Science.gov

Sample records for 1s0 transition probability

  1. Observation of the 1S0 to 3D1 clock transition in 175Lu+

    NASA Astrophysics Data System (ADS)

    Arnold, K. J.; Kaewuam, R.; Roy, A.; Paez, E.; Wang, S.; Barrett, M. D.

    2016-11-01

    We report direct laser spectroscopy of the 1S0 to 3D1 highly-forbidden M1 clock transition in 175Lu+ . Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the 3D1 term. We measure the hyperfine intervals of the 3D1 to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6 ) THz. The lifetime of the 3D1 state is inferred to be 174-32+23 hours from the M1 coupling strength.

  2. Rotational level involvement in the T1-->S0 intersystem crossing transition in thiophosgene.

    PubMed

    Rashev, Svetoslav; Moule, David C

    2009-04-07

    We propose and develop theoretically a general mechanism for the involvement of rotational motion into the nonradiative transitions that occur in an isolated polyatomic molecule. The treatment is based on the different rotational constants and different (asymmetric top-symmetric top) molecular structures in the two combining electronic states. We focus our attention on the T(1)-->S(0) intersystem crossing (ISC) transition in thiophosgene and show how the rotational mechanism could lead to a considerable enhancement in the effective level density for the process. Inserting the rotational mechanism into our recently developed technique and algorithm for combined spin-orbit coupling+intramolecular vibrational redistribution analysis, we have carried out large-scale calculations that have led to a better understanding of the ISC (T(1)-->S(0)) in thiophosgene.

  3. Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays.

    PubMed

    Hong, Tao; Cramer, Claire; Cook, Eryn; Nagourney, Warren; Fortson, E N

    2005-10-01

    We report an observation of the weak 6 1S0-6 3P0 transition in (171,173)Yb as an important step to establishing Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the 1S0 and 3P0 states of Yb atoms in an optical lattice.

  4. Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates of He-like ions

    NASA Astrophysics Data System (ADS)

    Laima, Radžiūtė; Erikas, Gaidamauskas; Gediminas, Gaigalas; Li, Ji-Guang; Dong, Chen-Zhong; Jönsson, Per

    2015-04-01

    Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates for the isoelectronic sequence of He-like ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, 11147108, 10979007, U1331122, and U1332206) and in part by the National Basic Research Program of China (Grant No. 2013CB922200).

  5. Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice

    2015-05-01

    Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.

  6. Ultrastable laser system for spectroscopy of the 1S0-3P0 clock transition in Sr atoms

    NASA Astrophysics Data System (ADS)

    Berdasov, O. I.; Gribov, A. Yu.; Belotelov, G. S.; Pal'chikov, V. G.; Strelkin, S. A.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.

    2017-06-01

    A laser system with a spectral linewidth less than 1 Hz for spectroscopy of the 1S0-3P0 clock transition in strontium atoms has been demonstrated. A semiconductor laser emitting at a wavelength of 698 nm was stabilised to an external high-finesse Fabry-Perot cavity with vibration and temperature compensation near the zero expansion point. After laser cooling to a temperature below 3 μK, 88Sr atoms were loaded into an optical lattice at a magic wavelength of 813 nm. The laser system was used to characterise the 88Sr clock transition by magnetically induced spectroscopy. The resonance spectral width was determined to be 130 ± 17 Hz, which corresponds to a quality factor of 3 × 1012.

  7. Observation of the ^1S0 -- ^3P0 clock transition at 578 nm in atomic Yb

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    2005-05-01

    We report the first observation of the strongly forbidden 6s^2 ^1S0 -- 6s6p ^3P0 transition near 578 nm in atomic Yb, which is weakly† allowed in the odd isotopes (^171, 173Yb) through internal hyperfine coupling† of the nuclear spin.† This transition has been proposed as one of the† primary† candidates for future optical frequency standards using alkaline earth atoms [1]. In our experiment, a 578 nm laser beam strikes cold Yb atoms† held in a magneto-optical trap (MOT). When this light is tuned to resonance† with the clock transition, a decrease in the MOT fluorescence is detected† as atoms are pumped into the metastable ^3P0 state and escape† from the trap. By chopping the MOT and clock beams out of phase, we avoid line shifts and broadening due to near-resonant trap light. Nearby 578 nm iodine lines, observed by Doppler-free† saturated absorption, are used as a frequency reference. †We find the ^ 171Yb transition to be about 2.5 GHz below the first hyperfine component of the iodine line 1852. We will present our measurements of the clock transition frequency, including a determination of the relative shift between the ^171Yb and ^173Yb isotopes.[1]S. G.† Porsev, A. Derevianko, E. N. Fortson, Phys. Rev. A 69, 021403(R)† (2004); H. Katori, in Proc. 6th Symposium Frequency Standards and Metrology, edited by P. Gill (World Scienti.c, Singapore, 2002), pp. 323-330

  8. The S1( 1A1)- S0( 1A1) Electronic Transition of Jet-Cooled o-Difluorobenzene

    NASA Astrophysics Data System (ADS)

    Swinn, Anna K.; Kable, Scott H.

    1998-09-01

    A detailed study of theS1(1A1)-S0(1A1) transition of jet-cooledo-difluorobenzene has been completed using the two techniques of laser-induced fluorescence excitation and dispersed, single vibronic level fluorescence spectroscopy. Analysis of over 60 dispersed fluorescence spectra resulted in both the assignment of 22 excited state vibrational frequencies and the confirmation of 23 ground state frequencies. The spectrum is dominated by Franck-Condon activity in totally symmetric vibrations with long progressions in the ring-breathing mode, ν9. By analogy with benzene and thepara- andmeta-substituted isomers, two vibronic coupling mechanisms are postulated to be responsible for the wealth of weaker symmetry-forbidden structure that has been observed. Single quantum changes inb2vibrations are postulated to appear due to first order vibronic coupling to a higher lyingB2electronic state. Combinations ofb1anda2modes are postulated to appear from second order vibronic coupling to anA1electronic state. This second order coupling causes a pronounced Duschinsky mixing among excited stateb1anda2modes with respect to their ground state counterparts. Franck-Condon factors are calculated for thea1progression-forming modes, anharmonic contributions are evaluated, one strong Fermi resonance is identified and analyzed, and the Duschinsky rotation matrix elements are evaluated for the most strongly affected modes, ν17and ν18. Several transitions in theoDFB-oDFB van der Waals dimer andoDFB-Ar complex are also assigned in the spectrum.

  9. Improved Frequency Measurement of the 1S0-3P0 Clock Transition in 87Sr Using a Cs Fountain Clock as a Transfer Oscillator

    NASA Astrophysics Data System (ADS)

    Tanabe, Takehiko; Akamatsu, Daisuke; Kobayashi, Takumi; Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi; Suzuyama, Tomonari; Inaba, Hajime; Okubo, Sho; Yasuda, Masami; Hong, Feng-Lei; Onae, Atsushi; Hosaka, Kazumoto

    2015-11-01

    We performed an absolute frequency measurement of the 1S0-3P0 transition in 87Sr with a fractional uncertainty of 1.2 × 10-15, which is less than one-third that of our previous measurement. A caesium fountain atomic clock was used as a transfer oscillator to reduce the uncertainty of the link between a strontium optical lattice clock and the SI second. The absolute value of the transition frequency is 429 228 004 229 873.56(49) Hz.

  10. Measurement of the radiative lifetime of the 2s(2)2p(4) (1)S(0) metastable level of neon; a study of forbidden transitions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Daw, Adrian Nigel

    The radiative lifetime of the 2s22 p4 1S0 metastable level of Ne2+ (Ne III) has been measured to be 223 +/- 11 ms at the 90% confidence level by observing the photons emitted at 1815 Å (181.5 nm) by a decaying population of 1 S0 Ne2+ ions stored in a radio frequency ion trap. This thesis describes the first use of a method to account for any ions lost from the trap and determine the radiative lifetime. Metastable ions were produced by electron bombardment of Ne gas, and rate coefficients for Ne2+ + Ne collisions were also determined. The lifetime measurement is in good agreement with recent calculated values, and has a lower uncertainty than the calculated values. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical spectral line intensity ratio diagnostics. Using calculated branching ratios, we estimate that, at the 90% confidence level, A(3P1 - 1S0) = 1.94 +/- 0.17 s-1 for the forbidden line of Ne III at 1815 Å, and A(1D2 - 1S0) = 2.55 +/- 0.19 s-1 for the forbidden line of Ne III at 3344 Å.

  11. Spectroscopy of ^1S0 -- ^3P1^88Sr Atomic Transition in a 1.06 μm Optical Dipole Trap

    NASA Astrophysics Data System (ADS)

    Martinez de Escobar, Y. N.; Mickelson, P. G.; Traverso, A. J.; Killian, T. C.

    2008-05-01

    We studied the effects of laser light near-resonant with the ^1S0-- ^3P1^88Sr transition in an optical dipole trap (ODT). We observe laser cooling of our ODT atomic sample as the atoms collide in the presence of red-detuned 689 nm light. Heating of the atoms was also observed at a different range of frequency detunings while performing spectroscopy. Both processes were accompanied with atom loss, but the increase of phase space density observed during 689 nm laser cooling could aid pursuits of quantum degeneracy with Sr.

  12. Absolute frequency measurement of the 115In + 5s 2 1S 0-5s5p 3P 0 transition

    NASA Astrophysics Data System (ADS)

    von Zanthier, J.; Abel, J.; Becker, Th.; Fries, M.; Peik, E.; Walther, H.; Holzwarth, R.; Reichert, J.; Udem, Th.; Hänsch, T. W.; Nevsky, A. Yu.; Skvortsov, M. N.; Bagayev, S. N.

    1999-08-01

    We have measured the absolute frequency of the 115In + 5s 2 1S 0-5s5p 3P 0 clock transition at 236.5 nm with an accuracy of 3.3 parts in 10 11. For this measurement, a frequency synthesis chain was used which links the indium clock transition to a methane-stabilized He-Ne laser at 3.39 μm and a Nd:YAG laser at 1064 nm whose second harmonic was locked to a hyperfine component in molecular iodine. A frequency gap in the chain of 1.43 THz at 850 nm was bridged with the help of an optical frequency comb generator. The frequency of the 115In + clock transition was determined to 1 267 402 452 914 (41) kHz, where the accuracy is limited by the uncertainty of the iodine reference. This measurement represents an improvement of more than three orders of magnitude in accuracy compared to previous measurements of the line.

  13. Impact of buffer gas quenching on the 1S0 → 1P1 ground-state atomic transition in nobelium

    NASA Astrophysics Data System (ADS)

    Chhetri, Premaditya; Ackermann, Dieter; Backe, Hartmut; Block, Michael; Cheal, Bradley; Düllmann, Christoph Emanuel; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Laatiaoui, Mustapha; Lautenschläger, Felix; Lauth, Werner; Ramirez, Enrique Minaya; Mistry, Andrew Kishor; Raeder, Sebastian; Wraith, Calvin; Walther, Thomas; Yakushev, Alexander

    2017-07-01

    Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique an optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the study of nobelium and beyond, where atomic properties are currently unknown.

  14. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  15. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

    PubMed

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-12-07

    We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  16. Oscillator strengths for 1s2 1S0-1s2p 3P1,2 transitions in helium-like carbon, nitrogen and oxygen including the effects of a finite nuclear mass

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Drake, G. W. F.

    2016-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for the 1{{{s}}}2{}1{{{S}}}0{--}1{{s}}2{{p}}{}3{{{P}}}{1,2} spin-changing transitions of helium-like C v, N vi and O vii. We added the effects of the finite nuclear mass and the anomalous magnetic moment of the electron including an extra term derived by Pachucki. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on numerical accuracy and the validity of the transition operators. There is some cancellation in the corrections for the nuclear mass and the electron anomaly so that if one is included the other should not be ignored

  17. Probabilities of transversions and transitions.

    PubMed

    Vol'kenshtein, M V

    1976-01-01

    The values of the mean relative probabilities of transversions and transitions have been refined on the basis of the data collected by Jukes and found to be equal to 0.34 and 0.66, respectively. Evolutionary factors increase the probability of transversions to 0.44. The relative probabilities of individual substitutions have been determined, and a detailed classification of the nonsense mutations has been given. Such mutations are especially probable in the UGG (Trp) codon. The highest probability of AG, GA transitions correlates with the lowest mean change in the hydrophobic nature of the amino acids coded.

  18. Transition probabilities in O III

    NASA Astrophysics Data System (ADS)

    Froese Fischer, Charlotte

    1994-01-01

    Transition data has been computed in the MCHF + Breit-Pauli approximation for a number of the low lying triplets in O III. Special attention was given to the 2p3p 3P-2p3d 3P transition which is a primary cascade for the Bowen fluorescence mechanism in O III. The relativistic, largely spin-orbit, effect on the intensity ratio of primary decays was found to be as large as 50%, whereas the effect on secondary cascades was less than 30%. Agreement with astrophysically observed intensity ratios is excellent. There also is good agreement between the present liftimes and the beam-foil mean lifetimes obtained by Pinnington et al., though for 2p3p 3D and 3S the theoretical lifetimes are considerably shorter.

  19. Transition Probability and the ESR Experiment

    ERIC Educational Resources Information Center

    McBrierty, Vincent J.

    1974-01-01

    Discusses the use of a modified electron spin resonance apparatus to demonstrate some features of the expression for the transition probability per second between two energy levels. Applications to the third year laboratory program are suggested. (CC)

  20. Nonequilibrium random matrix theory: Transition probabilities

    NASA Astrophysics Data System (ADS)

    Pedro, Francisco Gil; Westphal, Alexander

    2017-03-01

    In this paper we present an analytic method for calculating the transition probability between two random Gaussian matrices with given eigenvalue spectra in the context of Dyson Brownian motion. We show that in the Coulomb gas language, in large N limit, memory of the initial state is preserved in the form of a universal linear potential acting on the eigenvalues. We compute the likelihood of any given transition as a function of time, showing that as memory of the initial state is lost, transition probabilities converge to those of the static ensemble.

  1. Atomic transition probabilities of Nd I

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Wood, M. P.; Den Hartog, E. A.; Lawler, J. E.

    2011-12-01

    Fourier transform spectra are used to determine emission branching fractions for 236 lines of the first spectrum of neodymium (Nd i). These branching fractions are converted to absolute atomic transition probabilities using radiative lifetimes from time-resolved laser-induced fluorescence measurements (Den Hartog et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225001). The wavelength range of the data set is from 390 to 950 nm. These transition probabilities from emission and laser measurements are compared to relative absorption measurements in order to assess the importance of unobserved infrared branches from selected upper levels.

  2. Random walks with similar transition probabilities

    NASA Astrophysics Data System (ADS)

    Schiefermayr, Klaus

    2003-04-01

    We consider random walks on the nonnegative integers with a possible absorbing state at -1. A random walk is called [alpha]-similar to a random walk if there exist constants Cij such that for the corresponding n-step transition probabilities , i,j[greater-or-equal, slanted]0, hold. We give necessary and sufficient conditions for the [alpha]-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.

  3. Transit probabilities for debris around white dwarfs

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Johnson, John A.

    2017-01-01

    The discovery of WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. However, we only have one example and there are presently no published studies of transit detection/discovery probabilities for white dwarfs within this interesting regime. We present a preliminary look at the transit probabilities for metal-polluted white dwarfs and their projected space density in the Solar Neighborhood, which will inform future searches for analogs to WD 1145+017.

  4. Transit probabilities in secularly evolving planetary systems

    NASA Astrophysics Data System (ADS)

    Read, Matthew J.; Wyatt, Mark C.; Triaud, Amaury H. M. J.

    2017-07-01

    This paper considers whether the population of known transiting exoplanets provides evidence for additional outer planets on inclined orbits, due to the perturbing effect of such planets on the orbits of inner planets. As such, we develop a semi-analytical method for calculating the probability that two mutually inclined planets are observed to transit. We subsequently derive a simplified analytical form to describe how the mutual inclination between two planets evolves due to secular interactions with a wide orbit inclined planet and use this to determine the mean probability that the two inner planets are observed to transit. From application to Kepler-48 and HD-106315, we constrain the inclinations of the outer planets in these systems (known from radial velocity). We also apply this work to the so-called Kepler Dichotomy, which describes the excess of single transiting systems observed by Kepler. We find three different ways of explaining this dichotomy: Some systems could be inherently single, some multiplanet systems could have inherently large mutual inclinations, while some multiplanet systems could cyclically attain large mutual inclinations through interaction with an inclined outer planet. We show how the different mechanisms can be combined to fit the observed populations of Kepler systems with one and two transiting planets. We also show how the distribution of mutual inclinations of transiting two-planet systems constrains the fraction of two-planet systems that have perturbing outer planets, since such systems should be preferentially discovered by Kepler when the inner planets are coplanar due to an increased transit probability.

  5. Atomic Transition Probabilities in TiI

    NASA Astrophysics Data System (ADS)

    Nitz, David E.; Siewert, Lowell K.; Schneider, Matthew N.

    2001-05-01

    We have measured branching fractions and atomic transition probabilities in TiI for 50 visible and near-IR transitions which connect odd-parity levels lying 25000 cm-1 to 27000 cm-1 above the ground state to low-lying even parity levels. Branching fractions are obtained from the analysis of six hollow cathode emission spectra recorded using the Fourier transform spectrometer at the National Solar Observatory, supplemented in cases susceptible to radiation-trapping problems by conventional emission spectroscopy using a commercial sealed lamp operated at very low discharge current. The absolute scale for normalizing the branching fractions is established using radiative lifetimes from time-resolved laser-induced fluorescence measurements.(S. Salih and J.E. Lawler, Astronomy and Astrophysics 239, 407 (1990).) Uncertainties of the transition probabilities range from ±5% for the stronger branches to ±20% for the weaker ones. Among the 16 lines for which previously-measured transition probabilities are listed in the NIST critical compilation,(G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys. Chem. Ref. Data 17, Suppl. 3, 85 (1988).) several significant discrepancies are noted.

  6. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  7. Atomic Transition Probabilities for Rare Earths

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Anderson, Heidi M.; den Hartog, E. A.; Wickliffe, M. E.; Lawler, J. E.

    1996-10-01

    Accurate absolute atomic transition probabilities for selected neutral and singly ionized rare earth elements including Tm, Dy, and Ho are being measured. The increasing use of rare earths in high intensity discharge lamps provides motivation; the data are needed for diagnosing and modeling the lamps. Radiative lifetimes, measured using time resolved laser induced fluorescence (LIF), are combined with branching fractions, measured using a large Fourier transform spectrometer (FTS), to determine accurate absolute atomic transition probabilities. More than 15,000 LIF decay curves from Tm and Dy atoms and ions in slow beams have been recorded and analyzed. Radiative lifetimes for 298 levels of TmI and TmII and for 450 levels of DyI and DyII are determined. Branching fractions are extracted from spectra recorded using the 1.0 m FTS at the National Solar Observatory. Branching fractions and absolute transition probabilities for 500 of the strongest TmI and TmII lines are complete. Representative lifetime and branching fraction data will be presented and discussed. Supported by Osram Sylvania Inc. and the NSF.

  8. Transit probabilities around hypervelocity and runaway stars

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Ginsburg, I.

    2017-04-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. Along with transits, the Doppler technique remains an invaluable tool for discovering planets. The next generation of spectrographs, such as G-CLEF, promise precision radial velocity measurements. In this paper, we explore the possibility of detecting planets around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multiplanetary transit is 10-3 ≲ P ≲ 10-1. We therefore need to observe ∼10-1000 high-velocity stars to spot a transit. However, even if transits are rare around runaway and hypervelocity stars, the chances of detecting such planets using radial velocity surveys is high. We predict that the European Gaia satellite, along with TESS and the new-generation spectrographs G-CLEF and ESPRESSO, will spot planetary systems orbiting high-velocity stars.

  9. Atomic transition probabilities of Gd i

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Bilty, K. A.; Den Hartog, E. A.

    2011-05-01

    Fourier transform spectra are used to determine emission branching fractions for 1290 lines of the first spectrum of gadolinium (Gd i). These branching fractions are converted to absolute atomic transition probabilities using previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 055001). The wavelength range of the data set is from 300 to 1850 nm. A least squares technique for separating blends of the first and second spectra lines is also described and demonstrated in this work.

  10. Atomic transition probabilities of Er i

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Wyart, J.-F.; Den Hartog, E. A.

    2010-12-01

    Atomic transition probabilities for 562 lines of the first spectrum of erbium (Er i) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced fluorescence measurements (Den Hartog et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 155004). The wavelength range of the data set is from 298 to 1981 nm. In this work we explore the utility of parametric fits based on the Cowan code in assessing branching fraction errors due to lines connecting to unobserved lower levels.

  11. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  12. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Nitz, D.; Sobeck, J.; Den Hartog, E. A.; Wood, M. P.; Lawler, J. E.

    2010-01-01

    Among the rare earth species, the spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are some of the most complex. Like other rare earth species, Ce has many lines in the visible which are suitable for elemental abundance studies. Recent work on Ce II transition probabilities [1] is now being augmented with similar work on Ce I for future studies using such lines from astrophysical sources. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2500 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442 and NSF Grant CTS0613277. [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  13. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  14. Transition probabilities in the lithium sequence

    NASA Astrophysics Data System (ADS)

    Martin, I.; Karwowski, J.; Diercksen, G. H. F.; Barrientos, C.

    1993-09-01

    The quantum defect orbital (QDO) method and the relativistic QDO are used to calculate oscillator strengths for the 2s 2S-np 2P(o) (n = 2, 3, 4), 2P 2P(o)-nd 2D (n = 3, 4), 3d 2D-4f 2F(o), and 2p 2P(o)-ns 2S (N = 3, 4) transitions in lithiumlike atoms for Z = 3 to A = 45. The results obtained by the RQDO method agree very well with the best estimates found in the literature.

  15. Hydrogeologic unit flow characterization using transition probability geostatistics.

    PubMed

    Jones, Norman L; Walker, Justin R; Carle, Steven F

    2005-01-01

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.

  16. Transition Probabilities for the 1815 and 3344 Å Forbidden Lines of NE III

    NASA Astrophysics Data System (ADS)

    Daw, Adrian; Parkinson, William H.; Smith, Peter L.; Calamai, Anthony G.

    2000-04-01

    We have measured the radiative lifetime of the 2s22p4 1S0 metastable level of Ne2+ (Ne III) to be 223+/-11 ms at the 90% confidence level by observing the photons emitted at 1815 Å by a decaying population of 1S0 Ne2+ ions produced and stored in a radio-frequency ion trap. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical line-ratio diagnostics. Using calculated branching ratios, we estimate that A(λ1815)=1.94+/-0.17 and A(λ3344)=2.55+/-0.19 s-1. Because these numbers have a sum with an experimentally determined uncertainty of 5%, they will provide more accurate results than the calculated A-values for determining electron temperature and density from astrophysical Ne III line ratios.

  17. Transition Probabilities for the 1815 and 3344 Å Forbidden Lines of Ne iii.

    PubMed

    Daw; Parkinson; Smith; Calamai

    2000-04-20

    We have measured the radiative lifetime of the 2s22p4 1S0 metastable level of Ne2+ (Ne iii) to be 223+/-11 ms at the 90% confidence level by observing the photons emitted at 1815 Å by a decaying population of 1S0 Ne2+ ions produced and stored in a radio-frequency ion trap. This is the first lifetime measurement for an excited term of a ground configuration ion in the second row of the periodic table. The transition probabilities (A-values) for the forbidden transitions in the ground configurations of these ions are required for astrophysical line-ratio diagnostics. Using calculated branching ratios, we estimate that A&parl0;lambda1815&parr0;=1.94+/-0.17 and A&parl0;lambda3344&parr0;=2.55+/-0.19 s-1. Because these numbers have a sum with an experimentally determined uncertainty of 5%, they will provide more accurate results than the calculated A-values for determining electron temperature and density from astrophysical Ne iii line ratios.

  18. Infants segment continuous events using transitional probabilities.

    PubMed

    Stahl, Aimee E; Romberg, Alexa R; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants viewed a sequence of continuous actions performed by a novel agent in which there were no transitional movements that could have constrained the possible upcoming actions. At test, infants distinguished statistically intact units from less predictable ones. The ability to segment events using statistical structure may help infants discover other cues to event boundaries, such as intentions, and carve up the world of continuous motion in meaningful ways. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  19. Infants Segment Continuous Events Using Transitional Probabilities

    PubMed Central

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their first year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants viewed a sequence of continuous actions performed by a novel agent in which there were no transitional movements that could have constrained the possible upcoming actions. At test, infants distinguished statistically intact units from less predictable ones. The ability to segment events using statistical structure may help infants discover other cues to event boundaries, such as intentions, and carve up the world of continuous motion in meaningful ways. PMID:24749627

  20. Fluctuating States: What is the Probability of a Thermodynamical Transition?

    NASA Astrophysics Data System (ADS)

    Alhambra, Álvaro M.; Oppenheim, Jonathan; Perry, Christopher

    2016-10-01

    If the second law of thermodynamics forbids a transition from one state to another, then it is still possible to make the transition happen by using a sufficient amount of work. But if we do not have access to this amount of work, can the transition happen probabilistically? In the thermodynamic limit, this probability tends to zero, but here we find that for finite-sized and quantum systems it can be finite. We compute the maximum probability of a transition or a thermodynamical fluctuation from any initial state to any final state and show that this maximum can be achieved for any final state that is block diagonal in the energy eigenbasis. We also find upper and lower bounds on this transition probability, in terms of the work of transition. As a by-product, we introduce a finite set of thermodynamical monotones related to the thermomajorization criteria which governs state transitions and compute the work of transition in terms of them. The trade-off between the probability of a transition and any partial work added to aid in that transition is also considered. Our results have applications in entanglement theory, and we find the amount of entanglement required (or gained) when transforming one pure entangled state into any other.

  1. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  2. Estimation of transition probabilities of credit ratings for several companies

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2016-10-01

    This paper attempts to estimate the transition probabilities of credit ratings for a number of companies whose ratings have a dependence structure. Binary codes are used to represent the index of a company together with its ratings in the present and next quarters. We initially fit the data on the vector of binary codes with a multivariate power-normal distribution. We next compute the multivariate conditional distribution for the binary codes of rating in the next quarter when the index of the company and binary codes of the company in the present quarter are given. From the conditional distribution, we compute the transition probabilities of the company's credit ratings in two consecutive quarters. The resulting transition probabilities tally fairly well with the maximum likelihood estimates for the time-independent transition probabilities.

  3. Non-adiabatic transition probability dependence on conical intersection topography

    NASA Astrophysics Data System (ADS)

    Malhado, João Pedro; Hynes, James T.

    2016-11-01

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  4. Non-adiabatic transition probability dependence on conical intersection topography.

    PubMed

    Malhado, João Pedro; Hynes, James T

    2016-11-21

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  5. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  6. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  7. Advances in the Measurement of Atomic Transition Probabilities

    NASA Astrophysics Data System (ADS)

    O'Brian, Thomas Raymond

    The technology for measuring absolute atomic transition probabilities is extended. Radiative lifetimes are measured by time-resolved laser-induced fluorescence on a slow atomic beam generated by a versatile hollow cathode discharge source. The radiative lifetimes are free from systematic error at the five percent level. Combined with branching fractions measured with emission or absorption sources, the lifetimes result in absolute transition probabilities usually accurate to 5-10 %. Three new developments in the lifetime and branching fraction technique are reported. Radiative lifetimes for 186 levels in neutral iron are measured, with the energy of the upper levels densely spanning the entire excitation range of neutral iron. Combined with branching fractions measured in emission with Fourier transform spectrophotometry, the level lifetimes directly yield absolute transition probabilities for 1174 transitions. An additional 640 transition probabilities are determined by interpolating level populations in an emission source. The dense energy spacing of the levels with directly measured lifetimes permits accurate population interpolation despite departures from local thermodynamic equilibrium. This technique has the potential to permit accurate absolute transition probability measurements for essentially every classified line in a spectrum. Radiative lifetime measurements are extended into the vacuum ultraviolet with a continuously tunable vacuum ultraviolet laser based on stimulated anti-Stokes Raman scattering. When used with the hollow cathode atomic beam source, accurate lifetimes are measured for 47 levels in neutral silicon and 8 levels in neutral boron, primarily in the vacuum ultraviolet spectral region. Transition probabilities are reported for many lines connected to these upper levels, using previously measured or calculated branching fractions. The hollow cathode beam source is developed for use with refractory non-metals. Intense atomic beams of boron

  8. Transit probability of precessing circumstellar planets in binaries and exomoons

    NASA Astrophysics Data System (ADS)

    Martin, David. V.

    2017-05-01

    Over two decades of exoplanetology has yielded thousands of discoveries, yet some types of systems are still to be observed. Circumstellar planets around one star in a binary have been found, but not for tight binaries (≲5 au). Additionally, extra-solar moons are yet to be found. This paper motivates finding both types of three-body system by calculating analytic and numerical probabilities for all transit configurations, accounting for any mutual inclination and orbital precession. The precession and relative three-body motion can increase the transit probability to as high as tens of per cent, and make it inherently time-dependent over a precession period as short as 5-10 yr. Circumstellar planets in such tight binaries present a tempting observational challenge: enhanced transit probabilities but with a quasi-periodic signature that may be difficult to identify. This may help explain their present non-detection, or maybe they simply do not exist. Whilst this paper considers binaries of all orientations, it is demonstrated how eclipsing binaries favourably bias the transit probabilities, sometimes to the point of being guaranteed. Transits of exomoons exhibit a similar behaviour under precession, but unfortunately only have one star to transit rather than two.

  9. Atomic Transition Probabilities of Aluminum. A Critical Compilation

    NASA Astrophysics Data System (ADS)

    Kelleher, D. E.; Podobedova, L. I.

    2008-06-01

    This compilation is the second in a series of updates to Atomic Transition Probabilities, Sodium through Calcium, published in 1969 by Wiese et al. [Atomic Transition Probabilities, Vol. II, Vol. II: Sodium through Calcium, NSROS-NBS Vol. 2 (U.S. GPO, Washington, D.C., 1969)]. Atomic transition probabilities have been critically evaluated and compiled for about 5000 spectral lines of aluminum (nuclear charge Z =13). The cited values and their estimated uncertainties are based on our consideration of all available theoretical and experimental literature sources. All ionization stages (except for hydrogenic) are covered, and the data are presented in separate tables for each atom and ion. Separate listings are given for "allowed" (electric dipole) and "forbidden" (magnetic dipole plus electric and magnetic quadrupole) transitions. In each spectrum, lines are grouped into multiplets which are arranged in order of ascending lower- and upper-level energies, respectively. For each line, the emission transition probability Aki, the line strength S, and (for allowed lines) the absorption oscillator strength fik are given, together with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the lower and upper states. The estimated relative uncertainties of the line strength are also indicated, as are the source citations. We include only those lines whose transition rates are deemed sufficiently accurate to qualify as reference values. Short introductions precede the tables for each ion.

  10. Transit probability of precessing circumstellar planets in binaries and exomoons

    NASA Astrophysics Data System (ADS)

    Martin, David. V.

    2017-01-01

    Over two decades of exoplanetology have yielded thousands of discoveries, yet some types of systems are yet to be observed. Circumstellar planets around one star in a binary have been found, but not for tight binaries (≲ 5 AU). Additionally, extra-solar moons are yet to be found. This paper motivates finding both types of three-body system by calculating analytic and numerical probabilities for all transit configurations, accounting for any mutual inclination and orbital precession. The precession and relative three-body motion can increase the transit probability to as high as tens of per cent, and make it inherently time-dependent over a precession period as short as 5-10 yr. Circumstellar planets in such tight binaries present a tempting observational challenge: enhanced transit probabilities but with a quasi-periodic signature that may be difficult to identify. This may help explain their present non-detection, or maybe they simply do not exist. Whilst this paper considers binaries of all orientations, it is demonstrated how eclipsing binaries favourably bias the transit probabilities, sometimes to the point of being guaranteed. Transits of exomoons exhibit a similar behaviour under precession, but unfortunately only have one star to transit rather than two.

  11. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    SciTech Connect

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of the technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.

  12. Atomic transition probabilities of Ce I from Fourier transform spectra

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Lawler, J. E.; Chisholm, J.; Wood, M. P.; Sobeck, J.; den Hartog, E. A.

    2010-03-01

    We report transition probabilities for 2874 lines of CeI in the wavelength range 360 -- 1500 nm. These are derived from new branching fraction measurements on Fourier transform spectra normalized with recently-reported radiative lifetimes (Den Hartog et al., J. Phys. B 42, 085006 (2009)). We have analyzed the decay branches for 153 upper levels in 14 different spectra recorded under a variety of discharge lamp conditions. Comparison of results with previous less extensive investigations shows good agreement for lines studied in common. Accurate Ce I transition probabilities are needed for applications in astrophysics and in lighting research, particularly for the development of improved metal halide high-intensity discharge lamps.

  13. Atomic transition probabilities of Ce I from Fourier transform spectra

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Chisholm, J.; Nitz, D. E.; Wood, M. P.; Sobeck, J.; Den Hartog, E. A.

