali; Li, Jing; Wang, Zhongcheng

    2012-01-01

    Objective To characterize co-deletion of chromosome 1p/19q and IDH1/2 mutation in Chinese brain tumor patients and to assess their associations with clinical features. Methods In a series of 528 patients with gliomas, pathological and radiological materials were reviewed. Pathological constituents of tumor subsets, incidences of 1p/19q co-deletion and IDH1/2 mutation in gliomas by regions and sides in the brain were analyzed. Results Overall, 1p and 19q was detected in 339 patients by FISH method while the sequence of IDH1/2 was determined in 280 patients. Gliomas of frontal, temporal and insular origin had significantly different pathological constituents of tumor subsets (P<0.001). Gliomas of frontal origin had significantly higher incidence of 1p/19q co-deletion (50.4%) and IDH1/2 mutation (73.5%) than those of non-frontal origin (27.0% and 48.5%, respectively) (P<0.001), while gliomas of temporal origin had significantly lower incidence of 1p/19q co-deletion (23.9%) and IDH1/2 mutation (41.7%) than those of non-temporal origin (39.9% and 63.2%, respectively) (P = 0.013 and P = 0.003, respectively). Subgroup analysis confirmed these findings in oligoastrocytic and oligodendroglial tumors, respectively. Although the difference of 1p/19q co-deletion was not statistically significant in temporal oligodendroglial tumors, the trend was marginally significant (P = 0.082). However, gliomas from different sides of the brain did not show significant different pathological constituents, incidences of 1p/19q co-deletion or IDH1/2 mutation. Conclusion Preferential distribution of pathological subsets, 1p/19q co-deletion and IDH1/2 mutation were confirmed in some brain regions in Chinese glioma patients, implying their distinctive tumor genesis and predictive value for prognosis. PMID:22427879

  8. [Diagnostic and prognostic values of 1p and 19q deletions in adult gliomas: critical review of the literature and implications in daily clinical practice].

    PubMed

    Fontaine, D; Vandenbos, F; Lebrun, C; Paquis, V; Frenay, M

    2008-01-01

    Losses of chromosomes 1p and 19q are deemed correlated with diagnosis of oligodendroglioma, higher chemosensitivity and better prognosis. We reviewed the literature to evaluate the usefulness of these correlations in daily clinical practice. The rates of deletions relative to histology (WHO classifications) were extracted from 33 studies, including 2666 patients. The 1p deletions and 1p19q codeletion mean rates were respectively 65.4 and 63.3% in oligodendrogliomas, 28.7 and 21.6% in oligoastrocytomas, 13.2 and 7.5% in astrocytomas, 11.6 and 2.9% in glioblastomas. The presence of 1p deletion and 1p19q codeletion were strongly correlated with the histological diagnosis corresponding to oligodendroglioma. Calculation of specificity, sensitivity, predictive positive values and false negative rates suggests that presence of deletion 1p or codeletion represents a strong argument in favor of the diagnosis of oligodendroglioma. However, considering the high false negative rate, absence of such deletions does not rule out the diagnosis. In grade 3 oligodendroglial tumors, the probability of responding to chemotherapy, and the duration of response, were higher when codeletions were present. This suggests that, in these tumors, the presence of codeletion is a strong argument in favor of adjuvant chemotherapy. However, chemotherapy should not be systematically excluded when codeletions are absent, as the chances of response are about 33% in this situation. Data concerning low-grade gliomas were more controversial. Oligodendroglial tumors with 1p deletion or 1p19q codeletion seemed to have a better prognosis, as five-year survival rates were 50% higher than in tumors without deletion. This might be explained by the correlation between 1p deletion and other identified prognosis factors: (1) higher chemosensitivity, (2) tumor location more frequently in the frontal lobe, leading to better resection and lower risk of neurological deficit, (3) slower growth rate, (4) higher risk

  9. Prognostic significance of relative 1p/19q codeletion in oligodendroglial tumors.

    PubMed

    Chamberlain, Marc C; Born, Donald

    2015-11-01

    1p/19q codeletion is a favorable prognostic marker for oligodendroglial tumors (OT). Compare outcome in OT with simple deletions of 1p or 19q to those with relative deletions defined as the presence of both increased copy number (polysomy) and 1p/19q codeletion. 525 cases were examined by fluorescence in situ hybridization (FISH) using dual color probes to determine the deletion status of chromosome arms 1p and 19q. Categories included simple deletions defined as a proportion of either 1p32 or 19q13 FISH signals compared to 1q42 or 19p13 signals less than 0.80 and relative deletions (1p or 19q) defined as the combination of a <0.80 proportion with >30 % of nuclei showing increased chromosome number (based on enumeration of 1q25 or 19p13). 464 (80 %) were WHO Grade II or III OT of which 209 (48 %) had both 1p and 19q deleted (codeletion). 72 (16 %) had relative deletions for either one or both 1p and 19q of which 28 (6 %) had relative deletions of 1p and 19q (relative codeletion). Overall survival in WHO Grade II OT was 13 + years when 1p/19q codeleted (n = 156); 5 + years in uni- or nondeleted (n = 86); 6 + years in relative deletion for either 1p or 19q (n = 41); and 6 + years in relative 1p/19q codeletion (n = 15). Similarly in WHO Grade III OT (n = 168) overall survival was 11 + years in 1p/19q codeleted (n = 54) OT; 2.5 years in uni- or nondeleted (n = 70); 3 years in relative deletion for one or both 1p or 19q (n = 31); and 4 + years in relative 1p/19q codeletion (n = 13). Survival for OT regardless of grade with relative codeletion of 1p/19q was approximately one half that of 1p/19q codeleted tumors. The presence of relative 1p/19q codeletion is of prognostic significance. PMID:26341371

  10. Homozygous deletion of TNFRSF4, TP73, PPAP2B and DPYD at 1p and PDCD5 at 19q identified by multiplex ligation-dependent probe amplification (MLPA) analysis in pediatric anaplastic glioma with questionable oligodendroglial component

    PubMed Central

    2014-01-01

    Background Pediatric oligodendrogliomas are rare and appear to show a different molecular profile from adult tumors. Some gliomas display allelic losses at 1p/19q in pediatric patients, although less frequently than in adult patients, but this is rare in tumors with an oligodendroglial component. The molecular basis of this genomic abnormality is unknown in pediatric gliomas, but it represents a relatively common finding in pediatric oligodendroglioma-like neoplasms with leptomeningeal dissemination. Results Multiplex ligation-dependent probe amplification (MLPA) analysis using SALSA P088-B1 for the analysis of the 1p/19q allelic constitution in a pediatric anaplastic (oligodendro)-glioma showed homozygous co-deletion for markers: TNFRSF4 (located at 1p36.33), TP73 (1p36.32), PPAP2B (1pter-p22.1), DPYD (1p21.3), and PDCD5 (19q13.12), and hemizygous deletion of BAX (19q13.3-q13.4). No sequence changes for R132 and R172 of the IDH1/2 genes were identified. Conclusions The molecular findings in this pediatric anaplastic glioma do not allow for a clearly definitive pathological diagnosis. However, the findings provide data on a number of 1p/19q genomic regions that, because of homozygotic deletion, might be the location of genes that are important for the development and clinical evolution of some malignant gliomas in children. PMID:24387276

  11. 1p/19q codeletion and RET rearrangements in small-cell lung cancer

    PubMed Central

    Lu, Hongyang; Xu, Haimiao; Xie, Fajun; Qin, Jing; Han, Na; Fan, Yun; Mao, Weimin

    2016-01-01

    The prognosis of small-cell lung cancer (SCLC) is poor despite reports suggesting modest improvement in survival. To date, chemotherapy remains the cornerstone treatment for SCLC patients, and many studies have focused on identifying the molecular characteristics of SCLC, which serve as the basis for precision treatments that improve the prognosis of SCLC. For instance, the therapeutic effect of temozolomide, recommended for patients with relapsed SCLC, is linked to 1p/19q codeletion in anaplastic oligodendroglial tumors. A subpopulation of SCLC patients may derive benefit from tyrosine kinase inhibitors targeting RET. In order to identify 1p/19q codeletion and RET rearrangement in SCLC patients, 32 SCLC resected specimens were retrospectively collected between 2008 and 2014 from the Zhejiang Cancer Hospital in People’s Republic of China. Fluorescence in situ hybridization was used to detect 1p/19q codeletion and RET rearrangement in the specimens. A 1p single deletion was detected in eight specimens, 19q single deletion was detected in three specimens, and only three specimens had a 1p/19q codeletion. None of the specimens had a RET rearrangement. The three patients whose specimens had a 1p/19q codeletion were alive after 58, 50, and 30 months of follow-up care. There was a trend toward prolonged overall survival for the patients with codeletion compared to no codeletion, 1p single deletion, 19q single deletion, and without 1p and 19q deletion (P=0.113, 0.168, 0.116, and 0.122, respectively). Our data showed that RET rearrangement may be not an ideal molecular target for SCLC therapies in People’s Republic of China. Instead, 1p/19q codeletion is a promising marker for a good prognosis and treatment with temozolomide in SCLC. PMID:27366094

  12. Favorable long-term outcome of low-grade oligodendrogliomas irrespective of 1p/19q status when treated without radiotherapy.

    PubMed

    Iwadate, Yasuo; Matsutani, Tomoo; Hasegawa, Yuzo; Shinozaki, Natsuki; Higuchi, Yoshinori; Saeki, Naokatsu

    2011-05-01

    Despite the accumulating evidences of high chemosensitivity especially in anaplastic oligodendrogliomas with loss of chromosomes 1p and 19q, the optimal management strategy for low-grade tumors using the 1p/19q information remains controversial. We have treated all low-grade oligodendrogliomas by a chemotherapy-preceding strategy without radiotherapy, and here we analyzed the survival outcomes of 36 consecutive patients in relation to 1p/19q status. The treatment protocol was as follows: (1) simple observation after gross total resection, and (2) modified PCV chemotherapy for postoperative residual tumors or recurrence after total resection. The 1p and 19q status were analyzed by fluorescence in situ hybridization. The median follow-up period was 7.5 years and no patient was lost during the follow-up periods. 1p/19q co-deletion was observed in 72% of the patients, and there was no significant association between 1p/19q co-deletion and chemotherapy response rate. The 5- and 10-year progression-free survival (PFS) rate was 75.1 and 46.9%, respectively, and the median PFS was 121 months for 1p/19q-deleted tumors and 101 months for non-deleted tumors (log-rank test: P = 0.894). Extent of surgery did not affect PFS (P = 0.685). In contrast, the elder patients (>50) had significantly shorter PFS (P = 0.0458). Recurrent tumors were well controlled by chemotherapy irrespective of 1p/19q status, and 35 out of 36 patients survived without receiving radiotherapy. The 5- and 10-year overall survival rates were 100 and 93.8%, respectively. Two of the patients in their sixties (29%) suffered from severe cognitive dysfunctions and marked brain atrophy following chemotherapy alone. These results show that low-grade oligodendrogliomas could be successfully treated by surgical resection and nitrosourea-based chemotherapy alone without radiotherapy irrespective of 1p/19q status.

  13. ImmunoFISH Is a Reliable Technique for the Assessment of 1p and 19q Status in Oligodendrogliomas

    PubMed Central

    Duval, Céline; de Tayrac, Marie; Sanschagrin, François; Michaud, Karine; Gould, Peter Vincent; Saikali, Stéphan

    2014-01-01

    Objective To develop a new ImmunoFISH technique for the study of oligodendrogliomas by combining a standard immunohistochemical stain using MIB-1 antibody with a standard FISH technique using commercial 1p36 and 19q13 chromosomal probes. Methods Validation was performed by two observers on a series of 36 pre-selected oligodendrogliomas and compared to the results previously determined by FISH alone. Results The ImFISH technique is easy to perform and to analyze and is no more time-consuming than the usual FISH technique. Our results show that the inter-observer reliability of ImFISH is high (κ = 0.86 and 0.95 respectively for 1p and 19q). Compared to FISH, the ImFISH exhibits a very high sensitivity (∼100%) and specificity (∼90%) for 1p and/or 19q deleted cases. The sensitivity is high for normal cases (∼85%) and imbalanced cases (∼90%) with a specificity ranging between 50 and 85%. Finally, there were no significant differences between FISH and ImFISH results calculated on 60, 40 or 20 cells. Conclusion Our study demonstrates the reliability of the ImFISH technique in oligodendrogliomas and emphasizes its advantage in poorly cellular tumoral specimen. PMID:24949947

  14. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1.

    PubMed

    Cahill, Daniel P; Louis, David N; Cairncross, John Gregory

    2015-01-01

    Oligodendroglioma is the quintessential molecularly-defined brain tumor. The characteristic whole-arm loss of the long arm of chromosome 1 and the short arm of chromosome 19 (1p/19q-codeletion) within the genome of these tumors facilitated the reproducible molecular identification of this subcategory of gliomas. More recently, recurrent molecular genetic alterations have been identified to occur concurrently with 1p/19q-codeletion, and definitively identify these tumors, including mutations in IDH1/2, CIC, FUBP1, and the TERT promoter, as well as the absence of ATRX and TP53 alterations. These findings provide a foundation for the consistent diagnosis of this tumor type, upon which a generation of clinical investigators have assembled a strong evidence base for the effective treatment of this disease with radiation and chemotherapy. PMID:26545048

  15. 1p/19q-driven prognostic molecular classification for high-grade oligodendroglial tumors.

    PubMed

    Jiang, Haihui; Zhang, Zhe; Ren, Xiaohui; Zeng, Wei; Jia, Wenqing; Wang, Junmei; Lin, Song

    2014-12-01

    The subjectivity in pathological diagnosis of anaplastic oligoastrocytoma (AOA) and uncertainty in designation of glioblastoma with oligodendroglioma component (GBMO) were two major dilemmas which puzzled neuro-pathologists and neurosurgeons. The present study was designed to project a molecular classification scheme based on the status of chromosome 1p and 19q. Patients (n = 117) with histological diagnosis of primary high-grade oligodendroglial tumors (HGOs) enrolled in the study. Fluorescence in situ hybridization (FISH) for chromosomes 1p and 19q was performed. Univariate analysis showed that higher tumor grade, 1p/19q maintenance and 1q/19p co polysomy were confirmed as risk factors in HGOs (P < 0.01). Accordingly, patients with HGOs were divided into four subtypes which conferred remarkably distinct prognosis based on the number of risk factors (0 risk factor: HGOs-1, 1 risk factor: HGOs-2, 2 risk factors: HGOs-3, 3 risk factors: HGOs-4). Cox regression model revealed that the tumor grade was no longer independently associated with survival, while the molecular classification scheme showed a marked prognostic significance (HR = 0.359, 95 % CI 0.261-0.494, P < 0.001 for progression-free survival (PFS); HR = 0.393, 95 % CI 0.283-0.546, P < 0.001 for overall survival (OS)). The classification scheme incorporating traditional pathology with molecular information can be served as a supplement of the current WHO classification system and contribute to the personalized treatment decision-making. PMID:25151507

  16. IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas

    PubMed Central

    Leeper, Heather E.; Caron, Alissa A.; Decker, Paul A.; Jenkins, Robert B.; Lachance, Daniel H.; Giannini, Caterina

    2015-01-01

    Background Epigenetic, genetic, and molecular studies have identified several diagnostic and prognostic markers in diffuse gliomas. Their importance for evaluating WHO grade II gliomas has yet to be specifically delineated. Methods We analyzed markers, including IDH mutation(IDHmut), 1p19q codeletion(1p19qcodel), ATRX expression loss(ATRX loss) and p53 overexpression, and outcomes in 159 patients with WHO grade II oligodendroglioma, oligoastrocytoma, and astrocytoma (2003–2012). Results IDHmut was found in 141(91%) and ATRX loss in 64(87%) of IDHmut-noncodel tumors (p = 0.003). All codeleted tumors (n = 66) were IDHmut. Four subgroups were identified: IDHmut-codel, 66(43%); IDHmut-noncodel-ATRX loss, 60(39%); IDHmut-noncodel-ATRXwt, 9(6%); IDHwt, 14(9%). Median survival among 4 groups was significantly different (p = 0.038), particularly in IDHmut-codel (median survival 15.6 years) compared to the remaining 3 groups (p = 0.025). Survival by histology was not significant. Overall (OS), but not progression-free (PFS), survival was significantly longer with gross total resection vs. biopsy only (p = 0.042). Outcomes for patients with subtotal resection were not significantly different from those with biopsy only. Among these uniformly treated patients, OS far exceeds PFS, particularly in those with 1p/19q codeletion. Conclusions For WHO grade II diffuse glioma, molecular classification using 1p/19qcodel, IDHmut, and ATRX loss more accurately predicts outcome and should be incorporated in the neuropathologic evaluation. PMID:26210286

  17. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors

    PubMed Central

    Eckel-Passow, Jeanette E.; Lachance, Daniel H.; Molinaro, Annette M.; Walsh, Kyle M.; Decker, Paul A.; Sicotte, Hugues; Pekmezci, Melike; Rice, Terri; Kosel, Matt L.; Smirnov, Ivan V.; Sarkar, Gobinda; Caron, Alissa A.; Kollmeyer, Thomas M.; Praska, Corinne E.; Chada, Anisha R.; Halder, Chandralekha; Hansen, Helen M.; McCoy, Lucie S.; Bracci, Paige M.; Marshall, Roxanne; Zheng, Shichun; Reis, Gerald F.; Pico, Alexander R.; O’Neill, Brian P.; Buckner, Jan C.; Giannini, Caterina; Huse, Jason T.; Perry, Arie; Tihan, Tarik; Berger, Mitchell S.; Chang, Susan M.; Prados, Michael D.; Wiemels, Joseph; Wiencke, John K.; Wrensch, Margaret R.; Jenkins, Robert B.

    2015-01-01

    BACKGROUND The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triplepositive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. PMID:26061753

  18. Deletion of 19q13 reveals clinical overlap with Dubowitz syndrome.

    PubMed

    Urquhart, Jill E; Williams, Simon G; Bhaskar, Sanjeev S; Bowers, Naomi; Clayton-Smith, Jill; Newman, William G

    2015-12-01

    Dubowitz syndrome is a presumed autosomal recessive disorder characterized by multiple congenital abnormalities: microcephaly, learning and developmental delay, growth failure, and a predisposition to allergies and eczema. There have been more than 150 individuals reported to have this diagnosis, but no unifying genetic alteration has been identified indicating genetic heterogeneity. We report on a pair of monozygotic twins diagnosed clinically with Dubowitz syndrome by Professor Dubowitz over 30 years ago and identified to have a de novo heterozygous 3.2-Mb deletion at 19q13.11q13.12. Exome sequencing did not identify either a putative pathogenic variant on the trans allele supporting recessive inheritance or any other causative sequence variants. Comparison of the phenotype in our cases shows considerable overlap with the 19q13.11 microdeletion syndrome, suggesting that a subset of individuals diagnosed with Dubowitz syndrome may be due to deletions at 19q13. Our finding further reinforces the genetic and phenotypic heterogeneity of Dubowitz syndrome. PMID:26377242

  19. Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas

    PubMed Central

    Alentorn, Agustí; Dehais, Caroline; Ducray, François; Carpentier, Catherine; Mokhtari, Karima; Figarella-Branger, Dominique; Chinot, Olivier; Cohen-Moyal, Elisabeth; Ramirez, Carole; Loiseau, Hugues; Elouahdani-Hamdi, Selma; Beauchesne, Patrick; Langlois, Olivier; Desenclos, Christine; Guillamo, Jean-Sébastien; Dam-Hieu, Phong; Ghiringhelli, François; Colin, Philippe; Godard, Joel; Parker, Fabrice; Dhermain, Frédéric; Carpentier, Antoine F.; Frenel, Jean-Sebastien; Menei, Philippe; Bauchet, Luc; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Motuo-Fotso, Marie-Jeannette; Vauleon, Elodie; Gaultier, Claude; Le Guerinel, Caroline; Gueye, Edouard-Marcel; Noel, Georges; Desse, Nicolas; Durando, Xavier; Barrascout, Eduardo; Wager, Michel; Ricard, Damien; Carpiuc, Ioana; Delattre, Jean-Yves

    2015-01-01

    Objectives: We aimed to study the potential clinical relevance of 9p allelic loss, with or without copy number variation, in 1p/19q codeleted anaplastic oligodendroglial tumors (AOTs). Methods: This study enrolled 216 patients with 1p/19q codeleted AOT. The prognostic value of 9p allelic loss was investigated using a French nation-wide prospective registry, POLA (prise en charge des tumeurs oligodendrogliales anaplasiques) and high-density single nucleotide polymorphism arrays. We validated our results using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) dataset. Results: The minimal common region of allelic loss in chromosome arm 9p was 9p21.3. Allelic loss of 9p21.3, detected in 41.7% of tumors, was associated with shorter progression-free and overall survival rates in univariate (p = 0.008 and p < 0.001, respectively) and multivariate analyses (p = 0.009 and p = 0.009, respectively). This finding was validated in the REMBRANDT dataset in univariate and multivariate analysis (p = 0.01 and p = 0.01, respectively). Conclusion: Our study highlights a novel potential prognostic biomarker in 1p/19q codeleted AOT. Further prospective studies are warranted to investigate our finding. PMID:26385879

  20. Automated Analysis of 1p/19q Status by FISH in Oligodendroglial Tumors: Rationale and Proposal of an Algorithm

    PubMed Central

    Duval, Céline; de Tayrac, Marie; Michaud, Karine; Cabillic, Florian; Paquet, Claudie; Gould, Peter Vincent; Saikali, Stéphan

    2015-01-01

    Objective To propose a new algorithm facilitating automated analysis of 1p and 19q status by FISH technique in oligodendroglial tumors with software packages available in the majority of institutions using this technique. Methods We documented all green/red (G/R) probe signal combinations in a retrospective series of 53 oligodendroglial tumors according to literature guidelines (Algorithm 1) and selected only the most significant combinations for a new algorithm (Algorithm 2). This second algorithm was then validated on a prospective internal series of 45 oligodendroglial tumors and on an external series of 36 gliomas. Results Algorithm 2 utilizes 24 G/R combinations which represent less than 40% of combinations observed with Algorithm 1. The new algorithm excludes some common G/R combinations (1/1, 3/2) and redefines the place of others (defining 1/2 as compatible with normal and 3/3, 4/4 and 5/5 as compatible with imbalanced chromosomal status). The new algorithm uses the combination + ratio method of signal probe analysis to give the best concordance between manual and automated analysis on samples of 100 tumor cells (91% concordance for 1p and 89% concordance for 19q) and full concordance on samples of 200 tumor cells. This highlights the value of automated analysis as a means to identify cases in which a larger number of tumor cells should be studied by manual analysis. Validation of this algorithm on a second series from another institution showed a satisfactory concordance (89%, κ = 0.8). Conclusion Our algorithm can be easily implemented on all existing FISH analysis software platforms and should facilitate multicentric evaluation and standardization of 1p/19q assessment in gliomas with reduction of the professional and technical time required. PMID:26135922

  1. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression

    PubMed Central

    Reyes-Botero, German; Dehais, Caroline; Idbaih, Ahmed; Martin-Duverneuil, Nadine; Lahutte, Marion; Carpentier, Catherine; Letouzé, Eric; Chinot, Olivier; Loiseau, Hugues; Honnorat, Jerome; Ramirez, Carole; Moyal, Elisabeth; Figarella-Branger, Dominique; Ducray, François; Desenclos, Christine; Sevestre, Henri; Menei, Philippe; Michalak, Sophie; Al Nader, Edmond; Godard, Joel; Viennet, Gabriel; Carpentier, Antoine; Eimer, Sandrine; Dam-Hieu, Phong; Quintin-Roué, Isabelle; Guillamo, Jean-Sebastien; Lechapt-Zalcman, Emmanuelle; Kemeny, Jean-Louis; Verrelle, Pierre; Faillot, Thierry; Gaultier, Claude; Tortel, Marie Christine; Christov, Christo; Le Guerinel, Caroline; Aubriot-Lorton, Marie-Hélène; Ghiringhelli, Francois; Berger, François; Lacroix, Catherine; Parker, Fabrice; Dubois, François; Maurage, Claude-Alain; Gueye, Edouard-Marcel; Labrousse, Francois; Jouvet, Anne; Bauchet, Luc; Rigau, Valérie; Beauchesne, Patrick; Vignaud, Jean-Michel; Campone, Mario; Loussouarn, Delphine; Fontaine, Denys; Vandenbos, Fanny; Campello, Chantal; Roger, Pascal; Fesneau, Melanie; Heitzmann, Anne; Delattre, Jean-Yves; Elouadhani, Selma; Mokhtari, Karima; Polivka, Marc; Ricard, Damien; Levillain, Pierre-Marie; Wager, Michel; Colin, Philippe; Diebold, Marie-Danièle; Chiforeanu, Dan; Vauleon, Elodie; Langlois, Olivier; Laquerriere, Annie; Motsuo Fotso, Marie Janette; Peoc'h, Michel; Andraud, Marie; Mouton, Servane; Chenard, Marie-Pierre; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Amiel-Benouaich, Alexandra; Uro-Coste, Emmanuelle; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate MRI features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The MRI characteristics of 50 AO patients enrolled in the French national network for high-grade oligodendroglial tumors were analyzed. The genomic profiles and IDH mutational statuses were assessed using high-resolution single-nucleotide polymorphism arrays and direct sequencing, respectively. The gene expression profiles of 25 1p/19q-codeleted AOs were studied on Affymetrix expression arrays. Results Most of the cases were frontal lobe contrast-enhanced tumors (52%), but the radiological presentations of these cases were heterogeneous, ranging from low-grade glioma-like aspects (26%) to glioblastoma-like aspects (22%). The 1p/19q codeletion (n = 39) was associated with locations in the frontal lobe (P = .001), with heterogeneous intratumoral signal intensities (P = .003) and with no or nonmeasurable contrast enhancements (P = .01). The IDH wild-type AOs (n = 7) more frequently displayed ringlike contrast enhancements (P = .03) and were more frequently located outside of the frontal lobe (P = .01). However, no specific imaging pattern could be identified for the 1p/19q-codeleted AO or the IDH-mutated AO. Within the 1p/19q-codeleted AO, the contrast enhancement was associated with larger tumor volumes (P = .001), chromosome 9p loss and CDKN2A loss (P = .006), genomic instability (P = .03), and angiogenesis-related gene expression (P < .001), particularly for vascular endothelial growth factor A and angiopoietin 2. Conclusion In AOs, the 1p/19q codeletion and the IDH mutation are associated with preferential (but not with specific) imaging characteristics. Within 1p/19q-codeleted AO, imaging heterogeneity is related to additional molecular alterations, especially chromosome 9p loss, which is associated with contrast enhancement and larger tumor volume. PMID:24353325

  2. 1p36 deletion syndrome: an update.

    PubMed

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.

  3. 1p36 deletion syndrome: an update

    PubMed Central

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. PMID:26345236

  4. Impact of 1p/19q Codeletion and Histology on Outcomes of Anaplastic Gliomas Treated With Radiation Therapy and Temozolomide

    SciTech Connect

    Speirs, Christina K.; Simpson, Joseph R.; Robinson, Clifford G.; DeWees, Todd A.; Tran, David D.; Linette, Gerry; Chicoine, Michael R.; Dacey, Ralph G.; Rich, Keith M.; Dowling, Joshua L.; Leuthardt, Eric C.; Zipfel, Gregory J.; Kim, Albert H.; Huang, Jiayi

    2015-02-01

    Purpose: Anaplastic gliomas represent a heterogeneous group of primary high-grade brain tumors, and the optimal postoperative treatment remains controversial. In this report, we present our institutional data on the clinical outcomes of radiation therapy (RT) plus temozolomide (RT + TMZ) for anaplastic gliomas, stratified by histology and 1p/19q codeletion. Methods and Materials: A single-institution retrospective review was conducted of patients with supratentorial anaplastic oligodendroglioma (AO), mixed anaplastic oligoastrocytoma (AOA), and anaplastic astrocytoma (AA). After surgery, RT was delivered at a median total dose of 60 Gy (range, 31.6-63 Gy) in daily fractions. All patients received standard concurrent TMZ, with or without adjuvant TMZ. Histological/molecular subtypes were defined as codeleted AO/AOA, non-codeleted AO/AOA, and AA. Results: From 2000 to 2012, 111 cases met study criteria and were evaluable. Codeleted AO/AOA had superior overall survival (OS) to non-codeleted AO/AOA (91% vs 68% at 5 years, respectively, P=.02), whereas progression-free survival (PFS) was not significantly different (70% vs 46% at 5 years, respectively, P=.10). AA had inferior OS to non-codeleted AO/AOA (37% vs 68% at 5 years, respectively, P=.007) and inferior PFS (27% vs 46%, respectively, P=.03). On multivariate analysis, age, performance status, and histological or molecular subtype were independent predictors for both PFS and OS. Compared to historical controls, RT + TMZ provided comparable OS to RT with procarbazine, lomustine, and vincristine (RT + PCV) for codeleted AO/AOA, superior OS to RT alone for non-codeleted AO/AOA, and similar OS to RT alone for AA. Conclusions: RT + TMZ may be a promising treatment for both codeleted and non-codeleted AO/AOA, but its role for AA remains unclear.

  5. Mitotic index, microvascular proliferation, and necrosis define 3 groups of 1p/19q codeleted anaplastic oligodendrogliomas associated with different genomic alterations

    PubMed Central

    Figarella-Branger, Dominique; Mokhtari, Karima; Dehais, Caroline; Jouvet, Anne; Uro-Coste, Emmanuelle; Colin, Carole; Carpentier, Catherine; Forest, Fabien; Maurage, Claude-Alain; Vignaud, Jean-Michel; Polivka, Marc; Lechapt-Zalcman, Emmanuelle; Eimer, Sandrine; Viennet, Gabriel; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Loussouarn, Delphine; Lacroix, Catherine; Rigau, Valérie; Laquerrière, Annie; Vandenbos, Fanny; Michalak, Sophie; Sevestre, Henri; Peoch, Michel; Labrousse, François; Christov, Christo; Kemeny, Jean-Louis; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Ducray, François; Idbaih, Ahmed; Desenclos, Christine; Menei, Philippe; Al Nader, Edmond; Godard, Joel; Servagi-Vernat, Stéphanie; Carpentier, Antoine; Loiseau, Hugues; Dam-Hieu, Phong; Guillamo, Jean Sebastien; Emery, Evelyne; Verelle, Pierre; Durando, Xavier; Faillot, Thierry; Le Guerinel, Caroline; Ghiringhelli, François; Parker, Fabrice; Adam, Clovis; Dubois, François; Ramirez, Carole; Gueye, Edouard Marcel; Honnorat, Jerome; Chinot, Olivier; Bauchet, Luc; Beauchesne, Patrick; Campone, Mario; Frenel, Jean Sébastien; Fontaine, Denys; Campello, Chantal; Roger, Pascal; Heitzmann, Anne; Fesneau, Mélanie; Delattre, Jean Yves; Elouadhani-Hamdi, Selma; Ricard, Damien; Colin, Philippe; Vauléon, Elodie; Langlois, Olivier; Fotso, Marie Janette Motsuo; Andraud, Marie; Mouton, Servane; Noel, Georges; Desse, Nicolas; Soulard, Raoulin; Cohen-Moyal, Elisabeth; Lubrano, Vincent; Dhermain, Frederic

    2014-01-01

    Background The aim of this study was to correlate histological features and molecular characteristics in anaplastic oligodendrogliomas (AOs). Methods The histological characteristics of 203 AO patients, enrolled in the French national network POLA, were analyzed. The genomic profiles of 191 cases were studied using genomic arrays. IDH mutational status was assessed by immunohistochemistry and direct sequencing. Results 1p/19q codeletion was present in 79% of cases and was associated with alpha-internexin expression (P < 10−4), IDH1/2 mutation (P < 10−4), chromosome 4 loss (P < 10−3), and better overall survival (P < 10−4). Based on mitotic index, microvascular proliferation (MVP), and necrosis, 3 groups of 1p/19q codeleted AOs were identified: (group 1) AO with more than 5 mitoses per 10-HPF, no MVP, and no necrosis; (group 2) AO with MVP and no necrosis; and (group 3) AO with MVP and necrosis. Compared with group 1, groups 2 and 3 AOs had a higher mean Ki-67 proliferation index and a higher rate of 9p and 9q losses. Compared with group 2, group 3 AOs had a higher number of chromosomal alterations including chromosome 4 loss. In the subgroup of 157 1p/19q codeleted AOs, chromosomal instability was associated with shorter progression-free survival (P = .024) and shorter overall survival (P = .023). Conclusions The present study shows that oligodendrogliomas with classic histological features remain a molecularly heterogeneous entity and should be stratified according to 1p/19q status because of its major prognostic relevance. Moreover, 1p/19q codeleted AOs are also heterogeneous. Interestingly, mitotic index, MVP, and necrosis help to classify them into 3 groups associated with distinct genomic alterations. PMID:24723566

  6. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice.

    PubMed

    Weller, Michael; Stupp, Roger; Hegi, Monika E; van den Bent, Martin; Tonn, Joerg C; Sanson, Marc; Wick, Wolfgang; Reifenberger, Guido

    2012-09-01

    Histological subtyping and grading by malignancy are the cornerstones of the World Health Organization (WHO) classification of tumors of the central nervous system. They shall provide clinicians with guidance as to the course of disease to be expected and the choices of treatment to be made. Nonetheless, patients with histologically identical tumors may have very different outcomes, notably in patients with astrocytic and oligodendroglial gliomas of WHO grades II and III. In gliomas of adulthood, 3 molecular markers have undergone extensive studies in recent years: 1p/19q chromosomal codeletion, O(6)-methylguanine methyltransferase (MGMT) promoter methylation, and mutations of isocitrate dehydrogenase (IDH) 1 and 2. However, the assessment of these molecular markers has so far not been implemented in clinical routine because of the lack of therapeutic implications. In fact, these markers were considered to be prognostic irrespective of whether patients were receiving radiotherapy (RT), chemotherapy, or both (1p/19q, IDH1/2), or of limited value because testing is too complex and no chemotherapy alternative to temozolomide was available (MGMT). In 2012, this situation has changed: long-term follow-up of the Radiation Therapy Oncology Group 9402 and European Organisation for Research and Treatment of Cancer 26951 trials demonstrated an overall survival benefit from the addition to RT of chemotherapy with procarbazine/CCNU/vincristine confined to patients with anaplastic oligodendroglial tumors with (vs without) 1p/19q codeletion. Furthermore, in elderly glioblastoma patients, the NOA-08 and the Nordic trial of RT alone versus temozolomide alone demonstrated a profound impact of MGMT promoter methylation on outcome by therapy and thus established MGMT as a predictive biomarker in this patient population. These recent results call for the routine implementation of 1p/19q and MGMT testing at least in subpopulations of malignant glioma patients and represent an

  7. Prediction of anaplastic transformation in low-grade oligodendrogliomas based on magnetic resonance spectroscopy and 1p/19q codeletion status.

    PubMed

    Bourdillon, Pierre; Hlaihel, Chadi; Guyotat, Jacques; Guillotton, Laurent; Honnorat, Jérôme; Ducray, François; Cotton, François

    2015-05-01

    The aim of this study was to assess whether combining multimodal magnetic resonance imaging (MRI) with the determination of the 1p/19q codeletion status could improve the ability to predict anaplastic transformation in low-grade oligodendrogliomas. Twenty patients with grade II oligodendrogliomas were followed-up using multimodal MR [proton MR spectroscopy (MRS), perfusion, and conventional MR imaging]. All patients diagnoses were histologically proven, and 1p/19q codeletion status was analyzed for all patients. Median follow-up was 30.5 ± 11.4 months. Anaplastic transformation was observed in six patients. The only MRI feature that was associated with anaplastic transformation was an elevation of the choline/creatine ratio >2.4 which was observed in 4 out of 6 patients with anaplastic transformation versus 1 out of 14 patients without anaplastic transformation. In patients without 1p/19q codeletion, an elevation of the choline/creatine ratio >2.4 was associated with the occurrence of anaplastic transformation in all cases (4 out of 4 patients), with a mean time of 12 months. In contrast, in patients with a 1p/19q codeletion, no anaplastic transformation was observed in the patient who had an elevation of >2.4 of the choline/creatine ratio and two patients demonstrated an anaplastic transformation without any elevation of this ratio.Prospective validation in a larger series is needed, yet the present study suggests that combining data from in vivo proton MRS and genetic analysis could be a promising strategy to predict time to anaplastic transformation at the individual level in patients with low-grade oligodendrogliomas and may help deciding when chemotherapy and/or radiotherapy should be initiated in these tumors.

  8. Radio-chemotherapy improves survival in IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma patients.

    PubMed

    Juratli, Tareq A; Lautenschläger, Tim; Geiger, Kathrin D; Pinzer, Thomas; Krause, Mechthild; Schackert, Gabriele; Krex, Dietmar

    2015-09-01

    Isocitrate dehydrogenase (IDH) mutations are beginning to drive decisions on therapy for glioma patients. Here we sought to determine the impact of adjuvant treatment in patients with IDH-mutant, 1p/19q non-codeleted secondary high-grade astrocytoma (sHGA) WHO grades III/IV. Clinical data of 109 sHGA patients grades III/IV, in addition to IDH mutation-, 1p/19q-codeletion- and MGMT-promoter methylation status-were retrospectively analyzed. Survival analysis in relation to adjuvant treatment modalities and molecular profiling were performed. Out of 109 patients, 88 patients (80.7 %) harbored IDH mutations, 30 patients had a 1p/19q-codeletion (27.5 %) and 69 patients (63.3 %) exhibited a methylated MGMT-promoter status. At a median follow-up of 9.8 years, 62 patients (57 %) died. The postsurgical treatment included: radio-chemotherapy (RT-CT; 54.5 %), RT alone (19.3 %), and CT alone (22.7 %). The median overall survival (OS) in the entire group was 3.4 years (1.9-6.7 years). Patients who received RT-CT had a significantly longer OS compared with those who underwent RT alone (6.5 vs. 1.2 years, HR 0.35, CI 0.32-0.51, p = 0.011). In the IDH-mutant 1p/19q non-codeleted sHGA subgroup the RT-CT cohort had a significantly longer OS in comparison to the RT cohort (6.4 vs. 1.2 years, HR 2.7, CI 1.1-6.5, p = 0.022). In the stepwise multivariable Cox model for OS of all 88 IDH-mutant sHGA patients, survival was strongly associated with only one factor, namely, adjuvant RT-CT at diagnosis of a sHGA. This retrospective long-term study demonstrates that RT and CT (mostly PCV) significantly improves progression-free and overall survival in IDH-mutant secondary high-grade astrocytoma patients, regardless of 1p/19q-codeletion status. PMID:26033545

  9. Growth patterns of patients with 1p36 deletion syndrome.

    PubMed

    Sangu, Noriko; Shimojima, Keiko; Shimada, Shino; Ando, Tomohiro; Yamamoto, Toshiyuki

    2014-05-01

    1p36 deletion syndrome is one of the most common subtelomeric deletion syndromes. Obesity is frequently observed in patients with this syndrome. Thus, it is important to evaluate the growth status of an individual patient. For this purpose, we accumulated recorded growth data from 44 patients with this syndrome and investigated the growth patterns of patients. Most of the patients showed weight parameters within normal limits, whereas a few of these patients showed intrauterine growth delay and microcephaly. The length of the patients after birth was under the 50th centile in most patients. Many patients showed poor weight gain after birth, and only two female patients were overweight. These findings indicate two different phenotypes of the 1p36 deletion syndrome. The overweight patients with 1p36 deletion started excessive weight gain after two years of life. This characteristic of the patients with 1p36 deletion syndrome is similar to Prader-Willi syndrome.

  10. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  11. Interstitial 1p32.1p32.3 deletion in a patient with multiple congenital anomalies.

    PubMed

    Kehrer, Martin; Schäferhoff, Karin; Bonin, Michael; Jauch, Anna; Bevot, Andrea; Tzschach, Andreas

    2015-10-01

    Interstitial deletions encompassing chromosome bands 1p32.1p32.3 are rare. Only nine unrelated patients with partially overlapping 1p32.1p32.3 deletions of variable size and position have been reported to date. We report on a 17-month-old boy with choanal atresia, hearing loss, urogenital anomalies, and microcephaly in whom an interstitial de novo deletion of 6.4 Mb was detected in 1p32.1p32.3 (genomic position chr1:54,668,618-61,113,264 according to GRCh37/hg19). The deleted region harbors 31 RefSeq genes. Notable genes in the region are PCSK9, haploinsufficiency of which caused low LDL cholesterol plasma levels in the patient, and DAB1, which is a candidate gene for cognitive deficits, microcephaly, and cerebral abnormalities such as ventriculomegaly and agenesis of the corpus callosum. Choanal atresia, microcephaly, and severe hearing loss were previously not known to be associated with 1p32 deletions. Our reported patient thus broadens the spectrum of clinical findings in this chromosome region and further facilitates genotype-phenotype correlations. Additional patients with overlapping deletions and/or point mutations in genes of this region need to be identified to elucidate the role of individual genes for the complex clinical manifestations.

  12. A t(17;19)(q22;p13.3) Involving TCF3, a t(1;9)(p13;p13), and a 5' IGH Deletion in a Case of Adult B-cell Acute Lymphoblastic Leukemia.

    PubMed

    Chow, R; Shabsovich, D; Schiller, G; Kallen, M; Tirado, Carlos A

    2016-01-01

    TCF3 (19p13.3) abnormalities are relatively common in B-cell acute lymphoblastic leukemia (B-ALL). The t(1;19)(q23;p13) involving PBX1 is the most common of these rearrangements. The t(17;19)(q22;p13.3), resulting in the TCF3-HLF fusion gene, is also seen in B-ALL and is associated with an extremely poor prognosis. Herein, we present the case of a 25-year-old male diagnosed with B-ALL whose initial karyotype showed a t(17;19)(q22p13.3). FISH confirmed TCF3 involvement and also revealed a 5' IGH deletion. After treatment, the patient relapsed, at which point conventional cytogenetic studies showed a t(17;19), loss of the 5' IGH region, and a t(3;10) not seen in initial studies. After hematopoietic stem cell transplantation, the patient relapsed again, at which point conventional cytogenetic studies showed a complex karyotype with t(17;19), t(1;9)(p13;p13), and structural anomalies involving chromosomes 5, 7, and 14, but no IGH abnormalities by FISH. The t(1;9) has been shown to involve PAX5, which plays numerous regulatory roles in B-cell differentiation. Other PAX5 rearrangements have been detected in B-ALL cases of young adults and adolescents, but with unclear clinical significance. To the best of our knowledge, this is the first reported case of t(17;19)-ALL with concomitant 5' IGH deletion and t(1;9)(p13;p13) potentially involving PAX5, albeit at different time points in disease progression. This case provides insight into the clonal evolution of t(17;19)-ALL and the potential involvement of PAX5 and IGH aberrations in the evolution of this malignancy. PMID:27183380

  13. Mini-Review: Monosomy 1p36 syndrome: reviewing the correlation between deletion sizes and phenotypes.

    PubMed

    Rocha, C F; Vasques, R B; Santos, S R; Paiva, C L A

    2016-01-01

    The major clinical features of monosomy 1p36 deletion are developmental delay and hypotonia associated with short stature and craniofacial dysmorphisms. The objective of this study was to review the cases of 1p36 deletion that was reported between 1999 and 2014, in order to identify a possible correlation between the size of the 1p36-deleted segment and the clinical phenotype of the disease. Scientific articles published in the (National Center for Biotechnology Information; NCBI http://www.ncbi.nlm.nih.gov/pubmed) and Scientific Electronic Library Online (www.scielo.com.br) databases were searched using key word combinations, such as "1p36 deletion", "monosomy 1p36 deletion", and "1p36 deletion syndrome". Articles in English or Spanish reporting the correlation between deletion sizes and the respective clinical phenotypes were retrieved, while letters, reviews, guidelines, and studies with mouse models were excluded. Among the 746 retrieved articles, only 17 (12 case reports and 5 series of cases), comprising 29 patients (9 males and 20 females, aged 0 months (neonate) to 22 years) bearing the 1p36 deletions and whose clinical phenotypes were described, met the inclusion criteria. The genotype-phenotype correlation in monosomy 1p36 is a challenge because of the variability in the size of the deleted segment, as well as in the clinical manifestations of similar size deletions. Therefore, the severity of the clinical features was not always associated with the deletion size, possibly because of the other influences, such as stochastic factors, epigenetic events, or reduced penetration of the deleted genes.

  14. Novel airway findings in a patient with 1p36 deletion syndrome.

    PubMed

    Ferril, Geoffrey R; Barham, Henry P; Prager, Jeremy D

    2014-01-01

    1p36 deletion syndrome comprises a phenotypic presentation that includes central nervous system, cardiac, and craniofacial anomalies. There has been no report of associated airway anomalies with this syndrome. We present here a case report and literature review. Prenatally, amniocentesis for chromosomal analysis was performed on our patient, with results consistent with 1p36 deletion syndrome. Respiratory distress and unsuccessful attempts at intubation prompted transfer to Children's Hospital of Colorado. Microlaryngoscopy was subsequently performed, revealing a persistent buccopharyngeal membrane and unidentifiable larynx. Emergent tracheostomy was then performed to secure the airway. Airway anomalies may be associated with 1p36 deletion syndrome.

  15. Mild developmental delay and obesity in two patients with mosaic 1p36 deletion syndrome.

    PubMed

    Shimada, Shino; Maegaki, Yoshihiro; Osawa, Makiko; Yamamoto, Toshiyuki

    2014-02-01

    We identified mosaic 1p36 deletions in two patients with developmental delay, distinctive features, and obesity, who can walk alone and communicate with others. Thus, their neurological defects are milder than those in typical patients with 1p36 deletion syndrome because most patients with 1p36 deletion cannot acquire expressive language. Chromosomal microarray testing revealed 3.0 and 4.5 Mb aberrations in the subtelomeric region of the short arm of chromosome 1. Mean signal ratios of the identified aberrations were -0.4 and -0.5, indicating mosaicism, which was confirmed by fluorescence in situ hybridization analysis with a mosaic ratio of 70% and 77%, respectively. Previous studies demonstrated that deletion of the distal 2-3 Mb region would be responsible for hyperphagia and obesity seen in patients. On the other hand, the severity of the neurological defect often correlates with the size of the terminal deletion of 1p36, and patients with larger deletions of 1p36 would usually show severely impaired developmental milestones and be immobile and aphasic. In such cases, hyperphagia and obesity could be clinically masked. In this study, two patients with mosaic deletions of 1p36 showed obesity as a consequence of hyperphagia. This study suggests that patients with 1p36 deletion would be at risk for hyperphagia and obesity when they have both risk factors, that is, (1) deletions including the 2-3 Mb critical region and (2) milder phenotypes that allow them to reach food on their own and to overeat.

  16. [Turner syndrome and monosomy 1p36 deletion syndrome misdiagnosed as thyropenia: report of one case].

    PubMed

    Meng, Xubiao; Li, Zhiming; Liu, Tingting; Wen, Zhiming

    2013-12-01

    A 21-year-old woman with a short stature presented with primary amenorrhoea and a 45X karyotype, and comparative genomic hybridization revealed 1p36 deletion and abnormal genes in multiple chromosomes to support the diagnosis of Turner syndrome and monosomy 1p36 deletion syndrome. The main clinical features of this condition include microsomia, poor sexual development, menoschesis, gigantorectum, absence of internal genitalia, sometimes with thyropenia and low intelligence. This disease can be easily diagnosed for its heterogeneous clinical manifestations.

  17. Polymicrogyria and infantile spasms in a patient with 1p36 deletion syndrome.

    PubMed

    Saito, Yoshiaki; Kubota, Masaya; Kurosawa, Kenji; Ichihashi, Izumi; Kaneko, Yuu; Hattori, Ayako; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki

    2011-05-01

    A 3-months-old boy presented with partial seizures that soon evolved into infantile spasms. Magnetic resonance imaging revealed bilateral perisylvian polymicrogyria with right-sided predominance. ACTH therapy successfully controlled epilepsy and electroencephalograms were normalized. Conventional G-banded chromosomal analysis was performed due to his distinctive features and a derivative chromosome 1 derived from parental balanced translocation with a karyoptype of 46,XY,der(1)t(1;4)(p36.23;q35) was detected. Fluorescent in situ hybridization analysis confirmed the deleted region of 1p36 as large as 8.6Mb. This is the first delineation of concurrent complications of infantile spasms and polymicrogyria in patient with 1p36 deletion. 1p36 deletion syndrome should be broadly recognized as a differential diagnosis of regional polymicrogyria and/or infantile spasms.

  18. Recurrent interstitial 1p36 deletions: Evidence for germline mosaicism and complex rearrangement breakpoints.

    PubMed

    Gajecka, Marzena; Saitta, Sulagna C; Gentles, Andrew J; Campbell, Lindsey; Ciprero, Karen; Geiger, Elizabeth; Catherwood, Anne; Rosenfeld, Jill A; Shaikh, Tamim; Shaffer, Lisa G

    2010-12-01

    Deletions of chromosome 1p36 are one of the most frequently encountered subtelomeric alterations. Clinical features of monosomy 1p36 include neurocognitive impairment, hearing loss, seizures, cardiac defects, and characteristic facial features. The majority of cases have occurred sporadically, implying that genomic instability plays a role in the prevalence of the syndrome. Here, we report two siblings with mild phenotypic features of the deletion syndrome, including developmental delay, hearing loss, and left ventricular non-compaction (LVNC). Microarray analysis using bacterial artificial chromosome and oligonucleotide microarrays indicated the deletions were identical, suggesting germline mosaicism. Parental phenotypes were normal, and analysis by fluorescence in situ hybridization (FISH) did not show mosaicism. These small interstitial deletions were not detectable by conventional subtelomeric FISH analysis. To investigate the mechanism of deletion further, the breakpoints were cloned and sequenced, demonstrating the presence of a complex rearrangement. Sequence analysis of genes in the deletion interval did not reveal any mutations on the intact homologue that may have contributed to the LVNC seen in both children. This is the first report of apparent germline mosaicism for this disorder. Thus, our findings have important implications for diagnostic approaches and for recurrence risk counseling in families with a child with monosomy 1p36. In addition, our results further refine the minimal critical region for LVNC and hearing loss.