    2010-04-01

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  14. Transition Probabilities for Spectral Lines in Co I

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Wilson, K. L.; Lentz, L. R.

    1996-05-01

    We are in the process of determining transition probabilities for visible and uv lines in Co I from Fourier transform spectra recorded at Kitt Peak and made available to us by Prof. W. Whaling. Normalization of relative transition probabilities obtained from these spectra is achieved using recently-measured Co I lifetimes.(D. E. Nitz, S. D. Bergeson, and J. E. Lawler, J. Opt. Soc. Am. B 12, 377 (1995).) To date we have obtained preliminary results for 240 lines having branch fractions > 1

  15. Transitional Probability Analysis of Two Child Behavior Analytic Therapy Cases

    ERIC Educational Resources Information Center

    Xavier, Rodrigo Nunes; Kanter, Jonathan William; Meyer, Sonia Beatriz

    2012-01-01

    This paper aimed to highlight the process of therapist direct contingent responding to shape client behavior in two Child Behavior Analytic Therapy (CBAT) cases using transitional probabilities. The Functional Analytic Psychotherapy Rating Scale (FAPRS) was used to code client behaviors and the Multidimensional System for Coding Behaviors in…

  16. Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Gao, Feng; Ye-Bing, Wang; Xiao, Tian; Jie, Ren; Ben-Quan, Lu; Qin-Fang, Xu; Yu-Lin, Xie; Hong, Chang

    2015-01-01

    We report on frequency measurement of the intercombination (5s2)1S0-(5s5p)3P1 transition of the four natural isotopes of strontium, including 88Sr (82.58%), 87Sr (7.0%), 86Sr (9.86%), and 84Sr (0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion (ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator (AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely. The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works. Project supported by the National Natural Science Foundation of China (Grant No. 61127901) and the Key Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  17. Atomic Transition Probabilities of Silicon. A Critical Compilation

    NASA Astrophysics Data System (ADS)

    Kelleher, D. E.; Podobedova, L. I.

    2008-09-01

    This compilation is the third in a series of updates to a critical compilation published in 1969 by Wiese et al. [Atomic Transition Probabilities, Vol. II: Sodium through Calcium, NSRDS-NBS Vol. 22 (U.S. GPO, Washington, D.C., 1969)]. Atomic transition probabilities have been critically evaluated and compiled for about 5800 spectral lines of silicon (nuclear charge Z =14). The cited values and their estimated uncertainties are based on our consideration of all available theoretical and experimental literature sources. All ionization stages (except for hydrogenic) are covered, and the data are presented in separate tables for each atom and ion. Separate listings are given for "allowed" (electric dipole) and "forbidden" (magnetic dipole plus electric and magnetic quadrupole) transitions. In each spectrum, lines are grouped into multiplets which are arranged in order of ascending lower and upper level energies, respectively. For each line, the emission transition probability Aki, the line strength S, and (for allowed lines) the absorption oscillator strength fik are given, together with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the lower and upper states. The estimated relative uncertainties of the line strength are also indicated, as are the source citations. We include only those lines whose transition rates are deemed sufficiently accurate to qualify as reference values. Short introductions precede the tables for each ion.

  18. Atomic Transition Probabilities of Sodium and Magnesium. A Critical Compilation

    NASA Astrophysics Data System (ADS)

    Kelleher, D. E.; Podobedova, L. I.

    2008-03-01

    This compilation is the first in a series of updates to a critical compilation published in 1969 [W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Vol. II: Sodium through Calcium, NSRDS-NBS Vol. 2 (U.S. GPO, Washington, D.C., 1969)]. Atomic transition probabilities have been critically evaluated and compiled for about 11 400 spectral lines of sodium and magnesium (nuclear charge Z =11-12, respectively). The cited values and their estimated uncertainties are based on our consideration of all available theoretical and experimental literature sources. All ionization stages (except for hydrogenic) are covered, and the data are presented in separate tables for each atom and ion. Separate listings are given for "allowed" (electric dipole) transitions, on the one hand, and for "forbidden" (magnetic dipole plus electric and magnetic quadrupole) transitions, on the other. In each spectrum, lines are grouped into multiplets which are arranged in order of ascending lower and upper-level energies, respectively. For each line, the emission transition probability Aki, the line strength S, and (for allowed lines) the absorption oscillator strength fik are given, together with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the lower and upper states. The estimated relative uncertainties of the line strength are also indicated, as are the source citations. We introduce a statistical method that we use to estimate these uncertainties for most of the cited transition rates. We only include those lines whose transition rates are deemed sufficiently accurate to qualify as reference values. Short introductions precede the tables for each ion. The general introduction contains a discussion of the principal criteria for our judgments and our method of data selection and evaluation.

  19. Progress on Radiative Transition Probabilities in Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Curry, J. J.

    2009-10-01

    Cerium is a rare-earth atom that is currently used in energy-efficient metal-halide lamps because of its rich visible emission spectrum. More than 20,000 lines have been observed and classified for neutral cerium in the wavelength range of 340 nm to 1 μm (Bill Martin, unpublished). We recently derived more than 500 absolute transition probabilities from existing experimental data (J. Phys. D: Appl. Phys. 2009). Lawler and Den Hartog at the University of Wisconsin have made measurements that are expected to produce a few thousand transition probabilities. These advances, however, leave the data situation far short of what is needed to simulate an accurate global emission spectrum in numerical models of metal-halide lamps containing cerium. One possibility for closing this gap is through atomic structure calculations. Although it may be difficult for calculations to match the accuracy of measurements for any given transition, the global spectral distribution produced with calculated transition probabilities may still be satisfactory. For such a large number of lines, calculations may be the only realistic way to produce a reasonably complete set of data. We will discuss our recent atomic structure calculations of neutral cerium with the Cowan code based on a parametric fit of calculated energy level values to experimental values.

  20. Executable Code Recognition in Network Flows Using Instruction Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Kim, Ikkyun; Kang, Koohong; Choi, Yangseo; Kim, Daewon; Oh, Jintae; Jang, Jongsoo; Han, Kijun

    The ability to recognize quickly inside network flows to be executable is prerequisite for malware detection. For this purpose, we introduce an instruction transition probability matrix (ITPX) which is comprised of the IA-32 instruction sets and reveals the characteristics of executable code's instruction transition patterns. And then, we propose a simple algorithm to detect executable code inside network flows using a reference ITPX which is learned from the known Windows Portable Executable files. We have tested the algorithm with more than thousands of executable and non-executable codes. The results show that it is very promising enough to use in real world.

  1. Human Inferences about Sequences: A Minimal Transition Probability Model

    PubMed Central

    2016-01-01

    The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge. PMID:28030543

  2. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  3. Estimating transition probabilities in unmarked populations --entropy revisited

    USGS Publications Warehouse

    Cooch, E.G.; Link, W.A.

    1999-01-01

    The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.

  4. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  5. Estimating transition probabilities among everglades wetland communities using multistate models

    USGS Publications Warehouse

    Hotaling, A.S.; Martin, J.; Kitchens, W.M.

    2009-01-01

    In this study we were able to provide the first estimates of transition probabilities of wet prairie and slough vegetative communities in Water Conservation Area 3A (WCA3A) of the Florida Everglades and to identify the hydrologic variables that determine these transitions. These estimates can be used in management models aimed at restoring proportions of wet prairie and slough habitats to historical levels in the Everglades. To determine what was driving the transitions between wet prairie and slough communities we evaluated three hypotheses: seasonality, impoundment, and wet and dry year cycles using likelihood-based multistate models to determine the main driver of wet prairie conversion in WCA3A. The most parsimonious model included the effect of wet and dry year cycles on vegetative community conversions. Several ecologists have noted wet prairie conversion in southern WCA3A but these are the first estimates of transition probabilities among these community types. In addition, to being useful for management of the Everglades we believe that our framework can be used to address management questions in other ecosystems. ?? 2009 The Society of Wetland Scientists.

  6. Recursive recovery of Markov transition probabilities from boundary value data

    SciTech Connect

    Patch, Sarah Kathyrn

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.

  7. Scale-Invariant Transition Probabilities in Free Word Association Trajectories

    PubMed Central

    Costa, Martin Elias; Bonomo, Flavia; Sigman, Mariano

    2009-01-01

    Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16% of order-2 cycles) implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼7 steps) which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution. PMID:19826622

  8. Reduced transition probabilities along the yrast line in 166W

    NASA Astrophysics Data System (ADS)

    Sayǧı, B.; Joss, D. T.; Page, R. D.; Grahn, T.; Simpson, J.; O'Donnell, D.; Alharshan, G.; Auranen, K.; Bäck, T.; Boening, S.; Braunroth, T.; Carroll, R. J.; Cederwall, B.; Cullen, D. M.; Dewald, A.; Doncel, M.; Donosa, L.; Drummond, M. C.; Ertuǧral, F.; Ertürk, S.; Fransen, C.; Greenlees, P. T.; Hackstein, M.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Labiche, M.; Lopez-Martens, A.; McPeake, C. G.; Moradi, F.; Möller, O.; Mustafa, M.; Nieminen, P.; Pakarinen, J.; Partanen, J.; Peura, P.; Procter, M.; Rahkila, P.; Rother, W.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.

    2017-08-01

    Lifetimes of excited states in the yrast band of the neutron-deficient nuclide 166W have been measured utilizing the DPUNS plunger device at the target position of the JUROGAM II γ -ray spectrometer in conjunction with the RITU gas-filled separator and the GREAT focal-plane spectrometer. Excited states in 166W were populated in the 92Mo(78Kr,4 p ) reaction at a bombarding energy of 380 MeV. The measurements reveal a low value for the ratio of reduced transitions probabilities for the lowest-lying transitions B (E 2 ;4+→2+) /B (E 2 ;2+→0+) =0.33 (5 ) , compared with the expected ratio for an axially deformed rotor (B4 /2 = 1.43).

  9. An Analysis of Youth Labor Force Transition Probabilities

    DTIC Science & Technology

    1984-12-01

    unlimited. 17. DISTRIBUTION ST ATEMENT l1 II,. *.&.ract .nforod in Block 20. If~dift-rert from, Roparf) Ill. SUPPLEMENTARY NOTE.S 19. KEYv WORDS (COnr~mus on...r~oersq side it rleCossary and ldomtf;!y by block n,,nmbor) Transition probabilities, Tr~ansition.r-at-es-_. Time -stability test, Time independence...tet Markov process test, Mvmn in the labor force 20. ABSTRACT tConiI,.,, an, rovof-. side It n.c.essay end Identeify by block nu~mber) Much of the

  10. Probability Density Function at the 3D Anderson Transition

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alberto; Vasquez, Louella J.; Roemer, Rudolf

    2009-03-01

    The probability density function (PDF) for the wavefunction amplitudes is studied at the metal-insulator transition of the 3D Anderson model, for very large systems up to L^3=240^3. The implications of the multifractal nature of the state upon the PDF are presented in detail. A formal expression between the PDF and the singularity spectrum f(α) is given. The PDF can be easily used to carry out a numerical multifractal analysis and it appears as a valid alternative to the more usual approach based on the scaling law of the general inverse participation rations.

  11. Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Størmer, Erling

    2015-10-01

    The concepts of superposition and of transition probability, familiar from pure states in quantum physics, are extended to locally normal states on funnels of type I∞ factors. Such funnels are used in the description of infinite systems, appearing for example in quantum field theory or in quantum statistical mechanics; their respective constituents are interpreted as algebras of observables localized in an increasing family of nested spacetime regions. Given a generic reference state (expectation functional) on a funnel, e.g. a ground state or a thermal equilibrium state, it is shown that irrespective of the global type of this state all of its excitations, generated by the adjoint action of elements of the funnel, can coherently be superimposed in a meaningful manner. Moreover, these states are the extreme points of their convex hull and as such are analogues of pure states. As further support of this analogy, transition probabilities are defined, complete families of orthogonal states are exhibited and a one-to-one correspondence between the states and families of minimal projections on a Hilbert space is established. The physical interpretation of these quantities relies on a concept of primitive observables. It extends the familiar framework of observable algebras and avoids some counter intuitive features of that setting. Primitive observables admit a consistent statistical interpretation of corresponding measurements and their impact on states is described by a variant of the von Neumann-Lüders projection postulate.

  12. Energy probability distribution zeros: A route to study phase transitions

    NASA Astrophysics Data System (ADS)

    Costa, B. V.; Mól, L. A. S.; Rocha, J. C. S.

    2017-07-01

    In the study of phase transitions a very few models are accessible to exact solution. In most cases analytical simplifications have to be done or some numerical techniques have to be used to get insight about their critical properties. Numerically, the most common approaches are those based on Monte Carlo simulations together with finite size scaling analysis. The use of Monte Carlo techniques requires the estimation of quantities like the specific heat or susceptibilities in a wide range of temperaturesor the construction of the density of states in large intervals of energy. Although many of these techniques are well developed they may be very time consuming when the system size becomes large enough. It should be suitable to have a method that could surpass those difficulties. In this work we present an iterative method to study the critical behavior of a system based on the partial knowledge of the complex Fisher zeros set of the partition function. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter a priori. The critical temperature and exponents can be obtained with great precision even in the most unamenable cases like the two dimensional XY model. To test the method and to show how it works we applied it to some selected models where the transitions are well known: The 2D Ising, Potts and XY models and to a homopolymer system. Our choices cover systems with first order, continuous and Berezinskii-Kosterlitz-Thouless transitions as well as the homopolymer that has two pseudo-transitions. The strategy can easily be adapted to any model, classical or quantum, once we are able to build the corresponding energy probability distribution.

  13. Microscopic study of 1S0 superfluidity in dilute neutron matter

    NASA Astrophysics Data System (ADS)

    Pavlou, G. E.; Mavrommatis, E.; Moustakidis, Ch.; Clark, J. W.

    2017-05-01

    Singlet S -wave superfluidity of dilute neutron matter is studied within the correlated BCS method, which takes into account both pairing and short-range correlations. First, the equation of state (EOS) of normal neutron matter is calculated within the Correlated Basis Function (CBF) method in the lowest cluster order using the 1 S 0 and 3 P components of the Argonne V_{18} potential, assuming trial Jastrow-type correlation functions. The 1 S 0 superfluid gap is then calculated with the corresponding component of the Argonne V_{18} potential and the optimally determined correlation functions. The dependence of our results on the chosen forms for the correlation functions is studied, and the role of the P -wave channel is investigated. Where comparison is meaningful, the values obtained for the 1 S 0 gap within this simplified scheme are consistent with the results of similar and more elaborate microscopic methods.

  14. Excited states and reduced transition probabilities in 168Os

    NASA Astrophysics Data System (ADS)

    Grahn, T.; Stolze, S.; Joss, D. T.; Page, R. D.; Sayǧı, B.; O'Donnell, D.; Akmali, M.; Andgren, K.; Bianco, L.; Cullen, D. M.; Dewald, A.; Greenlees, P. T.; Heyde, K.; Iwasaki, H.; Jakobsson, U.; Jones, P.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lumley, N.; Mason, P. J. R.; Möller, O.; Nomura, K.; Nyman, M.; Petts, A.; Peura, P.; Pietralla, N.; Pissulla, Th.; Rahkila, P.; Sapple, P. J.; Sarén, J.; Scholey, C.; Simpson, J.; Sorri, J.; Stevenson, P. D.; Uusitalo, J.; Watkins, H. V.; Wood, J. L.

    2016-10-01

    The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Köln plunger device. The 168Osγ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B (E 2 ;41+→21+) /B (E 2 ;21+→01+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density functional.

  15. Transition probability measurement of several O II spectral lines

    NASA Astrophysics Data System (ADS)

    del Val, J. A.; Aparicio, J. A.; González, V. R.; Mar, S.

    2001-11-01

    This work reports atomic transition probabilities of 33 spectral lines belonging to 3s-3p, 3p-3d and 3d-4f multiplets of O II, all of them measured in the 405-465 nm spectral region in an emission experiment. Relative intensity measurements have been made on a pulsed discharge lamp and the absolute Aki-values have been obtained taking the NIST database as a reference in temperature diagnosis. The results of this work confirm the other recent available data measured by Veres and Wiese (Veres G and Wiese W L 1996 Phys. Rev. A 54 1999) with a different source and the calculations of Bell et al (Bell K L, Hibbert A, Stafford R P and McLaughlin B M 1994 Phys. Scr. 50 343) with a very satisfactory agreement (usually within 10%).

  16. Transition probabilities in neutron-rich Se,8684

    NASA Astrophysics Data System (ADS)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  17. Matter-enhanced transition probabilities in quantum field theory

    SciTech Connect

    Ishikawa, Kenzo Tobita, Yutaka

    2014-05-15

    The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincaré transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T], that satisfies the boundary condition at T. Using S[T], the finite-size corrections of the form of 1/T are found. The corrections to Fermi’s golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths. -- Highlights: •S-matrix S[T] for the finite-time interval in relativistic field theory. •S[T] satisfies the boundary condition and gives correction of 1/T . •The large corrections for light particles breaks Lorentz invariance. •The corrections have implications to neutrino experiments.

  18. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.

    PubMed

    Mittag, Maria; Takegata, Rika; Winkler, István

    2016-09-14

    Representations encoding the probabilities of auditory events do not directly support predictive processing. In contrast, information about the probability with which a given sound follows another (transitional probability) allows predictions of upcoming sounds. We tested whether behavioral and cortical auditory deviance detection (the latter indexed by the mismatch negativity event-related potential) relies on probabilities of sound patterns or on transitional probabilities. We presented healthy adult volunteers with three types of rare tone-triplets among frequent standard triplets of high-low-high (H-L-H) or L-H-L pitch structure: proximity deviant (H-H-H/L-L-L), reversal deviant (L-H-L/H-L-H), and first-tone deviant (L-L-H/H-H-L). If deviance detection was based on pattern probability, reversal and first-tone deviants should be detected with similar latency because both differ from the standard at the first pattern position. If deviance detection was based on transitional probabilities, then reversal deviants should be the most difficult to detect because, unlike the other two deviants, they contain no low-probability pitch transitions. The data clearly showed that both behavioral and cortical auditory deviance detection uses transitional probabilities. Thus, the memory traces underlying cortical deviance detection may provide a link between stimulus probability-based change/novelty detectors operating at lower levels of the auditory system and higher auditory cognitive functions that involve predictive processing. Our research presents the first definite evidence for the auditory system prioritizing transitional probabilities over probabilities of individual sensory events. Forming representations for transitional probabilities paves the way for predictions of upcoming sounds. Several recent theories suggest that predictive processing provides the general basis of human perception, including important auditory functions, such as auditory scene analysis. Our

  19. CYCLIC TRANSIT PROBABILITIES OF LONG-PERIOD ECCENTRIC PLANETS DUE TO PERIASTRON PRECESSION

    SciTech Connect

    Kane, Stephen R.; Von Braun, Kaspar; Horner, Jonathan

    2012-09-20

    The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters as a path to measuring these precessions and cyclic transit probabilities.

  20. Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.

    2016-03-01

    Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.

  1. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  2. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  3. Transition probabilities matrix of Markov Chain in the fatigue crack growth model

    NASA Astrophysics Data System (ADS)

    Nopiah, Zulkifli Mohd; Januri, Siti Sarah; Ariffin, Ahmad Kamal; Masseran, Nurulkamal; Abdullah, Shahrum

    2016-10-01

    Markov model is one of the reliable method to describe the growth of the crack from the initial until fracture phase. One of the important subjects in the crack growth models is to obtain the transition probability matrix of the fatigue. Determining probability transition matrix is important in Markov Chain model for describing probability behaviour of fatigue life in the structure. In this paper, we obtain transition probabilities of a Markov chain based on the Paris law equation to describe the physical meaning of fatigue crack growth problem. The results show that the transition probabilities are capable to calculate the probability of damage in the future with the possibilities of comparing each stage between time.

  4. A global picture of the S 1/S 0 conical intersection seam of benzene

    NASA Astrophysics Data System (ADS)

    Li, Quansong; Mendive-Tapia, David; Paterson, Martin J.; Migani, Annapaola; Bearpark, Michael J.; Robb, Michael A.; Blancafort, Lluís

    2010-11-01

    A global picture of the S 1/S 0 intersection seam of benzene is presented. Eleven new conical intersection critical points were located at the CASSCF level, the connectivity was mapped and the energies refined with CASPT 2. There are two seam branches related with pairs of degenerate A1g/ B2u and E g states at D6h symmetry, respectively, and the two branches are connected by a seam segment of C s symmetry. The global energy minimum of the seam is the half-boat shaped intersection that leads to a pre-fulvenic intermediate [I.J. Palmer, I.N. Ragazos, F. Bernardi, M. Olivucci, M.A. Robb, J. Am. Chem. Soc. 115 (1993) 673]. Several other intersections that can lead to the same intermediate or vibrationally hot benzene lie in a range of 3.7 eV above the global seam minimum. There is a recurrent connectivity pattern where permutationally isomeric seam segments are connected by intersections of a higher symmetry point group.

  5. Transition Probabilities And Chiral Symmetry In 134Pr

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Axiotis, M.; Marginean, N.; Martines, T.; Napoli, D.R.; Prete, G.; Behera, B.R.; Rusu, C.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Balabanski, D.; Bednarczyk, P.; Camera, F.; Paleni, A.

    2005-04-05

    Lifetime measurements in 134Pr were performed by means of the Recoil distance Doppler-shift and Doppler-shift attenuation methods using the multidetector array EUROBALL, in conjunction with the inner BGO ball. The derived B(E2) transition strengths within the two bands candidates for chiral partners behave differently with increasing spin while the corresponding B(M1) values have a similar behaviour within the experimental uncertainties.

  6. Transition probability functions for applications of inelastic electron scattering.

    PubMed

    Löffler, Stefan; Schattschneider, Peter

    2012-09-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations.

  7. Transition probability functions for applications of inelastic electron scattering

    PubMed Central

    Löffler, Stefan; Schattschneider, Peter

    2012-01-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  8. Measurements of transition probabilities for two N I infrared transitions and their application for diagnostics of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Baclawski, A.; Musielok, J.

    2010-02-01

    Spectra emitted from a wall-stabilized arc, running in a gas mixture of helium, argon, nitrogen, oxygen and traces of hydrogen have been studied. Intensities of selected spectral transitions of neutral nitrogen and oxygen have been measured. Applying the Boltzmann plot method and using a reliable set of O I transition probabilities of spectral lines, originating from levels considerably spread in excitation energies, the temperatures of arc plasmas have been determined. Line intensities of two N I infrared transitions, originating from doubly excited terms 3p' 2F o and 3p' 2G have been measured. In order to obtain the corresponding transition probabilities ( Aki) for these lines, intensities of other N I infrared lines, with well known transition probabilities (taken from recently published data by Wiese and Fuhr [W.L. Wiese and J.R. Fuhr, Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen, J. Phys. Chem. Ref. Data 36 (2007) 1287-1345] from National Institute of Standards and Technology — NIST) have been measured. For evaluation of the transition probabilities the temperatures obtained from the above mentioned O I Boltzmann plots have been used. The results agree satisfactorily with older data found in literature. The new Aki values for transitions involving the doubly excited levels, together with Aki values taken from the above mentioned NIST source (used for determination of the new Aki values), are proposed as a convenient set for determining temperatures of plasmas containing nitrogen atoms.

  9. Rotationally resolved S1<-- S0 electronic spectra of fluorene, carbazole, and dibenzofuran: evidence for Herzberg-Teller coupling with the S2 state.

    PubMed

    Yi, John T; Alvarez-Valtierra, Leonardo; Pratt, David W

    2006-06-28

    Rotationally resolved fluorescence excitation spectra of the S1 <-- S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1 <-- S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  10. Exact transition probabilities in a 6-state Landau–Zener system with path interference

    SciTech Connect

    Sinitsyn, Nikolai A.

    2015-04-23

    In this paper, we identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. Finally, we discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  11. Exact transition probabilities in a 6-state Landau–Zener system with path interference

    DOE PAGES

    Sinitsyn, Nikolai A.

    2015-04-23

    In this paper, we identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. Finally, we discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  12. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  13. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  14. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    NASA Astrophysics Data System (ADS)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  15. On the optimality equation for average cost Markov control processes with Feller transition probabilities

    NASA Astrophysics Data System (ADS)

    Jaskiewicz, Anna; Nowak, Andrzej S.

    2006-04-01

    We consider Markov control processes with Borel state space and Feller transition probabilities, satisfying some generalized geometric ergodicity conditions. We provide a new theorem on the existence of a solution to the average cost optimality equation.

  16. Laser-based measurement of transition probabilities of neon 2p 53s-2p 53p transitions

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takashi; Goto, Chiaki; Uetani, Yasunori; Fukuda, Kuniya

    1985-01-01

    By using the magic-angle, pulsed-excitation method in the presence of a magnetic field, the authors have measured the branching ratios for 2p 53s-2p 53p transitions in neon. By combining values for the lifetime of the upper levels with the branching ratios, they have determined the transition probabilities of 31 transitions. The results are in good agreement with those from emission spectroscopy of a high-pressure are plasma by Bridges and Wiese.

  17. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  18. VizieR Online Data Catalog: KOI transit probabilities of multi-planet syst. (Brakensiek+, 2016)

    NASA Astrophysics Data System (ADS)

    Brakensiek, J.; Ragozzine, D.

    2016-06-01

    Using CORBITS, we computed the transit probabilities of all the KOIs with at least three candidate or confirmed transiting planets and report the results in Table 2 for a variety of inclination distributions. See section 4.6. (1 data file).

  19. Atomic data from the Iron Project. XVII. Radiative transition probabilities for dipole allowed and forbidden transitions in Fe III.

    NASA Astrophysics Data System (ADS)

    Nahar, S. N.; Pradhan, A. K.

    1996-11-01

    Transition probabilities are obtained for both the dipole allowed (E1) fine structure transitions and the forbidden electric quadrupole and magnetic dipole (E2, M1) transitions in Fe III. For the E1 transitions, ab initio calculations in the close coupling (CC) approximation using the R-matrix method are carried out in LS coupling with a 49-term eigenfunction expansion for Fe IV. The fine structure components are obtained through algebraic transformation of the LS line strengths, and the oscillator strengths and A-coefficients are computed using spectroscopic energies of the observed levels. Radiative transition probabilities for 9797 fine structure E1 transitions corresponding to 1408 LS multiplets among 200 bound states of Fe III are reported. Forbidden E2 and M1 transition probabilities are computed for 362 transitions among the 34 fine structure levels of all 16 LS terms dominated by the 3d^6^ configuration using optimised configuration-interaction wavefunctions from the SUPERSTRUCTURE program in the Breit-Pauli approximation. Comparison of the present results is made with previous calculations and significant differences are found. Theoretical line ratios computed using the present E2 and M1 A-coefficients show better agreement with observations for some prominent Fe III lines in the infra-red than those using the earlier data by Garstang (1957MNRAS.117..393G). This work is carried out as part of the Iron Project to obtain accurate radiative and collisional data for the Iron group elements.

  20. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  1. MLE and Bayesian inference of age-dependent sensitivity and transition probability in periodic screening.

    PubMed

    Wu, Dongfeng; Rosner, Gary L; Broemeling, Lyle

    2005-12-01

    This article extends previous probability models for periodic breast cancer screening examinations. The specific aim is to provide statistical inference for age dependence of sensitivity and the transition probability from the disease free to the preclinical state. The setting is a periodic screening program in which a cohort of initially asymptomatic women undergo a sequence of breast cancer screening exams. We use age as a covariate in the estimation of screening sensitivity and the transition probability simultaneously, both from a frequentist point of view and within a Bayesian framework. We apply our method to the Health Insurance Plan of Greater New York study of female breast cancer and give age-dependent sensitivity and transition probability density estimates. The inferential methodology we develop is also applicable when analyzing studies of modalities for early detection of other types of progressive chronic diseases.

  2. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet-planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  3. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  4. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis.

    PubMed

    Chiba, Tomoaki; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group's sales beat GM's sales, which is a reasonable scenario.

  5. Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis

    PubMed Central

    Chiba, Tomoaki; Akaho, Shotaro; Murata, Noboru

    2017-01-01

    In a product market or stock market, different products or stocks compete for the same consumers or purchasers. We propose a method to estimate the time-varying transition matrix of the product share using a multivariate time series of the product share. The method is based on the assumption that each of the observed time series of shares is a stationary distribution of the underlying Markov processes characterized by transition probability matrices. We estimate transition probability matrices for every observation under natural assumptions. We demonstrate, on a real-world dataset of the share of automobiles, that the proposed method can find intrinsic transition of shares. The resulting transition matrices reveal interesting phenomena, for example, the change in flows between TOYOTA group and GM group for the fiscal year where TOYOTA group’s sales beat GM’s sales, which is a reasonable scenario. PMID:28076383

  6. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    DOE PAGES

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less

  7. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    SciTech Connect

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; Gable, Carl; Teatini, Pietro

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.

  8. Atomic data from the Iron Project. LIII. Relativistic allowed and forbidden transition probabilities for Fe XVII

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Eissner, Werner; Chen, Guo-Xin; Pradhan, Anil K.

    2003-09-01

    An extensive set of fine structure levels and corresponding transition probabilities for allowed and forbidden transitions in Fe XVII is presented. A total of 490 bound energy levels of Fe XVII of total angular momenta 0 <= J <= 7 of even and odd parities with 2 <= n<= 10, 0 <= l<= 8, 0 <= L<= 8, and singlet and triplet multiplicities, are obtained. They translate to over 2.6x 104 allowed (E1) transitions that are of dipole and intercombination type, and 2312 forbidden transitions that include electric quadrupole (E2), magnetic dipole (M1), electric octopole (E3), and magnetic quadrupole (M2) type representing the most detailed calculations to date for the ion. Oscillator strengths f, line strengths S, and coefficients A of spontaneous emission for the E1 type transitions are obtained in the relativistic Breit-Pauli R-matrix approximation. A-values for the forbidden transitions are obtained from atomic structure calculations using codes SUPERSTRUCTURE and GRASP. The energy levels are identified in spectroscopic notation with the help of a newly developed level identification algorithm. Nearly all 52 spectroscopically observed levels have been identified, their binding energies agreeing within 1% with our calculation. Computed transition probabilities are compared with other calculations and measurement. The effect of 2-body magnetic terms and other interactions is discussed. The present data set enhances by more than an order of magnitude the heretofore available data for transition probabilities of Fe XVII. Complete electronic data tables of energies and transition probabilities are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/789

  9. What is learned about fragments in artificial grammar learning? A transitional probabilities approach.

    PubMed

    Poletiek, Fenna H; Wolters, Gezinus

    2009-05-01

    Learning local regularities in sequentially structured materials is typically assumed to be based on encoding of the frequencies of these regularities. We explore the view that transitional probabilities between elements of chunks, rather than frequencies of chunks, may be the primary factor in artificial grammar learning (AGL). The transitional probability model (TPM) that we propose is argued to provide an adaptive and parsimonious strategy for encoding local regularities in order to induce sequential structure from an input set of exemplars of the grammar. In a variant of the AGL procedure, in which participants estimated the frequencies of bigrams occurring in a set of exemplars they had been exposed to previously, participants were shown to be more sensitive to local transitional probability information than to mere pattern frequencies.

  10. Transition probability, dynamic regimes, and the critical point of financial crisis

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2015-07-01

    An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.

  11. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  12. Investigating rare events with nonequilibrium work measurements. I. Nonequilibrium transition path probabilities.

    PubMed

    Moradi, Mahmoud; Sagui, Celeste; Roland, Christopher

    2014-01-21

    We have developed a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. In this paper, we set the theoretical framework for employing nonequilibrium work relations to estimate the relative reaction rates associated with different classes of transition pathways. Particularly, we derive an extension of Crook's transient fluctuation theorem, which relates the relative transition rates of driven systems in the forward and reverse directions, and allows for the calculation of these relative rates using work measurements (e.g., in Steered Molecular Dynamics). The formalism presented here can be combined with Transition Path Theory to relate the equilibrium and driven transition rates. The usefulness of this framework is illustrated by means of a Gaussian model and a driven proline dimer.

  13. Calculation of collisional and radiative transition probabilities between excited argon levels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kobayashi, H.; Nishida, M.; Valentin, P.

    1985-08-01

    Average radiative transition probabilities for argon atoms have been calculated for transitions between 24 levels in two groups characterized by the atomic core terms 2P(1/2) and 2P(3/2) by using the method of Bates and Damgaard. The results are compared with data in the NBS tables (Wiese et al.) and with those of Katsonis and Drawin. Satisfactory agreement is found for the order of magnitude, even for transitions between lower lying levels. Parameters, which appear in Drawin's semiempirical cross-section expressions for electronic excitation of optically allowed and parity-forbidden transitions, are determined with the multipole expansion method proposed by Sobel'man for transitions between the specified levels. Most of these are easily obtained, but the method must be improved for transitions between levels having the same azimuthal quantum number because the summation over the constituent terms does not converge.

  14. PNO-CEPA and MCSCF-SCEP calculations of transition probabilities in OH, HF + , and HCl +

    NASA Astrophysics Data System (ADS)

    Werner, Hans-Joachim; Rosmus, Pavel; Schätzl, Wolfgang; Meyer, Wilfried

    1984-01-01

    Electronic transition moment functions for the A 2Σ+-X2Π transitions in OH, HF+, and HCl+ have been calculated using RHF, PNO-CI, PNO-CEPA, MCSCF, and MCSCF-SCEP wave functions. The vibrational band transition probabilities are obtained, and the resulting radiative lifetimes are compared with measured values. For OH and HCl+ the deviations are smaller than 10%, but the theoretical lifetimes for HF+ are larger by about 300% than the experimental values. For the electronic ground states of HF+ and HCl+ vibrational transition probabilities have been calculated from MCSCF-SCEP dipole moment functions. Both ions are predicted to be excellent absorbers and emitters in the infrared spectral region.

  15. Duality-based calculations for transition probabilities in stochastic chemical reactions

    NASA Astrophysics Data System (ADS)

    Ohkubo, Jun

    2017-02-01

    An idea for evaluating transition probabilities in chemical reaction systems is proposed, which is efficient for repeated calculations with various rate constants. The idea is based on duality relations; instead of direct time evolutions of the original reaction system, the dual process is dealt with. Usually, if one changes rate constants of the original reaction system, the direct time evolutions should be performed again, using the new rate constants. On the other hands, only one solution of an extended dual process can be reused to calculate the transition probabilities for various rate constant cases. The idea is demonstrated in a parameter estimation problem for the Lotka-Volterra system.

  16. Learning in reverse: eight-month-old infants track backward transitional probabilities.

    PubMed

    Pelucchi, Bruna; Hay, Jessica F; Saffran, Jenny R

    2009-11-01

    Numerous recent studies suggest that human learners, including both infants and adults, readily track sequential statistics computed between adjacent elements. One such statistic, transitional probability, is typically calculated as the likelihood that one element predicts another. However, little is known about whether listeners are sensitive to the directionality of this computation. To address this issue, we tested 8-month-old infants in a word segmentation task, using fluent speech drawn from an unfamiliar natural language. Critically, test items were distinguished solely by their backward transitional probabilities. The results provide the first evidence that infants track backward statistics in fluent speech.

  17. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  18. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  19. Duality-based calculations for transition probabilities in stochastic chemical reactions.

    PubMed

    Ohkubo, Jun

    2017-02-01

    An idea for evaluating transition probabilities in chemical reaction systems is proposed, which is efficient for repeated calculations with various rate constants. The idea is based on duality relations; instead of direct time evolutions of the original reaction system, the dual process is dealt with. Usually, if one changes rate constants of the original reaction system, the direct time evolutions should be performed again, using the new rate constants. On the other hands, only one solution of an extended dual process can be reused to calculate the transition probabilities for various rate constant cases. The idea is demonstrated in a parameter estimation problem for the Lotka-Volterra system.

  20. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  1. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  2. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling

    NASA Astrophysics Data System (ADS)

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  3. Effects of tensor couplings of ω and ρ mesons on 1S0 nucleon superfluidity in neutron star matter

    NASA Astrophysics Data System (ADS)

    Huang, Xiu-Lin; Xu, Yan; Liu, Cheng-Zhi; Liu, Guang-Zhou

    2016-03-01

    The 1S 0 nucleon superfluidity in neutron star matter was investigated in the framework of relativistic σ-ω-π-ρ model with the tensor couplings of ω and ρ mesons using the relativistic Hartree-Fock (RHF) approximation. It was found that the tensor couplings of ω and ρ mesons lead to a clear growth of the 1S 0 neutron pairing gap in the density range where there exists 1S 0 neutron superfluidity. The 1S 0 pairing gap of proton with the tensor couplings of ω and ρ mesons in the density range of ρB = 0.0-0.079fm-3 is lower and then in the density range of ρB = 0.079-0.383fm-3 higher than the corresponding value without the tensor couplings of ω and ρ mesons. Our results provide a basic to understand the influence of the tensor couplings of ω and ρ mesons on the cooling properties of neutron star.

  4. Choice behavior in transition: development of preference for the higher probability of reinforcement.

    PubMed Central

    Bailey, J T; Mazur, J E

    1990-01-01

    Ten acquisition curves were obtained from each of 4 pigeons in a two-choice discrete-trial procedure. In each of these 10 conditions, the two response keys initially had equal probabilities of reinforcement, and subjects' choice responses were about equally divided between the two keys. Then the reinforcement probabilities were changed so that one key had a higher probability of reinforcement (the left key in half of the conditions and the right key in the other half), and in nearly every case the subjects developed a preference for this key. The rate of acquisition of preference for this key was faster when the ratio of the two reinforcement probabilities was higher. For instance, acquisition of preference was faster in conditions with reinforcement probabilities of .12 and .02 than in conditions with reinforcement probabilities of .40 and .30, even though the pairs of probabilities differed by .10 in both cases. These results were used to evaluate the predictions of some theories of transitional behavior in choice situations. A trial-by-trial analysis of individual responses and reinforcers suggested that reinforcement had both short-term and long-term effects on choice. The short-term effect was an increased probability of returning to the same key on the one or two trials following a reinforcer. The long-term effect was a gradual increase in the proportion of responses on the key with the higher probability of reinforcement, an increase that usually continued for several hundred trials. PMID:2341823

  5. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  6. The Exit Distribution for Smart Kinetic Walk with Symmetric and Asymmetric Transition Probability

    NASA Astrophysics Data System (ADS)

    Dai, Yan

    2017-03-01

    It has been proved that the distribution of the point where the smart kinetic walk (SKW) exits a domain converges in distribution to harmonic measure on the hexagonal lattice. For other lattices, it is believed that this result still holds, and there is good numerical evidence to support this conjecture. Here we examine the effect of the symmetry and asymmetry of the transition probability on each step of the SKW on the square lattice and test if the exit distribution converges in distribution to harmonic measure as well. From our simulations, the limiting exit distribution of the SKW with a non-uniform but symmetric transition probability as the lattice spacing goes to zero is the harmonic measure. This result does not hold for asymmetric transition probability. We are also interested in the difference between the SKW with symmetric transition probability exit distribution and harmonic measure. Our simulations provide strong support for a explicit conjecture about this first order difference. The explicit formula for the conjecture will be given below.

  7. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    PubMed Central

    Xu, Jason; Minin, Vladimir N.

    2016-01-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377

  8. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  9. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  10. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  11. Learning in Reverse: Eight-Month-Old Infants Track Backward Transitional Probabilities

    ERIC Educational Resources Information Center

    Pelucchi, Bruna; Hay, Jessica F.; Saffran, Jenny R.

    2009-01-01

    Numerous recent studies suggest that human learners, including both infants and adults, readily track sequential statistics computed between adjacent elements. One such statistic, transitional probability, is typically calculated as the likelihood that one element predicts another. However, little is known about whether listeners are sensitive to…

  12. Effects of Contextual Predictability and Transitional Probability on Eye Movements During Reading

    ERIC Educational Resources Information Center

    Frisson, Steven; Rayner, Keith; Pickering, Martin J.

    2005-01-01

    In 2 eye-movement experiments, the authors tested whether transitional probability (the statistical likelihood that a word precedes or follows another word) affects reading times and whether this occurs independently from contextual predictability effects. Experiment 1 showed early effects of predictability, replicating S. A. McDonald and R. C.…

  13. E1, M1, E2 transition energies and probabilities of W54+ ions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-bin; Sun, Rui; Liu, Jia-xin; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chen-zhong

    2017-02-01

    A comprehensive theoretical study of the E1, M1, E2 transitions of a Ca-like tungsten ion is presented. Using the multi-configuration Dirac–Fock (MCDF) method with a restricted active space treatment, the wavelengths and probabilities of the M1 and E2 transitions between the multiplets of the ground state configuration ([Ne]3s23p63d2) and of the E1 transitions between [Ne]3s23p53d3 and [Ne]3s23p63d2 have been calculated. The results are in reasonable agreement with available experimental data. The present E1 and M1 calculations are compared with previous theoretical values. For E2 transitions, the importance of electron correlation from 3s and 3p orbitals is pointed out. Several strong E1 transitions are predicted, which have potential advantages for plasma diagnostics.

  14. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    PubMed Central

    Crawford, Forrest W.; Suchard, Marc A.

    2011-01-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359

  15. Direct modeling of regression effects for transition probabilities in the progressive illness-death model.

    PubMed

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-02-26

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness-death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score equations that are able to remove the bias due to censoring are introduced. By solving these equations, one can estimate the possibly time-varying regression coefficients, which have an immediate interpretation as covariate effects on the transition probabilities. The performance of the proposed estimator is investigated through simulations. We apply the method to data from the Registry of Systematic Lupus Erythematosus RELESSER, a multicenter registry created by the Spanish Society of Rheumatology. Specifically, we investigate the effect of age at Lupus diagnosis, sex, and ethnicity on the probability of damage and death along time. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  17. Estimating transition probabilities for stage-based population projection matrices using capture-recapture data

    USGS Publications Warehouse

    Nichols, J.D.; Sauer, J.R.; Pollock, K.H.; Hestbeck, J.B.

    1992-01-01

    In stage-based demography, animals are often categorized into size (or mass) classes, and size-based probabilities of surviving and changing mass classes must be estimated before demographic analyses can be conducted. In this paper, we develop two procedures for the estimation of mass transition probabilities from capture-recapture data. The first approach uses a multistate capture-recapture model that is parameterized directly with the transition probabilities of interest. Maximum likelihood estimates are then obtained numerically using program SURVIV. The second approach involves a modification of Pollock's robust design. Estimation proceeds by conditioning on animals caught in a particualr class at time i, and then using closed models to estimate the number of these that are alive in other classes at i + 1. Both methods are illustrated by application to meadow vole, Microtus pennsylvanicus, capture-recapture data. The two methods produced reasonable estimates that were similar. Advantages of these two approaches include the directness of estimation, the absence of need for restrictive assumptions about the independence of survival and growth, the testability of assumptions, and the testability of related hypotheses of ecological interest (e.g., the hypothesis of temporal variation in transition probabilities).

  18. Calculation of Coster-Kronig energies and transition probabilities by linear interpolation method

    NASA Astrophysics Data System (ADS)

    Trivedi, R. K.; Shrivastava, Uma; Hinge, V. K.; Shrivastava, B. D.

    2016-10-01

    The X-ray emission spectrum consists of two types of spectral lines heaving different origins. The diagram lines originate because of transitions in singly ionized atom, while the nondiagram lines or satellites originate due to transitions in doubly or multiply ionized atom. The X- ray satellite energy is the difference between the energies of initial and final states which are both doubly or multiply ionized. Thus, the satellite has a different energy than the energy of the X-ray diagram line. Once the singly ionized state has been created, it is the probability of a particular subsequent process that will lead to the formation of two-hole state. The single hole may get converted through a Coster-Kronig transition to a double hole state. The probability of formation of double hole state via this process is written as σ.σ', where σ is the probability of creation of single hole state and σ' is the probability of the Coster-Kronig transition. The value of σ' can be taken from the tables of Chen et al. [1], who have presented the calculated values of σ' for almost all possible Coster-Kronig transitions in some elements. The energies of the satellites can be calculated by using the tables of Parente et al. [2]. Both of these tables do not give values for all the elements. The aim of the present work is to show that the values for other elements, for which values are not listed by Chen et al. and Parente et al., can be calculated by linear interpolation method.

  19. Tables of Calculated Transition Probabilities for the A-X System of OH

    DTIC Science & Technology

    1981-06-01

    LEVL’ 00 TECHNICAL REPORT ARBRL-TR-02326 TABLES OF CALCULATED TRANSITION PROBABILITIES o FOR THE A -X SYSTEM OF OH David R. Crosley Irving L Chidsey...TECHNICAL REPO’I ARBRL-TRg2326 t- " 6 ? 4. TITLE (and Subtitle) .S TYPE OF REPORT A PERIOD COVERED TABLES OF ALCULATED_1RANSITION PROBABILITIES z TEI A ...TSYSTEM OfOiH • BRL Technical Rep’t-. S. PWORMWG a "G. RaPORTJMA 7. AUTHOR(.) S, CONTRACT OR GRANT NUMBER( a ) David R.,trosley*" IrigL. /Chidsey E

  20. The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.

    2002-01-01

    We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.

  1. Experimental transition probabilities and Stark shifts in O III and O IV spectra

    NASA Astrophysics Data System (ADS)

    Djeniže, S.; Bukvić, S.; Srećković, A.; Kalezić, S.

    2003-08-01

    On the basis of the relative line intensity ratio (RLIR) method transition probability values of the spontaneous emission (Einstein's A values) of 41 astrophysically important transitions (in 15 multiplets) in the doubly (O III) and 7 transitions (in 5 multiplets) in triply (O IV) ionized oxygen spectra have been obtained relative to the reference A values related to the 326.085 nm O III and 340.355 nm O IV, most intensive transitions in the O III and O IV spectra. Fourteen of the investigated O III lines belong to the cascades in the astrophysically important Bowen fluorescence mechanism. Most of the O III transition probability values are the first data obtained experimentally using the RLIR method. Stark shift values (d) of the mentioned lines are also measured. Twenty three of them were not known and represent the first data in this field. Our A and d values are compared to available experimental and theoretical data. A linear, low-pressure, pulsed arc was used as an optically thin plasma source operated in oxygen discharge at a 42 000 K electron temperature and 1.65 x 1023 m-3 electron density.

  2. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  3. Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (Sr I)

    NASA Astrophysics Data System (ADS)

    Sansonetti, J. E.; Nave, G.

    2010-09-01

    Following a critical review of spectroscopic data for neutral strontium (Z=38), the energy levels, with designations and uncertainties, have been tabulated. Wavelengths with classifications, intensities, and transition probabilities have also been reviewed. In addition, the 5s S1/22, 4d D3/22, and 4d D5/22 ionization energies have been listed. A summary of the current state of measurements of the SrI 5s2 S01-5s5p P0∘3, F =9/2 atomic clock transition, and other isotopic observations has also been included.

  4. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  5. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset.

    PubMed

    Zhang, Haitao; Chen, Zewei; Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users' privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified.

  6. A Empirical Determination of the Electric Dipole Moment Function and Transition Probabilities of Hydroxyl

    NASA Astrophysics Data System (ADS)

    Turnbull, David Norman

    Although intensity distributions derived from hydroxyl, OH(X^2pi), airglow observations are routinely used to determine rotational temperatures and vibrational level populations, the transition probabilities required to do so are in fact inadequately known. The set now in common use has come under attack both on theoretical grounds (because of the choice of theoretical dipole moment used in its derivation) and on experimental grounds (because of its failure to represent accurately measured intensity ratios). An electric dipole moment function (EDMF) for OH has been derived by combining recent high precision measurements of the permanent dipole moments with laboratory and airglow intensity measurements, including new night airglow measurements made specifically for this work. This empirical EDMF, while showing remarkable agreement with some a priori EDMF's, differs sufficiently to produce transition probabilities which are in much better agreement with airglow observations than previously available sets.

  7. Quantifying contingent relations from direct observation data: transitional probability comparisons versus Yule's Q.

    PubMed

    Lloyd, Blair P; Kennedy, Craig H; Yoder, Paul J

    2013-01-01

    Measuring contingencies or sequential associations may be applied to a broad range of response-stimulus, stimulus-stimulus, or response-response relations. Within behavior analysis, response-stimulus contingencies have been quantified by comparing 2 transitional probabilities and plotting them in contingency space. Within and outside behavior analysis, Yule's Q has become a recommended statistic used to quantify sequential associations between 2 events. In the current paper, we identify 2 methods of transitional probability comparisons used in the behavior-analytic literature to estimate contingencies in natural settings. We compare each of these methods to the more established Yule's Q statistic and evaluate relations between each pair of indices. Advantages and disadvantages of each method are identified, with recommendations as to which approach may be most appropriate for measuring contingencies.

  8. Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities.

    PubMed

    Bogaerts, Louisa; Siegelman, Noam; Frost, Ram

    2016-08-01

    What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed.

  9. Atomic radiative transition probabilities using negative-energy orbitals in fully variational wave functions

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Bunge, Carlos F.

    2005-07-01

    Transition probabilities have been computed using a variational many-electron theory [R. Jáuregui, C.F. Bunge, E. Ley-Koo, Phys. Rev. A 55 (1997) 1781] incorporating positive-energy and negative-energy orbitals without ambiguities, and absolutely free from variational collapse. The results agree with experiment and with other calculations based on the no-pair Hamiltonian where ad hoc negative-energy orbitals occur in first-order corrections to the wave functions.

  10. Experimental Stark widths, shifts, and transition probabilities of several ArII lines

    SciTech Connect

    Aparicio, J. A.; Gigosos, M. A.; Mar, S.; Gonzalez, V. R.

    1997-01-05

    This paper is an extensive experimental contribution to the knowledge of ArII atomic parameters. This specie, which is very important for many astrophysical and industrial plasma diagnostics, has been extensively studied. However, there are still great differences in the experimental Stark widths and shifts coefficients, as well as a great lack of transition probability data, especially for lines coming from the very highly excited energy levels.

  11. Experimental Stark widths, shifts, and transition probabilities of several ArII lines

    SciTech Connect

    Aparicio, J.A.; Gigosos, M.A.; Mar, S.; Gonzalez, V.R.

    1997-01-01

    This paper is an extensive experimental contribution to the knowledge of ArII atomic parameters. This specie, which is very important for many astrophysical and industrial plasma diagnostics, has been extensively studied. However, there are still great differences in the experimental Stark widths and shifts coefficients, as well as a great lack of transition probability data, especially for lines coming from the very highly excited energy levels. {copyright} {ital 1997 American Institute of Physics.}

  12. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p(6) (1)S0) thermal collision pairs.

    PubMed

    Galvin, T C; Wagner, C J; Eden, J G

    2016-06-28

    The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p(6) (1)S0) atomic collision pairs to be the immediate precursor to the formation of Xe2 (∗)(a(3)Σu (+),A(1)Σu (+)) by the three body process: Xe(∗)(6s) + 2Xe ⟶ Xe2 (∗) + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ∼ 172 nm, A(1)Σu (+)→X(1)Σg (+)). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe((1)S0)](∗) complex and map the probe laser wavelength onto the thermal energy (ϵ″) of the incoming collision pairs.

  13. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p6 1S0) thermal collision pairs

    NASA Astrophysics Data System (ADS)

    Galvin, T. C.; Wagner, C. J.; Eden, J. G.

    2016-06-01

    The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p6 1S0) atomic collision pairs to be the immediate precursor to the formation of Xe 2∗ ( a 3 Σu + , A 1 Σu +) by the three body process: Xe∗(6s) + 2Xe ⟶ Xe 2∗ + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ˜ 172 nm, A 1 Σu + → X 1 Σg +). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe(1S0)]∗ complex and map the probe laser wavelength onto the thermal energy (ɛ″) of the incoming collision pairs.

  14. Some Results on the Analysis of Stochastic Processes with Uncertain Transition Probabilities and Robust Optimal Control

    SciTech Connect

    Keyong Li; Seong-Cheol Kang; I. Ch. Paschalidis

    2007-09-01

    This paper investigates stochastic processes that are modeled by a finite number of states but whose transition probabilities are uncertain and possibly time-varying. The treatment of uncertain transition probabilities is important because there appears to be a disconnection between the practice and theory of stochastic processes due to the difficulty of assigning exact probabilities to real-world events. Also, when the finite-state process comes as a reduced model of one that is more complicated in nature (possibly in a continuous state space), existing results do not facilitate rigorous analysis. Two approaches are introduced here. The first focuses on processes with one terminal state and the properties that affect their convergence rates. When a process is on a complicated graph, the bound of the convergence rate is not trivially related to that of the probabilities of individual transitions. Discovering the connection between the two led us to define two concepts which we call 'progressivity' and 'sortedness', and to a new comparison theorem for stochastic processes. An optimality criterion for robust optimal control also derives from this comparison theorem. In addition, this result is applied to the case of mission-oriented autonomous robot control to produce performance estimate within a control framework that we propose. The second approach is in the MDP frame work. We will introduce our preliminary work on optimistic robust optimization, which aims at finding solutions that guarantee the upper bounds of the accumulative discounted cost with prescribed probabilities. The motivation here is to address the issue that the standard robust optimal solution tends to be overly conservative.

  15. Estimating Transitional Probabilities with Cross-Sectional Data to Assess Smoking Behavior Progression: A Validation Analysis

    PubMed Central

    Chen, Xinguang; Lin, Feng

    2013-01-01

    Background and objective New analytical tools are needed to advance tobacco research, tobacco control planning and tobacco use prevention practice. In this study, we validated a method to extract information from cross-sectional survey for quantifying population dynamics of adolescent smoking behavior progression. Methods With a 3-stage 7-path model, probabilities of smoking behavior progression were estimated employing the Probabilistic Discrete Event System (PDES) method and the cross-sectional data from 1997-2006 National Survey on Drug Use and Health (NSDUH). Validity of the PDES method was assessed using data from the National Longitudinal Survey of Youth 1997 and trends in smoking transition covering the period during which funding for tobacco control was cut substantively in 2003 in the United States. Results Probabilities for all seven smoking progression paths were successfully estimated with the PDES method and the NSDUH data. The absolute difference in the estimated probabilities between the two approaches varied from 0.002 to 0.076 (p>0.05 for all) and were highly correlated with each other (R2=0.998, p<0.01). Changes in the estimated transitional probabilities across the 1997-2006 reflected the 2003 funding cut for tobacco control. Conclusions The PDES method has validity in quantifying population dynamics of smoking behavior progression with cross-sectional survey data. The estimated transitional probabilities add new evidence supporting more advanced tobacco research, tobacco control planning and tobacco use prevention practice. This method can be easily extended to study other health risk behaviors. PMID:25279247

  16. Using optimal transport theory to estimate transition probabilities in metapopulation dynamics

    USGS Publications Warehouse

    Nichols, Jonathan M.; Spendelow, Jeffrey A.; Nichols, James

    2017-01-01

    This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.

  17. Theoretical oscillator strengths, transition probabilities, and radiative lifetimes of levels in Pb V

    SciTech Connect

    Colón, C.; Alonso-Medina, A.; Porcher, P.

    2014-01-15

    Theoretical values of oscillator strengths and transition probabilities for 306 spectral lines arising from the 5d{sup 9}ns(n=7,8,9),5d{sup 9}np(n=6,7),5d{sup 9}6d, and 5d{sup 9} 5f configurations, and radiative lifetimes of 9 levels, of Pb V have been obtained. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree–Fock calculations including core-polarization effects. We use for the IC calculations the standard method of least squares fitting of experimental energy levels by means of computer codes from Cowan. We included in these calculations the 5d{sup 8}6s6p and 5d{sup 8}6s{sup 2} configurations. These calculations have facilitated the identification of the 214.25, 216.79, and 227.66 nm spectral lines of Pb V. In the absence of experimental results of oscillator strengths and transition probabilities, we could not make a direct comparison with our results. However, the Stark broadening parameters calculated from these values are in excellent agreement with experimental widening found in the literature. -- Highlights: •Theoretical values of transition probabilities of Pb V have been obtained. •We use for the IC calculations the standard method of least square. •The parameters calculated from these values are in agreement with the experimental values.

  18. Tables of Transition Probabilities and Branching Ratios for Electric Dipole Transitions Between Arbitrary Levels of Hydrogen-Like Atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.

  19. New Critical Compilations of Atomic Transition Probabilities for Neutral and Singly Ionized Carbon, Nitrogen, and Iron

    NASA Technical Reports Server (NTRS)

    Wiese, Wolfgang L.; Fuhr, J. R.

    2006-01-01

    We have undertaken new critical assessments and tabulations of the transition probabilities of important lines of these spectra. For Fe I and Fe II, we have carried out a complete re-assessment and update, and we have relied almost exclusively on the literature of the last 15 years. Our updates for C I, C II and N I, N II primarily address the persistent lower transitions as well as a greatly expanded number of forbidden lines (M1, M2, and E2). For these transitions, sophisticated multiconfiguration Hartree-Fock (MCHF) calculations have been recently carried out, which have yielded data considerably improved and often appreciably different from our 1996 NIST compilation.

  20. The H I Probability Distribution Function and the Atomic-to-molecular Transition in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Burkhart, Blakesley

    2016-10-01

    We characterize the column-density probability distribution functions (PDFs) of the atomic hydrogen gas, H i, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic H i Survey to derive column-density maps and PDFs. We find that the peaks of the H i PDFs occur at column densities in the range ˜1-2 × 1021 {{cm}}-2 (equivalently, ˜0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of {σ }{{H}{{I}}}≈ {10}20 {{cm}}-2 (˜0.1 mag). We also investigate the H i-to-H2 transition toward the cloud complexes and estimate H i surface densities ranging from 7 to 16 {M}⊙ {{pc}}-2 at the transition. We propose that the H i PDF is a fitting tool for identifying the H i-to-H2 transition column in Galactic MCs.

  1. Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2002-01-01

    Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.

  2. Probability Distribution, Moments and Phase Transition for Directed Polymers with Random Signs on Hierarchical Lattices.

    NASA Astrophysics Data System (ADS)

    Aponte, Eduardo; Medina, Ernesto

    1998-03-01

    We study sums of directed paths on a hierarchical lattice, where each bond has either a positive or negative sign. We attempt to address the controversy of whether a phase transition occurs as a function of ± sign fraction on the bonds, by computing the path sum distribution exactly. We also use exact moment recursion relations(E. Medina and M. Kardar, Jour. Stat. Phys. 71), 967 (1993) to check whether moments determine a unique probability distribution. We find evidence of a second order phase transition at a critical ± sign fraction in contrast to a first order transition found in the mean field theory. We also find that while moments determine a unique distribution above the second order transition, below the transition they grow faster than exponential. Therefore, in the latter case, there is no, one to one, relation between distribution and moments. The statistical model of random signs is the basis of the Nguyen-Spivak-Shklovskii model for quantum interference effects in insulators.

  3. Suppression of the Landau-Zener transition probability by weak classical noise

    NASA Astrophysics Data System (ADS)

    Malla, Rajesh K.; Mishchenko, E. G.; Raikh, M. E.

    2017-08-01

    When the drive, which causes the level crossing in a qubit, is slow, the probability PL Z of the Landau-Zener transition is close to 1. In this regime, which is most promising for applications, the noise due to the coupling to the environment reduces the average PL Z. At the same time, the survival probability, 1 -PL Z , which is exponentially small for a slow drive, can be completely dominated by noise-induced correction. Our main message is that the effect of weak classical noise can be captured analytically by treating it as a perturbation in the Schrödinger equation. This allows us to study the dependence of the noise-induced correction to PL Z on the correlation time of the noise. As this correlation time exceeds the bare Landau-Zener transition time, the effect of noise becomes negligible. On the physical level, the mechanism of enhancement of the survival probability can be viewed as an absorption of the "noise quanta" across the gap. With characteristic energy of the quantum governed by the noise spectrum, the slower the noise is, the lower the number of quanta for which absorption is allowed energetically is. We consider two conventional realizations of noise: Gaussian noise and telegraph noise.

  4. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    NASA Astrophysics Data System (ADS)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.

  5. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability

    NASA Astrophysics Data System (ADS)

    Wang, Qingyun; Duan, Zhisheng; Perc, Matjaž; Chen, Guanrong

    2008-09-01

    Synchronization transitions are investigated in small-world neuronal networks that are locally modeled by the Rulkov map with additive spatiotemporal noise. In particular, we investigate the impact of different information transmission delays and rewiring probability. We show that short delays induce zigzag fronts of excitations, whereas intermediate delays can further detriment synchrony in the network due to a dynamic clustering anti-phase synchronization transition. Detailed investigations reveal, however, that for longer delay lengths the synchrony of excitations in the network can again be enhanced due to the emergence of in-phase synchronization. In addition, we show that an appropriate small-world topology can restore synchronized behavior provided information transmission delays are either short or long. On the other hand, within the intermediate delay region, which is characterized by anti-phase synchronization and clustering, differences in the network topology do not notably affect the synchrony of neuronal activity.

  6. VizieR Online Data Catalog: Atomic transition probabilities of Mn (Den Hartog+, 2011)

    NASA Astrophysics Data System (ADS)

    den Hartog, E. A.; Lawler, J. E.; Sobeck, J. S.; Sneden, C.; Cowan, J. J.

    2011-08-01

    The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of MnI and MnII. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of MnI from the e8D, z6P, z6D, z4F, e8S, and e6S terms and six levels of MnII from the z5P and z7P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. (2 data files).

  7. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  8. Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.

    2017-09-01

    Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.

  9. Radiative transition probabilities for all vibrational levels in the X 1Sigma(+) state of HF

    NASA Technical Reports Server (NTRS)

    Zemke, Warren T.; Stwalley, William C.; Langhoff, Stephen R.; Valderrama, Giuseppe L.; Berry, Michael J.

    1991-01-01

    Recent analyses have led to an experimentally-based potential energy curve for the ground state of HF which includes nonadiabatic corrections and which joins smoothly to the long-range potential at an accurately determined dissociation limit. Using this potential curve and a new ab initio dipole moment function, accurate radiative transition probabilities among all vibrational levels of the ground state of HF have been calculated for selected rotational quantum numbers. Comparisons of Einstein A spontaneous emission coefficients, dipole moment absorption matrix elements, and Herman-Wallis factors for absorption bands are presented.

  10. Estimation of Transitional Probabilities of Discrete Event Systems from Cross-Sectional Survey and its Application in Tobacco Control

    PubMed Central

    Lin, Feng; Chen, Xinguang

    2009-01-01

    In order to find better strategies for tobacco control, it is often critical to know the transitional probabilities among various stages of tobacco use. Traditionally, such probabilities are estimated by analyzing data from longitudinal surveys that are often time-consuming and expensive to conduct. Since cross-sectional surveys are much easier to conduct, it will be much more practical and useful to estimate transitional probabilities from cross-sectional survey data if possible. However, no previous research has attempted to do this. In this paper, we propose a method to estimate transitional probabilities from cross-sectional survey data. The method is novel and is based on a discrete event system framework. In particular, we introduce state probabilities and transitional probabilities to conventional discrete event system models. We derive various equations that can be used to estimate the transitional probabilities. We test the method using cross-sectional data of the National Survey on Drug Use and Health. The estimated transitional probabilities can be used in predicting the future smoking behavior for decision-making, planning and evaluation of various tobacco control programs. The method also allows a sensitivity analysis that can be used to find the most effective way of tobacco control. Since there are much more cross-sectional survey data in existence than longitudinal ones, the impact of this new method is expected to be significant. PMID:20161437

  11. VizieR Online Data Catalog: Laboratory transition probabilities for Gd II (Den Hartog+, 2006)

    NASA Astrophysics Data System (ADS)

    den Hartog, E. A.; Lawler, J. E.; Sneden, C.; Cowan, J. J.

    2008-05-01

    Radiative lifetimes, accurate to +/-5%, have been measured for 49 even-parity and 14 odd-parity levels of GdII using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 611 lines of Gd II. This work is the largest-scale laboratory study to date of GdII transition probabilities and the first using a high-performance Fourier transform spectrometer. This improved data set has been used to determine a new solar photospheric Gd abundance, log{epsilon}=1.11+/-0.03. Revised Gd abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD +17 3248, and HD 115444. The resulting Gd/Eu abundance ratios are in very good agreement with the solar system r-process ratio. We have employed the increasingly accurate stellar abundance determinations, resulting in large part from the more precise laboratory atomic data, to predict directly the solar system r-process elemental abundances for Gd, Sm, Ho, and Nd. Our analysis of the stellar data suggests slightly higher recommended values for the r-process contribution and total solar system values, consistent with the photospheric determinations, for the elements for Gd, Sm, and Ho. (1 data file).

  12. State-to-state reaction probabilities within the quantum transition state framework.

    PubMed

    Welsch, Ralph; Huarte-Larrañaga, Fermín; Manthe, Uwe

    2012-02-14

    Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H(2)(ν, j) → HD(ν', j') + H reaction for J = 0. © 2012 American Institute of Physics

  13. Solution to a gene divergence problem under arbitrary stable nucleotide transition probabilities

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1976-01-01

    A nucleic acid chain, L nucleotides in length, with the specific base sequence B(1)B(2) ... B(L) is defined by the L-dimensional vector B = (B(1), B(2), ..., B(L)). For twelve given constant non-negative transition probabilities that, in a specified position, the base B is replaced by the base B' in a single step, an exact analytical expression is derived for the probability that the position goes from base B to B' in X steps. Assuming that each base mutates independently of the others, an exact expression is derived for the probability that the initial gene sequence B goes to a sequence B' = (B'(1), B'(2), ..., B'(L)) after X = (X(1), X(2), ..., X(L)) base replacements. The resulting equations allow a more precise accounting for the effects of Darwinian natural selection in molecular evolution than does the idealized (biologically less accurate) assumption that each of the four nucleotides is equally likely to mutate to and be fixed as one of the other three. Illustrative applications of the theory to some problems of biological evolution are given.