  19. Delineating the phenotype of 1p36 deletion in adolescents and adults.

    PubMed

    Brazil, Ashley; Stanford, Kevin; Smolarek, Teresa; Hopkin, Robert

    2014-10-01

    1p36 deletion is the most common telomeric deletion syndrome, with an incidence of 1/5,000-1/10,000. A variety of clinical complications have been reported including seizures, hypotonia, heart malformations, cardiomyopathy, vision problems, and hearing loss. Approximately 90% are reported to have severe to profound intellectual disability and 75% to have absent expressive language. Little is known about long-term outcomes. The current literature suggests a poor prognosis for most patients. This study attempted to assess medical conditions and function of adolescent and adult patients with 1p36 deletion. A survey was distributed through three support groups to identify patients >12 years of age to assess functional status and medical problems in older patients with 1p36 deletion syndrome. 40 patients were identified between 12 and 46 years old. Among our survey sample, medical complications including seizures, hypotonia, structural heart defects, hearing loss, and vision problems, were similar to previous reports. However, functional skills were better than anticipated, with an overwhelming majority reported to independently sit, walk, and receive the majority of nutrition orally. Forty-four percent were reported to use complex speech abilities. While medical problems in patients with 1p36 deletion were similar to those that have been previously reported, we also demonstrated these same concerns persist into adolescence and adulthood. Additionally, patients were reported to have better functional skills than anticipated. Thus, quality of life and level of function appear to be better than anticipated from previous studies. © 2014 Wiley Periodicals, Inc.

  20. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay

    PubMed Central

    Seo, Go Hun; Kim, Ja Hye; Cho, Ja Hyang; Kim, Gu-Hwan; Seo, Eul-Ju; Lee, Beom Hee; Choi, Jin-Ho

    2016-01-01

    Purpose The 1p36 deletion syndrome is a microdeletion syndrome characterized by developmental delays/intellectual disability, craniofacial dysmorphism, and other congenital anomalies. To date, many cases of this syndrome have been reported worldwide. However, cases with this syndrome have not been reported in Korean populations anywhere. This study was performed to report the clinical and molecular characteristics of five Korean patients with the 1p36 deletion syndrome. Methods The clinical characteristics of the 5 patients were reviewed. Karyotyping and multiplex ligation-dependent probe amplification (MLPA) analyses were performed for genetic diagnoses. Results All 5 patients had typical dysmorphic features including frontal bossing, flat right parietal bone, low-set ears, straight eyebrows, down-slanting palpebral fissure, hypotelorism, flat nasal roots, midface hypoplasia, pointed chins, small lips, and variable degrees of developmental delay. Each patient had multiple and variable anomalies such as a congenital heart defect including ventricular septal defect, atrial septal defect, and patent duct arteriosus, ventriculomegaly, cryptorchism, or hearing loss. Karyotyping revealed the 1p36 deletion in only 1 patient, although it was confirmed in all 5 patients by MLPA analyses. Conclusion All the patients had the typical features of 1p36 deletion. These hallmarks can be used to identify other patients with this condition in their early years in order to provide more appropriate care. PMID:26893599

  1. Contiguous ∼16 Mb 1p36 deletion: Dominant features of classical distal 1p36 monosomy with haplo-lethality.

    PubMed

    Nicoulaz, A; Rubi, F; Lieder, L; Wolf, R; Goeggel-Simonetti, B; Steinlin, M; Wiest, R; Bonel, H M; Schaller, A; Gallati, S; Conrad, B

    2011-08-01

    Monosomy 1p36 results from heterozygous deletions of the terminal short chromosome 1 arm, the most common terminal deletion in humans. The microdeletion is split in two usually non-overlapping and clinically distinct classical distal and proximal 1p36 monosomy syndromes. Using comparative genome hybridization, MLPA and qPCR we identified the largest contiguous ∼16 Mb terminal 1p36 deletion reported to date. It covers both distal and proximal regions, causes a neonatally lethal variant with virtually exclusive features of distal 1p36 monosomy, highlighting the key importance of the gene-rich distal region for the "compound" 1p36 phenotype and a threshold deletion-size effect for haplo-lethality.

  2. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    PubMed Central

    Payne, Claire M; Crowley-Skillicorn, Cheray; Bernstein, Carol; Holubec, Hana; Bernstein, Harris

    2011-01-01

    Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss. PMID:21753893

  3. Is 1p36 deletion associated with anterior body wall defects?

    PubMed

    Çöllü, Medis; Yüksel, Şirin; Şirin, Başak Kumbasar; Abbasoğlu, Latif; Alanay, Yasemin

    2016-07-01

    Epispadias and exstrophy of the cloaca, also known as OEIS complex (omphalocele, exstrophy, imperforate anus, spinal defects), respectively constitute the most benign and severe ends of the bladder exstrophy-epispadias complex (BEEC) spectrum. In 2009, El-Hattab et al. reported the first patient with OEIS complex associated with a chromosome 1p36 deletion. Here we report a second patient with 1p36 deletion who also has classic bladder exstrophy, supporting the possible role of genes in this region in the development of BEEC. The absence of omphalocele and imperforate anus in our patient places him toward classic bladder exstrophy while presence of spina bifida and the absence of coccyx suggest an overlap with OEIS complex. An additional differential diagnosis is the pentalogy of Cantrell in our patient as he also has a diaphragmatic hernia and an incomplete sternum. This is the second observation of a ventral midline birth defect in association with 1p36 deletion syndrome, following El-Hattab et al.'s report [2009]. The three genes (NOCL2, DVL1, and MMP23B) discussed as possible candidates are also among the deleted ones in our patient, supporting the possible role of these genes in BEEC spectrum. © 2016 Wiley Periodicals, Inc.

  4. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36.

    PubMed

    Zaveri, Hitisha P; Beck, Tyler F; Hernández-García, Andrés; Shelly, Katharine E; Montgomery, Tara; van Haeringen, Arie; Anderlid, Britt-Marie; Patel, Chirag; Goel, Himanshu; Houge, Gunnar; Morrow, Bernice E; Cheung, Sau Wai; Lalani, Seema R; Scott, Daryl A

    2014-01-01

    Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16-a gene which was recently shown to be sufficient to cause the left ventricular noncompaction-SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene-and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region-it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.

  5. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3

    SciTech Connect

    White, P.S.; Maris, J.M.; Beltinger, C.

    1995-06-06

    Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes-DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2-were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH. 31 refs., 4 figs.

  6. Dying at 23 with 1p36 deletion syndrome: Laura's family story.

    PubMed

    Tandy, P A

    2012-09-01

    Laura was unusual. She had always been different and at times difficult. She was born with a genetic disorder, diagnosed as 1p36 deletion syndrome when she was 21 years old. At 23 she suffered her first cardiac arrest at home and entered the hospital system for the first time apart from infancy. After initially appearing to do well, she suffered a second cardiac arrest 10 weeks after admission. This was followed by an irreversible deterioration and she died 14 weeks after admission. We her family had been with her throughout her traumatic experience. This is our story.

  7. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome.

    PubMed

    Zanardo, Évelin Aline; Piazzon, Flavia Balbo; Dutra, Roberta Lelis; Dias, Alexandre Torchio; Montenegro, Marília Moreira; Novo-Filho, Gil Monteiro; Costa, Thaís Virgínia Moura Machado; Nascimento, Amom Mendes; Kim, Chong Ae; Kulikowski, Leslie Domenici

    2014-12-01

    Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease. We here report one case of a patient with atypical clinical features of the 1p36 syndrome and the use of cytogenomic techniques to characterize the genomic alterations. Analysis by multiplex ligation-dependent probe amplification and array revealed a complex rearrangement in the 1p36.3 region with deletions and duplication interspaced by normal sequences. We also suggest that chromoanagenesis could be a possible mechanism involved in the repair and stabilization of this rearrangement.

  8. Refinement of causative genes in monosomy 1p36 through clinical and molecular cytogenetic characterization of small interstitial deletions.

    PubMed

    Rosenfeld, Jill A; Crolla, John A; Tomkins, Susan; Bader, Patricia; Morrow, Bernice; Gorski, Jerome; Troxell, Robin; Forster-Gibson, Cynthia; Cilliers, Deirdre; Hislop, R Gordon; Lamb, Allen; Torchia, Beth; Ballif, Blake C; Shaffer, Lisa G

    2010-08-01

    Monosomy 1p36 is the most common terminal deletion syndrome seen in humans, occurring in approximately 1 in 5,000 live births. Common features include mental retardation, characteristic dysmorphic features, hypotonia, seizures, hearing loss, heart defects, cardiomyopathy, and behavior abnormalities. Similar phenotypes are seen among patients with a variety of deletion sizes, including terminal and interstitial deletions, complex rearrangements, and unbalanced translocations. Consequently, critical regions harboring causative genes for each of these features have been difficult to identify. Here we report on five individuals with 200-823 kb overlapping deletions of proximal 1p36.33, four of which are apparently de novo. They present with features of monosomy 1p36, including developmental delay and mental retardation, dysmorphic features, hypotonia, behavioral abnormalities including hyperphagia, and seizures. The smallest region of deletion overlap is 174 kb and contains five genes; these genes are likely candidates for some of the phenotypic features in monosomy 1p36. Other genes deleted in a subset of the patients likely play a contributory role in the phenotypes, including GABRD and seizures, PRKCZ and neurologic features, and SKI and dysmorphic and neurologic features. Characterization of small deletions is important for narrowing critical intervals and for the identification of causative or candidate genes for features of monosomy 1p36 syndrome.

  9. FISH analysis of hematological neoplasias with 1p36 rearrangements allows the definition of a cluster of 2.5 Mb included in the minimal region deleted in 1p36 deletion syndrome.

    PubMed

    Lahortiga, Idoya; Vázquez, Iria; Belloni, Elena; Román, José P; Gasparini, Patrizia; Novo, Francisco J; Zudaire, Isabel; Pelicci, Pier G; Hernández, Jesús M; Calasanz, María J; Odero, María D

    2005-05-01

    Rearrangements in the distal region of the short arm of chromosome 1 are recurrent aberrations in a broad spectrum of human neoplasias. However, neither the location of the breakpoints (BP) on 1p36 nor the candidate genes have been fully determined. We have characterized, by fluorescence in situ hybridization (FISH), the BP in 26 patients with hematological neoplasias and 1p36 rearrangements in the G-banding karyotype. FISH allowed a better characterization of all samples analyzed. Nine cases (35%) showed reciprocal translocations, 15 (58%) unbalanced rearrangements, and two (7%) deletions. We describe two new recurrent aberrations. In 18 of the 26 cases analyzed the BP were located in band 1p36, which is 25.5 Mb long. In 14 of these 18 cases (78%) and without distinction between myeloid and lymphoid neoplasias, the BP clustered in a 2.5 Mb region located between 1p36.32 and the telomere. Interestingly, this region is contained in the 10.5 Mb cluster on 1p36.22-1pter defined in cases with 1p36 deletion syndrome. The 2.5 Mb region, located on 1p36.32-1pter, has a higher frequency of occurrence of tandem repeats and segmental duplications larger than 1 kb, when compared with the 25.5 Mb of the complete 1p36 band. This could explain its proneness for involvement in chromosomal rearrangements in hematological neoplasias.

  10. Pathologic features of dilated cardiomyopathy with localized noncompaction in a child with deletion 1p36 syndrome.

    PubMed

    Pearce, F Bennett; Litovsky, Silvio H; Dabal, Robert J; Robin, Nathaniel; Dure, Leon J; George, James F; Kirklin, James K

    2012-01-01

    Dilated cardiomyopathy and ventricular noncompaction have been reported in association with deletion 1p36 syndrome. Previous descriptions include echocardiographic and/or gross pathologic descriptions. There are no previous reports of microscopic findings. We report a case with descriptions of echocardiographic, gross pathologic, and microscopic findings.

  11. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.

    PubMed

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef; Sabeh, M Khaled; Plovie, Eva R; Caliebe, Almuth; Klopocki, Eva; Musso, Gabriel; Werdich, Andreas A; Kalwa, Hermann; Heinig, Matthias; Padera, Robert F; Wassilew, Katharina; Bluhm, Julia; Harnack, Christine; Martitz, Janine; Barton, Paul J; Greutmann, Matthias; Berger, Felix; Hubner, Norbert; Siebert, Reiner; Kramer, Hans-Heiner; Cook, Stuart A; MacRae, Calum A; Klaassen, Sabine

    2013-07-11

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.

  12. Significance of the small subtelomeric area of chromosome 1 (1p36.3) in the progression of malignant melanoma: FISH deletion screening with YAC DNA probes.

    PubMed

    Poetsch, M; Woenckhaus, C; Dittberner, T; Pambor, M; Lorenz, G; Herrmann, F H

    1999-08-01

    The short arm of chromosome 1 (1p), especially the subtelomeric region of 1p36, is a common site for abnormalities in malignant melanoma of the skin. In a recent study nodular melanomas displayed deletions of 1p36 in an augmented percentage of cases. To evaluate the dimension of these deletions and to study their significance for the progression of malignant melanoma we analyzed seven melanoma cell lines, 32 primary tumors, and 32 metastatic tumors by fluorescence in situ hybridization with the DNA probe D1Z2 in 1p36.3 and eight YAC DNA probes hybridizing to 1p36, 1p32, 1p31, and 1p21. All cell lines, 91% of the metastatic tumors and 63% of nodular melanomas showed a deletion of 1p36.3. In the YAC hybridization experiments, the most frequent deletions were found in 1p36 in all cell lines, in 13% of nodular melanoma, and in 44% of metastatic tumors. Deletions in 1p36 were mostly confined to a rather small area near the locus D1Z2. The frequent occurrence of this deletion in melanomas with a high metastatic potential and the abundant accumulation of this deletion in metastasis point to genes located on 1p36, which might be of significance for the metastatic capability of malignant melanoma.

  13. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency

    PubMed Central

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D. J.

    2016-01-01

    Abstract Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  14. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    PubMed

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-01-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients. PMID:27561113

  15. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    PubMed

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-01-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  16. 576 kb deletion in 1p36.33-p36.32 containing SKI is associated with limb malformation, congenital heart disease and epilepsy.

    PubMed

    Zhu, Xin; Zhang, Yi; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2013-10-10

    1p36 deletion (monosomy 1p36) is one of the most common terminal deletions observed in humans, characterized by special facial features, mental retardation, heart defects, development delay and epilepsy. Previously, we reported molecular findings in patients with limb, congenital heart disease (CHD) and other malformations with SNP-array. In a syndromic patient of the same cohort, we detected a small deletion of 1p36.33-p36.32 containing SKI (Sloan-Kettering Institute protooncoprotein). Recently, dominant mutations in SKI were identified to be correlated with Shprintzen-Goldberg syndrome. Retrospective examination revealed this patient with limb malformations, CHD, epilepsy and mild development delay. Together with previous reports, our study suggests that the 1p36.33-1p36.32 deletion encompassing SKI may represents a previous undescribed microdeletion disorder.

  17. Deletion or epigenetic silencing of AJAP1 on 1p36 in glioblastoma.

    PubMed

    Lin, Ningjing; Di, Chunhui; Bortoff, Kathy; Fu, Jinrong; Truszkowski, Peter; Killela, Patrick; Duncan, Chris; McLendon, Roger; Bigner, Darell; Gregory, Simon; Adamson, David Cory

    2012-02-01

    Glioblastoma is universally fatal because of its propensity for rapid recurrence due to highly migratory tumor cells. Unraveling the genomic complexity that underlies this migratory characteristic could provide therapeutic targets that would greatly complement current surgical therapy. Using multiple high-resolution genomic screening methods, we identified a single locus, adherens junctional associated protein 1 (AJAP1) on chromosome 1p36 that is lost or epigenetically silenced in many glioblastomas. We found AJAP1 expression absent or reduced in 86% and 100% of primary glioblastoma tumors and cell lines, respectively, and the loss of expression correlates with AJAP1 methylation. Restoration of AJAP1 gene expression by transfection or demethylation agents results in decreased tumor cell migration in glioblastoma cell lines. This work shows the significant loss of expression of AJAP1 in glioblastoma and provides evidence of its role in the highly migratory characteristic of these tumors.

  18. Telomeric 1p36.3 deletion and Ki-67 expression in B-Non-Hodgkin's Lymphoma patients associated with chronic hepatitis C virus infection.

    PubMed

    Mosad, E; Said Abd El-Rahman Allam, M; Moustafa, H M; Mohammed, A Eliaw; El kebeer, A M; Abdel-Moneim, S S

    2014-12-01

    The hepatitis C virus (HCV) core protein is able to accumulate genetic p53 mutations and may be considered co-oncogenic. This study investigates 1p36.3 telomere deletion in B-non-Hodgkin's lymphoma (NHL) patients with chronic HCV infection using fluorescence in situ hybridization (FISH) in relation to survival to assess Ki-67 antigen expression. A study group and a control group of 100 patients with B-NHL (50 HCV positive and 50 HCV negative) and 60 control bone marrow biopsies were subjected to FISH for the detection of 1P36.3 deletion and to immunohistochemical staining with Ki-67 antigens. 1p36.3 deletion by FISH was detected in 40% of the study group, and Ki-67 was expressed in approximately 74% of patients. A significant difference was found between positive and negative HCV patients in their overall survival, the qualitative expression of Ki-67 and the quantitative detection of 1p36.3 deletion by FISH. The overall survival was shorter with the presence of an 1p36 deletion by FISH and HCV positive. We concluded that the coexistence of Ki-67 positivity, HCV positivity and 1p36.3 deletion may contribute to infection-related cancers at the 1p36.3 locus.

  19. An 8.9 Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9 Mb 2q23.3q24.1 deletion containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q between-arm insertion

    PubMed Central

    Lybæk, Helle; ørstavik, Karen Helene; Prescott, Trine; Hovland, Randi; Breilid, Harald; Stansberg, Christine; Steen, Vidar Martin; Houge, Gunnar

    2009-01-01

    In a 2 and a half-year-old girl with onset of puberty before the age of 5 months, short stature, hand anomalies and severe mental retardation, an 8.9 Mb interstitial 19p13 duplication containing 215 predicted genes was detected. It was initially assumed that the duplication involved the kisspeptin receptor gene, GPR54, known to stimulate induction of puberty, but more refined duplication mapping excluded this possibility. In an attempt to further understand the genotype–phenotype correlation, global gene expression was measured in skin fibroblasts. The overall expression pattern was quite similar to controls, and only about 25% of the duplicated genes had an expression level that was increased by more than 1.3-fold, with no obvious changes that could explain the precocious puberty. The proband's mother carried a balanced between-arm insertion of the duplicated segment that resembled a pericentric inversion. The same insertion was found in several other family members, including one who had lost a daughter with severe mental retardation and menarche at the age of 10 years. Another close relative was severely mentally retarded, but neither dysmorphic nor microcephalic. His phenotype was initially ascribed to a presumed cryptic chromosome 19 imbalance caused by the 19p-into19q insertion, but subsequent array-CGH detected a 3.9-Mb deletion of 2q23.3q24.1. This novel microdeletion involves seven genes, of which FMNL2, a suggested regulator of Rho-GTPases, and NR4A2, an essential gene for differentiation of dopaminergic neurons, may be critical genes for the proposed 2q23q24 microdeletion syndrome. PMID:19156171

  20. Deletion of the mouse homolog of KCNAB2, a gene linked to monosomy 1p36, results in associative memory impairments and amygdala hyperexcitability.

    PubMed

    Perkowski, John J; Murphy, Geoffrey G

    2011-01-01

    Ablation of the distal end of the short arm of chromosome 1 [1p36 deletion syndrome (1p36DS)] is one of the most commonly occurring terminal deletion syndromes in humans, occurring in ∼1 in 5000 newborns. Subjects with 1p36DS manifest a wide range of clinical features including growth delay, congenital heart defects, and craniofacial dysmorphism. In addition, individuals with 1p36DS often exhibit some form of neurological abnormality and are typically cognitively impaired. Although there is significant variability with regard to the extent of the deletion, several genes have been mapped to region 1p36 that are known to regulate neuronal function. One such gene--KCNAB2--encodes the potassium channel auxiliary subunit Kvβ2, which has been previously shown to modulate voltage-gated potassium currents in heterologous expression systems. Here, we present experiments characterizing mice in which the ortholog of KCNAB2 was deleted. We find that deletion of Kcnab2 in mice leads to deficits in associative learning and memory. In addition, using whole-cell current-clamp, we find that deletion of Kcnab2 leads to a reduction in the slow afterhyperpolarization following a burst of action potentials and a concomitant increase in neuronal excitability in projection neurons in the lateral nucleus of the amygdala. Our results suggest that loss of Kvβ2 likely contributes to the cognitive and neurological impairments observed in 1p36DS patients.

  1. Duplication of the DR3 gene on human chromosome 1p36 and its deletion in human neuroblastoma.

    PubMed

    Grenet, J; Valentine, V; Kitson, J; Li, H; Farrow, S N; Kidd, V J

    1998-05-01

    The human DR3 gene, whose product is also known as Wsl-1/APO-3/TRAMP/LARD, encodes a tumor necrosis factor-related receptor that is expressed primarily on the surface of thymocytes and lymphocytes. DR3 is capable of inducing both NF-kappa B activation and apoptosis when overexpressed in mammalian cells, although its ligand has not yet been identified. We report here that the DR3 gene locus is tandemly duplicated on human chromosome band 1p36.2-p36.3 and that these genes are hemizygously deleted and/or translocated to another chromosome in neuroblastoma (NB) cell lines with amplified MYCN. Duplication of at least a portion of the DR3 gene, including the extracellular and transmembrane regions but not the cytoplasmic domain, was demonstrated by both fluorescence in situ hybridization and genomic Southern blotting. In most NB cell lines, both the DR3 and the DR3L sequences are simultaneously deleted and/or translocated to another chromosome. Finally, DR3/ Wsl-1 protein expression is quite variable among these NB cell lines, with very low or undetectable levels in 7 of 17 NB cell lines.

  2. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions

    PubMed Central

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K.; Cho, Megan T.; Schnur, Rhonda E.; Monaghan, Kristin G.; Juusola, Jane; Rosenfeld, Jill A.; Bhoj, Elizabeth; Zackai, Elaine H.; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G.M.; de Vries, Bert B.A.; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R.; van Haelst, Mieke M.; van Gassen, Koen L.I.; van Binsbergen, Ellen; Barkovich, A. James; Scott, Daryl A.; Sherr, Elliott H.

    2016-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  3. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    PubMed

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.

  4. Two patients with intellectual disability, overlapping facial features, and overlapping deletions in 6p25.1p24.3.

    PubMed

    Kuipers, Bart C W; Vulto-van Silfhout, Anneke T; Marcelis, Carlo; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A

    2013-01-01

    The clinical and molecular characterizations of two patients with a 1.4 Mb overlapping deletion in the 6p25.1p24.3 region are reported. In addition to the mild intellectual disability, they shared feeding problems in infancy and several dysmorphic facial features including a prominent forehead, almond-shaped eyes, a short philtrum, and low-set ears with square helices. The overlapping deleted region harbors six genes (RREB1, NRN1, CAGE1, LY86, SSR1, and F13A1), of which NRN1 and RREB1 are considered as candidate genes for the intellectual disability and the overlapping dysmorphism, respectively. PMID:23183317

  5. FISH analysis of a patient with a constitutional 1p36 deletion defines a region for a neuroblastoma tumor suppressor gene

    SciTech Connect

    Biegel, J.; Hilliard, C.; White, P.

    1994-09-01

    Molecular and cytogenetic studies of neuroblastoma have implicated the presence of one or more tumor suppressor genes on chromosome 1p. We previously reported a neuroblastoma patient with a constitutional interstitial deletion of 1p36. As one means of further defining the deleted region, we have analyzed a series of chromosome 1p36 specific probes by FISH to metaphase chromosomes from a lymphoblastoid cell line established from the patient. We have also tested these probes on a neuroblastoma cell line, NGP, which has a t(1;15) translocation involving 1p36. The probes analyzed to date in order from centromere to telomere include ID-3 (heir-1), D1S56, D1S160, and CDC2L1 (p58). Cosmids for ID-3 and D1S56 were present in 2 copies and proximal to the breakpoint in the constitutional case, and retained on the derivative 1 in NGP. CDC2L1 was also present in 2 copies in the constitutional case, but is distal to the deletion. In NGP, CDC2L1 was translocated to the derivative 15. The D1S160 locus was deleted from one of the chromosomes 1 in the constitutional case, and was present in three copies in NGP: on the normal chromosome 1, the derivative chromosome 1, and the derivative chromosome 15. Molecular studies have suggested that there is a duplication involving this region in NGP, and so it is not clear where the translocation breakpoint is in this cell line. These studies have localized a critical region for a neuroblastoma tumor suppressor gene to 1p36.2, distal to D1S56, proximal to CDC2L1, and including D1S160. This region overlaps with the smallest area of deletion defined by loss of heterozygosity studies of primary neuroblastomas and neuroblastoma cell lines. Additional studies with probes that flank the D1S160 locus will facilitate a molecular cloning approach for a neuroblastoma tumor suppressor gene.

  6. Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines.

    PubMed

    Yanada, Masashi; Yaoi, Takeshi; Shimada, Junichi; Sakakura, Chouhei; Nishimura, Motohiro; Ito, Kazuhiro; Terauchi, Kunihiko; Nishiyama, Katsuhiko; Itoh, Kyoko; Fushiki, Shinji

    2005-10-01

    Runt-related transcription factor 3 (RUNX3) has been recognized as a tumor suppressor gene in gastric cancer because its expression level was reduced or disappeared due to epigenetic changes. To evaluate the usefulness of the RUNX3 gene as a biomarker of lung cancer, we have analyzed the expression of the RUNX3 gene in 15 lung cancer cell lines by real-time reverse transcription-polymerase chain reaction (RT-PCR), and demonstrated that RUNX3 gene expression was reduced or disappeared in all cell lines examined (100%). In addition, we have attempted to classify all the cell lines into three groups according to the expression level; less than 10% (group I), 10-30% (group II) and approximately 50% (group III). We further investigated methylation status of the CpG sites in the exon 1 region of RUNX3 by methylation specific PCR (MSP), and studied the correlation between the expression level and hemizygous deletion as revealed by bicolor fluorescence in situ hybridization (FISH). The CpG sites were hypermethylated in 8 cell lines (53%) and the RUNX3 loci were hemizygously deleted in another 8 cell lines (53%). Furthermore group I, II, and III corresponded well to methylation-positive cell lines, cell lines showing hemizygous deletion, and the rest of cell lines without methylation or hemizygous deletion, respectively. These results suggest that a comprehensive study on RUNX3 using real-time RT-PCR, MSP, and FISH could be beneficial in understanding the pathogenetic mechanisms of human lung cancer at the molecular level. PMID:16142337

  7. Clinical presentation of two β-thalassemic Indian patients with 1p36 deletion syndrome: Case report.

    PubMed

    De, Puspal; Chatterjee, Tridip; Chakravarty, Sudipa; Chakravarty, Amit

    2014-09-01

    Here, we present two thalassemic patients (one male and one female), having unusual clinical phenotypes. Both had mental retardation in which one was associated with microcephaly and other had congenital cataract. They were referred to our institute for clinical evaluation and cytogenetic testing. Both patients were tested for presence of abnormal hemoglobin by high performance liquid chromatography and found to be thalassemic. Their β-globin mutation was also determined by amplification refractory mutation system-polymerase chain reaction. The male patient was found to have intervening sequence 1-5 (G-C)/+, indicating β-thalassemia trait and the female was found to have Cod 26 (G-A)/IVS 1-5 (G-C), indicating hemoglobin E-β thalassemia. Their cytogenetic analysis of blood lymphocytes were studied with high-resolution GTG-banding analysis by using chromosome profiling (Cyto-vision software 3.6) on their chromosomes. Results revealed 46,XY,del(1)(p36.21) in the male and 46,XX,del(1)(p36.3) in the female. Their genotype variation showed (based on genome browser) significant gene loss which probably leads to marked phenotype variation. We believe, thalassemia with mental retardation associated with microcephaly and congenital cataract, both having loss in chromosome 1, p36 position, is reported probably first time from India. This report will definitely enlighten all concerns and add to the information in growing literature.

  8. Clinical presentation of two β-thalassemic Indian patients with 1p36 deletion syndrome: Case report

    PubMed Central

    De, Puspal; Chatterjee, Tridip; Chakravarty, Sudipa; Chakravarty, Amit

    2014-01-01

    Here, we present two thalassemic patients (one male and one female), having unusual clinical phenotypes. Both had mental retardation in which one was associated with microcephaly and other had congenital cataract. They were referred to our institute for clinical evaluation and cytogenetic testing. Both patients were tested for presence of abnormal hemoglobin by high performance liquid chromatography and found to be thalassemic. Their β-globin mutation was also determined by amplification refractory mutation system-polymerase chain reaction. The male patient was found to have intervening sequence 1-5 (G-C)/+, indicating β-thalassemia trait and the female was found to have Cod 26 (G-A)/IVS 1-5 (G-C), indicating hemoglobin E-β thalassemia. Their cytogenetic analysis of blood lymphocytes were studied with high-resolution GTG-banding analysis by using chromosome profiling (Cyto-vision software 3.6) on their chromosomes. Results revealed 46,XY,del(1)(p36.21) in the male and 46,XX,del(1)(p36.3) in the female. Their genotype variation showed (based on genome browser) significant gene loss which probably leads to marked phenotype variation. We believe, thalassemia with mental retardation associated with microcephaly and congenital cataract, both having loss in chromosome 1, p36 position, is reported probably first time from India. This report will definitely enlighten all concerns and add to the information in growing literature. PMID:27625875

  9. Clinical presentation of two β-thalassemic Indian patients with 1p36 deletion syndrome: Case report.

    PubMed

    De, Puspal; Chatterjee, Tridip; Chakravarty, Sudipa; Chakravarty, Amit

    2014-09-01

    Here, we present two thalassemic patients (one male and one female), having unusual clinical phenotypes. Both had mental retardation in which one was associated with microcephaly and other had congenital cataract. They were referred to our institute for clinical evaluation and cytogenetic testing. Both patients were tested for presence of abnormal hemoglobin by high performance liquid chromatography and found to be thalassemic. Their β-globin mutation was also determined by amplification refractory mutation system-polymerase chain reaction. The male patient was found to have intervening sequence 1-5 (G-C)/+, indicating β-thalassemia trait and the female was found to have Cod 26 (G-A)/IVS 1-5 (G-C), indicating hemoglobin E-β thalassemia. Their cytogenetic analysis of blood lymphocytes were studied with high-resolution GTG-banding analysis by using chromosome profiling (Cyto-vision software 3.6) on their chromosomes. Results revealed 46,XY,del(1)(p36.21) in the male and 46,XX,del(1)(p36.3) in the female. Their genotype variation showed (based on genome browser) significant gene loss which probably leads to marked phenotype variation. We believe, thalassemia with mental retardation associated with microcephaly and congenital cataract, both having loss in chromosome 1, p36 position, is reported probably first time from India. This report will definitely enlighten all concerns and add to the information in growing literature. PMID:27625875

  10. Interstitial deletion 1p36.32 in two brothers with a distinct phenotype--overgrowth, macrocephaly and nearly normal intellectual function.

    PubMed

    Di Donato, N; Klink, B; Hahn, G; Schrock, E; Hackmann, K

    2014-09-01

    We report on two adult patients, who both presented with overgrowth and one of them additionally with macrocephaly while carrying an 1p36 microdeletion of about 2.1 Mb. They are full brothers born to unaffected parents. Although both brothers attended special schools, they lived independently without a legal guardian and were able to succeed in regular jobs. One of the brothers received a professional education. Genetic analysis of the parents revealed neither the microdeletion nor a cryptical translocation or inversion. We suggest that the recurrent deletion is a result of germline mosaicism, a phenomenon reported only once in the context of the 1p36 microdeletion syndrome. Our report confirms the recurrence of the apparently de novo 1p36 microdeletion due to a likely germline mosaicism of one of the parents. Furthermore, it illustrates the possibility of the distinct phenotype with a nearly normal intellectual outcome of the 1p36 microdeletion syndrome that might be due to the region involved in our patients.

  11. An allelic series of mice reveals a role for RERE in the development of multiple organs affected in chromosome 1p36 deletions.

    PubMed

    Kim, Bum Jun; Zaveri, Hitisha P; Shchelochkov, Oleg A; Yu, Zhiyin; Hernández-García, Andrés; Seymour, Michelle L; Oghalai, John S; Pereira, Fred A; Stockton, David W; Justice, Monica J; Lee, Brendan; Scott, Daryl A

    2013-01-01

    Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala), which we identified in an N-ethyl-N-nitrosourea (ENU)-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN)-positive hippocampal neurons, hearing loss, cardiovascular malformations-aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects-spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute-alone or in conjunction with other genetic, environmental, or stochastic factors-to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the proximal region of

  12. A bovine herpesvirus 1 pUL51 deletion mutant shows impaired viral growth in vitro and reduced virulence in rabbits

    PubMed Central

    Raza, Sohail; Deng, Mingliang; Shahin, Farzana; Yang, Kui; Hu, Changmin; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) UL51 protein (pUL51) is a tegument protein of BoHV-1 whose function is currently unknown. Here, we aimed to illustrate the specific role of pUL51 in virion morphogenesis and its importance in BoHV-1 virulence. To do so, we constructed a BoHV-1 bacterial artificial chromosome (BAC). We used recombinant BAC and transgenic techniques to delete a major part of the UL51 open reading frame. Deletion of pUL51 resulted in severe viral growth defects, as evidenced by lower single and multi-step growth kinetics, reduced plaque size, and the accumulation of non-enveloped capsids in the cytoplasm of infected cells. Using tagged BoHV-1 recombinant viruses, it was determined that the pUL51 protein completely co-localized with the cis-Golgi marker protein GM-130. Taken altogether, pUL51 was demonstrated to play a critical role in BoHV-1 growth and it is involved in viral maturation and egress. Moreover, an in vivo analysis showed that the pUL51 mutant exhibited reduced virulence in rabbits, with no clinical signs, no nasal shedding of the virus, and no detectable serum neutralizing antibodies. Therefore, we conclude that the BoHV-1 pUL51 is indispensable for efficient viral growth in vitro and is essential for virulence in vivo. PMID:26934330

  13. Primary Cutaneous Follicle Center Lymphomas Expressing BCL2 Protein Frequently Harbor BCL2 Gene Break and May Present 1p36 Deletion: A Study of 20 Cases.

    PubMed

    Szablewski, Vanessa; Ingen-Housz-Oro, Saskia; Baia, Maryse; Delfau-Larue, Marie-Helene; Copie-Bergman, Christiane; Ortonne, Nicolas

    2016-01-01

    The classification of cutaneous follicular lymphoma (CFL) into primary cutaneous follicle center lymphoma (PCFCL) or secondary cutaneous follicular lymphoma (SCFL) is challenging. SCFL is suspected when tumor cells express BCL2 protein, reflecting a BCL2 translocation. However, BCL2 expression is difficult to assess in CFLs because of numerous BCL2+ reactive T cells. To investigate these issues and to further characterize PCFCL, we studied a series of 25 CFLs without any extracutaneous disease at diagnosis, selected on the basis of BCL2 protein expression using 2 BCL2 antibodies (clones 124 and E17) and BOB1/BCL2 double immunostaining. All cases were studied using interphase fluorescence in situ hybridization with BCL2, BCL6, IGH, IGK, IGL breakapart, IGH-BCL2 fusion, and 1p36/1q25 dual-color probes. Nineteen CFLs were BCL2 positive, and 6 were negative. After a medium follow-up of 24 (6 to 96) months, 5 cases were reclassified as SCFL and were excluded from a part of our analyses. Among BCL2+ PCFCLs, 60% (9/15) demonstrated a BCL2 break. BCL2-break-positive cases had a tendency to occur in the head and neck and showed the classical phenotype of nodal follicular lymphoma (CD10+, BCL6+, BCL2+, STMN+) compared with BCL2-break-negative PCFCLs. Del 1p36 was observed in 1 PCFCL. No significant clinical differences were observed between BCL2+ or BCL2- PCFCL. In conclusion, we show that a subset of PCFCLs harbor similar genetic alterations, as observed in nodal follicular lymphomas, including BCL2 breaks and 1p36 deletion. As BCL2 protein expression is usually associated with the presence of a BCL2 translocation, fluorescence in situ hybridization should be performed to confirm this hypothesis.

  14. Prader-Willi-like phenotype: investigation of 1p36 deletion in 41 patients with delayed psychomotor development, hypotonia, obesity and/or hyperphagia, learning disabilities and behavioral problems.

    PubMed

    D'Angelo, Carla S; Da Paz, José A; Kim, Chong A; Bertola, Débora R; Castro, Claudia I E; Varela, Monica C; Koiffmann, Célia P

    2006-01-01

    Monosomy 1p36 is one of the most commonly observed mental retardation (MR) syndromes that results in a clinically recognizable phenotype including delayed psychomotor development and/or MR, hypotonia, epilepsy, hearing loss, growth delay, microcephaly, deep-set eyes, flat nasal bridge and pointed chin. Besides, a Prader-Willi syndrome (PWS)-like phenotype has been described in patients with 1p36 monosomy. Forty-one patients presenting hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who tested negative for PWS were investigated by FISH and/or microsatellite markers. Twenty-six were analyzed with a 1p-specific subtelomeric probe, and one terminal deletion was identified. Thirty patients (15 of which also studied by FISH) were investigated by microsatellite markers, and no interstitial 1p36 deletion was found. Our patient presenting the 1p36 deletion did not have the striking features of this monosomy, but her clinical and behavioral features were quite similar to those observed in patients with PWS, except for the presence of normal sucking at birth. The extent of the deletion could be limited to the most terminal 2.5 Mb of 1p36, within the chromosomal region 1p36.33-1p36.32, that is smaller than usually seen in monosomy 1p36 patients. Therefore, chromosome 1p36.33 deletion should be investigated in patients with hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who test negative for PWS.

  15. Partial trisomy of distal 19q detected by quantitative real-time PCR and FISH in a girl with mild facial dysmorphism, hypotonia and developmental delay.

    PubMed

    Sauter, S M; Böhm, Detlef; Bartels, Iris; Burfeind, Peter; Laccone, Franco A; Neesen, Jürgen; Wilken, Bernd; Liehr, Thomas; Zoll, Barbara

    2007-05-15

    We report on a 2 7/12-year-old girl who was referred to us because of psychomotor developmental delay. She is the second child of healthy, non-consanguineous parents. Pregnancy and birth were uneventful. Milestones of motor development were delayed: grasping at 6 months, sitting without support at 16 months, crawling at 16 months and walking at 2 4/12 years of age. She spoke about five words and followed simple instructions. Banding cytogenetics revealed a numerically and structurally normal female karyotype of 46,XX. By quantitative real-time PCR analysis of all subtelomeric regions, a partial trisomy of the subtelomeric region of 19q could be detected. This result was confirmed by FISH-analysis with a subtelomeric probe for 19q. The additional material of chromosome 19q was localized on chromosome 6q. However, a deletion of the subtelomeric region of 6q could not be detected with a subtelomeric FISH probe for 6q. Conventional cytogenetic analysis as well as FISH with subtelomeric probes for 19q and 6q showed normal results in the parents. The detected chromosomal aberration probably occurred de novo. The clinical features are very likely to be caused solely by the partial trisomy 19q.

  16. De novo translocation involving chromosomes 1 and 4 resulting in partial duplication of 4q and partial deletion of 1p

    SciTech Connect

    Legare, J.M.; Sekhon, G.S.; Laxova, R.

    1994-11-15

    We describe an infant boy with a unique de novo translocation involving chromosomes 1 and 4, resulting in dup(4q) and del(1p). His karyotype was 46,XY,-1,+der(1)t(1;4) (p36.2;q31.2). He had minor anomalies, congenital heart defect, respiratory distress, seizures, and central nervous system abnormalities. He died at age 11 weeks. The patient had manifestations of dup(4q) del(1p), and he was more seriously affected than patients having only one of these. No other patient with an identical chromosomal finding has been reported. 27 refs., 2 figs., 3 tabs.

  17. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  18. Role of Evaluating MGMT Status and 1p36 Deletion in Radiosurgery-Induced Anaplastic Ependymoma That Rapidly and Completely Resolved by Temozolomide Alone: Case Report and Review of the Literature.

    PubMed

    Hirono, Seiichiro; Iwadate, Yasuo; Kambe, Michiyo; Hiwasa, Takaki; Takiguchi, Masaki; Nakatani, Yukio; Saeki, Naokatsu

    2015-07-01

    Stereotactic gamma knife surgery (GKS)-induced brain tumors are extremely rare, and no ependymal tumors induced by GKS have been reported. Therefore, little is known about their clinical, pathologic, and genetic features. In addition, a regimen of adjuvant chemotherapy for anaplastic ependymoma (AE) has not been established. A 77-year-old man presented with a gait disturbance and left-side cerebellar ataxia more than 19 years after GKS performed for a cerebellar arteriovenous malformation. Imaging studies demonstrated an enhancing mass in the irradiated field with signs of intraventricular dissemination. Surgical resection confirmed the diagnosis of AE. Temozolomide (TMZ) was administrated postoperatively because the methylated promoter region of O(6)-methylguanine-DNA methyltransferase (MGMT) and 1p36 deletion were observed. Surprisingly, images 16 days after TMZ initiation demonstrated a complete resolution of the residual tumor that was maintained after three cycles of TMZ. This first case report of GKS-induced AE emphasizes the importance of genetic evaluation of MGMT and chromosomal deletion of 1p36 that are not commonly performed in primary ependymal tumors. In addition, it is speculated that a GKS-induced tumor may have a different genetic background compared with the primary tumor because the pathogenesis of the tumors differed.

  19. A case of mosaic trisomy 19q12-q13.2 with high BMI, macrocephaly, and speech delay: does USF2 determine size in the 19q phenotypes?

    PubMed

    Wilson, Brian T; Newby, Rachel; Watts, Kathryn; Hellens, Stephen W; Zwolinski, Simon A; Splitt, Miranda P

    2012-01-01

    Hall et al. (2010) describe a boy with mosaic trisomy of the proximal part of 19q, with obesity, macrocephaly and global developmental delay. The patient is interesting with regard to his cytogenetic abnormality, which is smaller than those previously reported, and does not include the candidate obesity and insulin-resistance genes identified by other authors (Zung et al., 2007; Davidsson et al., 2010) as possible causes of the overweight/obesity seen in four of five previously documented patients. This suggests that a novel obesity locus may reside in the duplicated region 19q13.11–q13.2. We present a phenotypically similar boy with intrachromosomal insertion of material derived from proximal 19q into proximal 19p, causing mosaic trisomy 19q12–q13.2, and consider the role of USF2, a master transcriptional regulator of metabolic genes, in 19q phenotypes. PMID:22107929

  20. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1.

    PubMed

    Rees, Elliott; Walters, James T R; Chambert, Kimberly D; O'Dushlaine, Colm; Szatkiewicz, Jin; Richards, Alexander L; Georgieva, Lyudmila; Mahoney-Davies, Gerwyn; Legge, Sophie E; Moran, Jennifer L; Genovese, Giulio; Levinson, Douglas; Morris, Derek W; Cormican, Paul; Kendler, Kenneth S; O'Neill, Francis A; Riley, Brien; Gill, Michael; Corvin, Aiden; Sklar, Pamela; Hultman, Christina; Pato, Carlos; Pato, Michele; Sullivan, Patrick F; Gejman, Pablo V; McCarroll, Steven A; O'Donovan, Michael C; Owen, Michael J; Kirov, George

    2014-03-15

    Large and rare copy number variants (CNVs) at several loci have been shown to increase risk for schizophrenia. Aiming to discover novel susceptibility CNV loci, we analyzed 6882 cases and 11 255 controls genotyped on Illumina arrays, most of which have not been used for this purpose before. We identified genes enriched for rare exonic CNVs among cases, and then attempted to replicate the findings in additional 14 568 cases and 15 274 controls. In a combined analysis of all samples, 12 distinct loci were enriched among cases with nominal levels of significance (P < 0.05); however, none would survive correction for multiple testing. These loci include recurrent deletions at 16p12.1, a locus previously associated with neurodevelopmental disorders (P = 0.0084 in the discovery sample and P = 0.023 in the replication sample). Other plausible candidates include non-recurrent deletions at the glutamate transporter gene SLC1A1, a CNV locus recently suggested to be involved in schizophrenia through linkage analysis, and duplications at 1p36.33 and CGNL1. A burden analysis of large (>500 kb), rare CNVs showed a 1.2% excess in cases after excluding known schizophrenia-associated loci, suggesting that additional susceptibility loci exist. However, even larger samples are required for their discovery.

  1. Refinement of the cone-rod retinal dystrophy locus on chromosome 19q

    SciTech Connect

    Gregory, C.Y.; Evans, K.; Bhattacharya, S.S.; Whittaker, J.L.; Fryer, A.; Weissenbach, J.

    1994-11-01

    Cone-rod dystrophy (CRD) is a severe example of an inherited retinal dystrophy: ophthalmic diseases that as a group constitute the commonest causes of blindness in children in the developed world and account for a significant proportion of visual handicap in adults. Two case reports suggested loci for CRD-causing genes on chromosomes 18q and chromosome 17q. Recently, we reported the results of a total genome search that localized an autosomal dominant form of CRD to chromosome 19q in the region 19q13.1-q13.2. Since then, using data from a short tandem repeat-polymorphism linkage map of chromosome 19 and recently developed microsatellite markers in this region, we have been able to further refine the localization of the chromosome 19q CRD-causing gene. Seven new microsatellite markers were used to genotype 34 affected subjects, 22 unaffected subjects, and 15 spouses. Two-point, multipoint, and FASTMAP analyses were performed. 11 refs., 1 tab.

  2. Are Angelman and Prader-Willi syndromes more similar than we thought? Food-related behavior problems in Angelman, Cornelia de Lange, fragile X, Prader-Willi and 1p36 deletion syndromes.

    PubMed

    Welham, Alice; Lau, Johnny; Moss, Joanna; Cullen, Jenny; Higgs, Suzanne; Warren, Gemma; Wilde, Lucy; Marr, Abby; Cook, Faye; Oliver, Chris

    2015-03-01

    Food-related behavior problems are well documented in Prader-Willi syndrome (PWS), with impaired satiety, preoccupation with food and negative food-related behaviors (such as taking and storing food) frequently reported as part of the behavioral phenotype of older children and adults. Food-related behavior problems in other genetic neurodevelopmental syndromes remain less well studied, including those seen in Angelman Syndrome (AS), the 'sister imprinted disorder' of PWS. Food-related behavior problems were assessed in 152 participants each with one of five genetic neurodevelopmental syndromes – PWS, AS, 1p36 deletion, Cornelia de Lange, and fragile X. Predictably, levels of food-related behavior problems reported in participants with PWS significantly exceeded those of at least one other groups in most areas (impaired satiety; preoccupation with food; taking and storing food; composite negative behavior). However, in some areas people with AS were reported to display food-related problems at least as severe as those with PWS, with the AS group reported to display significantly more food-related behavior problems than at least one comparison group on measures of taking and storing food, composite negative behaviors, impaired satiety and preoccupation with food. Over 50% of participants in the AS group scored above the median point of the distribution of PWS scores on a measure of taking and storing food. These findings indicate further investigation of eating problems in AS are warranted and have implications for current theoretical interpretations of the behavioral differences between AS and PWS. PMID:25691410

  3. Are Angelman and Prader-Willi syndromes more similar than we thought? Food-related behavior problems in Angelman, Cornelia de Lange, fragile X, Prader-Willi and 1p36 deletion syndromes.

    PubMed

    Welham, Alice; Lau, Johnny; Moss, Joanna; Cullen, Jenny; Higgs, Suzanne; Warren, Gemma; Wilde, Lucy; Marr, Abby; Cook, Faye; Oliver, Chris

    2015-03-01

    Food-related behavior problems are well documented in Prader-Willi syndrome (PWS), with impaired satiety, preoccupation with food and negative food-related behaviors (such as taking and storing food) frequently reported as part of the behavioral phenotype of older children and adults. Food-related behavior problems in other genetic neurodevelopmental syndromes remain less well studied, including those seen in Angelman Syndrome (AS), the 'sister imprinted disorder' of PWS. Food-related behavior problems were assessed in 152 participants each with one of five genetic neurodevelopmental syndromes – PWS, AS, 1p36 deletion, Cornelia de Lange, and fragile X. Predictably, levels of food-related behavior problems reported in participants with PWS significantly exceeded those of at least one other groups in most areas (impaired satiety; preoccupation with food; taking and storing food; composite negative behavior). However, in some areas people with AS were reported to display food-related problems at least as severe as those with PWS, with the AS group reported to display significantly more food-related behavior problems than at least one comparison group on measures of taking and storing food, composite negative behaviors, impaired satiety and preoccupation with food. Over 50% of participants in the AS group scored above the median point of the distribution of PWS scores on a measure of taking and storing food. These findings indicate further investigation of eating problems in AS are warranted and have implications for current theoretical interpretations of the behavioral differences between AS and PWS.

  4. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    PubMed Central

    Cho, Michael H.; Castaldi, Peter J.; Wan, Emily S.; Siedlinski, Mateusz; Hersh, Craig P.; Demeo, Dawn L.; Himes, Blanca E.; Sylvia, Jody S.; Klanderman, Barbara J.; Ziniti, John P.; Lange, Christoph; Litonjua, Augusto A.; Sparrow, David; Regan, Elizabeth A.; Make, Barry J.; Hokanson, John E.; Murray, Tanda; Hetmanski, Jacqueline B.; Pillai, Sreekumar G.; Kong, Xiangyang; Anderson, Wayne H.; Tal-Singer, Ruth; Lomas, David A.; Coxson, Harvey O.; Edwards, Lisa D.; MacNee, William; Vestbo, Jørgen; Yates, Julie C.; Agusti, Alvar; Calverley, Peter M.A.; Celli, Bartolome; Crim, Courtney; Rennard, Stephen; Wouters, Emiel; Bakke, Per; Gulsvik, Amund; Crapo, James D.; Beaty, Terri H.; Silverman, Edwin K.

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior. PMID:22080838

  5. Genome-wide linkage scan of prostate cancer Gleason score and confirmation of chromosome 19q.

    PubMed

    Schaid, Daniel J; Stanford, Janet L; McDonnell, Shannon K; Suuriniemi, Miia; McIntosh, Laura; Karyadi, Danielle M; Carlson, Erin E; Deutsch, Kerry; Janer, Marta; Hood, Lee; Ostrander, Elaine A

    2007-07-01

    Despite evidence that prostate cancer has a genetic etiology, it has been extremely difficult to confirm genetic linkage results across studies, emphasizing the large extent of genetic heterogeneity associated with this disease. Because prostate cancer is common--approximately one in six men will be diagnosed with prostate cancer in their life--genetic linkage studies are likely plagued by phenocopies (i.e., men with prostate cancer due to environmental or lifestyle factors), weakly penetrant alleles, or a combination of both, making it difficult to replicate linkage findings. One way to account for heterogeneous causes is to use clinical information that is related to the aggressiveness of disease as an endpoint for linkage analyses. Gleason grade is a measure of prostate tumor differentiation, with higher grades associated with more aggressive disease. This semi-quantitative score has been used as a quantitative trait for linkage analysis in several prior studies. Our aim was to determine if prior linkage reports of Gleason grade to specific loci could be replicated, and to ascertain if new regions of linkage could be found. Gleason scores were available for 391 affected sib pairs from 183 hereditary prostate cancer pedigrees as part of the PROGRESS study. Analyzing Gleason score as a quantitative trait, and using microsatellite markers, suggestive evidence for linkage (P-value 19q and 5q, with P-values 19q and suggest new loci for further investigation.

  6. 19q13.33→qter trisomy in a girl with intellectual impairment and seizures.

    PubMed

    Carvalheira, Gianna; Oliveira, Mariana Moysés; Takeno, Sylvia; Lima, Fernanda Teresa de; Meloni, Vera Ayres; Melaragno, Maria Isabel

    2014-12-01

    Rearrangements in chromosome 19 are rare. Among the 35 patients with partial 19q trisomy described, only six have a breakpoint defined by array. The 19q duplication results in a variable phenotype, including dysmorphisms, intellectual disability and seizure. In a female patient, although G-banding at 550 band-resolution was normal, multiplex ligation-dependent probe amplification (MLPA) technique and genomic array showed a 10.6 Mb terminal duplication of chromosome 19q13. Fluorescent in situ hybridization (FISH) revealed that the duplicated region was attached to the short arm of chromosome 21 and silver staining showed four small acrocentrics with nucleolar organization region (NOR) activity, suggesting that the breakpoint in chromosome 21 was at p13. This is the first de novo translocation between 19q13.33 and 21p13 described in liveborn. The chromosome 19 is known to be rich in coding and non-coding regions, and chromosomal rearrangements involving this chromosome are very harmful. Furthermore, the 19q13.33→qter region is dense in pseudogenes and microRNAs, which are potent regulators of gene expression. The trisomic level of this region may contribute to deregulation of global gene expression, and consequently, may lead to abnormal development on the carriers of these rearrangements. PMID:25606462

  7. Bimodal expressivity in dominant retinitis pigmentosa genetically linked to chromosome 19q.

    PubMed Central

    Evans, K; al-Maghtheh, M; Fitzke, F W; Moore, A T; Jay, M; Inglehearn, C F; Arden, G B; Bird, A C

    1995-01-01

    A clinical, psychophysical, and electrophysiologic study was undertaken of two autosomal dominant retinitis pigmentosa pedigrees with a genetic mutation assigned to chromosome 19q by linkage analysis. Members with the abnormal haplotype were either symptomatic with adolescent onset nyctalopia, restricted visual fields, and non-detectable electroretinographic responses by 30 years of age, or asymptomatic with normal fundus appearance and minimal or no psychophysical or electroretinographic abnormalities. There was no correlation in the severity in parents and their offspring. Pedigree analysis suggested that although the offspring of parents with the genetic mutation were at 50% risk of having the genetic defect, the risk of being symptomatic during a working lifetime was only 31%. Such bimodal phenotypic expressivity in these particular pedigrees may be explained by a second, allelic genetic influence and may be a phenomenon unique to this genetic locus. Genetic counselling in families expressing this phenotype can only be based on haplotype analysis since clinical investigations, even in the most elderly, would not preclude the presence of the mutant gene. PMID:7488604

  8. Amplifications and deletions in clinical ovarian cancer detected by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Sakunaga, H.; Sakamoto, M.; Kallioniemi, A.; Kallioniemi, O.; Sudar, D.; Pinkel, D.; Gray, I.W. ); Yang-Feng, T. )

    1993-01-01

    CGH is a new powerful method for surveying the whole genome for DNA sequence copy number changes in a single hybridization. The method is based on the competition between biotinylated total tumor DNA and a digoxigenin-labeled normal genomic reference DNA during hybridization to normal metaphase chromosomes. After immunofluorescent staining with avidin-FITC and antidigoxigenin Rhodamine, variation of DNA sequence copy numbers in the tumor are detected as variations in the ratios of green and red fluorescence along each chromosome. The authors applied CGH analysis to DNA extracted from surgically removed ovarian cancer specimens (27 cases). Seven amplified regions were identified by CGH analysis. Three loci, 1p32-p34 (most likely, MYCL), 8q23-q24 (MYC), 12q12 (KRAS2), were known to be amplified in solid tumors and four other loci (3q26, 6p22, 9q31-q33, 17q22) were previously unknown to be amplified. Many regions indicating physical deletions were also identified by the analysis. Chromosomal regions showing frequent deletion were 1p, 3p, 17p, 17q, 19p, 19q and Xp. There were also significant similarities of the regions with amplifications and deletions between bilateral ovarian tumors or among several different tumors form the same ovarian cancer cases, suggesting that the genetic changes observed might be relatively early events during the progression of ovarian cancer.

  9. Mechanisms leading to Prader-Willi syndrome in a patient with a de novo 46, XY, t(15; 19)(q12; q13.41)

    SciTech Connect

    Sun, Y.; Hainline, B.E.; Palmer, C.G.

    1994-09-01

    A three year and six month-old boy with Prader-Willi syndrome (PWS) was found to have a de novo 46, XY, t(15; 19) (q12; q13.41) karyotype. PCR studies of microsatellite loci showed heterozygosity, including biparental inheritance. Fluorescence in situ hybridization (FISH) studies were performed with cosmid probes D15S11, SNRPN, D15S10, and GABRB3 and no deletion was found. The chromosomal breakage occurred inside the SNRPN contig, which contains two overlapping cosmids. Each cosmid shows signals with FISH on both the der(15) and the der(19), and on the normal chromosome 15. Additional FISH studies using cosmid subfragments demonstrated that the breakage occurred upstream to coding exons of the SNRPN gene. SNRPN contains 10 exons, including two recently identified upstream exons, exon-1 and exon-0. A probe from an RT-PCR product (1020bp) of total human brain mRNA spanning exons 1-8 and an exon1-specific probe were used on genome DNA Southern hybridizaiton. An extra DNA band 20kb in size was detected specifically from our patients genomic DNA using BamHl when compared to his normal parents and normal individuals. Further studies revealed that the breakage occurred between exon 0 and exon 1 of the SNRPN gene.

  10. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7

    SciTech Connect

    Shannon, M.; Mucenski, M.L.; Stubbs, L.

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes. 32 refs., 7 figs.

  11. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1

    SciTech Connect

    Bisceglia, L.; Totaro, A.; Melchionda, S.

    1997-03-01

    Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (Z{sub max}) of 13.11 at a maximum recombination fraction ({theta}{sub max}) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant Z{sub max} = 3.11 at {theta}{sub max} of .00, with marker D19S225). 33 refs., 2 figs., 1 tab.

  12. Fine mapping and haplotype analysis of the locus for congenital nephrotic syndrome on chromosome 19q13.1

    SciTech Connect

    Maennikkoe, M.; Kestilae, M.; Tryggvason, K.

    1995-12-01

    We have recently localized the gene for congenital nephrotic syndrome of the Finnish type (CNF) to chromosome 19q12-13.1. On the basis of observed recombination events, the gene was localized between markers D19S416/D19S425/D19S213/D19S208/D19S191 and D19S224. Here we have extended the mapping efforts, on the basis of a detailed physical map of the region. By means of three new polymorphic markers - D19S608, D19S609, and D19S610 - developed in this study, the critical candidate region could be further restricted. Significant linkage disequilibrium was observed with marker D19S610, D19S608, D19S224, and D19S220, the strongest allelic association being 84% with marker D19S610 at 19q13.1. This suggests that the CNF gene locus lies in close proximity to marker D19S610. Combination of the informative markers revealed four main haplotype categories. Different geographic distribution was observed between these haplotype groups when they were placed on the map of Finland according to the birthplaces of grandparents. 38 refs., 2 figs., 4 tabs.

  13. Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome bands 19q13.2-q13.3 by fluorescence in situ hybridization

    SciTech Connect

    Stoffel, M.; Fernald, A.A.; Bell, G.I.; Le Beau, M.M.

    1995-08-10

    The gastric inhibitory polypeptide receptor gene (GIPR) was localized, using fluorescence in situ hybridization (FISH), to human chromosome bands 19q13.2-q13.3. Gastric inhibitory polypeptide (GIP) is a potent stimulator of insulin secretion and mutations in the GIPR gene may be related to non-insulin-dependent diabetes mellitus (NIDDM). 13 refs., 1 fig.

  14. Chromosomal localization of the human natural killer cell class I receptor family genes to 19q13.4 by fluorescence in situ hybridization

    SciTech Connect

    Suto, Yumiko; Maenaka, Katsumi; yabe, Toshio

    1996-07-01

    This report describes the localization of the human natural killer cell I receptor family genes to human chromosome 19q13.4 using fluorescence in situ hybridization. These genes mediate the inhibition of the cytotoxicity of subsets of natural killer cells. 8 refs., 1 fig.

  15. 1p36 tumor suppression--a matter of dosage?

    PubMed

    Henrich, Kai-Oliver; Schwab, Manfred; Westermann, Frank

    2012-12-01

    A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic "two-hit" manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes.

  16. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p

    PubMed Central

    Hsu, Jia-Wei; Tang, Pei-Hua; Wang, I-Hao; Liu, Chia-Lun; Chen, Wen-Hui; Tsai, Pei-Chin; Chen, Kuan-Yu; Chen, Kuan-Jung; Yu, Chia-Jung

    2016-01-01

    ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p in IRE1-deleted cells. Elucidating the mechanism of Ire1p–Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport. PMID:26966233

  17. Gene expression profiling of 1p35-36 genes in neuroblastoma.

    PubMed

    Janoueix-Lerosey, Isabelle; Novikov, Eugene; Monteiro, Marta; Gruel, Nadège; Schleiermacher, Gudrun; Loriod, Béatrice; Nguyen, Catherine; Delattre, Olivier

    2004-08-01

    Deletion of the chromosome 1p36 region is a frequent abnormality in neuroblastoma. To gain further insights into the role of this alteration in oncogenesis, we have constructed a specific cDNA microarray representing most known genes and ESTs from the 1p35-36 region and analysed the expression profiles of 15 neuroblastoma cell lines and 28 neuroblastoma tumours. Hierarchical clustering using expression levels of 320 cDNAs from 1p35-36 separated localized or 4S cases without 1p deletion from advanced stages and cell lines. Supervised learning classification enabled to predict reliably the status of chromosome 1p according to its expression profile. Around 15% of the genes or ESTs presented a significantly decreased expression in samples with 1p deletion as compared to 1p-normal samples suggesting that 1p deletion results in a gene dosage effect on a subset of genes critical for the development of 1p-deleted neuroblastoma. Several genes presumed to have functions in neural differentiation (CDC42, VAMP3, CLSTN1), signal transduction in neural cells (GNB1) and cell cycle regulation (STMN1, RPA2, RBAF600, FBXO6, MAD2L2) exhibited a decreased expression in samples presenting 1p deletion. The identification of such genes provides baseline information for further studies to elucidate how these genes could individually or collectively play a critical role in neuroblastoma tumorigenesis. PMID:15195138

  18. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes.

    PubMed

    Pfister, Stefan; Remke, Marc; Castoldi, Mirco; Bai, Alfa H C; Muckenthaler, Martina U; Kulozik, Andreas; von Deimling, Andreas; Pscherer, Armin; Lichter, Peter; Korshunov, Andrey

    2009-04-01

    Embryonal tumors with abundant neuropil and true rosettes (ETANTR) comprise a rare variant of embryonal brain tumors usually occurring in infants. Only 13 cases have been reported in the literature to date and little is known about the molecular pathogenesis of these tumors. Here, we describe a case of ETANTR in a 2-year-old girl presenting with a large tumor in the vermis of the cerebellum. Histological examination showed clusters of small-undifferentiated cells including ependymoblastic-like rosettes admixed with large fibrillar and paucicellular neuropil-like areas indicative for ETANTR. Genomic imbalances were detected by using array-based comparative genomic hybridization. In addition to trisomy of chromosome 2, which has been previously described in ETANTR, array-CGH revealed high-level genomic amplification of 0.89 Mb at chromosome band 19q13.42 covering a microRNA cluster and several protein-coding genes. This aberration has not been described in any other brain tumor to date, indicating a specific aberration in ETANTR. MicroRNAs contained in the microRNA cluster at 19q13.42 including oncomirs miRNA-372 and miRNA-373 were highly up-regulated in the tumor when compared to normal cerebellum or whole brain. In summary, this is the first report on a potentially specific genetic aberration in ETANTR, supporting the hypothesis of a distinct tumor entity.

  19. Assembly of a 1-Mb restriction-mapped cosmid contig spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1

    SciTech Connect

    Olsen, A.S.; Georgescu, A.; Johnson, S.; Carrano, A.V.

    1996-06-01

    We describe the assembly of a 1-Mb cosmid contig and restriction map spanning the candidate region for Finnish congenital nephrosis (NPHS1) in 19q13.1. The map was constructed from 16 smaller contigs assembled by fingerprinting, a BAC and a PAC clone, and 42 previously unmapped cosmids. In most cases, single-step cosmid walks were sufficient to join two previously assembled contigs, and all but one gap was filled from this cosmid contig library. The remaining gap of about 19 kb was spanned with a single BAC and a single PAC clone. EcoRI mapping of a dense set of overlapping clones validated the assembly of the map and indicated a length of 1040 kb for the contig. This high-resolution clone map provides an ideal resource for gene identification through cDNA selection, exon trapping, and DNA sequencing. 10 refs., 1 fig.

  20. Haplotype frequencies in a sub-region of chromosome 19q13.3, related to risk and prognosis of cancer, differ dramatically between ethnic groups

    PubMed Central

    Schierup, Mikkel H; Mailund, Thomas; Li, Heng; Wang, Jun; Tjønneland, Anne; Vogel, Ulla; Bolund, Lars; Nexø, Bjørn A

    2009-01-01

    Background A small region of about 70 kb on human chromosome 19q13.3 encompasses 4 genes of which 3, ERCC1, ERCC2, and PPP1R13L (aka RAI) are related to DNA repair and cell survival, and one, CD3EAP, aka ASE1, may be related to cell proliferation. The whole region seems related to the cellular response to external damaging agents and markers in it are associated with risk of several cancers. Methods We downloaded the genotypes of all markers typed in the 19q13.3 region in the HapMap populations of European, Asian and African descent and inferred haplotypes. We combined the European HapMap individuals with a Danish breast cancer case-control data set and inferred the association between HapMap haplotypes and disease risk. Results We found that the susceptibility haplotype in our European sample had increased from 2 to 50 percent very recently in the European population, and to almost the same extent in the Asian population. The cause of this increase is unknown. The maximal proportion of overall genetic variation due to differences between groups for Europeans versus Africans and Europeans versus Asians (the Fst value) closely matched the putative location of the susceptibility variant as judged from haplotype-based association mapping. Conclusion The combined observation that a common haplotype causing an increased risk of cancer in Europeans and a high differentiation between human populations is highly unusual and suggests a causal relationship with a recent increase in Europeans caused either by genetic drift overruling selection against the susceptibility variant or a positive selection for the same haplotype. The data does not allow us to distinguish between these two scenarios. The analysis suggests that the region is not involved in cancer risk in Africans and that the susceptibility variants may be more finely mapped in Asian populations. PMID:19257887

  1. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4.

    PubMed

    Miura, K; Hirai, M; Kanai, Y; Kurosawa, Y

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analyzed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequences in the promoter regions between human and mouse NUC genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4.

  2. Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11), and association with a unique bimodal expressivity phenotype

    SciTech Connect

    Al-Maghtheh, M.; Vithana, E.; Tarttelin, E.; Evans, K.

    1996-10-01

    Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (adRP), accounting for {approximately}25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This {open_quotes}bimodal expressivity{close_quotes} contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus. 27 refs., 3 figs., 1 tab.

  3. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    SciTech Connect

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequences in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.

  4. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1

    SciTech Connect

    Chen, Ling-Sing K.; Lo, C.F.; Numann, R.; Cuddy, M.

    1997-05-01

    Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na{sup +}/K{sup +}-ATPase {gamma} subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution. 34 refs., 4 figs.

  5. Evidence for a major retinitis pigmentosa locus on 19q13.4 (RP11) and association with a unique bimodal expressivity phenotype.

    PubMed Central

    Al-Maghtheh, M.; Vithana, E.; Tarttelin, E.; Jay, M.; Evans, K.; Moore, T.; Bhattacharya, S.; Inglehearn, C. F.

    1996-01-01

    Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (ARP), accounting for approximately 25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This "bimodal expressivity" contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus. PMID:8808602

  6. Twelve single nucleotide polymorphisms on chromosome 19q13.2-13.3: linkage disequilibria and associations with basal cell carcinoma in Danish psoriatic patients.

    PubMed

    Yin, Jiaoyang; Vogel, Ulla; Gerdes, Lars Ulrik; Dybdahl, Marianne; Bolund, Lars; Nexø, Bjørn Andersen

    2003-02-01

    The genetic susceptibility to basal cell carcinoma (BCC) among Danish psoriatic patients was investigated in association studies with 12 single nucleotide polymorphisms on chromosome 19q13.2-3. The results show a significant association between BCC and the A-allele of a polymorphism in ERCCI exon4 (Odds ratio 12;95% Confidence Interval 1.17-124; p(chi2, two-side) = 0.019) and to a lesser extent with XPD exon6 (p = 0.06). This is in accordance with recent studies of a different group of BCC cases (Rockenbauer et al. (in press) Carcinogenesis; Yin et al. (manuscript submitted for publication). Cancer Epidemiol. Biomarkers Prev), which places two highly influential markers between these two genes. The analysis also confirmed that considerable linkage disequilibrium exists between SNPs both within genes and between genes in this region. The combined studies suggest that genetic variation in nucleotide excision repair is of importance for the development of BCC.

  7. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1.

    PubMed

    Chen, L S; Lo, C F; Numann, R; Cuddy, M

    1997-05-01

    Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na+/K(+)-ATPase gamma subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution.

  8. Constitutional Ip36 deletion in a child with neuroblastoma

    SciTech Connect

    Biegel, J.A.; Zackai, E.H.; Scher, C.D.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia ); White, P.S.; Marshall, H.N.; Fujimori, Minoru; Brodeur, G.M. )

    1993-01-01

    The authors describe a child with dysmorphic features, as well as developmental and growth delay, who developed neuroblastoma at 5 mo of age. Cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 1p36.1 [r arrow] 1p36.2, which was apparent only with high-resolution banding. Molecular analysis with a collection of polymorphic DNA probes for 1p confirmed an interstitial deletion involving subbands of 1p36. Deletions of this region are a common finding in neuroblastoma cells from patients with advanced stages of disease. Therefore, these results (a) suggest that constitutional deletion of this region predisposed the patient to the development of neuroblastoma and (b) support the localization of a neuroblastoma tumor-suppressor locus to 1p36. 48 refs., 2 figs.

  9. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Migdal, Iwona; Migocka, Magdalena; Bocer, Tomasz; Wysocki, Robert

    2010-02-19

    The stress-activated kinase Hog1p mediates arsenic tolerance by decreasing arsenite influx through the aquaglyceroporin Fps1p in Saccharomyces cerevisiae. Unexpectedly, we found that overexpression of FPS1 increased arsenite tolerance suggesting a physiological role of Fps1p in arsenic detoxification. Consistently, during arsenite treatment transcription of FPS1 gene was strongly upregulated, while Fps1p was not degraded and remained localized to the plasma membrane. Moreover, deletion of FPS1 gene resulted in arsenate sensitivity. Finally, transport experiments revealed that Fps1p in concert with the arsenite transporter Acr3p mediates arsenite efflux.

  10. Activation of the Hog1p kinase in Isc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging.

    PubMed

    Barbosa, António Daniel; Graça, João; Mendes, Vanda; Chaves, Susana Rodrigues; Amorim, Maria Amélia; Mendes, Marta Vaz; Moradas-Ferreira, Pedro; Côrte-Real, Manuela; Costa, Vítor

    2012-05-01

    The Saccharomyces cerevisiae Isc1p, an orthologue of mammalian neutral sphingomyelinase 2, plays a key role in mitochondrial function, oxidative stress resistance and chronological lifespan. Isc1p functions upstream of the ceramide-activated protein phosphatase Sit4p through the modulation of ceramide levels. Here, we show that both ceramide and loss of Isc1p lead to the activation of Hog1p, the MAPK of the high osmolarity glycerol (HOG) pathway that is functionally related to mammalian p38 and JNK. The hydrogen peroxide sensitivity and premature aging of isc1Δ cells was partially suppressed by HOG1 deletion. Notably, Hog1p activation mediated the mitochondrial dysfunction and catalase A deficiency associated with oxidative stress sensitivity and premature aging of isc1Δ cells. Downstream of Hog1p, Isc1p deficiency activated the cell wall integrity (CWI) pathway. Deletion of the SLT2 gene, which encodes for the MAPK of the CWI pathway, was lethal in isc1Δ cells and this mutant strain was hypersensitive to cell wall stress. However, the phenotypes of isc1Δ cells were not associated with cell wall defects. Our findings support a role for Hog1p in the regulation of mitochondrial function and suggest that constitutive activation of Hog1p is deleterious for isc1Δ cells under oxidative stress conditions and during chronological aging. PMID:22445853

  11. hHSS1: a novel secreted factor and suppressor of glioma growth located at chromosome 19q13.33.

    PubMed

    Junes-Gill, Katiana S; Gallaher, Timothy K; Gluzman-Poltorak, Zoya; Miller, Joseph D; Wheeler, Christopher J; Fan, Xuemo; Basile, Lena A

    2011-04-01

    The completion of the Human Genome Project resulted in discovery of many unknown novel genes. This feat paved the way for the future development of novel therapeutics for the treatment of human disease based on novel biological functions and pathways. Towards this aim, we undertook a bioinformatics analysis of in-house microarray data derived from purified hematopoietic stem cell populations. This effort led to the discovery of HSS1 (Hematopoietic Signal peptide-containing Secreted 1) and its splice variant HSM1 (Hematopoietic Signal peptide-containing Membrane domain-containing 1). HSS1 gene is evolutionarily conserved across species, phyla and even kingdoms, including mammals, invertebrates and plants. Structural analysis showed no homology between HSS1 and known proteins or known protein domains, indicating that it was a truly novel protein. Interestingly, the human HSS1 (hHSS1) gene is located at chromosome 19q13.33, a genomic region implicated in various cancers, including malignant glioma. Stable expression of hHSS1 in glioma-derived A172 and U87 cell lines greatly reduced their proliferation rates compared to mock-transfected cells. hHSS1 expression significantly affected the malignant phenotype of U87 cells both in vitro and in vivo. Further, preliminary immunohistochemical analysis revealed an increase in hHSS1/HSM1 immunoreactivity in two out of four high-grade astrocytomas (glioblastoma multiforme, WHO IV) as compared to low expression in all four low-grade diffuse astrocytomas (WHO grade II). High-expression of hHSS1 in high-grade gliomas was further supported by microarray data, which indicated that mesenchymal subclass gliomas exclusively up-regulated hHSS1. Our data reveal that HSS1 is a truly novel protein defining a new class of secreted factors, and that it may have an important role in cancer, particularly glioma.

  12. Cloning of ELL, a gene that fuses to MLL in a t(11; 19)(q23; p13. 1) in acute myeloid leukemia

    SciTech Connect

    Thirman, M.J.; Levitan, D.A.; Kobayashi, H.; Simon, M.C.; Rowley, J.D. )

    1994-12-06

    To characterize the functions of MLL fusion transcripts, we cloned the gene that fuses to MLL in the translocation t(11;19)(q23;p13.1). This translocation is distinct from another type of 11;19 translocation with a 19p13.3 breakpoint that results in the fusion of MLL to the ENL gene. By PCR screening of a cDNA library prepared from a patient's leukemia cells with this translocation, we obtained a fusion transcript containing exon 7 of MLL and sequence of an unknown gene. The sequence of this gene was amplified and used as a probe to screen a fetal brain cDNA library. On Northern blot analysis, this cDNA detected a 4.4-kb transcript that was abundant in peripheral blood leukocytes, skeletal muscle, placenta, and testis and expressed at lower levels in spleen, thymus, heart, brain, lung, kidney, liver, and ovary. In addition, a 2.8-kb transcript was present in peripheral blood, testis, and placenta. On [open quotes]zoo blots,[close quotes] this gene was shown to be evolutionarily conserved in 10 mammalian species as well as in chicken, frog, and fish. We have named this gene ELL (for eleven-nineteen lysine-rich leukemia gene). A highly basic, lysine-rich motif of the predicted ELL protein is homologous to similar regions of several proteins, including the DNA-binding domain of poly(ADP-ribose) polymerase. The characterization of the normal functions of ELL as well as its altered function when fused to MLL will be critical to further our understanding of the mechanisms of leukemogenesis. 30 refs., 7 figs.

  13. RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.

    PubMed

    Orozco, Helena; Sepúlveda, Ana; Picazo, Cecilia; Matallana, Emilia; Aranda, Agustín

    2016-06-01

    Glycerol is a key yeast metabolite in winemaking because it contributes to improve the organoleptic properties of wine. It is also a cellular protective molecule that enhances the tolerance of yeasts to osmotic stress and promotes longevity. Thus, its production increases by genetic manipulation, which is of biotechnological and basic interest. Glycerol is produced by diverting glycolytic glyceraldehyde-3-phosphate through the action of glycerol-3-phosphate dehydrogenase (coded by genes GPD1 and GPD2). Here, we demonstrate that RNA-binding protein Pub1p regulates glycerol production by controlling Gpd1p activity. Its deletion does not alter GPD1 mRNA levels, but protein levels and enzymatic activity increase, which explains the higher intracellular glycerol concentration and greater tolerance to osmotic stress of the pub1∆ mutant. PUB1 deletion also enhances the activity of nicotinamidase, a longevity-promoting enzyme. Both enzymatic activities are partially located in peroxisomes, and we detected peroxisome formation during wine fermentation. The role of Pub1p in life span control depends on nutrient conditions and is related with the TOR pathway, and a major connection between RNA metabolism and the nutrient signaling response is established.

  14. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex.

    PubMed

    McGuire, Andrew T; Mangroo, Dev

    2012-02-01

    Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.

  15. A case of acute myeloid leukemia (AML) with an unreported combination of chromosomal abnormalities: gain of isochromosome 5p, tetrasomy 8 and unbalanced translocation der(19)t(17;19)(q23;p13)

    PubMed Central

    2013-01-01

    Background Acute myeloid leukemia (AML) comprises a spectrum of myeloid malignancies which are often associated with distinct chromosomal abnormalities, and the analysis of such abnormalities provides us with important information for disease classification, treatment selection and prognosis. Some chromosomal abnormalities albeit recurrent are rare such as tetrasomy 8 or isochromosome 5p. In addition, erratic chromosomal rearrangements may occur in AML, sometimes unbalanced and also accompanied by other abnormalities. Knowledge on the contribution of rare abnormalities to AML disease, progression and prognosis is limited. Here we report a unique case of acute monoblastic leukemia with gain of i(5)(p10), tetrasomy 8, an unbalanced translocation der(19)t(17;19)(q23;p13.3) and mutated NPM1. Results Bone marrow cells were examined by conventional karyotyping, fluorescence in situ hybridization (FISH) and mutation analysis at diagnosis and follow-up. At diagnosis we detected trisomy 8, an unbalanced translocation der(19)t(17;19)(q23;p13.3) and mutated NPM1. During the course of the disease we observed clonal evolution with gain of i(5)(p10), tetrasomy 8 and eventually duplication of der(19)t(17;19)(q23;p13.3). By using the der(19)t(17;19) as clonal marker, we found that i(5)(p10) and tetrasomy 8 were secondary genetic events and that tetrasomy 8 had clonally evolved from trisomy 8. Conclusions This case of acute monoblastic leukemia presents a combination of rare chromosomal abnormalities including the unbalanced translocation der(19)t(17;19)(q23;p13.3), hitherto un-reported in AML. In addition, our case supports the hypothesis of a step-wise clonal evolution from trisomy 8 to tetrasomy 8 in AML. Reporting and collecting data of rare chromosomal abnormalities will add information to AML disease, progression and prognosis, and may eventually translate to improved patient management. PMID:24079663

  16. Correlation of modified Shimada classification with MYCN and 1p36 status detected by fluorescence in situ hybridization in neuroblastoma.

    PubMed

    Altungoz, Oguz; Aygun, Nevim; Tumer, Sait; Ozer, Erdener; Olgun, Nur; Sakizli, Meral

    2007-01-15

    Neuroblastoma (NB) is a childhood cancer derived from neural crest cells, with a highly variable clinical course and biologic behavior. NB cells harbor complex genetic changes. Also, MYCN amplification is a well-known molecular marker for aggressive progression, and deletion of the short arm of chromosome 1 is frequently observed in NB. The aim of this study was to investigate the correlation between genetic markers and prognostic morphological parameters to address the biology and underlying the clinical complexity of NB. Therefore, we performed fluorescence in situ hybridization analyses of chromosome band 1p36 and MYCN in a series of tumors from 43 cases classified according to the recommendation of International Neuroblastoma Pathology Committee (modification of Shimada classification). The correlations of MYCN amplification status and two distinct types of 1p36 alterations (deletion and imbalance) with Shimada classification and histologic prognostic factors were statistically analyzed. Amplification of MYCN and 1p36 deletion was present in 14 (32.6%) and 18 (41.9%) cases, respectively. Sixteen cases (37.2%) displayed a favorable histology, while 27 (62.8%) had an unfavorable histology. The 1p36 deletion was found to be an independent predictor of unfavorable histology by multivariate analysis (logistic regression test, P = 0.03), but the 1p36 imbalance did not show any significance. Both 1p36 deletion and MYCN amplification showed significant correlation with undifferentiated tumors (chi-square test, P = 0.002 and 0.03, respectively). Highly significant correlation was found between the higher mitotic karyorrhectic index (MKI) and MYCN amplification (chi-square test, P < 0.001), whereas neither 1p36 deletion nor 1p36 imbalance significantly correlated with a higher MKI (chi-square test, P > 0.05). We conclude that 1p36 deletion may be a reliable parameter in determining unfavorable histology and predicting prognosis in NB. Further studies with prognostic data

  17. Monosomy 1p36 uncovers a role for OX40 in survival of activated CD4+ T cells.

    PubMed

    Suhoski, M M; Perez, E E; Heltzer, M L; Laney, A; Shaffer, L G; Saitta, S; Nachman, S; Spinner, N B; June, C H; Orange, J S

    2008-08-01

    Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in- situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4+ T cells, providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF costimulatory molecules in monosomy 1p36.

  18. Detection by fluorescence in situ hybridization of microdeletions at 1p36 in lymphomas, unidentified on cytogenetic analysis.

    PubMed

    Rajgopal, Achuthan; Carr, Ian M; Leek, Jack P; Hodge, Donald; Bell, Sandra M; Roberts, Paul; Horgan, Kieran; Bonthron, David T; Selby, Peter J; Markham, Alexander F; MacLennan, Kenneth A

    2003-04-01

    The chromosomal band 1p36 exhibits frequent loss of heterozygosity in a variety of human malignancies, suggesting the presence of an as yet unidentified tumor suppressor gene. The faint terminal subbands often make cytogenetic analysis of 1p36 particularly difficult. Small deletions at this locus may therefore escape detection on analysis by conventional cytogenetics, a hypothesis that we have explored using fluorescence in situ hybridization (FISH) in malignant lymphoma. The study cohort consisted of 20 cases of lymphoma of various subtypes without any 1p abnormality on G-banded karyotyping. FISH was performed using a human chromosome 1 paint and a bacterial artificial chromosome probe RP4-755G5 localizing to 1p36.33, the most telomeric subband of 1p36. Tumors demonstrating 1p36.33 deletions were additionally analyzed by FISH using a second probe from the proximal 1p36.1 subband, to further define the breakpoint. Eight cases of follicular lymphoma (FL), 5 diffuse large B-cell lymphomas (DLBCL), 2 Hodgkin disease, 2 B-cell small lymphocytic lymphomas, 2 T-cell lymphomas, and 1 marginal zone lymphoma were analyzed. FISH identified deletions at 1p36.33 in 5 of the 20 cases: 3 DLBCL and 2 FL. FISH is considerably more sensitive for identifying lymphoma genetic alterations than conventional cytogenetics. Deletion of the distal part of the 1p36 may be a much more common aberration than previously recognized in lymphoma.

  19. Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations.

    PubMed Central

    Pang, Q; Prolla, T A; Liskay, R M

    1997-01-01

    The MutL protein is an essential component of the Escherichia coli methyl-directed mismatch repair system but has no known enzymatic function. In the yeast Saccharomyces cerevisiae, the MutL equivalent, an Mlh1p and Pms1p heterodimer, interacts with Msh2p bound to mismatch-containing DNA. Little is known of the functional domains of Mlh1p and Pms1p. In this report, we define the Mlh1p and Pms1p domains required for Mlh1p-Pms1p interaction. The Mlh1p-interactive domain of Pms1p is comprised of 260 amino acids near the carboxyl terminus while the Pms1p-interactive domain of Mlh1p resides in the final 212 residues. The two domains are sufficient for Mlh1p-Pms1p interaction, as determined by the two-hybrid assay and by in vitro protein affinity chromatography. Deletions within the domains completely eliminated Mlh1p-Pms1p interaction. Using site-directed mutagenesis, we altered a number of highly conserved residues in the Mlh1p and Pms1p proteins, including some alterations that mimic germline mutations observed for human hereditary nonpolyposis colorectal cancer. Alterations either in the consensus MutL box located in the amino-terminal portion of each protein or in the carboxyl-terminal homology motif of Mlh1p eliminated DNA mismatch repair function but had no effect on Mlh1p-Pms1p interaction. In addition, certain MLH1 and PMS1 mutant alleles caused a dominant negative mutator effect when overexpressed. We discuss the implications of these findings for the structural organization of the Mlh1p and Pms1p proteins and the importance of Mlh1p-Pms1p interaction. PMID:9234704

  20. Partial monosomy of chromosome 1p36.3: A distinctive phenotype

    SciTech Connect

    Reish, O.; Berry, S.A.; King. R.A.

    1994-09-01

    We describe a series of five patients with a partial monosomy of 1p36.3 presenting with a similar syndromic appearance. The phenotype of deletion 1p36.3 patients includes abnormal facies, multiple congenital malformations, and mental retardation.The ages of the patients in our series ranged from 3 to 50 years. As the deletion is very small, detection in the present cases relied upon high resolution G-band analyses and was confirmed with FISH in cases 3 and 5. Patients 2 and 3 were diagnosed as adults; thus smaller deletions in 1p36.33 may be associated with longer life expectancy, but include the critical region for the above phenotype. We noted that the dysmorphic features of the patients are more prominent with older age and are difficult to appreciate in infancy. Observation of this specific 1p36 appears as a white, terminal G-band; detection of a small partial deletion or rearrangement may require greater than 550 band level resolution. FISH utilizing a probe to 1pter can facilitate and confirm these analyses.

  1. Vsl1p cooperates with Fsv1p for vacuolar protein transport and homotypic fusion in Schizosaccharomyces pombe.

    PubMed

    Hosomi, Akira; Higuchi, Yujiro; Yagi, Satoshi; Takegawa, Kaoru

    2015-01-01

    Members of the SNARE protein family participate in the docking-fusion step of several intracellular vesicular transport events. Saccharomyces cerevisiae Vam7p was identified as a SNARE protein that acts in vacuolar protein transport and membrane fusion. However, in Schizosaccharomyces pombe, there have been no reports regarding the counterpart of Vam7p. Here, we found that, although the SPCC594.06c gene has low similarity to Vam7p, the product of SPCC594.06c has a PX domain and SNARE motif like Vam7p, and thus we designated the gene Sch. pombe vsl1(+) (Vam7-like protein 1). The vsl1Δ cells showed no obvious defect in vacuolar protein transport. However, cells of the vsl1Δ mutant with a deletion of fsv1(+), which encodes another SNARE protein, displayed extreme defects in vacuolar protein transport and vacuolar morphology. Vsl1p was localized to the vacuolar membrane and prevacuolar compartment, and its PX domain was essential for proper localization. Expression of the fusion protein GFP-Vsl1p was able to suppress ZnCl2 sensitivity and the vacuolar protein sorting defect in the fsv1Δ cells. Moreover, GFP-Vsl1p was mislocalized in a pep12Δ mutant and in cells overexpressing fsv1(+). Importantly, overexpression of Sac. cerevisiae VAM7 could suppress the sensitivity to ZnCl2 of vsl1Δ cells and the vacuolar morphology defect of vsl1Δfsv1Δ cells in Sch. pombe. Taken together, these data suggest that Vsl1p and Fsv1p are required for vacuolar protein transport and membrane fusion, and they function cooperatively with Pep12p in the same membrane-trafficking step.

  2. Translocation involving 1p and 17q is a recurrent genetic alteration of human neuroblastoma cells

    SciTech Connect

    Savelyeva, L.; Corvi, R.; Schwab, M. )

    1994-08-01

    Human neuroblastoma cells often are monosomic for the distal portion of 1p (1p36). The authors report that the deleted 1p material in cells of neuroblastoma lines is preferentially replaced by material from chromosome 17, resulting from an unbalanced 1;17 translocation. Chromosome 17 often acquires instability, followed by the integration of fragments into various marker chromosomes. As a consequence, 17q material can increase over 17p material. The nonrandom frequency of 1;17 translocations appears to indicate an as-yet-undefined contribution to neuroblastoma development. 35 refs., 4 figs., 1 tab.

  3. Specialized Rap1p/Gcr1p Transcriptional Activation through Gcr1p DNA Contacts Requires Gcr2p, as Does Hyperphosphorylation of Gcr1p

    PubMed Central

    Zeng, X.; Deminoff, S. J.; Santangelo, G. M.

    1997-01-01

    The multifunctional regulatory factor Rap1p of Saccharomyces cerevisiae accomplishes one of its tasks, transcriptional activation, by complexing with Gcr1p. An unusual feature of this heteromeric complex is its apparent capacity to contact simultaneously two adjacent DNA elements (UAS(RPG) and the CT box, bound specifically by Rap1p and Gcr1p, respectively). The complex can activate transcription through isolated UAS(RPG) but not CT elements. In promoters that contain both DNA signals its activity is enhanced, provided the helical spacing between the two elements is appropriate; this suggests that at least transient DNA loop formation is involved. We show here that this CT box-dependent augmentation of Rap1p/Gcr1p activation requires the presence of a third protein Gcr2p; the Gcr2(-) growth defect appears to result from a genome-wide loss of the CT box effect. Interestingly, a hyperphosphorylated form of Gcr1p disappears in Δgcr2 cells but reappears if they harbor a doubly point-mutated GCR1 allele that bypasses the Gcr2(-) growth defect. Gcr2p therefore appears to induce a conformation change in Gcr1p and/or stimulate its hyperphosphorylation; one or both of these effects can be mimicked in the absence of GCR2 by mutation of GCR1. This improved view of Rap1p/Gcr1p/Gcr2p function reveals a new aspect of eukaryotic gene regulation: modification of an upstream activator, accompanied by at least transient DNA loop formation, mediates its improved capacity to activate transcription. PMID:9335588

  4. Carboxyarabinitol-1-P phosphatase of Phaseolus vulgaris

    SciTech Connect

    Kobza, J.; Moore, B.d.; Seemann, J.R. )

    1990-05-01

    The activity of carboxyarabinitol-1-P (CA1P) phosphatase was detected in clarified stromal extracts by the generation of {sup 14}C-carboxyarabinitol from {sup 14}C-CA1P. Carboxyribitol-1-P dependent activity was 3% of the CA1P dependent activity, indicating the enzyme was specific for CA1P. Inclusion of DTT in the assay was required for maximum velocity, but it appears that the enzyme is not regulated by thioredoxin in vivo. Activity o f the CA1P phosphatase was stimulated by RuBP, NADPH and FBP, though the latter two metabolites were required at nonphysiological concentrations in order to achieve significant stimulation. Contrary to a previous report on purified tobacco enzyme, ATP stimulated the CA1P phosphatase activity. In the presence of 1 mM RuBP or ATP, rates of 2 or 3 {mu}mol mg{sup {minus}1} Chl h{sup {minus}1}, respectively, were observed at 1 mM CA1P. These rates were 3-4 fold higher than the rate observed in the absence of effectors and are 2-4 times the in vivo rate of degradation of CA1P during dark/light transitions. The rates from bean were about 7 fold higher than rates reported for the enzyme from tobacco. Changes in the levels of ATP and RuBP associated with dark/light transitions could modulate the enzyme activity in vivo, but it remains to be established if this is the only mechanism for the required regulation of the enzyme.

  5. Assignment of the gene (UQCRFS1) for the Rieske iron-sulfur protein subunit of the mitochondrial cytochrome bc[sub 1] complex to the 22q13 and 19q12-q13. 1 regions of the human genome

    SciTech Connect

    Duncan, A.M.V.; Anderson, L. ); Duff, C.; Worton, R. ); Ozawa, Takayuki; Suzuki, Hiroshi ); Rozen, R. Montreal Children's Hospital )

    1994-05-01

    In this report, the authors used in situ hybridization and somatic cell hybrid mapping to localize the human gene for the Rieske iron-sulfur protein. The assignment of the gene for the Rieske iron-sulfur protein to human chromosomes 22q13 and 19q12-q13.1 confirms that it is encoded by the nuclear genome. The localization of four subunits of complex III to different human chromosomes - 8, 16, and 22/19 - precludes the existence of a gene cluster for this complex within the human genome. 9 refs., 2 figs., 1 tab.

  6. Neuropathology of brain and spinal malformations in a case of monosomy 1p36

    PubMed Central

    2013-01-01

    Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited “festooned” (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis. PMID:24252393

  7. Neuropathology of brain and spinal malformations in a case of monosomy 1p36.

    PubMed

    Shiba, Naoko; Daza, Ray A M; Shaffer, Lisa G; Barkovich, A James; Dobyns, William B; Hevner, Robert F

    2013-01-01

    Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited "festooned" (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis.

  8. Morbid obesity in a child with monosomy 1p36 syndrome

    PubMed Central

    Zagalo, Ana; Dias, Patricia; Pereira, Carla; Sampaio, Maria de Lurdes

    2012-01-01

    The monosomy 1p36 syndrome is a cause of syndromic obesity. It is characterised by psychomotor delay, hypotonia and typical craniofacial dysmorphism. Other features commonly associated are behavioural anomalies including hyperphagia and self-injuring, seizures, congenital heart disease and hypothyroidism. The authors report the case of a 9-year and 5-month-boy referred to the paediatric endocrinology clinics for morbid obesity. Clinical findings were generalised obesity with a body mass index >95th centile, acanthosis nigricans of the neck, arms with self inflicted lesions, deep-set eyes, straight eyebrows, broad nasal bridge and pointed chin. He was unable to walk and had no expressive language. Cytogenetic analysis identified 1p36.33-pter deletion (~139 Mb terminal deletion in chromosome 1 short arm) and Y chromosome duplication. The blood analysis showed insulin resistance and dyslipidaemia. The authors emphasise the need to consider monosomy 1p36 as a cause of severe psychomotor delay and obesity. PMID:22605691

  9. Morbid obesity in a child with monosomy 1p36 syndrome.

    PubMed

    Zagalo, Ana; Dias, Patricia; Pereira, Carla; Sampaio, Maria de Lurdes

    2012-01-01

    The monosomy 1p36 syndrome is a cause of syndromic obesity. It is characterised by psychomotor delay, hypotonia and typical craniofacial dysmorphism. Other features commonly associated are behavioural anomalies including hyperphagia and self-injuring, seizures, congenital heart disease and hypothyroidism. The authors report the case of a 9-year and 5-month-boy referred to the paediatric endocrinology clinics for morbid obesity. Clinical findings were generalised obesity with a body mass index >95th centile, acanthosis nigricans of the neck, arms with self inflicted lesions, deep-set eyes, straight eyebrows, broad nasal bridge and pointed chin. He was unable to walk and had no expressive language. Cytogenetic analysis identified 1p36.33-pter deletion (~139 Mb terminal deletion in chromosome 1 short arm) and Y chromosome duplication. The blood analysis showed insulin resistance and dyslipidaemia. The authors emphasise the need to consider monosomy 1p36 as a cause of severe psychomotor delay and obesity.

  10. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  11. Monosomy 1p36 - a multifaceted and still enigmatic syndrome: four clinically diverse cases with shared white matter abnormalities.

    PubMed

    Õiglane-Shlik, Eve; Puusepp, Sanna; Talvik, Inga; Vaher, Ulvi; Rein, Reet; Tammur, Pille; Reimand, Tiia; Teek, Rita; Žilina, Olga; Tomberg, Tiiu; Õunap, Katrin

    2014-05-01

    Monosomy 1p36 is the most common subtelomeric deletion syndrome seen in humans. Uniform features of the syndrome include early developmental delay and consequent intellectual disability, muscular hypotonia, and characteristic dysmorphic facial features. The gene-rich nature of the chromosomal band, inconsistent deletion sizes and overlapping clinical features have complicated relevant genotype-phenotype correlations. We describe four patients with isolated chromosome 1p36 deletions. All patients shared white matter abnormalities, allowing us to narrow the critical region for white matter involvement to the deletion size of up to 2.5 Mb from the telomere. We hypothesise that there might be a gene(s) responsible for myelin development in the 1p36 subtelomeric region. Other significant clinical findings were progressive spastic paraparesis, epileptic encephalopathy, various skeletal anomalies, Prader-Willi-like phenotype, neoplastic changes - a haemangioma and a benign skin tumour, and in one case, sleep myoclonus, a clinical entity not previously described in association with 1p36 monosomy. Combined with prior studies, our results suggest that the clinical features seen in monosomy 1p36 have more complex causes than a classical contiguous gene deletion syndrome.

  12. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects.

    PubMed

    Varela, Monica Castro; Kok, Fernando; Otto, Paulo Alberto; Koiffmann, Celia Priszkulnik

    2004-12-01

    Angelman syndrome (AS) can result from either a 15q11-q13 deletion (del), paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. Here, we describe the phenotypic and behavioral variability detected in 49 patients with different classes of deletions and nine patients with UPD. Diagnosis was made by methylation pattern analysis of exon 1 of the SNRPN-SNURF gene and by microsatellite profiling of loci within and outside the 15q11-q13 region. There were no major phenotypic differences between the two main classes (BP1-BP3; BP2-BP3) of AS deletion patients, except for the absence of vocalization, more prevalent in patients with BP1-BP3 deletions, and for the age of sitting without support, which was lower in patients with BP2-BP3 deletions. Our data suggest that gene deletions (NIPA1, NIPA2, CYF1P1, GCP5) mapped to the region between breakpoints BP1 and BP2 may be involved in the severity of speech impairment, since all BP1-BP3 deletion patients showed complete absence of vocalization, while 38.1% of the BP2-BP3 deletion patients were able to pronounce syllabic sounds, with doubtful meaning. Compared to UPD patients, deletion patients presented a higher incidence of swallowing disorders (73.9% del x 22.2% UPD) and hypotonia (73.3% del x 28.57% UPD). In addition, children with UPD showed better physical growth, fewer or no seizures, a lower incidence of microcephaly, less ataxia and higher cognitive skills. As a consequence of their milder or less typical phenotype, AS may remain undiagnosed, leading to an overall underdiagnosis of the disease.

  13. The role of Schizosaccharomyces pombe DNA repair enzymes Apn1p and Uve1p in the base excision repair of apurinic/apyrimidinic sites

    SciTech Connect

    Tanihigashi, Haruna; Yamada, Ayako; Igawa, Emi; Ikeda, Shogo . E-mail: ikeda@dbc.ous.ac.jp

    2006-09-08

    In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-{alpha},{beta}-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1{delta} cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1{delta} cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2{delta} cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1{delta} and apn2{delta} cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.

  14. Extending the phenotype of monosomy 1p36 syndrome and mapping of a critical region for obesity and hyperphagia.

    PubMed

    D'Angelo, Carla S; Kohl, Ilana; Varela, Monica Castro; de Castro, Cláudia I E; Kim, Chong A; Bertola, Débora R; Lourenço, Charles M; Koiffmann, Célia P

    2010-01-01

    Rearrangements of 1p36 are the most frequently detected abnormalities in diagnostic testing for chromosomal cryptic imbalances and include variably sized simple terminal deletions, derivative chromosomes, interstitial deletions, and complex rearrangements. These rearrangements result in the specific pattern of malformation and neurodevelopmental disabilities that characterizes monosomy 1p36 syndrome. Thus far, no individual gene within this region has been conclusively determined to be causative of any component of the phenotype. Nor is it known if the rearrangements convey phenotypes via a haploinsufficiency mechanism or through a position effect. We have used multiplex ligation-dependent probe amplification to screen for deletions of 1p36 in a group of 154 hyperphagic and overweight/obese, PWS negative individuals, and in a separate group of 83 patients initially sent to investigate a variety of other conditions. The strategy allowed the identification and delineation of rearrangements in nine subjects with a wide spectrum of clinical presentations. Our work reinforces the association of monosomy 1p36 and obesity and hyperphagia, and further suggests that these features may be associated with non-classical manifestations of this disorder in addition to a submicroscopic deletion of approximately 2-3 Mb in size. Multiplex ligation probe amplification using the monosomy 1p36 syndrome-specific kit coupled to the subtelomeric kit is an effective approach to identify and delineate rearrangements at 1p36.