  14. Genetic evaluation of mastitis liability and recovery through longitudinal analysis of transition probabilities

    PubMed Central

    2012-01-01

    Background Many methods for the genetic analysis of mastitis use a cross-sectional approach, which omits information on, e.g., repeated mastitis cases during lactation, somatic cell count fluctuations, and recovery process. Acknowledging the dynamic behavior of mastitis during lactation and taking into account that there is more than one binary response variable to consider, can enhance the genetic evaluation of mastitis. Methods Genetic evaluation of mastitis was carried out by modeling the dynamic nature of somatic cell count (SCC) within the lactation. The SCC patterns were captured by modeling transition probabilities between assumed states of mastitis and non-mastitis. A widely dispersed SCC pattern generates high transition probabilities between states and vice versa. This method can model transitions to and from states of infection simultaneously, i.e. both the mastitis liability and the recovery process are considered. A multilevel discrete time survival model was applied to estimate breeding values on simulated data with different dataset sizes, mastitis frequencies, and genetic correlations. Results Correlations between estimated and simulated breeding values showed that the estimated accuracies for mastitis liability were similar to those from previously tested methods that used data of confirmed mastitis cases, while our results were based on SCC as an indicator of mastitis. In addition, unlike the other methods, our method also generates breeding values for the recovery process. Conclusions The developed method provides an effective tool for the genetic evaluation of mastitis when considering the whole disease course and will contribute to improving the genetic evaluation of udder health. PMID:22475575

  15. TRANSITION PROBABILITIES AND COLLISION STRENGTHS FOR ELECTRON-IMPACT EXCITATION OF Cl III

    SciTech Connect

    Sossah, A. M.; Tayal, S. S.

    2012-10-15

    We report transition probabilities and effective collision strengths for electron-impact excitation of the astrophysically important Cl III ion. The collision strengths are calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method with term-dependent non-orthogonal orbitals is employed for an accurate description of the target wave functions. The 68 fine-structure levels belonging to the 32 LS states of 3s {sup 2}3p{sup 3}, 3s3p{sup 4}, 3s {sup 2}3p {sup 2}3d, 3s {sup 2}3p {sup 2}4s, and 3s {sup 2}3p {sup 2}4p configurations are included in the close-coupling expansion. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities, and those are tabulated for all 2278 possible fine-structure transitions at electron temperatures in the range from 5000 to 1,000,000 K. Our results are compared with previous theoretical results and available experimental data. Overall, we reached a good agreement with the 23 state calculation of Ramsbottom et al., but some discrepancies are seen for some transitions.

  16. Quasi-classical trajectory study of the reaction dynamics of Ca( 1S 0, 3P) atoms with CHCl 3

    NASA Astrophysics Data System (ADS)

    Yao, Li; Zhong, Haiyang; Liu, Yonglu; Xia, Wenwen

    2009-05-01

    The reaction dynamics of the Ca( 1S 0, 3P) + CHCl 3 → CaCl + CHCl 2 has been studied by means of quasi-classical trajectory (QCT) calculation based on a constructed extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES). The vibrational distribution, reaction cross-section and rotational alignment are all obtained, which are under detailed discussion for product CaCl. The calculated results show that the product CaCl vibrational population peaks are located at ν = 13 (for the ground state) and ν = 12 (for the excited states) at collision energy 2.302 kcal/mol. This product vibrational distribution agrees well with the experimental one in Ref. [K.L. Han, G.Z. He, N.Q. Lou, Chem. Phys. Lett. 178 (1991) 528]. The cross-section decreases thoroughly with the increasing of the collision energy at the range from 1.5 kcal/mol to 20.6 kcal/mol. We have obtained values deviating much from -0.5 and changing interestingly with collision energies.

  17. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    SciTech Connect

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  18. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    SciTech Connect

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.

    2015-10-21

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  19. DROPOUT AND RETENTION RATE METHODOLOGY USED TO ESTIMATE FIRST-STAGE ELEMENTS OF THE TRANSITION PROBABILITY MATRICES FOR DYNAMOD II.

    ERIC Educational Resources Information Center

    HUDMAN, JOHN T.; ZABROWSKI, EDWARD K.

    EQUATIONS FOR SYSTEM INTAKE, DROPOUT, AND RETENTION RATE CALCULATIONS ARE DERIVED FOR ELEMENTARY SCHOOLS, SECONDARY SCHOOLS, AND COLLEGES. THE PROCEDURES DESCRIBED WERE FOLLOWED IN DEVELOPING ESTIMATES OF SELECTED ELEMENTS OF THE TRANSITION PROBABILITY MATRICES USED IN DYNAMOD II. THE PROBABILITY MATRIX CELLS ESTIMATED BY THE PROCEDURES DESCRIBED…

  20. A note on analytic recovery of transition probabilities in three dimensional diffuse tomography

    SciTech Connect

    Patch, S.K. |

    1994-02-01

    The word ``tomography`` refers to imaging an object by slices. X rays, for example, have high energy and travel straight through the body. Data analysis is linear and yields a scalar valued function. The oxymoron diffuse tomography refers to low energy imaging in which the paths of the radiant energy are not necessarily straight and are unknown. Data analysis in diffuse tomography is highly nonlinear and yields a vector valued function. Problems in diffuse tomography are highly nonlinear because low energy is used. Clinical applications such as neonatal imaging and annual mammograms are not amenable to high energy techniques which might overexpose the patient to harmful radiation. Experimentalists in the medical arena are presently working with near infrared radiation; mathematicians have done preliminary mathematical analysis of diffuse tomographic methods. An analytic algorithm for recovering Markov transition probabilities from boundary value data for the smallest nontrivial problem in three dimensions is outlined in this paper.

  1. Experimental branching fractions, transition probabilities and oscillator strengths of some levels in Ba I

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wang, Shuang; Kang, Zhihui; Dai, Zhenwen

    2017-09-01

    Branching fractions (BFs) of Ba I for 108 lines including 96 lines from 33 odd-parity levels with the configurations 5dnp (n = 6, 7, 8), 6snp (n = 7, 8, 11, 12), 6snf (n = 5, 6, 11, 16) and 5d4f, as well as 12 lines from 5 even-parity levels with the configurations 6snd (n=7, 9, 12) and 5d6d were measured using a high-resolution grating spectrometer with a hollow-cathode lamp. By combining the data of natural radiative lifetimes published in literature, the transition probabilities and oscillator strengths for these lines were also deduced, and the achieved results are in fair agreements with the previous ones.

  2. Implicit segmentation of a stream of syllables based on transitional probabilities: an MEG study.

    PubMed

    Teinonen, Tuomas; Huotilainen, Minna

    2012-02-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active listening. We used magnetoencephalography (MEG) to record event-related fields (ERFs) simultaneously with ERPs to syllables in a continuous sequence consisting of ten repeating tri-syllabic pseudowords and unexpected syllables presented between these pseudowords. We found the responses to differ between the syllables within the pseudowords and between the expected and unexpected syllables, reflecting an implicit process extracting the statistical characteristics of the sequence and monitoring for unexpected syllables.

  3. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  4. Low-spin electromagnetic transition probabilities in {sup 102,104}Cd

    SciTech Connect

    Boelaert, N.; Dewald, A.; Fransen, C.; Jolie, J.; Linnemann, A.; Melon, B.; Moeller, O.; Smirnova, N.; Heyde, K.

    2007-05-15

    Lifetimes of low-lying states in {sup 102,104}Cd were determined by using the recoil distance Doppler-shift technique with a plunger device and a Ge array consisting of five HP Ge detectors and one Euroball cluster detector. The experiments were carried out at the Cologne FN Tandem facility using the {sup 92}Mo({sup 12}C,2n){sup 102}Cd reaction at 41 MeV and the {sup 94}Mo({sup 12}C,2n){sup 104}Cd reaction at 42 MeV. The differential decay curve method in coincidence mode was employed to derive the lifetime of the first 2{sup +} state in both nuclei and the lifetime of the 4{sup +} state in {sup 104}Cd. The corresponding reduced E2 transition probabilities have been studied within the framework of the nuclear shell model.

  5. Transition Probabilities in {sup 134}Pr: A Test for Chirality in Nuclear Systems

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Marginean, N.; Napoli, D.R.; Prete, G.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Brant, S.; Frauendorf, S.; Balabanski, D.L.; Bazzacco, D.; Lenzi, S.; Lunardi, S.; Bednarczyk, P.; Curien, D.

    2006-02-10

    Exited states in {sup 134}Pr were populated in the fusion-evaporation reaction {sup 119}Sn({sup 19}F,4n){sup 134}Pr. Recoil distance Doppler-shift and Doppler-shift attenuation measurements using the Euroball spectrometer, in conjunction with the inner Bismuth Germanate ball and the Cologne plunger, were performed at beam energies of 87 MeV and 83 MeV, respectively. Reduced transition probabilities in {sup 134}Pr are compared to the predictions of the two quasiparticle+triaxial rotor and interacting boson fermion-fermion models. The experimental results do not support the presence of static chirality in {sup 134}Pr underlying the importance of shape fluctuations. Only within a dynamical context the presence of intrinsic chirality in {sup 134}Pr can be supported.

  6. Transition probabilities in 134Pr: a test for chirality in nuclear systems.

    PubMed

    Tonev, D; de Angelis, G; Petkov, P; Dewald, A; Brant, S; Frauendorf, S; Balabanski, D L; Pejovic, P; Bazzacco, D; Bednarczyk, P; Camera, F; Fitzler, A; Gadea, A; Lenzi, S; Lunardi, S; Marginean, N; Möller, O; Napoli, D R; Paleni, A; Petrache, C M; Prete, G; Zell, K O; Zhang, Y H; Zhang, Jing-Ye; Zhong, Q; Curien, D

    2006-02-10

    Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F,4n)134Pr. Recoil distance Doppler-shift and Doppler-shift attenuation measurements using the Euroball spectrometer, in conjunction with the inner Bismuth Germanate ball and the Cologne plunger, were performed at beam energies of 87 MeV and 83 MeV, respectively. Reduced transition probabilities in 134Pr are compared to the predictions of the two quasiparticle + triaxial rotor and interacting boson fermion-fermion models. The experimental results do not support the presence of static chirality in 134Pr underlying the importance of shape fluctuations. Only within a dynamical context the presence of intrinsic chirality in 134Pr can be supported.

  7. Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces

    SciTech Connect

    Bagarello, F.

    2015-11-15

    In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we will find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.

  8. Transition probability estimates for non-Markov multi-state models.

    PubMed

    Titman, Andrew C

    2015-12-01

    Non-parametric estimation of the transition probabilities in multi-state models is considered for non-Markov processes. Firstly, a generalization of the estimator of Pepe et al., (1991) (Statistics in Medicine) is given for a class of progressive multi-state models based on the difference between Kaplan-Meier estimators. Secondly, a general estimator for progressive or non-progressive models is proposed based upon constructed univariate survival or competing risks processes which retain the Markov property. The properties of the estimators and their associated standard errors are investigated through simulation. The estimators are demonstrated on datasets relating to survival and recurrence in patients with colon cancer and prothrombin levels in liver cirrhosis patients.

  9. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less

  10. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  11. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    SciTech Connect

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can also escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.

  12. Transition probabilities of PrII-lines emitted from a ferroelectric plasma source

    NASA Astrophysics Data System (ADS)

    Goly, A.; Kusz, J.; Quang, B. Nguyen; Weniger, S.

    1991-03-01

    An argon-praseodymium plasma was generated under atmospheric pressure between a ceramic ferroelectric plate and a praseodymium plate. The system of plates was connected to an acoustic frequency supply. The plasma radiation was analyzed in the spectral range from 2000 to 7000 A by using a grating spectrograph with a linear dispersion near 1 mm/A, adopted to photoelectric measurements. The emission spectrum of praseodymium was recorded, and the intensities of a few hundred lines were measured. Transition probabilities were determined for 62 PrII-lines, using available lifetime data for excited levels and measured branching ratios of the corresponding lines. Reasonable agreement has been found between the experimental data of Lage and Whaling (1976) and some of the present results.

  13. VizieR Online Data Catalog: Transition probabilities for 183 lines of Cr II (Lawler+, 2017)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Sneden, C.; Nave, G.; den Hartog, E. A.; Emrahoglu, N.; Cowan, J. J.

    2017-03-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr+ are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log{epsilon} in the Sun and metal-poor star HD 84937. The mean result in the Sun is =5.624+/-0.009 compared to =5.644+/-0.006 on a scale with the hydrogen abundance log{epsilon}(H)=12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding =3.417+/-0.006 and 0eV)>=3.374+/-0.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history-other iron-peak elements appear not to be associated with Cr. (1 data file).

  14. A New Large Echelle Spectrometer for Measuring Atomic Transition Probabilities of Fe-group Ions

    NASA Astrophysics Data System (ADS)

    Wood, Michael; Lawler, J. E.

    2012-01-01

    Accurate atomic transition probabilities for weak lines connected to the ground and low metastable levels of Fe-group ions are needed for elemental abundance studies on metal-poor stars. Metal-poor stars represent the oldest observable stellar generation and offer a direct probe into the early history of nucleosynthesis and the chemical evolution of the Galaxy. Unexplained trends in relative Fe-group abundances, such as [Co/Cr], as a function of metallicity, or [Fe/H], have been observed. These trends may result from a breakdown in the local thermodynamic equilibrium (LTE) approximation used in traditional photosphere models underlying elemental abundance determinations. The ground and low metastable levels of Fe-group ions contain most of the Fe-group material in a stellar photosphere, and thus second spectra lines with low E.P.s are essentially immune to non-LTE effects. To improve lab data on important Fe-group lines we have developed a novel instrument based on a 3 meter focal length vacuum echelle spectrograph combined with an aberration corrected cross dispersion system and a UV sensitive CCD array. This spectrometer is capable of recording both emission and absorption spectra with high resolving power, very broad wavelength coverage, and high signal-to-noise. It is also free from the multiplex noise of a FTS, making it ideally suited for measuring branching fractions of very weak lines. The combination of very accurate branching fractions with radiative lifetimes from time-resolved laser-induced fluorescence will yield accurate absolute transition probabilities of weak second spectra lines with low E.P.s for the Fe-group elements. Instrument design and preliminary results will be presented. Supported by NASA Grant NNX09AL13G.

  15. Effects of Word Frequency and Transitional Probability on Word Reading Durations of Younger and Older Speakers.

    PubMed

    Moers, Cornelia; Meyer, Antje; Janse, Esther

    2017-06-01

    High-frequency units are usually processed faster than low-frequency units in language comprehension and language production. Frequency effects have been shown for words as well as word combinations. Word co-occurrence effects can be operationalized in terms of transitional probability (TP). TPs reflect how probable a word is, conditioned by its right or left neighbouring word. This corpus study investigates whether three different age groups-younger children (8-12 years), adolescents (12-18 years) and older (62-95 years) Dutch speakers-show frequency and TP context effects on spoken word durations in reading aloud, and whether age groups differ in the size of these effects. Results show consistent effects of TP on word durations for all age groups. Thus, TP seems to influence the processing of words in context, beyond the well-established effect of word frequency, across the entire age range. However, the study also indicates that age groups differ in the size of TP effects, with older adults having smaller TP effects than adolescent readers. Our results show that probabilistic reduction effects in reading aloud may at least partly stem from contextual facilitation that leads to faster reading times in skilled readers, as well as in young language learners.

  16. Use of a Transition Probability/Markov Approach to Improve Geostatistical of Facies Architecture

    SciTech Connect

    Carle, S.F.

    2000-11-01

    Facies may account for the largest permeability contrasts within the reservoir model at the scale relevant to production. Conditional simulation of the spatial distribution of facies is one of the most important components of building a reservoir model. Geostatistical techniques are widely used to produce realistic and geologically plausible realizations of facies architecture. However, there are two stumbling blocks to the traditional indicator variogram-based approaches: (1) intensive data sets are needed to develop models of spatial variability by empirical curve-fitting to sample indicator (cross-) variograms and to implement ''post-processing'' simulation algorithms; and (2) the prevalent ''sequential indicator simulation'' (SIS) methods do not accurately produce patterns of spatial variability for systems with three or more facies (Seifert and Jensen, 1999). This paper demonstrates an alternative transition probability/Markov approach that emphasizes: (1) Conceptual understanding of the parameters of the spatial variability model, so that geologic insight can support and enhance model development when data are sparse. (2) Mathematical rigor, so that the ''coregionalization'' model (including the spatial cross-correlations) obeys probability law. (3) Consideration of spatial cross-correlation, so that juxtapositional tendencies--how frequently one facies tends to occur adjacent to another facies--are honored.

  17. Calculation of Radiative Transition Energies and Probabilities of Highly Charged Ions: Applications to Xenon

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsukiyo

    1995-01-01

    In this work, we have obtained new insight to the physical processes above and below a surface when an incident highly charged heavy ion interacts with a metal. Extensive theoretical calculations and predictions based on many body perturbation theory in conjunction with a screening theory were performed for the Xe^ {q+} (q = 44-49) ions interacting with copper surfaces and for the Bi^ {q+} (q = 71 to 50) ions interacting with gold surfaces. A detailed comparison of our theoretical results with experimental x-ray data provided by the EBIT facility at LLNL is presented. Specifically, in the theoretical calculations, many body perturbation theory is applied using a hydrogenic basis set to calculate numerous radiative transition energies and probabilities of various highly charged Bi and Xe ions for a large number of initial and final configurations. The application of perturbation theory taking the electron repulsion term, 1/Z, as the perturbation yields a series expansion in 1/Z where Z is the atomic number. In the energy formulation, approximate screening parameters are introduced for the relativistic and nonrelativistic energy parts allowing us to limit our calculation to the first order interelectron interaction. The energy values obtained are averaged over the spin and angular momentum quantum numbers, L and S as a function of the electron occupation numbers (k_{i}) for each individual electron shell. Up to seventeen different subshells have been considered i.e. each ionic state can be expressed in the form,{Q=1s^ {k_1} 2s^{k_2 } 2p^{k_3} 3s^ {k_4} 3p^{k_5 } 3d^{k_6} 4s^ {k_7} 4p^{k_8 } 4d^{k_9} 4f^ {k_{10}} 5s^{k _{11}}hfillcrquad 5p^{k_{12}} 5d ^{k_{13}}times5f ^{k_{14}} 5g^ {k_{15}} 6s^{k _{16}} 6p^{k_ {17}}.quadhfillcr} where k_{i} are different occupation numbers. This effective new computational method was applied and extended to analyze, for example the complex N and M x-ray emission spectra from the impact of highly charged Bi^{q+} (q = 71 to 54) ions on

  18. Estimating net transition probabilities from cross-sectional data with application to risk factors in chronic disease modeling.

    PubMed

    Kassteele, J van de; Hoogenveen, R T; Engelfriet, P M; Baal, P H M van; Boshuizen, H C

    2012-03-15

    A problem occurring in chronic disease modeling is the estimation of transition probabilities of moving from one state of a categorical risk factor to another. Transitions could be obtained from a cohort study, but often such data may not be available. However, under the assumption that transitions remain stable over time, age specific cross-sectional prevalence data could be used instead. Problems that then arise are parameter identifiability and the fact that age dependent cross-sectional data are often noisy or are given in age intervals. In this paper we propose a method to estimate so-called net annual transition probabilities from cross-sectional data, including their uncertainties. Net transitions only describe the net inflow or outflow into a certain risk factor state at a certain age. Our approach consists of two steps: first, smooth the data using multinomial P-splines, second, from these data estimate net transition probabilities. This second step can be formulated as a transportation problem, which is solved using the simplex algorithm from linear programming theory. A sensible specification of the cost matrix is crucial to get meaningful results. Uncertainties are assessed by parametric bootstrapping. We illustrate our method using data on body mass index. We conclude that this method provides a flexible way of estimating net transitions and that the use of net transitions has implications for model dynamics, for example when modeling interventions. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Measurement of the He 1s2s (1)S(0) isotopic shift using a tunable VUV anti-Stokes light source.

    PubMed

    Falcone, R W; Willison, J R; Young, J F; Harris, S E

    1978-11-01

    We describe a high-resolution, vacuum-ultraviolet spectroscopic technique based on a tunable, narrow-band, VUV, spontaneous anti-Stokes light source. The technique was used to measure the absolute energies of the 1s2s (1)S(0) states of (3)He and (4)He; the 1s2s (1)S(0) level of (3)He is 7.8 +/- 0.5 cm(-1) below that of (4)He.

  20. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  1. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  2. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGES

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; ...

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  3. {ital E}3 transition probabilities in the platinum, mercury, and lead isotopes

    SciTech Connect

    Egido, J.L.; Martin, V.; Robledo, L.M.; Sun, Y. |||

    1996-06-01

    Spectroscopical properties of the platinum, mercury, and lead isotopes are studied within the Hartree-Fock plus BCS framework with the finite range density-dependent Gogny force. These properties are also studied beyond mean-field theory by combining the use of generator-coordinate-method-like wave functions with the angular momentum projection technique as to generate many-body correlated wave functions that are at the same time eigenstates of the angular momentum operator. We apply this formalism to the calculation of reduced transition probabilities {ital B}({ital E}3) from the lowest-lying octupole collective state to the ground state of several isotopes of the platinum, mercury, and lead nuclei whose experimental {ital B}({ital E}3) values present a peculiar behavior. The projected calculations show a large improvement over the unprojected ones when compared with the experimental data. The unprojected calculations are unable to predict any structure in the {ital B}({ital E}3). {copyright} {ital 1996 The American Physical Society.}

  4. Ab initio oscillator strengths and transition probabilities in oxygen-like Cr XVII

    SciTech Connect

    Bogdanovich, P.; Karpuskiene, R.

    2008-09-15

    Ab initio energy spectra of the ground configuration 2s{sup 2}2p{sup 4}, the excited configurations 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, 2s{sup 2}2p{sup 3}3d, 2s2p{sup 4}3s, 2s2p{sup 4}3p, and 2s2p{sup 4}3d of oxygen-like chromium Cr XVII have been calculated using the configuration interaction method. The wavelengths, oscillator strengths and the emission transition probabilities from configurations 2s{sup 2}2p{sup 3}3l and 2s2p{sup 4}3l are obtained. The radiative lifetimes of excited levels are also presented.0.

  5. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    USGS Publications Warehouse

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  6. An exacting transition probability measurement - a direct test of atomic many-body theories

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; de Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-07-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.

  7. An exacting transition probability measurement - a direct test of atomic many-body theories

    PubMed Central

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  8. Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences

    PubMed Central

    Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin

    2016-01-01

    Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities. PMID:26830652

  9. Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences.

    PubMed

    Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin

    2016-02-02

    Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities.

  10. Analytical results for state-to-state transition probabilities in the multistate Landau-Zener model by nonstationary perturbation theory

    SciTech Connect

    Volkov, M. V.; Ostrovsky, V. N.

    2007-02-15

    Multistate generalizations of Landau-Zener model are studied by summing entire series of perturbation theory. A technique for analysis of the series is developed. Analytical expressions for probabilities of survival at the diabatic potential curves with extreme slope are proved. Degenerate situations are considered when there are several potential curves with extreme slope. Expressions for some state-to-state transition probabilities are derived in degenerate cases.

  11. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    SciTech Connect

    Ghumman, S. S.

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  12. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  13. Relativistic MR-MP calculations of the energy levels and transition probabilities in Ni- to Kr-like Pt ions

    SciTech Connect

    Santana, Juan A.; Ishikawa, Yasuyuki; Träbert, Elmar

    2014-01-15

    Ni- to Kr-like Pt ions have been studied by relativistic multi-reference Møller–Plesset many-body perturbation theory calculations. Energy levels and lifetimes of low-lying excited states within the n=4 complex are reported for each ion. Wavelengths and transition probabilities for the strongest electric-dipole transitions are compared with available experimental data. Synthetic radiative spectra are shown for various wavelength regions.

  14. Dependence of the probabilities of the electric-multipole electron transitions in W{sup 24+} on multipolarity

    SciTech Connect

    Gaigalas, Gediminas; Rudzikas, Zenonas; Rynkun, Pavel; Alkauskas, Andrius

    2011-03-15

    Usually it is accepted that the probabilities of the electric-multipole electron transitions are rapidly decreasing functions of their multipolarity. Therefore while calculating the probabilities of electronic transitions between the configurations of certain chosen parities, it seems sufficient to take into account the first nonzero term, i.e., to consider the electron transitions of lowest multipolarity permitted by the exact selection rules. This paper aims at verifying this assumption on the example of electric-octupole transitions in W{sup 24+} ion. For this purpose the large-scale multiconfiguration Hartree-Fock and Dirac-Fock calculations have been performed for the configurations [Kr]4d{sup 10}4f{sup 4} and [Kr]4d{sup 10}4f{sup 3}5s energy levels of W{sup 24+} ion. The relativistic corrections were taken into account in the quasirelativistic Breit-Pauli and fully relativistic Breit (taking into account QED effects) approximations. The role of correlation, relativistic, and QED corrections is discussed. Line strengths, oscillator strengths, and transition probabilities in Coulomb and Babushkin gauges are presented for E1 and E3 transitions among these levels.

  15. Fragmentation functions of (1S0) and (3S1) considering the role of heavy quarkonium spin

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. M.

    2015-07-01

    The production of heavy quarkonia is a powerful tool to test our understanding of strong interaction dynamics. It is well known that the dominant production mechanism for heavy quarkonia with large transverse momentum is fragmentation. In this work we, analytically, calculate the QCD leading-order contribution to the process-independent fragmentation functions (FFs) for a gluon to split into the vector () and pseudoscalar () S-wave charmonium states. The analyses of this paper differ in which we present, for the first time, an analytical form of the FF using a different approach (Suzuki's model) in comparison with other results presented in the literature, where the Braaten scheme was used and the two-dimensional integrals were presented for the gluon FFs which must be evaluated numerically. The universal fragmentation probability for the is about which is in good consistency with the result obtained in the Braaten model.

  16. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

  17. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Probability Fluxes and Transition Paths in a Markovian Model Describing Complex Subunit Cooperativity in HCN2 Channels

    PubMed Central

    Benndorf, Klaus; Kusch, Jana; Schulz, Eckhard

    2012-01-01

    Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3′,5′-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function. PMID:23093920

  19. RELATIVISTIC CALCULATION OF TRANSITION PROBABILITIES FOR 557.7 nm AND 297.2 nm EMISSION LINES IN OXYGEN

    SciTech Connect

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-20

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  20. Is expert opinion reliable when estimating transition probabilities? The case of HCV-related cirrhosis in Egypt

    PubMed Central

    2014-01-01

    Background Data on HCV-related cirrhosis progression are scarce in developing countries in general, and in Egypt in particular. The objective of this study was to estimate the probability of death and transition between different health stages of HCV (compensated cirrhosis, decompensated cirrhosis and hepatocellular carcinoma) for an Egyptian population of patients with HCV-related cirrhosis. Methods We used the “elicitation of expert opinions” method to obtain collective knowledge from a panel of 23 Egyptian experts (among whom 17 were hepatologists or gastroenterologists and 2 were infectiologists). The questionnaire was based on virtual medical cases and asked the experts to assess probability of death or probability of various cirrhosis complications. The design was a Delphi study: we attempted to obtain a consensus between experts via a series of questionnaires interspersed with group response feedback. Results We found substantial disparity between experts’ answers, and no consensus was reached at the end of the process. Moreover, we obtained high death probability and high risk of hepatocellular carcinoma. The annual transition probability to death was estimated at between 10.1% and 61.5% and the annual probability of occurrence of hepatocellular carcinoma was estimated at between 16.8% and 58.9% (depending on age, gender, time spent in cirrhosis and cirrhosis severity). Conclusions Our results show that eliciting expert opinions is not suited for determining the natural history of diseases due to practitioners’ difficulties in evaluating quantities. Cognitive bias occurring during this type of study might explain our results. PMID:24635942

  1. VizieR Online Data Catalog: Fe IV radiative transition probabilities (Nahar+, 2005)

    NASA Astrophysics Data System (ADS)

    Nahar, S. N.; Pradhan, A. K.

    2005-04-01

    fjj.fe4.user (Fe IV Oscillator strengths for fine structure transitions) 1. The first line of each subset corresponds to the LS transition followed by the fine structure components. The letter prefix designation of the transitional states in the table corresponds to their energy positions, as explained in Table 3. The energy unit for the individual states and transition for the LS multiplets are in Rydberg. The energies are absolute and negative signs are omitted for convenience. However, for the fine structure transitions, the energies of the initial and final fine structure levels are in unit of cm^-1, while the transitional energy differences are in {AA} unit. The A-values are in s-1. 2. An asterisk (*) below an LS state indicates an incomplete set of observed energy levels, and an asterisk for the transitional energy indicates that one or both the levels are missing from the observed energy set. 3. Observed energies are used for all transitions in LS multiplets whenever available. An * between Ei and Ef values of the LS terms indicates calculated energies are used 4. An * for the energies of the two transitional fs levels means that one of the levels has not been observed. Hence the fs f- and a-values are obtained from calculated energies. 5. An * below the arrow of a transition indicates that the calculated transition was in reversed order. 6. An * on the left of a fine structure transition means that the low and the high energy levels belong to the higher and lower LS terms respectively. -------------------------------------------------------------------------------- Example: TRANSITION Ei Ef EDIFF gi gf fif S aji Ry/cm-1 Ry/cm-1 Ry/{AA} s-1 a6Se->z6Po 4.0200 2.2879 1.732E+00 6 18 4.226E-01 4.392E+00 3.395E+09 0.000 190226.00 525.69 6 8 1.880E-01 1.952E+00 3.403E+09 0.000 190008.00 526.29 6 6 1.408E-01 1.464E+00 3.391E+09 0.000 189885.00 526.63 6 4 9.381E-02 9.759E-01 3.384E+09 SJJ(sum)= 4.3916E+00 (2 data files).

  2. Argon FTIR spectra between 800 and 2000 cm-1: h- and i-levels and transition probabilities

    NASA Astrophysics Data System (ADS)

    Kubelík, P.; Zanozina, E. M.; Pastorek, A.; Ferus, M.; Juha, L.; Chernov, V. E.; Naskidashvili, A. V.; Civiš, S.

    2016-10-01

    The new emission spectrum of atomic argon is measured using the time-resolved Fourier transform technique. Seventy-seven new Ar I lines in the 800 - 2000cm-1 range with a resolution of 0.02cm-1 are observed. The energies of 12 previously unknown 7 i and 6 h energy levels are extracted from the measured spectra. The probabilities of the transitions between the observed levels are calculated.

  3. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  4. Oxidation of atomic gold ions: thermochemistry for the activation of O(2) and N(2)O BY Au(+) ((1)S(0) and (3)D).

    PubMed

    Li, Feng-Xia; Gorham, Katrine; Armentrout, P B

    2010-10-28

    Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.

  5. Measurement of the 1s2s 1S0-1s2p 3P1 intercombination interval in helium-like silicon.

    PubMed

    Redshaw, M; Myers, E G

    2002-01-14

    Using Doppler-tuned fast-beam laser spectroscopy the 1s2s 1S0-1s2p 3P1 intercombination interval in 28Si12+ has been measured to be 7230.5(2) cm(-1). The experiment made use of a single-frequency Nd:YAG (1.319 microm) laser and a high-finesse optical buildup cavity. The result provides a precision test of modern relativistic and QED atomic theory.

  6. Patient Education and Support During CKD Transitions: When the Possible Becomes Probable.

    PubMed

    Green, Jamie A; Boulware, L Ebony

    2016-07-01

    Patients transitioning from kidney disease to kidney failure require comprehensive patient-centered education and support. Efforts to prepare patients for this transition often fail to meet patients' needs due to uncertainty about which patients will progress to kidney failure, nonindividualized patient education programs, inadequate psychosocial support, or lack of assistance to guide patients through complex treatment plans. Resources are available to help overcome barriers to providing optimal care during this time, including prognostic tools, educational lesson plans, decision aids, communication skills training, peer support, and patient navigation programs. New models are being studied to comprehensively address patients' needs and improve the lives of kidney patients during this high-risk time.

  7. Local neighborhood transition probability estimation and its use in contextual classification

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of incorporating spatial or contextual information into classifications is considered. A simple model that describes the spatial dependencies between the neighboring pixels with a single parameter, Theta, is presented. Expressions are derived for updating the posteriori probabilities of the states of nature of the pattern under consideration using information from the neighboring patterns, both for spatially uniform context and for Markov dependencies in terms of Theta. Techniques for obtaining the optimal value of the parameter Theta as a maximum likelihood estimate from the local neighborhood of the pattern under consideration are developed.

  8. SQERTSS: Dynamic rank based throttling of transition probabilities in kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Savara, Aditya

    2017-10-01

    Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of "KMC stiffness" (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events-allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.

  9. SQERTSS: Dynamic rank based throttling of transition probabilities in kinetic Monte Carlo simulations

    DOE PAGES

    Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; ...