  15. Histone chaperone Chz1p regulates H2B ubiquitination and subtelomeric anti-silencing

    PubMed Central

    Wan, Yakun; Chiang, Jung-Hsien; Lin, Chan-Hsien; Arens, Christina E.; Saleem, Ramsey A.; Smith, Jennifer J.; Aitchison, John D.

    2010-01-01

    Chz1p is a histone chaperone that interacts physically and functionally with the histone variant Htz1p, which has been implicated in establishing and maintaining boundaries between transcriptionally inactive heterochromatin and active euchromatin. To investigate the role of Chz1p in chromatin organization, we performed genome-wide expression arrays and chromatin immunoprecipitations of SIR complex components and modified histones in a CHZ1 deletion strain. Deletion of CHZ1 led to reduced ubiquitination of subtelomere-associated H2B, reduced subtelomeric H3K79 di-methylation, and increased binding of Sir3p, and Sir4p at telomere-distal euchromatin regions, correlating with decreased gene expression in subtelomeric regions. This anti-silencing defect appears to be mediated by enhanced association of de-ubiquitinase Ubp10p with subtelomeric DNA, as detected by chromatin immunoprecipitation analysis. In support of this, we show that deletion of UBP10 can antagonize the subtelomeric silencing phenotype of Δchz1. Taken together, the results demonstrate a novel role for Chz1p in epigenetic regulation, through H2B de-ubiquitination by Ubp10p. PMID:20008511

  16. Gef1p, a New Guanine Nucleotide Exchange Factor for Cdc42p, Regulates Polarity in Schizosaccharomyces pombe

    PubMed Central

    Coll, Pedro M.; Trillo, Yadira; Ametzazurra, Amagoia; Perez, Pilar

    2003-01-01

    Schizosaccharomyces pombe cdc42+ regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1+ increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1+ causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1+ deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1Δ scd1Δ is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1+ or scd1+ causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed. PMID:12529446

  17. Identification of benzoxazole analogs as novel, S1P(3) sparing S1P(1) agonists.

    PubMed

    Deng, Guanghui; Meng, Qinghua; Liu, Qian; Xu, Xuesong; Xu, Qiongfeng; Ren, Feng; Guo, Taylor B; Lu, Hongtao; Xiang, Jia-Ning; Elliott, John D; Lin, Xichen

    2012-06-15

    A novel series of benzoxazole-derived S1P(1) agonists were designed based on scaffold hopping molecular design strategy combined with computational approaches. Extensive SAR studies led to the discovery of compound 17d as a selective S1P(1) agonist (over S1P(3)) with high CNS penetration and favorable DMPK properties. 17d also demonstrated in vivo pharmacological efficacy to reduce blood lymphocyte in mice after oral administration.

  18. Partial monosomy of chromosome 1p36.3: Characterization of the critical region and delineation of a syndrome

    SciTech Connect

    Reish, O.; Berry, S.A.; Hirsch, B.

    1995-12-04

    We describe 5 patients ranging in age from 3 to 47 years, with karyotypic abnormalities resulting in monosomy for portion of 1p36.3, microcephaly, mental retardation, prominent forehead, deep-set eyes, depressed nasal bridge, flat midface, relative prognathism, and abnormal ears. Four patients have small hands and feet. All exhibited selfabusive behavior. Additional findings in some of the patients include brain anomalies, optic atrophy, hearing loss and skeletal deformities. The breakpoints within chromosome 1 were designated at 1p36.31 (3 cases), 1p36.32 (1 case) and 1p36.33 (1 case). Thus, the smallest region of deletion overlap is 1p36.33{r_arrow}pter. Detection of the abnormal 1 relied on high resolution G-band analysis. Fluorescence in situ hybridization (FISH) utilizing a DNA probe (Oncor D1Z2) containing the repetitive sequences in distal 1p36, confirmed a deletion of one 1 homologue in all 5 cases. The abnormal 1 resulted from a de novo deletion in only one patient. The remaining patients were either confirmed (3 cases) or suspected (1 case) to have unbalanced translocations. Despite the additional genetic imbalance present in these four cases, monosomy of 1p36.33 appears to be responsible for a specific clinical phenotype. Characterization of this phenotype should assist in the clinical diagnosis of this chromosome abnormality. 26 refs., 4 figs., 2 tabs.

  19. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  20. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  1. Genetic Evidence for Involvement of Neuronally Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain

    PubMed Central

    Mair, Norbert; Benetti, Camilla; Andratsch, Manfred; Leitner, Michael G.; Constantin, Cristina E.; Camprubí-Robles, Maria; Quarta, Serena; Biasio, Wolfgang; Kuner, Rohini; Gibbins, Ian L.; Kress, Michaela; Haberberger, Rainer V.

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation. PMID:21359147

  2. Bet1p activates the v-SNARE Bos1p.

    PubMed Central

    Stone, S; Sacher, M; Mao, Y; Carr, C; Lyons, P; Quinn, A M; Ferro-Novick, S

    1997-01-01

    Bet1p is a type II membrane protein that is required for vesicular transport between the endoplasmic reticulum and Golgi complex in the yeast Saccharomyces cerevisiae. A domain of Bet1p, that shows potential to be involved in a coiled-coil interaction, is homologous to a region of the neuronal protein SNAP-25. Here, we used in vitro binding studies to demonstrate that Bet1p plays a role in potentiating soluble NSF attachment protein receptor (SNARE) interactions. Mutational analysis points to the coiled-coil region as necessary for Bet1p function, and circular dichroism experiments support this theory. In vitro binding studies were also used to demonstrate that a direct interaction between Bet1p and Bos1p is required for the efficient interaction of the vesicle SNARE with its SNARE target. Genetic studies suggest that the interactions of Bet1p with Bos1p are regulated by the small GTP-binding protein Ypt1p. Images PMID:9243499

  3. Dynamic, Rho1p-dependent localization of Pkc1p to sites of polarized growth.

    PubMed

    Andrews, P D; Stark, M J

    2000-08-01

    In eukaryotes, the Rho GTPases and their effectors are key regulators of the actin cytoskeleton, membrane trafficking and secretion, cell growth, cell cycle progression and cytokinesis. Budding yeast Pkc1p, a protein kinase C-like enzyme involved in cell wall biosynthesis and cytoskeletal polarity, is structurally and functionally related to the Rho-associated kinases (PRK/ROCK) of mammalian cells. In this study, localization of Pkc1p was monitored in live cells using a GFP fusion (Pkc1p-GFP). Pkc1p-GFP showed dynamic spatial and temporal localization at sites of polarized growth. Early in the cell cycle, Pkc1p-GFP was found at the pre-bud site and bud tips, becoming delocalized as the cell progressed further and finally relocalizing around the mother-daughter bud neck in an incomplete ring, which persisted until cell separation. Bud localization was actin-dependent but stability of Pkc1p-GFP at the neck was actin-independent, although localization at both sites required functional Rho1p. In addition, Pkc1p-GFP showed rapid relocalization after cell wall damage. These results suggest that the roles of Pkc1p in both polarized growth and the response to cell wall stress are mediated by dynamic changes in its localization, and suggest an additional potential role in cytokinesis.

  4. Prolidase Deficiency in a Mexican-American Patient Identified by Array CGH Reveals a Novel and the Largest PEPD Gene Deletion

    PubMed Central

    Hintze, Jonathan P.; Kirby, Amelia; Torti, Erin; Batanian, Jacqueline R.

    2016-01-01

    Prolidase deficiency (PD) is a rare genetic disorder caused by mutations in the peptidase D (PEPD) gene, affecting collagen degradation. Features include lower extremity ulcers, facial dysmorphism, frequent respiratory infections, and intellectual disability, though there is significant intra- and interfamilial variability. Twenty-eight mutations have been previously reported, all either small deletions/duplications or point mutations discovered by enzyme or DNA assays. PD has been reported in patients of various ethnic backgrounds, but never in the Mexican-American population. We describe the first Mexican-American patient with PD, who presented with typical facial features, developmental delay, microcephaly, and xerosis. Chromosome microarray analysis (CMA) revealed a homozygous deletion in the region of 19q13.11, estimated to be between 124.79 and 195.72 kb in size, representing the largest PEPD gene deletion reported to date and the first discovered by CMA. PMID:27385964

  5. Prolidase Deficiency in a Mexican-American Patient Identified by Array CGH Reveals a Novel and the Largest PEPD Gene Deletion.

    PubMed

    Hintze, Jonathan P; Kirby, Amelia; Torti, Erin; Batanian, Jacqueline R

    2016-05-01

    Prolidase deficiency (PD) is a rare genetic disorder caused by mutations in the peptidase D (PEPD) gene, affecting collagen degradation. Features include lower extremity ulcers, facial dysmorphism, frequent respiratory infections, and intellectual disability, though there is significant intra- and interfamilial variability. Twenty-eight mutations have been previously reported, all either small deletions/duplications or point mutations discovered by enzyme or DNA assays. PD has been reported in patients of various ethnic backgrounds, but never in the Mexican-American population. We describe the first Mexican-American patient with PD, who presented with typical facial features, developmental delay, microcephaly, and xerosis. Chromosome microarray analysis (CMA) revealed a homozygous deletion in the region of 19q13.11, estimated to be between 124.79 and 195.72 kb in size, representing the largest PEPD gene deletion reported to date and the first discovered by CMA. PMID:27385964

  6. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    SciTech Connect

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  7. 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours.

    PubMed

    Lo Vasco, Vincenza Rita

    2011-07-01

    Deletions in the distal region of the short arm of chromosome 1 (1p36) are widely diffuse, both in congenital 1p36 Deletion Syndrome and as somatic abnormalities in tumours. Rearrangements in 1p36 have been described in a broad spectrum of human neoplasias in addition to other chromosomal abnormalities. In neuroblastomas, wide hemizygous deletions in 1p36.23-1p36.32 have been described suggesting that the 1p36 region contains a tumour-suppressor gene involved in malignancy. A role for phosphoinositide (PI)-specific phospholipase C (PLC) η2, whose gene maps on 1p36.32, was suggested. PI-PLC η2 belongs to a family of enzymes related to the phosphoinositide signalling pathway, which provide an important intracellular signalling system involved in a variety of cell functions such as hormone secretion, neurotransmitter signal transduction, cell growth, membrane trafficking, ion channel activity, regulation of the cytoskeleton, cell cycle control and apoptosis. Expression of PI-PLC η2 occurs after birth and continues throughout the life. Synapse formation occurs during a short period of postnatal development. Thus, it is likely that PI-PLC η2 acts in formation and maintenance of the neuronal network in the brain. The fact that PI-PLC η2, a highly neuron-specific isozyme, is abundantly expressed in the postnatal brain suggests the importance of PI-PLC η2 in formation and maintenance of the neuronal network in the postnatal brain. Further studies are required to verify the possible involvement of PI-PLC η2 mutation/deletion in central nervous tumour tissues presenting abnormalities of the 1p36 chromosomal band.

  8. The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response

    PubMed Central

    Johnson, Cole; Kweon, Hye Kyong; Sheidy, Daniel; Shively, Christian A.; Mellacheruvu, Dattatreya; Nesvizhskii, Alexey I.; Andrews, Philip C.; Kumar, Anuj

    2014-01-01

    The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans. PMID:24603354

  9. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time

    PubMed Central

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T.

    2014-01-01

    ABSTRACT The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1+, a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  10. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time.

    PubMed

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T

    2014-01-01

    The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1(+), a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  11. Reporter mRNAs cleaved by Rnt1p are exported and degraded in the cytoplasm

    PubMed Central

    Meaux, Stacie; Lavoie, Mathieu; Gagnon, Jules; Abou Elela, Sherif; van Hoof, Ambro

    2011-01-01

    For most protein coding genes, termination of transcription by RNA polymerase II is preceded by an endonucleolytic cleavage of the nascent transcript. The 3′ product of this cleavage is rapidly degraded via the 5′ exoribonuclease Rat1p which is thought to destabilize the RNA polymerase II complex. It is not clear whether RNA cleavage is sufficient to trigger nuclear RNA degradation and transcription termination or whether the fate of the RNA depends on additional elements. For most mRNAs, this cleavage is mediated by the cleavage and polyadenylation machinery, but it can also be mediated by Rnt1p. We show that Rnt1p cleavage of an mRNA is not sufficient to trigger nuclear degradation or transcription termination. Insertion of an Rnt1p target site into a reporter mRNA did not block transcription downstream of the cleavage site, but instead produced two unstable cleavage products, neither of which were stabilized by inactivation of Rat1p. In contrast, the 3′ and 5′ cleavage products were stabilized by the deletion of the cytoplasmic 5′ exoribonuclease (Xrn1p) or by inactivation of the cytoplasmic RNA exosome. These data indicate that transcription termination and nuclear degradation is not the default fate of cleaved RNAs and that specific promoter and/or sequence elements are required to determine the fate of the cleavage products. PMID:21821655

  12. The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion.

    PubMed

    Qiu, Quan-Sheng; Fratti, Rutilio A

    2010-10-01

    Nhx1p is a Na(+)(K(+))/H(+) antiporter localized at the vacuolar membrane of the yeast Saccharomyces cerevisiae. Nhx1p regulates the acidification of cytosol and vacuole lumen, and is involved in membrane traffic from late endosomes to the vacuole. Deletion of the gene leads to aberrant vacuolar morphology and defective vacuolar protein sorting. These phenotypes are hallmarks of malfunctioning vacuole homeostasis and indicate that membrane fusion is probably altered. Here, we investigated the role of Nhx1p in the regulation of homotypic vacuole fusion. Vacuoles isolated from nhx1Δ yeast showed attenuated fusion. Assays configured to differentiate between the first round of fusion and ongoing rounds showed that nhx1Δ vacuoles were only defective in the first round of fusion, suggesting that Nhx1p regulates an early step in the pathway. Although fusion was impaired on nhx1Δ vacuoles, SNARE complex formation was indistinguishable from wild-type vacuoles. Fusion could be rescued by adding the soluble SNARE Vam7p. However, Vam7p only activated the first round of nhx1Δ vacuole fusion. Once fusion was initiated, nhx1Δ vacuoles appeared behave in a wild-type manner. Complementation studies showed that ion transport function was required for Nhx1p-mediated support of fusion. In addition, the weak base chloroquine restored nhx1Δ fusion to wild-type levels. Together, these data indicate that Nhx1p regulates the initiation of fusion by controlling vacuole lumen pH.

  13. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  14. Regional chromosomal assignments for four members of the myocyte-specific enhancer-binding factor 2 (MEF2) gene family to human chromosomes 15q, 19q, 5q, and 1q

    SciTech Connect

    Hobson, G.M.; Funanage, V.L.; Krahe, R.

    1994-09-01

    MEF2 genes belong to the MADS box family of transcription factors and encode proteins that bind as homo- and heterodimers to a consensus CTA(T/A){sub 4}TAG/A sequence present in the regulatory regions of numerous muscle-specific and growth inducible genes. Sequence analysis of human MEF2 cDNA clones suggested that they arose from alternatively spliced transcripts of four different genes, termed MEF2A-D. We have mapped the MEF2 genes to human chromosomal regions by identifying unique sequences in the 5{prime} or 3{prime} untranslated regions of each clone and using these sequences as PCR primers on the DNA of a human-rodent hybrid clone panel informative for different regions of the human genome. The localization of MEF2A to chromosome 15q, MEF2B to 19q, MEF2C to 5q, and MEF2D to 1q verifies the existence of at least four distinct loci for members of this gene family. The same PCR primers were used to identify individual YAC clones for each gene. Such isolated clones are now being used for fluorescence in situ hybridization for high resolution chromosomal regional assignment.

  15. Cometary gas relations 1P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos R.

    Photographic and photoelectric observations of comet 1P/Halley's ionised gas coma from CO+ at 4,250 Å and neutral gas coma from CN at 3,880 Å were part of the Bochum Halley Monitoring Program, conducted at the European Southern Observatory, La Silla, Chile, from February 17 to April 17, 1986. In this spectral range it is possible to see the continuum formation, motion and expansion of plasma and neutral gas structures. To observe the morphology of these structures, 32 CO+ photos (glass plates) from comet 1P/Halley obtained by means of an interference filter have been analysed. They have a field of view of 28.6 × 28.6 degrees and were obtained from March 29 to April 17, 1986 with exposure times between 20 and 120 minutes. All photos were digitised with a PDS 2020 GM microdensitometer. After digitisation, the data were reduced to relative intensities, and those with proper calibrations were also converted to absolute intensities, expressed in terms of column densities. The CO+ absolute intensity values still contain the continuum intensity. To calculate the CO+ column density it is necessary to subtract this continuum intensity. The relations between CO+ and CN in average column density values (NCO+/NCN) are 11.6 for a circular diaphragm with average diameter (Φ) of 6.1 arcminutes which corresponds to a distance from the nucleus (ρ) equal to 6.3 × 104 km; 20.0 for Φ = 7.1 arcminutes and ρ = 7.3 × 104 km; 8.1 for Φ = 8.5 arcminutes and ρ = 8.7 × 104 km; 35.6 for Φ = 11.9 arcminutes and ρ = 1.2 × 105 km; and 31.3 for Φ = 16.7 arcminutes and ρ = 1.7 × 105 km. These values are in perfect agreement with the data for short distances (ρ from 3.9 × 103 to 1.2 × 104 km) and small slit diameters (Φ from 0.4 to 1.2 arcminutes). With the use of diaphragms with large diameters it is possible to get some information about the outer coma of the comet (in this paper, from 60,000 until 170,000 km away from the nucleus). At these distances, the CO+ column density

  16. Carbon Source-dependent assembly of the Snf1p kinase complex in Candida albicans.

    PubMed

    Corvey, Carsten; Koetter, Peter; Beckhaus, Tobias; Hack, Jeremy; Hofmann, Sandra; Hampel, Martin; Stein, Torsten; Karas, Michael; Entian, Karl-Dieter

    2005-07-01

    The Snf1p/AMP-activated kinases are involved in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1p (Cat1p) is one of the key regulators of carbohydrate metabolism, and cat1 (snf1) mutants fail to grow with non-fermentable carbon sources. In Candida albicans, Snf1p is an essential protein and cells depend on a functional Snf1 kinase even with glucose as carbon source. We investigated the CaSnf1p complex after tandem affinity purification and mass spectrometric analysis and show that the complex composition changes with the carbon source provided. Three subunits were identified, one of which was named CaSnf4p because of its homology to the ScSnf4 protein and the respective CaSNF4 gene could complement a S. cerevisiae snf4 mutant. The other two proteins revealed similarities to the S. cerevisiae kinase beta subunits ScGal83p, ScSip2p, and ScSip1p. Both genes complemented the scaffold function in a S. cerevisiae gal83,sip1,sip2 triple deletion mutant and were named according to their scaffold function as CaKIS1p and CaKIS2p. Matrix-assisted laser desorption ionization peptide mass fingerprint analysis indicated that CaKis2p is N-terminal myristoylated and the incorporation of CaKis2p in the Snf1p complex was reduced when compared with cells grown with glucose as a carbon source. To verify the different complex assemblies, a stable isotope labeling technique (iTraqtrade mark) was employed, confirming a 3-fold decrease of CaKis2p with ethanol. Yeast two-hybrid analysis confirmed the interaction partners, and these results showed an activator domain for the CaKis2 protein that has not been reported for S. cerevisiae scaffold subunits.

  17. Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p

    PubMed Central

    Schüffler, Anja

    2016-01-01

    Abstract BACKGROUND The histidine kinase (HK) MoHik1p within the high‐osmolarity glycerol (HOG) pathway is known to be the target of the fungicide fludioxonil. Treatment of the fungus with fludioxonil causes an uncontrolled hyperactivation of the pathway and cell death. In this study, we used a target‐based in vivo test system with mutant strains of the rice blast fungus Magnaporthe oryzae to search for new fungicidal compounds having various target locations within the HOG pathway. Mutants with inactivated HOG signalling are resistant to fungicides having the target located in the HOG pathway. RESULTS The HK MoSln1p was identified as being involved in the new antifungal mode of action of marasmic acid, as single inactivation of the genes MoSLN1, MoSSK1, MoSSK2, MoPBS2 and MoHOG1 resulted in mutant strains resistant against the sesquiterpenoid, whereas the wild‐type strain and the ΔMohik1 mutant were susceptible. Western blot analysis of phosphorylated MoHog1p confirmed the hypothesis that marasmic acid interferes with the HOG pathway, as a strong phosphorylation of MoHog1p was detectable after sesquiterpenoid treatment in the wild‐type strain but not in the ΔMosln1 mutant. CONCLUSION This study provides evidence for marasmic acid activating the HOG pathway via the HK MoSln1p, and we propose that the sesquiterpenoid has a new mode of action in M. oryzae that differs from that of known HOG inhibitors, e.g. fludioxonil. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26888741

  18. Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies.

    PubMed

    Duhoux, Francois P; Ameye, Geneviève; Lambot, Virginie; Herens, Christian; Lambert, Frédéric; Raynaud, Sophie; Wlodarska, Iwona; Michaux, Lucienne; Roche-Lestienne, Catherine; Labis, Elise; Taviaux, Sylvie; Chapiro, Elise; Nguyen-Khac, Florence; Khac, Florence Nguyen; Struski, Stéphanie; Dobbelstein, Sophie; Dastugue, Nicole; Lippert, Eric; Speleman, Frank; Van Roy, Nadine; De Weer, An; Rack, Katrina; Talmant, Pascaline; Richebourg, Steven; Mugneret, Francine; Tigaud, Isabelle; Mozziconacci, Marie-Joëlle; Laibe, Sophy; Nadal, Nathalie; Terré, Christine; Libouton, Jeanne-Marie; Decottignies, Anabelle; Vikkula, Miikka; Poirel, Hélène A

    2011-01-01

    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis.

  19. Cch1p mediates Ca2+ influx to protect Saccharomyces cerevisiae against eugenol toxicity.

    PubMed

    Roberts, Stephen K; McAinsh, Martin; Widdicks, Lisa

    2012-01-01

    Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+) elevations. We investigated the eugenol Ca(2+) signature in further detail and show that exponentially growing cells exhibit Ca(2+) elevation resulting exclusively from the influx of Ca(2+) across the plasma membrane whereas in stationary growth phase cells Ca(2+) influx from intracellular and extracellular sources contribute to the eugenol-induced Ca(2+) elevation. Ca(2+) channel deletion yeast mutants were used to identify the pathways mediating Ca(2+) influx; intracellular Ca(2+) release was mediated by the vacuolar Ca(2+) channel, Yvc1p, whereas the Ca(2+) influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca(2+) channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca(2+) elevations. Taken together, these results indicate that a cch1p-mediated Ca(2+) influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies.

  20. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion.

    PubMed

    Sasser, Terry; Qiu, Quan-Sheng; Karunakaran, Surya; Padolina, Mark; Reyes, Anna; Flood, Blake; Smith, Sheena; Gonzales, Chad; Fratti, Rutilio A

    2012-01-13

    Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of PAH1 was sufficient to cause marked vacuole fragmentation and abolish vacuole fusion. The function of Pah1p solely depended on its phosphatase activity as complementation studies showed that wild type Pah1p restored fusion, whereas the phosphatase dead mutant Pah1p(D398E) had no effect. We discovered that the lack of PA phosphatase activity blocked fusion by inhibiting the binding of SNAREs to Sec18p, an N-ethylmaleimide-sensitive factor homologue responsible for priming inactive cis-SNARE complexes. In addition, pah1Δ vacuoles were devoid of the late endosome/vacuolar Rab Ypt7p, the phosphatidylinositol 3-kinase Vps34p, and Vps39p, a subunit of the HOPS (homotypic fusion and vacuole protein sorting) tethering complex, all of which are required for vacuole fusion. The lack of Vps34p resulted in the absence of phosphatidylinositol 3-phosphate, a lipid required for SNARE activity and vacuole fusion. These findings demonstrate that Pah1p and PA phosphatase activity are critical for vacuole homeostasis and fusion.

  1. Combined Dup(7)(q22.1q32.2), Inv(7)(q31.31q31.33), and Ins(7;19)(q22.1;p13.2p13.2) in a 12-year-old boy with developmental delay and various dysmorphism.

    PubMed

    Frühmesser, Anne; Erdel, Martin; Duba, Hans-Christoph; Fauth, Christine; Amberger, Albert; Utermann, Gerd; Zschocke, Johannes; Kotzot, Dieter

    2013-07-01

    De novo combined duplications/inversions are very rare chromosomal rearrangements. For chromosome 7 just some dozen cases of duplications of various parts of the long arm have been published. We report on a 12-year-old boy with muscular hypotonia, global developmental delay, short stature, and various facial dysmorphism including frontal bossing, temporal narrowing, slightly down-slanting palpebral fissures, a broad nasal root, a long philtrum, a thin and tented upper lip, a drooping lower lip, micrognathia, prominent ears, a short neck, and a low posterior hairline. Karyotype analysis and molecular investigations revealed a complex de novo chromosomal rearrangement on 7q. FISH analysis with locus specific YACs and BACs and SNP array with the Illumina(®) HumanOmni1-Quad v1.0 BeadChip disclosed a direct duplication in the long arm of chromosome 7 (q22.1→q32.2) and an inversion located at the breakpoint between the two copies of the duplication (q31.31→q31.33). In addition, breakpoint characterization at the molecular level revealed a 386 bp insertion carrying two Alu elements of chromosome 19p13.2 between the two copies of the duplication. By a comparison of the SNP haplotypes of the derivative chromosome of the patient and both parents a two-step formation during spermatogenesis was suggested as the most likely mechanism of formation. PMID:23608969

  2. The yeast ATP-binding cassette (ABC) transporter Ycf1p enhances the recruitment of the soluble SNARE Vam7p to vacuoles for efficient membrane fusion.

    PubMed

    Sasser, Terry L; Lawrence, Gus; Karunakaran, Surya; Brown, Christopher; Fratti, Rutilio A

    2013-06-21

    The Saccharomyces cerevisiae vacuole contains five ATP-binding cassette class C (ABCC) transporters, including Ycf1p, a family member that was originally characterized as a Cd(2+) transporter. Ycf1p has also been found to physically interact with a wide array of proteins, including factors that regulate vacuole homeostasis. In this study, we examined the role of Ycf1p and other ABCC transporters in the regulation of vacuole homotypic fusion. We found that deletion of YCF1 attenuated in vitro vacuole fusion by up to 40% relative to wild-type vacuoles. Plasmid-expressed wild-type Ycf1p rescued the deletion phenotype; however, Ycf1p containing a mutation of the conserved Lys-669 to Met in the Walker A box of the first nucleotide-binding domain (Ycf1p(K669M)) was unable to complement the fusion defect of ycf1Δ vacuoles. This indicates that the ATPase activity of Ycf1p is required for its function in regulating fusion. In addition, we found that deleting YCF1 caused a striking decrease in vacuolar levels of the soluble SNARE Vam7p, whereas total cellular levels were not altered. The attenuated fusion of ycf1Δ vacuoles was rescued by the addition of recombinant Vam7p to in vitro experiments. Thus, Ycf1p contributes in the recruitment of Vam7p to the vacuole for efficient membrane fusion.

  3. Interaction of Pik1p and Sjl proteins in membrane trafficking.

    PubMed

    Nguyen, Peter H; Hasek, Jiri; Kohlwein, Sepp D; Romero, Carlos; Choi, Jae H; Vancura, Ales

    2005-02-01

    Phosphatidylinositol (PtdIns) phosphates are involved in signal transduction, cytoskeletal organization, and membrane traffic. PtdIns 4-phosphate [PtdIns(4)P], produced in yeast by PtdIns 4-kinase (Pik1p), appears to regulate Golgi secretory function. PtdIns(4)P is also produced by dephosphorylation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], catalyzed by one of the three yeast Sjl proteins, homologs of the mammalian synaptic vesicle-associated PtdIns(4,5)P2 5-phosphatase, synaptojanin. To determine whether Pik1p and Sjl proteins operate in the same pathway or regulate the same process, we used a genetic approach. Mutation in the PIK1 gene displays synthetic genetic interactions with deletions of individual SJL genes. Deletion of SJL3 gene is synthetically lethal with pik1ts, and deletions of SJL1 or SJL2 genes in pik1ts cells exacerbate the temperature sensitivity, neomycin sensitivity, and defect in invertase secretion. A diminished level of PtdIns(4)P and increased level of PtdIns(4,5)P2 in pik1(ts)sjl1delta and pik1(ts)sjl2delta cells, compared with pik1ts cells, indicate that PtdIns(4)P is specifically required for secretion. Collectively, our results suggest that Pik1p and the Sjl proteins coordinately function to regulate the dynamic phosphorylation-dephosphorylation of the polar heads of phosphoinositides, and this process appears to be important for membrane trafficking pathways.

  4. The IPP gene is assigned to human chromosome 1p32-1p22

    SciTech Connect

    Chang-Yeh, A.; Huang, R.C.C. ); Jabs, E.W.; Li, Xiang ); Dracopoli, N.C. )

    1993-01-01

    We previously reported the isolation and characterization of a novel mouse gene that is promoted by an intracisternal A-particle (IAP) LTR and is expressed in placental tissue (mouse IAP-promoted placenta gene, Ipp). Based on restriction fragment length polymorphism (RFLP) studies using inbred strains and recombinant inbred (RI) mice, we have established the linkage between the Ipp gene and several loci on distal mouse chromosome 4. In this publication, we report the partial sequence of a human cDNA clone isolated from a human placental library that has 83% identity to the 3[prime]region of the Ipp cDNA. For human chromosome mapping, two 20-base oligonucleotides within the homologous region were used as primers for polymerase chain reactions (PCR) to chromosome-specific DNAs from two somatic cell hybrid panels and several hybrid cell lines carrying breakpoints on human chromosome 1p. We have assigned this human homolog of the Ipp (IPP) gene to chromosome 1 at 1p32-1p22, based on analysis of PCR products. With this assignment, the homology between mouse chromosome 4 and human chromosome 1 is maintained (5). 7 refs., 1 fig.

  5. Exogenous S1P Exposure Potentiates Ischemic Stroke Damage That Is Reduced Possibly by Inhibiting S1P Receptor Signaling

    PubMed Central

    Moon, Eunjung; Han, Jeong Eun; Jeon, Sejin; Ryu, Jong Hoon; Choi, Ji Woong; Chun, Jerold

    2015-01-01

    Initial and recurrent stroke produces central nervous system (CNS) damage, involving neuroinflammation. Receptor-mediated S1P signaling can influence neuroinflammation and has been implicated in cerebral ischemia through effects on the immune system. However, S1P-mediated events also occur within the brain itself where its roles during stroke have been less well studied. Here we investigated the involvement of S1P signaling in initial and recurrent stroke by using a transient middle cerebral artery occlusion/reperfusion (M/R) model combined with analyses of S1P signaling. Gene expression for S1P receptors and involved enzymes was altered during M/R, supporting changes in S1P signaling. Direct S1P microinjection into the normal CNS induced neuroglial activation, implicating S1P-initiated neuroinflammatory responses that resembled CNS changes seen during initial M/R challenge. Moreover, S1P microinjection combined with M/R potentiated brain damage, approximating a model for recurrent stroke dependent on S1P and suggesting that reduction in S1P signaling could ameliorate stroke damage. Delivery of FTY720 that removes S1P signaling with chronic exposure reduced damage in both initial and S1P-potentiated M/R-challenged brain, while reducing stroke markers like TNF-α. These results implicate direct S1P CNS signaling in the etiology of initial and recurrent stroke that can be therapeutically accessed by S1P modulators acting within the brain. PMID:26576074

  6. Flocculation in Saccharomyces cerevisiae is regulated by RNA/DNA helicase Sen1p.

    PubMed

    Singh, Vikash; Azad, Gajendra Kumar; Sariki, Santhosh Kumar; Tomar, Raghuvir S

    2015-10-01

    The Nrd1-Nab3-Sen1 (NNS) complex terminates transcription of non-coding RNA genes and mediates degradation of the produced transcript by the nuclear exosome. The NNS complex also represses some stress response genes, by stimulating premature termination. A well-characterized stress response in yeast is flocculation, where cells aggregate to form flocs under expression of lectin-encoding genes designated as FLOs. In this study, we demonstrated the role of the NNS complex and Rrp6p in the expression of flocculation genes: FLO1, FLO5, FLO9, and FLO10. Furthermore, a deletion mutant of the RNA processing machinery (RNT1), and SEN1 mutants that are unable to interact with Rnt1p, exhibit a flocculation phenotype. In summary, we have identified a cooperative role of Rnt1p, Rrp6p and the NNS complex in the repression of FLO genes.

  7. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    SciTech Connect

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  8. Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton

    PubMed Central

    Behrens, Ralf; Nurse, Paul

    2002-01-01

    The cylindrical shape of the fission yeast cell is generated by linear polarized growth from its cell ends. Using immunofluorescence and live imaging microscopy, we have investigated the roles of the cell end marker tea1p in generating linear polarized growth. We found that tea1p is primarily transported on plus ends of microtubules from the vicinity of the nucleus to the cell ends, and that its movement near the nucleus is independent of the kinesin tea2p. Deletion analysis identified a coiled-coil domain in tea1p essential for its retention at cell ends, and demonstrated that tea1p exerts different functions dependent on its location. On the tips of microtubules, tea1p prevents the curling of microtubules around the cell ends, whereas it is required for maintaining linear cell growth and for retention of polarity factors such as the Dyrk kinase pom1p, the CLIP170-like tip1p, and tea2p at the cell ends. We propose that tea1p has roles in organizing the microtubule cytoskeleton on the tips of microtubules, and in the retention of factors at the cell ends necessary for the cell to grow in a straight line. PMID:12034771

  9. The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae.

    PubMed

    Jandrositz, Anita; Petschnigg, Julia; Zimmermann, Robert; Natter, Klaus; Scholze, Hubert; Hermetter, Albin; Kohlwein, Sepp D; Leber, Regina

    2005-06-15

    Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.

  10. Ebstein anomaly: Genetic heterogeneity and association with microdeletions 1p36 and 8p23.1.

    PubMed

    Digilio, Maria Cristina; Bernardini, Laura; Lepri, Francesca; Giuffrida, Maria Grazia; Guida, Valentina; Baban, Anwar; Versacci, Paolo; Capolino, Rossella; Torres, Barbara; De Luca, Alessandro; Novelli, Antonio; Marino, Bruno; Dallapiccola, Bruno

    2011-09-01

    Ebstein anomaly is an uncommon congenital heart defect (CHD), characterized by downward displacement of the tricuspid valve into the right ventricle. To uncover the genetic associations with Ebstein anomaly, we have searched chromosomal imbalances using standard cytogenetic and array-CGH analysis, and single gene conditions associated with syndromic Ebstein anomaly (with extracardiac anomalies), and screened GATA4 and NKX2.5 mutations in nonsyndromic patients (without extracardiac anomalies). Between January 1997 and September 2009, 44 consecutive patients with Ebstein anomaly were evaluated in two centers of Pediatric Cardiology. Ebstein anomaly was syndromic in 12 (27%) patients, and nonsyndromic in 32 (73%). A recognizable syndrome or complex was diagnosed by clinical criteria in seven patients. In one syndromic patient an 18q deletion was diagnosed by standard cytogenetic analysis. Array-CGH analysis performed in 10 of the 12 syndromic patients detected an interstitial deletion of about 4 Mb at 8p23.1 in one patient, and a deletion 1pter > 1p36.32/dup Xpter- > Xp22.32 in another patient. In the 28 of 32 nonsyndromic patients who underwent molecular testing, no mutation in GATA4 and NKX2.5 genes were detected. We conclude that Ebstein anomaly is a genetically heterogeneous defect, and that deletion 1p36 and deletion 8p23.1 are the most frequent chromosomal imbalances associated with Ebstein anomaly. Candidate genes include the GATA4 gene (in patients with del 8p23.1), NKX2.5 (based on published patients with isolated Ebstein anomaly) and a hypothetical gene in patients with del 1p36).

  11. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies.

    PubMed

    Gamba, Bruno Faulin; Richieri-Costa, Antônio; Costa, Silvia; Rosenberg, Carla; Ribeiro-Bicudo, Lucilene Arilho

    2015-12-01

    Terminal deletion in the short arm of chromosome 1 results in a disorder described as 1p36 deletion syndrome. The resulting phenotype varies among patients including mental retardation, developmental delay, sensorineural hearing loss, seizures, heart defects, and distinct facies. In the present case, we performed array-comparative genomic hybridization in a boy with multiple congenital malformations presenting some features overlapping the 1p36 deletion phenotype for whom chromosomal analysis did not reveal a terminal deletion in 1p. Results showed complex chromosome rearrangements involving the 1p36.33-p35.3 region. While the mechanism of origin of these rearrangements is still unclear, chromothripsis-a single catastrophic event leading to shattering chromosomes or chromosome regions and rejoining of the segments-has been described to occur in a fraction of cancers. The presence of at least 12 clustered breaks at 1p and apparent lack of mosaicism in the present case suggests that a single event like chromothripsis occurred. This finding suggests that chromothripsis is responsible for some constitutive complex chromosome rearrangements.

  12. RAP1GA1: A candidate tumor suppressor locus in 1p36.1

    SciTech Connect

    Ranade, K.; Hussussian, C.J.; Higgins, P.

    1994-09-01

    The rap1/Krev-1 gene (RAP1A) encodes a p21-related protein that suppresses transformation by activated p21{sup ras}. The GTPase activating protein (GAP) gene for p21{sup rap1A} (RAP1GA1) has recently been assigned to chromosome 1p36.1-p35, a region of the genome that is frequently involved in deletions and rearrangements in several different tumors including breast, colon and hepatocellular carcinomas, melanoma, and neuroblastoma. GAP genes negatively regulate the activity of p21 proteins by catalyzing the conversion of the active GTP-bound forms to the inactive GDP-bound forms. The physiological function of p21{sup rap1A}-GAP makes it a strong candidate as a tumor suppressor gene that may have a role in the development of one or more of these malignancies. We have refined the localization of RAP1GA1 by linkage analysis with a highly informative (CA){sub n} repeat contained within the gene, and demonstrated that it is within the minimal deleted region for breast and colon carcinomas, and that it is excluded from the minimally deleted region in melanoma and neuroblastoma. Genetic mapping in the mouse demonstrated that Rap1ga1 is located {approximately}10 cM proximal to Pnd and therefore maps within the interval containing the modifier of Min gene (Mom-1) and the plasmocytoma susceptibility locus (Pcts). The human RAP1GA1 gene contains at least 27 exons. The coding region contains 22 exons, and there are at least five 5{prime}-UT exons that are assembled in a complex pattern of alternative splicing in different tissues. The localization of RAP1GA1 makes it a very strong candidate for a role as a modifier gene involved in the common secondary abnormalities involving 1p36 in several different carcinomas. The potential role of RAP1GA1 in these malignancies is currently being investigated by sequence analysis of breast and colon carcinomas with loss of heterozygosity in 1p36.

  13. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation

    PubMed Central

    Galvani, Sylvain; Sanson, Marie; Blaho, Victoria A.; Swendeman, Steven L.; Obinata, Hideru; Conger, Heather; Dahlbäck, Björn; Kono, Mari; Proia, Richard L.; Smith, Jonathan D.; Hla, Timothy

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1P1) is abundant in endothelial cells, where it regulates vascular development and microvascular barrier function. In investigating the role of endothelial cell S1P1 in adult mice, we found that the endothelial S1P1 signal was enhanced in regions of the arterial vasculature experiencing inflammation. The abundance of proinflammatory adhesion proteins, such as ICAM-1, was enhanced in mice with endothelial cell–specific deletion of S1pr1 and suppressed in mice with endothelial cell–specific overexpression of S1pr1, suggesting a protective function of S1P1 in vascular disease. The chaperones ApoM+HDL (HDL) or albumin bind to sphingosine 1-phosphate (S1P) in the circulation; therefore, we tested the effects of S1P bound to each chaperone on S1P1 signaling in cultured human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to ApoM+HDL-S1P, but not to albumin-S1P, promoted the formation of a cell surface S1P1–β-arrestin 2 complex and attenuated the ability of the proinflammatory cytokine TNFα to activate NF-κB and increase ICAM-1 abundance. Although S1P bound to either chaperone induced MAPK activation, albumin-S1P triggered greater Gi activation and receptor endocytosis. Endothelial cell–specific deletion of S1pr1 in the hypercholesterolemic Apoe−/− mouse model of atherosclerosis enhanced atherosclerotic lesion formation in the descending aorta. We propose that the ability of ApoM+HDL to act as a biased agonist on S1P1 inhibits vascular inflammation, which may partially explain the cardiovascular protective functions of HDL. PMID:26268607

  14. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  15. Phospholipase C interacts with Sgd1p and is required for expression of GPD1 and osmoresistance in Saccharomyces cerevisiae.

    PubMed

    Lin, H; Nguyen, P; Vancura, A

    2002-05-01

    The Saccharomyces cerevisiae PLC1 gene encodes a homolog of the delta isoform of mammalian phosphoinositide-specific phospholipase C. Cells deleted for PLC1 ( plc1Delta) are viable, but display several phenotypes, including osmotic, temperature, and nocodazole sensitivity. We have used a two-hybrid screen to identify Plc1p-interacting proteins. One of the interacting proteins found was Sgd1p, a recently identified, essential, nuclear protein. The SGD1 gene was originally cloned by complementation of an osmostress-sensitive mutant. The Plc1p-Sgd1p interaction was confirmed biochemically by affinity chromatography. SGD1 interacts genetically with both PLC1 and HOG1 (which encodes an osmosensing mitogen-activated protein kinase). Overexpression of Sgd1p suppresses the temperature sensitivity of cells bearing the plc1-4 allele, and the double mutant strain plc1Delta sgd1-1 displays enhanced temperature and nocodazole sensitivity. The plc1Delta hog1Delta strain displays increased osmosensitivity, and has a synthetic defect in glycerol synthesis and the expression of GPD1 (which encodes the enzyme glycerol 3-phosphate dehydrogenase that is involved in glycerol biosynthesis), suggesting that Plc1p and Hog1p function in independent pathways. The hog1Delta sgd1-1 double mutant displays enhanced osmosensitivity relative to that of either single mutant. The triple mutant plc1Delta hog1Delta sgd1-1 is inviable, while the plc1Delta hog1Delta sgd1-2 strain grows extremely slowly and is more osmosensitive than the plc1Delta hog1Delta or hog1Delta sgd1-2 strain. These results are consistent with a model in which Plc1p and Hog1p function in parallel pathways affecting osmoregulation, and signals from both these pathways converge, at least partly, on Sgd1p.

  16. The topology of the Lcb1p subunit of yeast serine palmitoyltransferase.

    PubMed

    Han, Gongshe; Gable, Ken; Yan, Lianying; Natarajan, Mukil; Krishnamurthy, Jayasree; Gupta, Sita D; Borovitskaya, Anna; Harmon, Jeffrey M; Dunn, Teresa M

    2004-12-17

    The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of approximately 60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the alpha-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum. PMID:15485854

  17. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae.

    PubMed

    Kobor, M S; Simon, L D; Omichinski, J; Zhong, G; Archambault, J; Greenblatt, J

    2000-10-01

    Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo. PMID:11003641

  18. A Motif Shared by TFIIF and TFIIB Mediates Their Interaction with the RNA Polymerase II Carboxy-Terminal Domain Phosphatase Fcp1p in Saccharomyces cerevisiae

    PubMed Central

    Kobor, Michael S.; Simon, Lisa D.; Omichinski, Jim; Zhong, Guoqing; Archambault, Jacques; Greenblatt, Jack

    2000-01-01

    Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo. PMID:11003641

  19. A Novel Microdeletion in 1(p34.2p34.3), Involving the "SLC2A1" ("GLUT1") Gene, and Severe Delayed Development

    ERIC Educational Resources Information Center

    Vermeer, Sascha; Koolen, David A; Visser, Gepke; Brackel, Hein J. L.; van der Burgt, Ineke; de Leeuw, Nicole; Willemsen, Michel A. A. P.; Sistermans, Erik A.; Pfundt, Rolph; de Vries, Bert B. A.

    2007-01-01

    A "de novo" 4.1-megabase microdeletion of chromosome 1p34.2p34.3 has been identified by array-based comparative genomic hybridization in a young male with severely delayed development, microcephaly, pronounced hypotonia, and facial dysmorphism. The deleted region encompasses 48 genes, among them the glucose transporter 1 ("SLC2A1" or "GLUT1")…

  20. The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation

    PubMed Central

    Sasser, Terry L.; Padolina, Mark; Fratti, Rutilio A.

    2013-01-01

    Ybt1p is a class C ABC transporter (ATP-binding cassette transporter) that is localized to the vacuole of Saccharomyces cerevisiae. Although Ybt1p was originally identified as a bile acid transporter, it has also been found to function in other capacities, including the translocation of phosphatidylcholine to the vacuole lumen, and the regulation of Ca2+ homoeostasis. In the present study we found that deletion of YBT1 enhanced in vitro homotypic vacuole fusion by up to 50 % relative to wild-type vacuoles. The increased vacuole fusion was not due to aberrant protein sorting of SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) or recruitment of factors from the cytosol such as Ypt7p and the HOPS (homotypic fusion and vacuole protein sorting) tethering complex. In addition, ybt1Δ vacuoles displayed no observable differences in the formation of SNARE complexes, interactions between SNAREs and HOPS, or formation of vertex microdomains. However, the absence of Ybt1p caused significant changes in Ca2+ transport during fusion. One difference was the prolonged Ca2+ influx exhibited by ybt1Δ vacuoles at the start of the fusion reaction. We also observed a striking delay in SNARE-dependent Ca2+ efflux. As vacuole fusion can be inhibited by high Ca2+ concentrations, we suggest that the delayed efflux in ybt1Δ vacuoles leads to the enhanced SNARE function. PMID:22970809

  1. Cap1p attenuates the apoptosis of Candida albicans.

    PubMed

    Dai, Bao-Di; Wang, Yan; Zhao, Lan-Xue; Li, De-Dong; Li, Ming-Bang; Cao, Yong-Bing; Jiang, Yuan-Ying

    2013-06-01

    Candida albicans is the most common opportunistic fungal pathogen and its apoptosis is inducible by environmental stress. Based on our previous finding that transcription factor Cap1p was involved in baicalein-induced apoptosis, the present study aimed to further clarify the role of Cap1p in apoptosis by observing the impact of CAP1 deletion on cell fate. It was found that apoptotic stimulation with amphotericin B, acetic acid and hydrogen peroxide increased the number of apoptotic and necrotic cells, caspase activity and the accumulation of reactive oxygen species, whereas it decreased the mitochondrial membrane potential and intracellular ATP level in the cap1Δ/Δ mutant. The cell fate was, at least partly, caused by glutathione depletion and attenuation of the expression of the glutathione reductase gene in the cap1Δ/Δ mutant. Collectively, our data suggest that Cap1p participated in the apoptosis of C. albicans by regulating the expression of the glutathione reductase gene and glutathione content. PMID:23517286

  2. Clinicopathologic Features of Pediatric Oligodendrogliomas

    PubMed Central

    Rodriguez, Fausto J.; Tihan, Tarik; Lin, Doris; McDonald, William; Nigro, Janice; Feuerstein, Burt; Jackson, Sadhana; Cohen, Kenneth; Burger, Peter C.

    2015-01-01

    Oligodendrogliomas are an important adult form of diffuse gliomas with a distinctive clinical and genetic profile. Histologically similar tumors occurring rarely in children are incompletely characterized. We studied 50 patients with oligodendrogliomas (median age at diagnosis 8 y, range 7mo to 20 y). Tumors resembling dysembryoplastic neuroepithelial tumors or pilocytic astrocytomas or those having a “mixed” histology were excluded. Tumors at first diagnosis were low grade (n=38) or anaplastic (n=12). Histologic features included uniform round cells with perinuclear halos (100%), secondary structures (predominantly perineuronal satellitosis) (90%), calcifications (46%), and microcysts (44%). Sequential surgical specimens were obtained in 8 low-grade oligodendroglioma patients, with only 1 progressing to anaplasia. Studies for 1p19q performed in 40 cases demonstrated intact 1p19q loci in 29 (73%), 1p19q codeletion in 10 (25%), and 1p deletion with intact 19q in 1 (2%). Except for 2 young patients (3 and 11 y of age), patients with 1p19q codeletion were older than 16 years at diagnosis. Mutant IDH1 (R132H) protein immunohistochemistry was positive in 4 (of 22) (18%) cases, 3 of which also had 1p19q codeletion, whereas 1p19q status was not available on the fourth case. There was a nonsignificant trend for worse overall survival in grade III tumors, but no significant association with age, extent of resection, or 1p19q status. In summary, oligodendrogliomas with classic histology occur in the pediatric population but lack 1p19q codeletion and IDH1 (R132H) mutations in most instances. They are predominantly low grade, recur/clinically progress in a subset, but demonstrate a relatively low frequency of histologic progression. PMID:24805856

  3. Structural Characterization of Tip20p and Dsl1p, Subunits of the Dsl1p Vesicle Tethering Complex

    SciTech Connect

    Tripathi, A.; Ren, Y; Jeffrey, P; Hughson, F

    2009-01-01

    Multisubunit tethering complexes are essential for intracellular trafficking and have been proposed to mediate the initial interaction between vesicles and the membranes with which they fuse. Here we report initial structural characterization of the Dsl1p complex, whose three subunits are essential for trafficking from the Golgi apparatus to the endoplasmic reticulum (ER). Crystal structures reveal that two of the three subunits, Tip20p and Dsl1p, resemble known subunits of the exocyst complex, establishing a structural connection among several multisubunit tethering complexes and implying that many of their subunits are derived from a common progenitor. We show, moreover, that Tip20p and Dsl1p interact directly via N-terminal alpha-helices. Finally, we establish that different Dsl1p complex subunits bind independently to different ER SNARE proteins. Our results map out two alternative protein-interaction networks capable of tethering COPI-coated vesicles, via the Dsl1p complex, to ER membranes.

  4. Familial partial duplication (1)(p21p31)

    SciTech Connect

    Hoechstetter, L.; Soukup, S.; Schorry, E.K.

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  5. Jen1p: A High Affinity Selenite Transporter in Yeast

    PubMed Central

    McDermott, Joseph R.; Rosen, Barry P.

    2010-01-01

    Selenium is a micronutrient in most eukaryotes, including humans, which is well known for having an extremely thin border between beneficial and toxic concentrations. Soluble tetravalent selenite is the predominant environmental form and also the form that is applied in the treatment of human diseases. To acquire this nutrient from low environmental concentrations as well as to avoid toxicity, a well-controlled transport system is required. Here we report that Jen1p, a proton-coupled monocarboxylate transporter in S. cerevisiae, catalyzes high-affinity uptake of selenite. Disruption of JEN1 resulted in selenite resistance, and overexpression resulted in selenite hypersensitivity. Transport assay showed that overexpression of Jen1p enables selenite accumulation in yeast compared with a JEN1 knock out strain, indicating the Jen1p transporter facilitates selenite accumulation inside cells. Selenite uptake by Jen1p had a Km of 0.91 mM, which is comparable to the Km for lactate. Jen1p transported selenite in a proton-dependent manner which resembles the transport mechanism for lactate. In addition, selenite and lactate can inhibit the transport of each other competitively. Therefore, we postulate selenite is a molecular mimic of monocarboxylates which allows selenite to be transported by Jen1p. PMID:20861301

  6. Measurement of CA1P and CA in leaves

    SciTech Connect

    Moore, B.d.; Kobza, J.; Seemann, J.R. )

    1990-05-01

    Carboxyarabinitol-1-phosphate (CA1P) and carboxyarabinitol (CA) were assayed in leaves by isotope dilution. {sup 14}C-labeled standards were synthesized from (2-{sup 14}C) CABP using acid (CA1P) or alkaline (CA) phosphatase. Either was added to boiling 80% EtOH along with liquid N{sub 2}-killed leaves. Each was largely purified by anion exchange chromatography. CA1P samples were subjected to 2D-TLE/TLC. The specific activity of the {sup 14}C-containing spot was measured using alkaline phosphatase. CA samples were run on an HPLC and the specific activity was determined using a UV monitor and a flow-through radioisotope detector. In 3 of the tested species, light/dark amount of CA1P (nmol/mg Chl) were kidney bean, 0.7/67; sugar beet, 0.8/33; and Alocasia, 0/3.4. Light/dark CA levels (nmol/mg Chl) in these respective species were 897/653, 3.2/3.5, and 5.7/4.6. These results support the hypothesis that CA is a product of CA1P metabolism in vivo under high light, but also indicate that CA is not the only intermediate involved in CA1P synthesis under low light/dark conditions.

  7. CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells.

    PubMed

    Henrich, Kai-Oliver; Bauer, Tobias; Schulte, Johannes; Ehemann, Volker; Deubzer, Hedwig; Gogolin, Sina; Muth, Daniel; Fischer, Matthias; Benner, Axel; König, Rainer; Schwab, Manfred; Westermann, Frank

    2011-04-15

    A distal portion of human chromosome 1p is often deleted in neuroblastomas and other cancers and it is generally assumed that this region harbors one or more tumor suppressor genes. In neuroblastoma, a 261 kb region at 1p36.3 that encompasses the smallest region of consistent deletion pinpoints the locus for calmodulin binding transcription activator 1 (CAMTA1). Low CAMTA1 expression is an independent predictor of poor outcome in multivariate survival analysis, but its potential functionality in neuroblastoma has not been explored. In this study, we used inducible cell models to analyze the impact of CAMTA1 on neuroblastoma biology. In neuroblastoma cells that expressed little endogenous CAMTA1, its ectopic expression slowed cell proliferation, increasing the relative proportion of cells in G(1)/G(0) phases of the cell cycle, inhibited anchorage-independent colony formation, and suppressed the growth of tumor xenografts. CAMTA1 also induced neurite-like processes and markers of neuronal differentiation in neuroblastoma cells. Further, retinoic acid and other differentiation- inducing stimuli upregulated CAMTA1 expression in neuroblastoma cells. Transciptome analysis revealed 683 genes regulated on CAMTA1 induction and gene ontology analysis identified genes consistent with CAMTA1-induced phenotypes, with a significant enrichment for genes involved in neuronal function and differentiation. Our findings define properties of CAMTA1 in growth suppression and neuronal differentiation that support its assignment as a 1p36 tumor suppressor gene in neuroblastoma.

  8. Saccharomyces cerevisiae Ndc1p Is a Shared Component of Nuclear Pore Complexes and Spindle Pole Bodies

    PubMed Central

    Chial, Heidi J.; Rout, Michael P.; Giddings, Thomas H.; Winey, Mark

    1998-01-01

    We report a novel connection between nuclear pore complexes (NPCs) and spindle pole bodies (SPBs) revealed by our studies of the Saccharomyces cerevisiae NDC1 gene. Although both NPCs and SPBs are embedded in the nuclear envelope (NE) in yeast, their known functions are quite distinct. Previous work demonstrated that NDC1 function is required for proper SPB duplication (Winey, M., M.A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. J. Cell Biol. 122:743–751). Here, we show that Ndc1p is a membrane protein of the NE that localizes to both NPCs and SPBs. Indirect immunofluorescence microscopy shows that Ndc1p displays punctate, nuclear peripheral localization that colocalizes with a known NPC component, Nup49p. Additionally, distinct spots of Ndc1p localization colocalize with a known SPB component, Spc42p. Immunoelectron microscopy shows that Ndc1p localizes to the regions of NPCs and SPBs that interact with the NE. The NPCs in ndc1-1 mutant cells appear to function normally at the nonpermissive temperature. Finally, we have found that a deletion of POM152, which encodes an abundant but nonessential nucleoporin, suppresses the SPB duplication defect associated with a mutation in the NDC1 gene. We show that Ndc1p is a shared component of NPCs and SPBs and propose a shared function in the assembly of these organelles into the NE. PMID:9864355

  9. The Mtm1p carrier and pyridoxal 5′-phosphate cofactor trafficking in yeast mitochondria *

    PubMed Central

    Whittaker, Mei M.; Penmatsa, Aravind; Whittaker, James W.

    2015-01-01

    Biochemical communication between the cytoplasmic and mitochondrial subsystems of the cell depends on solute carriers in the mitochondrial inner membrane that transport metabolites between the two compartments. We have expressed and purified a yeast mitochondrial carrier protein (Mtm1p, YGR257cp), originally identified as a manganese ion carrier, for biochemical characterization aimed at resolving its function. High affinity, stoichiometric pyridoxal 5′-phosphate (PLP) cofactor binding was characterized by fluorescence titration and calorimetry, and the biochemical effects of mtm1 gene deletion on yeast mitochondria were investigated. The PLP status of the mitochondrial proteome (the mitochondrial ‘PLP-ome’) was probed by immunoblot analysis of mitochondria isolated from wild type (MTM1+) and knockout (MTM1−) yeast, revealing depletion of mitochondrial PLP in the latter. A direct activity assay of the enzyme catalyzing the first committed step of heme biosynthesis, the PLP-dependent mitochondrial enzyme 5-aminolevulinate synthase, extends these results, providing a specific example of PLP cofactor limitation. Together, these experiments support a role for Mtm1p in mitochondrial PLP trafficking and highlight the link between PLP cofactor transport and iron metabolism, a remarkable illustration of metabolic integration. PMID:25637770

  10. Inhibition of the Formation of the Spf1p Phosphoenzyme by Ca2.

    PubMed

    Corradi, Gerardo R; Czysezon, Nicolas A; Mazzitelli, Luciana R; Sarbia, Nicolas; Adamo, Hugo P

    2016-04-01

    P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeastSaccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg(2+), and EGTA. Low concentrations of Ca(2+)in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn(2+)nor Mg(2+)had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca(2+) TheKmfor ATP in the phosphorylation reaction was ∼1 μmand did not significantly change in the presence of Ca(2+) Half-maximal phosphorylation was attained at 8 μmMg(2+), but higher concentrations partially protected from Ca(2+)inhibition. In conditions similar to those used for phosphorylation, Ca(2+)had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle. PMID:26858246

  11. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes

    PubMed Central

    Crisp, Robert J; Adkins, Erika M; Kimmel, Emily; Kaplan, Jerry

    2006-01-01

    In the budding yeast Saccharomyces cerevisiae, transcription of genes encoding for the high-affinity iron (FET3, FTR1) and copper (CTR1) transporters does not occur in the absence of heme. We show that the Aft1p binding region of the FET3 promoter or the Mac1p binding region of the CTR1 promoter is necessary and sufficient to mediate heme-deficient repression. Transcription is repressed in the absence of heme, and a genetic screen identified Tup1p and Hda1p as being required for transcriptional repression. In contrast to FET3 and CTR1, Aft1p target genes ARN1 and FIT1 are transcribed in the absence of heme. A 14 bp sequence in the ARN1 promoter is necessary and sufficient to permit transcription in the absence of heme. Transcription in the absence of heme required the presence of Cti6p to overcome the effect of Tup1p, and Cti6p was recruited to the ARN1 promoter in the absence of heme. We hypothesize that transcription of the siderophore transporter ARN1 permits yeast to accumulate iron in the absence of oxygen and to deny iron to competing organisms. PMID:16437160

  12. Genetics Home Reference: 18q deletion syndrome

    MedlinePlus

    ... Veltman JA, van Ravenswaaij-Arts CM. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array ... L, Pihko H. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am J Med ...

  13. Multimodal Assessment of Protein Functional Deficiency Supports Pathogenicity of BRCA1 p.V1688del

    PubMed Central

    De Nicolo, Arcangela; Parisini, Emilio; Zhong, Quan; Palma, Maurizia Dalla; Stoeckert, Kathryn A.; Domchek, Susan M.; Nathanson, Katherine L.; Caligo, Maria A.; Vidal, Marc; Cusick, Michael E.; Garber, Judy E.

    2009-01-01

    Unequivocal discrimination between neutral variants and deleterious mutations is crucial for appropriate counseling of individuals with a BRCA1 or BRCA2 sequence change. An increasing number of variants of uncertain significance (VUSs) are being identified, whose unclassified biological effect poses clinical concerns. A multifactorial likelihood-based approach recently suggested disease causality for BRCA1 p.V1688del, a VUS recurrent in Italian breast/ovarian cancer families. Whether and how this single amino acid deletion in the BRCA1 BRCT domain affects the function of the mutant protein (ΔValBRCA1) has not been elucidated. We undertook comprehensive functional characterization of ΔValBRCA1, comprising comparative structural modeling, analysis of protein stability and associations, and analysis of DNA repair function. Our model predicted BRCT domain destabilization and folding disruption caused by BRCA1 p.V1688del. Consistently, the recombinant ΔValBRCA1 was less stable than wtBRCA1 and, unlike the latter, failed to associate with BRIP1, CtIP, and Rap80, and to re-localize to sites of DNA damage. Yeast two-hybrid analysis revealed a compromised interaction with FHL2 and with KPNA2, which is likely responsible for improper subcellular localization of ΔValBRCA1. In addition, we found four new breast/ovarian cancer families of Italian ancestry who carried this sequence alteration. These results provide the first evidence of the effect of BRCA1 p.V1688del on protein stability and function, supporting the view that it is a deleterious mutation. Multimodal analyses like ours could advance understanding of tumor suppression by BRCA1, and ultimately contribute to developing efficient strategies for screening and characterization of VUSs. PMID:19706752

  14. 78 FR 46927 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products and services from the Procurement...

  15. 77 FR 66181 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products from the Procurement List that...

  16. 76 FR 9555 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  17. 76 FR 22680 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY: This action deletes services from the Procurement List that will be provided by nonprofit agencies...

  18. 75 FR 16757 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions From the Procurement List. SUMMARY: The Committee is proposing to delete from the Procurement List services...

  19. Interstitial deletions are not the main mechanism leading to 18q deletions

    SciTech Connect

    Strathdee, G.; Harrison, W.; Goodart, S.A.; Overhauser, J. ); Riethman, H.C. )

    1994-06-01

    Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions. 30 refs., 3 figs.

  20. Purification and Characterization of Put1p from Saccharomyces cerevisiae

    PubMed Central

    Wanduragala, Srimevan; Sanyal, Nikhilesh; Liang, Xinwen; Becker, Donald F.

    2010-01-01

    In Saccharomyces cerevisiae, the PUT1 and PUT2 genes are required for the conversion of proline to glutamate. The PUT1 gene encodes Put1p, a proline dehydrogenase (PRODH)1 enzyme localized in the mitochondrion. Put1p was expressed and purified from Escherichia coli and shown to have a UV-visible absorption spectrum that is typical of a bound flavin cofactor. A Km value of 36 mM proline and a kcat = 27 s−1 were determined for Put1p using an artificial electron acceptor. Put1p also exhibited high activity using ubiquinone-1 (CoQ1) as an electron acceptor with a kcat = 9.6 s−1 and a Km of 33 µM for CoQ1. In addition, knockout strains of the electron transfer flavoprotein (ETF) homolog in S. cerevisiae were able to grow on proline as the sole nitrogen source demonstrating that ETF is not required for proline utilization in yeast. PMID:20450881

  1. TVENT1P. Gas-Dynamic Transients Flow Networks

    SciTech Connect

    Eyberger, L.

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used for constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.

  2. Novel approach to identifying the hepatitis B virus pre-S deletions associated with hepatocellular carcinoma

    PubMed Central

    Zhao, Zhi-Mei; Jin, Yan; Gan, Yu; Zhu, Yu; Chen, Tao-Yang; Wang, Jin-Bing; Sun, Yan; Cao, Zhi-Gang; Qian, Geng-Sun; Tu, Hong

    2014-01-01

    AIM: To develop a novel non-sequencing method for the detection of hepatitis B virus (HBV) pre-S deletion mutants in HBV carriers. METHODS: The entire region of HBV pre-S1 and pre-S2 was amplified by polymerase chain reaction (PCR). The size of PCR products was subsequently determined by capillary gel electrophoresis (CGE). CGE were carried out in a PACE-MDQ instrument equipped with a UV detector set at 254 nm. The samples were separated in 50 μm ID eCAP Neutral Coated Capillaries using a voltage of 6 kV for 30 min. Data acquisition and analysis were performed using the 32 Karat Software. A total of 114 DNA clones containing different sizes of the HBV pre-S gene were used to determine the accuracy of the CGE method. One hundred and fifty seven hepatocellular carcinoma (HCC) and 160 non-HCC patients were recruited into the study to assess the association between HBV pre-S deletion and HCC by using the newly-established CGE method. Nine HCC cases with HBV pre-S deletion at the diagnosis year were selected to conduct a longitudinal observation using serial serum samples collected 2-9 years prior to HCC diagnosis. RESULTS: CGE allowed the separation of PCR products differing in size > 3 bp and was able to identify 10% of the deleted DNA in a background of wild-type DNA. The accuracy rate of CGE-based analysis was 99.1% compared with the clone sequencing results. Using this assay, pre-S deletion was more frequently found in HCC patients than in non-HCC controls (47.1% vs 28.1%, P < 0.001). Interestingly, the increased risk of HCC was mainly contributed by the short deletion of pre-S. While the deletion ≤ 99 bp was associated with a 2.971-fold increased risk of HCC (95%CI: 1.723-5.122, P < 0.001), large deletion (> 99 bp) did not show any association with HCC (P = 0.918, OR = 0.966, 95%CI: 0.501-1.863). Of the 9 patients who carried pre-S deletions at the stage of HCC, 88.9% (8/9) had deletions 2-5 years prior to HCC, while only 44.4%4 (4/9) contained such deletions 6

  3. The human paired domain gene PAX7 (Hup1) maps to chromosome 1p35-1p36. 2

    SciTech Connect

    Schaefer, B.W. ); Mattei, M.G. )

    1993-07-01

    The human PAX7 gene encodes a protein containing a domain homologous to the Drosophila paired box first described in three segmentation genes. In addition to the paired box, the gene contains the conserved octa-peptide and a paired-type homeobox. Two of the five known human PAX genes have been implicated in human disorders so far. Here the authors have used a somatic cell hybrid panel to localize PAX7 to human chromosome 1. In situ hybridization shows that PAX7 is confined to the short arm of chromosome 1 at 1p35-1p36.2. 15 refs., 2 figs.

  4. Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.

    PubMed

    Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M

    2016-01-15

    Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders. PMID:26687487

  5. Genomic Changes in Gliomas Detected Using Single Nucleotide Polymorphism Array in Formalin-Fixed, Paraffin-Embedded Tissue

    PubMed Central

    Harada, Shuko; Henderson, Lindsay B.; Eshleman, James R.; Gocke, Christopher D.; Burger, Peter; Griffin, Constance A.; Batista, Denise A.S.

    2011-01-01

    Deletion or loss of heterozygosity (LOH) in chromosomes 1p and 19q in oligodendrogliomas (ODGs) have diagnostic, prognostic, and therapeutic implications. Current clinical assays are limited because the probes or primers interrogate only limited genomic segments. We investigated the use of single nucleotide polymorphism (SNP) arrays for identifying genomic changes in gliomas from FFPE tissues. DNA was extracted from FFPE tissues of 30 brain tumor cases (15 ODGs and 15 non-ODGs) and assayed on the Illumina array with 300,000 markers. SNP results were compared with standard short tandem repeat (STR) assays of chromosomes 1p and 19q. Fifteen ODGs had LOH by STR and deletion by array on both 1p and 19q. Ten non-ODGs had no evidence of LOH on 1p and 19q by STR, seven of which had no abnormalities for these chromosomes; three had partial deletions by SNP array. Five non-ODG cases had partial LOH or deletion by both assays. No major discordance was found between SNP array and STR results. Advantages of SNP arrays include no need for an accompanying normal sample, the ability to find small segmental deletions, the potential to distinguish between deletions and copy neutral LOH, and whole-genome screening to allow discovery of new, significant loci. Assessment of genomic changes in routine glioma specimens using SNP arrays is feasible and has great potential as an accurate clinical diagnostic test. PMID:21726663

  6. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma

    PubMed Central

    Hassan, Hesham M.; Varney, Michelle L.; Jain, Smrati; Weisenburger, Dennis D.; Singh, Rakesh K.; Dave, Bhavana J.

    2015-01-01

    The TP73 gene is located at the chromosome 1p36 locus that is commonly disrupted or deleted in follicular lymphoma (FL) with poor prognosis. Therefore, we analyzed the expression of the pro-apoptotic TAp73 and anti-apoptotic ΔNp73 isoforms in FL cases with normal or abnormal 1p36. We observed a significant increase in ΔNp73 expression and ΔNp73:TAp73 ratio, lower expression of cleaved caspase-3 and a higher frequency of Ki-67 and PCNA positive cells in FL cases with abnormal 1p36. A negative correlation between the ΔNp73:TAp73 ratio and cleaved caspase-3 expression, and a positive correlation between ΔNp73 expression and Ki-67 or PCNA were observed. The expression of TAp73 and its pro-apoptotic transcriptional targets Bim, Puma, and Noxa were significantly lower in FL compared to reactive follicular hyperplasia. Together, our data demonstrates that 1p36 disruption is associated with increased ΔNp73 expression, decreased apoptosis and increased proliferation in FL. PMID:24660851

  7. Disruption of chromosomal locus 1p36 differentially modulates TAp73 and ΔNp73 expression in follicular lymphoma.

    PubMed

    Hassan, Hesham M; Varney, Michelle L; Jain, Smrati; Weisenburger, Dennis D; Singh, Rakesh K; Dave, Bhavana J

    2014-12-01

    The TP73 gene is located at the chromosome 1p36 locus that is commonly disrupted or deleted in follicular lymphoma (FL) with poor prognosis. Therefore, we analyzed the expression of the pro-apoptotic TAp73 and anti-apoptotic ΔNp73 isoforms in cases of FL with normal or abnormal 1p36. We observed a significant increase in ΔNp73 expression and ΔNp73:TAp73 ratio, lower expression of cleaved caspase-3 and a higher frequency of Ki-67 and proliferating cell nuclear antigen (PCNA) positive cells in cases of FL with abnormal 1p36. A negative correlation between the ΔNp73:TAp73 ratio and cleaved caspase-3 expression, and a positive correlation between ΔNp73 expression and Ki-67 or PCNA, were observed. The expression of TAp73 and its pro-apoptotic transcriptional targets BIM. PUMA and NOXA were significantly lower in FL compared to reactive follicular hyperplasia. Together, our data demonstrate that 1p36 disruption is associated with increased ΔNp73 expression, decreased apoptosis and increased proliferation in FL.

  8. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.

    PubMed Central

    Cheng, C; Kacherovsky, N; Dombek, K M; Camier, S; Thukral, S K; Rhim, E; Young, E T

    1994-01-01

    Adr1p is a regulatory protein in the yeast Saccharomyces cerevisiae that binds to and activates transcription from two sites in a perfect 22-bp inverted repeat, UAS1, in the ADH2 promoter. Binding requires two C2H2 zinc fingers and a region amino terminal to the fingers. The importance for DNA binding of each position within UAS1 was deduced from two types of assays. Both methods led to an identical consensus sequence containing only four essential base pairs: GG(A/G)G. The preferred sequence, TTGG(A/G)GA, is found in both halves of the inverted repeat. The region of Adr1p amino terminal to the fingers is important for phosphate contacts in the central region of UAS1. However, no base-specific contacts in this portion of UAS1 are important for DNA binding or for ADR1-dependent transcription in vivo. When the central 6 bp were deleted, only a single monomer of Adr1p was able to bind in vitro and activation in vivo was severely reduced. On the basis of these results and previous knowledge about the DNA binding site requirements, including constraints on the spacing and orientation of sites that affect activation in vivo, a consensus binding site for Adr1p was derived. By using this consensus site, potential Adr1p binding sites were located in the promoters of genes known to show ADR1-dependent expression. In addition, this consensus allowed the identification of new potential target genes for Adr1p. Images PMID:8196627

  9. S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species

    PubMed Central

    Takuwa, Noriko; Ohkura, Sei-Ichiro; Takashima, Shin-Ichiro; Ohtani, Keisuke; Okamoto, Yasuo; Tanaka, Tamotsu; Hirano, Kaoru; Usui, Soichiro; Wang, Fei; Du, Wa; Yoshioka, Kazuaki; Banno, Yoshiko; Sasaki, Motoko; Ichi, Ikuyo; Okamura, Miwa; Sugimoto, Naotoshi; Mizugishi, Kiyomi; Nakanuma, Yasuni; Ishii, Isao; Takamura, Masayuki; Kaneko, Shuichi; Kojo, Shosuke; Satouchi, Kiyoshi; Mitumori, Kunitoshi; Chun, Jerold; Takuwa, Yoh

    2010-01-01

    Aims Sphingosine kinase 1 (SPHK1), its product sphingosine-1-phosphate (S1P), and S1P receptor subtypes have been suggested to play protective roles for cardiomyocytes in animal models of ischaemic preconditioning and cardiac ischaemia/reperfusion injury. To get more insight into roles for SPHK1 in vivo, we have generated SPHK1-transgenic (TG) mice and analysed the cardiac phenotype. Methods and results SPHK1-TG mice overexpressed SPHK1 in diverse tissues, with a nearly 20-fold increase in enzymatic activity. The TG mice grew normally with normal blood chemistry, cell counts, heart rate, and blood pressure. Unexpectedly, TG mice with high but not low expression levels of SPHK1 developed progressive myocardial degeneration and fibrosis, with upregulation of embryonic genes, elevated RhoA and Rac1 activity, stimulation of Smad3 phosphorylation, and increased levels of oxidative stress markers. Treatment of juvenile TG mice with pitavastatin, an established inhibitor of the Rho family G proteins, or deletion of S1P3, a major myocardial S1P receptor subtype that couples to Rho GTPases and transactivates Smad signalling, both inhibited cardiac fibrosis with concomitant inhibition of SPHK1-dependent Smad-3 phosphorylation. In addition, the anti-oxidant N-2-mercaptopropyonylglycine, which reduces reactive oxygen species (ROS), also inhibited cardiac fibrosis. In in vivo ischaemia/reperfusion injury, the size of myocardial infarct was 30% decreased in SPHK1-TG mice compared with wild-type mice. Conclusion These results suggest that chronic activation of SPHK1-S1P signalling results in both pathological cardiac remodelling through ROS mediated by S1P3 and favourable cardioprotective effects. PMID:19755413

  10. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.

    PubMed Central

    Varret, M; Rabès, J P; Saint-Jore, B; Cenarro, A; Marinoni, J C; Civeira, F; Devillers, M; Krempf, M; Coulon, M; Thiart, R; Kotze, M J; Schmidt, H; Buzzi, J C; Kostner, G M; Bertolini, S; Pocovi, M; Rosa, A; Farnier, M; Martinez, M; Junien, C; Boileau, C

    1999-01-01

    Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted. PMID:10205269

  11. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides.

    PubMed

    Klutts, J Stacey; Doering, Tamara L

    2008-05-23

    The opportunistic yeast Cryptococcus neoformans causes serious disease in humans and expresses a prominent polysaccharide capsule that is required for its virulence. Little is known about how this capsule is synthesized. We previously identified a beta1,2-xylosyltransferase (Cxt1p) with in vitro enzymatic activity appropriate for involvement in capsule synthesis. Here, we investigate C. neoformans strains in which the corresponding gene has been deleted (cxt1Delta). Loss of CXT1 does not affect in vitro growth of the mutant cells or the general morphology of their capsules. However, NMR structural analysis of the two main capsule polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), showed that both were missing beta1,2-xylose residues. There was an approximately 30% reduction in the abundance of this residue in GXM in mutant compared with wild-type strains, and mutant GalXM was almost completely devoid of beta1,2-linked xylose. The GalXM from the mutant strain was also missing a beta1,3-linked xylose residue. Furthermore, deletion of CXT1 led to attenuation of cryptococcal growth in a mouse model of infection, suggesting that the affected xylose residues are important for normal host-pathogen interactions. Cxt1p is the first glycosyltransferase with a defined role in C. neoformans capsule biosynthesis, and cxt1Delta is the only strain identified to date with structural alterations of the capsule polysaccharide GalXM.

  12. The Candida albicans plasma membrane protein Rch1p, a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis.

    PubMed

    Jiang, Linghuo; Alber, Joerg; Wang, Jihong; Du, Wei; Yang, Xuexue; Li, Xichuan; Sanglard, Dominique; Geyer, Joachim

    2012-06-15

    Candida albicans RCH1 (regulator of Ca(2+) homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca(2+) and tolerance to azoles and Li(+), which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca(2+) pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca(2+) sensitivity, Ca(2+) uptake and cytosolic Ca(2+) level. The Ca(2+) hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca(2+)/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca(2+) homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.

  13. Further delineation of novel 1p36 rearrangements by array-CGH analysis: narrowing the breakpoints and clarifying the "extended" phenotype.

    PubMed

    Giannikou, Krinio; Fryssira, Helen; Oikonomakis, Vasilis; Syrmou, Areti; Kosma, Konstantina; Tzetis, Maria; Kitsiou-Tzeli, Sofia; Kanavakis, Emmanouel

    2012-09-15

    High resolution oligonucleotide array Comparative Genome Hybridization technology (array-CGH) has greatly assisted the recognition of the 1p36 contiguous gene deletion syndrome. The 1p36 deletion syndrome is considered to be one of the most common subtelomeric microdeletion syndromes and has an incidence of ~1 in 5000 live births, while respectively the "pure" 1p36 microduplication has not been reported so far. We present seven new patients who were referred for genetic evaluation due to Developmental Delay (DD), Mental Retardation (MR), and distinct dysmorphic features. They all had a wide phenotypic spectrum. In all cases previous standard karyotypes were negative. Array-CGH analysis revealed five patients with interstitial 1p36 microdeletion (four de novo and one maternal) and two patients with de novo reciprocal duplication of different sizes. These were the first reported "pure" 1p36 microduplication cases so far. Three of our patients carrying the 1p36 microdeletion syndrome were also found to have additional pathogenetic aberrations. These findings (del 3q27.1; del 4q21.22-q22.1; del 16p13.3; dup 21q21.2-q21.3; del Xp22.12) might contribute to the patients' severe phenotype, acting as additional modifiers of their clinical manifestations. We review and compare the clinical and array-CGH findings of our patients to previously reported cases with the aim of clearly delineating more accurate genotype-phenotype correlations for the 1p36 syndrome that could allow for a more precise prognosis.

  14. Gene Deletion by Synthesis in Yeast.

    PubMed

    Kim, Jinsil; Kim, Dong-Uk; Hoe, Kwang-Lae

    2017-01-01

    Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species. PMID:27671940

  15. Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor.

    PubMed

    Vachal, Petr; Toth, Leslie M; Hale, Jeffrey J; Yan, Lin; Mills, Sander G; Chrebet, Gary L; Koehane, Carol A; Hajdu, Richard; Milligan, James A; Rosenbach, Mark J; Mandala, Suzanne

    2006-07-15

    Novel series of sphingosine-1-phosphate (S1P) receptor agonists were developed through a systematic SAR aimed to achieve high selectivity for a single member of the S1P family of receptors, S1P1. The optimized structure represents a highly S1P1-selective and efficacious agonist: S1P1/S1P2, S1P1/S1P3, S1P1/S1P4>10,000-fold, S1P1/S1P5>600-fold, while EC50 (S1P1) <0.2 nM. In vivo experiments are consistent with S1P1 receptor agonism alone being sufficient for achieving desired lymphocyte-lowering effect.

  16. A conserved amphipathic helix is required for membrane tubule formation by Yop1p

    PubMed Central

    Brady, Jacob P.; Claridge, Jolyon K.; Smith, Peter G.; Schnell, Jason R.

    2015-01-01

    The integral membrane proteins of the DP1 (deleted in polyposis) and reticulon families are responsible for maintaining the high membrane curvature required for both smooth endoplasmic reticulum (ER) tubules and the edges of ER sheets, and mutations in these proteins lead to motor neuron diseases, such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain reticulon homology domains (RHDs) that have unusually long hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilize membrane curvature. We have characterized the secondary structure and dynamics of the DP1 family protein produced from the YOP1 gene (Yop1p) and identified a C-terminal conserved amphipathic helix (APH) that, on its own, interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming APHs. Together, these results indicate that APHs play a previously unrecognized role in RHD membrane curvature stabilization. PMID:25646439

  17. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    PubMed Central

    Huang, S. F.; Xiao, S.; Renshaw, A. A.; Loughlin, K. R.; Hudson, T. J.; Fletcher, J. A.

    1996-01-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  18. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    SciTech Connect

    Rubin, M.; Altwegg, K.; Dishoeck, E. F. van; Schwehm, G.

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  19. Molecular Oxygen in Oort Cloud Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Altwegg, K.; van Dishoeck, E. F.; Schwehm, G.

    2015-12-01

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80 ± 0.85%. It could be shown that O2 is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O2 abundance is peculiar to comet 67P/Churyumov-Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O2 of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O2 might be a rather common and abundant parent species.

  20. Gas relations in comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    Photographic and photoelectric observations of comet 1P/Halley's ionised gas coma from CO+ and neutral gas coma from CN were part of the Bochum Halley Monitoring Program, conducted at the European Southern Observatory, La Silla, Chile, from February 17 to April 17, 1986. In this spectral range it is possible to see the continuum formation and expansion of plasma and neutral gas structures. To observe the morphology of these structures, 32 CO+ photos from comet 1P/Halley obtained by means of an interference filter have been analysed. The data were reduced to relative intensities, and those with proper calibrations were also converted to absolute intensities, expressed in terms of column densities. The relations between CO+ and CN in average column density values are 11.6 for a circular diaphragm with an average diameter (Φ) of 6.1 arcminutes which corresponds to a distance from the nucleus (ρ) equal to 6.3 × 104 km. These values are in perfect agreement with the data for short distances and small slit diameters. With the use of diaphragms with large diameters it is possible to get some information about the outer coma of the comet. At these distances, the CO+ column density changes only due to the geometrical dilution, because the CO+ parent molecules are already photoionised or photodissociated.

  1. S1P metabolism in cancer and other pathological conditions.

    PubMed

    Leong, Weng In; Saba, Julie D

    2010-06-01

    Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.

  2. Prognostic Relevance of Histomolecular Classification of Diffuse Adult High-Grade Gliomas with Necrosis.

    PubMed

    Figarella-Branger, Dominique; Mokhtari, Karima; Colin, Carole; Uro-Coste, Emmanuelle; Jouvet, Anne; Dehais, Caroline; Carpentier, Catherine; Villa, Chiara; Maurage, Claude-Alain; Eimer, Sandrine; Polivka, Marc; Vignaud, Jean-Michel; Laquerriere, Annie; Sevestre, Henri; Lechapt-Zalcman, Emmanuelle; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Viennet, Gabriel; Adam, Clovis; Loussouarn, Delphine; Michalak, Sophie; Rigau, Valérie; Heitzmann, Anne; Vandenbos, Fanny; Forest, Fabien; Chiforeanu, Danchristian; Tortel, Marie-Claire; Labrousse, François; Chenard, Marie-Pierre; Nguyen, Anh Tuan; Varlet, Pascale; Kemeny, Jean Louis; Levillain, Pierre-Marie; Cazals-Hatem, Dominique; Richard, Pomone; Delattre, Jean-Yves

    2015-07-01

    Diffuse adult high-grade gliomas (HGGs) with necrosis encompass anaplastic oligodendrogliomas (AOs) with necrosis (grade III), glioblastomas (GBM, grade IV) and glioblastomas with an oligodendroglial component (GBMO, grade IV). Here, we aimed to search for prognostic relevance of histological classification and molecular alterations of these tumors. About 210 patients were included (63 AO, 56 GBM and 91 GBMO). GBMO group was split into "anaplastic oligoastrocytoma (AOA) with necrosis grade IV/GBMO," restricted to tumors showing intermingled astrocytic and oligodendroglial component, and "GBM/GBMO" based on tumors presenting oligodendroglial foci and features of GBM. Genomic arrays, IDH1 R132H expression analyses and IDH direct sequencing were performed. 1p/19q co-deletion characterized AO, whereas no IDH1 R132H expression and intact 1p/19q characterized both GBM and GBM/GBMO. AOA with necrosis/GBMO mainly demonstrated IDH1 R132H expression and intact 1p/19q. Other IDH1 or IDH2 mutations were extremely rare. Both histological and molecular classifications were predictive of progression free survival (PFS) and overall survival (OS) (P < 10(-4) ). Diffuse adult HGGs with necrosis can be split into three histomolecular groups of prognostic relevance: 1p/19q co-deleted AO, IDH1 R132H-GBM and 1p/19q intact IDH1 R132H+ gliomas that might be classified as IDH1 R132H+ GBM. Because of histomolecular heterogeneity, we suggest to remove the name GBMO.

  3. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans.

    PubMed

    Léger, Thibaut; Garcia, Camille; Camadro, Jean-Michel

    2016-07-01

    Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes

  4. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers

    SciTech Connect

    Sulman, E.P.; Brodeur, G.M.; Ikegaki, N.

    1997-03-01

    Mouse eck, a member of the EPH gene family, has been mapped to mouse chromosome 4. The syntenic relationship between this chromosome and human chromosome 1 suggests that the human ECK gene maps to the distal short arm of human chromosome 1 (1p). Since this region is frequently deleted or altered in certain tumors of neuroectodermal origin, it is important to define the specific chromosomal localization of the human ECK gene. PCR screening of a rodent-human somatic cell hybrid panel by ECK-specific primers showed that ECK is indeed localized to human chromosome 1. Additional PCR screening of a regional screening panel for chromosome 1p indicated that ECK is localized to 1p36, distal to FUCA1. Furthermore, fluorescence in situ hybridization analysis with an ECK-specific P1 clone showed that ECK maps proximal to genetic marker D1S228. Taken together, the data suggest that ECK maps to 1p36.1, a region that is frequently deleted in neuroblastoma, melanoma, and other neuroectodermal tumors. 23 refs., 3 figs.

  5. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    SciTech Connect

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined. We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.

  6. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.

    PubMed

    D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P

    2009-06-01

    The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.

  7. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    SciTech Connect

    Takeshita, Harunori; Kitano, Masayasu; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto; Miyazawa, Keiji; Hla, Timothy; Sano, Hajime

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  8. 78 FR 56679 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... 8/2/2013 (78 FR 46927-46928), the Committee for Purchase From People Who Are Blind or Severely... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  9. Alagille syndrome and deletion of 20p.

    PubMed Central

    Anad, F; Burn, J; Matthews, D; Cross, I; Davison, B C; Mueller, R; Sands, M; Lillington, D M; Eastham, E

    1990-01-01

    We add five cases of 20p deletion to the 10 cases already published. Four had craniofacial, vertebral, ocular, and cardiovascular features of Alagille syndrome, which adds weight to the assignment of this disorder to the short arm of chromosome 20. Included in our series is the first report of familial transmission of a 20p deletion. Images PMID:2074558

  10. Discovery of potent 3,5-diphenyl-1,2,4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3.

    PubMed

    Li, Zhen; Chen, Weirong; Hale, Jeffrey J; Lynch, Christopher L; Mills, Sander G; Hajdu, Richard; Keohane, Carol Ann; Rosenbach, Mark J; Milligan, James A; Shei, Gan-Ju; Chrebet, Gary; Parent, Stephen A; Bergstrom, James; Card, Deborah; Forrest, Michael; Quackenbush, Elizabeth J; Wickham, L Alexandra; Vargas, Hugo; Evans, Rose M; Rosen, Hugh; Mandala, Suzanne

    2005-10-01

    A class of 3,5-diphenyl-1,2,4-oxadiazole based compounds have been identified as potent sphingosine-1-phosphate-1 (S1P1) receptor agonists with minimal affinity for the S1P2 and S1P3 receptor subtypes. Analogue 26 (S1P1 IC50 = 0.6 nM) has an excellent pharmacokinetics profile in the rat and dog and is efficacious in a rat skin transplant model, indicating that S1P3 receptor agonism is not a component of immunosuppressive efficacy.

  11. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis.

    PubMed Central

    Ooi, C E; Rabinovich, E; Dancis, A; Bonifacino, J S; Klausner, R D

    1996-01-01

    The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are grown in low concentrations of copper, but that exposure of cells to high concentrations of copper (10 microM) triggers degradation of cell surface Ctr1p. This degradation appears to be specific for Ctr1p and does not occur with another yeast plasma membrane protein tested. Internalization of some Ctr1p can be seen when cells are exposed to copper. However, yeast mutant strains defective in endocytosis (end3, end4 and chc1-ts) and vacuolar degradation (pep4) exhibit copper-dependent Ctr1p degradation, indicating that internalization and delivery to the vacuole is not the principal mechanism responsible for degradation. In addition, a variant Ctr1p with a deletion in the cytosolic tail is not internalized upon exposure of cells to copper, but is nevertheless degraded. These observations indicate that proteolysis at the plasma membrane most likely explains copper-dependent turnover of Ctr1p and point to the existence of a novel pathway in yeast for plasma membrane protein turnover. Images PMID:8670854

  12. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA.

    PubMed

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-08-19

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by a ChIP experiment showed that Hho1p is required for maximal pol I processivity during rDNA transcription. Psoralen accessibility experiments indicated that Hho1p is necessary for normal rDNA compaction. DNA array expression analysis comparing RNA transcripts in wild-type and hho1 strains before and after a heat-shock showed that Hho1p is necessary to achieve wild-type mRNA levels of transcripts that encode ribosomal components. Taken together, our results suggest that Hho1p is involved in rDNA compaction, and like core histones, is required for efficient rDNA transcription by pol I. PMID:18687885

  13. Evidence against the Bm1P1 protein as a positive transcription factor for barbiturate-mediated induction of cytochrome P450BM-1 in bacillus megaterium.

    PubMed

    Shaw, G C; Sung, C C; Liu, C H; Lin, C H

    1998-04-01

    The Bm1P1 protein was previously proposed to act as a positive transcription factor involved in barbiturate-mediated induction of cytochrome P450BM-1 in Bacillus megaterium. We now report that the bm1P1 gene encodes a protein of 217 amino acids, rather than the 98 amino acids as reported previously. In vitro gel shift assays indicate that the Bm1P1 protein did not interact with probes comprising the regulatory regions of the P450BM-1 gene. Moreover, disruption of the bm1P1 gene did not markedly affect barbiturate induction of P450BM-1 expression. A multicopy plasmid harboring only the P450BM-1 promoter region could increase expression of the chromosome-encoded P450BM-1. The level of expression is comparable with that shown by a multicopy plasmid harboring the P450BM-1 promoter region along with the bm1P1 gene. These results strongly suggest that the Bm1P1 protein is unlikely to act as a positive regulator for barbiturate induction of P450BM-1 expression. Finally, deletion of the Barbie box did not markedly diminish the effect of pentobarbital on expression of a reporter gene transcriptionally fused to the P450BM-1 promoter. This suggests that the Barbie box is unlikely to be a key element in barbiturate-mediated induction of P450BM-1. PMID:9525898

  14. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    PubMed

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  15. A late Golgi sorting function for Saccharomyces cerevisiae Apm1p, but not for Apm2p, a second yeast clathrin AP medium chain-related protein.

    PubMed Central

    Stepp, J D; Pellicena-Palle, A; Hamilton, S; Kirchhausen, T; Lemmon, S K

    1995-01-01

    Mammalian clathrin-associated protein (AP) complexes, AP-1 (trans-Golgi network) and AP-2 (plasma membrane), are composed of two large subunits of 91-107 kDa, one medium chain (mu) of 47-50 kDa and one small chain (sigma) of 17-19 kDa. Two yeast genes, APM1 and APM2, have been identified that encode proteins related to AP mu chains. APM1, whose sequence was reported previously, codes for a protein of 54 kDa that has greatest similarity to the mammalian 47-kDa mu 1 chain of AP-1. APM2 encodes an AP medium chain-related protein of 605 amino acids (predicted molecular weight of 70 kDa) that is only 30-33% identical to the other family members. In yeast containing a normal clathrin heavy chain gene (CHC1), disruptions of the APM genes, singly or in combination, had no detectable phenotypic consequences. However, deletion of APM1 greatly enhanced the temperature-sensitive growth phenotype and the alpha-factor processing defect displayed by cells carrying a temperature-sensitive allele of the clathrin heavy chain gene. In contrast, deletion of APM2 caused no synthetic phenotypes with clathrin mutants. Biochemical analysis indicated that Apm1p and Apm2p are components of distinct high molecular weight complexes. Apm1p, Apm2p, and clathrin cofractionated in a discrete vesicle population, and the association of Apm1p with the vesicles was disrupted in CHC1 deletion strains. These results suggest that Apm1p is a component of an AP-1-like complex that participates with clathrin in sorting at the trans-Golgi in yeast. We propose that Apm2p represents a new class of AP-medium chain-related proteins that may be involved in a nonclathrin-mediated vesicular transport process in eukaryotic cells. Images PMID:7749194

  16. Partial trisomy 1p (1p36.22-->pter) and partial monosomy 9p (9p22.2-->pter) associated with achalasia, flexion deformity of the fingers and epilepsy in a girl.

    PubMed

    Chen, C P; Lin, S P; Lee, C C; Town, D D; Wang, W

    2006-01-01

    We report on a 12-year-old girl presenting with mental retardation, trigonocephaly, midface hypoplasia, upward-slanting palpebral fissures, arched eyebrows, bilateral epicanthal folds, hypertelorism, a flattened nasal bridge, a short nose, anteverted nares, a long philtrum, a small mouth, micrognathia, low-set ears, a short neck, long digits, flexion deformity of the fingers of the hands, hypoplasia of the labia majora, hyperplasia of the labia minora, flat feet, dysphagia, frequent regurgitation, prominent esophageal dilation, and achalasia. Seizures were noted since 5 years of age. Cytogenetic analysis of her peripheral blood revealed a karyotype of 46,XX, der(9)t(1;9)(p36.22;p22.2)pat. Achalasia, an uncommon esophageal motor disorder, has not been previously described in association with either a deletion of 9p or a duplication of 1p.

  17. The Rho1p exchange factor Rgf1p signals upstream from the Pmk1 mitogen-activated protein kinase pathway in fission yeast.

    PubMed

    Garcia, Patricia; Tajadura, Virginia; Sanchez, Yolanda

    2009-01-01

    The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the beta-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway. We noted that Rgf1p and calcineurin play antagonistic roles in Cl(-) homeostasis; rgf1Delta cells showed the vic phenotype (viable in the presence of immunosuppressant and chlorine ion) and were unable to grow in the presence of high salt concentrations, both phenotypes being characteristic of knockouts of the MAPK components. In addition, mutations that perturb signaling through the MAPK pathway resulted in defective cell integrity (hypersensitivity to caspofungin and beta-glucanase). Rgf1p acts by positively regulating a subset of stimuli toward the Pmk1p-cell integrity pathway. After osmotic shock and cell wall damage HA-tagged Pmk1p was phosphorylated in wild-type cells but not in rgf1Delta cells. Finally, we provide evidence to show that Rgf1p regulates Pmk1p activation in a process that involves the activation of Rho1p and Pck2p, and we demonstrate that Rgf1p is unique in this signaling process, because Pmk1p activation was largely independent of the other two Rho1p-specific GEFs, Rgf2p and Rgf3p. PMID:19037094

  18. Selecting against S1P3 enhances the acute cardiovascular tolerability of 3-(N-benzyl)aminopropylphosphonic acid S1P receptor agonists.

    PubMed

    Hale, Jeffrey J; Doherty, George; Toth, Leslie; Mills, Sander G; Hajdu, Richard; Keohane, Carol Ann; Rosenbach, Mark; Milligan, James; Shei, Gan-Ju; Chrebet, Gary; Bergstrom, James; Card, Deborah; Forrest, Michael; Sun, Shu-Yu; West, Sarah; Xie, Huijuan; Nomura, Naomi; Rosen, Hugh; Mandala, Suzanne

    2004-07-01

    Structurally modified 3-(N-benzylamino)propylphosphonic acid S1P receptor agonists that maintain affinity for S1P1, and have decreased affinity for S1P3 are efficacious, but exhibit decreased acute cardiovascular toxicity in rodents than do nonselective agonists.

  19. Targeted chromosomal deletions and inversions in zebrafish.

    PubMed

    Gupta, Ankit; Hall, Victoria L; Kok, Fatma O; Shin, Masahiro; McNulty, Joseph C; Lawson, Nathan D; Wolfe, Scot A

    2013-06-01

    Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) provide powerful platforms for genome editing in plants and animals. Typically, a single nuclease is sufficient to disrupt the function of protein-coding genes through the introduction of microdeletions or insertions that cause frameshifts within an early coding exon. However, interrogating the function of cis-regulatory modules or noncoding RNAs in many instances requires the excision of this element from the genome. In human cell lines and invertebrates, two nucleases targeting the same chromosome can promote the deletion of intervening genomic segments with modest efficiencies. We have examined the feasibility of using this approach to delete chromosomal segments within the zebrafish genome, which would facilitate the functional study of large noncoding sequences in a vertebrate model of development. Herein, we demonstrate that segmental deletions within the zebrafish genome can be generated at multiple loci and are efficiently transmitted through the germline. Using two nucleases, we have successfully generated deletions of up to 69 kb at rates sufficient for germline transmission (1%-15%) and have excised an entire lincRNA gene and enhancer element. Larger deletions (5.5 Mb) can be generated in somatic cells, but at lower frequency (0.7%). Segmental inversions have also been generated, but the efficiency of these events is lower than the corresponding deletions. The ability to efficiently delete genomic segments in a vertebrate developmental system will facilitate the study of functional noncoding elements on an organismic level.

  20. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  1. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human

    PubMed Central

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3–4 compared to those with 0–2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  2. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    PubMed

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-01-01

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target. PMID:27562371

  3. Involvement of sphingosine-1-phosphate and S1P1 in angiogenesis: analyses using a new S1P1 antagonist of non-sphingosine-1-phosphate analog.

    PubMed

    Yonesu, Kiyoaki; Kawase, Yumi; Inoue, Tatsuya; Takagi, Nana; Tsuchida, Jun; Takuwa, Yoh; Kumakura, Seiichiro; Nara, Futoshi

    2009-03-15

    Chemical lead 2 (CL2) is the first non-sphingosine-1-phosphate (Sph-1-P) analog type antagonist of endothelial differentiation gene-1 (Edg-1/S1P(1)), which is a member of the Sph-1-P receptor family. CL2 inhibits [(3)H]Sph-1-P/S1P(1) binding and shows concentration-dependent inhibition activity against both intracellular cAMP concentration decrease and cell invasion induced by the Sph-1-P/S1P(1) pathway. It also inhibits normal tube formation in an angiogenesis culture model, indicating that CL2 has anti-angiogenesis activity. This compound improved the disease conditions in two angiogenic models in vivo. It significantly inhibited angiogenesis induced by vascular endothelial growth factor in a rabbit cornea model as well as the swelling of mouse feet in an anti-type II collagen antibody-induced arthritis model. These results indicate that the Sph-1-P/S1P(1) pathway would have an important role in disease-related angiogenesis, especially in the processes of migration/invasion and tube formation. In addition, CL2 would be a powerful tool for the pharmacological study of the mechanisms of the Sph-1-P/S1P(1) pathway in rheumatoid arthritis, diabetes retinopathy, and solid tumor growth processes. PMID:19150609

  4. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation.

    PubMed

    Masuda, Miki; Oshima, Ayaka; Noguchi, Tetsuko; Kagiwada, Satoshi

    2016-03-01

    In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease. PMID:26590299

  5. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  6. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  7. The Photometric lightcurve of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  8. Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells.