    2017-06-09

    Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order tomore » achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.« less

  10. Accurate transition probabilities from large-scale multiconfiguration calculations - A tribute to Charlotte Froese Fischer

    NASA Astrophysics Data System (ADS)

    Jönsson, Per; Godefroid, Michel; Gaigalas, Gediminas; Bieroń, Jacek; Brage, Tomas

    2013-07-01

    The development of multiconfiguration computer packages for atomic structure calculations is reviewed with special attention to the work of Charlotte Froese Fischer. The underlying theory is described along with methodologies to choose basis expansions of configuration state functions. Calculations of energies and transitions rates are presented and the accuracy of the results is assessed. Limitations of multiconfiguration methods are discussed and it is shown how these limitations can be circumvented by a division of the original large-scale computational problem into a number of smaller problems.

  11. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II.

    PubMed

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag(+) ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm(-1), equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given.

  12. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  13. The model of a level crossing with a Coulomb band: exact probabilities of nonadiabatic transitions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Sinitsyn, N. A.

    2014-05-01

    We derive an exact solution of an explicitly time-dependent multichannel model of quantum mechanical nonadiabatic transitions. Our model corresponds to the case of a single linear diabatic energy level interacting with a band of an arbitrary N states, for which the diabatic energies decay with time according to the Coulomb law. We show that the time-dependent Schrödinger equation for this system can be solved in terms of Meijer functions whose asymptotics at a large time can be compactly written in terms of elementary functions that depend on the roots of an Nth order characteristic polynomial. Our model can be considered a generalization of the Demkov-Osherov model. In comparison to the latter, our model allows one to explore the role of curvature of the band levels and diabatic avoided crossings.

  14. Ab initio oscillator strengths and transition probabilities in aluminum-like calcium, Ca VIII

    SciTech Connect

    Karpuskiene, R. Bogdanovich, P.

    2009-07-15

    An ab initio study of aluminum-like calcium is presented. The calculations are performed within the configuration interaction method in the basis of transformed radial orbitals with a variable parameter. Relativistic effects are accounted for within the Breit-Pauli approximation. Energy spectra, transition characteristics and lifetimes of excited levels of configurations 3s{sup 2}3p, 3s3p{sup 2}, 3s{sup 2}3d, 3p{sup 3}, 3s3p3d, 3p{sup 2}3d, 3s{sup 2}4s, 3s{sup 2}4p, 3s{sup 2}4d, 3s{sup 2}4f, 3s3p4s, and 3s3p4p are obtained. The results are compared with available experimental and theoretical data.

  15. Application of the Transition Probability Matrix Method to High Knudsen Number Flow Past a Micro-Plate

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Hitchon, W. Nicholas G.; Sun, Quanhua; Boyd, Iain D.

    2003-05-01

    In this work we present numerical results for the problem of `high' (of order unity) Knudsen number gas flow past a micro-airfoil, for low flow velocity. The results are generated using an enhanced version of the transition probability matrix (TPM) method. The TPM is a non-statistical kinetic method [1] for computing neutral particle transport in high Knudsen number flows. The problem of high Knudsen number, low Mach number gas flow has been studied in the past using several computational approaches, such as the Information Preservation (IP) method [2] and the direct simulation Monte Carlo (DSMC) method [2]. For low Mach numbers, the DSMC approach suffers from statistical noise [3]. The IP method extends the range of the particle method by reducing the statistical noise of the approach. The need for a method which is capable of describing the particle distribution function for high Knudsen number flows at low flow velocities has led to an investigation of alternative kinetic approaches, such as the IP[4]. In this paper we present an altogether different approach to the problem of statistical noise, the transition probability matrix (TPM) method [1, 5, 6, 7]. We give a brief overview of the TPM method, and compare its strengths and weaknesses to those of the IP and DSMC methods. Finally, we present results for the micro-plate and compare them to the results generated by both the IP and DSMC methods.

  16. Measurement of sodium density and the Na 514-nm transition probability in a high-pressure sodium arc

    NASA Astrophysics Data System (ADS)

    Benson, T. P.; Bhattacharya, A. K.

    1990-09-01

    Spatially resolved arc temperatures and sodium density measurements are presented for two high-pressure sodium arcs. Absolute intensities of the optically thick 818/819-nm lines were used to determine the arc temperature while the radial profile of the optically thin 514-nm line was Abel inverted to determine the Na atomic density. Agreement with an independent measurement of the Na density obtained by controlling pressure of sodium in the lamp with a tin bath consistently required a value for the Na 514-nm transition probability 2-3 times smaller than the literature value (A=0.011×108 s-1 ) of Wiese, Smith, and Miles [Atomic Transition Probabilities, NSRDS-NBS 4 (NBS, Washington, DC, 1971), Vol. II], obtained from quantum mechanical calculations. The results of three separate experiments indicate that the value should be modified to A=0.0040×108 s-1 with a standard deviation of ±21%. A more detailed error analysis including systematic error would indicate an accuracy to within ±33%.

  17. Colloidal dynamics over a tilted periodic potential: Forward and reverse transition probabilities and entropy production in a nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-guang; Su, Yun; Lai, Pik-Yin; Tong, Penger

    2017-07-01

    We report a systematic study of the forward and reverse transition probability density functions (TPDFs) and entropy production in a nonequilibrium steady state (NESS). The NESS is realized in a two-layer colloidal system, in which the bottom-layer colloidal crystal provides a two-dimensional periodic potential U0(x ,y ) for the top-layer diffusing particles. By tilting the sample at an angle with respect to gravity, a tangential component of the gravitational force F is applied to the diffusing particles, which breaks the detailed balance (DB) condition and generates a steady particle flux along the [1,0] crystalline orientation. While both the measured forward and reverse TPDFs reveal interesting space-time dependence, their ratio is found to be independent of time and obeys a DB-like relation. The experimental results are in good agreement with the theoretical predictions. This study thus provides a better understanding on how entropy is generated and heat is dissipated to the reservoir during a NESS transition process. It also demonstrates the applications of the two-layer colloidal system in the study of NESS transition dynamics.

  18. Empirical Transition Probability Indexing Sparse-Coding Belief Propagation (ETPI-SCoBeP) Genome Sequence Alignment

    PubMed Central

    Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2014-01-01

    The advance in human genome sequencing technology has significantly reduced the cost of data generation and overwhelms the computing capability of sequence analysis. Efficiency, efficacy, and scalability remain challenging in sequence alignment, which is an important and foundational operation for genome data analysis. In this paper, we propose a two-stage approach to tackle this problem. In the preprocessing step, we match blocks of reference and target sequences based on the similarities between their empirical transition probability distributions using belief propagation. We then conduct a refined match using our recently published sparse-coding belief propagation (SCoBeP) technique. Our experimental results demonstrated robustness in nucleotide sequence alignment, and our results are competitive to those of the SOAP aligner and the BWA algorithm. Moreover, compared to SCoBeP alignment, the proposed technique can handle sequences of much longer lengths. PMID:25983537

  19. Time varying moments, regime switch, and crisis warning: The birth-death process with changing transition probability

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2014-06-01

    The sub-prime crisis in the U.S. reveals the limitation of diversification strategy based on mean-variance analysis. A regime switch and a turning point can be observed using a high moment representation and time-dependent transition probability. Up-down price movements are induced by interactions among agents, which can be described by the birth-death (BD) process. Financial instability is visible by dramatically increasing 3rd to 5th moments one-quarter before and during the crisis. The sudden rising high moments provide effective warning signals of a regime-switch or a coming crisis. The critical condition of a market breakdown can be identified from nonlinear stochastic dynamics. The master equation approach of population dynamics provides a unified theory of a calm and turbulent market.

  20. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  1. Failure-to-success ratios, transition probabilities and phase lengths for prophylactic vaccines versus other pharmaceuticals in the development pipeline.

    PubMed

    Davis, Matthew M; Butchart, Amy T; Wheeler, John R C; Coleman, Margaret S; Singer, Dianne C; Freed, Gary L

    2011-11-28

    Research and development of prophylactic vaccines carries a high risk of failure. In the past, industry experts have asserted that vaccines are riskier to produce than other pharmaceuticals. This assertion has not been critically examined. We assessed outcomes in pharmaceutical research and development from 1995 to 2011, using a global pharmaceutical database to identify prophylactic vaccines versus other pharmaceuticals in preclinical, Phase I, Phase II, or Phase III stages of development. Over 16 years of follow-up for 4367 products (132 prophylactic vaccines; 4235 other pharmaceuticals), we determined the failure-to-success ratios for prophylactic vaccines versus all other products. The overall ratio of failures to successes for prophylactic vaccines for the 1995 cohort over 16 years of follow-up was 8.3 (116/14) versus 7.7 (3650/475) for other pharmaceuticals. The probability of advancing through the development pipeline at each point was not significantly different for prophylactic vaccines than for other pharmaceuticals. Phase length was significantly longer for prophylactic vaccines than other pharmaceuticals for preclinical development (3.70 years vs 2.80 years; p<.0001), but was equivalent for all 3 human clinical trial phases between the two groups. We conclude that failure rates, phase transition probabilities, and most phase lengths for prophylactic vaccines are not significantly different from those of other pharmaceutical products, which may partially explain rapidly growing interest in prophylactic vaccines among major pharmaceutical manufacturers.

  2. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms

    NASA Astrophysics Data System (ADS)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.

    2017-02-01

    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  3. Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) band of naphthalene-d8.

    PubMed

    Okubo, Mitsushi; Wang, Jinguo; Baba, Masaaki; Misono, Masatoshi; Kasahara, Shunji; Katô, Hajime

    2005-04-08

    Doppler-free two-photon excitation spectrum and the Zeeman effect of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) transition of naphthalene-d8 have been measured. 908 lines of Q(Ka)Q(J)KaKc transition of J=0-41, Ka=0-20 were assigned, and the molecular constants of the S1 1B1u(v21=1) state were determined. Perturbations were observed, and those were identified as originating from Coriolis interaction. No perturbation originating from an interaction with triplet state was observed. The Zeeman splittings from lines of a given J were observed to increase with Kc, and those of the Kc=J levels increased linearly with J. The Zeeman effects are shown to be originating from the magnetic moment of the S1 1B1u state, which is along the c axis and is induced by mixing of the S2 1B3u state to the S1 1B1u state by J-L coupling. Rotationally resolved levels were found not to be mixed with a triplet state from the Zeeman spectra. Accordingly, it is concluded that nonradiative decay of an isolated naphthalene excited to low rovibronic levels in the S1 1B1u state does not occur through the intersystem mixing. This is at variance with generally accepted understanding of the pathways of the nonradiative decay.

  4. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  5. Effect of Pair Interactions on Transition Probabilities between Inactive and Active States — Achieving Collective Behaviour via Pair Interactions in Social Insects —

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Yuki, Mai; Kikuchi, Tomonori; Tsuji, Kazuki; Sugawara, Ken

    2015-10-01

    To understand the evolution of well-organized social behaviour, we must first understand the mechanism by which collective behaviour is established. In this study, the mechanisms of collective behaviour in a colony of social insects were studied in terms of the transition probability between active and inactive states, which is linked to mutual interactions. The active and inactive states of the social insects were statistically extracted from the velocity profiles. From the duration distributions of the two states, we found that (1) the durations of active and inactive states follow an exponential law, and (2) pair interactions increase the transition probability from inactive to active states. The regulation of the transition probability by pair interactions suggests that such interactions control the populations of active and inactive workers in the colony.

  6. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C 6 coefficients

    NASA Astrophysics Data System (ADS)

    Li, H.; Wyart, J.-F.; Dulieu, O.; Nascimbène, S.; Lepers, M.

    2017-01-01

    The efficiency of the optical trapping of ultracold atoms depends on the atomic dynamic dipole polarizability governing the atom-field interaction. In this article, we have calculated the real and imaginary parts of the dynamic dipole polarizability of dysprosium in the ground and first excited levels. Due to the high electronic angular momentum of those two states, the polarizabilities possess scalar, vector and tensor contributions that we have computed, on a wide range of trapping wavelengths, using the sum-over-state formula. Using the same formalism, we have also calculated the C 6 coefficients characterizing the van der Waals interaction between two dysprosium atoms in the two lowest levels. We have computed the energies of excited states and the transition probabilities appearing in the sums, using a combination of ab initio and least-square-fitting techniques provided by the Cowan codes and extended in our group. Regarding the real part of the polarizability, for field frequencies far from atomic resonances, the vector and tensor contributions are two-orders-of-magnitude smaller than the scalar contribution, whereas for the imaginary part, the vector and tensor contributions represent a noticeable fraction of the scalar contribution. Finally, our anisotropic C 6 coefficients are much smaller than those published in the literature.

  7. Atomic data for lighting and astrophysical applications: Excited-state lifetimes and transition probabilities for rare-earth elements

    SciTech Connect

    Curry, J.J.; Anderson, H.M.; Den Hartog, E.A.; Wickliffe, M.E.; Lawler, J.E.

    1996-12-31

    Because of the extremely rich spectra of rare-earth metals, a large volume of data for these elements is sought by the lighting industry for modeling of a new generation of High-Intensity Discharge lamps. In addition, the observation of rare-earths in the atmospheres of chemically peculiar stars means that this data is also of substantial interest to the astrophysics community. The authors are currently meeting this need with a combination of two experiments: excited-state lifetimes are obtained from laser-induced fluorescence measurements on a slow atomic/ionic beam, and branching fractions are obtained with a Fourier-transform spectrometer. These two sets of data are then combined to produce absolute transition probabilities. Obtaining high-quality data of this nature has involved the development of an appropriate atomic beam source, as well as a careful understanding and elimination of a variety of systematic effects. Current work has yielded preliminary lifetime measurements on more than 400 levels of neutral and singly-ionized Dysprosium, and will eventually continue with Holmium.

  8. A transition state view on reactive scattering: Initial state-selected reaction probabilities for the H+CH4-->H2+CH3 reaction studied in full dimensionality

    NASA Astrophysics Data System (ADS)

    Schiffel, Gerd; Manthe, Uwe

    2010-11-01

    Initial state-selected reaction probabilities for the H+CH4→H2+CH3 reaction are computed for vanishing total angular momentum by full-dimensional calculations employing the multiconfigurational time-dependent Hartree approach. An ensemble of wave packets completely describing reactivity for total energies up to 0.58 eV is constructed in the transition state region by diagonalization of the thermal flux operator. These wave packets are then propagated into the reactant asymptotic region to obtain the initial state-selected reaction probabilities. Reaction probabilities for reactants in all rotational states of the vibrational 1A1, 1F2, and 1E levels of methane are presented. Vibrational excitation is found to decrease reactivity when reaction probabilities at equivalent total energies are compared but to increase reaction probabilities when the comparison is done at the basis of equivalent collision energies. Only a fraction of the initial vibrational energy can be utilized to promote the reaction. The effect of rotational excitation on the reactivity differs depending on the initial vibrational state of methane. For the 1A1 and 1F2 vibrational states of methane, rotational excitation decreases the reaction probability even when comparing reaction probabilities at equivalent collision energies. In contrast, rotational energy is even more efficient than translational energy in increasing the reaction probability when the reaction starts from the 1E vibrational state of methane. All findings can be explained employing a transition state based interpretation of the reaction process.

  9. Cumulative reaction probabilities and transition state properties: a study of the F + H2 reaction and its deuterated isotopic variants.

    PubMed

    Aoiz, F J; Herrero, V J; Sáez Rábanos, V

    2008-07-14

    A comparative quantum mechanical (QM) and quasiclassical trajectory (QCT) study of the cumulative reaction probabilities (CRPs) is presented in this work for the F + H(2) reaction and its isotopic variants for low values of the total angular momentum J. The agreement between the two sets of calculations is very good with the exception of some features whose origin is genuinely QM. The agreement also extends to the CRP resolved in the helicity quantum number k. The most remarkable feature is the steplike structure, which becomes clearly distinct when the CRPs are resolved in odd and even rotational states j. The analysis of these steps shows that each successive increment is due to the opening of the consecutive rovibrational states of the H(2) or D(2) molecule, which, in this case, nearly coincide with those of the transition state. Moreover, the height of each step reflects the number of helicity states compatible with a given J and j values, thus indicating that the various helicity states for a specific j have basically the same contribution to the CRPs at a given total energy. As a consequence, the dependence with k of the reactivity is practically negligible, suggesting very small steric restrictions for any possible orientation of the reactants. This behavior is in marked contrast to that found in the D + H(2) reaction, wherein a strong k dependence was found in the threshold and magnitude of the CRP. The advantages of a combined QCT and QM approaches to the study of CRPs are emphasized in this work.

  10. Multiconfiguration Dirac-Hartree-Fock energy levels, oscillator strengths, transition probabilities, hyperfine constants and Landé g-factor of intermediate Rydberg series in neutral argon atom

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el; Hassouneh, Ola

    2017-04-01

    We computed the energy levels, oscillator strengths f_{ij}, the radiative transition rates A_{ij}, the Landé g -factor, the magnetic dipole moment and the electric quadrupole hyperfine constants of the intermediate Rydberg series ns [k]J ( 4 ≤ n ≤ 6), nd [k]J (3 ≤ n ≤ 4), np [k]J (4 ≤ n ≤ 5) relative to the ground state 3p6 1S0 for neutral argon atom spectra. The values are obtained in the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) approach. In this approach, Breit interaction, leading quantum electrodynamics (QED) effects and self-energy correction are taken into account. Moreover, these spectroscopic parameters have been calculated for many levels belonging to the configuration 3p54s, 3p55s, 3p56s, 3p53d, 3p54d, 3p54p, 3p55p as well as for transitions between levels 3p54s-3p54p, 3p54p-3p53d, 3p54p-3p55s, 3p55s-3p55p and 3p55p-3p56s. The large majority of the lines from the 4p-5s and 4p-3d, 5s-5p and 5p-6s transition arrays have been observed and the calculations are consistent with the J -file-sum rule. The obtained theoretical values are compared with previous experimental and theoretical data available in the literature. An overall satisfactory agreement is noticed allowing assessing the reliability of our data.

  11. Dipole moments and transition probabilities of the a 3Sigma(+)g - b 3Sigma(+)u system of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, S.; Dalgarno, A.; Posen, A.; Kwok, T. L.

    1986-01-01

    Multiconfiguration variational calculations of the electronic wave functions of the a 3Sigma(+)g and b 3Sigma(+)u states of molecular hydrogen are presented, and the electric dipole transition moment between them (of interest in connection with stellar atmospheres and the UV spectrum of the Jovian planets) is obtained. The dipole moment is used to calculate the probabilities of radiative transitions from the discrete vibrational levels of the a 3Sigma(+)g state to the vibrational continuum of the repulsive b 3Sigma(+)u state as functions of the wavelength of the emitted photons. The total transition probabilities and radiative lifetimes of the levels v prime = 0-20 are presented.

  12. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  13. Transition probabilities for the Au ((2)S, (2)D, and (2)P) with SiH(4) reaction.

    PubMed

    Pacheco-Sánchez, J H; Luna-García, H M; García-Cruz, L M; Novaro, O

    2010-01-28

    Transition probabilities on the interaction of the ground and the lowest excited states of gold Au ((2)S:5d(10)6s(1), (2)D:5d(9)6s(2), and (2)P:5d(10)6p(1)) with silane (SiH(4)) are studied through ab initio Hartree-Fock self-consistent field calculations, where the atom's core is represented by relativistic effective core potentials. These calculations are followed by a multiconfigurational self-consistent field study. The correlation energy is accounted for through extensive variational and perturbative second order multireference Moller-Plesset configuration interaction analysis of selected perturbations obtained by iterative process calculations using the CIPSI program package. It is found that the Au atom in the ((2)P:5d(10)6p(1)) state inserts in the Si-H bond. In this interaction its corresponding D (2)A(') potential energy surface is initially attractive and only becomes repulsive after encountering an avoided crossing with the initially repulsive C (2)A(') surface linked to the Au((2)D:5d(9)6s(2))-SiH(4) fragments. The A, B, and C (2)A(') curves derived from the Au((2)D:5d(9)6s(2)) atom interaction with silane are initially repulsive, each one of them showing two avoided crossings, while the A (2)A(') curve goes sharply downwards until it meets the X (2)A(') curve interacting adiabatically, which is linked with the Au((2)S:5d(10)6s(1))-SiH(4) moieties. The A (2)A(') curve becomes repulsive after the avoided crossing with the X (2)A('), curve. The lowest-lying X (2)A(') potential leads to the HAuSiH(3) X (2)A(') intermediate molecule. This intermediate molecule, diabatically correlated with the Au((2)P:5d(10)6p(1))+SiH(4) system which lies 3.34 kcal/mol above the ground state reactants, has been carefully characterized as have the dissociation channels leading to the AuH+SiH(3) and H+AuSiH(3) products. These products are reached from the HAuSiH(3) intermediate without any activation barrier. The Au-SiH(4) calculation results are successfully compared to

  14. Relativistic multireference Moller-Plesset perturbation theory calculations of the energy levels and transition probabilities in Ne-like xenon, tungsten, and uranium ions

    SciTech Connect

    Vilkas, Marius J.; Lopez-Encarnacion, Juan M.; Ishikawa, Yasuyuki

    2008-01-15

    Relativistic multireference many-body Moller-Plesset perturbation theory (MR-MP) calculations have been performed on neonlike xenon, tungsten, and uranium ions. The 2s{sup -1}nl and 2p{sup -1}nl (n {<=} 5, l {<=} 4) energy levels, lifetimes and transition probabilities are reported. The second-order MR-MP calculation of energy levels included mass shifts, frequency-dependent first-order Breit correction and Lamb shifts. The calculated transition energies are compared with other theoretical and experimental data. The synthetic radiative spectra is presented for different wavelength regions.

  15. Shell-model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Ressell, M. T.; Hjorth-Jensen, M.; Koonin, S. E.; Langanke, K.; Zuker, A. P.

    1999-05-01

    We demonstrate the feasibility of realistic shell-model Monte Carlo (SMMC) calculations spanning multiple major shells, using a realistic interaction whose bad saturation and shell properties have been corrected by a newly developed general prescription. Particular attention is paid to the approximate restoration of translational invariance. The model space consists of the full sd-pf shells. We include in the study some well-known T=0 nuclei and several unstable neutron-rich ones around N=20,28. The results indicate that SMMC calculations can reproduce binding energies, B(E2) transitions, and other observables with an interaction that is practically parameter free. Some interesting insight is gained into the nature of deep correlations. The validity of previous studies is confirmed.

  16. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  17. Atomic data from the Iron Project. XLIV. Transition probabilities and line ratios for Fe VI with fluorescent excitation in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Chen, Guo Xin; Pradhan, Anil K.

    2000-11-01

    Relativistic atomic structure calculations for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities among the first 80 fine-structure levels of Fe VI, dominated by configurations 3d3, 3d24s, and 3d24p, are carried out using the Breit-Pauli version of the code SUPERSTRUCTURE. Experimental energies are used to improve the accuracy of these transition probabilities. Employing the 80-level collision-radiative (CR) model with these dipole and forbidden transition probabilities, and Iron Project R-matrix collisional data, we present a number of [Fe VI] line ratios applicable to spectral diagnostics of photoionized H II regions. It is shown that continuum fluorescent excitation needs to be considered in CR models in order to interpret the observed line ratios of optical [Fe VI] lines in planetary nebulae NGC 6741, IC 351, and NGC 7662. The analysis leads to parametrization of line ratios as function of, and as constraints on, the electron density and temperature, as well as the effective radiation temperature of the central source and a geometrical dilution factor. The spectral diagnostics may also help ascertain observational uncertainties. The method may be generally applicable to other objects with intensive background radiation fields, such as novae and active galactic nuclei. The extensive new Iron Project radiative and collisional calculations enable a consistent analysis of many line ratios for the complex iron ions. The complete tables of transition probabilities are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  18. The ratios of emission probabilities of Auger electrons for 3d transition elements at 59,5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The ratios of emission probabilities were determined by using the measured K shell X-ray intensity ratio values for elements from Sc to Zn. For the experimental measurements, the samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The ratios of emission probabilities were denoted as uand v which means p(KLX)/p(KLL) and p(KXY)/p(KLL) respectively. The extracted values from the measured intensity ratios and calculated intensity ratios were compared with the earlier studies. It was found that the ratios of emission probabilities that evaluated from the calculated intensity ratios were agree well with the earlier studies except for Zn.

  19. Transition-Path Probability as a Test of Reaction-Coordinate Quality Reveals DNA Hairpin Folding Is a One-Dimensional Diffusive Process.

    PubMed

    Neupane, Krishna; Manuel, Ajay P; Lambert, John; Woodside, Michael T

    2015-03-19

    Chemical reactions are typically described in terms of progress along a reaction coordinate. However, the quality of reaction coordinates for describing reaction dynamics is seldom tested experimentally. We applied a framework for gauging reaction-coordinate quality based on transition-path analysis to experimental data for the first time, looking at folding trajectories of single DNA hairpin molecules measured under tension applied by optical tweezers. The conditional probability for being on a reactive transition path was compared with the probability expected for ideal diffusion over a 1D energy landscape based on the committor function. Analyzing measurements and simulations of hairpin folding where end-to-end extension is the reaction coordinate, after accounting for instrumental effects on the analysis, we found good agreement between transition-path and committor analyses for model two-state hairpins, demonstrating that folding is well-described by 1D diffusion. This work establishes transition-path analysis as a powerful new tool for testing experimental reaction-coordinate quality.

  20. Analysis and transition probabilities of the A 1Σ+-->X 1Σ+ system of KH excited by the 4880 Å line of the argon ion laser

    NASA Astrophysics Data System (ADS)

    Camacho, J. J.; Poyato, J. M. L.; Pardo, A.; Reyman, D.

    1998-12-01

    The fluorescence spectrum of KH induced by the 4880 Å line of an argon ion laser has been analyzed. This work extends previous observations on potassium hydride in visible region by using this excitation line. Along with the principal fluorescence series for the A 1Σ+→X1Σ+ band system, corresponding to the excitation transition, v'=7, J'=6←v″=0, J″=5, we analyzed a very interesting satellite rotational and vibrational structure induced by collision. The radiative transition probabilities for the A 1Σ+→X1Σ+ band system of KH have been calculated by using hybrid potential energy curves for the X 1Σ+ and A 1Σ+ states and transition dipole moment function from the radiative lifetimes of different vibrational levels (v'=5-22 in the A 1Σ+ state) reported by Giroud and Nedelec. The transition probabilities and lifetimes are in good agreement with the corresponding observed measurements usually within the experimental uncertainty. Collision-induced rotational and vibrational energy transfer in the A 1Σ+ state has been investigated. From the rotational and vibrational satellite structure of some bands, cross sections for rotational and vibrational energy transfer have been determined.

  1. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    SciTech Connect

    Nahar, Sultana N.

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  2. Effects of out-of-home mental health treatment on probability of criminal charge during the transition to adulthood.

    PubMed

    Pullmann, Michael D

    2011-07-01

    Criminal justice-related outcomes for youth who have been served in out-of-home mental health settings such as residential treatment and inpatient hospitalization are unclear. This study longitudinally modeled the changing probability of being charged with a crime from age 16 to 25, including being served in out-of-home treatment and aging into adulthood, while controlling for person-level covariates such as gender, race, past criminal charges, and mental health diagnoses. Results indicated that out-of-home treatment was related to a decreased probability of being charged with a crime during treatment. However, the preventive effect was small; estimates indicated only one criminal charge avoided for every 4 years of out-of-home treatment. Out-of-home treatment had no relationship to posttreatment probability of charge. Other significant contributors to being charged included gender, a substance use diagnosis, and an offense record prior to age 16. Evidence indicated that out-of-home treatment was used as an alternative to detention and incarceration for both juveniles and adults. © 2011 American Orthopsychiatric Association.

  3. Kβ/Kα X-Ray Transition-Probability Ratios for 8 Elements in the range 69 <= Z <= 76

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tiraşoǧlu, E.; Aylikci, V.; Cengİ Z, E.

    2007-04-01

    Kβ/Kα X-ray transition-probabilitiy ratios for 8 elements in the range 69 <= Z <= 76 were measured with an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. The characteristic K X-rays were produced by a 25 mCi 57Co annular source. Experimental results have been compared with theoretically calculated values and other available experimental results.

  4. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  5. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  6. Transition probability in cell proliferation, stochasticity in cell differentiation, and the restriction point of the cell cycle in one package.

    PubMed

    Golubev, A

    2012-09-01

    Clonal cells are known to display stochastically varying interdivision times (IMT) and stochastic choices of cell fates. These features are suggested in the present paper to stem from discrete transitions of genes between different modes of their engagement in transcription. These transitions are explained by stochastic events of assembly/disassembly of huge ensembles of transcription factors needed to built-up gene-specific transcription preinitiation complexes (PIC). The time required to assemble a PIC at a gene promoter by random collisions of numerous proteins may be long enough to be comparable with the cell cycle. Independently published findings are reviewed to show that active genes may display discontinuous patterns of transcriptional output consistent with stochastically varying periods of PIC presence or absence at their promoters, and that these periods may reach several hours. This timescale matches the time needed for synchronised clonal cells to pass the restriction point (RP) of the cell cycle. RP is suggested to correspond to cell state where cell fate is determined by competing discrete transcriptional events. Cell fate choice depends on the event that, by chance, has outpaced other events able to commit the cell to alternative fates. Simple modelling based on these premises is consistent with general features of cell kinetics, including RP passage dependance on mitogenic stimulation, IMT distributions conformance to exponentially modified Gaussian, the limited proliferative potential of untransformed cells, relationships between changes in cell proliferation and differentiation, and bimodal distributions of cells over expression levels of genes involved in stem cell differentiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  8. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    PubMed

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  9. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site.

  10. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  11. Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation of transition probabilities from local grand canonical partition functions

    NASA Astrophysics Data System (ADS)

    Szarecka, Agnieszka; White, Ronald P.; Meirovitch, Hagai

    2003-12-01

    The hypothetical scanning (HS) method provides the absolute entropy and free energy from a Boltzmann sample generated by Monte Carlo, molecular dynamics or any other exact simulation procedure. Thus far HS has been applied successfully to magnetic and polymer chain models; in this paper and the following one it is extended to fluid systems by treating a Lennard-Jones model of argon. With HS a probability Pi approximating the Boltzmann probability of system configuration i is calculated with a stepwise reconstruction procedure, based on adding atoms gradually layer-by-layer to an initially empty volume, where they are replaced in their positions at i. At each step a transition probability (TP) is obtained from local grand canonical partition functions calculated over a limited space of the still unvisited (future) volume, the larger this space the better the approximation. Pi is the product of the step TPs, where ln Pi is an upper bound of the absolute entropy, which leads to upper and lower bounds for the free energy. We demonstrate that very good results for the entropy and the free energy can be obtained for a wide range of densities of the argon system by calculating TPs that are based on only a very limited future volume.

  12. The role of the transition state in polyatomic reactions: initial state-selected reaction probabilities of the H + CH₄ → H₂ + CH₃ reaction.

    PubMed

    Welsch, Ralph; Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H-H-CH3-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  13. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH4 → H2 + CH3 reaction

    NASA Astrophysics Data System (ADS)

    Welsch, Ralph; Manthe, Uwe

    2014-11-01

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H-H-CH3-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  14. Energies, transition probabilities, predissociation rates, and lifetimes of the {{\\rm{H}}}_{2}, HD, and {{\\rm{D}}}_{2} c{}^{3}{{\\rm{\\Pi }}}_{u}^{-} state

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Liu, Melinda J.; Johnson, Paul V.; Malone, Charles P.

    2017-02-01

    Transition probabilities of H2, HD, and D2 c{}3{{{\\Pi }}}u--a{}3{{{Σ }}}g+ electric dipole, c{}3{{{\\Pi }}}u--b{}3{{{Σ }}}u+ discrete-continuum magnetic dipole, and electric quadrupole transitions have been calculated using accurate energies and ro-vibrational wave functions obtained from precise ab initio potential energy curves. The predissociation rates of the c{}3{{{\\Pi }}}u-(v,N) levels by direct and indirect spin-spin and spin-orbit coupling between c{}3{{{\\Pi }}}u--b{}3{{{Σ }}}u+ fine structure levels, have been also determined. The present investigation achieved good agreement with measured lifetimes of the c{}3{{{\\Pi }}}u- fine structure levels without adjustment. A comparison of the calculated and observed lifetimes of metastable H2, HD, and D2 suggests that the c{}3{{{\\Pi }}}u--b{}3{{{Σ }}}u+ magnetic dipole and electric quadrupole transition moments underestimate the spontaneous emission rate of the metastable levels by ˜370 s-1. The measured and calculated lifetimes of H2, HD, and D2 fine structure levels are in very good agreement after the adjustment of 370 s-1 to the spontaneous decay rate of the c{}3{{{\\Pi }}}u--b{}3{{{Σ }}}u+ transition. The calculated energies, transition probabilities, and predissociation rates obtained in the present work, along with the c{}3{{{\\Pi }}}u state excitation function, are sufficient to determine the c{}3{{{\\Pi }}}u state emission cross section, the kinetic energy distribution of H(1s) atoms, and the energy deposition rate of the X{}1{{{Σ }}}g+-c{}3{{{\\Pi }}}u excitation. In a previous investigation by Berg and Ottinger (1994 J. Chem. Phys. 100 8746), the authors were forced to insert a large scale factor into the predissociation rate in order to reconcile with measured lifetimes. Errors introduced in the approximations made in the previous investigations are discussed in the text. The H2 c{}3{{{\\Pi }}}u state has the second largest triplet state excitation cross section. Predissociation and

  15. Thermal properties and optical transition probabilities of Tm3 + doped TeO2-WO3 glass.

    PubMed

    Cenk, S; Demirata, B; Oveçoglu, M L; Ozen, G

    2001-10-01

    Glasses with the composition of (1 - x)TeO2 + (x)WO3, where x = 0.15, 0.25 and 0.3 were prepared and, their thermal and absorption measurements were carried out. Differential thermal analysis (DTA) curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while crystallization was not observed for the glasses containing a WO3 content of more than 15 mol%. All the glasses were found to be moisture-resistant. The absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of the Tm3+ ion were observed in the optical absorption spectra. Integrated absorption cross-sections of each band except that of 3H5 level was found to vary with the glass composition. Judd-Ofelt analysis was carried out for the samples doped with 1.0 mol% Tm2O3. The omega2 parameter shows the strongest dependence on the host composition and it increases with the increasing WO3 amount. The value of omega4 increases rather slowly while the value of omega6 is practically independent of the composition. The strong dependence of the parameter omega2 indicates that this parameter is related to the structural change and the symmetry of the local environment of the Tm3+ ions in this glass.

  16. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  17. L-subshell fluorescence yields and Coster-Kronig transition probabilities with a reliable uncertainty budget for selected high- and medium-Z elements

    NASA Astrophysics Data System (ADS)

    Kolbe, Michael; Hönicke, Philipp; Müller, Matthias; Beckhoff, Burkhard

    2012-10-01

    Photon-in/photon-out experiments at thin specimens have been carried out to determine L-subshell fluorescence yields as well as Coster-Kronig transition probabilities of Au, Pb, Mo, and Pd using radiometrically calibrated instrumentation in the Physikalisch-Technische Bundesanstalt (PTB) laboratory at the electron storage ring BESSY II in Berlin. An advanced approach was developed in order to derive the fluorescence line intensities by means of line sets of each subshell that were corrected for self-absorption and broadened with experimentally determined detector response functions. The respective photoelectric cross sections for each subshell were determined by means of transmission measurements of the same samples without any change in the experimental operating condition. All values derived were compared to those of earlier works. A completely traceable uncertainty budget is provided for the determined values.

  18. Atomic alignment effect on reactivity and on product alignment in the energy-transfer reaction of oriented Ar (3P2, 4s [3/2]2, M(J) = 2) + Kr (4p6, 1S0) → Ar (3p6, 1S0) + Kr (5p [3/2]2).

    PubMed

    Ohoyama, H

    2015-03-12

    Steric effect for the formation of Kr (5p [3/2]₂) in the energy transfer reaction of Ar (³P₂, 4s [3/2]₂) + Kr has been studied by using an oriented Ar (³P₂, 4s [3/2]₂, M(J) = 2) beam at a collision energy of ∼0.09 eV. The emission intensity of Kr (5p [3/2]₂) is ca. 2 times enhanced when the angular momentum (J(Ar)) of Ar (³P₂) is aligned perpendicular to the relative velocity vector (v(R)). In addition, the Kr (5p [3/2]₂) emission is highly polarized parallel to v(R) (I(∥)/I(⊥) ∼ 1.2) when JAr is aligned perpendicular to v(R). The observed polarization moments indicate that the alignment of the unpaired Ar (3p) orbital of Ar (³P₂) to v(R), (Σ (|L′| = 0), Π (|L′| = 1)), dominates the energy transfer probability (σ(Π)(∥): σ(Σ)(∥): σ(Π)(⊥): σ(Σ)(⊥) = 0.49:1.33:0.55:1.23) and also the alignment of the Kr (5p) orbital of Kr (5p [3/2]₂) to v(R): the Σ-configuration of the Ar (3p) orbital leads to the parallel alignment (Σ-configuration) of the Kr(5p) orbital to v(R), conversely, the Π-configuration of Ar (3p) orbital leads to the perpendicular alignment (Π-configuration) of the Kr(5p) orbital. In addition, the selectivity of the alignment of the Kr (5p) orbital turns out to vary from perpendicular to parallel as the collision energy increases after a threshold down to 0.03 eV.

  19. Absolute entropy and free energy of fluids using the hypothetical scanning method. II. Transition probabilities from canonical Monte Carlo simulations of partial systems

    NASA Astrophysics Data System (ADS)

    White, Ronald P.; Meirovitch, Hagai

    2003-12-01

    A variant of the hypothetical scanning (HS) method for calculating the absolute entropy and free energy of fluids is developed, as applied to systems of Lennard-Jones atoms (liquid argon). As in the preceding paper (Paper I), a probability Pi approximating the Boltzmann probability of system configuration i, is calculated with a reconstruction procedure based on adding the atoms gradually to an initially empty volume, where they are placed in their positions at i; in this process the volume is divided into cubic cells, which are visited layer-by-layer, line-by-line. At each step a transition probability (TP) is calculated and the product of all the TPs leads to Pi. At step k, k-1 cells have already been treated, where among them Nk are occupied by an atom. A canonical metropolis Monte Carlo (MC) simulation is carried out over a portion of the still unvisited (future) volume thus providing an approximate representation of the N-Nk as yet untreated (future) atoms. The TP of target cell k is determined from the number of visits of future atoms to this cell during the simulation. This MC version of HS, called HSMC, is based on a relatively small number of efficiency parameters; their number does not grow and their values are not changed as the number of the treated future atoms is increased (i.e., as the approximation improves); therefore, implementing HSMC for a relatively large number of future atoms (up to 40 in this study) is straightforward. Indeed, excellent results have been obtained for the free energy and the entropy.

  20. The Neolithic Demographic Transition in Europe: Correlation with Juvenility Index Supports Interpretation of the Summed Calibrated Radiocarbon Date Probability Distribution (SCDPD) as a Valid Demographic Proxy

    PubMed Central

    Downey, Sean S.; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture. PMID:25153481

  1. The neolithic demographic transition in Europe: correlation with juvenility index supports interpretation of the summed calibrated radiocarbon date probability distribution (SCDPD) as a valid demographic proxy.

    PubMed

    Downey, Sean S; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture.

  2. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  3. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sodium-like ions (Co XVII-Kr XXVI)

    SciTech Connect

    Younis, W.O. . E-mail: waleedegy2005@yahoo.com; Allam, S.H.; El-Sherbini, Th.M.

    2006-03-15

    We have calculated fine-structure energy levels, oscillator strengths and transition probabilities for transitions among the terms belonging to the 1s{sup 2}2s{sup 2}2p{sup 6} ns ({sup 2}S), 1s{sup 2}2s{sup 2}2p{sup 6} np ({sup 2}P), 1s{sup 2}2s{sup 2}2p{sup 6} nd ({sup 2}D) (n = 3, 4, 5), and 1s{sup 2}2s{sup 2}2p{sup 6} nf ({sup 2}F) (n = 4, 5) configurations. The calculations are based upon the general configuration-interaction code CIV3 of Hibbert which uses orthonormal orbitals of radial functions expressed as superpositions of normalized Slater-type orbitals. Our calculated values are compared with experimental and other theoretical results where a satisfactory agreement is found. We also report on some unpublished energy values and oscillator strengths.

  4. The neuronal transition probability (NTP) model for the dynamic progression of non-REM sleep EEG: the role of the suprachiasmatic nucleus.

    PubMed

    Merica, Helli; Fortune, Ronald D

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP)--in fitting the data well--successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for TIMING the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the PATTERN of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1-4, using data from 30 healthy subjects aged 20-30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG.

  5. Relative transition probabilities for krypton.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1972-01-01

    First experimental line strength data for the visible Kr II lines and for several of the more prominent Kr I lines are given. The spectroscopic light source used is the thermal plasma behind the reflected shock wave in a gas-driven shock tube. A 3/4-m spectrograph and a 1-m spectrograph were employed simultaneously to provide redundant photometry. The data are compared with other measurements and with theoretical calculations.

  6. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  7. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  8. Transitions.

    ERIC Educational Resources Information Center

    Agnew, Jeanne L.; Choike, James R.

    1987-01-01

    Mathematical observations are made about some continuous curves, called transitions, encountered in well-known experiences. The transition parabola, the transition spiral, and the sidestep maneuver are presented. (MNS)

  9. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  10. Photoionization of Cl+ from the 3s23p4 3P2,1,0 and the 3s23p4 1D2,1S0 states in the energy range 19-28 eV

    NASA Astrophysics Data System (ADS)

    McLaughlin, Brendan M.

    2017-01-01

    Absolute photoionization cross-sections for the Cl+ ion in its ground and the metastable states, 3s23p4 3P2,1,0 and 3s23p4 1D2,1S0, were measured recently at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at a photon energy resolution of 15 meV in the energy range 19-28 eV. These measurements are compared with large-scale Dirac-Coulomb R-matrix calculations in the same energy range. Photoionization of this sulphur-like chlorine ion is characterized by multiple Rydberg series of auto-ionizing resonances superimposed on a direct photoionization continuum. A wealth of resonance features observed in the experimental spectra is spectroscopically assigned, and their resonance parameters are tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from this study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions, are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions, are also found in the spectra.

  11. Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Shimada, Mitsuhiro; Watanabe, Shin; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu

    2016-06-01

    We perform simultaneous analysis of (1) matter radii, (2) B (E 2 ;0+→2+) transition probabilities, and (3) excitation energies, E (2+) and E (4+) , for Mg-4024 by using the beyond-mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for rm,B (E 2 ) , and E (2+) and E (4+) , indicating that it is quite useful for data analysis; particularly for low-lying states. We also discuss the absolute value of the deformation parameter β2 deduced from measured values of B (E 2 ) and rm. This framework makes it possible to investigate the effects of β2 deformation, the change in β2 due to restoration of rotational symmetry, β2 configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation, we clarify which effect is important for each of the three measurements and propose the kinds of BMF calculations that are practical for each of the three kinds of observables.

  12. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  13. Probability Theory

    NASA Astrophysics Data System (ADS)

    Jaynes, E. T.; Bretthorst, G. Larry

    2003-04-01

    Foreword; Preface; Part I. Principles and Elementary Applications: 1. Plausible reasoning; 2. The quantitative rules; 3. Elementary sampling theory; 4. Elementary hypothesis testing; 5. Queer uses for probability theory; 6. Elementary parameter estimation; 7. The central, Gaussian or normal distribution; 8. Sufficiency, ancillarity, and all that; 9. Repetitive experiments, probability and frequency; 10. Physics of 'random experiments'; Part II. Advanced Applications: 11. Discrete prior probabilities, the entropy principle; 12. Ignorance priors and transformation groups; 13. Decision theory: historical background; 14. Simple applications of decision theory; 15. Paradoxes of probability theory; 16. Orthodox methods: historical background; 17. Principles and pathology of orthodox statistics; 18. The Ap distribution and rule of succession; 19. Physical measurements; 20. Model comparison; 21. Outliers and robustness; 22. Introduction to communication theory; References; Appendix A. Other approaches to probability theory; Appendix B. Mathematical formalities and style; Appendix C. Convolutions and cumulants.

  14. No Magic Bullet: A Theory-Based Meta-Analysis of Markov Transition Probabilities in Studies of Service Systems for Persons With Mental Disabilities.

    PubMed

    Leff, Hugh Stephen; Chow, Clifton M; Graves, Stephen C

    2017-03-01

    A random-effects meta-analysis of studies that used Markov transition probabilities (TPs) to describe outcomes for mental health service systems of differing quality for persons with serious mental illness was implemented to improve the scientific understanding of systems performance, to use in planning simulations to project service system costs and outcomes over time, and to test a theory of how outcomes for systems varying in quality differ. Nineteen systems described in 12 studies were coded as basic (B), maintenance (M), and recovery oriented (R) on the basis of descriptions of services provided. TPs for studies were aligned with a common functional-level framework, converted to a one-month time period, synthesized, and compared with theory-based expectations. Meta-regression was employed to explore associations between TPs and characteristics of service recipients and studies. R systems performed better than M and B systems. However, M systems did not perform better than B systems. All systems showed negative as well as positive TPs. For approximately one-third of synthesized TPs, substantial interstudy heterogeneity was noted. Associations were found between TPs and service recipient and study variables Conclusions: Conceptualizing systems as B, M, and R has potential for improving scientific understanding and systems planning. R systems appear more effective than B and M systems, although there is no "magic bullet" system for all service recipients. Interstudy heterogeneity indicates need for common approaches to reporting service recipient states, time periods for TPs, service recipient attributes, and service system characteristics. TPs found should be used in Markov simulations to project system effectiveness and costs of over time.

  15. Lexicographic Probability, Conditional Probability, and Nonstandard Probability

    DTIC Science & Technology

    2009-11-11

    the following conditions: CP1. µ(U |U) = 1 if U ∈ F ′. CP2 . µ(V1 ∪ V2 |U) = µ(V1 |U) + µ(V2 |U) if V1 ∩ V2 = ∅, U ∈ F ′, and V1, V2 ∈ F . CP3. µ(V |U...µ(V |X)× µ(X |U) if V ⊆ X ⊆ U , U,X ∈ F ′, V ∈ F . Note that it follows from CP1 and CP2 that µ(· |U) is a probability measure on (W,F) (and, in... CP2 hold. This is easily seen to determine µ. Moreover, µ vaciously satisfies CP3, since there do not exist distinct sets U and X in F ′ such that U

  16. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  17. Ab initio oscillator strengths and transition probabilities of transitions from 2s{sup 2}2p{sup 2}3l and 2s2p{sup 3}3l in S X

    SciTech Connect

    Karpuskiene, R. . E-mail: karra@itpa.lt; Bogdanovich, P.; Udris, A.

    2005-01-01

    Ab initio energy spectra of the ground configuration 2s{sup 2}2p{sup 3} and the excited configurations 2s2p{sup 4}, 2p{sup 5}, 2s{sup 2}2p{sup 2}3s, 2s{sup 2}2p{sup 2}3p, 2s{sup 2}2p{sup 2}3d, 2s2p{sup 3}3s, 2s2p{sup 3}3p, and 2s2p{sup 3}3d of nitrogen-like sulphur S X have been calculated using the configuration interaction method. The wavelengths, oscillator strengths, and the emission transition probabilities from configurations 2s{sup 2}2p{sup 2}3l and 2s2p{sup 3}3l are obtained. The calculated results are compared with the recent experimental data.

  18. Cumulative reaction probabilities and transition state properties: a study of the H+ + H2 and H+ + D2 proton exchange reactions.

    PubMed

    Jambrina, P G; Aoiz, F J; Eyles, C J; Herrero, V J; Sáez Rábanos, V

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H(+) + H(2) and H(+) + D(2) reactions at collision energies up to 1.2 eV and total angular momentum J = 0-4. A marked resonance structure is found in the QM CRP, most especially for the H(3)(+) system and J = 0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H(+) + D(2) isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H(+) + D(2) reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by the dynamical and statistical

  19. Confidence Probability versus Detection Probability

    SciTech Connect

    Axelrod, M

    2005-08-18

    In a discovery sampling activity the auditor seeks to vet an inventory by measuring (or inspecting) a random sample of items from the inventory. When the auditor finds every sample item in compliance, he must then make a confidence statement about the whole inventory. For example, the auditor might say: ''We believe that this inventory of 100 items contains no more than 5 defectives with 95% confidence.'' Note this is a retrospective statement in that it asserts something about the inventory after the sample was selected and measured. Contrast this to the prospective statement: ''We will detect the existence of more than 5 defective items in this inventory with 95% probability.'' The former uses confidence probability while the latter uses detection probability. For a given sample size, the two probabilities need not be equal, indeed they could differ significantly. Both these probabilities critically depend on the auditor's prior belief about the number of defectives in the inventory and how he defines non-compliance. In other words, the answer strongly depends on how the question is framed.

  20. Physical nature of the anomalies in the temperature dependence of the probability of the Mössbauer effect near phase transitions

    NASA Astrophysics Data System (ADS)

    Egorushkin, V. E.; Lotkov, A. I.; Anokhin, S. V.

    1991-11-01

    A mechanism for microstructural changes in the vicinity of phase transitions is proposed, which explains the anomaly in the temperature dependence of the Mössbauer effect in high temperature superconducting ceramics with 1-2-3 composition before the transition to the superconducting state, and in Ti(Ni, Fe) alloys before the martensite transformation into the R-phase.

  1. Improved Log(gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J.

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  2. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  3. A random matrix/transition state theory for the probability distribution of state-specific unimolecular decay rates: Generalization to include total angular momentum conservation and other dynamical symmetries

    SciTech Connect

    Hernandez, R.; Miller, W.H.; Moore, C.B. ); Polik, W.F. )

    1993-07-15

    A previously developed random matrix/transition state theory (RM/TST) model for the probability distribution of state-specific unimolecular decay rates has been generalized to incorporate total angular momentum conservation and other dynamical symmetries. The model is made into a predictive theory by using a semiclassical method to determine the transmission probabilities of a nonseparable rovibrational Hamiltonian at the transition state. The overall theory gives a good description of the state-specific rates for the D[sub 2]CO[r arrow]D[sub 2]+CO unimolecular decay; in particular, it describes the dependence of the distribution of rates on total angular momentum [ital J]. Comparison of the experimental values with results of the RM/TST theory suggests that there is mixing among the rovibrational states.

  4. The sticking probability for H 2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lytken, O.; Chorkendorff, I.

    2008-05-01

    The sticking probability for H2 on Ni, Co, Cu, Rh, Ru, Pd, Ir and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 °C. Carbon monoxide inhibits the sticking probability significantly for all the metals, even at 200 °C. In the presence of 10 ppm CO, the sticking probability increases in the order Ir, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2 in presence of CO relative to its value in pure hydrogen is largest for Pd and smallest for Pt and Ir. The high sensitivity to CO seen for Ir and Pt is explained by the fact that the difference in desorption energy for H and CO is largest for those metals.

  5. Relative probabilities of spontaneous transitions in v″ progressions of the G1Σ{g/+}, v'→ B 1Σ{u/+}, v″ bands of the H2 molecule

    NASA Astrophysics Data System (ADS)

    Astashkevich, S. A.; Kalachev, M. V.; Lavrov, B. P.

    2000-06-01

    The probabilities of spontaneous transitions in v″ progressions of the G 1Σ {g/+}→ B 1Σ{u/+} bands of the H2 molecule (the 3 D→2 B electronic transition in notations of G.H. Dieke) are, for the first time, experimentally studied. The line strength ratios were measured for 78 G 1Σ{g/+}, v', J'→ B 1Σ{u/+}, v″, J″ electronic-vibrational-rotational spectral lines having a common upper level but belonging to different bands of v″ progressions (the vibrational branching coefficients). For this purpose, the intensities of lines of the P and R branches, emitted by a low-pressure plasma and corresponding to different values of the rotational ( J'=0-11) and vibrational ( v'=0-3 and v″=0-7) quantum numbers, were used. It was found that the changes in the vibrational branching coefficients with variation of v' and v″ are significant (up to a factor of 20). For most bands studied, the dependences of the vibrational branching coefficients on the rotational quantum number J' of an upper level are rather weak and do not exceed 30%. It was established that the difference between the experimental values of ratios of the vibronic transition probabilities (summed over J″) and the results of calculation in the adiabatic approximation strongly depends on v', reaching a factor of 25 for a transition from the v'=2 level. At the same time, the discrepancy between the experimental data and the results of nonadiabatic ab initio calculations lies between 1.0 and 2.3.

  6. Optical transition probabilities in Er3+- and Tm3+-doped LiLa9(SiO4)6O2 crystals.

    PubMed

    Cantelar, E; Quintanilla, M; Cussó, F; Cavalli, E; Bettinelli, M

    2010-06-02

    In this work, Er(3+) and Tm(3+)-doped LiLa(9)(SiO(4))(6)O(2) crystals have been grown from an Li(2)MoO(4) flux in the 1360-940 °C temperature range. Optical absorption spectra have been measured to obtain the experimental oscillator strengths of the transitions from the ground state to the excited levels. Judd-Ofelt calculations have been performed to estimate the Ω(2), Ω(4) and Ω(6) intensity parameters. The dynamics of selected Er(3+) and Tm(3+) manifolds have been investigated under selective pulsed excitation in order to determine the energy gap law by comparing the observed decay rates with the Judd-Ofelt predictions.

  7. Energy levels, oscillator strengths, line strengths, and transition probabilities in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Ma, Kun; Wang, Hong-Jian; Wang, Kai; Liu, Xiao-Bin; Zeng, Jiao-Long

    2017-01-01

    Detailed calculations using the multi-configuration Dirac-Fock (MCDF) method are carried out for the lowest 64 fine-structure levels of the 3s23p2, 3s23p3d, 3s3p3, 3s3p23d, 3s23d2, and 3p4 configurations in Si-like ions of La XLIII, Er LIV, Tm LV, and Yb LVI. Energies, oscillator strengths, wavelengths, line strengths, and radiative electric dipole transition rates are given for all ions. A parallel calculation using the many-body perturbation theory (MBPT) method is also carried out to assess the present energy levels accuracy. Comparisons are performed between these two sets of energy levels, as well as with other available results, showing that they are in good agreement with each other within 0.5%. These high accuracy results can be used to the modeling and the interpretation of astrophysical objects and fusion plasmas.

  8. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  9. Measurement of the O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability by the method of intracavity laser spectroscopy

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Podmar'kov, Yu P; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P

    2005-04-30

    The method of intracavity laser spectroscopy using a Co:MgF{sub 2} laser is applied to record the absorption spectra from the first excited a{sup 1{Delta}}{sub g} state of gaseous molecular oxygen at the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition at 1.91 {mu}m. The gas flow from a chemical singlet oxygen generator with a known concentration of singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g}) was supplied to the cavity of the Co:MgF{sub 2} laser. The absorption line intensities are measured for five spectral lines of the Q-branch of the 0-0 vibrational band for the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition. The O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability calculated from these data was (1.20 {+-} 0.25) x 10{sup -3} s{sup -1}. (laser applications and other topics in quantum electronics)

  10. Finite-time H∞ control for a class of discrete-time Markovian jump systems with partly unknown time-varying transition probabilities subject to average dwell time switching

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zhang, Yuping; Li, Yuanyuan

    2015-04-01

    An extension of a fixed transition probability (TP) Markovian switching model to combine time-varying TPs has offered another set of useful regime-switching models. This paper is concerned with the problem of finite-time H∞ control for a class of discrete-time Markovian jump systems with partly unknown time-varying TPs subject to average dwell time switching. The so-called time-varying TPs mean that the TPs are varying but invariant within an interval. The variation of the TPs considered here is subject to a class of slow switching signal. Based on selecting the appropriate Lyapunov-Krasovskii functional, sufficient conditions of finite-time boundedness of Markovian jump systems are derived and the system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method.

  11. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  12. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  13. Effect of the Framework Convention on Tobacco Control and Voluntary Industry Health Warning Labels on Passage of Mandated Cigarette Warning Labels From 1965 to 2012: Transition Probability and Event History Analyses

    PubMed Central

    Sanders-Jackson, Ashley N.; Song, Anna V.; Hiilamo, Heikki

    2013-01-01

    Objectives. We quantified the pattern and passage rate of cigarette package health warning labels (HWLs), including the effect of the Framework Convention on Tobacco Control (FCTC) and HWLs voluntarily implemented by tobacco companies. Methods. We used transition probability matrices to describe the pattern of HWL passage and change rate in 4 periods. We used event history analysis to estimate the effect of the FCTC on adoption and to compare that effect between countries with voluntary and mandatory HWLs. Results. The number of HWLs passed during each period accelerated, from a transition rate among countries that changed from 2.42 per year in 1965–1977 to 6.71 in 1977–1984, 8.42 in 1984–2003, and 22.33 in 2003–2012. The FCTC significantly accelerated passage of FCTC-compliant HWLs for countries with initially mandatory policies with a hazard of 1.27 per year (95% confidence interval = 1.11, 1.45), but only marginally increased the hazard for countries that had an industry voluntary HWL of 1.68 per year (95% confidence interval = 0.95, 2.97). Conclusions. Passage of HWLs is accelerating, and the FCTC is associated with further acceleration. Industry voluntary HWLs slowed mandated HWLs. PMID:24028248

  14. Infants Segment Continuous Events Using Transitional Probabilities

    ERIC Educational Resources Information Center

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants…

  15. Quantum transition probabilities and classical Fourier harmonics

    NASA Astrophysics Data System (ADS)

    Fedak, William

    2002-03-01

    A quantum dot is an atomic-like system consisting of a semiconductor nanoparticle surrounded by an insulator. When an electron in the valence band of the semiconductor becomes excited, the electron-hole pair that is created (called an exiton) acts much like a hydrogen atom. Investigations have demonstrated the potential application of quantum dots for optical switching and optical memory. A model of a truncated pyramidal InAs quantum dot in an InP matrix will be presented and described. The model uses a single band envelope theory that accurately describes the truncated pyramidal shape of the dot. The matrix representation of the Hamiltonian is calculated in a basis consisting of kinetic energy eigenfunctions that vanish on the surface of a cube containing the dot. The eigenvalues of this matrix are the energy levels. These results will then be compared with photoluminescence measurements of energy levels conducted at the Microelectronics-Photonics Center at the University of Arkansas - Fayetteville

  16. Infants Segment Continuous Events Using Transitional Probabilities

    ERIC Educational Resources Information Center

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants…

  17. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  18. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  19. Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-Process-Rich, Metal-Poor Stars, and Rare Earth Lab Data Summary

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Sneden, C.; Cowan, J. J.; Ivans, I. I.; Den Hartog, E. A.

    2009-05-01

    Recent radiative lifetime measurements accurate to ±5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log ɛ = 1.61 ± 0.01 (σ = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log ɛ = 1.61 ± 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17°3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of ±0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

  20. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  1. What Are Probability Surveys?

    EPA Pesticide Factsheets

    The National Aquatic Resource Surveys (NARS) use probability-survey designs to assess the condition of the nation’s waters. In probability surveys (also known as sample-surveys or statistical surveys), sampling sites are selected randomly.

  2. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  3. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  4. Dynamical Simulation of Probabilities

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.

  5. Dynamical Simulation of Probabilities

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.

  6. Cumulative reaction probabilities and transition state properties: A study of the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} proton exchange reactions

    SciTech Connect

    Jambrina, P. G.; Aoiz, F. J.; Eyles, C. J.; Herrero, V. J.; Saez Rabanos, V.

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions at collision energies up to 1.2 eV and total angular momentum J=0-4. A marked resonance structure is found in the QM CRP, most especially for the H{sub 3}{sup +} system and J=0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H{sup +}+D{sub 2} isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H{sup +}+D{sub 2} reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by

  7. Probability and radical behaviorism

    PubMed Central

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  8. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  9. Statistics and Probability

    NASA Astrophysics Data System (ADS)

    Laktineh, Imad

    2010-04-01

    This ourse constitutes a brief introduction to probability applications in high energy physis. First the mathematical tools related to the diferent probability conepts are introduced. The probability distributions which are commonly used in high energy physics and their characteristics are then shown and commented. The central limit theorem and its consequences are analysed. Finally some numerical methods used to produce diferent kinds of probability distribution are presented. The full article (17 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  10. PROBABILITY AND STATISTICS.

    DTIC Science & Technology

    STATISTICAL ANALYSIS, REPORTS), (*PROBABILITY, REPORTS), INFORMATION THEORY, DIFFERENTIAL EQUATIONS, STATISTICAL PROCESSES, STOCHASTIC PROCESSES, MULTIVARIATE ANALYSIS, DISTRIBUTION THEORY , DECISION THEORY, MEASURE THEORY, OPTIMIZATION

  11. Derivation of quantum probability from measurement

    NASA Astrophysics Data System (ADS)

    Herbut, Fedor

    2016-05-01

    To begin with, it is pointed out that the form of the quantum probability formula originates in the very initial state of the object system as seen when the state is expanded with the eigenprojectors of the measured observable. Making use of the probability reproducibility condition, which is a key concept in unitary measurement theory, one obtains the relevant coherent distribution of the complete-measurement results in the final unitary-measurement state in agreement with the mentioned probability formula. Treating the transition from the final unitary, or premeasurement, state, where all possible results are present, to one complete-measurement result sketchily in the usual way, the well-known probability formula is derived. In conclusion it is pointed out that the entire argument is only formal unless one makes it physical assuming that the quantum probability law is valid in the extreme case of probability-one (certain) events (projectors).

  12. Probability and Statistics.

    ERIC Educational Resources Information Center

    Barnes, Bernis, Ed.; And Others

    This teacher's guide to probability and statistics contains three major sections. The first section on elementary combinatorial principles includes activities, student problems, and suggested teaching procedures for the multiplication principle, permutations, and combinations. Section two develops an intuitive approach to probability through…

  13. Teachers' Understandings of Probability

    ERIC Educational Resources Information Center

    Liu, Yan; Thompson, Patrick

    2007-01-01

    Probability is an important idea with a remarkably wide range of applications. However, psychological and instructional studies conducted in the last two decades have consistently documented poor understanding of probability among different populations across different settings. The purpose of this study is to develop a theoretical framework for…

  14. On the character of the optical transitions in closed-shell transition metal oxides doped with Bi(3).

    PubMed

    Amer, M; Boutinaud, P

    2017-01-18

    A criterion is introduced to achieve the assignment of the optical features observed in the excitation spectra of Bi(3+) ions incorporated in closed-shell transition metal oxides. The model is based on the calculation of the energy associated with the lowest (1)S0 → (3)P1 intra-ionic transition of Bi(3+) (A-like transition), the metal-to-metal charge transfer (D-like transition) and the Stokes shift of the corresponding emission.

  15. Guide star probabilities

    NASA Technical Reports Server (NTRS)

    Soneira, R. M.; Bahcall, J. N.

    1981-01-01

    Probabilities are calculated for acquiring suitable guide stars (GS) with the fine guidance system (FGS) of the space telescope. A number of the considerations and techniques described are also relevant for other space astronomy missions. The constraints of the FGS are reviewed. The available data on bright star densities are summarized and a previous error in the literature is corrected. Separate analytic and Monte Carlo calculations of the probabilities are described. A simulation of space telescope pointing is carried out using the Weistrop north galactic pole catalog of bright stars. Sufficient information is presented so that the probabilities of acquisition can be estimated as a function of position in the sky. The probability of acquiring suitable guide stars is greatly increased if the FGS can allow an appreciable difference between the (bright) primary GS limiting magnitude and the (fainter) secondary GS limiting magnitude.

  16. Bayesian Brains without Probabilities.

    PubMed

    Sanborn, Adam N; Chater, Nick

    2016-12-01

    Bayesian explanations have swept through cognitive science over the past two decades, from intuitive physics and causal learning, to perception, motor control and language. Yet people flounder with even the simplest probability questions. What explains this apparent paradox? How can a supposedly Bayesian brain reason so poorly with probabilities? In this paper, we propose a direct and perhaps unexpected answer: that Bayesian brains need not represent or calculate probabilities at all and are, indeed, poorly adapted to do so. Instead, the brain is a Bayesian sampler. Only with infinite samples does a Bayesian sampler conform to the laws of probability; with finite samples it systematically generates classic probabilistic reasoning errors, including the unpacking effect, base-rate neglect, and the conjunction fallacy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Probability with Roulette

    ERIC Educational Resources Information Center

    Marshall, Jennings B.

    2007-01-01

    This article describes how roulette can be used to teach basic concepts of probability. Various bets are used to illustrate the computation of expected value. A betting system shows variations in patterns that often appear in random events.

  18. Asteroidal collision probabilities

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Greenberg, R.

    1993-05-01

    Several past calculations of collision probabilities between pairs of bodies on independent orbits have yielded inconsistent results. We review the methodologies and identify their various problems. Greenberg's (1982) collision probability formalism (now with a corrected symmetry assumption) is equivalent to Wetherill's (1967) approach, except that it includes a way to avoid singularities near apsides. That method shows that the procedure by Namiki and Binzel (1991) was accurate for those cases where singularities did not arise.

  19. Rationalizing Hybrid Earthquake Probabilities

    NASA Astrophysics Data System (ADS)

    Gomberg, J.; Reasenberg, P.; Beeler, N.; Cocco, M.; Belardinelli, M.

    2003-12-01

    An approach to including stress transfer and frictional effects in estimates of the probability of failure of a single fault affected by a nearby earthquake has been suggested in Stein et al. (1997). This `hybrid' approach combines conditional probabilities, which depend on the time elapsed since the last earthquake on the affected fault, with Poissonian probabilities that account for friction and depend only on the time since the perturbing earthquake. The latter are based on the seismicity rate change model developed by Dieterich (1994) to explain the temporal behavior of aftershock sequences in terms of rate-state frictional processes. The model assumes an infinite population of nucleation sites that are near failure at the time of the perturbing earthquake. In the hybrid approach, assuming the Dieterich model can lead to significant transient increases in failure probability. We explore some of the implications of applying the Dieterich model to a single fault and its impact on the hybrid probabilities. We present two interpretations that we believe can rationalize the use of the hybrid approach. In the first, a statistical distribution representing uncertainties in elapsed and/or mean recurrence time on the fault serves as a proxy for Dieterich's population of nucleation sites. In the second, we imagine a population of nucleation patches distributed over the fault with a distribution of maturities. In both cases we find that the probability depends on the time since the last earthquake. In particular, the size of the transient probability increase may only be significant for faults already close to failure. Neglecting the maturity of a fault may lead to overestimated rate and probability increases.

  20. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  1. Probabilities in implicit learning.

    PubMed

    Tseng, Philip; Hsu, Tzu-Yu; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung

    2011-01-01

    The visual system possesses a remarkable ability in learning regularities from the environment. In the case of contextual cuing, predictive visual contexts such as spatial configurations are implicitly learned, retained, and used to facilitate visual search-all without one's subjective awareness and conscious effort. Here we investigated whether implicit learning and its facilitatory effects are sensitive to the statistical property of such implicit knowledge. In other words, are highly probable events learned better than less probable ones even when such learning is implicit? We systematically varied the frequencies of context repetition to alter the degrees of learning. Our results showed that search efficiency increased consistently as contextual probabilities increased. Thus, the visual contexts, along with their probability of occurrences, were both picked up by the visual system. Furthermore, even when the total number of exposures was held constant between each probability, the highest probability still enjoyed a greater cuing effect, suggesting that the temporal aspect of implicit learning is also an important factor to consider in addition to the effect of mere frequency. Together, these findings suggest that implicit learning, although bypassing observers' conscious encoding and retrieval effort, behaves much like explicit learning in the sense that its facilitatory effect also varies as a function of its associative strengths.

  2. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  3. Probability detection mechanisms and motor learning.

    PubMed

    Lungu, O V; Wächter, T; Liu, T; Willingham, D T; Ashe, J

    2004-11-01

    The automatic detection of patterns or regularities in the environment is central to certain forms of motor learning, which are largely procedural and implicit. The rules underlying the detection and use of probabilistic information in the perceptual-motor domain are largely unknown. We conducted two experiments involving a motor learning task with direct and crossed mapping of motor responses in which probabilities were present at the stimulus set level, the response set level, and at the level of stimulus-response (S-R) mapping. We manipulated only one level at a time, while controlling for the other two. The results show that probabilities were detected only when present at the S-R mapping and motor levels, but not at the perceptual one (experiment 1), unless the perceptual features have a dimensional overlap with the S-R mapping rule (experiment 2). The effects of probability detection were mostly facilitatory at the S-R mapping, both facilitatory and inhibitory at the perceptual level, and predominantly inhibitory at the response-set level. The facilitatory effects were based on learning the absolute frequencies first and transitional probabilities later (for the S-R mapping rule) or both types of information at the same time (for perceptual level), whereas the inhibitory effects were based on learning first the transitional probabilities. Our data suggest that both absolute frequencies and transitional probabilities are used in motor learning, but in different temporal orders, according to the probabilistic properties of the environment. The results support the idea that separate neural circuits may be involved in detecting absolute frequencies as compared to transitional probabilities.

  4. The perception of probability.

    PubMed

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making.

  5. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  6. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  7. Estimating tail probabilities

    SciTech Connect

    Carr, D.B.; Tolley, H.D.

    1982-12-01

    This paper investigates procedures for univariate nonparametric estimation of tail probabilities. Extrapolated values for tail probabilities beyond the data are also obtained based on the shape of the density in the tail. Several estimators which use exponential weighting are described. These are compared in a Monte Carlo study to nonweighted estimators, to the empirical cdf, to an integrated kernel, to a Fourier series estimate, to a penalized likelihood estimate and a maximum likelihood estimate. Selected weighted estimators are shown to compare favorably to many of these standard estimators for the sampling distributions investigated.

  8. Varga: On Probability.

    ERIC Educational Resources Information Center

    Varga, Tamas

    This booklet resulted from a 1980 visit by the author, a Hungarian mathematics educator, to the Teachers' Center Project at Southern Illinois University at Edwardsville. Included are activities and problems that make probablility concepts accessible to young children. The topics considered are: two probability games; choosing two beads; matching…

  9. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  10. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  11. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  12. A Unifying Probability Example.

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2002-01-01

    Presents an example from probability and statistics that ties together several topics including the mean and variance of a discrete random variable, the binomial distribution and its particular mean and variance, the sum of independent random variables, the mean and variance of the sum, and the central limit theorem. Uses Excel to illustrate these…

  13. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  14. Message Receipt Probabilities

    DTIC Science & Technology

    1975-11-01

    character strings, the length includes one space. Hence x ■ •ttW) - ifr 𔃻-ř + 5<>-*>4 *»)♦ 2(»-*>4 ♦ «>-*>31 The probability of accepting an incorrect...LETTERS SPELLED OUT ALFA NOVEMBER BRAVO OSCAR CHARLIE PAPA DELTA QUEBEC ECHO ROMEO FOXTROT SIERRA GOLF TANGO HOTEL UNIFORM INDIA VICTOR JULIET

  15. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  16. Superpositions of probability distributions

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Kleinert, Hagen

    2008-09-01

    Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=σ2 play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

  17. Efficient Probability Sequences

    DTIC Science & Technology

    2014-08-18

    Ungar (2014), to produce a distinct forecasting system. The system consists of the method for eliciting individual subjective forecasts together with...E. Stone, and L. H. Ungar (2014). Two reasons to make aggregated probability forecasts more extreme. Decision Analysis 11 (2), 133–145. Bickel, J. E...Letters 91 (3), 425–429. Mellers, B., L. Ungar , J. Baron, J. Ramos, B. Gurcay, K. Fincher, S. E. Scott, D. Moore, P. Atanasov, S. A. Swift, et al. (2014

  18. Searching with Probabilities

    DTIC Science & Technology

    1983-07-26

    DeGroot , Morris H. Probability and Statistic. Addison-Wesley Publishing Company, Reading, Massachusetts, 1975. [Gillogly 78] Gillogly, J.J. Performance...distribution [ DeGroot 751 has just begun. The beta distribution has several features that might make it a more reasonable choice. As with the normal-based...1982. [Cooley 65] Cooley, J.M. and Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 1965. [ DeGroot 75

  19. Regional flood probabilities

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    2003-01-01

    The T-year annual maximum flood at a site is defined to be that streamflow, that has probability 1/T of being exceeded in any given year, and for a group of sites the corresponding regional flood probability (RFP) is the probability that at least one site will experience a T-year flood in any given year. The RFP depends on the number of sites of interest and on the spatial correlation of flows among the sites. We present a Monte Carlo method for obtaining the RFP and demonstrate that spatial correlation estimates used in this method may be obtained with rank transformed data and therefore that knowledge of the at-site peak flow distribution is not necessary. We examine the extent to which the estimates depend on specification of a parametric form for the spatial correlation function, which is known to be nonstationary for peak flows. It is shown in a simulation study that use of a stationary correlation function to compute RFPs yields satisfactory estimates for certain nonstationary processes. Application of asymptotic extreme value theory is examined, and a methodology for separating channel network and rainfall effects on RFPs is suggested. A case study is presented using peak flow data from the state of Washington. For 193 sites in the Puget Sound region it is estimated that a 100-year flood will occur on the average every 4,5 years.

  20. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).

    PubMed

    Gourlaouen, Christophe; Piquemal, Jean-Philip; Saue, Trond; Parisel, Olivier

    2006-01-30

    Hartree-Fock and DFT (B3LYP) nonrelativistic (scalar relativistic pseudopotentials for the metallic cation) and relativistic (molecular four-component approach coupled to an all-electron basis set) calculations are performed on a series of six nd10 (n+1)s0 [M(H2O)]p+ complexes to investigate their geometry, either planar C2v or nonplanar C(s). These complexes are, formally, entities originating from the complexation of a water molecule to a metallic cation: in the present study, no internal reorganization has been found, which ensures that the complexes can be regarded as a water molecule interacting with a metallic cation. For [Au(H2O)]+ and [Hg(H2O)]2+, it is observed that both electronic correlation and relativistic effects are required to recover the C(s) structures predicted by the four-component relativistic all-electron DFT calculations. However, including the zero-point energy corrections makes these shallow C(s) minima vanish and the systems become floppy. In all other systems, namely [Cu(H2O)]+, [Zn(H2O)]2+, [Ag(H2O)]+, and [Cd(H2O)]2+, all calculations predict a C2v geometry arising from especially flat potential energy surfaces related to the out-of-plane wagging vibration mode. In all cases, our computations point to the quasi-perfect transferability of the atomic pseudopotentials considered toward the molecular species investigated. A rationalization of the shape of the wagging potential energy surfaces (i.e., single well vs. double well) is proposed based on the Constrained Space Orbital Variation decompositions of the complexation energies. Any way of stabilizing the lowest unoccupied orbital of the metallic cation is expected to favor charge-transfer (from the highest occupied orbital(s) of the water ligand), covalence, and, consequently, C(s) structures. The CSOV complexation energy decompositions unambiguously reveal that such stabilizations are achieved by means of relativistic effects for [Au(H2O)]+, and, to a lesser extent, for [Hg(H2O)]2

  1. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    PubMed

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems.

  2. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  3. Probability of causation approach

    SciTech Connect

    Jose, D.E.

    1988-08-01

    Probability of causation (PC) is sometimes viewed as a great improvement by those persons who are not happy with the present rulings of courts in radiation cases. The author does not share that hope and expects that PC will not play a significant role in these issues for at least the next decade. If it is ever adopted in a legislative compensation scheme, it will be used in a way that is unlikely to please most scientists. Consequently, PC is a false hope for radiation scientists, and its best contribution may well lie in some of the spin-off effects, such as an influence on medical practice.

  4. Retrieve Tether Survival Probability

    DTIC Science & Technology

    2007-11-02

    cuts of the tether by meteorites and orbital debris , is calculated to be 99.934% for the planned experiment duration of six months or less. This is...due to the unlikely event of a strike by a large piece of orbital debris greater than 1 meter in size cutting all the lines of the tether at once. The...probability of the tether surviving multiple cuts by meteoroid and orbital debris impactors smaller than 5 cm in diameter is 99.9993% at six months

  5. Origin of Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2001-12-01

    We demonstrate that the origin of the quantum probabilistic rule (which differs from the conventional Bayes' formula by the presence of cos θ-factor) might be explained by perturbation effects of preparation and measurement procedures. The main consequence of our investigation is that interference could be produced by purely corpuscular objects. In particular, the quantum rule for probabilities (with nontrivial cos θ-factor) could be simulated for macroscopic physical systems via preparation procedures producing statistical deviations of a special form. We discuss preparation and measurement procedures which may produce probabilistic rules which are neither classical nor quantum; in particular, hyperbolic 'quantum theory.'

  6. Phase Transition in the SRG Flow of Nuclear Interactions

    NASA Astrophysics Data System (ADS)

    Timóteo, V. S.; Ruiz Arriola, E.; Szpigel, S.

    2017-03-01

    We use a chiral interaction at N3LO in the {}^1S_0 channel of the nucleon-nucleon interaction in order to investigate the on-shell transition along the similarity renormalization group flow towards the infrared limit. We find a crossover at a scale that depends on the number of grid points used to discretise the momentum space.

  7. Probabilities for Solar Siblings

    NASA Astrophysics Data System (ADS)

    Valtonen, Mauri; Bajkova, A. T.; Bobylev, V. V.; Mylläri, A.

    2015-02-01

    We have shown previously (Bobylev et al. Astron Lett 37:550-562, 2011) that some of the stars in the solar neighborhood today may have originated in the same star cluster as the Sun, and could thus be called Solar Siblings. In this work we investigate the sensitivity of this result to galactic models and to parameters of these models, and also extend the sample of orbits. There are a number of good candidates for the sibling category, but due to the long period of orbit evolution since the break-up of the birth cluster of the Sun, one can only attach probabilities of membership. We find that up to 10 % (but more likely around 1 %) of the members of the Sun's birth cluster could be still found within 100 pc from the Sun today.

  8. People's conditional probability judgments follow probability theory (plus noise).

    PubMed

    Costello, Fintan; Watts, Paul

    2016-09-01

    A common view in current psychology is that people estimate probabilities using various 'heuristics' or rules of thumb that do not follow the normative rules of probability theory. We present a model where people estimate conditional probabilities such as P(A|B) (the probability of A given that B has occurred) by a process that follows standard frequentist probability theory but is subject to random noise. This model accounts for various results from previous studies of conditional probability judgment. This model predicts that people's conditional probability judgments will agree with a series of fundamental identities in probability theory whose form cancels the effect of noise, while deviating from probability theory in other expressions whose form does not allow such cancellation. Two experiments strongly confirm these predictions, with people's estimates on average agreeing with probability theory for the noise-cancelling identities, but deviating from probability theory (in just the way predicted by the model) for other identities. This new model subsumes an earlier model of unconditional or 'direct' probability judgment which explains a number of systematic biases seen in direct probability judgment (Costello & Watts, 2014). This model may thus provide a fully general account of the mechanisms by which people estimate probabilities.

  9. Probability state modeling theory.

    PubMed

    Bagwell, C Bruce; Hunsberger, Benjamin C; Herbert, Donald J; Munson, Mark E; Hill, Beth L; Bray, Chris M; Preffer, Frederic I

    2015-07-01

    As the technology of cytometry matures, there is mounting pressure to address two major issues with data analyses. The first issue is to develop new analysis methods for high-dimensional data that can directly reveal and quantify important characteristics associated with complex cellular biology. The other issue is to replace subjective and inaccurate gating with automated methods that objectively define subpopulations and account for population overlap due to measurement uncertainty. Probability state modeling (PSM) is a technique that addresses both of these issues. The theory and important algorithms associated with PSM are presented along with simple examples and general strategies for autonomous analyses. PSM is leveraged to better understand B-cell ontogeny in bone marrow in a companion Cytometry Part B manuscript. Three short relevant videos are available in the online supporting information for both of these papers. PSM avoids the dimensionality barrier normally associated with high-dimensionality modeling by using broadened quantile functions instead of frequency functions to represent the modulation of cellular epitopes as cells differentiate. Since modeling programs ultimately minimize or maximize one or more objective functions, they are particularly amenable to automation and, therefore, represent a viable alternative to subjective and inaccurate gating approaches.

  10. Probability distributions for magnetotellurics

    SciTech Connect

    Stodt, John A.

    1982-11-01

    Estimates of the magnetotelluric transfer functions can be viewed as ratios of two complex random variables. It is assumed that the numerator and denominator are governed approximately by a joint complex normal distribution. Under this assumption, probability distributions are obtained for the magnitude, squared magnitude, logarithm of the squared magnitude, and the phase of the estimates. Normal approximations to the distributions are obtained by calculating mean values and variances from error propagation, and the distributions are plotted with their normal approximations for different percentage errors in the numerator and denominator of the estimates, ranging from 10% to 75%. The distribution of the phase is approximated well by a normal distribution for the range of errors considered, while the distribution of the logarithm of the squared magnitude is approximated by a normal distribution for a much larger range of errors than is the distribution of the squared magnitude. The distribution of the squared magnitude is most sensitive to the presence of noise in the denominator of the estimate, in which case the true distribution deviates significantly from normal behavior as the percentage errors exceed 10%. In contrast, the normal approximation to the distribution of the logarithm of the magnitude is useful for errors as large as 75%.

  11. A Tale of Two Probabilities

    ERIC Educational Resources Information Center

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  12. A Tale of Two Probabilities

    ERIC Educational Resources Information Center

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  13. Spin-orbit configuration interaction study of potential energy curves and transition probabilities of the mercury hydride molecule and tests of relativistic effective core potentials for Hg, Hg + , and Hg2 +

    NASA Astrophysics Data System (ADS)

    Alekseyev, Aleksey B.; Liebermann, Heinz-Peter; Buenker, Robert J.; Hirsch, Gerhard

    1996-03-01

    predissociation occurs in the HgH A1 state. Numerous higher-lying electronic states are also studied, with Te values up to 60 000 cm-1, and on this basis it is argued that earlier assignments for the HgH C-X and D-X transitions are incorrect, as previously concluded by Nedelec et al. [Chem. Phys. 134, 137 (1989)].

  14. Coherent Assessment of Subjective Probability

    DTIC Science & Technology

    1981-03-01

    known results of de Finetti (1937, 1972, 1974), Smith (1961), and Savage (1971) and some recent results of Lind- ley (1980) concerning the use of...provides the motivation for de Finettis definition of subjective probabilities as coherent bet prices. From the definition of the probability measure...subjective probability, the probability laws which are traditionally stated as axioms or definitions are obtained instead as theorems. (De Finetti F -7

  15. The Probability of Causal Conditionals

    ERIC Educational Resources Information Center

    Over, David E.; Hadjichristidis, Constantinos; Evans, Jonathan St. B. T.; Handley, Simon J.; Sloman, Steven A.

    2007-01-01

    Conditionals in natural language are central to reasoning and decision making. A theoretical proposal called the Ramsey test implies the conditional probability hypothesis: that the subjective probability of a natural language conditional, P(if p then q), is the conditional subjective probability, P(q [such that] p). We report three experiments on…

  16. Theoretical study of the C{sup -} {sup 4}S{sub 3/2}{sup o} and {sup 2}D{sub 3/2,5/2}{sup o} bound states and C ground configuration: Fine and hyperfine structures, isotope shifts, and transition probabilities

    SciTech Connect

    Carette, T.; Godefroid, M. R.

    2011-06-15

    This work is an ab initio study of the 2p{sup 3} {sup 4}S{sub 3/2}{sup o}, and {sup 2}D{sub 3/2,5/2}{sup o} states of C{sup -} and 2p{sup 2} {sup 3}P{sub 0,1,2}, {sup 1}D{sub 2}, and {sup 1}S{sub 0} states of neutral carbon. We use the multiconfiguration Hartree-Fock approach, focusing on the accuracy of the wave function itself. We obtain all C{sup -} detachment thresholds, including correlation effects to about 0.5%. Isotope shifts and hyperfine structures are calculated. The achieved accuracy of the latter is of the order of 0.1 MHz. Intraconfiguration transition probabilities are also estimated.

  17. Probability workshop to be better in probability topic

    NASA Astrophysics Data System (ADS)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  18. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  19. The Probabilities of Unique Events

    DTIC Science & Technology

    2012-08-30

    probabilities into quantum mechanics, and some psychologists have argued that they have a role to play in accounting for errors in judgment [30]. But, in...Discussion The mechanisms underlying naive estimates of the probabilities of unique events are largely inaccessible to consciousness , but they...Can quantum probability provide a new direc- tion for cognitive modeling? Behavioral and Brain Sciences (in press). 31. Paolacci G, Chandler J

  20. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  1. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  2. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  3. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  4. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  5. Information Processing Using Quantum Probability

    NASA Astrophysics Data System (ADS)

    Behera, Laxmidhar

    2006-11-01

    This paper presents an information processing paradigm that introduces collective response of multiple agents (computational units) while the level of intelligence associated with the information processing has been increased manifold. It is shown that if the potential field of the Schroedinger wave equation is modulated using a self-organized learning scheme, then the probability density function associated with the stochastic data is transferred to the probability amplitude function which is the response of the Schroedinger wave equation. This approach illustrates that information processing of data with stochastic behavior can be efficiently done using quantum probability instead of classical probability. The proposed scheme has been demonstrated through two applications: denoising and adaptive control.

  6. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are <1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  7. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  8. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  9. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  10. Capture probabilities for secondary resonances

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1990-01-01

    A perturbed pendulum model is used to analyze secondary resonances, and it is shown that a self-similarity between secondary and primary resonances exists. Henrard's (1982) theory is used to obtain formulas for the capture probability into secondary resonances. The tidal evolution of Miranda and Umbriel is considered as an example, and significant probabilities of capture into secondary resonances are found.

  11. Training Teachers to Teach Probability

    ERIC Educational Resources Information Center

    Batanero, Carmen; Godino, Juan D.; Roa, Rafael

    2004-01-01

    In this paper we analyze the reasons why the teaching of probability is difficult for mathematics teachers, describe the contents needed in the didactical preparation of teachers to teach probability and analyze some examples of activities to carry out this training. These activities take into account the experience at the University of Granada,…

  12. The Probabilities of Conditionals Revisited

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2013-01-01

    According to what is now commonly referred to as "the Equation" in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of…

  13. Linear positivity and virtual probability

    NASA Astrophysics Data System (ADS)

    Hartle, James B.

    2004-08-01

    We investigate the quantum theory of closed systems based on the linear positivity decoherence condition of Goldstein and Page. The objective of any quantum theory of a closed system, most generally the universe, is the prediction of probabilities for the individual members of sets of alternative coarse-grained histories of the system. Quantum interference between members of a set of alternative histories is an obstacle to assigning probabilities that are consistent with the rules of probability theory. A quantum theory of closed systems therefore requires two elements: (1) a condition specifying which sets of histories may be assigned probabilities and (2) a rule for those probabilities. The linear positivity condition of Goldstein and Page is the weakest of the general conditions proposed so far. Its general properties relating to exact probability sum rules, time neutrality, and conservation laws are explored. Its inconsistency with the usual notion of independent subsystems in quantum mechanics is reviewed. Its relation to the stronger condition of medium decoherence necessary for classicality is discussed. The linear positivity of histories in a number of simple model systems is investigated with the aim of exhibiting linearly positive sets of histories that are not decoherent. The utility of extending the notion of probability to include values outside the range of 0-1 is described. Alternatives with such virtual probabilities cannot be measured or recorded, but can be used in the intermediate steps of calculations of real probabilities. Extended probabilities give a simple and general way of formulating quantum theory. The various decoherence conditions are compared in terms of their utility for characterizing classicality and the role they might play in further generalizations of quantum mechanics.

  14. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  15. Probability Machines: Consistent Probability Estimation Using Nonparametric Learning Machines

    PubMed Central

    Malley, J. D.; Kruppa, J.; Dasgupta, A.; Malley, K. G.; Ziegler, A.

    2011-01-01

    Summary Background Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. Objectives The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Methods Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Results Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Conclusions Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications. PMID:21915433

  16. Failure probability under parameter uncertainty.

    PubMed

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications.

  17. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  18. Definition of the Neutrosophic Probability

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2014-03-01

    Neutrosophic probability (or likelihood) [1995] is a particular case of the neutrosophic measure. It is an estimation of an event (different from indeterminacy) to occur, together with an estimation that some indeterminacy may occur, and the estimation that the event does not occur. The classical probability deals with fair dice, coins, roulettes, spinners, decks of cards, random works, while neutrosophic probability deals with unfair, imperfect such objects and processes. For example, if we toss a regular die on an irregular surface which has cracks, then it is possible to get the die stuck on one of its edges or vertices in a crack (indeterminate outcome). The sample space is in this case: {1, 2, 3, 4, 5, 6, indeterminacy}. So, the probability of getting, for example 1, is less than 1/6. Since there are seven outcomes. The neutrosophic probability is a generalization of the classical probability because, when the chance of determinacy of a stochastic process is zero, these two probabilities coincide. The Neutrosophic Probability that of an event A occurs is NP (A) = (ch (A) , ch (indetA) , ch (A ̲)) = (T , I , F) , where T , I , F are subsets of [0,1], and T is the chance that A occurs, denoted ch(A); I is the indeterminate chance related to A, ch(indetermA) ; and F is the chance that A does not occur, ch (A ̲) . So, NP is a generalization of the Imprecise Probability as well. If T, I, and F are crisp numbers then: - 0 <= T + I + F <=3+ . We used the same notations (T,I,F) as in neutrosophic logic and set.

  19. Holographic probabilities in eternal inflation.

    PubMed

    Bousso, Raphael

    2006-11-10

    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.

  20. On quantum vs. classical probability

    SciTech Connect

    Rau, Jochen

    2009-12-15

    Quantum theory shares with classical probability theory many important properties. I show that this common core regards at least the following six areas, and I provide details on each of these: the logic of propositions, symmetry, probabilities, composition of systems, state preparation and reductionism. The essential distinction between classical and quantum theory, on the other hand, is shown to be joint decidability versus smoothness; for the latter in particular I supply ample explanation and motivation. Finally, I argue that beyond quantum theory there are no other generalisations of classical probability theory that are relevant to physics.

  1. Holographic Probabilities in Eternal Inflation

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2006-11-01

    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.

  2. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  3. Dinosaurs, Dinosaur Eggs, and Probability.

    ERIC Educational Resources Information Center

    Teppo, Anne R.; Hodgson, Ted

    2001-01-01

    Outlines several recommendations for teaching probability in the secondary school. Offers an activity that employs simulation by hand and using a programmable calculator in which geometry, analytical geometry, and discrete mathematics are explored. (KHR)

  4. Dinosaurs, Dinosaur Eggs, and Probability.

    ERIC Educational Resources Information Center

    Teppo, Anne R.; Hodgson, Ted

    2001-01-01

    Outlines several recommendations for teaching probability in the secondary school. Offers an activity that employs simulation by hand and using a programmable calculator in which geometry, analytical geometry, and discrete mathematics are explored. (KHR)

  5. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  6. Joint probabilities and quantum cognition

    SciTech Connect

    Acacio de Barros, J.

    2012-12-18

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  7. Normal probability plots with confidence.

    PubMed

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods.

  8. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  9. Detonation probabilities of high explosives

    SciTech Connect

    Eisenhawer, S.W.; Bott, T.F.; Bement, T.R.

    1995-07-01

    The probability of a high explosive violent reaction (HEVR) following various events is an extremely important aspect of estimating accident-sequence frequency for nuclear weapons dismantlement. In this paper, we describe the development of response curves for insults to PBX 9404, a conventional high-performance explosive used in US weapons. The insults during dismantlement include drops of high explosive (HE), strikes of tools and components on HE, and abrasion of the explosive. In the case of drops, we combine available test data on HEVRs and the results of flooring certification tests to estimate the HEVR probability. For other insults, it was necessary to use expert opinion. We describe the expert solicitation process and the methods used to consolidate the responses. The HEVR probabilities obtained from both approaches are compared.

  10. Incompatible Stochastic Processes and Complex Probabilities

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    The definition of conditional probabilities is based upon the existence of a joint probability. However, a reconstruction of the joint probability from given conditional probabilities imposes certain constraints upon the latter, so that if several conditional probabilities are chosen arbitrarily, the corresponding joint probability may not exist.

  11. Knowledge typology for imprecise probabilities.

    SciTech Connect

    Wilson, G. D.; Zucker, L. J.

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  12. Interference of probabilities in dynamics

    SciTech Connect

    Zak, Michail

    2014-08-15

    A new class of dynamical systems with a preset type of interference of probabilities is introduced. It is obtained from the extension of the Madelung equation by replacing the quantum potential with a specially selected feedback from the Liouville equation. It has been proved that these systems are different from both Newtonian and quantum systems, but they can be useful for modeling spontaneous collective novelty phenomena when emerging outputs are qualitatively different from the weighted sum of individual inputs. Formation of language and fast decision-making process as potential applications of the probability interference is discussed.

  13. Modeling Capture Probabilities Of Potentially Habitable Exomoons

    NASA Astrophysics Data System (ADS)

    Sharzer, Charles; Porter, S.; Grundy, W.

    2012-01-01

    The satellites of extrasolar planets (exomoons) have been theorized to be a viable location for extraterrestrial life. New methods are quickly developing to detect their presence by examining the transits of extrasolar gas giants. In addition, models have shown that the probability for a captured exomoon to stabilize into a near-circular orbit at a close distance to a planet is greater than 50 percent. In this study, we model the interaction, potentially resulting in a capture, between a gas giant and a binary moving toward it on a hyperbolic tra jectory. We find that, for certain conditions, capture of an exomoon is not just possible, it is overwhelmingly likely. We hope to use the results of this experiment to determine initial parameters for a subsequent simulation modeling a physical system of a gas giant and binary orbiting a star.

  14. Continuity of percolation probability on hyperbolic graphs

    NASA Astrophysics Data System (ADS)

    Wu, C. Chris

    1997-05-01

    Let T k be a forwarding tree of degree k where each vertex other than the origin has k children and one parent and the origin has k children but no parent ( k≥2). Define G to be the graph obtained by adding to T k nearest neighbor bonds connecting the vertices which are in the same generation. G is regarded as a discretization of the hyperbolic plane H 2 in the same sense that Z d is a discretization of R d . Independent percolation on G has been proved to have multiple phase transitions. We prove that the percolation probability O(p) is continuous on [0,1] as a function of p.

  15. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  16. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  17. Children's Understanding of Posterior Probability

    ERIC Educational Resources Information Center

    Girotto, Vittorio; Gonzalez, Michael

    2008-01-01

    Do young children have a basic intuition of posterior probability? Do they update their decisions and judgments in the light of new evidence? We hypothesized that they can do so extensionally, by considering and counting the various ways in which an event may or may not occur. The results reported in this paper showed that from the age of five,…

  18. Comments on quantum probability theory.

    PubMed

    Sloman, Steven

    2014-01-01

    Quantum probability theory (QP) is the best formal representation available of the most common form of judgment involving attribute comparison (inside judgment). People are capable, however, of judgments that involve proportions over sets of instances (outside judgment). Here, the theory does not do so well. I discuss the theory both in terms of descriptive adequacy and normative appropriateness.

  19. Probability Simulation in Middle School.

    ERIC Educational Resources Information Center

    Lappan, Glenda; Winter, M. J.

    1980-01-01

    Two simulations designed to teach probability to middle-school age pupils are presented. The first simulates the one-on-one foul shot simulation in basketball; the second deals with collecting a set of six cereal box prizes by buying boxes containing one toy each. (MP)

  20. Children's Understanding of Posterior Probability

    ERIC Educational Resources Information Center

    Girotto, Vittorio; Gonzalez, Michael

    2008-01-01

    Do young children have a basic intuition of posterior probability? Do they update their decisions and judgments in the light of new evidence? We hypothesized that they can do so extensionally, by considering and counting the various ways in which an event may or may not occur. The results reported in this paper showed that from the age of five,…

  1. Conditional Independence in Applied Probability.

    ERIC Educational Resources Information Center

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  2. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  3. On probability-possibility transformations

    NASA Technical Reports Server (NTRS)

    Klir, George J.; Parviz, Behzad

    1992-01-01

    Several probability-possibility transformations are compared in terms of the closeness of preserving second-order properties. The comparison is based on experimental results obtained by computer simulation. Two second-order properties are involved in this study: noninteraction of two distributions and projections of a joint distribution.

  4. Probability surveys, conditional probability, and ecological risk assessment.

    PubMed

    Paul, John F; Munns, Wayne R

    2011-06-01

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over broad geographic areas. Under certain conditions (including appropriate stratification of the sampled population, sufficient density of samples, and sufficient range of exposure levels paired with concurrent response values), this empirical approach provides estimates of risk using extant field-derived monitoring data. The monitoring data were used to prescribe the exposure field and to model the exposure-response relationship. We illustrate this approach by estimating risks to benthic communities from low dissolved oxygen (DO) in freshwater streams of the mid-Atlantic region and in estuaries of the Virginian Biogeographical Province of the United States. In both cases, the estimates of risk are consistent with the U.S. EPA's ambient water quality criteria for DO. Copyright © 2011 SETAC.

  5. Time-dependent earthquake probabilities

    NASA Astrophysics Data System (ADS)

    Gomberg, J.; Belardinelli, M. E.; Cocco, M.; Reasenberg, P.

    2005-05-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have developed a general framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failure of a single fault. In the first application, the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function or PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models.

  6. Time-dependent earthquake probabilities

    USGS Publications Warehouse

    Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.

    2005-01-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.

  7. Liouville equation and Markov chains: epistemological and ontological probabilities

    NASA Astrophysics Data System (ADS)

    Costantini, D.; Garibaldi, U.

    2006-06-01

    The greatest difficulty of a probabilistic approach to the foundations of Statistical Mechanics lies in the fact that for a system ruled by classical or quantum mechanics a basic description exists, whose evolution is deterministic. For such a system any kind of irreversibility is impossible in principle. The probability used in this approach is epistemological. On the contrary for irreducible aperiodic Markov chains the invariant measure is reached with probability one whatever the initial conditions. Almost surely the uniform distributions, on which the equilibrium treatment of quantum and classical perfect gases is based, are reached when time goes by. The transition probability for binary collision, deduced by the Ehrenfest-Brillouin model, points out an irreducible aperiodic Markov chain and thus an equilibrium distribution. This means that we are describing the temporal probabilistic evolution of the system. The probability involved in this evolution is ontological.

  8. Understanding Y haplotype matching probability.

    PubMed

    Brenner, Charles H

    2014-01-01

    The Y haplotype population-genetic terrain is better explored from a fresh perspective rather than by analogy with the more familiar autosomal ideas. For haplotype matching probabilities, versus for autosomal matching probabilities, explicit attention to modelling - such as how evolution got us where we are - is much more important while consideration of population frequency is much less so. This paper explores, extends, and explains some of the concepts of "Fundamental problem of forensic mathematics - the evidential strength of a rare haplotype match". That earlier paper presented and validated a "kappa method" formula for the evidential strength when a suspect matches a previously unseen haplotype (such as a Y-haplotype) at the crime scene. Mathematical implications of the kappa method are intuitive and reasonable. Suspicions to the contrary raised in rest on elementary errors. Critical to deriving the kappa method or any sensible evidential calculation is understanding that thinking about haplotype population frequency is a red herring; the pivotal question is one of matching probability. But confusion between the two is unfortunately institutionalized in much of the forensic world. Examples make clear why (matching) probability is not (population) frequency and why uncertainty intervals on matching probabilities are merely confused thinking. Forensic matching calculations should be based on a model, on stipulated premises. The model inevitably only approximates reality, and any error in the results comes only from error in the model, the inexactness of the approximation. Sampling variation does not measure that inexactness and hence is not helpful in explaining evidence and is in fact an impediment. Alternative haplotype matching probability approaches that various authors have considered are reviewed. Some are based on no model and cannot be taken seriously. For the others, some evaluation of the models is discussed. Recent evidence supports the adequacy of

  9. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  10. Probability distributions for multimeric systems.

    PubMed

    Albert, Jaroslav; Rooman, Marianne

    2016-01-01

    We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.

  11. Probability summation--a critique.

    PubMed

    Laming, Donald

    2013-03-01

    This Discussion Paper seeks to kill off probability summation, specifically the high-threshold assumption, as an explanatory idea in visual science. In combination with a Weibull function of a parameter of about 4, probability summation can accommodate, to within the limits of experimental error, the shape of the detectability function for contrast, the reduction in threshold that results from the combination of widely separated grating components, summation with respect to duration at threshold, and some instances, but not all, of spatial summation. But it has repeated difficulty with stimuli below threshold, because it denies the availability of input from such stimuli. All the phenomena listed above, and many more, can be accommodated equally accurately by signal-detection theory combined with an accelerated nonlinear transform of small, near-threshold, contrasts. This is illustrated with a transform that is the fourth power for the smallest contrasts, but tends to linear above threshold. Moreover, this particular transform can be derived from elementary properties of sensory neurons. Probability summation cannot be regarded as a special case of a more general theory, because it depends essentially on the 19th-century notion of a high fixed threshold. It is simply an obstruction to further progress.

  12. ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Morton, Timothy D.; Johnson, John Asher E-mail: johnjohn@astro.caltech.edu

    2011-09-10

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R{sub +} < R{sub p} < 20 R{sub +}. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal-deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  13. On the Low False Positive Probabilities of Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.; Johnson, John Asher

    2011-09-01

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R ⊕ < Rp < 20 R ⊕. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal—deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  14. Objective Probability and Quantum Fuzziness

    NASA Astrophysics Data System (ADS)

    Mohrhoff, U.

    2009-02-01

    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes. Most important among these are the objective fuzziness of all relative positions and momenta and the consequent incomplete spatiotemporal differentiation of the physical world. The latter makes it possible to draw a clear distinction between the macroscopic and the microscopic. This in turn makes it possible to understand the special status of measurements in all standard formulations of the theory. Whereas Bayesians have written contemptuously about the “folly” of conjoining “objective” to “probability,” there are various reasons why quantum-mechanical probabilities can be considered objective, not least the fact that they are needed to quantify an objective fuzziness. But this cannot be appreciated without giving thought to the makeup of the world, which

  15. Empirical and Computational Tsunami Probability

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.; ten Brink, U. S.; Lee, H. J.

    2008-12-01

    A key component in assessing the hazard posed by tsunamis is quantification of tsunami likelihood or probability. To determine tsunami probability, one needs to know the distribution of tsunami sizes and the distribution of inter-event times. Both empirical and computational methods can be used to determine these distributions. Empirical methods rely on an extensive tsunami catalog and hence, the historical data must be carefully analyzed to determine whether the catalog is complete for a given runup or wave height range. Where site-specific historical records are sparse, spatial binning techniques can be used to perform a regional, empirical analysis. Global and site-specific tsunami catalogs suggest that tsunami sizes are distributed according to a truncated or tapered power law and inter-event times are distributed according to an exponential distribution modified to account for clustering of events in time. Computational methods closely follow Probabilistic Seismic Hazard Analysis (PSHA), where size and inter-event distributions are determined for tsunami sources, rather than tsunamis themselves as with empirical analysis. In comparison to PSHA, a critical difference in the computational approach to tsunami probabilities is the need to account for far-field sources. The three basic steps in computational analysis are (1) determination of parameter space for all potential sources (earthquakes, landslides, etc.), including size and inter-event distributions; (2) calculation of wave heights or runup at coastal locations, typically performed using numerical propagation models; and (3) aggregation of probabilities from all sources and incorporation of uncertainty. It is convenient to classify two different types of uncertainty: epistemic (or knowledge-based) and aleatory (or natural variability). Correspondingly, different methods have been traditionally used to incorporate uncertainty during aggregation, including logic trees and direct integration. Critical

  16. Dopamine D₁ receptors and nonlinear probability weighting in risky choice.

    PubMed

    Takahashi, Hidehiko; Matsui, Hiroshi; Camerer, Colin; Takano, Harumasa; Kodaka, Fumitoshi; Ideno, Takashi; Okubo, Shigetaka; Takemura, Kazuhisa; Arakawa, Ryosuke; Eguchi, Yoko; Murai, Toshiya; Okubo, Yoshiro; Kato, Motoichiro; Ito, Hiroshi; Suhara, Tetsuya

    2010-12-08

    Misestimating risk could lead to disadvantaged choices such as initiation of drug use (or gambling) and transition to regular drug use (or gambling). Although the normative theory in decision-making under risks assumes that people typically take the probability-weighted expectation over possible utilities, experimental studies of choices among risks suggest that outcome probabilities are transformed nonlinearly into subjective decision weights by a nonlinear weighting function that overweights low probabilities and underweights high probabilities. Recent studies have revealed the neurocognitive mechanism of decision-making under risk. However, the role of modulatory neurotransmission in this process remains unclear. Using positron emission tomography, we directly investigated whether dopamine D₁ and D₂ receptors in the brain are associated with transformation of probabilities into decision weights in healthy volunteers. The binding of striatal D₁ receptors is negatively correlated with the degree of nonlinearity of weighting function. Individuals with lower striatal D₁ receptor density showed more pronounced overestimation of low probabilities and underestimation of high probabilities. This finding should contribute to a better understanding of the molecular mechanism of risky choice, and extreme or impaired decision-making observed in drug and gambling addiction.

  17. Milestoning with transition memory

    NASA Astrophysics Data System (ADS)

    Hawk, Alexander T.; Makarov, Dmitrii E.

    2011-12-01

    Milestoning is a method used to calculate the kinetics and thermodynamics of molecular processes occurring on time scales that are not accessible to brute force molecular dynamics (MD). In milestoning, the conformation space of the system is sectioned by hypersurfaces (milestones), an ensemble of trajectories is initialized on each milestone, and MD simulations are performed to calculate transitions between milestones. The transition probabilities and transition time distributions are then used to model the dynamics of the system with a Markov renewal process, wherein a long trajectory of the system is approximated as a succession of independent transitions between milestones. This approximation is justified if the transition probabilities and transition times are statistically independent. In practice, this amounts to a requirement that milestones are spaced such that trajectories lose position and velocity memory between subsequent transitions. Unfortunately, limiting the number of milestones limits both the resolution at which a system's properties can be analyzed, and the computational speedup achieved by the method. We propose a generalized milestoning procedure, milestoning with transition memory (MTM), which accounts for memory of previous transitions made by the system. When a reaction coordinate is used to define the milestones, the MTM procedure can be carried out at no significant additional expense as compared to conventional milestoning. To test MTM, we have applied its version that allows for the memory of the previous step to the toy model of a polymer chain undergoing Langevin dynamics in solution. We have computed the mean first passage time for the chain to attain a cyclic conformation and found that the number of milestones that can be used, without incurring significant errors in the first passage time is at least 8 times that permitted by conventional milestoning. We further demonstrate that, unlike conventional milestoning, MTM permits

  18. [Biometric bases: basic concepts of probability calculation].

    PubMed

    Dinya, E

    1998-04-26

    The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.

  19. A probability generating function method for stochastic reaction networks

    NASA Astrophysics Data System (ADS)

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-01

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G2/M transition model.

  20. A probability generating function method for stochastic reaction networks.

    PubMed

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-21

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G(2)/M transition model.

  1. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  2. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew R.; Piro, Anthony; Ott, Christian D.

    2015-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. Using the observed BH mass distribution from Galactic X-ray binaries, we investigate the probability that a star will make a BH as a function of its ZAMS mass. Although the shape of the black hole formation probability function is poorly constrained by current measurements, we believe that this framework is an important new step toward better understanding BH formation. We also consider some of the implications of this probability distribution, from its impact on the chemical enrichment from massive stars, to its connection with the structure of the core at the time of collapse, to the birth kicks that black holes receive. A probabilistic description of BH formation will be a useful input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  3. Probability of Detection Demonstration Transferability

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2008-01-01

    The ongoing Mars Science Laboratory (MSL) Propellant Tank Penetrant Nondestructive Evaluation (NDE) Probability of Detection (POD) Assessment (NESC activity) has surfaced several issues associated with liquid penetrant POD demonstration testing. This presentation lists factors that may influence the transferability of POD demonstration tests. Initial testing will address the liquid penetrant inspection technique. Some of the factors to be considered in this task are crack aspect ratio, the extent of the crack opening, the material and the distance between the inspection surface and the inspector's eye.

  4. Modality, probability, and mental models.

    PubMed

    Hinterecker, Thomas; Knauff, Markus; Johnson-Laird, P N

    2016-10-01

    We report 3 experiments investigating novel sorts of inference, such as: A or B or both. Therefore, possibly (A and B). Where the contents were sensible assertions, for example, Space tourism will achieve widespread popularity in the next 50 years or advances in material science will lead to the development of antigravity materials in the next 50 years, or both. Most participants accepted the inferences as valid, though they are invalid in modal logic and in probabilistic logic too. But, the theory of mental models predicts that individuals should accept them. In contrast, inferences of this sort—A or B but not both. Therefore, A or B or both—are both logically valid and probabilistically valid. Yet, as the model theory also predicts, most reasoners rejected them. The participants’ estimates of probabilities showed that their inferences tended not to be based on probabilistic validity, but that they did rate acceptable conclusions as more probable than unacceptable conclusions. We discuss the implications of the results for current theories of reasoning.

  5. Network of sensors: acquisition probability.

    PubMed

    Arnon, Shlomi

    2007-09-01

    A network of sensors is considered one of the most attractive remote sensing technologies available at present. In the system under consideration a network of sensors and a remote base station communicate using optical wireless links. This is accomplished by a base station that acquires and identifies sensors using a unique subcarrier frequency. The sensors use an active retroreflector to communicate with the base station, which reduces the complexity, cost, and power consumption of the sensors. The base station employs an imaging receiver (detector matrix), in which signals arriving from different directions are detected by different pixels. The imaging receiver mitigates ambient light noise and interference between simultaneous uplink transmissions from different sensors, provided that the transmissions are imaged onto disjoint sets of pixels. We describe a scheme that allows simultaneous acquisition and identification of a sensor in a network by an imaging receiver. A probability model of erroneous acquisition of this scheme due to noise is derived. The model's results indicate that the matrix size, the signal, and the noise powers have the greatest influence in determining acquisition probability.

  6. Lectures on probability and statistics

    SciTech Connect

    Yost, G.P.

    1984-09-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another.

  7. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values

  8. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  9. Dynamic encoding of speech sequence probability in human temporal cortex.

    PubMed

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning.

  10. Associativity and normative credal probability.

    PubMed

    Snow, P

    2002-01-01

    Cox's Theorem is a widely cited motivation for probabilistic models of uncertain belief. The theorem relates the associativity of the logical connectives to that of the arithmetic operations of probability. Recent questions about the correctness of Cox's Theorem have been resolved, but there are new questions about one functional equation used by Cox in 1946. This equation is missing from his later work. Advances in knowledge since 1946 and changes in Cox's research interests explain the equation's disappearance. Other associativity-based motivations avoid functional equations altogether, and so may be more transparently applied to finite domains and discrete beliefs. A discrete counterpart of Cox's Theorem can be assembled from results that have been in the literature since 1959.

  11. WITPO (What Is the Probability Of).

    ERIC Educational Resources Information Center

    Ericksen, Donna Bird; And Others

    1991-01-01

    Included in this probability board game are the requirements, the rules, the board, and 44 sample questions. This game can be used as a probability unit review for practice on basic skills and algorithms, such as computing compound probability and using Pascal's triangle to solve binomial probability problems. (JJK)

  12. Extrasolar Planetary Transits

    NASA Astrophysics Data System (ADS)

    Cameron, Andrew Collier

    An extrasolar planet will transit the visible hemisphere of its host star if its orbital plane lies sufficiently close to the observer's line of sight. The resulting periodic dips in stellar flux reveal key system parameters, including the density of the host star and, if radial-velocity observations are available, the surface gravitational acceleration of the planet. In this chapter I present the essential methodology for modelling the time-dependent flux variation during a transit, and its use in determining the posterior probability distribution for the physical parameters of the system. Large-scale searches for transiting systems are an efficient way of discovering planets whose bulk densities, and hence compositions, can be accessed if their masses can also be determined. I present algorithms for detrending large ensembles of light curves, for searching for transit-like signals among them. I also discuss methods for identifying diluted stellar eclipsing binaries mimicking planetary transit signals, and validation of transit candidates too faint for radial-velocity follow-up. I review the use of time-resolved spectrophotometry and high-resolution spectroscopy during transits to identify the molecular constituents of exoplanetary atmospheres.

  13. Generating quantum-measurement probabilities from an optimality principle

    NASA Astrophysics Data System (ADS)

    Suykens, Johan A. K.

    2013-05-01

    An alternative formulation to the (generalized) Born rule is presented. It involves estimating an unknown model from a finite set of measurement operators on the state. An optimality principle is given that relates to achieving bounded solutions by regularizing the unknown parameters in the model. The objective function maximizes a lower bound on the quadratic Renyi classical entropy. The unknowns of the model in the primal are interpreted as transition witnesses. An interpretation of the Born rule in terms of fidelity is given with respect to transition witnesses for the pure state and the case of positive operator-valued measures (POVMs). The models for generating quantum-measurement probabilities apply to orthogonal projective measurements and POVM measurements, and to isolated and open systems with Kraus maps. A straightforward and constructive method is proposed for deriving the probability rule, which is based on Lagrange duality. An analogy is made with a kernel-based method for probability mass function estimation, for which similarities and differences are discussed. These combined insights from quantum mechanics, statistical modeling, and machine learning provide an alternative way of generating quantum-measurement probabilities.

  14. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  15. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  16. Work transitions.

    PubMed

    Fouad, Nadya A; Bynner, John

    2008-01-01

    Individuals make choices in, and adjust to, a world of work that is often a moving target. Because work is so central to human functioning, and transitions in and out of work can have major mental health repercussions, the authors argue that applied psychologists in health services need to understand those transitions. This article focuses on the different types of transition throughout a person's working life and the resources needed at different stages to ensure the success of these transitions. The authors start by examining the roles of capability and adaptability in supporting and facilitating adjustment to work transitions and their relation to identity development. They then examine the role of social and institutional contexts in shaping work transitions and their outcomes. The authors focus on voluntary versus involuntary transitions and then broaden the lens in discussing the policy implications of research on work transitions.

  17. Dynamic Stark effect and forbidden-transition spectrallineshapes

    SciTech Connect

    Stalnaker, Jason E.; Budker, D.; Freedman, S.J.; Guzman, J.S.; Rochester, S.M.; Yashchuk, V.V.

    2005-12-15

    We report on an experimental and theoretical study of thedynamic (ac) Stark effect on a for bidden transition. A general frameworkfor parameterizing and describing off-resonant ac-Stark shifts ispresented. A model is developed to calculate spectral line shapesresulting from resonant excitation of atoms in an intense standinglight-wave in the presence of off-resonant ac-Stark shifts. The model isused in the analysis and interpretation of a measurement of the ac-Starkshifts of the static-electric-field-induced 6s2 1S0 -->5d6s 3D1transition at 408 nm in atomic Yb. The results are in agreement withestimates of the ac-Stark shift of the transition under the assumptionthat the shift is dominated by that of the 6s2 1S0 ground state. Adetailed description of the experiment and analysis is presented. Abi-product of this work is an ind ependent determination (from thesaturation behavior of the 408-nm transition) of the Stark transitionpolarizability, which is found to be in agreement with our earliermeasurement. This work is part of the ongoing effort aimed at a precisionmeasurement of atomic parity-violation effects in Yb.

  18. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  19. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  20. Direct loading of a large Yb MOT on the {}^{1}{{\\rm{S}}}_{0}\\;\\to {}^{3}{{\\rm{P}}}_{1} transition

    NASA Astrophysics Data System (ADS)

    Guttridge, A.; Hopkins, S. A.; Kemp, S. L.; Boddy, D.; Freytag, R.; Jones, M. P. A.; Tarbutt, M. R.; Hinds, E. A.; Cornish, S. L.

    2016-07-01

    We report a robust technique for laser frequency stabilisation that enables the reproducible loading of in excess of 109 Yb atoms from a Zeeman slower directly into a magneto-optical trap (MOT) operating on the {}1{{{S}}}0\\to {}3{{{P}}}1 transition, without the need for a first stage MOT on the {}1{{{S}}}0\\to {}1{{{P}}}1 transition. We use a simple atomic beam apparatus to generate narrow fluorescence signals on both the 399 nm {}1{{{S}}}0\\to {}1{{{P}}}1 transition used for the Zeeman slower and the 556 nm {}1{{{S}}}0\\to {}3{{{P}}}1 transition. We present in detail the methods for obtaining spectra with a high signal-to-noise ratio and demonstrate error signals suitable for robust frequency stabilisation. Finally we demonstrate the stability and precision of our technique through sensitive measurements of the gravitational sag of the Yb MOT as a function of the intensity of the laser cooling beams, which are in good agreement with theory. These results will be important for efficient loading of the atoms into an optical dipole trap.

  1. The Probability Distribution for a Biased Spinner

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  2. Theoretical Studies of Atomic Transitions

    SciTech Connect

    Charlotte Froese Fischer

    2005-07-08

    Atomic structure calculations were performed for properties such as energy levels, binding energies, transition probabilities, lifetimes, hyperfine structure, and isotope shifts. Accurate computational procedures were devised so that properties could be predicted even when they could not be obtained from experiment, and to assist in the identification of observed data. The method used was the multiconfiguration Hartree-Fock (MCHF) method, optionally corrected for relativistic effects in the Breit-Pauli approximation. Fully relativistic Dirac-Fock calculations also were performed using the GRASP code A database of energy levels, lifetimes, and transition probabilities was designed and implemented and, at present, includes many results for Be-like to Ar-like.

  3. Venus Transit

    NASA Image and Video Library

    2012-06-05

    It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Yvette Lee Kang was able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)

  4. Venus Transit

    NASA Image and Video Library

    2012-06-05

    It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Liz Heller and Andriel Mesznik were able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)

  5. High Probabilities of Planet Detection during Microlensing Events.

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    2000-10-01

    probabilities offer the promise of gaining statistics rapidly on the frequency of planets in long period orbits, and thereby encourage the expansion of ground based microlensing searches for planets with enhanced capabilities. A ground based microlensing search for planets complements the highly successful radial velocity searches and expanding transit searches by being most sensitive to distant, long period planets, whereas both radial velocity and transit searches are most sensitive to close, massive planets. Existing and proposed astrometric searches are also most sensitive to distant planets, but only with a data time span that is a significant fraction of the orbit period.

  6. Teaching Probabilities and Statistics to Preschool Children

    ERIC Educational Resources Information Center

    Pange, Jenny

    2003-01-01

    This study considers the teaching of probabilities and statistics to a group of preschool children using traditional classroom activities and Internet games. It was clear from this study that children can show a high level of understanding of probabilities and statistics, and demonstrate high performance in probability games. The use of Internet…

  7. The Cognitive Substrate of Subjective Probability

    ERIC Educational Resources Information Center

    Nilsson, Hakan; Olsson, Henrik; Juslin, Peter

    2005-01-01

    The prominent cognitive theories of probability judgment were primarily developed to explain cognitive biases rather than to account for the cognitive processes in probability judgment. In this article the authors compare 3 major theories of the processes and representations in probability judgment: the representativeness heuristic, implemented as…

  8. Illustrating Basic Probability Calculations Using "Craps"

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    Instructors may use the gambling game of craps to illustrate the use of a number of fundamental probability identities. For the "pass-line" bet we focus on the chance of winning and the expected game length. To compute these, probabilities of unions of disjoint events, probabilities of intersections of independent events, conditional probabilities…

  9. Using Playing Cards to Differentiate Probability Interpretations

    ERIC Educational Resources Information Center

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  10. The trajectory of the target probability effect.

    PubMed

    Hon, Nicholas; Yap, Melvin J; Jabar, Syaheed B

    2013-05-01

    The effect of target probability on detection times is well-established: Even when detection accuracy is high, lower probability targets are detected more slowly than higher probability ones. Although this target probability effect on detection times has been well-studied, one aspect of it has remained largely unexamined: How the effect develops over the span of an experiment. Here, we investigated this issue with two detection experiments that assessed different target probability ratios. Conventional block segment analysis and linear mixed-effects modeling converged on two key findings. First, we found that the magnitude of the target probability effect increases as one progresses through a block of trials. Second, we found, by examining the trajectories of the low- and high-probability targets, that this increase in effect magnitude was driven by the low-probability targets. Specifically, we found that low-probability targets were detected more slowly as a block of trials progressed. Performance to high-probability targets, on the other hand, was largely invariant across the block. The latter finding is of particular interest because it cannot be reconciled with accounts that propose that the target probability effect is driven by the high-probability targets.

  11. Using Playing Cards to Differentiate Probability Interpretations

    ERIC Educational Resources Information Center

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  12. Pre-Service Teachers' Conceptions of Probability

    ERIC Educational Resources Information Center

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  13. Calibrating Subjective Probabilities Using Hierarchical Bayesian Models

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.

    A body of psychological research has examined the correspondence between a judge's subjective probability of an event's outcome and the event's actual outcome. The research generally shows that subjective probabilities are noisy and do not match the "true" probabilities. However, subjective probabilities are still useful for forecasting purposes if they bear some relationship to true probabilities. The purpose of the current research is to exploit relationships between subjective probabilities and outcomes to create improved, model-based probabilities for forecasting. Once the model has been trained in situations where the outcome is known, it can then be used in forecasting situations where the outcome is unknown. These concepts are demonstrated using experimental psychology data, and potential applications are discussed.

  14. The uncertainty in earthquake conditional probabilities

    USGS Publications Warehouse

    Savage, J.C.

    1992-01-01

    The Working Group on California Earthquake Probabilities (WGCEP) questioned the relevance of uncertainty intervals assigned to earthquake conditional probabilities on the basis that the uncertainty in the probability estimate seemed to be greater the smaller the intrinsic breadth of the recurrence-interval distribution. It is shown here that this paradox depends upon a faulty measure of uncertainty in the conditional probability and that with a proper measure of uncertainty no paradox exists. The assertion that the WGCEP probability assessment in 1988 correctly forecast the 1989 Loma Prieta earthquake is also challenged by showing that posterior probability of rupture inferred after the occurrence of the earthquake from the prior WGCEP probability distribution reverts to a nearly informationless distribution. -Author

  15. Bell Could Become the Copernicus of Probability

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-07-01

    Our aim is to emphasize the role of mathematical models in physics, especially models of geometry and probability. We briefly compare developments of geometry and probability by pointing to similarities and differences: from Euclid to Lobachevsky and from Kolmogorov to Bell. In probability, Bell could play the same role as Lobachevsky in geometry. In fact, violation of Bell’s inequality can be treated as implying the impossibility to apply the classical probability model of Kolmogorov (1933) to quantum phenomena. Thus the quantum probabilistic model (based on Born’s rule) can be considered as the concrete example of the non-Kolmogorovian model of probability, similarly to the Lobachevskian model — the first example of the non-Euclidean model of geometry. This is the “probability model” interpretation of the violation of Bell’s inequality. We also criticize the standard interpretation—an attempt to add to rigorous mathematical probability models additional elements such as (non)locality and (un)realism. Finally, we compare embeddings of non-Euclidean geometries into the Euclidean space with embeddings of the non-Kolmogorovian probabilities (in particular, quantum probability) into the Kolmogorov probability space. As an example, we consider the CHSH-test.

  16. Observational biases for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Sandford, Emily

    2016-12-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 au of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  17. Probability distribution analysis of force induced unzipping of DNA

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Giri, Debaprasad

    2006-07-01

    We present a semimicroscopic model of dsDNA by incorporating the directional nature of hydrogen bond to describe the force induced unzipping transition. Using exact enumeration technique, we obtain the force-temperature and the force-extension curves and compare our results with the other models of dsDNA. The model proposed by us is rich enough to describe the basic mechanism of dsDNA unzipping and predicts the existence of an "eye phase." We show oscillations in the probability distribution function during unzipping. Effects of stacking energies on the melting profile have also been studied.

  18. Continuation of probability density functions using a generalized Lyapunov approach

    NASA Astrophysics Data System (ADS)

    Baars, S.; Viebahn, J. P.; Mulder, T. E.; Kuehn, C.; Wubs, F. W.; Dijkstra, H. A.

    2017-05-01

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.

  19. The origin of life: self-replicating asymmetrical frozen probability.

    PubMed

    Glassman, M L; Hochberg, A

    1998-01-01

    Within each of us, as within each living or extinct creature, is a broad piece from the story of life and creation. Both the evolution of the universe and the emergence of life on Earth can be considered as being the result of critical events, such as phase transitions, that occur with a certain probability and are characterized by a sudden breakage of prior symmetry. These in turn result in self-perpetuating conditions that are responsible for what we know and perceive today.

  20. Working directly with probabilities in quantum field theory

    NASA Astrophysics Data System (ADS)

    Dickinson, R.; Forshaw, J.; Millington, P.

    2017-08-01

    We present a novel approach to computing transition probabilities in quantum field theory, which allows them to be written directly in terms of expectation values of nested commutators and anti-commutators of field operators, rather than squared matrix elements. We show that this leads to a diagrammatic expansion in which the retarded propagator plays a dominant role. As a result, one is able to see clearly how faster-than-light signalling is prevented between sources and detectors. Finally, we comment on potential implications of this approach for dealing with infra-red divergences.

  1. Probability and Quantum Paradigms: the Interplay

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2007-12-01

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  2. UT Biomedical Informatics Lab (BMIL) Probability Wheel

    PubMed Central

    Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    2016-01-01

    A probability wheel app is intended to facilitate communication between two people, an “investigator” and a “participant,” about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences. PMID:28105462

  3. UT Biomedical Informatics Lab (BMIL) probability wheel

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  4. Error probability performance of unbalanced QPSK receivers

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1978-01-01

    A simple technique for calculating the error probability performance and associated noisy reference loss of practical unbalanced QPSK receivers is presented. The approach is based on expanding the error probability conditioned on the loop phase error in a power series in the loop phase error and then, keeping only the first few terms of this series, averaging this conditional error probability over the probability density function of the loop phase error. Doing so results in an expression for the average error probability which is in the form of a leading term representing the ideal (perfect synchronization references) performance plus a term proportional to the mean-squared crosstalk. Thus, the additional error probability due to noisy synchronization references occurs as an additive term proportional to the mean-squared phase jitter directly associated with the receiver's tracking loop. Similar arguments are advanced to give closed-form results for the noisy reference loss itself.

  5. Probability and Quantum Paradigms: the Interplay

    SciTech Connect

    Kracklauer, A. F.

    2007-12-03

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  6. Location probability learning requires focal attention.

    PubMed

    Kabata, Takashi; Yokoyama, Takemasa; Noguchi, Yasuki; Kita, Shinichi

    2014-01-01

    Target identification is related to the frequency with which targets appear at a given location, with greater frequency enhancing identification. This phenomenon suggests that location probability learned through repeated experience with the target modulates cognitive processing. However, it remains unclear whether attentive processing of the target is required to learn location probability. Here, we used a dual-task paradigm to test the location probability effect of attended and unattended stimuli. Observers performed an attentionally demanding central-letter task and a peripheral-bar discrimination task in which location probability was manipulated. Thus, we were able to compare performance on the peripheral task when attention was fully engaged to the target (single-task condition) versus when attentional resources were drawn away by the central task (dual-task condition). The location probability effect occurred only in the single-task condition, when attention resources were fully available. This suggests that location probability learning requires attention to the target stimuli.

  7. Experience matters: information acquisition optimizes probability gain.

    PubMed

    Nelson, Jonathan D; McKenzie, Craig R M; Cottrell, Garrison W; Sejnowski, Terrence J

    2010-07-01

    Deciding which piece of information to acquire or attend to is fundamental to perception, categorization, medical diagnosis, and scientific inference. Four statistical theories of the value of information-information gain, Kullback-Liebler distance, probability gain (error minimization), and impact-are equally consistent with extant data on human information acquisition. Three experiments, designed via computer optimization to be maximally informative, tested which of these theories best describes human information search. Experiment 1, which used natural sampling and experience-based learning to convey environmental probabilities, found that probability gain explained subjects' information search better than the other statistical theories or the probability-of-certainty heuristic. Experiments 1 and 2 found that subjects behaved differently when the standard method of verbally presented summary statistics (rather than experience-based learning) was used to convey environmental probabilities. Experiment 3 found that subjects' preference for probability gain is robust, suggesting that the other models contribute little to subjects' search behavior.

  8. UT Biomedical Informatics Lab (BMIL) Probability Wheel.

    PubMed

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B; Sun, Clement; Fan, Kaili; Reece, Gregory P; Kim, Min Soon; Markey, Mia K

    2016-01-01

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant," about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  9. American Higher Education in Transition

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.

    2011-01-01

    American higher education is in transition and if there ever was a "golden age" for faculty, it probably is behind us. The best historical data on the composition of faculty is collected annually by the American Mathematical Society. Between 1967 and 2009, the share of full-time faculty with PhDs remained constant at about 90 percent at…

  10. American Higher Education in Transition

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.

    2011-01-01

    American higher education is in transition and if there ever was a "golden age" for faculty, it probably is behind us. The best historical data on the composition of faculty is collected annually by the American Mathematical Society. Between 1967 and 2009, the share of full-time faculty with PhDs remained constant at about 90 percent at…

  11. Total variation denoising of probability measures using iterated function systems with probabilities

    NASA Astrophysics Data System (ADS)

    La Torre, Davide; Mendivil, Franklin; Vrscay, Edward R.

    2017-01-01

    In this paper we present a total variation denoising problem for probability measures using the set of fixed point probability measures of iterated function systems with probabilities IFSP. By means of the Collage Theorem for contraction mappings, we provide an upper bound for this problem that can be solved by determining a set of probabilities.

  12. The Foundations of Probability and Mathematical Statistics

    DTIC Science & Technology

    1975-03-01

    Lipschutz , Theory and Problems of Probability, Schaum*s Outline Series, McGraw Hill, New York, 1968, Chapters 1 and 3. Emanuel Parzen, Modern...Wesley, 1970, Chapter 3. Seymour Lipschutz , Theory and Problems of Probability, Schaum1s Outline Series, McGraw-Hill, New York, 1968, Chapter 4...Addison-Wesley, 1970, Chapter 4. Seymour Lipschutz , Theory and Problems of Probability, Schaum’s Outline Series, McGraw-Hill, New York, 1968, Chapter

  13. Transitional Care

    ERIC Educational Resources Information Center

    Naylor, Mary; Keating, Stacen A.

    2008-01-01

    Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…

  14. Transitional Care

    ERIC Educational Resources Information Center

    Naylor, Mary; Keating, Stacen A.

    2008-01-01

    Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…

  15. Psychophysics of the probability weighting function

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (0<α<1 and w(0)=1,w(1e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  16. Rydberg electron transitions in the methyl radical

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Martin, I.; Lavín, C.

    1997-01-01

    Transition probabilities corresponding to one-photon transitions to Rydberg states of the methyl radical have been calculated with a molecular-adapted version of the quantum defect orbital (QDO) method. The results appear to be in accord with those of an analysis of the experimental spectrum by Herzberg.

  17. Dynamics of a Quantum Phase Transition

    SciTech Connect

    Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter

    2005-09-02

    We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.

  18. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We…

  19. Probability Issues in without Replacement Sampling

    ERIC Educational Resources Information Center

    Joarder, A. H.; Al-Sabah, W. S.

    2007-01-01

    Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…

  20. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.