    PubMed

    Barbosa, António Daniel; Osório, Hugo; Sims, Kellie J; Almeida, Teresa; Alves, Mariana; Bielawski, Jacek; Amorim, Maria Amélia; Moradas-Ferreira, Pedro; Hannun, Yusuf A; Costa, Vítor

    2011-07-01

    Saccharomyces cerevisiae cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase 2, display a shortened lifespan and an increased sensitivity to oxidative stress. A lipidomic analysis revealed specific changes in sphingolipids that accompanied the premature ageing of Isc1p-deficient cells under severe calorie restriction conditions, including a decrease of dihydrosphingosine levels and an increase of dihydro-C(26) -ceramide and phyto-C(26) -ceramide levels, the latter raising the possibility of activation of ceramide-dependent protein phosphatases. Consequently, deletion of the SIT4 gene, which encodes for the catalytic subunit of type 2A ceramide-activated protein phosphatase in yeast, abolished the premature ageing and hydrogen peroxide sensitivity of isc1Δ cells. SIT4 deletion also abolished the respiratory defects and catalase A deficiency exhibited by isc1Δ mutants. These results are consistent with catabolic derepression associated with the loss of Sit4p. The overall results show that Isc1p is an upstream regulator of Sit4p and implicate Sit4p activation in mitochondrial dysfunction leading to the shortened chronological lifespan and oxidative stress sensitivity of isc1Δ mutants.

  9. Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells.

    PubMed

    Barbosa, António Daniel; Osório, Hugo; Sims, Kellie J; Almeida, Teresa; Alves, Mariana; Bielawski, Jacek; Amorim, Maria Amélia; Moradas-Ferreira, Pedro; Hannun, Yusuf A; Costa, Vítor

    2011-07-01

    Saccharomyces cerevisiae cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase 2, display a shortened lifespan and an increased sensitivity to oxidative stress. A lipidomic analysis revealed specific changes in sphingolipids that accompanied the premature ageing of Isc1p-deficient cells under severe calorie restriction conditions, including a decrease of dihydrosphingosine levels and an increase of dihydro-C(26) -ceramide and phyto-C(26) -ceramide levels, the latter raising the possibility of activation of ceramide-dependent protein phosphatases. Consequently, deletion of the SIT4 gene, which encodes for the catalytic subunit of type 2A ceramide-activated protein phosphatase in yeast, abolished the premature ageing and hydrogen peroxide sensitivity of isc1Δ cells. SIT4 deletion also abolished the respiratory defects and catalase A deficiency exhibited by isc1Δ mutants. These results are consistent with catabolic derepression associated with the loss of Sit4p. The overall results show that Isc1p is an upstream regulator of Sit4p and implicate Sit4p activation in mitochondrial dysfunction leading to the shortened chronological lifespan and oxidative stress sensitivity of isc1Δ mutants. PMID:21707788

  10. Plc1p is required for proper chromatin structure and activity of the kinetochore in Saccharomyces cerevisiae by facilitating recruitment of the RSC complex.

    PubMed

    Desai, Parima; Guha, Nilanjan; Galdieri, Luciano; Hadi, Sara; Vancura, Ales

    2009-05-01

    High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p's involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function.

  11. Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation.

    PubMed

    Liu, Yi-Chang; Fujimori, Danica Galonić; Weissman, Jonathan S

    2016-07-12

    Our understanding of how the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery efficiently targets terminally misfolded proteins while avoiding the misidentification of nascent polypeptides and correctly folded proteins is limited. For luminal N-glycoproteins, demannosylation of their N-glycan to expose a terminal α1,6-linked mannose is necessary for their degradation via ERAD, but whether this modification is specific to misfolded proteins is unknown. Here we report that the complex of the mannosidase Htm1p and the protein disulfide isomerase Pdi1p (Htm1p-Pdi1p) acts as a folding-sensitive mannosidase for catalyzing this first committed step in Saccharomyces cerevisiae We reconstitute this step in vitro with Htm1p-Pdi1p and model glycoprotein substrates whose structural states we can manipulate. We find that Htm1p-Pdi1p is a glycoprotein-specific mannosidase that preferentially targets nonnative glycoproteins trapped in partially structured states. As such, Htm1p-Pdi1p is suited to act as a licensing factor that monitors folding in the ER lumen and preferentially commits glycoproteins trapped in partially structured states for degradation. PMID:27357682

  12. The Yeast Hrs1 Gene Encodes a Polyglutamine-Rich Nuclear Protein Required for Spontaneous and Hpr1-Induced Deletions between Direct Repeats

    PubMed Central

    Santos-Rosa, H.; Clever, B.; Heyer, W. D.; Aguilera, A.

    1996-01-01

    The hrs1-1 mutation was isolated as an extragenic suppressor of the hyperrecombination phenotype of hpr1Δ cells. We have cloned, sequenced and deleted from the genome the HRS1 gene. The DNA sequence of the HRS1 gene reveals that it is identical to PGD1, a gene with no reported function, and that the Hrs1p protein contains polyglutamine stretches typically found in transcription factors. We have purified a His(6) tagged version of Hrs1p protein from E. coli and have obtained specific anti-Hrs1p polyclonal antibodies. We show that Hrs1p is a 49-kD nuclear protein, as determined by indirect immunofluorescence microscopy and Western blot analysis. The hrs1Δ null mutation reduces the frequency of deletions in wild-type and hpr1Δ backgrounds sevenfold below wild-type and rad52 levels. Furthermore, hrs1Δ cells show reduced induction of the GAL1,10 promoter relative to wild-type cells. Our results suggest that Hrs1p is required for the formation of deletions between direct repeats and that it may function in gene expression. This suggests a connection between gene expression and direct repeat recombination. In this context, we discuss the possible roles of Hrs1p and Hpr1p in initiation of direct-repeat recombination. PMID:8849881

  13. The 1p36 Tumor Suppressor KIF 1Bβ Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis.

    PubMed

    Li, Shuijie; Fell, Stuart M; Surova, Olga; Smedler, Erik; Wallis, Karin; Chen, Zhi Xiong; Hellman, Ulf; Johnsen, John Inge; Martinsson, Tommy; Kenchappa, Rajappa S; Uhlén, Per; Kogner, Per; Schlisio, Susanne

    2016-01-25

    KIF1Bβ is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bβ activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1Bβ affects mitochondrial dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondrial fission and apoptosis. Furthermore, KIF1Bβ actuates recognition of all known CN substrates, implying a general mechanism for KIF1Bβ in Ca(2+) signaling and how Ca(2+)-dependent signaling is executed by CN. Pathogenic KIF1Bβ mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1Bβ and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondrial dynamics contributes to high-risk and poor-prognosis neuroblastoma.

  14. Full pharmacological efficacy of a novel S1P1 agonist that does not require S1P-like head-group interactions

    PubMed Central

    Gonzalez-Cabrera, Pedro J.; Jo, Euijung; Sanna, M. Germana; Brown, Steven; Leaf, Nora; Marsolais, David; Schaeffer, Marie-Therese; Chapman, Jacqueline; Cameron, Michael; Guerrero, Miguel; Roberts, Edward; Rosen, Hugh

    2008-01-01

    Strong evidence exists for interactions of zwitterionic phosphate and amine groups in Sphingosine-1 phosphate (S1P) to conserved R and E residues present at the extracellular face of transmembrane-3 (TM3) of S1P receptors. The contribution of R120 and E121 for high affinity ligand-receptor interactions is essential, as single-point R120A or E121A S1P1 mutants neither bind S1P nor transduce S1P function. Because S1P receptors are therapeutically interesting, identifying potent selective agonists with different binding modes and in vivo efficacy is of pharmacological importance. Here we describe a modestly water-soluble highly-selective S1P1 agonist (CYM-5442) that does not require R120 or E121 residues for activating S1P1-dependent p42/p44 MAPK phosphorylation, which defines a new hydrophobic pocket in S1P1. CYM-5442 is a full agonist in vitro for S1P1 internalization, phosphorylation and ubiquitination. Importantly, CYM-5442 was a full agonist for induction and maintenance of S1P1-dependent lymphopenia, decreasing B-lymphocytes by 65% and T-lymphocytes by 85% of vehicle. Induction of CYM-5442 lymphopenia was dose and time-dependent, requiring serum concentrations in the 50 nM range. In vitro measures of S1P1 activation by CYM-5442 were non-competitively inhibited by a specific S1P1 antagonist (W146), competitive for S1P, FTY720-P and SEW2871. In addition, lymphopenia by CYM-5442 was reversed by W146 administration or upon pharmacokinetic agonist clearance. Pharmacokinetics in mice also indicated that CYM-5442 partitions significantly in central nervous tissue. These data show that CYM-5442 activates S1P1-dependent pathways in vitro and to levels of full efficacy in vivo through a hydrophobic pocket, separable from the orthosteric site of S1P binding that is headgroup dependent. PMID:18708635

  15. Ligand-binding pocket shape differences between S1P1 and S1P3 determine efficiency of chemical probe identification by uHTS

    PubMed Central

    Schürer, Stephan C.; Brown, Steven J.; Cabrera, Pedro Gonzales; Schaeffer, Marie-Therese; Chapman, Jacqueline; Jo, Euijung; Chase, Peter; Spicer, Tim; Hodder, Peter; Rosen, Hugh

    2008-01-01

    We have studied the Sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonists chemotypes for each of the S1P1 and S1P3 receptors. uHTS for S1P1 was more effective than for S1P3, with many selective, low nanomolar hits of proven mechanism emerging for. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for sub-type selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of head-group interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 vs. S1P3 in this closely related receptor family. PMID:18590333

  16. High-resolution cytogenetic mapping of the short arm of chromosome 1 with newly isolated 411 cosmid markers by fluorescence in situ hybridization: The precise order of 18 markers on 1p36.1 on prophase chromosomes and {open_quotes}stretched{close_quotes} DNAs

    SciTech Connect

    Ariyama, Takeshi; Inazawa, Johji; Abe, Toshihiko

    1995-01-01

    A high-resolution cytogenetic map of the short arm of chromosome 1 with newly isolated 411 cosmid markers was constructed by fluorescence in situ hybridization (FISH). These markers were scattered throughout chromosome 1p, but they were preferentially concentrated on R-band dominant regions such as 1p36, 1p34, 1p32, 1p22, and 1p13. Among these markers, 197 were localized on chromosome band 1p36, a region frequently deleted in neuroblastoma. Of these, 18 were precisely ordered on 1p36.1 by multicolor FISH of prophase chromosomes and {open_quotes}stretched{close_quotes} DNAs as follows: 1pter-163-41-11-1-226-586-568-614-631-665-451-199-190-561-241-74-176-652-1cen. The high-density map of chromosome 1p constructed here can provide useful landmarks for constructing a contig map of the short arm of chromosome 1 with YACs and cosmid clones and will expedite the identification of breakpoints and/or tumor suppressor gene(s) associated with several types of malignant tumors that frequently exhibit chromosomal aberrations or deletions of chromosome 1p. 30 refs., 2 figs., 2 tabs.

  17. Parameterized Complexity of Eulerian Deletion Problems.

    PubMed

    Cygan, Marek; Marx, Dániel; Pilipczuk, Marcin; Pilipczuk, Michał; Schlotter, Ildikó

    2014-01-01

    We study a family of problems where the goal is to make a graph Eulerian, i.e., connected and with all the vertices having even degrees, by a minimum number of deletions. We completely classify the parameterized complexity of various versions: undirected or directed graphs, vertex or edge deletions, with or without the requirement of connectivity, etc. The collection of results shows an interesting contrast: while the node-deletion variants remain intractable, i.e., W[1]-hard for all the studied cases, edge-deletion problems are either fixed-parameter tractable or polynomial-time solvable. Of particular interest is a randomized FPT algorithm for making an undirected graph Eulerian by deleting the minimum number of edges, based on a novel application of the color coding technique. For versions that remain NP-complete but fixed-parameter tractable we consider also possibilities of polynomial kernelization; unfortunately, we prove that this is not possible unless NP⊆coNP/poly. PMID:24415818

  18. Somatic mosaicism for a DMD gene deletion

    SciTech Connect

    Saito, Kayoko; Ikeya, Kiyoko; Kondo, Eri

    1995-03-13

    Mosaicism is a mixed state, with two cell populations of different genetic origins caused by a cell mutation occurring after fertilization. In the present case, DNA analysis of lymphocytes led to a DMD diagnosis before death. Postmortem immunocytochemical and DNA analysis showed somatic mosaicism. At age 18 years, blood lymphocyte DNA analysis showed a DMD gene deletion, upstream from exon 7 to the 5{prime} end containing both muscle and brain promoters. As the patient`s mother and elder sister had no deletions, he was considered to have a new mutation. Immunocytochemical studies of postmortem tissues showed that dystrophin was absent from the tongue, deltoid, intercostal, psoas and rectus femoris muscles, but there was a mix of dystrophin-positive and negative fibers in the rectus abdominis, cardiac, temporalis and sternocleidomastoid muscles. All diaphragm cells were dystrophin positive. Polymerase chain reaction (PCR) amplification from all tissues except the temporalis and sternocleidomastoid muscles, diaphragm and kidney, in which no deletion was found, showed the deletion from at least exon 6 to the 5{prime} end containing both muscle and brain promoters. In this case, a genomic deletion of the DMD gene contributed to the formation of tissues derived from both ectoderm and endoderm, and cells of mesodermal origin showed genotypic and phenotypic heterogeneity. Our results indicate a mutation of the present case may have occurred just before the period of germ layer formation. 34 refs., 7 figs.

  19. A Prokaryotic S1P Lyase Degrades Extracellular S1P In Vitro and In Vivo: Implication for Treating Hyperproliferative Disorders

    PubMed Central

    Huwiler, Andrea; Bourquin, Florence; Kotelevets, Nataliya; Pastukhov, Oleksandr; Capitani, Guido; Grütter, Markus G.; Zangemeister-Wittke, Uwe

    2011-01-01

    Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling. PMID:21829623

  20. SUN Family Proteins Sun4p, Uth1p and Sim1p Are Secreted from Saccharomyces cerevisiae and Produced Dependently on Oxygen Level

    PubMed Central

    Kuznetsov, Evgeny; Kučerová, Helena; Váchová, Libuše; Palková, Zdena

    2013-01-01

    The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid’s action. PMID:24040106

  1. Sphingosine 1-Phosphate (S1P) Receptor Agonists Mediate Pro-fibrotic Responses in Normal Human Lung Fibroblasts via S1P2 and S1P3 Receptors and Smad-independent Signaling

    PubMed Central

    Sobel, Katrin; Menyhart, Katalin; Killer, Nina; Renault, Bérengère; Bauer, Yasmina; Studer, Rolf; Steiner, Beat; Bolli, Martin H.; Nayler, Oliver; Gatfield, John

    2013-01-01

    Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways. PMID:23589284

  2. Cardiomyocyte S1P1 Receptor–mediated Extracellular Signal–related Kinase Signaling and Desensitization

    PubMed Central

    Tao, Rong; Hoover, Holly E.; Zhang, Jianqing; Honbo, Norman; Alano, Conrad C.; Karliner, Joel S.

    2010-01-01

    We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal–related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM–5 μM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase Cε-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1–Gi pathway. PMID:19433984

  3. Cargo sequences are important for Som1p-dependent signal peptide cleavage in yeast mitochondria.

    PubMed

    Liang, Haobo; Luo, Wentian; Green, Neil; Fang, Hong

    2004-09-17

    The inner membrane protease (IMP) has two catalytic subunits, Imp1p and Imp2p, that exhibit nonoverlapping substrate specificity in mitochondria of the yeast Saccharomyces cerevisiae. The IMP also has at least one noncatalytic subunit, Som1p, which is required to cleave signal peptides from a subset of Imp1p substrates. To understand how Som1p mediates Imp1p substrate specificity, we addressed the possibility that Som1p functions as a molecular chaperone, which binds to specific substrates and directs them to the catalytic site. Our results show that cargo sequences attached to the signal peptide are important for Som1p-dependent presequence cleavage; however, no specific cargo sequence is required. Indeed, we show that a substrate normally destined for Imp2p is cleaved in a Som1p-dependent manner when the substrate is directed to Imp1p. These results argue against the notion that Som1p is a molecular chaperone. Instead, we propose that the cargo of some Imp1p substrates can assume a conformation incompatible with presequence cleavage. Som1p could thus act through Imp1p to improve cleavage efficiency early during substrate maturation. PMID:15254042

  4. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast.

    PubMed Central

    Gelperin, D; Horton, L; Beckman, J; Hensold, J; Lemmon, S K

    2001-01-01

    Bms1p and Tsr1p define a novel family of proteins required for synthesis of 40S ribosomal subunits in Saccharomyces cerevisiae. Both are essential and localize to the nucleolus. Tsr1p shares two extended regions of similarity with Bms1p, but the two proteins function at different steps in 40S ribosome maturation. Inactivation of Bms1p blocks at an early step, leading to disappearance of 20S and 18S rRNA precursors. Also, slight accumulation of an aberrant 23S product and significant 35S accumulation are observed, indicating that pre-rRNA processing at sites A0, A1, and A2 is inhibited. In contrast, depletion of Tsr1p results in accumulation of 20S rRNA. Because processing of 20S to 18S rRNA occurs in the cytoplasm, this suggests that Tsr1p is required for assembly of a transport- or maturation-competent particle or is specifically required for transport of 43S pre-ribosomal particles, but not 60S ribosome precursors, from the nucleus to the cytosol. Finally, Bms1p is a GTP-binding protein, the first found to function in ribosome assembly or rRNA processing. PMID:11565749

  5. The RAP1GA1 locus for human Rap1-GTPase activating protein 1 maps to chromosome 1p36.1-->p35.

    PubMed

    Weiss, J; Rubinfeld, B; Polakis, P G; McCormick, F; Cavenee, W K; Arden, K C

    1994-01-01

    Using a panel of somatic cell hybrids we have mapped the locus for Rap1-GTPase activating protein 1 (RAP1GA1) to human chromosome 1. Fluorescence in situ hybridization experiments independently confirmed the chromosomal localization and refined it to 1p36.1-->p35.

  6. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  7. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    SciTech Connect

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally; Kerscher, Oliver; Benton, Michael G.; Basrai, Munira A.

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.

  8. IAP gene deletion and conditional knockout models.

    PubMed

    Silke, John; Vaux, David L

    2015-03-01

    Gene deletion studies have helped reveal the unique and overlapping roles played by IAP proteins. Crossing IAP mutant mice has helped unravel the complex feed-back regulatory circuits in which cIAP1, cIAP2 and XIAP allow innate defensive responses to microbial pathogens, without the development of auto-inflammatory syndromes. Deletion of genes for Survivin and its homologs in yeasts, invertebrates and mammals has shown that it functions differently, as it is not a regulator of innate immunity or apoptosis, but acts together with INCENP, aurora kinase B and Borealin to allow chromosome segregation during mitosis. PMID:25545814

  9. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications

    PubMed Central

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction. PMID:26539121

  10. Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach.

    PubMed

    Gamberi, Tania; Puglia, Michele; Bianchi, Laura; Gimigliano, Anna; Landi, Claudia; Magherini, Francesca; Guidi, Francesca; Ranaldi, Francesco; Armini, Alessandro; Cipriano, Maria; Gagliardi, Assunta; Modesti, Alessandra; Bini, Luca

    2012-06-01

    The Saccharomyces cerevisiae gene SCO1 has been shown to play an essential role in copper delivery to cytochrome c oxidase. Biochemical studies demonstrated specific transfer of copper from Cox17p to Sco1p, and physical interactions between the Sco1p and Cox2p. Deletion of SCO1 yeast gene results in a respiratory deficient phenotype. This study aims to gain a more detailed insight on the effects of SCO1 deletion on S. cerevisiae metabolism. We compared, using a proteomic approach, the protein pattern of SCO1 null mutant strain and wild-type BY4741 strain grown on fermentable and on nonfermentable carbon sources. The analysis showed that on nonfermentable medium, the SCO1 mutant displayed a protein profile similar to that of actively fermenting yeast cells. Indeed, on 3% glycerol, this mutant displayed an increase of some glycolytic and fermentative enzymes such as glyceraldehyde-3-phosphate dehydrogenase 1, enolase 2, pyruvate decarboxylase 1, and alcohol dehydrogenase 1. These data were supported by immunoblotting and enzyme activity assay. Moreover, the ethanol assay and the oxygen consumption measurement demonstrated a fermentative activity in SCO1 mutant on respiratory medium. Our results suggest that on nonfermentable carbon source, the lack of Sco1p causes a metabolic shift from respiration to fermentation.

  11. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes

    PubMed Central

    Hildebrandt, Emily R; Cheng, Michael; Zhao, Peng; Kim, June H; Wells, Lance; Schmidt, Walter K

    2016-01-01

    The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins. DOI: http://dx.doi.org/10.7554/eLife.15899.001 PMID:27525482

  12. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae

    PubMed Central

    Pernice, Wolfgang M.; Vevea, Jason D.; Pon, Liza A.

    2016-01-01

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. PMID:26839174

  13. Cryptococcal Xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans Plays a Direct Role in the Synthesis of Capsule Polysaccharides*S⃞

    PubMed Central

    Klutts, J. Stacey; Doering, Tamara L.

    2008-01-01

    The opportunistic yeast Cryptococcus neoformans causes serious disease in humans and expresses a prominent polysaccharide capsule that is required for its virulence. Little is known about how this capsule is synthesized. We previously identified a β1,2-xylosyltransferase (Cxt1p) with in vitro enzymatic activity appropriate for involvement in capsule synthesis. Here, we investigate C. neoformans strains in which the corresponding gene has been deleted (cxt1Δ). Loss of CXT1 does not affect in vitro growth of the mutant cells or the general morphology of their capsules. However, NMR structural analysis of the two main capsule polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), showed that both were missing β1,2-xylose residues. There was an ∼30% reduction in the abundance of this residue in GXM in mutant compared with wild-type strains, and mutant GalXM was almost completely devoid of β1,2-linked xylose. The GalXM from the mutant strain was also missing a β1,3-linked xylose residue. Furthermore, deletion of CXT1 led to attenuation of cryptococcal growth in a mouse model of infection, suggesting that the affected xylose residues are important for normal host-pathogen interactions. Cxt1p is the first glycosyltransferase with a defined role in C. neoformans capsule biosynthesis, and cxt1Δ is the only strain identified to date with structural alterations of the capsule polysaccharide GalXM. PMID:18347023

  14. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae.

    PubMed

    Pernice, Wolfgang M; Vevea, Jason D; Pon, Liza A

    2016-02-03

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity.

  15. 77 FR 68737 - Procurement List, Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Must Be Received On or Before: 12/17/2012. ADDRESSES: Committee for Purchase From People Who Are...

  16. 78 FR 65618 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Received on or Before: 12/2/2013. ADDRESSES: Committee for Purchase From People Who Are Blind or...

  17. Deletion 5q35.3

    SciTech Connect

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G.; Young, R.S.

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  18. Interstitial deletion (6)q13q15

    SciTech Connect

    Gershoni-Baruch, R.; Mandel, H.; Bar El, H.; Bar-Nizan, N.; Borochowitz, Z.; Dar, Hanna

    1996-04-24

    We report on a 2-year-old child with psychomotor retardation, facial and urogenital anomalies. His chromosome constitution was 46,XY,del(6)(q13q15). This case further contributes to the karyotype-phenotype correlation of proximal deletion 6q syndromes. 18 refs., 3 figs., 1 tab.

  19. 78 FR 23543 - Procurement List Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...--Medical Equipment Set, X-Ray, Field NSN: 6545-00-920-7125--First Aid Kit, Gun Crew NPA: Ontario County...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Deletions On 3/8/2013 (78 FR 15000) and 11/2/2012 (77 FR...

  20. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  1. Deletion of GPIHBP1 causing severe chylomicronemia.

    PubMed

    Rios, Jonathan J; Shastry, Savitha; Jasso, Juan; Hauser, Natalie; Garg, Abhimanyu; Bensadoun, André; Cohen, Jonathan C; Hobbs, Helen H

    2012-05-01

    Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1. PMID:22008945

  2. 78 FR 77106 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... INFORMATION: Deletions On 11/8/2013 (78 FR 67129-67130) and 11/15/2013 (78 FR 68823- 68824), the Committee for... Building and Courthouse, 205 4th Street, Coeur d'Alene, ID, U.S. Federal Building, St. Maries, ID NPA: TESH, Inc., Coeur d'Alene, ID Contracting Activity: GENERAL SERVICES ADMINISTRATION, FPDS AGENCY...

  3. The Clinically-tested S1P Receptor Agonists, FTY720 and BAF312, Demonstrate Subtype-Specific Bradycardia (S1P1) and Hypertension (S1P3) in Rat

    PubMed Central

    Fryer, Ryan M.; Muthukumarana, Akalushi; Harrison, Paul C.; Nodop Mazurek, Suzanne; Chen, Rong Rhonda; Harrington, Kyle E.; Dinallo, Roger M.; Horan, Joshua C.; Patnaude, Lori; Modis, Louise K.; Reinhart, Glenn A.

    2012-01-01

    Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1PX receptor agonist) produces modest hypertension in patients (2–3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.g. bradycardia, hypertension), and perhaps even species-dependent since functional differences in rodent, rabbit, and human have been suggested. Thus, we characterized the S1P receptor subtype specificity for each compound in vitro and, in vivo, the cardiovascular effects of FTY720 and the more selective S1P1,5 agonist, BAF312, were tested during acute i.v. infusion in anesthetized rats and after oral administration for 10 days in telemetry-instrumented conscious rats. Acute i.v. infusion of FTY720 (0.1, 0.3, 1.0 mg/kg/20 min) or BAF312 (0.5, 1.5, 5.0 mg/kg/20 min) elicited acute bradycardia in anesthetized rats demonstrating an S1P1 mediated mechanism-of-action. However, while FTY720 (0.5, 1.5, 5.0 mg/kg/d) elicited dose-dependent hypertension after multiple days of oral administration in rat at clinically relevant plasma concentrations (24-hr mean blood pressure = 8.4, 12.8, 16.2 mmHg above baseline vs. 3 mmHg in vehicle controls), BAF312 (0.3, 3.0, 30.0 mg/kg/d) had no significant effect on blood pressure at any dose tested suggesting that hypertension produced by FTY720 is mediated S1P3 receptors. In summary, in vitro selectivity results in combination with studies performed in anesthetized and conscious rats administered two clinically tested S1P agonists, FTY720 or BAF312, suggest that S1P1 receptors mediate bradycardia while hypertension is mediated by S1P3 receptor activation. PMID:23285242

  4. Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P3)-Sparing S1P1 Agonists Active at Low Oral Doses.

    PubMed

    Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason

    2016-02-11

    FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines. PMID:26751273

  5. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations.

    PubMed

    Siddiqi, Imran N; Friedman, Julia; Barry-Holson, Keegan Q; Ma, Charles; Thodima, Venkata; Kang, Irene; Padmanabhan, Raghavendra; Dias, Lizalynn M; Kelly, Kevin R; Brynes, Russell K; Kamalakaran, Sitharthan; Houldsworth, Jane

    2016-06-01

    A predominantly diffuse growth pattern and CD23 co-expression are uncommon findings in nodal follicular lymphoma and can create diagnostic challenges. A single case series in 2009 (Katzenberger et al) proposed a unique morphologic variant of nodal follicular lymphoma, characterized by a predominantly diffuse architecture, lack of the t(14;18) IGH/BCL2 translocation, presence of 1p36 deletion, frequent inguinal lymph node involvement, CD23 co-expression, and low clinical stage. Other studies on CD23+ follicular lymphoma, while associating inguinal location, have not specifically described this architecture. In addition, no follow-up studies have correlated the histopathologic and cytogenetic/molecular features of these cases, and they remain a diagnostic problem. We identified 11 cases of diffuse, CD23+ follicular lymphoma with histopathologic features similar to those described by Katzenberger et al. Along with pertinent clinical information, we detail their histopathology, IGH/BCL2 translocation status, lymphoma-associated chromosomal gains/losses, and assessment of mutations in 220 lymphoma-associated genes by massively parallel sequencing. All cases showed a diffuse growth pattern around well- to ill-defined residual germinal centers, uniform CD23 expression, mixed centrocytic/centroblastic cytology, and expression of at least one germinal center marker. Ten of 11 involved inguinal lymph nodes, 5 solely. By fluorescence in situ hybridization analysis, the vast majority lacked IGH/BCL2 translocation (9/11). Deletion of 1p36 was observed in five cases and included TNFRSF14. Of the six cases lacking 1p36 deletion, TNFRSF14 mutations were identified in three, highlighting the strong association of 1p36/TNFRSF14 abnormalities with this follicular lymphoma variant. In addition, 9 of the 11 cases tested (82%) had STAT6 mutations and nuclear P-STAT6 expression was detectable in the mutated cases by immunohistochemistry. The proportion of STAT6 mutations is higher than

  6. Prevalence of selected genomic deletions and duplications in a French-Canadian population-based sample of newborns.

    PubMed

    Tucker, Tracy; Giroux, Sylvie; Clément, Valérie; Langlois, Sylvie; Friedman, Jan M; Rousseau, François

    2013-07-01

    Chromosomal microarray analysis has identified many novel microdeletions or microduplications that produce neurodevelopmental disorders with a recognizable clinical phenotype and that are not observed in normal individuals. However, imbalance of other genomic regions is associated with a variable phenotype with intellectual disability (ID) or autism in some individuals but are also observed in completely normal individuals. Several large studies have reported the prevalence of copy number (CN) variants in people with particular features (e.g., ID, autism, schizophrenia, or epilepsy); few studies have investigated the prevalence of genomic CN changes in the general population. We used a high-throughput method to screen 6813 consecutive cord blood samples from a predominantly French-Canadian population to assess genomic CN in five genomic regions: 1p36, 15q11-q13, 16p11.2, 16p11.2-p12.2, and 22q11.2. We identified one deletion and one duplication within 1p36, two deletions of 15q11-q13, eight deletions of 16p11.2-p12.2, two deletions and five duplications of 16p11.2, and six duplications of 22q11.2. This study provides estimates of the frequency of CN variants in an unselected population. Our findings have important implications for genetic counseling. PMID:24498606

  7. The “Grep” Command But Not FusionMap, FusionFinder or ChimeraScan Captures the CIC-DUX4 Fusion Gene from Whole Transcriptome Sequencing Data on a Small Round Cell Tumor with t(4;19)(q35;q13)

    PubMed Central

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre

    2014-01-01

    Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the “grep” command-line utility. The “grep” command searches the text for specific expressions and displays, by default, the lines where matches occur. The “specific expression” was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with “grep”. In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The “grep” command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene. PMID:24950227

  8. Interstitial deletion of distal 13q associated with Hirschsprung's disease.

    PubMed Central

    Lamont, M A; Fitchett, M; Dennis, N R

    1989-01-01

    Three cases of interstitial deletion of chromosome 13 involving the common segment 13q22.1----q32.1 are reported. In addition to the recognised clinical features of this deletion, two had Hirschsprung's disease. Images PMID:2918536

  9. Multiple functions of the vacuolar sorting protein Ccz1p in Saccharomyces cerevisiae

    SciTech Connect

    Hoffman-Sommer, Marta; Migdalski, Andrzej; Rytka, Joanna; Kucharczyk, Roza . E-mail: roza@ibb.waw.pl

    2005-04-01

    The CCZ1 (YBR131w) gene encodes a protein required for fusion of various transport intermediates with the vacuole. Ccz1p, in a complex with Mon1p, is a close partner of Ypt7p in the processes of fusion of endosomes to vacuoles and homotypic vacuole fusion. In this work, we exploited the Ca{sup 2+}-sensitivity of the ccz1{delta} mutant to identify genes specifically interacting with CCZ1, basing on functional multicopy suppression of calcium toxicity. The presented results indicate that Ccz1p functions in the cell either in association with Mon1p and Ypt7p in fusion at the vacuolar membrane, or-separately-with Arl1p at early steps of vacuolar transport. We also show that suppression of calcium toxicity by the calcium pumps Pmr1p and Pmc1p is restricted only to the subset of mutants defective in vacuole morphology. The mechanisms of Ca{sup 2+}-pump-mediated suppression also differ from each other, since the action of Pmr1p, but not Pmc1p, appears to require Arl1p function.

  10. Duplication and deletion of CFC1 associated with heterotaxy syndrome.

    PubMed

    Cao, Ruixue; Long, Fei; Wang, Liping; Xu, Yuejuan; Guo, Ying; Li, Fen; Chen, Sun; Sun, Kun; Xu, Rang

    2015-02-01

    Heterotaxy syndrome, which causes significant morbidity and mortality, is a class of congenital disorders, in which normal left-right asymmetry cannot be properly established. To explore the role of copy number variants (CNVs) in the occurrence of heterotaxy syndrome, we recruited 93 heterotaxy patients and studied 12 of them by the Affymetrix Genome-Wide Human SNP 6.0 Array. The results were confirmed in the remaining 81 patients and 500 healthy children by quantitative real-time polymerase chain reaction (qPCR). The analysis of the SNP6.0 array showed a duplication of chromosome 2q21.1, which was verified by qPCR. The result of qPCR in the other 81 patients showed that 8/81 patients had the CNVs of 2q21.1 and the only overlapping gene in these patients is CFC1. However, in the 500 healthy children, only one carried the duplication of CFC1 (p=3.5×10(-7)). The duplication and deletion of CFC1 may play key roles in the occurrence of heterotaxy syndrome. Moreover, the transposed great arteries, double outlet right ventricle, single atrium, and single ventricle may share a common genetic etiology with the heterotaxy syndrome. PMID:25423076

  11. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p.

    PubMed Central

    Li, S; Ault, A; Malone, C L; Raitt, D; Dean, S; Johnston, L H; Deschenes, R J; Fassler, J S

    1998-01-01

    The Saccharomyces cerevisiae Sln1 protein is a 'two-component' regulator involved in osmotolerance. Two-component regulators are a family of signal-transduction molecules with histidine kinase activity common in prokaryotes and recently identified in eukaryotes. Phosphorylation of Sln1p inhibits the HOG1 MAP kinase osmosensing pathway via a phosphorelay mechanism including Ypd1p and the response regulator, Ssk1p. SLN1 also activates an MCM1-dependent reporter gene, P-lacZ, but this function is independent of Ssk1p. We present genetic and biochemical evidence that Skn7p is the response regulator for this alternative Sln1p signaling pathway. Thus, the yeast Sln1 phosphorelay is actually more complex than appreciated previously; the Sln1 kinase and Ypd1 phosphorelay intermediate regulate the activity of two distinct response regulators, Ssk1p and Skn7p. The established role of Skn7p in oxidative stress is independent of the conserved receiver domain aspartate, D427. In contrast, we show that Sln1p activation of Skn7p requires phosphorylation of D427. The expression of TRX2, previously shown to exhibit Skn7p-dependent oxidative-stress activation, is also regulated by the SLN1 phosphorelay functions of Skn7p. The identification of genes responsive to both classes of Skn7p function suggests a central role for Skn7p and the SLN1-SKN7 pathway in integrating and coordinating cellular response to various types of environmental stress. PMID:9843501

  12. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q11.2 deletion syndrome 22q11.2 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q11.2 deletion syndrome (which is also known by several ...

  13. Genetics Home Reference: 22q13.3 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q13.3 deletion syndrome 22q13.3 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q13.3 deletion syndrome , which is also commonly known as ...

  14. Rac1 deletion causes thymic atrophy.

    PubMed

    Hunziker, Lukas; Benitah, Salvador Aznar; Aznar Benitah, Salvador; Braun, Kristin M; Jensen, Kim; McNulty, Katrina; Butler, Colin; Potton, Elspeth; Nye, Emma; Boyd, Richard; Laurent, Geoff; Glogauer, Michael; Wright, Nick A; Watt, Fiona M; Janes, Sam M

    2011-04-29

    The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation.

  15. Duplication/deletion of chromosome 8p

    SciTech Connect

    Priest, J.H.

    1995-09-11

    The article by Guo et al. provides evidence for deletion of D8S596 loci (assigned to 8p23) in at least some patients with inverted duplications of 8p. Cytogenetic break points forming the inverted duplication are remarkably similar among most of their patients and those reported previously, suggesting a common mechanism for this interesting rearrangement. Why should similar breaks occur in 8p and why is a FISH signal absent in the distal short arm when the ONCOR digoxigenin-labeled probe for loci D8S596 is used? Other studies also indicate that duplication for the region 8p12-p22 is associated with a deletion distal to the duplication itself. 4 refs.

  16. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae.

    PubMed

    Auesukaree, Choowong; Tochio, Hidehito; Shirakawa, Masahiro; Kaneko, Yoshinobu; Harashima, Satoshi

    2005-07-01

    In Saccharomyces cerevisiae, the phosphate signal transduction PHO pathway is involved in regulating several phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase. In this pathway, a cyclin-dependent kinase inhibitor (Pho81p) regulates the kinase activity of the cyclin-cyclin-dependent kinase complex Pho80p-Pho85p, which phosphorylates the transcription factor Pho4p in response to intracellular phosphate levels. However, how cells sense phosphate availability and transduce the phosphate signal to Pho81p remains unknown. To identify additional components of the PHO pathway, we have screened a collection of yeast deletion strains. We found that disruptants of PLC1, ARG82, and KCS1, which are involved in the synthesis of inositol polyphosphate, and ADK1, which encodes adenylate kinase, constitutively express PHO5. Each of these factors functions upstream of Pho81p and negatively regulates the PHO pathway independently of intracellular orthophosphate levels. Overexpression of KCS1, but not of the other genes, suppressed PHO5 expression in the wild-type strain under low phosphate conditions. These results raise the possibility that diphosphoinositol tetrakisphosphate and/or bisdiphosphoinositol triphosphate may be essential for regulation of the PHO pathway. Furthermore, the Deltaplc1, Deltaarg82, and Deltakcs1 deletion strains, but not the Deltaipk1 deletion strain, had significantly reduced intracellular polyphosphate levels, suggesting that enzymes involved in inositol pyrophosphate synthesis are also required for polyphosphate accumulation.

  17. Hereditary fructose intolerance: functional study of two novel ALDOB natural variants and characterization of a partial gene deletion.

    PubMed

    Esposito, Gabriella; Imperato, Maria Rosaria; Ieno, Luigi; Sorvillo, Rosa; Benigno, Vincenzo; Parenti, Giancarlo; Parini, Rossella; Vitagliano, Luigi; Zagari, Adriana; Salvatore, Francesco

    2010-12-01

    Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease caused by impaired functioning of human liver aldolase (ALDOB). At least 54 subtle/point mutations and only two large intragenic deletions have been found in the ALDOB gene. Here we report two novel ALDOB variants (p.R46W and p.Y343H) and an intragenic deletion that we found in patients with suspected HFI. The residual catalytic activity of the recombinant p.R46W and p.Y343H variants toward F1P was particularly altered. We also characterized a large intragenic deletion that we found in six unrelated patients. This is the first report of six unrelated patients sharing the same ALDOB deletion, thus indicating a founder effect for this allele in our geographic area. Because this deletion involves ALDOB exon 5, it can mimic worldwide common pathogenic genotypes, that is, homozygous p.A150P and p.A175D. Finally, the identification of only one ALDOB mutation in symptomatic patients suggests that HFI symptoms can, albeit rarely, appear also in heterozygotes. Therefore, an excessive and continuous fructose dietary intake may have deleterious effects even in apparently asymptomatic HFI carriers.

  18. A review of 18p deletions.

    PubMed

    Hasi-Zogaj, Minire; Sebold, Courtney; Heard, Patricia; Carter, Erika; Soileau, Bridgette; Hill, Annice; Rupert, David; Perry, Brian; Atkinson, Sidney; O'Donnell, Louise; Gelfond, Jon; Lancaster, Jack; Fox, Peter T; Hale, Daniel E; Cody, Jannine D

    2015-09-01

    Since 18p- was first described in 1963, much progress has been made in our understanding of this classic deletion condition. We have been able to establish a fairly complete picture of the phenotype when the deletion breakpoint occurs at the centromere, and we are working to establish the phenotypic effects when each gene on 18p is hemizygous. Our aim is to provide genotype-specific anticipatory guidance and recommendations to families with an 18p- diagnosis. In addition, establishing the molecular underpinnings of the condition will potentially suggest targets for molecular treatments. Thus, the next step is to establish the precise effects of specific gene deletions. As we look forward to deepening our understanding of 18p-, our focus will continue to be on the establishment of robust genotype-phenotype correlations and the penetrance of these phenotypes. We will continue to follow our 18p- cohort closely as they age to determine the presence or absence of some of these diagnoses, including spinocerebellar ataxia (SCA), facioscapulohumeral muscular dystrophy (FSHD), and dystonia. We will also continue to refine the critical regions for other phenotypes as we enroll additional (hopefully informative) participants into the research study and as the mechanisms of the genes in these regions are elucidated. Mouse models will also be developed to further our understanding of the effects of hemizygosity as well as to serve as models for treatment development. PMID:26250845

  19. Probabilistic phylogenetic inference with insertions and deletions.

    PubMed

    Rivas, Elena; Eddy, Sean R

    2008-01-01

    A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm. PMID:18787703

  20. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae.

    PubMed

    Effelsberg, Daniel; Cruz-Zaragoza, Luis Daniel; Tonillo, Jason; Schliebs, Wolfgang; Erdmann, Ralf

    2015-10-16

    Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD(+) salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.

  1. Naf1 p is a box H/ACA snoRNP assembly factor.

    PubMed Central

    Fatica, Alessandro; Dlakić, Mensur; Tollervey, David

    2002-01-01

    Box H/ACA small nucleolar ribonucleoprotein particles (snoRNPs) contain four essential proteins, Cbf5p, Gar1p, Nhp2p, and Nop10p, each of which, with the exception of Gar1p, is required for box H/ACA snoRNA accumulation. Database searches identified a novel essential protein, which we termed Naf1p, with a region of homology to the RNA-binding domain of Gar1p and other features in common with hnRNP-like proteins. Naf1p is localized to the nucleus and is not a stable component of the H/ACA snoRNPs, but it is required for the accumulation of all box H/ACA snoRNAs. This requirement is not at the level of snoRNA transcription initiation or termination. Naf1 p shows in vitro RNA-binding activity and also binds directly to Cbf5p and Nhp2p. Naf1p was shown to bind to the CTD in vivo in a two-hybrid assay, and the phosphorylated CTD, but not the nonphosphorylated CTD, was shown to precipitate tagged Naf1p from a cell lysate. We propose that Naf1 p is recruited to the CTD of RNA polymerase II and binds to nascent box H/ACA snoRNAs promoting snoRNP assembly. PMID:12515383

  2. Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival

    PubMed Central

    Ragnarsson, G; Eiriksdottir, G; Johannsdottir, J Th; Jonasson, J G; Egilsson, V; Ingvarsson, S

    1999-01-01

    The distal half of chromosome 1p was analysed with 15 polymorphic microsatellite markers in 683 human solid tumours at different locations. Loss of heterozygosity (LOH) was observed at least at one site in 369 cases or 54% of the tumours. LOHs detected ranged from 30–64%, depending on tumour location. The major results regarding LOH at different tumour locations were as follows: stomach, 20/38 (53%); colon and rectum, 60/109 (55%); lung, 38/63 (60%); breast, 145/238 (61%); endometrium, 18/25 (72%); ovary, 17/31 (55%); testis, 11/30 (37%); kidney, 22/73 (30%); thyroid, 4/14 (29%); and sarcomas, 9/14 (64%). High percentages of LOH were seen in the 1p36.3, 1p36.1, 1p35–p34.3, 1p32 and 1p31 regions, suggesting the presence of tumour-suppressor genes. All these regions on chromosome 1p show high LOH in more than one tumour type. However, distinct patterns of LOH were detected at different tumour locations. There was a significant separation of survival curves, with and without LOH at chromosome 1p, in the breast cancer patients. Multivariate analysis showed that LOH at 1p in breast tumours is a better indicator for prognosis than the other variables tested in our model, including nodal metastasis. © 1999 Cancer Research Campaign PMID:10188892

  3. Identification of the Candida albicans Cap1p Regulon ▿ †

    PubMed Central

    Znaidi, Sadri; Barker, Katherine S.; Weber, Sandra; Alarco, Anne-Marie; Liu, Teresa T.; Boucher, Geneviève; Rogers, P. David; Raymond, Martine

    2009-01-01

    Cap1p, a transcription factor of the basic region leucine zipper family, regulates the oxidative stress response (OSR) in Candida albicans. Alteration of its C-terminal cysteine-rich domain (CRD) results in Cap1p nuclear retention and transcriptional activation. To better understand the function of Cap1p in C. albicans, we used genome-wide location profiling (chromatin immunoprecipitation-on-chip) to identify its transcriptional targets in vivo. A triple-hemagglutinin (HA3) epitope was introduced at the C terminus of wild-type Cap1p (Cap1p-HA3) or hyperactive Cap1p with an altered CRD (Cap1p-CSE-HA3). Location profiling using whole-genome oligonucleotide tiling microarrays identified 89 targets bound by Cap1p-HA3 or Cap1p-CSE-HA3 (the binding ratio was at least twofold; P ≤ 0.01). Strikingly, Cap1p binding was detected not only at the promoter region of its target genes but also at their 3′ ends and within their open reading frames, suggesting that Cap1p may associate with the transcriptional or chromatin remodeling machinery to exert its activity. Overrepresented functional groups of the Cap1p targets (P ≤ 0.02) included 11 genes involved in the OSR (CAP1, GLR1, TRX1, SOD1, CAT1, and others), 13 genes involved in response to drugs (PDR16, MDR1, FLU1, YCF1, FCR1, and others), 4 genes involved in phospholipid transport (PDR16, GIT1, RTA2, and orf19.932), and 3 genes involved in the regulation of nitrogen utilization (GST3, orf19.2693, and orf19.3121), suggesting that Cap1p has other cellular functions in addition to the OSR. Bioinformatic analyses of the bound sequences suggest that Cap1p recognizes the DNA motif 5′-MTKASTMA. Finally, transcriptome analyses showed that increased expression generally accompanies Cap1p binding at its targets, indicating that Cap1p functions as a transcriptional activator. PMID:19395663

  4. Characterization of the roles of Blt1p in fission yeast cytokinesis

    PubMed Central

    Goss, John W.; Kim, Sunhee; Bledsoe, Hannah; Pollard, Thomas D.

    2014-01-01

    Spatial and temporal regulation of cytokinesis is essential for cell division, yet the mechanisms that control the formation and constriction of the contractile ring are incompletely understood. In the fission yeast Schizosaccharomyces pombe proteins that contribute to the cytokinetic contractile ring accumulate during interphase in nodes—precursor structures around the equatorial cortex. During mitosis, additional proteins join these nodes, which condense to form the contractile ring. The cytokinesis protein Blt1p is unique in being present continuously in nodes from early interphase through to the contractile ring until cell separation. Blt1p was shown to stabilize interphase nodes, but its functions later in mitosis were unclear. We use analytical ultracentrifugation to show that purified Blt1p is a tetramer. We find that Blt1p interacts physically with Sid2p and Mob1p, a protein kinase complex of the septation initiation network, and confirm known interactions with F-BAR protein Cdc15p. Contractile rings assemble normally in blt1∆ cells, but the initiation of ring constriction and completion of cell division are delayed. We find three defects that likely contribute to this delay. Without Blt1p, contractile rings recruited and retained less Sid2p/Mob1p and Clp1p phosphatase, and β-glucan synthase Bgs1p accumulated slowly at the cleavage site. PMID:24790095

  5. Cdc37p is involved in osmoadaptation and controls high osmolarity-induced cross-talk via the MAP kinase Kss1p.

    PubMed

    Yang, Xiao-Xian; Hawle, Patricija; Bebelman, Jan Paul; Meenhuis, Annemarie; Siderius, Marco; van der Vies, Saskia M

    2007-09-01

    Cdc37p, the p50 homolog of Saccharomyces cerevisiae, is an Hsp90 cochaperone involved in the targeting of protein kinases to Hsp90. Here we report a role for Cdc37p in osmoadaptive signalling in this yeast. The osmosensitive phenotype that is displayed by the cdc37-34 mutant strain appears not to be the consequence of deficient signalling through the high osmolarity glycerol (HOG) MAP kinase pathway. Rather, Cdc37p appears to play a role in the filamentous growth (FG) pathway, which mediates adaptation to high osmolarity parallel to the HOG pathway. The osmosensitive phenotype of the cdc37-34 mutant strain is aggravated upon the deletion of the HOG gene. We report that the hyper-osmosensitive phenotype of the cdc37-34, hog1 mutant correlates to a reduced of activity of the FG pathway. We utilized this phenotype to isolate suppressor genes such as KSS1 that encodes a MAP kinase that functions in the FG pathway. We report that Kss1p interacts physically with Cdc37p. Like Kss1p, the second suppressor that we isolated, Dse1p, is involved in cell wall biogenesis or maintenance, suggesting that Cdc37p controls osmoadapation by regulating mitogen-activated protein kinase signalling aimed at adaptive changes in cell wall organization. PMID:17451450

  6. Experimental quantum deletion in an NMR quantum information processor

    NASA Astrophysics Data System (ADS)

    Long, Yu; Feng, GuanRu; Pearson, Jasong; Long, GuiLu

    2014-07-01

    We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database. Unlike classical deletion, where search and deletion are equivalent, quantum deletion can be implemented with only a single query, which achieves exponential speed-up compared to the optimal classical analog. In the experimental realization, the GRAPE algorithm was used to obtain an optimized NMR pulse sequence, and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.

  7. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  8. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    PubMed

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP.

  9. Phenotypic characterization of rare interstitial deletion of chromosome 4

    PubMed Central

    Ismail, Samira; Helmy, Nivine A.; Mahmoud, Wael M.; El-Ruby, Mona O.

    2012-01-01

    Interstitial deletion of the long arm of chromosome 4 is rare. Patients with interstitial deletion of the long arm of chromosome 4 differ from those with terminal deletions. Phenotypes may be variable, depending upon the specific length and location of the deleted portion. Here, we report on a boy exhibiting most of the congenital malformations encountered in terminal 4q syndrome. The conventional karyotyping and Fluorescence in-situ hybridization revealed a de novo interstitial del (4)(q31q32). The current report is a further document highlighting that deletion of segment q31 could be contributing to the expression of most of the phenotype of 4q deletion syndrome. Using array comparative genome hybridization methodology is recommended for investigating further cases with similar segmental interstitial deletions to support and delineate findings and to define genes implicated in the pathogenesis of the disorder.

  10. Feedback control of Swe1p degradation in the yeast morphogenesis checkpoint.

    PubMed

    King, Kindra; Kang, Hui; Jin, Michelle; Lew, Daniel J

    2013-04-01

    Saccharomyces cerevisiae cells exposed to a variety of physiological stresses transiently delay bud emergence or bud growth. To maintain coordination between bud formation and the cell cycle in such circumstances, the morphogenesis checkpoint delays nuclear division via the mitosis-inhibitory Wee1-family kinase, Swe1p. Swe1p is degraded during G2 in unstressed cells but is stabilized and accumulates following stress. Degradation of Swe1p is preceded by its recruitment to the septin scaffold at the mother-bud neck, mediated by the Swe1p-binding protein Hsl7p. Following osmotic shock or actin depolymerization, Swe1p is stabilized, and previous studies suggested that this was because Hsl7p was no longer recruited to the septin scaffold following stress. However, we now show that Hsl7p is in fact recruited to the septin scaffold in stressed cells. Using a cyclin-dependent kinase (CDK) mutant that is immune to checkpoint-mediated inhibition, we show that Swe1p stabilization following stress is an indirect effect of CDK inhibition. These findings demonstrate the physiological importance of a positive-feedback loop in which Swe1p activity inhibits the CDK, which then ceases to target Swe1p for degradation. They also highlight the difficulty in disentangling direct checkpoint pathways from the effects of positive-feedback loops active at the G2/M transition.

  11. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism.

    PubMed

    Gsell, Martina; Fankl, Ariane; Klug, Lisa; Mascher, Gerald; Schmidt, Claudia; Hrastnik, Claudia; Zellnig, Günther; Daum, Günther

    2015-01-01

    In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism. PMID:26327557

  12. Basic Helix-Loop-Helix Transcription Factor Heterocomplex of Yas1p and Yas2p Regulates Cytochrome P450 Expression in Response to Alkanes in the Yeast Yarrowia lipolytica▿

    PubMed Central

    Endoh-Yamagami, Setsu; Hirakawa, Kiyoshi; Morioka, Daisuke; Fukuda, Ryouichi; Ohta, Akinori

    2007-01-01

    The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes. PMID:17322346

  13. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis.

    PubMed

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco; Coria, Roberto

    2015-09-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  14. Ineffective Phosphorylation of Mitogen-Activated Protein Kinase Hog1p in Response to High Osmotic Stress in the Yeast Kluyveromyces lactis

    PubMed Central

    Velázquez-Zavala, Nancy; Rodríguez-González, Miriam; Navarro-Olmos, Rocío; Ongay-Larios, Laura; Kawasaki, Laura; Torres-Quiroz, Francisco

    2015-01-01

    When treated with a hyperosmotic stimulus, Kluyveromyces lactis cells respond by activating the mitogen-activated protein kinase (MAPK) K. lactis Hog1 (KlHog1) protein via two conserved branches, SLN1 and SHO1. Mutants affected in only one branch can cope with external hyperosmolarity by activating KlHog1p by phosphorylation, except for single ΔKlste11 and ΔKlste50 mutants, which showed high sensitivity to osmotic stress, even though the other branch (SLN1) was intact. Inactivation of both branches by deletion of KlSHO1 and KlSSK2 also produced sensitivity to high salt. Interestingly, we have observed that in ΔKlste11 and ΔKlsho1 ΔKlssk2 mutants, which exhibit sensitivity to hyperosmotic stress, and contrary to what would be expected, KlHog1p becomes phosphorylated. Additionally, in mutants lacking both MAPK kinase kinases (MAPKKKs) present in K. lactis (KlSte11p and KlSsk2p), the hyperosmotic stress induced the phosphorylation and nuclear internalization of KlHog1p, but it failed to induce the transcriptional expression of KlSTL1 and the cell was unable to grow in high-osmolarity medium. KlHog1p phosphorylation via the canonical HOG pathway or in mutants where the SHO1 and SLN1 branches have been inactivated requires not only the presence of KlPbs2p but also its kinase activity. This indicates that when the SHO1 and SLN1 branches are inactivated, high-osmotic-stress conditions activate an independent input that yields active KlPbs2p, which, in turn, renders KlHog1p phosphorylation ineffective. Finally, we found that KlSte11p can alleviate the sensitivity to hyperosmotic stress displayed by a ΔKlsho1 ΔKlssk2 mutant when it is anchored to the plasma membrane by adding the KlSho1p transmembrane segments, indicating that this chimeric protein can substitute for KlSho1p and KlSsk2p. PMID:26150414

  15. Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    SciTech Connect

    Lees, J.P.

    2011-08-12

    Using a sample of 122 million {Upsilon}(3S) events recorded with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC, we search for the h{sub b}(1P) spin-singlet partner of the P-wave {chi}{sub b}(1P) states in the sequential decay {Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}(1P), h{sub b}(1P) {yields} {gamma}{eta}{sub b}(1S). We observe an excess of events above background in the distribution of the recoil mass against the {pi}{sup 0} at mass 9902 {+-} 4(stat.) {+-} 1(syst.) MeV/c{sup 2}. The width of the observed signal is consistent with experimental resolution, and its significance is 3.0 {sigma}, including systematic uncertainties. We obtain the value (3.7 {+-} 1.1 (stat.) {+-} 0.7 (syst.)) x 10{sup -4} for the product branching fraction {Beta}({Upsilon}(3S) {yields} {pi}{sup 0}h{sub b}) x {Beta}(h{sub b} {yields} {gamma}{eta}{sub b}).

  16. Evidence that the Yeast Desaturase Ole1p Exists as a Dimer In Vivo

    SciTech Connect

    Lou, Y.; Shanklin, J.

    2010-06-18

    Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the {Delta}{sup o}-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an {approx}75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional.

  17. The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence

    SciTech Connect

    Van Dyke, Natalya; Chanchorn, Ekkawit; Van Dyke, Michael W.

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Stm1p confers increased resistance to the macrolide starvation-mimic rapamycin. Black-Right-Pointing-Pointer Stm1p maintains 80S ribosome integrity during stationary phase-induced quiescence. Black-Right-Pointing-Pointer Stm1p facilitates polysome formation following quiescence exit. Black-Right-Pointing-Pointer Stm1p facilitates protein synthesis following quiescence exit. Black-Right-Pointing-Pointer Stm1p is a ribosome preservation factor under conditions of nutrient deprivation. -- Abstract: Once cells exhaust nutrients from their environment, they enter an alternative resting state known as quiescence, whereby proliferation ceases and essential nutrients are obtained through internal stores and through the catabolism of existing macromolecules and organelles. One example of this is ribophagy, the degradation of ribosomes through the process of autophagy. However, some ribosomes need to be preserved for an anticipated recovery from nutrient deprivation. We found that the ribosome-associated protein Stm1p greatly increases the quantity of 80S ribosomes present in quiescent yeast cells and that these ribosomes facilitate increased protein synthesis rates once nutrients are restored. These findings suggest that Stm1p can act as a ribosome preservation factor under conditions of nutrient deprivation and restoration.

  18. Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation.

    PubMed

    Pascual, Florencia; Hsieh, Lu-Sheng; Soto-Cardalda, Aníbal; Carman, George M

    2014-04-01

    Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-dependent manner. Pah1p from exponential phase cells was a relatively stable protein, and its abundance was not affected by incubation with an extract from stationary phase cells. Recombinant Pah1p was degraded upon incubation with the 100,000 × g pellet fraction of stationary phase cells, although the enzyme was stable when incubated with the same fraction of exponential phase cells. MG132, an inhibitor of proteasome function, prevented degradation of the recombinant enzyme. Endogenously expressed and plasmid-mediated overexpressed levels of Pah1p were more abundant in the stationary phase of cells treated with MG132. Pah1p was stabilized in mutants with impaired proteasome (rpn4Δ, blm10Δ, ump1Δ, and pre1 pre2) and ubiquitination (hrd1Δ, ubc4Δ, ubc7Δ, ubc8Δ, and doa4Δ) functions. The pre1 pre2 mutations that eliminate nearly all chymotrypsin-like activity of the 20 S proteasome had the greatest stabilizing effect on enzyme levels. Taken together, these results supported the conclusion that Pah1p is subject to proteasome-mediated degradation in the stationary phase. That Pah1p abundance was stabilized in pah1Δ mutant cells expressing catalytically inactive forms of Pah1p and dgk1Δ mutant cells with induced expression of DGK1-encoded diacylglycerol kinase indicated that alteration in phosphatidate and/or diacylglycerol levels might be the signal that triggers Pah1p degradation.

  19. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex.

    PubMed Central

    Ohi, Melanie D; Gould, Kathleen L

    2002-01-01

    Schizosaccharomyces pombe (Sp) Cdc5p and its Saccharomyces cerevisiae (Sc) ortholog, Cef1p, are essential components of the spliceosome. In S. cerevisiae, a subcomplex of the spliceosome that includes Cef1p can be isolated on its own; this has been termed the nineteen complex (Ntc) because it contains Prp19p. Components of the Ntc include Cef1p, Snt309p, Syf2p/Ntc31p, Ntc30p/lsy1p, Ntc20p and at least six unidentified proteins. We recently identified approximately 30 proteins that copurified with Cdc5p and Cef1p. Previously unidentified S. pombe proteins in this purification were called Cwfs for complexed with five and novel S. cerevisiae proteins were called Cwcs for complexed with Cef1p. Using these proteomics data coupled with available information regarding Ntc composition, we have investigated protein identities and interactions among Ntc components. Our data indicate that Cwc2p, Prp46p, Clf1p, and Syf1p most likely represent Ntc40p, Ntc50p, Ntc77p, and Ntc90p, respectively. We show that Sc Cwc2p interacts with Prp19p and is involved in pre-mRNA splicing. Sp cwf2+, the homolog of Sc CWC2, is allelic with the previously identified Sp prp3+. We present evidence that Sp Cwf7p, an essential protein with obvious homologs in many eukaryotes but not S. cerevisiae, is a functional counterpart of Sc Snt309p and binds Sp Cwf8p (a homolog of Sc Prp19p). Further, our data indicate that a mutation in the U-box of Prp19p disrupts these numerous protein interactions causing Cef1p degradation and Ntc instability. PMID:12088152

  20. Fluconazole transport into Candida albicans secretory vesicles by the membrane proteins Cdr1p, Cdr2p, and Mdr1p.

    PubMed

    Basso, Luiz R; Gast, Charles E; Mao, Yuxin; Wong, Brian

    2010-06-01

    A major cause of azole resistance in Candida albicans is overexpression of CDR1, CDR2, and/or MDR1, which encode plasma membrane efflux pumps. To analyze the catalytic properties of these pumps, we used ACT1- and GAL1-regulated expression plasmids to overexpress CDR1, CDR2, or MDR1 in a C. albicans cdr1 cdr2 mdr1-null mutant. When the genes of interest were expressed, the resulting transformants were more resistant to multiple azole antifungals, and accumulated less [(3)H]fluconazole intracellularly, than empty-vector controls. Next, we used a GAL1-regulated dominant negative sec4 allele to cause cytoplasmic accumulation of post-Golgi secretory vesicles (PGVs), and we found that PGVs isolated from CDR1-, CDR2-, or MDR1-overexpressing cells accumulated much more [(3)H]fluconazole than did PGVs from empty-vector controls. The K(m)s (expressed in micromolar concentrations) and V(max)s (expressed in picomoles per milligram of protein per minute), respectively, for [(3)H]fluconazole transport were 0.8 and 0.91 for Cdr1p, 4.3 and 0.52 for Cdr2p, and 3.5 and 0.59 for Mdr1p. [(3)H]fluconazole transport by Cdr1p and Cdr2p required ATP and was unaffected by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), whereas [(3)H]fluconazole transport by Mdr1p did not require ATP and was inhibited by CCCP. [(3)H]fluconazole uptake by all 3 pumps was inhibited by all other azoles tested, with 50% inhibitory concentrations (IC(50)s; expressed as proportions of the [(3)H]fluconazole concentration) of 0.2 to 5.6 for Cdr1p, 0.3 to 3.1 for Cdr2p, and 0.3 to 3.1 for Mdr1p. The methods used in this study may also be useful for studying other plasma membrane transporters in C. albicans and other medically important fungi.

  1. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  2. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  3. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  4. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  5. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice.

    PubMed

    Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald

    2016-05-01

    Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable

  6. Are there ethnic differences in deletions in the dystrophin gene?

    SciTech Connect

    Banerjee, M.; Verma, I.C.

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  7. A new locus for autosomal recessive non-syndromic mental retardation maps to 1p21.1-p13.3.

    PubMed

    Uyguner, O; Kayserili, H; Li, Y; Karaman, B; Nürnberg, G; Hennies, Hc; Becker, C; Nürnberg, P; Başaran, S; Apak, M Y; Wollnik, B

    2007-03-01

    Autosomal recessive inheritance of non-syndromic mental retardation (ARNSMR) may account for approximately 25% of all patients with non-specific mental retardation (NSMR). Although many X-linked genes have been identified as a cause of NSMR, only three autosomal genes are known to cause ARNSMR. We present here a large consanguineous Turkish family with four mentally retarded individuals from different branches of the family. Clinical tests showed cognitive impairment but no neurological, skeletal, and biochemical involvements. Genome-wide mapping using Human Mapping 10K Array showed a single positive locus with a parametric LOD score of 4.92 in a region on chromosome 1p21.1-p13.3. Further analyses using polymorphic microsatellite markers defined a 6.6-Mb critical region containing approximately 130 known genes. This locus is the fourth one linked to ARNSMR.

  8. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme

    PubMed Central

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W.S.; Rauch, Bernhard H.

    2016-01-01

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient's survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient's survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells. In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation. PMID:26887055

  9. Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis.

    PubMed Central

    Park, Chong Jin; Song, Sukgil; Lee, Philip R; Shou, Wenying; Deshaies, Raymond J; Lee, Kyung S

    2003-01-01

    In many organisms, polo kinases appear to play multiple roles during M-phase progression. To provide new insights into the function of budding yeast polo kinase Cdc5p, we generated novel temperature-sensitive cdc5 mutants by mutagenizing the C-terminal domain. Here we show that, at a semipermissive temperature, the cdc5-3 mutant exhibited a synergistic bud elongation and growth defect with loss of HSL1, a component important for normal G(2)/M transition. Loss of SWE1, which phosphorylates and inactivates the budding yeast Cdk1 homolog Cdc28p, suppressed the cdc5-3 hsl1Delta defect, suggesting that Cdc5p functions at a point upstream of Swe1p. In addition, the cdc5-4 and cdc5-7 mutants exhibited chained cell morphologies with shared cytoplasms between the connected cell bodies, indicating a cytokinetic defect. Close examination of these mutants revealed delayed septin assembly at the incipient bud site and loosely organized septin rings at the mother-bud neck. Components in the mitotic exit network (MEN) play important roles in normal cytokinesis. However, loss of BFA1 or BUB2, negative regulators of the MEN, failed to remedy the cytokinetic defect of these mutants, indicating that Cdc5p promotes cytokinesis independently of Bfa1p and Bub2p. Thus, Cdc5p contributes to the activation of the Swe1p-dependent Cdc28p/Clb pathway, normal septin function, and cytokinesis. PMID:12586693

  10. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis.

    PubMed

    Debelyy, Mykhaylo O; Thoms, Sven; Connerth, Melanie; Daum, Günther; Erdmann, Ralf

    2011-06-01

    Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels. PMID:21478434

  11. Yeast calcineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation

    PubMed Central

    Stathopoulos-Gerontides, Angelike; Guo, Jim Jun; Cyert, Martha S.

    1999-01-01

    Calcineurin, a Ca2+/calmodulin dependent protein phosphatase, regulates Ca2+-dependent processes in a wide variety of cells. In the yeast, Saccharomyces cerevisiae, calcineurin effects Ca2+-dependent changes in gene expression through regulation of the Crz1p transcription factor. We show here that calcineurin dephosphorylates Crz1p and that this results in translocation of Crz1p to the nucleus. We identify a region of Crz1p that is required for calcineurin-dependent regulation of its phosphorylation, localization, and activity, and show that this region has significant sequence simlarity to a portion of NF-AT, a family of mammalian transcription factors whose localization is also regulated by calcineurin. Thus, the mechanism of Ca2+/calcineurin-dependent signaling shows remarkable conservation between yeast and mammalian cells. PMID:10197980

  12. Observation of {chi}{sub bJ}(1P,2P) decays to light hadrons

    SciTech Connect

    Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Tatishvili, G.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.

    2008-11-01

    Analyzing {upsilon}(nS) decays acquired with the CLEO detector operating at the CESR e{sup +}e{sup -} collider, we measure for the first time the product branching fractions B[{upsilon}(nS){yields}{gamma}{chi}{sub bJ}((n-1)P)]B[{chi}{sub bJ}(n-1)P){yields}X{sub i}] for n=2 and 3, where X{sub i} denotes, for each i, one of the 14 exclusive light-hadron final states for which we observe significant signals in both {chi}{sub bJ}(1P) and {chi}{sub bJ}(2P) decays. We also determine upper limits for the electric dipole (E1) transitions {upsilon}(3S){yields}{gamma}{chi}{sub bJ}(1P)

  13. Deletions of the elastin gene in Williams Syndrome

    SciTech Connect

    Greenberg, F.; Nickerson, E.; McCaskill, C.

    1994-09-01

    To investigate deletions in the elastin gene in patients with Williams Syndrome (WS), we screened 37 patients and their parents for deletions in the elastin gene by both fluorescence in situ hybridization (FISH) using cosmid cELN272 containing the 5{prime} end of the elastin gene and by polymerase chain reaction (PCR) using a primer pair which amplifies intron 17 in the elastin gene, producing a polymorphic amplification product. Thirty-two patients have been investigated by both the FISH and PCR techniques, one patient was studied only by PCR, and 4 patients were studied only by FISH. Overall, 34 of 37 patients (92%) were deleted for the elastin gene. Using the PCR marker, 14 patients were informative and 12 were shown to be deleted [maternal (n=5) and paternal (n=7)]. Using cosmid cELN272, 33 of 36 patients demonstrated a deletion of chromosome 7q11.23. In one family, both the mother and daughter were deleted due to an apparently de novo deletion arising in the mother. Three patients were not deleted using the elastin cosmid; 2 of these patients have classic WS. Another non-deleted patient has the typical facial features and hypercalcemia but normal intelligence. These three patients will be important in delineating the critical region(s) responsible for the facial features, hypercalcemia, mental retardation and supravalvular aortic stenosis (SVAS). There was not an absolute correlation between deletions in elastin and SVAS, although these individuals may be at risk for other cardiovascular complications such as hypertention. Since the majority of WS patients are deleted for a portion of the elastin gene, most likely this marker will be an important diagnostic tool, although more patients will need to be studied. Those patients who are not deleted but clinically have WS will be missed using only this one marker. Expansion of the critical region to other loci and identification of additional markers will be essential for identifying all patients with WS.

  14. FXR1P is a GSK3β substrate regulating mood and emotion processing.

    PubMed

    Del'Guidice, Thomas; Latapy, Camille; Rampino, Antonio; Khlghatyan, Jivan; Lemasson, Morgane; Gelao, Barbara; Quarto, Tiziana; Rizzo, Giuseppe; Barbeau, Annie; Lamarre, Claude; Bertolino, Alessandro; Blasi, Giuseppe; Beaulieu, Jean-Martin

    2015-08-18

    Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role. PMID:26240334

  15. FXR1P is a GSK3β substrate regulating mood and emotion processing

    PubMed Central

    Del’Guidice, Thomas; Latapy, Camille; Rampino, Antonio; Khlghatyan, Jivan; Lemasson, Morgane; Gelao, Barbara; Quarto, Tiziana; Rizzo, Giuseppe; Barbeau, Annie; Lamarre, Claude; Bertolino, Alessandro; Blasi, Giuseppe; Beaulieu, Jean-Martin

    2015-01-01

    Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role. PMID:26240334

  16. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  17. Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes

    PubMed Central

    Flynn, Elizabeth K.; Kamat, Aparna; Lach, Francis P.; Donovan, Frank X.; Kimble, Danielle C.; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M.; Gillio, Alfred P.; Harris, Richard E.; MacMillan, Margaret L.; Wagner, John E.; Smogorzewska, Agata; Auerbach, Arleen D.; Ostrander, Elaine A.; Chandrasekharappa, Settara C.

    2014-01-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution Comparative Genome Hybridization arrays (arrayCGH), Single Nucleotide Polymorphism arrays (SNParrays) and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by Non-Allelic Homologous Recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. PMID:25168418

  18. Polymorphic insertions and deletions in parabasalian enolase genes.

    PubMed

    Keeling, Patrick J

    2004-05-01

    Insertions and deletions in gene sequences have been used as characters to infer phylogenetic relationships and, like any character, the information they contain varies in utility between different levels of evolution. In one case, the absence of two otherwise highly conserved deletions in the enolase genes of parabasalian protists has been interpreted as a primitive characteristic that suggests these were among the first eukaryotes. Here, semi-environmental 3'-RACE was used to sample enolases from parabasalia in the hindgut of the termite Zootermopsis angusticolis to examine the conservation of this character within the parabasalia. Parabasalian homologues were found to be polymorphic for these deletions, and the phylogeny of parabasalian enolases shows that the deletion-possessing genes branch within deletion-lacking genes (i.e., they did not form two clearly distinct groups). Phylogenetic incongruence was detected in the carboxy-terminal third of the sequence (in the region of the deletions), but there is no unambiguous evidence for recombination. The polymorphism of this character discredits these deletions as strong evidence for the early origin of parabasalia, although the complex distribution makes it impossible to state whether parabasalian enolases were ancestrally like those of other eukaryotes. These observations stress the importance of strong corroborating evidence when considering insertion and deletion data, and raises some interesting questions about the apparent variation in degree of conservation of these deletions between different eukaryotic groups.

  19. Measurements of branching fractions for electromagnetic transitions involving the χbJ(1P) states

    NASA Astrophysics Data System (ADS)

    Kornicer, M.; Mitchell, R. E.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Hietala, J.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Xiao, T.; Brisbane, S.; Martin, L.; Powell, A.; Spradlin, P.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Pearson, L. J.; Thorndike, E. H.; Yang, F.; Ricciardi, S.; Thomas, C.; Artuso, M.; Blusk, S.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Randrianarivony, K.; Tatishvili, G.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Das, S.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Kreinick, D. L.; Kuznetsov, V. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Libby, J.

    2011-03-01

    Using (9.32, 5.88) million Υ(2S,3S) decays taken with the CLEO III detector, we obtain five product branching fractions for the exclusive processes Υ(2S)→γχb0,1,2(1P)→γγΥ(1S) and Υ(3S)→γχb1,2(1P)→γγΥ(1S). We observe the transition χb0(1P)→γΥ(1S) for the first time. Using the known branching fractions for B[Υ(2S)→γχbJ(1P)], we extract values for B[χbJ(1P)→γΥ(1S)] for J=0, 1, 2. In turn, these values can be used to unfold the Υ(3S) product branching fractions to obtain values for B[Υ(3S)→γχb1,2(1P)] for the first time individually. Comparison of these with each other and with the branching fraction B[Υ(3S)→γχb0] previously measured by CLEO provides tests of relativistic corrections to electric dipole matrix elements.

  20. Loss of APD1 in Yeast Confers Hydroxyurea Sensitivity Suppressed by Yap1p Transcription Factor

    PubMed Central

    Tang, Hei-Man Vincent; Pan, Kewu; Kong, Ka-Yiu Edwin; Hu, Ligang; Chan, Ling-Chim; Siu, Kam-Leung; Sun, Hongzhe; Wong, Chi-Ming; Jin, Dong-Yan

    2015-01-01

    Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU. PMID:25600293

  1. Prognostic Relevance of Histomolecular Classification of Diffuse Adult High-Grade Gliomas with Necrosis.

    PubMed

    Figarella-Branger, Dominique; Mokhtari, Karima; Colin, Carole; Uro-Coste, Emmanuelle; Jouvet, Anne; Dehais, Caroline; Carpentier, Catherine; Villa, Chiara; Maurage, Claude-Alain; Eimer, Sandrine; Polivka, Marc; Vignaud, Jean-Michel; Laquerriere, Annie; Sevestre, Henri; Lechapt-Zalcman, Emmanuelle; Quintin-Roué, Isabelle; Aubriot-Lorton, Marie-Hélène; Diebold, Marie-Danièle; Viennet, Gabriel; Adam, Clovis; Loussouarn, Delphine; Michalak, Sophie; Rigau, Valérie; Heitzmann, Anne; Vandenbos, Fanny; Forest, Fabien; Chiforeanu, Danchristian; Tortel, Marie-Claire; Labrousse, François; Chenard, Marie-Pierre; Nguyen, Anh Tuan; Varlet, Pascale; Kemeny, Jean Louis; Levillain, Pierre-Marie; Cazals-Hatem, Dominique; Richard, Pomone; Delattre, Jean-Yves

    2015-07-01

    Diffuse adult high-grade gliomas (HGGs) with necrosis encompass anaplastic oligodendrogliomas (AOs) with necrosis (grade III), glioblastomas (GBM, grade IV) and glioblastomas with an oligodendroglial component (GBMO, grade IV). Here, we aimed to search for prognostic relevance of histological classification and molecular alterations of these tumors. About 210 patients were included (63 AO, 56 GBM and 91 GBMO). GBMO group was split into "anaplastic oligoastrocytoma (AOA) with necrosis grade IV/GBMO," restricted to tumors showing intermingled astrocytic and oligodendroglial component, and "GBM/GBMO" based on tumors presenting oligodendroglial foci and features of GBM. Genomic arrays, IDH1 R132H expression analyses and IDH direct sequencing were performed. 1p/19q co-deletion characterized AO, whereas no IDH1 R132H expression and intact 1p/19q characterized both GBM and GBM/GBMO. AOA with necrosis/GBMO mainly demonstrated IDH1 R132H expression and intact 1p/19q. Other IDH1 or IDH2 mutations were extremely rare. Both histological and molecular classifications were predictive of progression free survival (PFS) and overall survival (OS) (P < 10(-4) ). Diffuse adult HGGs with necrosis can be split into three histomolecular groups of prognostic relevance: 1p/19q co-deleted AO, IDH1 R132H-GBM and 1p/19q intact IDH1 R132H+ gliomas that might be classified as IDH1 R132H+ GBM. Because of histomolecular heterogeneity, we suggest to remove the name GBMO. PMID:25407774

  2. A case of 46,X,der(X)t(X;X)(q22.1;p11) Xq22.1-->Xqter in a 12-year-old girl with premature ovarian failure.

    PubMed

    Merhi, Z O; Roberts, J L; Awonuga, A O

    2007-01-01

    Premature ovarian failure due to Xp duplication and Xq deletion has been reported in four patients, the youngest of whom was 18 years old. The diagnosis has been made with new techniques for genetic analysis, such as comparative genomic hybridization and fluorescence in situ hybridization. We report the youngest case (a 12-year-old who presented with irregular menses), of premature ovarian failure due to Xp duplication and Xq deletion and the first with 46,X,der(X)t(X;X)(q22.1;p11). The diagnosis was made using C-banding and fluorescent in situ hybridization with locus-specific probes. This case highlights the need to use advanced genetic strategies to determine karyotypic and phenotypic abnormalities.

  3. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae.

    PubMed

    Bedalov, Antonio; Hirao, Maki; Posakony, Jeffrey; Nelson, Melisa; Simon, Julian A

    2003-10-01

    Nicotine adenine dinucleotide (NAD(+)) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD(+)-dependent protein deacetylases. In the latter two processes, NAD(+) is consumed and converted to ADP-ribose and nicotinamide. NAD(+) levels can be maintained by regeneration of NAD(+) from nicotinamide via a salvage pathway or by de novo synthesis of NAD(+) from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the NAD(+)-dependent deacetylase Hst1p as a sensor of NAD(+) levels and regulator of NAD(+) biosynthesis. Using transcript arrays, we show that low NAD(+) states specifically induce the de novo NAD(+) biosynthesis genes while the genes in the salvage pathway remain unaffected. The NAD(+)-dependent deacetylase activity of Hst1p represses de novo NAD(+) biosynthesis genes in the absence of new protein synthesis, suggesting a direct effect. The known Hst1p binding partner, Sum1p, is present at promoters of highly inducible NAD(+) biosynthesis genes. The removal of HST1-mediated repression of the NAD(+) de novo biosynthesis pathway leads to increased cellular NAD(+) levels. Transcript array analysis shows that reduction in cellular NAD(+) levels preferentially affects Hst1p-regulated genes in comparison to genes regulated with other NAD(+)-dependent deacetylases (Sir2p, Hst2p, Hst3p, and Hst4p). In vitro experiments demonstrate that Hst1p has relatively low affinity toward NAD(+) in comparison to other NAD(+)-dependent enzymes. These findings suggest that Hst1p serves as a cellular NAD(+) sensor that monitors and regulates cellular NAD(+) levels. PMID:12972620

  4. Aggressive acute myeloid leukemia in PU.1/p53 double-mutant mice.

    PubMed

    Basova, P; Pospisil, V; Savvulidi, F; Burda, P; Vargova, K; Stanek, L; Dluhosova, M; Kuzmova, E; Jonasova, A; Steidl, U; Laslo, P; Stopka, T

    2014-09-25

    PU.1 downregulation within hematopoietic stem and progenitor cells (HSPCs) is the primary mechanism for the development of acute myeloid leukemia (AML) in mice with homozygous deletion of the upstream regulatory element (URE) of PU.1 gene. p53 is a well-known tumor suppressor that is often mutated in human hematologic malignancies including AML and adds to their aggressiveness; however, its genetic deletion does not cause AML in mouse. Deletion of p53 in the PU.1(ure/ure) mice (PU.1(ure/ure)p53(-/-)) results in more aggressive AML with shortened overall survival. PU.1(ure/ure)p53(-/-) progenitors express significantly lower PU.1 levels. In addition to URE deletion we searched for other mechanisms that in the absence of p53 contribute to decreased PU.1 levels in PU.1(ure/ure)p53(-/-) mice. We found involvement of Myb and miR-155 in downregulation of PU.1 in aggressive murine AML. Upon inhibition of either Myb or miR-155 in vitro the AML progenitors restore PU.1 levels and lose leukemic cell growth similarly to PU.1 rescue. The MYB/miR-155/PU.1 axis is a target of p53 and is activated early after p53 loss as indicated by transient p53 knockdown. Furthermore, deregulation of both MYB and miR-155 coupled with PU.1 downregulation was observed in human AML, suggesting that MYB/miR-155/PU.1 mechanism may be involved in the pathogenesis of AML and its aggressiveness characterized by p53 mutation.

  5. PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast.

    PubMed

    Johansson, Magnus; Chen, Xin; Milanova, Stefina; Santos, Cristiano; Petranovic, Dina

    2016-03-01

    Polyunsaturated fatty acids (PUFA) such as linoleic acid (LA, n-6, C18:2) and γ-linolenic acid (GLA, n-6, C18:3) are essential and must be obtained from the diet. There has been a growing interest in establishing a bio-sustainable production of PUFA in several microorganisms, e.g. in yeast Saccharomyces cerevisiae. However, PUFAs can also be toxic to cells because of their susceptibility to peroxidation. Here we investigated the negative effects of LA and GLA production on S. cerevisiae by characterizing a strain expressing active Δ6 and Δ12 desaturases from the fungus Mucor rouxii. Previously, we showed that the PUFA-producing strain has low viability, down-regulated genes for oxidative stress response, and decreased proteasome activity. Here we show that the PUFA strain accumulates high levels of reactive oxygen species (ROS) and lipid peroxides, and accumulates damaged proteins. The PUFA strain also showed great increase in metacaspase Yca1p activity, suggesting cells could die by caspase-mediated cell death. When treated with antioxidant vitamin C, ROS, lipid peroxidation and protein carbonylation were greatly reduced, and the activity of the metacaspase was significantly decreased too, ultimately doubling the lifespan of the PUFA strain. When deleting YCA1, the caspase-like activity and the oxidative stress decreased and although the lifespan was slightly prolonged, the phenotype could not be fully reversed, pointing that Yca1p was not the main executor of cell death. PMID:26833421

  6. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas.

    PubMed

    Martin-Guerrero, Idoia; Salaverria, Itziar; Burkhardt, Birgit; Szczepanowski, Monika; Baudis, Michael; Bens, Susanne; de Leval, Laurence; Garcia-Orad, Africa; Horn, Heike; Lisfeld, Jasmin; Pellissery, Shoji; Klapper, Wolfram; Oschlies, Ilske; Siebert, Reiner

    2013-08-01

    Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.

  7. DEAR1 is a Chromosome 1p35 Tumor Suppressor and Master Regulator of TGFβ-Driven Epithelial-Mesenchymal Transition

    PubMed Central

    Chen, Nanyue; Balasenthil, Seetharaman; Reuther, Jacquelyn; Frayna, Aileen; Wang, Ying; Chandler, Dawn S.; Abruzzo, Lynne V.; Rashid, Asif; Rodriguez, Jaime; Lozano, Guillermina; Cao, Yu; Lokken, Erica; Chen, Jinyun; Frazier, Marsha L.; Sahin, Aysegul A.; Wistuba, Ignacio I.; Sen, Subrata; Lott, Steven T.; Killary, Ann McNeill

    2013-01-01

    Deletion of chromosome 1p35 is a common event in epithelial malignancies. We report that DEAR1 (annotated as TRIM62) is a chromosome 1p35 tumor suppressor that undergoes mutation, copy number variation and loss of expression in human tumors. Targeted disruption in the mouse recapitulates this human tumor spectrum with both Dear1−/− and Dear1+/− mice developing primarily epithelial adenocarcinomas and lymphoma with evidence of metastasis in a subset of mice. DEAR1 loss of function in the presence of TGFβ results in failure of acinar morphogenesis, upregulation of EMT markers, anoikis resistance, migration and invasion. Furthermore, DEAR1 blocks TGFβ-SMAD3 signaling resulting in decreased nuclear phosphorylated SMAD3 by binding to and promoting the ubiquitination of SMAD3, the major effector of TGFβ-induced EMT. Moreover, DEAR1 loss increases levels of SMAD3 downstream effectors, SNAI1 and SNAI2, with genetic alteration of DEAR1/SNAI2 serving as prognostic markers of overall poor survival in an 889 invasive breast cancer cohort. PMID:23838884

  8. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.

    PubMed

    Vitiello, Seasson Phillips; Wolfe, Devin M; Pearce, David A

    2007-05-01

    Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.

  9. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation.

  10. A practical process for the preparation of [32P]S1P and binding assay for S1P receptor ligands

    PubMed Central

    Rosenberg, Adam J.; Liu, Hui; Tu, Zhude

    2015-01-01

    Sphingosine-1-phosphate receptors (S1PRs) are important regulators of vascular permeability, inflammation, angiogenesis and vascular maturation. Identifying a specific S1PR PET radioligand is imperative, but it is hindered by the complexity and variability of current for binding affinity measurement procedures. Herein, we report a streamlined protocol for radiosynthesis of [32P]S1P with good radiochemical yield (36 – 50%) and high radiochemical purity (>99%). We also report a reproducible procedure for determining the binding affinity for compounds targeting S1PRs in vitro. PMID:25931137

  11. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P{sub 2} on cell migration and invasiveness

    SciTech Connect

    Young, Nicholas; Van Brocklyn, James R. . E-mail: james.vanbrocklyn@osumc.edu

    2007-05-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P{sub 1-5}. S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P{sub 1}, S1P{sub 2} and S1P{sub 3} all contribute positively to S1P-stimulated glioma cell proliferation, with S1P{sub 1} being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P{sub 5} blocks glioma cell proliferation, and inhibits ERK activation. S1P{sub 1} and S1P{sub 3} enhance glioma cell migration and invasion. S1P{sub 2} inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P{sub 2} also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P{sub 2}-stimulated glioma invasion. Thus, while S1P{sub 2} decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix.

  12. Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae.

    PubMed

    Chen, Lei; Liu, Liangyu; Wang, Mingpeng; Fu, Jiafang; Zhang, Zhaojie; Hou, Jin; Bao, Xiaoming

    2013-01-01

    The Saccharomyces cerevisiae Bdf1p associates with the basal transcription complexes TFIID and acts as a transcriptional regulator. Lack of Bdf1p is salt sensitive and displays abnormal mitochondrial function. The nucleotidase Hal2p detoxifies the toxic compound 3' -phosphoadenosine-5'-phosphate (pAp), which blocks the biosynthesis of methionine. Hal2p is also a target of high concentration of Na(+). Here, we reported that HAL2 overexpression recovered the salt stress sensitivity of bdf1Δ. Further evidence demonstrated that HAL2 expression was regulated indirectly by Bdf1p. The salt stress response mechanisms mediated by Bdf1p and Hal2p were different. Unlike hal2Δ, high Na(+) or Li(+) stress did not cause pAp accumulation in bdf1Δ and methionine supplementation did not recover its salt sensitivity. HAL2 overexpression in bdf1Δ reduced ROS level and improved mitochondrial function, but not respiration. Further analyses suggested that autophagy was apparently defective in bdf1Δ, and autophagy stimulated by Hal2p may play an important role in recovering mitochondrial functions and Na(+) sensitivity of bdf1Δ. Our findings shed new light towards our understanding about the molecular mechanism of Bdf1p-involved salt stress response in budding yeast.

  13. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis.

    PubMed

    Gordon, Oren; Taxis, Christof; Keller, Philipp J; Benjak, Aleksander; Stelzer, Ernst H K; Simchen, Giora; Knop, Michael

    2006-08-23

    Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB. PMID:16888627

  14. Hypothalamic S1P/S1PR1 axis controls energy homeostasis.

    PubMed

    Silva, Vagner R R; Micheletti, Thayana O; Pimentel, Gustavo D; Katashima, Carlos K; Lenhare, Luciene; Morari, Joseane; Mendes, Maria Carolina S; Razolli, Daniela S; Rocha, Guilherme Z; de Souza, Claudio T; Ryu, Dongryeol; Prada, Patrícia O; Velloso, Lício A; Carvalheira, José B C; Pauli, José Rodrigo; Cintra, Dennys E; Ropelle, Eduardo R

    2014-01-01

    Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats. PMID:25255053

  15. Novel S1P(1) receptor agonists--part 3: from thiophenes to pyridines.

    PubMed

    Bolli, Martin H; Abele, Stefan; Birker, Magdalena; Bravo, Roberto; Bur, Daniel; de Kanter, Ruben; Kohl, Christopher; Grimont, Julien; Hess, Patrick; Lescop, Cyrille; Mathys, Boris; Müller, Claus; Nayler, Oliver; Rey, Markus; Scherz, Michael; Schmidt, Gunther; Seifert, Jürgen; Steiner, Beat; Velker, Jörg; Weller, Thomas

    2014-01-01

    In preceding communications we summarized our medicinal chemistry efforts leading to the identification of potent, selective, and orally active S1P1 agonists such as the thiophene derivative 1. As a continuation of these efforts, we replaced the thiophene in 1 by a 2-, 3-, or 4-pyridine and obtained less lipophilic, potent, and selective S1P1 agonists (e.g., 2) efficiently reducing blood lymphocyte count in the rat. Structural features influencing the compounds' receptor affinity profile and pharmacokinetics are discussed. In addition, the ability to penetrate brain tissue has been studied for several compounds. As a typical example for these pyridine based S1P1 agonists, compound 53 showed EC50 values of 0.6 and 352 nM for the S1P1 and S1P3 receptor, respectively, displayed favorable PK properties, and penetrated well into brain tissue. In the rat, compound 53 maximally reduced the blood lymphocyte count for at least 24 h after oral dosing of 3 mg/kg. PMID:24367923

  16. 78 FR 75912 - Procurement List; Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... INFORMATION: Addition On 6/28/2013 (78 FR 38952-38953), the Committee for Purchase From People Who Are Blind... Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for Purchase... is deleted from the Procurement List: Product NSN: 7930-01-367-0989--Cleaner, Water Soluble...

  17. 75 FR 43153 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY... Deletions From the Procurement List. SUMMARY: The Committee is proposing to add products to the Procurement... proposed for addition to the Procurement List. Comments on this certification are invited....

  18. 76 FR 63905 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletion AGENCY... Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a product and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind...

  19. 76 FR 2673 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY... deletions from the procurement list. SUMMARY: The Committee is proposing to add services to the Procurement... addition to the Procurement List. Comments on this certification are invited. Commenters should...

  20. 78 FR 9386 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  1. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  2. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  3. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  4. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  5. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  6. 16 CFR 312.10 - Data retention and deletion requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Data retention and deletion requirements. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.10 Data retention and deletion requirements....

  7. Multivariate Variable Deletion Methods: Don't Do Stepwise

    ERIC Educational Resources Information Center

    Kadhi, TauGamba

    2003-01-01

    This paper explains the theory and methodology behind the use of variable deletion in canonical correlational analysis (CCA). Both the Capraro and Capraro (2002) and the Cantrell (1997) data tables are evaluated and explained in order to clarify strategies utilized. Understanding of variable deletion strategies and their proper usages in a CCA…

  8. 5 CFR 2502.18 - Deletion of exempted information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVAILABILITY OF RECORDS Production or Disclosure of Records Under the Freedom of Information Act, 5 U.S.C. 552 Charges for Search and Reproduction § 2502.18 Deletion of exempted information. Where requested records... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information....

  9. 42 CFR 401.118 - Deletion of identifying details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or...

  10. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  11. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  12. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    ERIC Educational Resources Information Center

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  13. 75 FR 78977 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletions AGENCY... deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement...) 603-0655, or e-mail CMTEFedReg@AbilityOne.gov . Due to Federal holidays occurring on Friday,...

  14. 75 FR 66741 - Procurement List, Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List, Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds products and services to the Procurement List that will be... deletes products from the Procurement List previously furnished by such agencies. DATES: Effective...

  15. 76 FR 21335 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... procurement list. SUMMARY: This action adds products and services to the Procurement List that will be... deletes products and services from the Procurement List previously furnished by such agencies....

  16. 75 FR 78976 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletions AGENCY... deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement...) 603-0655, or e-mail CMTEFedReg@AbilityOne.gov . Due to Federal holidays occurring on Friday,...

  17. 76 FR 40342 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind...

  18. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletion AGENCY... Deletion From the Procurement List. SUMMARY: The Committee is proposing to add products to the Procurement...-0655, or e-mail: CMTEFedReg@AbilityOne.gov . SUPPLEMENTARY INFORMATION: This notice is...

  19. 75 FR 56996 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds a product and a service to the Procurement List that will be... deletes products and services from the Procurement List previously furnished by such agencies....

  20. 76 FR 21336 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  1. 49 CFR 7.6 - Deletion of identifying detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6 Transportation Office of the Secretary of Transportation PUBLIC AVAILABILITY OF INFORMATION Information Required To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to...

  2. 44 CFR 5.27 - Deletion of identifying details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying details. 5.27 Section 5.27 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY..., FEMA may delete identifying details when making available or publishing an opinion, statement of...

  3. CD137, a member of the tumor necrosis factor receptor family, is located on chromosome 1p36, in a cluster of related genes, and colocalizes with several malignancies.

    PubMed

    Schwarz, H; Arden, K; Lotz, M

    1997-06-27

    CD137 (ILA/4-1BB) is a member of the tumor-necrosis-factor receptor family. Members of this receptor family and their structurally related ligands are important regulators of a wide variety of physiological processes and play an especially important role in the regulation of immune responses. CD137 regulates cell proliferation and survival of T-lymphocytes. Using Southern blot analysis and polymerase chain reaction, we localized the CD137 gene to chromosome 1p36. This chromosomal region harbors the genes of several other members of this receptor family and is associated with deletions and rearrangements in several malignancies.

  4. Attenuation of Monkeypox Virus by Deletion of Genomic Regions

    PubMed Central

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. PMID:25462353

  5. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  6. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.

  7. Molecular mimicry and clonal deletion: A fresh look.

    PubMed

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease.

  8. Measurement of the χ b (3 P) mass and of the relative rate of χ b1(1 P) and χ b2(1 P) production

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Lespinasse, M.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-10-01

    The production of χ b mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of =7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb-1. The χ b mesons are identified through their decays to ϒ(1 S) γ and ϒ(2 S) γ using photons that converted to e + e - pairs in the detector. The relative prompt production rate of χ b1(1 P) and χ b2(1 P) mesons is measured as a function of the ϒ(1 S) transverse momentum in the χ b rapidity range 2.0 < y <4.5. A precise measurement of the χ b (3 P) mass is also performed. Assuming a mass splitting between the χ b1(3 P) and the χ b2(3 P) states of 10.5 MeV/c2, the measured mass of the χ b1(3 P) meson is

  9. Division of labor in an oligomer of the DEAD-box RNA helicase Ded1p

    PubMed Central

    Putnam, Andrea A.; Gao, Zhaofeng; Liu, Fei; Jia, Huijue; Yang, Quansheng

    2015-01-01

    Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand separating protomer and those bound to the single stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities. PMID:26212457

  10. Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p.

    PubMed

    Putnam, Andrea A; Gao, Zhaofeng; Liu, Fei; Jia, Huijue; Yang, Quansheng; Jankowsky, Eckhard

    2015-08-20

    Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.

  11. Electron-impact excitation of the n 1P levels of helium - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cartwright, David C.; Csanak, George; Trajmar, Sandor; Register, D. F.

    1992-01-01

    New experimental electron-energy-loss data have been used to extract differential and integral cross sections for excitation of the 2 1P level, and for the overlapping (3 1P, 3 1D, 3 3D) levels of helium, at 30-, 50-, and 100-eV incident electron energies. First-order many-body theory (FOMBT) has been used to calculate the differential and integral cross sections for excitation of the n 1P (n = 2,...,6) levels of helium by electron impact, for incident electron energies from threshold to 500 eV. Detailed comparisons between these two new sets of data are made as well as comparisons with appropriate published experimental and theoretical results. A simple scaling relationship is derived from the FOMBT results for n = 2,...,6 that provides differential and integral cross sections for all symmetry final levels of helium with n = 6 or greater.

  12. Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P.

    PubMed

    Morris, Samuel A; Wheatley, Paul S; Položij, Miroslav; Nachtigall, Petr; Eliášová, Pavla; Čejka, Jiří; Lucas, Tim C; Hriljac, Joseph A; Pinar, Ana B; Morris, Russell E

    2016-09-28

    The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination. PMID:27527381

  13. Roadblock termination by reb1p restricts cryptic and readthrough transcription.

    PubMed

    Colin, Jessie; Candelli, Tito; Porrua, Odil; Boulay, Jocelyne; Zhu, Chenchen; Lacroute, François; Steinmetz, Lars M; Libri, Domenico

    2014-12-01

    Widely transcribed compact genomes must cope with the major challenge of frequent overlapping or concurrent transcription events. Efficient and timely transcription termination is crucial to control pervasive transcription and prevent transcriptional interference. In yeast, transcription termination of RNA polymerase II (RNAPII) occurs via two possible pathways that both require recognition of termination signals on nascent RNA by specific factors. We describe here an additional mechanism of transcription termination for RNAPII and demonstrate its biological significance. We show that the transcriptional activator Reb1p bound to DNA is a roadblock for RNAPII, which pauses and is ubiquitinated, thus triggering termination. Reb1p-dependent termination generates a class of cryptic transcripts that are degraded in the nucleus by the exosome. We also observed transcriptional interference between neighboring genes in the absence of Reb1p. This work demonstrates the importance of roadblock termination for controlling pervasive transcription and preventing transcription through gene regulatory regions.

  14. Dynamical Relativistic Effects in Quasielastic 1p -Shell Proton Knockout from O{sup 16}

    SciTech Connect

    Gao, J.; Anderson, B. D.; Aniol, K. A.; Auerbach, L.; Baker, F. T.; Berthot, J.; Bertin, P.-Y.; Boeglin, W. U.

    2000-04-10

    We have measured the cross section for quasielastic 1p -shell proton knockout in the {sup 16}O( e, e{sup '}p) reaction at {omega}=0.439 GeV and Q{sup 2}=0.8 (GeV/c){sup 2} for missing momentum P{sub miss}{<=}355 MeV /c . We have extracted the response functions R{sub L+TT} , R{sub T} , R{sub LT} , and the left-right asymmetry, A{sub LT} , for the 1p{sub 1/2} and the 1p{sub 3/2} states. The data are well described by relativistic distorted wave impulse approximation calculations. At large P{sub miss} , the structure observed in A{sub LT} indicates the existence of dynamical relativistic effects. (c) 2000 The American Physical Society.

  15. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex.

    PubMed

    Koyama, Masako; Shirai, Natsuki; Matsuura, Yoshiyuki

    2014-11-01

    Proteins and ribonucleoproteins containing a nuclear export signal (NES) assemble with the exportin Xpo1p (yeast CRM1) and Gsp1p-GTP (yeast Ran-GTP) in the nucleus and exit through the nuclear pore complex. In the cytoplasm, Yrb1p (yeast RanBP1) displaces NES from Xpo1p. Efficient export of NES-cargoes requires Yrb2p (yeast RanBP3), a primarily nuclear protein containing nucleoporin-like phenylalanine-glycine (FG) repeats and a low-affinity Gsp1p-binding domain (RanBD). Here, we show that Yrb2p strikingly accelerates the association of Gsp1p-GTP and NES to Xpo1p. We have solved the crystal structure of the Xpo1p-Yrb2p-Gsp1p-GTP complex, a key assembly intermediate that can bind cargo rapidly. Although the NES-binding cleft of Xpo1p is closed in this intermediate, our data suggest that preloading of Gsp1p-GTP onto Xpo1p by Yrb2p, conformational flexibility of Xpo1p, and the low affinity of RanBD enable active displacement of Yrb2p RanBD by NES to occur effectively. The structure also reveals the major binding sites for FG repeats on Xpo1p.

  16. Analysis of CYP21A1P and the duplicated CYP21A2 genes.

    PubMed

    Tsai, Li-Ping; Lee, Hsien-Hsiung

    2012-09-10

    The RCCX module on chromosome 6p21.3 has 3 possible forms: monomodular, bimodular, and trimodular. Chromosomes with 4 RCCX modules are very rare. In the monomodule, most of the CYP21A1P genes do not exist. However, haplotypes of the RCCX module with more than one CYP21A2 gene were observed. Obviously, the gene located downstream of the XA gene can possibly include the CYP21A2 as well as the CYP21A1P gene.

  17. New, potent P1/P2-morpholinone-based HIV-protease inhibitors.

    PubMed

    Kazmierski, Wieslaw M; Furfine, Eric; Spaltenstein, Andrew; Wright, Lois L

    2006-10-01

    We have developed efficient synthesis of morpholinone-based cyclic mimetics of the P1/P2 portion of the HIV-1 protease inhibitor Amprenavir. This effort led to discovery of allyl- and spiro-cyclopropyl-P2-substituted inhibitors 17 and 31, both 500 times more potent than the parent inhibitor 1. These results support morpholinones as novel mimetics of the P1/P2 portion of Amprenavir and potentially of other HIV-protease inhibitors, and thus provide a novel medicinal chemistry template for optimization toward more potent and drug-like inhibitors. PMID:16904316

  18. Three unrelated cases of paracentric inversions of 1p in individuals with abnormal phenotypes

    SciTech Connect

    Estop, A.M.; Karlin, S.M.; Wenger, S.L.; Steele, M.W.; Bansal, V.; Surti, U.; Lin, A.; Levinson, F.

    1994-02-15

    Paracentric inversions, involving a rearrangement within one chromosome arm, are rare. Although carriers of balanced paracentric inversions should theoretically not be at risk for abnormal offspring, such cases have been reported. The authors report on 2 unrelated cases of inherited paracentric inversions of 1p with breakpoints at p32 and p36.1 and p32.3 and p36.22 in individuals with abnormal phenotypes. Another case of 2 abnormal monozygotic twins with a de novo paracentric inversion of 1p with breakpoints at p22 and p34 is presented as well. 21 refs., 2 figs., 1 tab.

  19. New fluorinated agonists for targeting the sphingosin-1-phosphate receptor 1 (S1P(1)).

    PubMed

    Shaikh, Rizwan S; Keul, Petra; Schäfers, Michael; Levkau, Bodo; Haufe, Günter

    2015-11-15

    The sphingosine-1-phosphate receptor type 1 (S1P1) is involved in fundamental biological processes such as regulation of immune cell trafficking, vascular barrier function and angiogenesis. This Letter presents multistep syntheses of various fluorine substituted 12-aryl analogues of the drug fingolimod (FTY720) and a seven-steps route to 2-amino-17,17-difluoro-2-(hydroxymethyl)heptadecan-1-ol. In vitro and in vivo tests proved all these compounds as potent S1P1 receptor agonists.

  20. Excitations of {sup 1}P levels of zinc by electron impact on the ground state

    SciTech Connect

    Fursa, Dmitry V.; Bray, Igor; Panajotovic, R.; Sevic, D.; Pejcev, V.; Marinkovic, B.P.; Filipovic, D.M.

    2005-07-15

    We present results of a joint theoretical and experimental investigation of electron scattering from the 4s{sup 2} {sup 1}S ground state of zinc. The 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} differential cross sections were measured at scattering angles between 10 degree sign and 150 degree sign and electron-energies of 15, 20, 25, 40, and 60 eV. Corresponding convergent close-coupling calculations have been performed and are compared with experiment.

  1. Stroke-Like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    PubMed Central

    Robinson, J. Elliott; Wolfe, Stephanie M.; Kaiser-Rogers, Kathleen; Greenwood, Robert S.

    2016-01-01

    Hemiconvulsion–hemiplegia–epilepsy syndrome (HHE) is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here, we describe the case of a 3-year-old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background. PMID:27199890

  2. Low-grade and anaplastic oligodendroglioma.

    PubMed

    Van Den Bent, Martin J; Bromberg, Jacolien E C; Buckner, Jan

    2016-01-01

    Anaplastic oligodendrogliomas have long attracted interest because of their sensitivity to chemotherapy, in particular in the subset of 1p/19q co-deleted tumors. Recent molecular studies have shown that all 1p/19q co-deleted tumors have IDH mutations and most of them also have TERT mutations. Because of the presence of similar typical genetic alterations in astrocytoma and glioblastoma, the current trend is to diagnose these tumors on the basis of their molecular profile. Further long-term follow-up analysis of both EORTC and RTOG randomized studies on (neo)adjuvant procarbazine, lomustine, vincristine (PCV) chemotherapy have shown that adjuvant chemotherapy indeed improves outcome, and this is now standard of care. It is also equally clear that benefit to PCV chemotherapy is not limited to the 1p/19q co-deleted cases; potential other predictive factors are IDH mutations and MGMT promoter methylation. Moreover, a recent RTOG study on low-grade glioma also noted an improved outcome after adjuvant PCV chemotherapy, thus making (PCV) chemotherapy now standard of care for all 1p/19q co-deleted tumors regardless of grade. It remains unclear whether temozolomide provides the same survival benefit, as no data from well-designed clinical trials on adjuvant temozolomide in this tumor type are available. Another question that remains is whether one can safely leave out radiotherapy as part of initial treatment to avoid cognitive side-effects of radiotherapy. The current data suggest that delaying radiotherapy and treatment with chemotherapy only may be detrimental for overall survival.

  3. A 53-base-pair inverted repeat negatively regulates expression of the adjacent and divergently oriented cytochrome P450(BM-1) gene and its regulatory gene, bm1P1, in Bacillus megaterium.

    PubMed Central

    Shaw, G C; Sung, C C; Liu, C H; Kao, H S

    1997-01-01

    To study the role of the cis-acting element(s) in controlling the expression of the cytochrome P450(BM-1) gene and its upstream regulatory gene, bm1P1, in Bacillus megaterium, various deletion derivatives were constructed. A 53-bp inverted repeat located midway between the P450(BM-1) gene and bm1P1 gene was found in vivo to negatively regulate the expression of both genes, the regulation of which may occur at the transcriptional level. The promoter of the P450(BM-1), gene was also identified and found to be similar to those recognized by the sigmaA RNA polymerase of Bacillus subtilis. Possible mechanisms by which the 53-bp inverted repeat regulates the gene expression are discussed. PMID:8982010

  4. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1

    PubMed Central

    2010-01-01

    Background The rice blast disease caused by Magnaporthe oryzae is a major constraint on world rice production. The conidia produced by this fungal pathogen are the main source of disease dissemination. The morphology of conidia may be a critical factor in the spore dispersal and virulence of M. oryzae in the field. Deletion of a conidial morphology regulating gene encoding putative transcriptional regulator COM1 in M. oryzae resulted in aberrant conidial shape, reduced conidiation and attenuated virulence. Results In this study, a two-dimensional gel electrophoresis/matrix assisted laser desorption ionization- time of flight mass spectrometry (2-DE/MALDI-TOF MS) based proteomics approach was employed to identify the cellular and molecular components regulated by the COM1 protein (COM1p) that might contribute to the aberrant phenotypes in M. oryzae. By comparing the conidial proteomes of COM1 deletion mutant and its isogenic wild-type strain P131, we identified a potpourri of 31 proteins that exhibited statistically significant alterations in their abundance levels. Of these differentially regulated proteins, the abundance levels of nine proteins were elevated and twelve were reduced in the Δcom1 mutant. Three proteins were detected only in the Δcom1 conidial proteome, whereas seven proteins were apparently undetectable. The data obtained in the study suggest that the COM1p plays a key role in transcriptional reprogramming of genes implicated in melanin biosynthesis, carbon and energy metabolism, structural organization of cell, lipid metabolism, amino acid metabolism, etc. Semi-quantitative RT-PCR analysis revealed the down-regulation of genes encoding enzymes involved in melanin biosynthesis in the COM1 mutant. Conclusions Our results suggest that the COM1p may regulate the transcription of genes involved in various cellular processes indispensable for conidial development and appressorial penetration. These functions are likely to contribute to the effects of

  5. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.

    PubMed

    Islamovic, Emir; García-Pedrajas, María D; Chacko, Nadia; Andrews, David L; Covert, Sarah F; Gold, Scott E

    2015-01-01

    Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.

  6. Engagement of S1P1-degradative mechanisms leads to vascular leak in mice

    PubMed Central

    Oo, Myat Lin; Chang, Sung-Hee; Thangada, Shobha; Wu, Ming-Tao; Rezaul, Karim; Blaho, Victoria; Hwang, Sun-Il; Han, David K.; Hla, Timothy

    2011-01-01

    GPCR inhibitors are highly prevalent in modern therapeutics. However, interference with complex GPCR regulatory mechanisms leads to both therapeutic efficacy and adverse effects. Recently, the sphingosine-1-phosphate (S1P) receptor inhibitor FTY720 (also known as Fingolimod), which induces lymphopenia and prevents neuroinflammation, was adopted as a disease-modifying therapeutic in multiple sclerosis. Although highly efficacious, dose-dependent increases in adverse events have tempered its utility. We show here that FTY720P induces phosphorylation of the C-terminal domain of S1P receptor 1 (S1P1) at multiple sites, resulting in GPCR internalization, polyubiquitinylation, and degradation. We also identified the ubiquitin E3 ligase WWP2 in the GPCR complex and demonstrated its requirement in FTY720-induced receptor degradation. GPCR degradation was not essential for the induction of lymphopenia, but was critical for pulmonary vascular leak in vivo. Prevention of receptor phosphorylation, internalization, and degradation inhibited vascular leak, which suggests that discrete mechanisms of S1P receptor regulation are responsible for the efficacy and adverse events associated with this class of therapeutics. PMID:21555855

  7. The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion

    PubMed Central

    Engel, Alex; Aguilar, Pablo S.; Walter, Peter

    2010-01-01

    Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion. PMID:20485669

  8. Increased sensitivity of HIV-1 p24 ELISA using a photochemical signal amplification system

    PubMed Central

    Bystryak, Simon; Santockyte, Rasa

    2016-01-01

    In this study we describe a photochemical signal amplification method (PSAM) for increasing of the sensitivity of enzyme-linked immunosorbent assay (ELISA) for determination of HIV-1 p24 antigen. This method can be used for both commercially available and in-house ELISA tests, and has the advantage of being considerably simpler and less costly than alternative signal amplification methods. The photochemical signal amplification method is based on an autocatalytic photochemical reaction of a horseradish peroxidase (HRP) substrate, orthophenylenediamine (OPD). To compare the performance of PSAM-boosted ELISA with a conventional colorimetric ELISA for determination of HIV-1 p24 antigen we employed a PerkinElmer HIV-1 p24 ELISA kit, using conventional ELISA alongside ELISA + PSAM. In the present study, we show that PSAM technology allows one to increase the analytical sensitivity and dynamic range of a commercial HIV-1 p24 ELISA kit, with and without immune-complex disruption (ICD and Non-ICD ELISA), by a factor of approximately 40-fold. ELISA + PSAM is compatible with commercially available microtiter plate readers, requires only an inexpensive illumination device, and the PSAM amplification step takes no longer than 15 min. PMID:26090753

  9. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection.

    PubMed

    Blanchet, Matthieu; Sureau, Camille; Guévin, Carl; Seidah, Nabil G; Labonté, Patrick

    2015-03-01

    Worldwide, approximately 170 million individuals are afflicted with chronic hepatitis C virus (HCV) infection. To prevent the development of inherent diseases such as cirrhosis and hepatocellular carcinoma, tremendous efforts have been made, leading to the development of promising new treatments. However, their efficiency is still dependent on the viral genotype. Additionally, these treatments that target the virus directly can trigger the emergence of resistant variants. In a previous study, we have demonstrated that a long-term (72h) inhibition of SKI-1/S1P, a master lipogenic pathway regulator through activation of SREBP, resulted in impaired HCV genome replication and infectious virion secretion. In the present study, we sought to investigate the antiviral effect of the SKI-1/S1P small molecule inhibitor PF-429242 at the early steps of the HCV lifecycle. Our results indicate a very potent antiviral effect of the inhibitor early in the viral lifecycle and that the overall action of the compound relies on two different contributions. The first one is SREBP/SKI-1/S1P dependent and involves LDLR and NPC1L1 proteins, while the second one is SREBP independent. Overall, our study confirms that SKI-1/S1P is a relevant target to impair HCV infection and that PF-429242 could be a promising candidate in the field of HCV infection treatment.

  10. Clonal deletion of specific thymocytes by an immunoglobulin idiotype.

    PubMed Central

    Bogen, B; Dembic, Z; Weiss, S

    1993-01-01

    We have investigated whether immunoglobulin can induce clonal deletion of thymocytes by employing two strains of transgenic mice. One strain is transgenic for an alpha/beta T cell receptor (TCR) which recognizes a processed idiotypic peptide of the lambda 2(315) light chain variable region, bound to the I-Ed class II major histocompatibility complex molecule. The other mouse strain is transgenic for the lambda 2(315) gene. Double transgenic offspring from a TCR-transgenic female mated with a lambda 2(315) transgenic male exhibit a pronounced clonal deletion of CD4+CD8+ thymocytes. Analysis of neonates from the reciprocal (lambda 2(315)-transgenic female x TCR-transgenic male) cross suggests that the deletion in double transgenic offspring most likely is caused by lambda 2(315) produced within the thymus rather than by maternally derived IgG, lambda 2(315). Nevertheless, IgG, lambda 2(315) can cause deletion of CD4+CD8+ thymocytes when injected in large amounts intraperitoneally into either adult or neonatal TCR-transgenic mice. Deletion is evident 48 and 72 h after injection, but by day 7 the thymus has already regained its normal appearance. A serum concentration of several hundred microgram/ml is required for deletion to be observed. Therefore, the heterogeneous idiotypes of serum Ig are probably each of too low concentration to cause thymocyte deletion in normal animals. Images PMID:8428591

  11. Two 22q telomere deletions serendipitously detected by FISH.

    PubMed

    Precht, K S; Lese, C M; Spiro, R P; Huttenlocher, P R; Johnston, K M; Baker, J C; Christian, S L; Kittikamron, K; Ledbetter, D H

    1998-11-01

    Cryptic telomere deletions have been proposed to be a significant cause of idiopathic mental retardation. We present two unrelated subjects, with normal G banding analysis, in whom 22q telomere deletions were serendipitously detected at two different institutions using fluorescence in situ hybridisation (FISH). Both probands presented with several of the previously described features associated with 22q deletions, including hypotonia, developmental delay, and absence of speech. Our two cases increase the total number of reported 22q telomere deletions to 19, the majority of which were identified by cytogenetic banding analysis. With the limited sensitivity of routine cytogenetic studies (approximately 2-5 Mb), these two new cases suggest that the actual prevalence of 22q telomere deletions may be higher than currently documented. Of additional interest is the phenotypic overlap with Angelman syndrome (AS) as it raises the possibility of a 22q deletion in patients in whom AS has been ruled out. The use of telomeric probes as diagnostic reagents would be useful in determining an accurate prevalence of chromosome 22q deletions and could result in a significantly higher detection rate of subtelomeric rearrangements.

  12. Do listeners recover "deleted" final /t/ in German?

    PubMed

    Zimmerer, Frank; Reetz, Henning

    2014-01-01

    Reduction and deletion processes occur regularly in conversational speech. A segment that is affected by such reduction and deletion processes in many Germanic languages (e.g., Dutch, English, German) is /t/. There are similarities concerning the factors that influence the likelihood of final /t/ to get deleted, such as segmental context. However, speakers of different languages differ with respect to the acoustic cues they leave in the speech signal when they delete final /t/. German speakers usually lengthen a preceding /s/ when they delete final /t/. This article investigates to what extent German listeners are able to reconstruct /t/ when they are presented with fragments of words where final /t/ has been deleted. It aims also at investigating whether the strategies that are used by German depend on the length of /s/, and therefore whether listeners are using language-specific cues. Results of a forced-choice segment detection task suggest that listeners are able to reconstruct deleted final /t/ in about 45% of the times. The length of /s/ plays some role in the reconstruction, however, it does not explain the behavior of German listeners completely.

  13. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei

    PubMed Central

    Zhang, Hongmin; Lo, Raymond K. C.; Cai, Jian-Pao; Au-Yeung, Rex K. H.; Ng, Wing-Fung; Tse, Herman; Wong, Samson S. Y.; Xu, Simin; Lam, Wai Hei; Tse, Man-Kit; Sze, Kong Hung; Kao, Richard Y.; Reiner, Neil E.; Hao, Quan; Yuen, Kwok-Yung

    2016-01-01

    Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei

  14. Phosphorylation of ORF1p is required for L1 retrotransposition

    PubMed Central

    Cook, Pamela R.; Jones, Charles E.; Furano, Anthony V.

    2015-01-01

    Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1–host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p). Critical phospho-acceptor residues (two serines and two threonines) reside in four conserved proline-directed protein kinase (PDPK) target sites. The PDPK family includes mitogen-activated protein kinases and cyclin-dependent kinases. Mutation of any PDPK phospho-acceptor inhibits L1 retrotransposition. The phosphomimetic aspartic acid can restore activity at the two serine sites, but not at either threonine site, where it is strongly inhibitory. ORF1p also contains conserved PDPK docking sites, which promote specific interaction of PDPKs with their targets. As expected, mutations in these sites also inhibit L1 activity. PDPK mutations in ORF1p that inactivate L1 have no significant effect on the ability of ORF1p to anneal RNA in vitro, an important biochemical property of the protein. We show that phosphorylated PDPK sites in ORF1p are required for an interaction with the peptidyl prolyl isomerase 1 (Pin1), a critical component of PDPK-mediated regulation. Pin1 acts via isomerization of proline side chains at phosphorylated PDPK motifs, thereby affecting substrate conformation and activity. Our demonstration that L1 activity is dependent on and integrated with cellular phosphorylation regulatory cascades significantly increases our understanding of interactions between L1 and its host. PMID:25831499

  15. Phosphorylation of ORF1p is required for L1 retrotransposition.

    PubMed

    Cook, Pamela R; Jones, Charles E; Furano, Anthony V

    2015-04-01

    Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1-host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p). Critical phospho-acceptor residues (two serines and two threonines) reside in four conserved proline-directed protein kinase (PDPK) target sites. The PDPK family includes mitogen-activated protein kinases and cyclin-dependent kinases. Mutation of any PDPK phospho-acceptor inhibits L1 retrotransposition. The phosphomimetic aspartic acid can restore activity at the two serine sites, but not at either threonine site, where it is strongly inhibitory. ORF1p also contains conserved PDPK docking sites, which promote specific interaction of PDPKs with their targets. As expected, mutations in these sites also inhibit L1 activity. PDPK mutations in ORF1p that inactivate L1 have no significant effect on the ability of ORF1p to anneal RNA in vitro, an important biochemical property of the protein. We show that phosphorylated PDPK sites in ORF1p are required for an interaction with the peptidyl prolyl isomerase 1 (Pin1), a critical component of PDPK-mediated regulation. Pin1 acts via isomerization of proline side chains at phosphorylated PDPK motifs, thereby affecting substrate conformation and activity. Our demonstration that L1 activity is dependent on and integrated with cellular phosphorylation regulatory cascades significantly increases our understanding of interactions between L1 and its host. PMID:25831499

  16. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT).

    PubMed

    Workman, Shon; Wells, Susan K; Pau, Chou-Pong; Owen, S Michele; Dong, X Fan; LaBorde, Ron; Granade, Timothy C

    2009-09-01

    Detection of human immunodeficiency virus (HIV) infections has been enhanced by incorporating p24 antigen detection with current HIV antibody detection using enzyme immunoassays (EIAs). However, screening for HIV antibodies has increased through the use of rapid, lateral-flow HIV antibody detection assays that currently do not have the capability to detect HIV p24 antigen. In this report, a lateral-flow based assay using super-paramagnetic particles as the detection marker was developed for the detection of HIV-1 p24 antigen. This magnetic immuno-chromatographic test (MICT) uses an inexpensive, low-maintenance instrument that detects the magnetic moment of the super-paramagnetic particles in a magnetic field. MICT is simple to perform, provides a numerical output for easier determination of reactive results and can be completed in 40min. The lower limit of detection for HIV-1 p24 spiked into assay sample buffer and 50% plasma was 30pg/ml for both. Detection of HIV-1 p24 antigen at 50pg/ml was reproducible in both inter-run and intra-run assays with coefficients of variation of <13%. Furthermore, the MICT p24 assay was able to detect intact virus spiked into 50% plasma (lower detection limit of approximately 250,000 viral RNA copies/ml). MICT detection of increasing HIV-1 p24 levels in commercially available seroconversion panels by MICT was only slightly later than that detected by much more complex EIAs. MICT could provide a simple, low-cost, and portable method for rapid HIV-1 p24 detection in a variety of testing environments. PMID:19482361

  17. Impact of partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility.

    PubMed

    Zhang, Yuening; Li, Muyan; Xiao, Feifan; Teng, Ruobing; Zhang, Chengdong; Lan, Aihua; Gu, Kailong; Li, Jiatong; Wang, Di; Li, Hongtao; Jiang, Li; Zeng, Siping; He, Min; Huang, Yi; Guo, Peifen; Zhang, Xinhua; Yang, Xiaoli

    2015-10-15

    This study aims to investigate the effect of the partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility through a comprehensive literature search. All case-control studies related to partial DAZ1/2 and DAZ3/4 deletions and male infertility risk were included in our study. Odd ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association and its precision, respectively. Eleven partial DAZ1/2 deletion and nine partial DAZ3/4 deletion studies were included. Partial DAZ1/2 deletion was significantly associated with male infertility risk in the overall analysis (ORs=2.58, 95%CI: 1.60-4.18, I(2)=62.1%). Moreover, in the subgroup analysis stratified by ethnicity, partial DAZ1/2 deletion was significantly associated with male infertility risk in the East Asian populations under the random effect model (ORs=2.96, 95%CI: 1.87-4.71, I(2)=51.3%). Meanwhile, the analysis suggested that partial DAZ3/4 deletion was not associated with male infertility risk in East-Asian ethnicity (ORs=1.02, 95%CI: 0.54-1.92, I(2)=71.3%), but not in Non-East Asian under the random effect model (ORs=3.56, 95%CI: 1.13-11.23, I(2)=0.0%,). More interestingly, partial DAZ1/2 deletion was associated with azoospermia (ORs=2.63, 95%CI: 1.19-5.81, I(2)=64.7%) and oligozoospermia (ORs=2.53, 95%CI: 1.40-4.57, I(2)=51.8%), but partial DAZ3/4 deletion was not associated with azoospermia (ORs=0.71, 95%CI: 0.23-2.22, I(2)=71.7%,) and oligozoospermia (ORs=1.21, 95%CI: 0.65-2.24, I(2)=55.5%). In our meta-analysis, partial DAZ1/2 deletion is a risk factor for male infertility and different ethnicities have different influences, whereas partial DAZ3/4 deletion has no effect on fertility but partial DAZ3/4 deletion might have an impact on Non-East Asian male.

  18. Ectrodactyly and proximal/intermediate interstitial deletion 7q

    SciTech Connect

    McElveen, C.; Carvajal, M.V.; Moscatello, D.

    1995-03-13

    We report on an individual with severe mental retardation, seizures, microcephaly, unusual face, scoliosis, and cleft feet and cleft right hand. The chromosomal study showed a proximal interstitial deletion 7q (q11.23q22). From our review of the literature, 11 patients have been reported with ectrodactyly (split hand/split foot malformation) and proximal/intermediate interstitial deletions or rearrangements of 7q. The critical segment for ectrodactyly seems to be located between 7q21.2 and 7q22.1. This malformation is present in 41% of the patients whose deletion involves the critical segment. 37 refs., 3 figs., 1 tab.

  19. Detection of genomic deletions in rice using oligonucleotide microarrays

    PubMed Central

    Bruce, Myron; Hess, Ann; Bai, Jianfa; Mauleon, Ramil; Diaz, M Genaleen; Sugiyama, Nobuko; Bordeos, Alicia; Wang, Guo-Liang; Leung, Hei; Leach, Jan E

    2009-01-01

    Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL). However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations . Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a database saturated with deletions across the rice genome. This community resource can continue

  20. 22q11.2 deletion syndrome

    PubMed Central

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  1. Discovery of 3-arylpropionic acids as potent agonists of sphingosine-1-phosphate receptor-1 (S1P1) with high selectivity against all other known S1P receptor subtypes.

    PubMed

    Yan, Lin; Huo, Pei; Doherty, George; Toth, Lesile; Hale, Jeffrey J; Mills, Sander G; Hajdu, Richard; Keohane, Carol A; Rosenbach, Mark J; Milligan, James A; Shei, Gan-Ju; Chrebet, Gary; Bergstrom, James; Card, Deborah; Quackenbush, Elizabeth; Wickham, Alexandra; Mandala, Suzanne M

    2006-07-15

    A series of 3-arylpropionic acids were synthesized as S1P1 receptor agonists. Structure-activity relationship studies on the pendant phenyl ring revealed several structural features offering selectivity of S1P1 binding against S1P2-5. These highly selective S1P1 agonists induced peripheral blood lymphocyte lowering in mice and one of them was found to be efficacious in a rat skin transplantation model, supporting that S1P1 agonism is primarily responsible for the immunosuppressive efficacy observed in preclinical animal models.

  2. The Prevention of Repeat-Associated Deletions in Saccharomyces Cerevisiae by Mismatch Repair Depends on Size and Origin of Deletions

    PubMed Central

    Tran, H. T.; Gordenin, D. A.; Resnick, M. A.

    1996-01-01

    We have investigated the effects of mismatch repair on 1- to 61-bp deletions in the yeast Saccharomyces cerevisiae. The deletions are likely to involve unpaired loop intermediates resulting from DNA polymerase slippage. The mutator effects of mutations in the DNA polymerase δ (POL3) gene and the recombinational repair RAD52 gene were studied in combination with mismatch repair defects. The pol3-t mutation increased up to 1000-fold the rate of extended (7-61 bp) but not of 1-bp deletions. In a rad52 null mutant only the 1-bp deletions were increased (12-fold). The mismatch repair mutations pms1, msh2 and msh3 did not affect 31- and 61-bp deletions in the pol3-t but increased the rates of 7- and 1-bp deletions. We propose that loops less than or equal to seven bases generated during replication are subject to mismatch repair by the PMS1, MSH2, MSH3 system and that it cannot act on loops >=31 bases. In contrast to the pol3-t, the enhancement of 1-bp deletions in a rad52 mutant is not altered by a pms1 mutation. Thus, mismatch repair appears to be specific to errors of DNA synthesis generated during semiconservative replication. PMID:8844147

  3. Genetics Home Reference: 19p13.13 deletion syndrome

    MedlinePlus

    ... Resources (1 link) National Human Genome Research Institute: Chromosome Abnormalities Educational Resources (5 links) MalaCards: chromosome 19p13.13 deletion syndrome March of Dimes: Chromosomal ...

  4. 78 FR 57844 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... Activity: DEPT OF COMMERCE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, BOULDER, CO. Deletions The... listed: Service Service Type/Location: Janitorial/Custodial Service, National Oceanic & Atmospheric Administration, National Weather Service Office, Except Communication & Electrical Room, 500 Airport Blvd.,...

  5. 76 FR 13362 - Procurement List Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ..., Jefferson Plaza 2, Suite 10800, 1421 Jefferson Davis Highway, Arlington, Virginia 22202-3259. For Further... service is proposed for deletion from the Procurement List: Service Service Type/Location:...

  6. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    SciTech Connect

    Hough, C.A., White, B.N., Holden, J.A.

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  7. 78 FR 63967 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...: Social Vocational Services, Inc.--Deleted, San Jose, CA Contracting Activity: DEPT OF THE ARMY, W40M NATL... Sustainment Systems, Natick, MA NPA: ReadyOne Industries (ROI), Inc., El Paso, TX Contracting Activity:...

  8. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yoshimura, Ayumi; Manabe, Kunio; Murao, Nami; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2015-01-01

    Several genes for vacuolar amino acid transport were reported in Saccharomyces cerevisiae, but have not well been investigated. We characterized AVT1, a member of the AVT vacuolar transporter family, which is reported to be involved in lifespan of yeast. ATP-dependent uptake of isoleucine and histidine by the vacuolar vesicles of an AVT exporter mutant was lost by introducing avt1∆ mutation. Uptake activity was inhibited by the V-ATPase inhibitor: concanamycin A and a protonophore. Isoleucine uptake was inhibited by various neutral amino acids and histidine, but not by γ-aminobutyric acid, glutamate, and aspartate. V-ATPase-dependent acidification of the vesicles was declined by the addition of isoleucine or histidine, depending upon Avt1p. Taken together with the data of the amino acid contents of vacuolar fractions in cells, the results suggested that Avt1p is a proton/amino acid antiporter important for vacuolar compartmentalization of various amino acids.

  9. Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).

    PubMed

    Potì, Francesco; Simoni, Manuela; Nofer, Jerzy-Roch

    2014-08-01

    Numerous epidemiological studies documented an inverse relationship between plasma high-density lipoprotein (HDL) cholesterol levels and the extent of atherosclerotic disease. However, clinical interventions targeting HDL cholesterol failed to show clinical benefits with respect to cardiovascular risk reduction, suggesting that HDL components distinct from cholesterol may account for anti-atherogenic effects attributed to this lipoprotein. Sphingosine-1-phosphate (S1P)-a lysosphingolipid exerting its biological activity via binding to specific G protein-coupled receptors and regulating a wide array of biological responses in a variety of different organs and tissues including the cardiovascular system-has been identified as an integral constituent of HDL particles. In the present review, we discuss current evidence from epidemiological studies, experimental approaches in vitro, and animal models of atherosclerosis, suggesting that S1P contributes to atheroprotective effects exerted by HDL particles. PMID:24891400

  10. Bilateral hand amyotrophy with PMP-22 gene deletion.

    PubMed

    Gochard, A; Guennoc, A M; Praline, J; Malinge, M C; de Toffol, B; Corcia, P

    2007-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) phenotypes are heterogeneous. We report the case of a 52-year-old woman without medical history, who complained of bilateral hand weakness suggestive first of a motor neuron disorder. The presence of a diffuse predominant distal demyelinating neuropathy suggested a deletion of PMP-22 gene, which was confirmed by genetic analysis. This case report underlines a novel phenotype related to the deletion of PMP-22 gene.

  11. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations. PMID:26601658

  12. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations.

  13. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    PubMed

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p < 0.01). Long time chronic suppurative otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.

  14. Cloning and characterization of CpG islands of the human chromosome 1p36 region

    SciTech Connect

    Ellmeier, W.; Barnas, C.; Kobrna, A.

    1996-02-15

    This article reports on the localization of CpG islands to human chromosome 1p36 as a means for the isolation of genes using hybridization techniques. Two cDNA clones encode the human transcription factor E2F-2 and the dominant-negative helix-loop-helix gene ID3. Further information regarding the organization of human chromosome 1 was accomplished using electrophoresis. 11 refs., 3 figs.

  15. The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases

    PubMed Central

    Hodko, Domagoj; Ward, Taylor; Chanfreau, Guillaume

    2016-01-01

    Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3′UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5′-3′ DExD/H-box RNA helicase Dhh1p and the 3′-5′ exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases. PMID:26843527

  16. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

    PubMed

    Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D

    2013-12-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

  17. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis.

    PubMed

    Li, Changyong; Jiang, Xiangming; Yang, Lin; Liu, Xihong; Yue, Shi; Li, Liying

    2009-10-01

    Bioactive sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) have been implicated in many critical cellular events, including inflammation, cancer, and angiogenesis. However, the role of S1P/S1PR signaling in the pathogenesis of liver fibrosis has not been well documented. In this study, we found that S1P levels and S1P(3) receptor expression in liver tissue were markedly up-regulated in a mouse model of cholestasis-induced liver fibrosis. In addition, the S1P(3) receptor was also expressed in green fluorescent protein transgenic bone marrow (BM)-derived cells found in the damaged liver of transplanted chimeric mice that underwent bile duct ligation. Silencing of S1P(3) expression significantly inhibited S1P-induced BM cell migration in vitro. Furthermore, a selective S1P(3) receptor antagonist, suramin, markedly reduced the number of BM-derived cells during cholestasis. Interestingly, suramin administration clearly ameliorated bile duct ligation-induced hepatic fibrosis, as demonstrated by attenuated deposition of collagen type I and III, reduced smooth muscle alpha-actin expression, and decreased total hydroxyproline content. In conclusion, our data suggest that S1P/S1P(3) signaling plays an important role in cholestasis-induced liver fibrosis through mediating the homing of BM cells. Modulation of S1PR activity may therefore represent a new antifibrotic strategy.

  18. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    SciTech Connect

    Logan, Michael R.; Jones, Lynden; Eitzen, Gary

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  19. Xp22. 3 deletions in isolated familial Kallmann's syndrome

    SciTech Connect

    Hardelin, J.P.; Levilliers, J.; Legouis, R.; Petit, C. ); Young, J.; Pholsena, M.; Schaison, G. ); Kirk, J.; Bouloux, P. )

    1993-04-01

    Several familial cases of Kallmann's syndrome (KS) have been reported, among which the X-chromosome-linked mode of inheritance is the most frequent. The gene responsible for the X-linked KS has been localized to the terminal part of the X-chromosome short arm (Xp22.3 region), immediately proximal to the steroid sulfatase gene responsible for X-linked ichthyosis. Large deletions of this region have been previously shown in patients affected with both X-linked ichthyosis and KS. The authors report here the search for Xp22.3 deletions in 20 unrelated males affected with isolated X-linked KS. Only 2 deletions were found using Southern blot analysis, indicating that large deletions are uncommon in patients affected with KS alone. Both deletions were shown to include the entire KAL gene responsible for X-linked KS. The patients carrying these deletions exhibit additional clinical anomalies, which are discussed: unilateral renal aplasia, unilateral absence of vas deferens, mirror movements, and sensory neural hearing loss. 47 refs., 2 figs., 1 tab.

  20. Clinical and cytogenetic aspects of X-chromosome deletions.

    PubMed

    Goldman, B; Polani, P E; Daker, M G; Angell, R R

    1982-01-01

    Karyotype/phenotype correlations in six non-mosaic patients with dysgenetic ovaries and partial deletions of the X-chromosome (three patients with short arm, and three with long arm deletions) are presented and the pertinent literature is analysed. It would appear that functioning ovarian tissue is present more often in patients with a short arm deletion than in those with a deleted long arm. This may represent a difference in the strength of two sets of controlling factors, but it can also be related to break point position. This in turn may be misinterpreted due to the difficulty in distinguishing between terminal and interstitial deletions in the long arm. Stature may be a heterochromatic effect, but if specific genetic factors influencing stature exist, then they would appear to be situated mostly on the short arm of the X-chromosome, although some 'statural determinants' occur also on the long arm and could be located rather close to the centromere. Deletions of the short arm of the X-chromosome were almost always associated with some features of the Turner phenotype, and could possibly be related to a gene dosage effect.

  1. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  2. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  3. Megabase deletions of gene deserts result in viable mice

    SciTech Connect

    Nobrega, Marcelo A.; Zhu, Yiwen; Plajzer-Frick, Ingrid; Afzal,Veena; Rubin, Edward M.

    2004-05-01

    The functional importance of the approximately 98 percent of mammalian genomes not corresponding to protein coding sequences remain largely un-scrutinized 1. To test experimentally whether some extensive regions of non-coding DNA, referred to as gene deserts 2-4, contain critical functions essential for the viability of the organism, we deleted two large non-coding intervals, 1,511 kb and 845 kb in length, from the mouse genome. Viable mice homozygous for the deletions were generated and were indistinguishable from wild-type litter mates with regards to morphology, reproductive fitness, growth, longevity and a variety of parameters assaying general homeostasis. Further in-depth analysis of the expression of genes bracketing the deletions revealed similar expression characteristics in homozygous deletion and wild-type mice. Together, the two deleted segments harbour 1,243 non-coding sequences conserved between humans and rodents (>100bp, 70 percent identity). These studies demonstrate that some large-scale deletions of non-coding DNA can be well tolerated by an organism, bringing into question the role of many human-mouse conserved sequences 5,6, and further supports the existence of potentially ''disposable DNAi'' in the genomes of mammals.

  4. Interstitial deletion of 13q associated with polymicrogyria.

    PubMed

    Kogan, Jillene M; Egelhoff, John C; Saal, Howard M

    2008-04-01

    Interstitial deletion of the long arm of chromosome 13 is a rare condition characterized by multiple clinical findings. We report a male dizygotic twin with an interstitial deletion of 13q and failure to thrive, hypotonia, polymicrogyria, bilateral foci of retinoblastoma, hearing loss, bilateral inguinal hernias, submucous cleft palate, and dysmorphic features including a triangular shaped face, broad forehead, small chin, prominent eyes, downslanting palpebral fissures, and a downturned mouth. Chromosome analysis showed an interstitial deletion of chromosome 13 which was confirmed by fluorescence in situ hybridization analysis to include the Rb locus, but spare the 13q subtelomeric region. The karyotype was 46,XY,del(13)(q14.1q31.2).ish del(13)(RB1-,D13S327+) de novo. Breakpoints were further characterized by SNP-based microarray. Retinoblastoma tumors are a well-known complication of deletion of the retinoblastoma susceptibility gene, located at chromosome 13q14.2. Growth retardation is another common feature that has been described in other patients with a deletion of 13q. Additionally, this patient had brain findings on MRI consistent with bilateral polymicrogyria with predominance of the frontal lobes, as well as prominent infratentorial and supratentorial vasculature. There are a variety of polymicrogyria syndromes that are distinguished by the cortical location of the abnormal folding. Several of the subtypes have known genetic loci associated with them. To our knowledge, this is the only report of polymicrogyria in association with a deletion of chromosome 13.

  5. The membrane remodeling protein Pex11p activates the GTPase Dnm1p during peroxisomal fission

    PubMed Central

    Opalinski, Lukasz; Landgraf, Christiane; Costello, Joseph; Schrader, Michael; Krikken, Arjen M.; Knoops, Kèvin; Kram, Anita M.; Volkmer, Rudolf; van der Klei, Ida J.

    2015-01-01

    The initial phase of peroxisomal fission requires the peroxisomal membrane protein Peroxin 11 (Pex11p), which remodels the membrane, resulting in organelle elongation. Here, we identify an additional function for Pex11p, demonstrating that Pex11p also plays a crucial role in the final step of peroxisomal fission: dynamin-like protein (DLP)-mediated membrane scission. First, we demonstrate that yeast Pex11p is necessary for the function of the GTPase Dynamin-related 1 (Dnm1p) in vivo. In addition, our data indicate that Pex11p physically interacts with Dnm1p and that inhibiting this interaction compromises peroxisomal fission. Finally, we demonstrate that Pex11p functions as a GTPase activating protein (GAP) for Dnm1p in vitro. Similar observations were made for mammalian Pex11β and the corresponding DLP Drp1, indicating that DLP activation by Pex11p is conserved. Our work identifies a previously unknown requirement for a GAP in DLP function. PMID:25941407

  6. Comparing CN Features in Two Comets: 1P/Halley and 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Lejoly, Cassandra; Barrera, Jose; Mueller, Beatrice; Schleicher, David

    2015-11-01

    Comets 1P/Halley and 103P/Hartley 2 show distinct CN features in their respecive comae. Both comets are non-principal-axis rotators. 1P/Halley is the proto-type for Halley-type comets with the Oort Cloud as its possible source region, whereas 103P/Hartley 2 is a Jupiter-Family comet that possibly originated from the Kuiper Belt. Both comets were spacecraft targets and studied widely from both space and from the ground.We will discuss the properties of CN features, and in particular the behavior of the derived outflow velocities based on the CN features present in the groundbased coma images of these two comets. The corresponding heliocentric distances for CN images of comet 1P/Halley range from approximately 0.8 AU to 2.0 AU (during its post-perihelion leg of the 1986 apparition). For CN images of comet 103P/Hartley 2, the corresponding heliocentric distances range from 1.31 AU through the perihelion (at 1.06 AU) to 1.25 AU (during its 2010 apparition).Ultimately, these results will be used to understand the rotational states and the activity behaviors of these two comets.

  7. On F-algebras M(p)   (1 < p < ∞) of holomorphic functions.

    PubMed

    Meštrović, Romeo

    2014-01-01

    We consider the classes M(p)  (1 < p < ∞) of holomorphic functions on the open unit disk in the complex plane. These classes are in fact generalizations of the class M introduced by Kim (1986). The space M (p) equipped with the topology given by the metric ρ p defined by ρp (f, g) = ||f - g|| p = (∫0(2π) log(p) (1 + M(f - g)(θ))(dθ/2π))(1/p), with f, g ∈ M (p) and Mf(θ) = sup 0 ⩽ r<1 ⁡|f(re(iθ))|, becomes an F-space. By a result of Stoll (1977), the Privalov space N(p)  (1 < p < ∞) with the topology given by the Stoll metric d p is an F-algebra. By using these two facts, we prove that the spaces M(p) and N(p) coincide and have the same topological structure. Consequently, we describe a general form of continuous linear functionals on M(p) (with respect to the metric ρp). Furthermore, we give a characterization of bounded subsets of the spaces M(p). Moreover, we give the examples of bounded subsets of M(p) that are not relatively compact. PMID:24672388

  8. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism.

    PubMed

    Kumar, A; Oskouian, B; Fyrst, H; Zhang, M; Paris, F; Saba, J D

    2011-01-01

    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.

  9. A case of duplication 17p13.1p13.3 confirmed by FISH

    SciTech Connect

    Stephenson, C.F.; Berger, C.S.; Bull, R.M.

    1994-09-01

    There are many reports in the literature of deletions of the p arm of chromosome 17 in the region of p13.3 due to the association with Miller-Dieker Syndrome. However, very little is known about duplications of 17p. We report a duplication of part of 17p in an 8-year-old girl with attention deficit disorder and mild mental retardation. Cytogenetically, the duplicated region appears to include 17p13.1 to p13.3. FISH with a cosmid probe to the Miller-Dieker region at 17p13.3 shows a double hybridization signal, confirming that the duplicated material does indeed include 17q13.3.

  10. Deletion of the trichodiene synthase gene of Fusarium venenatum: two systems for repeated gene deletions.

    PubMed

    Royer, J C; Christianson, L M; Yoder, W T; Gambetta, G A; Klotz, A V; Morris, C L; Brody, H; Otani, S

    1999-10-01

    The trichodiene synthase (tri5) gene of Fusarium venenatum was cloned from a genomic library. Vectors were created in which the tri5 coding sequence was replaced with the Neurospora crassa nitrate reductase (nit3) gene and with the Aspergillus nidulans acetamidase (amdS) gene flanked by direct repeats. The first vector was utilized to transform a nitrate reductase (niaD) mutant of F. venenatum to prototrophy, and the second vector was utilized to confer acetamide utilization to the wild-type strain. Several of the transformants lost the capacity to produce the trichothecene diacetoxyscirpenol and were shown by hybridization analysis to have gene replacements at the tri5 locus. The nit3 gene was removed by retransformation with a tri5 deletion fragment and selection on chlorate. The amdS gene was shown to excise spontaneously via the flanking direct repeats when spores were plated onto fluoroacetamide. PMID:10512673

  11. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p.

    PubMed Central

    Cherkasova, V; Lyons, D M; Elion, E A

    1999-01-01

    In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition. PMID:10049917

  12. The phenotype associated with a large deletion on MECP2

    PubMed Central

    Bebbington, Ami; Downs, Jenny; Percy, Alan; Pineda, Mercé; Zeev, Bruria Ben; Bahi-Buisson, Nadia; Leonard, Helen

    2012-01-01

    Multiplex ligation-dependent Probe Amplification (MLPA) has become available for the detection of a large deletion on the MECP2 gene allowing genetic confirmation of previously unconfirmed cases of clinical Rett syndrome. This study describes the phenotype of those with a large deletion and compares with those with other pathogenic MECP2 mutations. Individuals were ascertained from the Australian Rett Syndrome and InterRett databases with data sourced from family and clinician questionnaires, and two case studies were constructed from the longitudinal Australian data. Regression and survival analysis were used to compare severity and age of onset of symptoms in those with and without a large deletion. Data were available for 974 individuals including 51 with a large deletion and ages ranged from 1 year 4 months to 49 years (median 9 years). Those with a large deletion were more severely affected than those with other mutation types. Specifically, individuals with large deletions were less likely to have learned to walk (OR 0.42, 95% CI: 0.22–0.79, P=0.007) and to be currently walking (OR 0.53, 95% CI: 0.26–1.10, P=0.089), and were at higher odds of being in the most severe category of gross motor function (OR 1.84, 95% CI: 0.98–3.48, P=0.057) and epilepsy (OR 2.72, 95% CI: 1.38–5.37, P=0.004). They also developed epilepsy, scoliosis, hand stereotypies and abnormal breathing patterns at an earlier age. We have described the disorder profile associated with a large deletion from the largest sample to date and have found that the phenotype is severe with motor skills particularly affected. PMID:22473088

  13. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus

    PubMed Central

    Horne, Hisani N.; Chung, Charles C.; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A.; Beckmann, Matthias W.; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L.; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H.; ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J.; Vachon, Celine; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Marchand, Loic Le; Goldberg, Mark S.; Teo, Soo H.; Taib, Nur A. M.; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L.; Knight, Julia A.; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W. M.; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S.; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D. P.

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799–121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000–120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08–1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive. PMID:27556229

  14. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus.

    PubMed

    Horne, Hisani N; Chung, Charles C; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H; Ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J; Vachon, Celine; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Marchand, Loic Le; Goldberg, Mark S; Teo, Soo H; Taib, Nur A M; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W M; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D P; Easton, Douglas F; Chanock, Stephen J; Dunning, Alison M; Figueroa, Jonine D

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.

  15. Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus.

    PubMed

    Horne, Hisani N; Chung, Charles C; Zhang, Han; Yu, Kai; Prokunina-Olsson, Ludmila; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; Benitez, Javier; González-Neira, Anna; Anton-Culver, Hoda; Neuhausen, Susan L; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Iwata, Hiroji; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Chenevix-Trench, Georgia; Wu, Anna H; Ven den Berg, David; Smeets, Ann; Zhao, Hui; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Barile, Monica; Couch, Fergus J; Vachon, Celine; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Marchand, Loic Le; Goldberg, Mark S; Teo, Soo H; Taib, Nur A M; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Shrubsole, Martha; Winqvist, Robert; Jukkola-Vuorinen, Arja; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; Martens, John W M; Li, Jingmei; Lu, Wei; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Shah, Mitul; Luccarini, Craig; Baynes, Caroline; Harrington, Patricia; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Chia, Kee Seng; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; Brennan, Paul; Slager, Susan; Yannoukakos, Drakoulis; Shen, Chen-Yang; Hou, Ming-Feng; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Hall, Per; Pharoah, Paul D P; Easton, Douglas F; Chanock, Stephen J; Dunning, Alison M; Figueroa, Jonine D

    2016-01-01

    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive. PMID:27556229

  16. Late-onset Stargardt-like macular dystrophy maps to chromosome 1p13

    SciTech Connect

    Kaplan, J.; Gerber, S.; Rozet, J.M.

    1994-09-01

    Stargardt`s disease (MIM 248200), originally described in 1909, is an autosomal recessive condition of childhood, characterized by a sudden and bilateral loss of central vision. Typically, it has an early onset (7 to 12 years), a rapidly progressive course and a poor final outcome. The central area of the retina (macula) displays pigmentary changes in a ring form with depigmentation and atrophy of the retinal pigmentary epithelium (RPE). Perimacular yellowish spots, termed fundus flavimaculatus, are observed in a high percentage of patients. We have recently reported the genetic mapping of Stargardt`s disease to chromosome 1p13. On the other hand, considering that fundus flavimaculatus (MIM 230100) is another form of fleck fundus disease, with a Stargardt-like retinal aspect but with a late-onset and a more progressive course, we decided to test the hypothesis of allelism between typical Stargardt`s disease and late-onset autosomal recessive fundus flavimaculatus. Significant pairwise lod scores were obtained in each of four multiplex families (11 affected individuals, 12 relatives) with four markers of the 1p13 region (Z = 4.79, 4.64, 3.07, 3.16 at loci D1S435, D1S424, D1S236, and D1S415, respectively at {theta} = 0). Multipoint analysis showed that the best estimate for location of the disease gene is between D1S424 and D1S236 (maximum lod score of 5.20) as also observed in Stargardt`s disease. Our results are consistent with the location of the gene responsible of the late-onset Stargardt-like macular dystrophy in the 1p13 region and raise the hypothesis of either allelic mutational events or contiguous genes in this chromosomal region. The question of possible relationship with some age-related macular dystrophies in now open to debate.

  17. A convenient synthesis of benzo[c]naphtho[2,1-p]chrysene

    SciTech Connect

    Hagen, S.; Scott, L.T.

    1996-10-04

    The polycyclic aromatic hydrocarbon (PAH) benzo[c]-naphtho[2,1-p]chrysene (1) has recently attracted renewed attention as a potential precursor for the synthesis of bowl-shaped fullerene substructures. The published synthetic approaches to 1, however, are lengthy and entail one or more photocyclizations of stilbene-type compounds that suffer from competing [2 + 2]cycloaddition reactions at normal concentrations and are thereby rendered quite inefficient. The authors report here a convenient four-step synthesis of 1 that can be performed on a multigram scale starting from the commercially available {alpha}-tetralone (2) and 2-bromonaphthalene. 12 refs.

  18. Capitulation in Abelian extensions of some fields ℚ (√{p1p2q , }i )

    NASA Astrophysics Data System (ADS)

    Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed

    2016-02-01

    We study the capitulation of the 2-ideal classes of an infinite family of imaginary biquadratic number fields consisting of fields k =ℚ (√{p1p2q , }i ), where i =√{-1 } and p1 ≡ p2 ≡ -q ≡ 1 (mod 4) are different primes. For each of the three quadratic extensions K /k inside the absolute genus field k(*) of k , we compute the capitulation kernel of K /k . Then we deduce that each strongly ambiguous class of k /ℚ (i ) capitulates already in k(*), which is smaller than the relative genus field (k/ℚ (i )) *.

  19. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast.