Science.gov

Sample records for 1s0 transition probability

  1. Studies of Yb ^1S0 -- ^3P0 clock transitions

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    2005-05-01

    We are exploring two quite different methods for observing the ultra-sharp 6s^2 ^1S0 -- 6s6p ^3P0 optical interval in atomic Yb, which is considered a primary candidate for future optical frequency standards [1].In the first method, we observe the 578 nm single photon transition allowed in the odd isotopes through internal hyperfine coupling of the nuclear spin.† We shine a 578 nm laser beam on cold Yb atoms held in a magneto-optical trap (MOT), and detect a decrease in MOT fluorescence when the laser is resonant with the clock transition.† Our second approach is to use the even Yb isotopes, connecting the ^1S0 and ^3P0 states† by† a multi- photon transition [2]. Sharp electromagnetically induced transparency and absorption (EITA) resonance features appear when the photon frequencies combine to equal† the ^1S0 -- ^3P0 clock interval.† We will describe our initial studies of† 2 and 3 photon resonances in Yb, including Doppler-free 3 photon EITA. [1]S. G.† Porsev, A. Derevianko, E. N. Fortson, Phys. Rev. A 69, 021403(R)† (2004); H. Katori, in Proc. 6th Symposium Frequency Standards and Metrology, edited by P. Gill (World Scienti.c, Singapore, 2002), pp. 323-330 [2]Tao Hong, Claire Cramer, Warren Nagourney, E. N. Fortson, physics/0409051 and to be published in Phys. Rev. Lett.; Robin Santra, Ennio Arimondo, Tetsuya Ido, Crhis H. Greene, Jun Ye, physics/0411197

  2. Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays.

    PubMed

    Hong, Tao; Cramer, Claire; Cook, Eryn; Nagourney, Warren; Fortson, E N

    2005-10-01

    We report an observation of the weak 6 1S0-6 3P0 transition in (171,173)Yb as an important step to establishing Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the 1S0 and 3P0 states of Yb atoms in an optical lattice.

  3. Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates of He-like ions

    NASA Astrophysics Data System (ADS)

    Laima, Radžiūtė; Erikas, Gaidamauskas; Gediminas, Gaigalas; Li, Ji-Guang; Dong, Chen-Zhong; Jönsson, Per

    2015-04-01

    Weak- and hyperfine-interaction-induced 1s2s 1S0 → 1s2 1S0 E1 transition rates for the isoelectronic sequence of He-like ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, 11147108, 10979007, U1331122, and U1332206) and in part by the National Basic Research Program of China (Grant No. 2013CB922200).

  4. Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice

    2015-05-01

    Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.

  5. Photoassociation spectroscopy of 174 Yb Bose-Einstein Condensate using the 1 S0<-->3 P1 transition

    NASA Astrophysics Data System (ADS)

    Mun, Jongchul; Lee, Jeongwon; Lee, Jae Hoon; Kim, Min-Seok; Shin, Yong-Il

    2016-05-01

    We studied the photoassociation spectrum of 174 Yb Bose-Einstein condensate (BEC) using an optical Feshbach resonance near the intercombination transition (1 S0 -3 P1, 578 nm). The optical length lopt, which characterize the interaction strength of optical Feshbach resonances, of four least-bound molecular levels (ν' = - 1 ~ - 4) were precisely determined by measuring the two-body loss rate at various optical powers. We also found the parameter η =Γspon /Γmol , which characterizes the enhancement of molecular loss, to be > 1 as in the previous studies. Our BEC apparatus and experimental scheme are also introduced in this presentation. This work was supported by KRISS creative research initiative.

  6. Spectroscopy of ^1S0 -- ^3P1^88Sr Atomic Transition in a 1.06 μm Optical Dipole Trap

    NASA Astrophysics Data System (ADS)

    Martinez de Escobar, Y. N.; Mickelson, P. G.; Traverso, A. J.; Killian, T. C.

    2008-05-01

    We studied the effects of laser light near-resonant with the ^1S0-- ^3P1^88Sr transition in an optical dipole trap (ODT). We observe laser cooling of our ODT atomic sample as the atoms collide in the presence of red-detuned 689 nm light. Heating of the atoms was also observed at a different range of frequency detunings while performing spectroscopy. Both processes were accompanied with atom loss, but the increase of phase space density observed during 689 nm laser cooling could aid pursuits of quantum degeneracy with Sr.

  7. Towards a Mg Lattice Clock: Observation of the 1S0-3P0 Transition and Determination of the Magic Wavelength

    NASA Astrophysics Data System (ADS)

    Kulosa, A. P.; Fim, D.; Zipfel, K. H.; Rühmann, S.; Sauer, S.; Jha, N.; Gibble, K.; Ertmer, W.; Rasel, E. M.; Safronova, M. S.; Safronova, U. I.; Porsev, S. G.

    2015-12-01

    We optically excite the electronic state 3 s 3 p 3P0 in 24Mg atoms, laser cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift, and the transition frequency to be 468.46(21) nm, -206.6 (2.0 ) MHz /T2 , and 655 058 646 691(101) kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also develop a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift, and discuss a clock based on bosonic magnesium.

  8. Rotationally resolved ultrahigh-resolution laser spectroscopy of the S2 1A1<--S0 1A1 transition of azulene

    NASA Astrophysics Data System (ADS)

    Semba, Yosuke; Yoshida, Kazuto; Kasahara, Shunji; Ni, Chi-Kung; Hsu, Yen-Chu; Lin, Sheng Hsien; Ohshima, Yasuhiro; Baba, Masaaki

    2009-07-01

    We have observed rotationally resolved ultrahigh-resolution fluorescence excitation spectra of the 000 (a-type) and 000+467 cm-1 (b-type) bands of the S2 A11←S0A11 transition of jet-cooled azulene. The observed linewidth is 0.0017 cm-1, which corresponds to the lifetime of 3.1 ns in the S2 state. Zeeman splitting of rotational lines is very small so that intersystem crossing to the triplet state is considered to be very slow. Inertial defect is very small and the molecule is considered to be planar in the S0 and S2 states (C2v symmetry). Rotational constants of the S2 state are almost identical to those of the S0 state, indicating that geometrical structure is similar in both electronic states. In this case, internal conversion (IC) by vibronic coupling is thought to be inactive. Therefore, the main radiationless transition process in the S2 A11 state of azulene was identified to be IC to the S1 B12 state. However, this S2→S1 IC is still slower than that of conventional polycyclic aromatic hydrocarbons. We consider it to be due to the shallower potential energy curve in the S1 B12 state, which is also responsible for the extraordinarily fast S1→S0 IC in the isolated azulene molecule.

  9. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  10. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

    PubMed

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  11. Absolute frequency measurement of 1S0(F = 1/2)-3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS

    NASA Astrophysics Data System (ADS)

    Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kim, Eok Bong; Lee, Sun Kyung; Cho, Jun Woo; Yoon, Tai Hyun; Mun, Jongchul; Jong Park, Sung; Kwon, Taeg Yong; Lee, Sang-Bum

    2013-04-01

    We measured the absolute frequency of the optical clock transition 1S0(F = 1/2)-3P0(F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  12. Rare Gases Transition Probabilities for Plasma Diagnostics

    SciTech Connect

    Katsonis, K.; Siskos, A.; Ndiaye, A.; Clark, R. E. H.; Cornille, M.; Abdallah, J. Jr.

    2006-01-15

    Evaluation of Ar and Xe transition probabilities to be used in Collisional-Radiative models for plasma diagnostics is addressed. Partial results are given for the typical case of the 4p <- 4d Ar III multiplet.

  13. Transition Probabilities for Hydrogen-Like Atoms

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Bunge, Carlos F.

    2004-12-01

    E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el

  14. Random walks with similar transition probabilities

    NASA Astrophysics Data System (ADS)

    Schiefermayr, Klaus

    2003-04-01

    We consider random walks on the nonnegative integers with a possible absorbing state at -1. A random walk is called [alpha]-similar to a random walk if there exist constants Cij such that for the corresponding n-step transition probabilities , i,j[greater-or-equal, slanted]0, hold. We give necessary and sufficient conditions for the [alpha]-similarity of two random walks both in terms of the parameters and in terms of the corresponding spectral measures which appear in the spectral representation of the n-step transition probabilities developed by Karlin and McGregor.

  15. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  16. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  17. Augmenting Transition Probabilities for Neutral Atomic Nitrogen

    NASA Technical Reports Server (NTRS)

    Terrazas-Salines, Imelda; Park, Chul; Strawa, Anthony W.; Hartman, G. Joseph (Technical Monitor)

    1996-01-01

    The transition probability values for a number of neutral atomic nitrogen (NI) lines in the visible wavelength range are determined in order to augment those given in the National Bureau of Standards Tables. These values are determined from experimentation as well as by using the published results of other investigators. The experimental determination of the lines in the 410 to 430 nm range was made from the observation of the emission from the arc column of an arc-heated wind tunnel. The transition probability values of these NI lines are determined to an accuracy of +/- 30% by comparison of their measured intensities with those of the atomic oxygen (OI) multiplet at around 615 nm. The temperature of the emitting medium is determined both using a multiple-layer model, based on a theoretical model of the flow in the arc column, and an empirical single-layer model. The results show that the two models lead to the same values of transition probabilities for the NI lines.

  18. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  19. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  20. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  1. Topology of optimally controlled quantum mechanical transition probability landscapes

    SciTech Connect

    Rabitz, H.; Ho, T.-S.; Hsieh, M.; Kosut, R.; Demiralp, M.

    2006-07-15

    An optimally controlled quantum system possesses a search landscape defined by the physical objective as a functional of the control field. This paper particularly explores the topological structure of quantum mechanical transition probability landscapes. The quantum system is assumed to be controllable and the analysis is based on the Euler-Lagrange variational equations derived from a cost function only requiring extremizing the transition probability. It is shown that the latter variational equations are automatically satisfied as a mathematical identity for control fields that either produce transition probabilities of zero or unit value. Similarly, the variational equations are shown to be inconsistent (i.e., they have no solution) for any control field that produces a transition probability different from either of these two extreme values. An upper bound is shown to exist on the norm of the functional derivative of the transition probability with respect to the control field anywhere over the landscape. The trace of the Hessian, evaluated for a control field producing a transition probability of a unit value, is shown to be bounded from below. Furthermore, the Hessian at a transition probability of unit value is shown to have an extensive null space and only a finite number of negative eigenvalues. Collectively, these findings show that (a) the transition probability landscape extrema consists of values corresponding to no control or full control, (b) approaching full control involves climbing a gentle slope with no false traps in the control space and (c) an inherent degree of robustness exists around any full control solution. Although full controllability may not exist in some applications, the analysis provides a basis to understand the evident ease of finding controls that produce excellent yields in simulations and in the laboratory.

  2. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  3. Kr II transition probability measurements for the UV spectral region

    NASA Astrophysics Data System (ADS)

    Belmonte, M. T.; Gavanski, L.; Peláez, R. J.; Aparicio, J. A.; Djurović, S.; Mar, S.

    2016-02-01

    The determination of radiative transition probabilities or oscillator strengths is of common interest in astrophysics. The analysis of the high-resolution stellar spectra is now available in order to estimate the stellar abundances. In this paper, 93 experimentally obtained transition probability values (Aki) for singly ionized krypton spectral lines belonging to the ultraviolet (UV) wavelength region (208-360) nm are presented. These data, expressed in absolute units, were derived from the measurements of relative spectral line intensities and the values of transition probability data taken from the literature. The results obtained extend considerably the transition probability data base. As a light source, a plasma from a low-pressure pulsed arc was used. Its electron density was in the range of (1.5-3.4) × 1022 m-3, while the temperature was between 28 000 and 35 000 K. A detailed analysis of the results is also given. Only a few relative and a few absolute transition probabilities from other authors, for the mentioned spectral region, are available in the literature.

  4. Advances in the Measurement of Atomic Transition Probabilities

    NASA Astrophysics Data System (ADS)

    O'Brian, Thomas Raymond

    The technology for measuring absolute atomic transition probabilities is extended. Radiative lifetimes are measured by time-resolved laser-induced fluorescence on a slow atomic beam generated by a versatile hollow cathode discharge source. The radiative lifetimes are free from systematic error at the five percent level. Combined with branching fractions measured with emission or absorption sources, the lifetimes result in absolute transition probabilities usually accurate to 5-10 %. Three new developments in the lifetime and branching fraction technique are reported. Radiative lifetimes for 186 levels in neutral iron are measured, with the energy of the upper levels densely spanning the entire excitation range of neutral iron. Combined with branching fractions measured in emission with Fourier transform spectrophotometry, the level lifetimes directly yield absolute transition probabilities for 1174 transitions. An additional 640 transition probabilities are determined by interpolating level populations in an emission source. The dense energy spacing of the levels with directly measured lifetimes permits accurate population interpolation despite departures from local thermodynamic equilibrium. This technique has the potential to permit accurate absolute transition probability measurements for essentially every classified line in a spectrum. Radiative lifetime measurements are extended into the vacuum ultraviolet with a continuously tunable vacuum ultraviolet laser based on stimulated anti-Stokes Raman scattering. When used with the hollow cathode atomic beam source, accurate lifetimes are measured for 47 levels in neutral silicon and 8 levels in neutral boron, primarily in the vacuum ultraviolet spectral region. Transition probabilities are reported for many lines connected to these upper levels, using previously measured or calculated branching fractions. The hollow cathode beam source is developed for use with refractory non-metals. Intense atomic beams of boron

  5. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    SciTech Connect

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of the technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.

  6. Transition Probabilities for Spectral Lines in Co I

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Wilson, K. L.; Lentz, L. R.

    1996-05-01

    We are in the process of determining transition probabilities for visible and uv lines in Co I from Fourier transform spectra recorded at Kitt Peak and made available to us by Prof. W. Whaling. Normalization of relative transition probabilities obtained from these spectra is achieved using recently-measured Co I lifetimes.(D. E. Nitz, S. D. Bergeson, and J. E. Lawler, J. Opt. Soc. Am. B 12, 377 (1995).) To date we have obtained preliminary results for 240 lines having branch fractions > 1

  7. Collision strengths and transition probabilities for Co III forbidden lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha

    2016-07-01

    In this paper we compute the collision strengths and their thermally averaged Maxwellian values for electron transitions between the 15 lowest levels of doubly ionized cobalt, Co2+, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.

  8. Transitional Probability Analysis of Two Child Behavior Analytic Therapy Cases

    ERIC Educational Resources Information Center

    Xavier, Rodrigo Nunes; Kanter, Jonathan William; Meyer, Sonia Beatriz

    2012-01-01

    This paper aimed to highlight the process of therapist direct contingent responding to shape client behavior in two Child Behavior Analytic Therapy (CBAT) cases using transitional probabilities. The Functional Analytic Psychotherapy Rating Scale (FAPRS) was used to code client behaviors and the Multidimensional System for Coding Behaviors in…

  9. Executable Code Recognition in Network Flows Using Instruction Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Kim, Ikkyun; Kang, Koohong; Choi, Yangseo; Kim, Daewon; Oh, Jintae; Jang, Jongsoo; Han, Kijun

    The ability to recognize quickly inside network flows to be executable is prerequisite for malware detection. For this purpose, we introduce an instruction transition probability matrix (ITPX) which is comprised of the IA-32 instruction sets and reveals the characteristics of executable code's instruction transition patterns. And then, we propose a simple algorithm to detect executable code inside network flows using a reference ITPX which is learned from the known Windows Portable Executable files. We have tested the algorithm with more than thousands of executable and non-executable codes. The results show that it is very promising enough to use in real world.

  10. CORBITS: Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-03-01

    CORBITS (Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems) computes the probability that any particular group of exoplanets can be observed to transit from a collection of conjectured exoplanets orbiting a star. The efficient, semi-analytical code computes the areas bounded by circular curves on the surface of a sphere by applying elementary differential geometry. CORBITS is faster than previous algorithms, based on comparisons with Monte Carlo simulations, and tests show that it is extremely accurate even for highly eccentric planets.

  11. Transition probability of the Si III 189.2-nm intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1983-01-01

    Measurement of the lifetime of the metastable 3s3p(3)P(0)1 level of Si(2+) (Si III), which decays by photon emission at 189.2 nm to the 3s2(1)S0 state, is reported. The data were taken from spontaneous emission from metastable Si III stored in an RF ion trap. The Si III ions were produced through electron bombardment of SiH4 and SiF4 at pressures of 1/100,000,000-1/10,000,000 Torr. A photomultiplier was employed to count the photon emissions from the transitions. A total of 11 decay curves were generated for analysis, with Poisson statistics used to set the uncertainties at within 8 pct. Significant systematic effects were controlled, and the lifetime was found to be within 3.6 microsec of 59.9 microsec. The method used is concluded valid for determining the lifetimes of metastable levels of low-Z ions with low charge, and thereby the transition probabilities.

  12. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  13. Estimating transition probabilities in unmarked populations --entropy revisited

    USGS Publications Warehouse

    Cooch, E.G.; Link, W.A.

    1999-01-01

    The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.

  14. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  15. Interplanar torsion in the S1<--S0 electronic spectrum of jet cooled 1-phenylimidazole.

    PubMed

    Robertson, Evan G; Thompson, Christopher D; Morrison, Richard J S

    2004-12-22

    The S(1)<--S(0) transition of 1-phenylimidazole (1PI) has been studied in a supersonic jet expansion by resonant two-photon ionization. The origin band at 36 075 cm(-1) is accompanied by a low frequency progression associated with torsion about the bond connecting phenyl and imidazole groups. Torsional potentials have been determined for both states. In S(0), phi(min)=37.2+/-0.5 degrees and the planar barrier is 339+/-20 cm(-1), while in S(1), phi(min)=17.6+/-0.5 degrees and the planar barrier is 57+/-2 cm(-1). The transition moment alignment is observed to be consistent with an excited state of L(b) character, in spite of the "off-axis" conjugation provided by the imidazole ring. These results are compared with ab initio calculations on both states, performed using Hartree-Fock, Møller-Plesset second-order perturbation, density functional theory with the Becke3-Lee-Yang-Parr functional, time-dependent density functional theory, configuration interaction singles, and complete active space self-consistent field methods. Solution-phase UV spectra of neutral and protonated 1PI are also reported.

  16. QED calculation of transition probabilities in two-electron ions

    NASA Astrophysics Data System (ADS)

    Andreev, Oleg Yu.; Labzowsky, Leonti N.; Plunien, Günter

    2009-03-01

    An accurate QED calculation of transition probabilities for the low-lying two-electron configurations of multicharged ions is presented. The calculation is performed for the nondegenerate states (1s2s)S31 , (1s2p3/2)P32 ( M1 and M2 transitions, respectively) and for the quasidegenerate states (1s2p)P11 , (1s2p)P31 ( E1 transitions) decaying to the ground state (1s1s)S10 . Two-electron ions with nuclear-charge numbers Z=10-92 are considered. The line profile approach is employed for the description of the process in multicharged ions within the framework of QED.

  17. Recursive recovery of Markov transition probabilities from boundary value data

    SciTech Connect

    Patch, S.K.

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 {times} 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 {times} 2 {times} 2 problem, is solved.

  18. Scale-Invariant Transition Probabilities in Free Word Association Trajectories

    PubMed Central

    Costa, Martin Elias; Bonomo, Flavia; Sigman, Mariano

    2009-01-01

    Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16% of order-2 cycles) implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼7 steps) which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution. PMID:19826622

  19. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  20. Superposition, Transition Probabilities and Primitive Observables in Infinite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Størmer, Erling

    2015-10-01

    The concepts of superposition and of transition probability, familiar from pure states in quantum physics, are extended to locally normal states on funnels of type I∞ factors. Such funnels are used in the description of infinite systems, appearing for example in quantum field theory or in quantum statistical mechanics; their respective constituents are interpreted as algebras of observables localized in an increasing family of nested spacetime regions. Given a generic reference state (expectation functional) on a funnel, e.g. a ground state or a thermal equilibrium state, it is shown that irrespective of the global type of this state all of its excitations, generated by the adjoint action of elements of the funnel, can coherently be superimposed in a meaningful manner. Moreover, these states are the extreme points of their convex hull and as such are analogues of pure states. As further support of this analogy, transition probabilities are defined, complete families of orthogonal states are exhibited and a one-to-one correspondence between the states and families of minimal projections on a Hilbert space is established. The physical interpretation of these quantities relies on a concept of primitive observables. It extends the familiar framework of observable algebras and avoids some counter intuitive features of that setting. Primitive observables admit a consistent statistical interpretation of corresponding measurements and their impact on states is described by a variant of the von Neumann-Lüders projection postulate.

  1. E2 transition probabilities in {sup 114}Te: A conundrum

    SciTech Connect

    Moeller, O.; Warr, N.; Jolie, J.; Dewald, A.; Fitzler, A.; Linnemann, A.; Zell, K.O.; Garrett, P.E.; Yates, S.W.

    2005-06-01

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, whereas the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground-state band.

  2. E2 Transition Probabilities in 114Te: a Conundrum

    SciTech Connect

    Moller, O; Warr, N; Jolie, J; Dewald, A; Fitzler, A; Linnemann, A; Zell, K O; Garrett, P E; Yates, S W

    2005-05-13

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball Cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, while the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground state band.

  3. Transition probabilities in neutron-rich Se,8684

    NASA Astrophysics Data System (ADS)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  4. Broken scaling laws of the transition probabilities from jj to LS coupling transitions

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Han, Xiao-Ying; Zeng, De-Ling; Jin, Rui; Li, Jia-Ming

    2014-04-01

    Accurate electromagnetic transition rates between the ground electronic configurations are important in diagnostic studies of planetary nebulae. Based on a "quasi-complete basis" set, we present large-scale multi-configuration Dirac-Fock calculations of the forbidden transition rates within the ground electronic configuration along the nitrogen-like isoelectronic sequence. The broken scaling laws of the transition probabilities from jj to LS coupling transitions are elucidated and found to be extensions of the well-known scaling laws discussed in the single electron case. The equivalent oscillator strength is very large for ions in high-Z regions and should play a crucial role in the cooling mechanism in astrophysics.

  5. CYCLIC TRANSIT PROBABILITIES OF LONG-PERIOD ECCENTRIC PLANETS DUE TO PERIASTRON PRECESSION

    SciTech Connect

    Kane, Stephen R.; Von Braun, Kaspar; Horner, Jonathan

    2012-09-20

    The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters as a path to measuring these precessions and cyclic transit probabilities.

  6. Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.

    2016-03-01

    Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.

  7. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  8. Transition Probabilities And Chiral Symmetry In 134Pr

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Axiotis, M.; Marginean, N.; Martines, T.; Napoli, D.R.; Prete, G.; Behera, B.R.; Rusu, C.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Balabanski, D.; Bednarczyk, P.; Camera, F.; Paleni, A.

    2005-04-05

    Lifetime measurements in 134Pr were performed by means of the Recoil distance Doppler-shift and Doppler-shift attenuation methods using the multidetector array EUROBALL, in conjunction with the inner BGO ball. The derived B(E2) transition strengths within the two bands candidates for chiral partners behave differently with increasing spin while the corresponding B(M1) values have a similar behaviour within the experimental uncertainties.

  9. Transition probabilities of normal states determine the Jordan structure of a quantum system

    NASA Astrophysics Data System (ADS)

    Leung, Chi-Wai; Ng, Chi-Keung; Wong, Ngai-Ching

    2016-01-01

    Let Φ : 𝔖(M1) → 𝔖(M2) be a bijection (not assumed affine nor continuous) between the sets of normal states of two quantum systems, modelled on the self-adjoint parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the situation when Φ preserves (or partially preserves) one of the following three notions of "transition probability" on the normal state spaces: the transition probability PU introduced by Uhlmann [Rep. Math. Phys. 9, 273-279 (1976)], the transition probability PR introduced by Raggio [Lett. Math. Phys. 6, 233-236 (1982)], and an "asymmetric transition probability" P0 (as introduced in this article). It is shown that the two systems are isomorphic, i.e., M1 and M2 are Jordan ∗-isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asymmetric) transition probability, in the sense that for any normal states μ and ν, we have P (" separators=" Φ ( μ ) , Φ ( ν ) " separators=" ) = 0 if and only if P(μ, ν) = 0, where P stands for PU (respectively, PR or P0). Furthermore, as an extension of Wigner's theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗|𝔖(M1) if and only if Φ preserves the "asymmetric transition probability." This is also equivalent to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the Raggio transition probability, it will preserve the Uhlmann transition probability as well. As another application, the sets of normal states equipped with either the usual metric, the Bures metric or "the metric induced by the self-dual cone," are complete Jordan ∗-invariants for the underlying von Neumann algebras.

  10. Exact transition probabilities in a 6-state Landau–Zener system with path interference

    DOE PAGES

    Sinitsyn, Nikolai A.

    2015-04-23

    In this paper, we identify a nontrivial multistate Landau–Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. Finally, we discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  11. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  12. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  13. Generation of Transition Probability Data: Can quantity and quality be balanced?

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Froese Fisher, C.

    2008-10-01

    The possibility of truly predictive plasma modeling rests on the availability of large quantities of accurate atomic and molecular data. These include a variety of collision cross-sections and radiative transition data. An example of current interest concerns radiative transition probabilities for neutral Ce, an additive in highly-efficient metal-halide lamps. Transition probabilities have been measured for several hundred lines (Bisson et al., JOSA B 12, 193, 1995 and Lawler et al., unpublished), but the number of observed and classified transitions in the range of 340 nm to 1 μm is in excess of 21,000 (Martin, unpublished). Since the prospect for measuring more than a thousand or so of these transitions is rather low, an important question is whether calculation can adequately fill the void. In this case, we are interested only in electric dipole transitions. Furthermore, we require only that the transition probabilities have an average accuracy of ˜20%. We will discuss our efforts to calculate a comprehensive set of transition probabilities for neutral Ce using the Cowan (The Theory of Atomic Structure and Spectra, 1981) and GRASP (J"onsson et al. Comput. Phys. Commun. 176, 559-579, 2007) codes. We will also discuss our efforts to quantify the accuracy of the results.

  14. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  15. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet–planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  16. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet-planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  17. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    SciTech Connect

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; Gable, Carl; Teatini, Pietro

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.

  18. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    DOE PAGES

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; Gable, Carl; Teatini, Pietro

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less

  19. Transition Probabilities for Neutral Cerium from Boltzmann Analysis of Fourier Transform Spectra

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Curry, J. J.; Buuck, M. J.; Mitchell, N. P.; Demann, A. D.; Shull, W. E.

    2012-06-01

    The recent availability of a large set of absolute transition probabilities for neutral cerium (Lawler et. al., J. Phys. B 43, 85701 (2010)) makes it possible to investigate the relative populations of the upper levels of these lines in radiometrically-calibrated spectra. In cases where these populations can be characterized by a single effective Boltzmann temperature, applying this temperature enables one to determine additional absolute transition probabilities for observable decay branches of nearby levels. While not as accurate as measurements based on branching fractions and lifetimes, the method can be applied to levels whose lifetimes are not known and does not require accounting for all of the branches. We are analyzing Fourier Transform spectra from NIST and from the National Solar Observatory data archive at Kitt Peak via this technique, seeking to increase the set of known transition probabilities for Ce I by a factor of 2-3. A summary of results obtained to date will be presented.

  20. Transition probability, dynamic regimes, and the critical point of financial crisis

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2015-07-01

    An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.

  1. Energy levels and transition probabilities in doubly-ionized erbium (Er III).

    NASA Astrophysics Data System (ADS)

    Wyart, J.-F.; Blaise, J.; Bidelman, W. P.; Cowley, C. R.

    1997-11-01

    The spectrum of Er III reported by Becher (1966) was reanalysed with the support of new predictions of energies and transition probabilities. The number of energy levels was increased from 45 to 115, including two levels of 4f117s and the levels 3F3, 3F2 and 1G4 of the ground configuration 4f12. All 470 classified lines are reported with transition probabilities for most of them. Several of these lines had not yet been attributed to Er III in the spectrum of the star HR 465.

  2. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  3. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  4. H∞ filtering of Markov jump linear systems with general transition probabilities and output quantization.

    PubMed

    Shen, Mouquan; Park, Ju H

    2016-07-01

    This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example. PMID:27129765

  5. Transition probabilities of astrophysical interest in the niobium ions Nb+ and Nb2+

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Hartman, H.; Engström, L.; Lundberg, H.; Sneden, C.; Fivet, V.; Palmeri, P.; Quinet, P.; Biémont, É.

    2010-02-01

    Aims: We attempt to derive accurate transition probabilities for astrophysically interesting spectral lines of ion{Nb}{ii} and ion{Nb}{iii} and determine the niobium abundance in the Sun and metal-poor stars rich in neutron-capture elements. Methods: We used the time-resolved laser-induced fluorescence technique to measure radiative lifetimes in ion{Nb}{ii}. Branching fractions were measured from spectra recorded using Fourier transform spectroscopy. The radiative lifetimes and the branching fractions were combined yielding transition probabilities. In addition, we calculated lifetimes and transition probablities in ion{Nb}{ii} and ion{Nb}{iii} using a relativistic Hartree-Fock method that includes core polarization. Abundances of the sun and five metal-poor stars were derived using synthetic spectra calculated with the MOOG code, including hyperfine broadening of the lines. Results: We present laboratory measurements of 17 radiative lifetimes in ion{Nb}{ii}. By combining these lifetimes with branching fractions for lines depopulating the levels, we derive the transition probabilities of 107 ion{Nb}{ii} lines from 4d35p configuration in the wavelength region 2240-4700 Å. For the first time, we present theoretical transition probabilities of 76 Nb III transitions with wavelengths in the range 1430-3140 Å. The derived solar photospheric niobium abundance log ɛ_⊙ = 1.44 ± 0.06 is in agreement with the meteoritic value. The stellar Nb/Eu abundance ratio determined for five metal-poor stars confirms that the r-process is a dominant production method for the n-capture elements in these stars.

  6. Transition probability measurements for some strong and weak lines of N

    SciTech Connect

    Bridges, J. M.; Wiese, W. L.

    2010-08-15

    We operated a high-current wall-stabilized arc to generate a low-temperature, steady-state plasma in nitrogen, with admixtures of argon, helium, and oxygen. We measured the relative atomic transition probabilities for several strong and weak 3s-3p and 3p-3d lines of neutral nitrogen and placed them on an absolute scale with experimental lifetime data available in the literature. We obtained good agreement with recent advanced calculations and an earlier measurement for the strong transitions but encountered appreciable discrepancies for weak transitions.

  7. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  8. Learning in Reverse: Eight-Month-Old Infants Track Backward Transitional Probabilities

    ERIC Educational Resources Information Center

    Pelucchi, Bruna; Hay, Jessica F.; Saffran, Jenny R.

    2009-01-01

    Numerous recent studies suggest that human learners, including both infants and adults, readily track sequential statistics computed between adjacent elements. One such statistic, transitional probability, is typically calculated as the likelihood that one element predicts another. However, little is known about whether listeners are sensitive to…

  9. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  10. Effects of Contextual Predictability and Transitional Probability on Eye Movements During Reading

    ERIC Educational Resources Information Center

    Frisson, Steven; Rayner, Keith; Pickering, Martin J.

    2005-01-01

    In 2 eye-movement experiments, the authors tested whether transitional probability (the statistical likelihood that a word precedes or follows another word) affects reading times and whether this occurs independently from contextual predictability effects. Experiment 1 showed early effects of predictability, replicating S. A. McDonald and R. C.…

  11. Experimental branching fractions, transition probabilities and oscillator strengths in Eu I

    NASA Astrophysics Data System (ADS)

    Fan, Shuang; Wang, Qian; Shang, Xue; Tian, Yanshan; Dai, Zhenwen

    2014-11-01

    Branching fractions (BFs) of 64 spectral lines for 27 levels in Eu I were measured by the emission spectrum of a hollow cathode lamp (HCL). The transition probabilities and oscillator strengths of these lines were determined by using the time-resolved laser-induced fluorescence technique to combine the BFs with experimental radiative lifetimes of the relative levels reported in the literature.

  12. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution.

    PubMed

    Crawford, Forrest W; Suchard, Marc A

    2012-09-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λ(n) and a particle dies with instantaneous rate μ(n). Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics.

  13. High-Resolution Laser Spectroscopy of S1-S0 Transition of Naphthalene: Measurement of Vibrationally Excited States

    NASA Astrophysics Data System (ADS)

    Nakano, Takumi; Yamamoto, Ryo; Kasahara, Shunji

    2015-06-01

    Naphthalene is one of the simple polycyclic aromatic molecule, and it is interesting that the excited state dynamics take place. To understand the excited state dynamics, rotationally resolved fluorescence excitation spectra of several vibronic bands were measured. In this work, we have measured high-resolution fluorescence excitation spectra across a single mode laser and molecular beam at light angle. Vibronic bands, which lies 2866 cm -1 and 3068 cm -1 above the 0-0 band (000 + 2866 cm-1 band and 000 + 3068 cm-1 band), were measured. Absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by the measurement of Doppler-free absorption spectrum of I2 molecule and transmitting light intensity of the stabilized etalon. Rotational lines of the 000 + 2866 cm-1 band were almost resolved. A part of the rotational lines were assigned, and several energy shifts were found. On the other hand, rotational lines were not completely resolved for the 000 + 3068 cm-1 band. K. Yoshida, Y. Semba, S. Kasahara, T. Yamanaka, and M. Baba, J. Chem. Phys. 130, 19304 (2009) H. Kato, M. Baba, and S. Kasahara, Bull. Chem. Soc. Jpn. 80, 456 (2007)

  14. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  15. Estimating transition probabilities for stage-based population projection matrices using capture-recapture data

    USGS Publications Warehouse

    Nichols, J.D.; Sauer, J.R.; Pollock, K.H.; Hestbeck, J.B.

    1992-01-01

    In stage-based demography, animals are often categorized into size (or mass) classes, and size-based probabilities of surviving and changing mass classes must be estimated before demographic analyses can be conducted. In this paper, we develop two procedures for the estimation of mass transition probabilities from capture-recapture data. The first approach uses a multistate capture-recapture model that is parameterized directly with the transition probabilities of interest. Maximum likelihood estimates are then obtained numerically using program SURVIV. The second approach involves a modification of Pollock's robust design. Estimation proceeds by conditioning on animals caught in a particualr class at time i, and then using closed models to estimate the number of these that are alive in other classes at i + 1. Both methods are illustrated by application to meadow vole, Microtus pennsylvanicus, capture-recapture data. The two methods produced reasonable estimates that were similar. Advantages of these two approaches include the directness of estimation, the absence of need for restrictive assumptions about the independence of survival and growth, the testability of assumptions, and the testability of related hypotheses of ecological interest (e.g., the hypothesis of temporal variation in transition probabilities).

  16. The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.

    2002-01-01

    We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.

  17. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  18. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  19. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset.

    PubMed

    Zhang, Haitao; Chen, Zewei; Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users' privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  20. Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities.

    PubMed

    Bogaerts, Louisa; Siegelman, Noam; Frost, Ram

    2016-08-01

    What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed.

  1. Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities.

    PubMed

    Bogaerts, Louisa; Siegelman, Noam; Frost, Ram

    2016-08-01

    What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed. PMID:26743060

  2. Ti-ii transition probabilities and radiative lifetimes in TI and the solar titanium abundance

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.; Huber, M. C. E.; Noels, A.; Grevesse, N.; Bergeson, S. D.; Tsekeris, P.; Lawler, J. E.

    1993-06-01

    Transition probabilities of 100 Ti-II emission lines, originating from 7 different atomic levels, have been determined by combining branching fractions with radiative lifetimes. The branching fractions were measured using Fourier transform spectroscopy on a hollow cathode. The radiative lifetimes of these 7 - and 35 additional - levels were measured using time resolved laser-induced fluorescence on a slow Ti ion beam. The transition probabilities of 21 very weak lines have been used to derive a solar titanium abundance of αTi = log(NTi/NH) + 12=5.04±0.04 dex, which is insensitive to the solar model. This value is in disagreement with the meteoritic titanium abundance (4.93±0.02).

  3. Some results on the dynamics and transition probabilities for non self-adjoint hamiltonians

    SciTech Connect

    Bagarello, F.

    2015-05-15

    We discuss systematically several possible inequivalent ways to describe the dynamics and the transition probabilities of a quantum system when its hamiltonian is not self-adjoint. In order to simplify the treatment, we mainly restrict our analysis to finite dimensional Hilbert spaces. In particular, we propose some experiments which could discriminate between the various possibilities considered in the paper. An example taken from the literature is discussed in detail.

  4. Theoretical oscillator strengths, transition probabilities, and radiative lifetimes of levels in Pb V

    SciTech Connect

    Colón, C.; Alonso-Medina, A.; Porcher, P.

    2014-01-15

    Theoretical values of oscillator strengths and transition probabilities for 306 spectral lines arising from the 5d{sup 9}ns(n=7,8,9),5d{sup 9}np(n=6,7),5d{sup 9}6d, and 5d{sup 9} 5f configurations, and radiative lifetimes of 9 levels, of Pb V have been obtained. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree–Fock calculations including core-polarization effects. We use for the IC calculations the standard method of least squares fitting of experimental energy levels by means of computer codes from Cowan. We included in these calculations the 5d{sup 8}6s6p and 5d{sup 8}6s{sup 2} configurations. These calculations have facilitated the identification of the 214.25, 216.79, and 227.66 nm spectral lines of Pb V. In the absence of experimental results of oscillator strengths and transition probabilities, we could not make a direct comparison with our results. However, the Stark broadening parameters calculated from these values are in excellent agreement with experimental widening found in the literature. -- Highlights: •Theoretical values of transition probabilities of Pb V have been obtained. •We use for the IC calculations the standard method of least square. •The parameters calculated from these values are in agreement with the experimental values.

  5. Tables of Transition Probabilities and Branching Ratios for Electric Dipole Transitions Between Arbitrary Levels of Hydrogen-Like Atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.

  6. New Critical Compilations of Atomic Transition Probabilities for Neutral and Singly Ionized Carbon, Nitrogen, and Iron

    NASA Technical Reports Server (NTRS)

    Wiese, Wolfgang L.; Fuhr, J. R.

    2006-01-01

    We have undertaken new critical assessments and tabulations of the transition probabilities of important lines of these spectra. For Fe I and Fe II, we have carried out a complete re-assessment and update, and we have relied almost exclusively on the literature of the last 15 years. Our updates for C I, C II and N I, N II primarily address the persistent lower transitions as well as a greatly expanded number of forbidden lines (M1, M2, and E2). For these transitions, sophisticated multiconfiguration Hartree-Fock (MCHF) calculations have been recently carried out, which have yielded data considerably improved and often appreciably different from our 1996 NIST compilation.

  7. Energies, wavelengths, and multipole transition probabilities for B-like Fe and Ga ions

    SciTech Connect

    El-Sayed, Fatma

    2013-09-15

    Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like Fe and Ga ions. The configurations 2s{sup 2}2p, 2s2p{sup 2}, 2p{sup 3}, 2s2p3ℓ, and 2p{sup 2}3ℓ were used in the calculations and 125 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125 levels of Fe XXII and Ga XXVII, belonging to the n≤3 configurations. Comparisons are made with earlier available theoretical results.

  8. The H I Probability Distribution Function and the Atomic-to-molecular Transition in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Burkhart, Blakesley

    2016-10-01

    We characterize the column-density probability distribution functions (PDFs) of the atomic hydrogen gas, H i, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic H i Survey to derive column-density maps and PDFs. We find that the peaks of the H i PDFs occur at column densities in the range ˜1-2 × 1021 {{cm}}-2 (equivalently, ˜0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of {σ }{{H}{{I}}}≈ {10}20 {{cm}}-2 (˜0.1 mag). We also investigate the H i-to-H2 transition toward the cloud complexes and estimate H i surface densities ranging from 7 to 16 {M}⊙ {{pc}}-2 at the transition. We propose that the H i PDF is a fitting tool for identifying the H i-to-H2 transition column in Galactic MCs.

  9. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p6 1S0) thermal collision pairs

    NASA Astrophysics Data System (ADS)

    Galvin, T. C.; Wagner, C. J.; Eden, J. G.

    2016-06-01

    The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p6 1S0) atomic collision pairs to be the immediate precursor to the formation of Xe 2∗ ( a 3 Σu + , A 1 Σu +) by the three body process: Xe∗(6s) + 2Xe ⟶ Xe 2∗ + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ˜ 172 nm, A 1 Σu + → X 1 Σg +). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe(1S0)]∗ complex and map the probe laser wavelength onto the thermal energy (ɛ″) of the incoming collision pairs.

  10. Forbidden transition probabilities for ground terms of ions with p or p5 configurations. [for solar atmosphere

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1976-01-01

    Forbidden transition probabilities are given for ground term transitions of ions in the isoelectronic sequences with outer configurations 2s2 2p (B I), 2p5 (F I), 3s2 3p (Al I), and 3p5 (Cl I). Tables give, for each ion, the ground term interval, the associated wavelength, the quadrupole radial integral, the electric quadrupole transition probability, and the magnetic dipole transition probability. Coronal lines due to some of these ions have been observed, while others are yet to be observed. The tales for the Al I and Cl I sequences include elements up to germanium.

  11. Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2002-01-01

    Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.

  12. Assessing Uncertainties of Theoretical Atomic Transition Probabilities with Monte Carlo Random Trials

    PubMed Central

    Kramida, Alexander

    2016-01-01

    This paper suggests a method of evaluation of uncertainties in calculated transition probabilities by randomly varying parameters of an atomic code and comparing the results. A control code has been written to randomly vary the input parameters with a normal statistical distribution around initial values with a certain standard deviation. For this particular implementation, Cowan’s suite of atomic codes (R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley, CA: University of California Press, 1981) was used to calculate radiative rates of magnetic-dipole and electric-quadrupole transitions within the ground configuration of titanium-like iron, Fe V. The Slater parameters used in the calculations were adjusted to fit experimental energy levels with Cowan’s least-squares fitting program, RCE. The standard deviations of the fitted parameters were used as input of the control code providing the distribution widths of random trials for these parameters. Propagation of errors through the matrix diagonalization and summation of basis state expansions leads to significant variations in the resulting transition rates. These variations vastly differ in their magnitude for different transitions, depending on their sensitivity to errors in parameters. With this method, the rate uncertainty can be individually assessed for each calculated transition. PMID:27274981

  13. Stable nonequilibrium probability densities and phase transitions for mean-field models in the thermodynamic limit

    SciTech Connect

    Bonilla, L.L.

    1987-02-01

    A nonlinear Fokker-Planck equation is derived to describe the cooperative behavior of general stochastic systems interacting via mean-field couplings, in the limit of a infinite number of such systems. Disordered systems are also considered. In the weak-noise limit; a general result yields the possibility of having bifurcations from stationary solutions of the nonlinear Fokker-Planck equation into stable time-dependent solutions. The latter are interpreted as nonequilibrium probability distributions (states), and the bifurcations to them as nonequilibrium phase transitions. In the thermodynamic limit, results for three models are given for illustrative purposes. A model of self-synchronization of nonlinear oscillators presents a Hopf bifurcation to a time-periodic probability density, which can be analyzed for any value of the noise. The effects of disorder are illustrated by a simplified version of the Sompolinsky-Zippelius model of spin-glasses. Finally, results for the Fukuyama-Lee-Fisher model of charge-density waves are given. A singular perturbation analysis shows that the depinning transition is a bifurcation problem modified by the disorder noise due to impurities. Far from the bifurcation point, the CDW is either pinned or free, obeying (to leading order) the Gruener-Zawadowki-Chaikin equation. Near the bifurcation, the disorder noise drastically modifies the pattern, giving a quenched average of the CDW current which is constant. Critical exponents are found to depend on the noise, and they are larger than Fisher's values for the two probability distributions considered.

  14. K-LL Auger transition probabilities for elements with low and intermediate atomic numbers

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.

    1973-01-01

    Radiationless K-LL transition probabilities have been calculated nonrelativistically in j-j coupling and in intermediate coupling, without and with configuration interaction, for elements with atomic numbers from 13 to 47. The system is treated as a coupled two-hole configuration. The single-particle radial wave functions required in the calculation of radial matrix elements, and in the calculation of mixing coefficients in the intermediate-coupling scheme, were obtained from Green's atomic independent-particle model. Comparison with previous theoretical work and with experimental data is made. The effects of intermediate coupling, configuration interaction, and relativity are noted.

  15. Energy levels, lifetimes, and transition probabilities for Mn XII and Ge XIX

    SciTech Connect

    El-Sayed, Fatma

    2014-09-15

    Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for silicon-like manganese and germanium, Mn XII and Ge XIX. The configurations 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s3p{sup 2}3d, and 3p{sup 4} were used in the calculations and 88 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among levels of Mn XII and Ge XIX. Comparisons have been made with available theoretical and experimental results.

  16. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    SciTech Connect

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  17. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    NASA Astrophysics Data System (ADS)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Gordon, Iouli E.

    2015-10-01

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional "abnormal" intensities are found at n = 14 and 23. Criteria for the appearance of such "anomalies" are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  18. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    SciTech Connect

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.

    2015-10-21

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  19. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  20. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  1. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Sinitsyn, N. A.

    2015-12-01

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can also escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. We also discuss extension of our results to multistate systems.

  2. Transition probabilities of PrII-lines emitted from a ferroelectric plasma source

    NASA Astrophysics Data System (ADS)

    Goly, A.; Kusz, J.; Quang, B. Nguyen; Weniger, S.

    1991-03-01

    An argon-praseodymium plasma was generated under atmospheric pressure between a ceramic ferroelectric plate and a praseodymium plate. The system of plates was connected to an acoustic frequency supply. The plasma radiation was analyzed in the spectral range from 2000 to 7000 A by using a grating spectrograph with a linear dispersion near 1 mm/A, adopted to photoelectric measurements. The emission spectrum of praseodymium was recorded, and the intensities of a few hundred lines were measured. Transition probabilities were determined for 62 PrII-lines, using available lifetime data for excited levels and measured branching ratios of the corresponding lines. Reasonable agreement has been found between the experimental data of Lage and Whaling (1976) and some of the present results.

  3. Low-spin electromagnetic transition probabilities in {sup 102,104}Cd

    SciTech Connect

    Boelaert, N.; Dewald, A.; Fransen, C.; Jolie, J.; Linnemann, A.; Melon, B.; Moeller, O.; Smirnova, N.; Heyde, K.

    2007-05-15

    Lifetimes of low-lying states in {sup 102,104}Cd were determined by using the recoil distance Doppler-shift technique with a plunger device and a Ge array consisting of five HP Ge detectors and one Euroball cluster detector. The experiments were carried out at the Cologne FN Tandem facility using the {sup 92}Mo({sup 12}C,2n){sup 102}Cd reaction at 41 MeV and the {sup 94}Mo({sup 12}C,2n){sup 104}Cd reaction at 42 MeV. The differential decay curve method in coincidence mode was employed to derive the lifetime of the first 2{sup +} state in both nuclei and the lifetime of the 4{sup +} state in {sup 104}Cd. The corresponding reduced E2 transition probabilities have been studied within the framework of the nuclear shell model.

  4. Radiative lifetimes, branching fractions, transition probabilities and oscillator strengths of some levels for neutral yttrium

    NASA Astrophysics Data System (ADS)

    Shang, Xue; Wang, Qian; Tian, Yanshan; Wang, Chong; Dai, Zhenwen

    2015-04-01

    The radiative lifetime measurements using the time-resolved laser-induced fluorescence (TR-LIF) technique are reported for 34 levels of Y I between 27 824.50 and 50 254.0 cm-1, among which 27 lifetimes are reported for the first time. The branching fraction (BF) measurements based on the emission spectrum of a hollow cathode lamp (HCL) were performed for 12 of these levels, and the results of 64 lines between 274.250 and 670.063 nm were obtained. By combining them with lifetime values, the transition probabilities and absolute oscillator strengths of these lines were determined. The lifetime and oscillator strength results are in general good agreement with the data by Hannaford et al (Hannaford et al 1982 ApJ 261 736).

  5. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    SciTech Connect

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can also escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.

  6. Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities

    NASA Astrophysics Data System (ADS)

    Torres, Erik; Magin, Thierry

    2012-11-01

    A statistical model originally developed for electronic-translational energy transfer in atoms having multiple electronic states (Anderson et al, RGD15, 1986) is applied to the study of internal energy exchange in a polyatomic gas. The model is well-suited for gas kinetic simulations, because it provides an explicit expression for the transition probabilities between internal energy levels. All molecules possessing a given internal energy level are treated as a separate chemical species and all collisions involving exchange of internal energy thus become pseudo-chemical reactions. Post-collision energy levels of the two partners are determined by conserving the total energy of the collision pair and taking into account detailed balance. In the present work, DSMC simulations of relaxation in a stationary gas are performed and compared to those obtained by Anderson et al. Additionally, we apply the model to the simulation of rotational relaxation behind a normal shock wave.

  7. Tables of E2 transition probabilities from the first 2+ states in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Birch, M.; Singh, B.; Horoi, M.

    2016-01-01

    Experimental results of E2 transition probabilities or B(E2) values for the known first 2+ states in 447 even-even nuclei have been compiled and evaluated. The evaluation policies for the analysis of experimental data have been described and new results are discussed. The recommended B(E2) values have been compared with comprehensive shell model calculations for a selected set of nuclei, where such theoretical procedures are amenable. The present work was motivated by a rapid increase in the number of new B(E2) measurements for the first 2+ states since the previous evaluation of such data by S. Raman et al. published in 2001. Future plans to investigate the systematics of B(E2) ↑ values, and intercomparison of different experimental techniques to obtain these data are outlined.

  8. Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2015-11-19

    We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less

  9. Computation of time-dependent transition probabilities in excimer molecules induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Petsalakis, Ioannis D.; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    1994-12-01

    We have computed the time-dependent probabilities of exciting and deexciting the bound states of the excimer molecules NeH, ArH and HeF, via the interaction of these systems with femtosecond laser pulses. The method involves the expansion of the time-dependent wavefunction in terms of stationary states with time-dependent coefficients and complex energies, whose imaginary parts represent the lifetimes of the collision complex on the initial repulsive ground state and of the excited states which are coupled by the field. The resulting system of differential equations is solved by a Taylor series expansion method. We have studied the efficiency of laser-induced molecular formation (LIMP) from the ground repulsive surfaces as a function of frequency and intensity, for trapezoidal pulses. Given the shortness of the pulse and the characteristics of the spectra of these molecules, for reasons of economy the bulk of the calculations was carried out in a 'frozen nuclei' approximation. Additional calculations for NeH, using a wavepacket representation of the initial state on the repulsive curve produced similar results as regards the possibility of LIMF. Additional information has been obtained regarding transitions among excited states. For example, starting the photoreaction in HeF from the first excited repulsive state 1 2Π with a pulse frequency of 4 eV allows an experimentally verifiable probability of obtaining bound-continuum emission at about 1320 Å (9.4 eV). For resonance conditions, the probabilities are appreciable during the pulse and go through maxima as a function of intensity of the order of 10 11 W/cm 2-10 14W/cm 2.

  10. {ital E}3 transition probabilities in the platinum, mercury, and lead isotopes

    SciTech Connect

    Egido, J.L.; Martin, V.; Robledo, L.M.; Sun, Y. |||

    1996-06-01

    Spectroscopical properties of the platinum, mercury, and lead isotopes are studied within the Hartree-Fock plus BCS framework with the finite range density-dependent Gogny force. These properties are also studied beyond mean-field theory by combining the use of generator-coordinate-method-like wave functions with the angular momentum projection technique as to generate many-body correlated wave functions that are at the same time eigenstates of the angular momentum operator. We apply this formalism to the calculation of reduced transition probabilities {ital B}({ital E}3) from the lowest-lying octupole collective state to the ground state of several isotopes of the platinum, mercury, and lead nuclei whose experimental {ital B}({ital E}3) values present a peculiar behavior. The projected calculations show a large improvement over the unprojected ones when compared with the experimental data. The unprojected calculations are unable to predict any structure in the {ital B}({ital E}3). {copyright} {ital 1996 The American Physical Society.}

  11. An exacting transition probability measurement - a direct test of atomic many-body theories.

    PubMed

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  12. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGES

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; et al

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  13. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  14. An exacting transition probability measurement - a direct test of atomic many-body theories

    PubMed Central

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  15. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  16. Magnetic-dipole transition probabilities in B-like and Be-like ions

    SciTech Connect

    Tupitsyn, I. I.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.; Crespo Lopez-Urrutia, J. R.; Lapierre, A.; Ullrich, J.

    2005-12-15

    The magnetic-dipole transition probabilities between the fine-structure levels (1s{sup 2}2s{sup 2}2p) {sup 2}P{sub 1/2}-{sup 2}P{sub 3/2} for B-like ions and (1s{sup 2}2s2p) {sup 3}P{sub 1}-{sup 3}P{sub 2} for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is derived within a rigorous QED approach employing the two-time Green function method. The one-electron QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A comparison with the theoretical results of other authors and with available experimental data is presented.

  17. An exacting transition probability measurement - a direct test of atomic many-body theories

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; de Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-07-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.

  18. Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences

    PubMed Central

    Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin

    2016-01-01

    Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities. PMID:26830652

  19. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    SciTech Connect

    Ghumman, S. S.

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  20. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  1. Dependence of the probabilities of the electric-multipole electron transitions in W{sup 24+} on multipolarity

    SciTech Connect

    Gaigalas, Gediminas; Rudzikas, Zenonas; Rynkun, Pavel; Alkauskas, Andrius

    2011-03-15

    Usually it is accepted that the probabilities of the electric-multipole electron transitions are rapidly decreasing functions of their multipolarity. Therefore while calculating the probabilities of electronic transitions between the configurations of certain chosen parities, it seems sufficient to take into account the first nonzero term, i.e., to consider the electron transitions of lowest multipolarity permitted by the exact selection rules. This paper aims at verifying this assumption on the example of electric-octupole transitions in W{sup 24+} ion. For this purpose the large-scale multiconfiguration Hartree-Fock and Dirac-Fock calculations have been performed for the configurations [Kr]4d{sup 10}4f{sup 4} and [Kr]4d{sup 10}4f{sup 3}5s energy levels of W{sup 24+} ion. The relativistic corrections were taken into account in the quasirelativistic Breit-Pauli and fully relativistic Breit (taking into account QED effects) approximations. The role of correlation, relativistic, and QED corrections is discussed. Line strengths, oscillator strengths, and transition probabilities in Coulomb and Babushkin gauges are presented for E1 and E3 transitions among these levels.

  2. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

  3. Transition probability/Markov chain analyses of DNAPL source zones and plumes.

    PubMed

    Maji, R; Sudicky, E A; Panday, S; Teutsch, G

    2006-01-01

    At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.

  4. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results.

  5. Relativistic Calculation of Transition Probabilities for 557.7 nm and 297.2 nm Emission Lines in Oxygen

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.; Nguyen, T. V. B.; Lowe, J. A.; Grant, I. P.

    2013-05-01

    The 557.7 nm green line and the 297.2 nm ultraviolet line in oxygen have been studied extensively due to their importance in astrophysics and atmospheric science. Despite the enormous effort devoted to these two prominent transition lines over 30 years, and in fact going back to 1934, the ratio of their transition probabilities remains a subject of major discrepancies amongst various theoretical calculations for many decades. Moreover, theoretical results are inconsistent with available laboratory results, as well as recent spacecraft measurements of Earth's airglow. This work presents new relativistic theoretical calculations of the transition probabilities of these two photoemission lines from neutral oxygen using the multi-configuration Dirac-Hartree-Fock method. Our calculations were performed in both length and velocity gauges in order to check for accuracy and consistency, with agreement to 8%. Whilst remaining a challenging computation, these results directly bear upon interpretations of plasma processes and ionization regimes in the universe.

  6. Is expert opinion reliable when estimating transition probabilities? The case of HCV-related cirrhosis in Egypt

    PubMed Central

    2014-01-01

    Background Data on HCV-related cirrhosis progression are scarce in developing countries in general, and in Egypt in particular. The objective of this study was to estimate the probability of death and transition between different health stages of HCV (compensated cirrhosis, decompensated cirrhosis and hepatocellular carcinoma) for an Egyptian population of patients with HCV-related cirrhosis. Methods We used the “elicitation of expert opinions” method to obtain collective knowledge from a panel of 23 Egyptian experts (among whom 17 were hepatologists or gastroenterologists and 2 were infectiologists). The questionnaire was based on virtual medical cases and asked the experts to assess probability of death or probability of various cirrhosis complications. The design was a Delphi study: we attempted to obtain a consensus between experts via a series of questionnaires interspersed with group response feedback. Results We found substantial disparity between experts’ answers, and no consensus was reached at the end of the process. Moreover, we obtained high death probability and high risk of hepatocellular carcinoma. The annual transition probability to death was estimated at between 10.1% and 61.5% and the annual probability of occurrence of hepatocellular carcinoma was estimated at between 16.8% and 58.9% (depending on age, gender, time spent in cirrhosis and cirrhosis severity). Conclusions Our results show that eliciting expert opinions is not suited for determining the natural history of diseases due to practitioners’ difficulties in evaluating quantities. Cognitive bias occurring during this type of study might explain our results. PMID:24635942

  7. Energy dependence of forward 1S0 diproton production in the pp → ppπ0 reaction

    NASA Astrophysics Data System (ADS)

    Kurbatov, V.; Büscher, M.; Dymov, S.; Gusev, D.; Hartmann, M.; Kacharava, A.; Khoukaz, A.; Komarov, V.; Kulikov, A.; Macharashvili, G.; Mersmann, T.; Merzliakov, S.; Mikirtytchiants, S.; Prasuhn, D.; Rathmann, F.; Schleichert, R.; Ströher, H.; Tsirkov, D.; Uzikov, Yu.; Wilkin, C.; Yaschenko, S.

    2008-03-01

    The pp →{pp}sπ0 differential cross section has been measured with the ANKE spectrometer at COSY-Jülich for seven proton beam energies Tp between 0.51 and 1.97 GeV. By selecting proton pairs with an excitation energy of less than 3 MeV it is ensured that the final {pp}s system is in the S10 state. In the measured region of θppcm ≲ 18 °, the data reveal a forward dip for Tp ⩽ 1.4 GeV whereas a forward peaking is seen at 1.97 GeV. The energy dependence of the forward cross section shows a broad peak in the 0.6-0.8 GeV region, probably associated with Δ (1232) excitation, and a minimum at 1.4 GeV. Some of these features are similar to those observed for the spin-isospin partner reaction, pp → dπ+. However, the ratio of the forward differential cross sections of the two reactions shows a significant suppression of single pion production associated with a spin-singlet final nucleon pair.

  8. Argon FTIR spectra between 800 and 2000 cm-1: h- and i-levels and transition probabilities

    NASA Astrophysics Data System (ADS)

    Kubelík, P.; Zanozina, E. M.; Pastorek, A.; Ferus, M.; Juha, L.; Chernov, V. E.; Naskidashvili, A. V.; Civiš, S.

    2016-10-01

    The new emission spectrum of atomic argon is measured using the time-resolved Fourier transform technique. Seventy-seven new Ar I lines in the 800 - 2000cm-1 range with a resolution of 0.02cm-1 are observed. The energies of 12 previously unknown 7 i and 6 h energy levels are extracted from the measured spectra. The probabilities of the transitions between the observed levels are calculated.

  9. Dipole and quadrupole integrals for the C I, N I, and O I sequences. [electron transition probabilities computation

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Wade, C.

    1974-01-01

    The Coulomb approximation tables of Oertel and Shomo, together with binding-energy values obtained by a screening approximation, have been used to produce values of the dipole and quadrupole radial integrals needed in obtaining transition probabilities for ions of six, seven, and eight electrons. Some comparisons with more rigorously calculated values show that the present values are quite accurate, especially for ions of higher atomic number.

  10. Wavelengths and transition probabilities for n = 4 {sup {yields}} n' = 4 transitions in heavy Cu-like ions (70 {<=} Z {<=} 92)

    SciTech Connect

    Palmeri, P. . E-mail: palmeri@umh.ac.be; Quinet, P.; Biemont, E.; Traebert, E.

    2007-05-15

    Wavelengths and transition probabilities have been calculated for the n = 4 {sup {yields}} n' = 4 allowed transitions in the heavy Cu-like ions with Z = 70-92. Fully relativistic multiconfiguration Dirac-Fock (MCDF) calculations were carried out. They take into account the correlations within the n = 4 complex, the core-valence n = 3 {sup {yields}} n' = 4 virtual excitations, and quantum electrodynamics effects. The present results are compared to and agree well with recent electron-beam ion-trap (EBIT) measurements in ytterbium, tungsten, osmium, gold, lead, bismuth, thorium, and uranium.

  11. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  12. Comment on ``Cleaning properties of atomic oxygen excited to metastable state 2s22p4(1S0) [J. Appl. Phys. 102, 083304 (2007)]''

    NASA Astrophysics Data System (ADS)

    Sadeghi, Nader

    2008-05-01

    It is shown that the spectrum attributed in the work of Shun'ko and Belkin [J. Appl. Phys. 102, 083304 (2007)] to the 557 nm forbidden transition of oxygen, O(S10→D12), induced by collision with argon atoms is probably the chemiluminescence from the O+NO reaction. Also, given the less than 0.1 ms lifetime of O(S10) atoms in the gas flow, they cannot survive during the transport to the surface, and hence they cannot be responsible for the observed cleaning effect.

  13. Methods for Estimating Kidney Disease Stage Transition Probabilities Using Electronic Medical Records

    PubMed Central

    Luo, Lola; Small, Dylan; Stewart, Walter F.; Roy, Jason A.

    2013-01-01

    Chronic diseases are often described by stages of severity. Clinical decisions about what to do are influenced by the stage, whether a patient is progressing, and the rate of progression. For chronic kidney disease (CKD), relatively little is known about the transition rates between stages. To address this, we used electronic health records (EHR) data on a large primary care population, which should have the advantage of having both sufficient follow-up time and sample size to reliably estimate transition rates for CKD. However, EHR data have some features that threaten the validity of any analysis. In particular, the timing and frequency of laboratory values and clinical measurements are not determined a priori by research investigators, but rather, depend on many factors, including the current health of the patient. We developed an approach for estimating CKD stage transition rates using hidden Markov models (HMMs), when the level of information and observation time vary among individuals. To estimate the HMMs in a computationally manageable way, we used a “discretization” method to transform daily data into intervals of 30 days, 90 days, or 180 days. We assessed the accuracy and computation time of this method via simulation studies. We also used simulations to study the effect of informative observation times on the estimated transition rates. Our simulation results showed good performance of the method, even when missing data are non-ignorable. We applied the methods to EHR data from over 60,000 primary care patients who have chronic kidney disease (stage 2 and above). We estimated transition rates between six underlying disease states. The results were similar for men and women. PMID:25848580

  14. Improvement of HMM-based action classification by using state transition probability

    NASA Astrophysics Data System (ADS)

    Kitamura, Yuka; Aruga, Haruki; Hashimoto, Manabu

    2015-04-01

    We propose a method to classify multiple similar actions which are contained in human behaviors by considering a weak-constrained order of "actions". The proposed method regards the human behavior as a combination of "action" patterns which have order constrained weakly. In this method, actions are classified by using not only image features but also consistency of transitions between an action and next action. By considering such an action transition, our method can recognize human behavior even if image features of different action are similar to each other. Based on this idea, we have improved the previous HMM-based algorithm effectively. Through some experiments using test image sequences of human behavior appeared in a bathroom, we have confirmed that the average classification success rate is 97 %, which is about 53 % higher than the previous method.

  15. Patient Education and Support During CKD Transitions: When the Possible Becomes Probable.

    PubMed

    Green, Jamie A; Boulware, L Ebony

    2016-07-01

    Patients transitioning from kidney disease to kidney failure require comprehensive patient-centered education and support. Efforts to prepare patients for this transition often fail to meet patients' needs due to uncertainty about which patients will progress to kidney failure, nonindividualized patient education programs, inadequate psychosocial support, or lack of assistance to guide patients through complex treatment plans. Resources are available to help overcome barriers to providing optimal care during this time, including prognostic tools, educational lesson plans, decision aids, communication skills training, peer support, and patient navigation programs. New models are being studied to comprehensively address patients' needs and improve the lives of kidney patients during this high-risk time.

  16. Patient Education and Support During CKD Transitions: When the Possible Becomes Probable.

    PubMed

    Green, Jamie A; Boulware, L Ebony

    2016-07-01

    Patients transitioning from kidney disease to kidney failure require comprehensive patient-centered education and support. Efforts to prepare patients for this transition often fail to meet patients' needs due to uncertainty about which patients will progress to kidney failure, nonindividualized patient education programs, inadequate psychosocial support, or lack of assistance to guide patients through complex treatment plans. Resources are available to help overcome barriers to providing optimal care during this time, including prognostic tools, educational lesson plans, decision aids, communication skills training, peer support, and patient navigation programs. New models are being studied to comprehensively address patients' needs and improve the lives of kidney patients during this high-risk time. PMID:27324676

  17. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  18. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees.

    PubMed

    Dehaene, Stanislas; Meyniel, Florent; Wacongne, Catherine; Wang, Liping; Pallier, Christophe

    2015-10-01

    A sequence of images, sounds, or words can be stored at several levels of detail, from specific items and their timing to abstract structure. We propose a taxonomy of five distinct cerebral mechanisms for sequence coding: transitions and timing knowledge, chunking, ordinal knowledge, algebraic patterns, and nested tree structures. In each case, we review the available experimental paradigms and list the behavioral and neural signatures of the systems involved. Tree structures require a specific recursive neural code, as yet unidentified by electrophysiology, possibly unique to humans, and which may explain the singularity of human language and cognition. PMID:26447569

  19. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  20. Metastatic carcinoma of probable transitional cell origin in 66 free-living California sea lions (Zalophus californianus), 1979 to 1994.

    PubMed

    Gulland, F M; Trupkiewicz, J G; Spraker, T R; Lowenstine, L J

    1996-04-01

    Sixty-six (18%) cases of widely metastatic carcinoma of probable transitional cell origin were identified in 370 California sea lions (Zalophus californianus) stranded alive along the central California (USA) coast, between January 1979 and December 1994. Live animals were usually emaciated and anorectic, with perineal edema and occasionally hind-flipper paralysis or paresis. Large yellow caseous masses were observed in the sub-lumbar lymph nodes, often extending around the ureters resulting in hydroureter. Histologically, metastases were usually widespread, and the primary neoplastic focus undetectable. This is the highest reported prevalence among necropsied animals of neoplasia in a pinniped population to date. PMID:8722262

  1. The FERRUM project: Experimental transition probabilities from highly excited even 5s levels in Cr ii

    NASA Astrophysics Data System (ADS)

    Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Bäckström, E.

    2014-10-01

    We report lifetime measurements of the five levels in the 3d4(a5D)5s e6D term in Cr ii at an energy around 83 000 cm-1, and log(gf) values for 38 transitions from the investigated levels. The lifetimes are obtained using time-resolved, laser-induced fluorescence on ions from a laser-produced plasma. Since the levels have the same parity as the low-lying states directly populated in the plasma, we used a two-photon excitation scheme. This process is greatly facilitated by the presence of the 3d4(a5D)4p z6F levels at roughly half the energy difference. The f-values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode lamp recorded with a Fourier transform spectrometer.

  2. Salt dependent premelting base pair opening probabilities of B and Z DNA Poly [d(G-C)] and significance for the B-Z transition

    PubMed Central

    Chen, Y. Z.; Prohofsky, E. W.

    1993-01-01

    We calculate room temperature thermal fluctuational base pair opening probabilities of B and Z DNA Poly[d(G-C)] at various salt concentrations and discuss the significance of thermal fluctuation in facilitating base pair disruption during B to Z transition. Our calculated base pair opening probability of the B DNA at lower salt concentrations and the probability of the Z DNA at high salt concentrations are in agreement with observations. The salt dependence of the probabilities indicates a B to Z transition at a salt concentration close to the observed concentration. PMID:19431893

  3. Measurements of transition probabilities for spin-changing lines of atomic ions used in diagnostics of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Johnson, B. C.; Kwong, H. S.; Parkinson, W. H.; Knight, R. D.

    1984-01-01

    The intensities of ultraviolet, spin-changing, 'intersystem' lines of low-Z atomic ions are frequently used in determinations of electron densities and temperatures in astrophysical plasmas as well as in measurements of element abundances in the interstellar gas. The transition probabilities (A-values) of these lines, which are about five orders of magnitude weaker than allowed lines, have not been measured heretofore and various calculations produce A-values for these lines that differ by as much as 50 percent A radio-frequency ion trap has been used for the first measurements of transition probabilities for intersystem lines seen in astronomical spectra. The measurement procedure is discussed and results for Si III, O III, N II, and C III are reviewed and compared to calculated values. Discrepancies exist; these indicate that some of the calculated A-values may be less reliable than has been beleived and that revisions to the electron densities determined for some astrophysical plasmas may be required.

  4. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    PubMed

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed.

  5. Effect of magnetic field on electron spectrum and probabilities of intraband quantum transitions in spherical quantum-dot-quantum-well

    NASA Astrophysics Data System (ADS)

    Holovatsky, V.; Bernik, I.; Yakhnevych, M.

    2016-09-01

    The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field. It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.

  6. Bayesian Estimates of Transition Probabilities in Seven Small Lithophytic Orchid Populations: Maximizing Data Availability from Many Small Samples

    PubMed Central

    Tremblay, Raymond L.; McCarthy, Michael A.

    2014-01-01

    Predicting population dynamics for rare species is of paramount importance in order to evaluate the likelihood of extinction and planning conservation strategies. However, evaluating and predicting population viability can be hindered from a lack of data. Rare species frequently have small populations, so estimates of vital rates are often very uncertain due to lack of data. We evaluated the vital rates of seven small populations from two watersheds with varying light environment of a common epiphytic orchid using Bayesian methods of parameter estimation. From the Lefkovitch matrices we predicted the deterministic population growth rates, elasticities, stable stage distributions and the credible intervals of the statistics. Populations were surveyed on a monthly basis between 18–34 months. In some of the populations few or no transitions in some of the vital rates were observed throughout the sampling period, however, we were able to predict the most likely vital rates using a Bayesian model that incorporated the transitions rates from the other populations. Asymptotic population growth rate varied among the seven orchid populations. There was little difference in population growth rate among watersheds even though it was expected because of physical differences as a result of differing canopy cover and watershed width. Elasticity analyses of Lepanthes rupestris suggest that growth rate is more sensitive to survival followed by growth, shrinking and the reproductive rates. The Bayesian approach helped to estimate transition probabilities that were uncommon or variable in some populations. Moreover, it increased the precision of the parameter estimates as compared to traditional approaches. PMID:25068598

  7. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  8. Photoionisation of Cl+ from the 3s23p4 3P2, 1, 0 and the 3s23p4 1D2, 1S0 states in the energy range 19 - 28 eV

    NASA Astrophysics Data System (ADS)

    McLaughlin, Brendan M.

    2016-10-01

    Absolute photoionisation cross sections for the Cl+ ion in its ground and the metastable states; 3s23p4 3P2, 1, 0, and 3s23p4 1D2, 1S0, were measured recently at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at an photon energy resolution of 15 meV in the energy range 19 - 28 eV. These measurements are compared with large-scale Dirac Coulomb R-matrix calculations in the same energy range. Photoionisation of this sulphur-like chlorine ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionisation continuum. A wealth of resonance features observed in the experimental spectra are spectroscopically assigned and their resonance parameters tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from the present study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions are also found in the spectra.

  9. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  10. Doppler-free two-photon excitation spectroscopy and the Zeeman effects of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) band of naphthalene-d8.

    PubMed

    Okubo, Mitsushi; Wang, Jinguo; Baba, Masaaki; Misono, Masatoshi; Kasahara, Shunji; Katô, Hajime

    2005-04-01

    Doppler-free two-photon excitation spectrum and the Zeeman effect of the S1 1B1u(v21=1) <-- S0 1Ag(v=0) transition of naphthalene-d8 have been measured. 908 lines of Q(Ka)Q(J)KaKc transition of J=0-41, Ka=0-20 were assigned, and the molecular constants of the S1 1B1u(v21=1) state were determined. Perturbations were observed, and those were identified as originating from Coriolis interaction. No perturbation originating from an interaction with triplet state was observed. The Zeeman splittings from lines of a given J were observed to increase with Kc, and those of the Kc=J levels increased linearly with J. The Zeeman effects are shown to be originating from the magnetic moment of the S1 1B1u state, which is along the c axis and is induced by mixing of the S2 1B3u state to the S1 1B1u state by J-L coupling. Rotationally resolved levels were found not to be mixed with a triplet state from the Zeeman spectra. Accordingly, it is concluded that nonradiative decay of an isolated naphthalene excited to low rovibronic levels in the S1 1B1u state does not occur through the intersystem mixing. This is at variance with generally accepted understanding of the pathways of the nonradiative decay.

  11. Effect of Pair Interactions on Transition Probabilities between Inactive and Active States — Achieving Collective Behaviour via Pair Interactions in Social Insects —

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Yuki, Mai; Kikuchi, Tomonori; Tsuji, Kazuki; Sugawara, Ken

    2015-10-01

    To understand the evolution of well-organized social behaviour, we must first understand the mechanism by which collective behaviour is established. In this study, the mechanisms of collective behaviour in a colony of social insects were studied in terms of the transition probability between active and inactive states, which is linked to mutual interactions. The active and inactive states of the social insects were statistically extracted from the velocity profiles. From the duration distributions of the two states, we found that (1) the durations of active and inactive states follow an exponential law, and (2) pair interactions increase the transition probability from inactive to active states. The regulation of the transition probability by pair interactions suggests that such interactions control the populations of active and inactive workers in the colony.

  12. Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.

    PubMed

    Zimmer, Christoph; Sahle, Sven

    2015-10-01

    Estimating model parameters from experimental data is a crucial technique for working with computational models in systems biology. Since stochastic models are increasingly important, parameter estimation methods for stochastic modelling are also of increasing interest. This study presents an extension to the 'multiple shooting for stochastic systems (MSS)' method for parameter estimation. The transition probabilities of the likelihood function are approximated with normal distributions. Means and variances are calculated with a linear noise approximation on the interval between succeeding measurements. The fact that the system is only approximated on intervals which are short in comparison with the total observation horizon allows to deal with effects of the intrinsic stochasticity. The study presents scenarios in which the extension is essential for successfully estimating the parameters and scenarios in which the extension is of modest benefit. Furthermore, it compares the estimation results with reversible jump techniques showing that the approximation does not lead to a loss of accuracy. Since the method is not based on stochastic simulations or approximative sampling of distributions, its computational speed is comparable with conventional least-squares parameter estimation methods.

  13. The FERRUM project: Experimental lifetimes and transition probabilities from highly excited even 4d levels in Fe ii

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Nilsson, H.; Engström, L.; Lundberg, H.

    2015-12-01

    We report lifetime measurements of the 6 levels in the 3d6(5D)4d e6G term in Fe ii at an energy of 10.4 eV, and f-values for 14 transitions from the investigated levels. The lifetimes were measured using time-resolved laser-induced fluorescence on ions in a laser-produced plasma. The high excitation energy, and the fact that the levels have the same parity as the the low-lying states directly populated in the plasma, necessitated the use of a two-photon excitation scheme. The probability for this process is greatly enhanced by the presence of the 3d6(5D)4p z6F levels at roughly half the energy difference. The f-values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode discharge lamp recorded with a Fourier transform spectrometer. The data is important for benchmarking atomic calculations of astrophysically important quantities and useful for spectroscopy of hot stars.

  14. Estimation of markov chain transition probabilities and rates from fully and partially observed data: uncertainty propagation, evidence synthesis, and model calibration.

    PubMed

    Welton, Nicky J; Ades, A E

    2005-01-01

    Markov transition models are frequently used to model disease progression. The authors show how the solution to Kolmogorov's forward equations can be exploited to map between transition rates and probabilities from probability data in multistate models. They provide a uniform, Bayesian treatment of estimation and propagation of uncertainty of transition rates and probabilities when 1) observations are available on all transitions and exact time at risk in each state (fully observed data) and 2) observations are on initial state and final state after a fixed interval of time but not on the sequence of transitions (partially observed data). The authors show how underlying transition rates can be recovered from partially observed data using Markov chain Monte Carlo methods in WinBUGS, and they suggest diagnostics to investigate inconsistencies between evidence from different starting states. An illustrative example for a 3-state model is given, which shows how the methods extend to more complex Markov models using the software WBDiff to compute solutions. Finally, the authors illustrate how to statistically combine data from multiple sources, including partially observed data at several follow-up times and also how to calibrate a Markov model to be consistent with data from one specific study. PMID:16282214

  15. Method for measurement of transition probabilities by laser-induced breakdown spectroscopy based on CSigma graphs-Application to Ca II spectral lines

    NASA Astrophysics Data System (ADS)

    Aguilera, J. A.; Aragón, C.; Manrique, J.

    2015-07-01

    We propose a method for determination of transition probabilities by laser-induced breakdown spectroscopy that avoids the error due to self-absorption. The method relies on CSigma graphs, a generalization of curves of growth which allows including several lines of various elements in the same ionization state. CSigma graphs are constructed including reference lines of an emitting species with well-known transition probabilities, together with the lines of interest, both in the same ionization state. The samples are fused glass disks prepared from small concentrations of compounds. When the method is applied, the concentration of the element of interest in the sample must be controlled to avoid the failure of the homogeneous plasma model. To test the method, the transition probabilities of 9 Ca II lines arising from the 4d, 5s, 5d and 6s configurations are measured using Fe II reference lines. The data for 5 of the studied lines, mainly from the 5d and 6s configurations, had not been measured previously.

  16. Transition-Path Probability as a Test of Reaction-Coordinate Quality Reveals DNA Hairpin Folding Is a One-Dimensional Diffusive Process.

    PubMed

    Neupane, Krishna; Manuel, Ajay P; Lambert, John; Woodside, Michael T

    2015-03-19

    Chemical reactions are typically described in terms of progress along a reaction coordinate. However, the quality of reaction coordinates for describing reaction dynamics is seldom tested experimentally. We applied a framework for gauging reaction-coordinate quality based on transition-path analysis to experimental data for the first time, looking at folding trajectories of single DNA hairpin molecules measured under tension applied by optical tweezers. The conditional probability for being on a reactive transition path was compared with the probability expected for ideal diffusion over a 1D energy landscape based on the committor function. Analyzing measurements and simulations of hairpin folding where end-to-end extension is the reaction coordinate, after accounting for instrumental effects on the analysis, we found good agreement between transition-path and committor analyses for model two-state hairpins, demonstrating that folding is well-described by 1D diffusion. This work establishes transition-path analysis as a powerful new tool for testing experimental reaction-coordinate quality.

  17. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    SciTech Connect

    Nahar, Sultana N.

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  18. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS–BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow–Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree–Fock–Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted

  19. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree-Fock-Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted by the

  20. On Probability Domains III

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2015-12-01

    Domains of generalized probability have been introduced in order to provide a general construction of random events, observables and states. It is based on the notion of a cogenerator and the properties of product. We continue our previous study and show how some other quantum structures fit our categorical approach. We discuss how various epireflections implicitly used in the classical probability theory are related to the transition to fuzzy probability theory and describe the latter probability theory as a genuine categorical extension of the former. We show that the IF-probability can be studied via the fuzzy probability theory. We outline a "tensor modification" of the fuzzy probability theory.

  1. Continuum absorption spectra in the far wings of the Hg 1S0-->3P1 resonance line broadened by Ar

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Nakamura, T.; Okunishi, M.; Ohmori, K.; Chiba, H.; Ueda, K.

    1996-02-01

    Absolute reduced absorption coefficients for the Hg resonance line at 253.7 nm broadened by Ar were determined between 390 and 430 K in the spectral range from 20 to 1000 cm-1 on the red wing and from 20 to 400 cm-1 on the blue wing. The resultant reduced absorption coefficients are in fair agreement with those obtained by Petzold and Behmenburg [Z. Naturtorsch. Teil A 33, 1461 (1978)]. The observed A 30+<--X 10+ spectrum in the spectral range from 80 to 800 cm-1 on the red wing agrees remarkably well both in shape and magnitude with the quasistatic line shape calculated using the potential-energy curves of the HgAr van der Waals molecule given by Fuke, Saito, and Kaya [J. Chem. Phys. 81, 2591 (1984)], and Yamanouchi et al. [J. Chem. Phys. 88, 205 (1988)]. The blue-wing spectrum is interpreted as the B 31<--X 10+ free-free transition of HgAr by a simulation of the spectrum using uniform semiclassical treatment for the free-free Franck-Condon factor. The source of the satellites on the blue wing is attributed to the phase-interference effect arising from a stationary phase-shift difference between the B- and X-state translational wave functions. The stationary phase-shift difference arises owing to the existence of a maximum in the difference potential between the B and X states. The repulsive branches of the potential-energy curves of HgAr for the X and B states have been revised to give excellent agreement between the observed and calculated spectra, both in shape and magnitude.

  2. Transition probabilities for 5s-5p, 5p-5d, 4f-5d, and 5d-5f transitions in Ag-like ions with Z = 50-86

    SciTech Connect

    Ivanova, E.P.

    2011-01-15

    The wavelengths, electric dipole transition probabilities, and oscillator strengths are calculated for transitions between low-lying states (5s-5p, 5p-5d, 4f-5d, and 5d-5f) in the silver isoelectronic sequence (50 {<=} Z {<=} 86) using relativistic perturbation theory with a zero-approximation model potential. The results are compared with the corresponding data of the relativistic Hartree-Fock theory and the relativistic many-body perturbation theory. The results of these three theoretical approaches are compared with available experimental data for the level lifetimes. Possible reasons for some disagreements are discussed.

  3. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  4. Estimating the Transitional Probabilities of Smoking Stages with Cross-sectional Data and 10-Year Projection for Smoking Behavior in Iranian Adolescents

    PubMed Central

    Khosravi, Ahmad; Mansournia, Mohammad Ali; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Holakouie-Naieni, Kourosh

    2016-01-01

    Background: Cigarette smoking is one of the most important health-related risk factors in terms of morbidity and mortality. In this study, we introduced a new method for deriving the transitional probabilities of smoking stages from a cross-sectional study and simulated a long-term smoking behavior for adolescents. Methods: In this study in 2010, a total of 4853 high school students were randomly selected and were completed a self-administered questionnaire about cigarette smoking. We used smoothed age- and sex-specific prevalence of smoking stages in a probabilistic discrete event system for estimating of transitional probabilities. A nonhomogenous discrete time Markov chain analysis was used to model the progression of the smoking in 10 years ahead in the same population. The mean age of the students was 15.69 ± 0.73 years (range: 14–19). Results: The smoothed prevalence proportion of current smoking varies between 3.58 and 26.14%. The age-adjusted odds of initiation in boys is 8.9 (95% confidence interval [CI]: 7.9–10.0) times of the odds of initiation of smoking in girls. Our study predicted that the prevalence proportion of current smokers increased from 7.55% in 2010 to 20.31% (95% CI: 19.44–21.37) for 2019. Conclusions: The present study showed a moderately but concerning prevalence of current smoking in Iranian adolescents and introduced a novel method for estimation of transitional probabilities from a cross-sectional study. The increasing trend of cigarette use among adolescents indicated the necessity of paying more attention to this group. PMID:27625766

  5. Estimating the Transitional Probabilities of Smoking Stages with Cross-sectional Data and 10-Year Projection for Smoking Behavior in Iranian Adolescents

    PubMed Central

    Khosravi, Ahmad; Mansournia, Mohammad Ali; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Holakouie-Naieni, Kourosh

    2016-01-01

    Background: Cigarette smoking is one of the most important health-related risk factors in terms of morbidity and mortality. In this study, we introduced a new method for deriving the transitional probabilities of smoking stages from a cross-sectional study and simulated a long-term smoking behavior for adolescents. Methods: In this study in 2010, a total of 4853 high school students were randomly selected and were completed a self-administered questionnaire about cigarette smoking. We used smoothed age- and sex-specific prevalence of smoking stages in a probabilistic discrete event system for estimating of transitional probabilities. A nonhomogenous discrete time Markov chain analysis was used to model the progression of the smoking in 10 years ahead in the same population. The mean age of the students was 15.69 ± 0.73 years (range: 14–19). Results: The smoothed prevalence proportion of current smoking varies between 3.58 and 26.14%. The age-adjusted odds of initiation in boys is 8.9 (95% confidence interval [CI]: 7.9–10.0) times of the odds of initiation of smoking in girls. Our study predicted that the prevalence proportion of current smokers increased from 7.55% in 2010 to 20.31% (95% CI: 19.44–21.37) for 2019. Conclusions: The present study showed a moderately but concerning prevalence of current smoking in Iranian adolescents and introduced a novel method for estimation of transitional probabilities from a cross-sectional study. The increasing trend of cigarette use among adolescents indicated the necessity of paying more attention to this group.

  6. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  7. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset

    PubMed Central

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M.; Kieser, Meinhard; Schramm, Wendelin

    2016-01-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  8. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset.

    PubMed

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M; Kieser, Meinhard; Schramm, Wendelin

    2016-06-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  9. Time-dependent transition probabilities and the assessment of seasonal effects on within-day variations in chewing behaviour of housed sheep.

    PubMed

    Dutilleul; Deswysen; Fischer; Maene

    2000-05-01

    State transitions in the chewing behaviour of six half-breed (Île de FrancexTexel) yearling female sheep (Ovis aries L.) were studied by using jaw movements recorded continuously over 5 days at the end of a number of experimental periods from 21 September 1992 to 4 April 1993. The sheep were housed in individual pens. Each of them received the same diet, that is, 250 g/day of concentrate mix (15.5% crude protein (CP), 36.5% neutral detergent fibre (NDF)) fed at 0900 h and natural grass hay (6.7% CP, 69.1% NDF) fed ad libitum at 0915 and 1600 h. Mineral salt blocks and water were continuously available. The main objective was to assess seasonal effects on within-day variations in the chewing behaviour of sheep, at small to large time scales within a day. We therefore focused on two experimental periods characterised by contrasting conditions of daylength and temperature (i.e., 'Period 1': 610 min daylight, mean temperature of 10.9 degrees C, and 'Period 4': 550 min daylight, mean temperature of 7.2 degrees C). In particular, differences between periods in the nycterohemeral pattern of chewing behaviour and the quality of forecasts of chewing states were tested. We submitted our data to a new method of analysis that we developed: the method of time-dependent transition probabilities, and compared the results to those obtained using other methods that were available in the literature.Overall, the sheep spent more time eating in Period 1 than in Period 4. Specifically, a secondary peak in eating activity, which was observed in the early afternoon in Period 1, was absent in Period 4. The nycterohemeral pattern of eating activity showed significant differences between periods, at the main rhythmic component of 24 h and at short components around 2 h. Such differences were not observed for ruminating and idling activities. The quality of forecasts of chewing states decreased from Periods 1 to 4, in terms of accuracy (based on R(2)) and lead of reliable forecasts (i

  10. The neolithic demographic transition in Europe: correlation with juvenility index supports interpretation of the summed calibrated radiocarbon date probability distribution (SCDPD) as a valid demographic proxy.

    PubMed

    Downey, Sean S; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture.

  11. The Neolithic Demographic Transition in Europe: Correlation with Juvenility Index Supports Interpretation of the Summed Calibrated Radiocarbon Date Probability Distribution (SCDPD) as a Valid Demographic Proxy

    PubMed Central

    Downey, Sean S.; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture. PMID:25153481

  12. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  13. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  14. Relative transition probabilities for krypton.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1972-01-01

    First experimental line strength data for the visible Kr II lines and for several of the more prominent Kr I lines are given. The spectroscopic light source used is the thermal plasma behind the reflected shock wave in a gas-driven shock tube. A 3/4-m spectrograph and a 1-m spectrograph were employed simultaneously to provide redundant photometry. The data are compared with other measurements and with theoretical calculations.

  15. Induced Probabilities.

    ERIC Educational Resources Information Center

    Neel, John H.

    Induced probabilities have been largely ignored by educational researchers. Simply stated, if a new or random variable is defined in terms of a first random variable, then induced probability is the probability or density of the new random variable that can be found by summation or integration over the appropriate domains of the original random…

  16. Atomic alignment effect on reactivity and on product alignment in the energy-transfer reaction of oriented Ar (3P2, 4s [3/2]2, M(J) = 2) + Kr (4p6, 1S0) → Ar (3p6, 1S0) + Kr (5p [3/2]2).

    PubMed

    Ohoyama, H

    2015-03-12

    Steric effect for the formation of Kr (5p [3/2]₂) in the energy transfer reaction of Ar (³P₂, 4s [3/2]₂) + Kr has been studied by using an oriented Ar (³P₂, 4s [3/2]₂, M(J) = 2) beam at a collision energy of ∼0.09 eV. The emission intensity of Kr (5p [3/2]₂) is ca. 2 times enhanced when the angular momentum (J(Ar)) of Ar (³P₂) is aligned perpendicular to the relative velocity vector (v(R)). In addition, the Kr (5p [3/2]₂) emission is highly polarized parallel to v(R) (I(∥)/I(⊥) ∼ 1.2) when JAr is aligned perpendicular to v(R). The observed polarization moments indicate that the alignment of the unpaired Ar (3p) orbital of Ar (³P₂) to v(R), (Σ (|L′| = 0), Π (|L′| = 1)), dominates the energy transfer probability (σ(Π)(∥): σ(Σ)(∥): σ(Π)(⊥): σ(Σ)(⊥) = 0.49:1.33:0.55:1.23) and also the alignment of the Kr (5p) orbital of Kr (5p [3/2]₂) to v(R): the Σ-configuration of the Ar (3p) orbital leads to the parallel alignment (Σ-configuration) of the Kr(5p) orbital to v(R), conversely, the Π-configuration of Ar (3p) orbital leads to the perpendicular alignment (Π-configuration) of the Kr(5p) orbital. In addition, the selectivity of the alignment of the Kr (5p) orbital turns out to vary from perpendicular to parallel as the collision energy increases after a threshold down to 0.03 eV.

  17. Probability Theory

    NASA Astrophysics Data System (ADS)

    Jaynes, E. T.; Bretthorst, G. Larry

    2003-04-01

    Foreword; Preface; Part I. Principles and Elementary Applications: 1. Plausible reasoning; 2. The quantitative rules; 3. Elementary sampling theory; 4. Elementary hypothesis testing; 5. Queer uses for probability theory; 6. Elementary parameter estimation; 7. The central, Gaussian or normal distribution; 8. Sufficiency, ancillarity, and all that; 9. Repetitive experiments, probability and frequency; 10. Physics of 'random experiments'; Part II. Advanced Applications: 11. Discrete prior probabilities, the entropy principle; 12. Ignorance priors and transformation groups; 13. Decision theory: historical background; 14. Simple applications of decision theory; 15. Paradoxes of probability theory; 16. Orthodox methods: historical background; 17. Principles and pathology of orthodox statistics; 18. The Ap distribution and rule of succession; 19. Physical measurements; 20. Model comparison; 21. Outliers and robustness; 22. Introduction to communication theory; References; Appendix A. Other approaches to probability theory; Appendix B. Mathematical formalities and style; Appendix C. Convolutions and cumulants.

  18. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  19. Transits

    NASA Astrophysics Data System (ADS)

    Gilliland, Ronald L.

    Transits of the planets Mercury and especially Venus have been exciting events in the development of astronomy over the past few hundred years. Just two years ago the first transiting extra-solar planet, HD 209458b, was discovered, and subsequent studies during transit have contributed fundamental new knowledge. From the photometric light curve during transit one obtains a basic confirmation that the radial velocity detected object is indeed a planet by allowing precise determination of its mass and radius relative to these stellar quantities. From study of spectroscopic changes during transit it has been possible to probe for individual components of the transiting planets atmosphere. Planet transits are likely to become a primary tool for detection of new planets, especially other Earth-like planets with the Kepler Discovery Mission. Looking ahead, the additional aperture of the James Webb Space Space Telescope promises to allow the first possibility of studying the atmosphere of extra-solar Earth-analogue planets, perhaps even providing the first evidence of direct relevance to the search for signs of life on other planets.

  20. The sticking probability for H 2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    NASA Astrophysics Data System (ADS)

    Johansson, M.; Lytken, O.; Chorkendorff, I.

    2008-05-01

    The sticking probability for H2 on Ni, Co, Cu, Rh, Ru, Pd, Ir and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 °C. Carbon monoxide inhibits the sticking probability significantly for all the metals, even at 200 °C. In the presence of 10 ppm CO, the sticking probability increases in the order Ir, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2 in presence of CO relative to its value in pure hydrogen is largest for Pd and smallest for Pt and Ir. The high sensitivity to CO seen for Ir and Pt is explained by the fact that the difference in desorption energy for H and CO is largest for those metals.

  1. Reduced transition probabilities to the first 2{sup +} state in {sup 52,54,56}Ti and development of shell closures at N=32,34

    SciTech Connect

    Dinca, D.-C.; Brown, B.A.; Campbell, C.M.; Cook, J.M.; Glasmacher, T.; Olliver, H.; Terry, J.R.; Janssens, R.V.F.; Carpenter, M.P.; Gade, A.; Bazin, D.; Lecouey, J.-L.; Mueller, W. F.; Yoneda, K.; Broda, R.; Fornal, B.; Chowdhury, P.; Deacon, A.N.; Freeman, S.J.; Honma, M.

    2005-04-01

    The even {sup 52-56}Ti isotopes have been studied with intermediate-energy Coulomb excitation and absolute B(E2;0{sup +}{yields}2{sub 1}{sup +}) transition rates have been obtained. These data confirm the presence of a subshell closure at neutron number N=32 in neutron-rich nuclei above the doubly magic nucleus {sup 48}Ca and provide no direct evidence for the predicted N=34 closure. Large-scale shell model calculations with the most recent effective interactions are unable to reproduce the magnitude of the measured strengths in the semimagic Ti nuclei and their strong variation with neutron number.

  2. Experimental re-evaluation of the γ-ray energy and emission probability for the 159 keV transition in 238U following the α-decay of 242Pu.

    PubMed

    Berlizov, A N; van Belle, P; Zuleger, E; Ottmar, H

    2011-02-01

    Because of the very low specific activity of (242)Pu, the non-destructive assay of this isotope by means of conventional high-resolution gamma-spectrometry (HRGS) is possible only for Pu samples highly rich in (242)Pu. For bulk samples suffering from the gamma self-attenuation and self-fluorescence effects, the only practical choice for the quantitative analysis of (242)Pu is the weak γ-line emitted in the 159 keV transition of its α-decay daughter (238)U. A recent study revealed a significant disagreement between the (242)Pu mass values in a 99.72% enriched (242)PuO(2) sample as reported by HRGS and neutron coincidence counting. This fact motivated the present study on the experimental re-evaluation of the γ-emission probability for the 159 keV transition using a combination of α-, γ- and mass-spectrometry techniques. The obtained new emission probability P(2)=(2.20±0.08)10(-6) turned out to be ≈35% smaller than the currently adopted value. The study also suggested a new value E(2)=159.018±0.016 keV for the energy of the respective γ-ray.

  3. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  4. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  5. Effect of the Framework Convention on Tobacco Control and Voluntary Industry Health Warning Labels on Passage of Mandated Cigarette Warning Labels From 1965 to 2012: Transition Probability and Event History Analyses

    PubMed Central

    Sanders-Jackson, Ashley N.; Song, Anna V.; Hiilamo, Heikki

    2013-01-01

    Objectives. We quantified the pattern and passage rate of cigarette package health warning labels (HWLs), including the effect of the Framework Convention on Tobacco Control (FCTC) and HWLs voluntarily implemented by tobacco companies. Methods. We used transition probability matrices to describe the pattern of HWL passage and change rate in 4 periods. We used event history analysis to estimate the effect of the FCTC on adoption and to compare that effect between countries with voluntary and mandatory HWLs. Results. The number of HWLs passed during each period accelerated, from a transition rate among countries that changed from 2.42 per year in 1965–1977 to 6.71 in 1977–1984, 8.42 in 1984–2003, and 22.33 in 2003–2012. The FCTC significantly accelerated passage of FCTC-compliant HWLs for countries with initially mandatory policies with a hazard of 1.27 per year (95% confidence interval = 1.11, 1.45), but only marginally increased the hazard for countries that had an industry voluntary HWL of 1.68 per year (95% confidence interval = 0.95, 2.97). Conclusions. Passage of HWLs is accelerating, and the FCTC is associated with further acceleration. Industry voluntary HWLs slowed mandated HWLs. PMID:24028248

  6. Vibrational energies for the X1A1, A1B1, and B1A1 states of SiH2/SiD2 and related transition probabilities based on global potential energy surfaces.

    PubMed

    Tokue, Ikuo; Yamasaki, Katsuyoshi; Nanbu, Shinkoh

    2005-04-01

    Transition probabilities were evaluated for the X(1)A(1)-A(1)B(1) and A(1)B(1)-B(1)A(1) systems of SiH(2) and SiD(2) to analyze the X-->A-->B photoexcitation. The Franck-Condon factors (FCFs) and Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional potential energy surfaces (PESs) of the SiH(2)(X(1)A(1),A(1)B(1),B(1)A(1)) electronic states and the electronic transition moments for the X-A, X-B, and A-B system. The global PESs were determined by the multireference configuration interaction calculations with the Davidson correction and the interpolant moving least-squares method combined with the Shepard interpolation. The obtained FCFs for the X-A and A-B systems exhibit that the bending mode is strongly enhanced in the excitation since the equilibrium bond angle greatly varies with the three states; the barrier to linearity is evaluated to be 21,900 cm(-1) for the X state, 6400 cm(-1) for the A state, and 230-240 cm(-1) for the B state. The theoretical lifetimes for the pure bending levels of the A and B states were calculated from the fluorescence decay rates for the A-X, B-A, and B-X emissions.

  7. Infants Segment Continuous Events Using Transitional Probabilities

    ERIC Educational Resources Information Center

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants…

  8. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  9. Probability on a Budget.

    ERIC Educational Resources Information Center

    Ewbank, William A.; Ginther, John L.

    2002-01-01

    Describes how to use common dice numbered 1-6 for simple mathematical situations including probability. Presents a lesson using regular dice and specially marked dice to explore some of the concepts of probability. (KHR)

  10. Is quantum probability rational?

    PubMed

    Houston, Alasdair I; Wiesner, Karoline

    2013-06-01

    We concentrate on two aspects of the article by Pothos & Busemeyer (P&B): the relationship between classical and quantum probability and quantum probability as a basis for rational decisions. We argue that the mathematical relationship between classical and quantum probability is not quite what the authors claim. Furthermore, it might be premature to regard quantum probability as the best practical rational scheme for decision making.

  11. Predicted probabilities' relationship to inclusion probabilities.

    PubMed

    Fang, Di; Chong, Jenny; Wilson, Jeffrey R

    2015-05-01

    It has been shown that under a general multiplicative intercept model for risk, case-control (retrospective) data can be analyzed by maximum likelihood as if they had arisen prospectively, up to an unknown multiplicative constant, which depends on the relative sampling fraction. (1) With suitable auxiliary information, retrospective data can also be used to estimate response probabilities. (2) In other words, predictive probabilities obtained without adjustments from retrospective data will likely be different from those obtained from prospective data. We highlighted this using binary data from Medicare to determine the probability of readmission into the hospital within 30 days of discharge, which is particularly timely because Medicare has begun penalizing hospitals for certain readmissions. (3).

  12. Racing To Understand Probability.

    ERIC Educational Resources Information Center

    Van Zoest, Laura R.; Walker, Rebecca K.

    1997-01-01

    Describes a series of lessons designed to supplement textbook instruction of probability by addressing the ideas of "equally likely,""not equally likely," and "fairness," as well as to introduce the difference between theoretical and experimental probability. Presents four lessons using The Wind Racer games to study probability. (ASK)

  13. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  14. Searching with probabilities

    SciTech Connect

    Palay, A.J.

    1985-01-01

    This book examines how probability distributions can be used as a knowledge representation technique. It presents a mechanism that can be used to guide a selective search algorithm to solve a variety of tactical chess problems. Topics covered include probabilities and searching the B algorithm and chess probabilities - in practice, examples, results, and future work.

  15. In All Probability, Probability is not All

    ERIC Educational Resources Information Center

    Helman, Danny

    2004-01-01

    The national lottery is often portrayed as a game of pure chance with no room for strategy. This misperception seems to stem from the application of probability instead of expectancy considerations, and can be utilized to introduce the statistical concept of expectation.

  16. Cumulative reaction probabilities and transition state properties: A study of the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} proton exchange reactions

    SciTech Connect

    Jambrina, P. G.; Aoiz, F. J.; Eyles, C. J.; Herrero, V. J.; Saez Rabanos, V.

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions at collision energies up to 1.2 eV and total angular momentum J=0-4. A marked resonance structure is found in the QM CRP, most especially for the H{sub 3}{sup +} system and J=0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H{sup +}+D{sub 2} isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H{sup +}+D{sub 2} reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by

  17. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  18. Persistence probabilities for stream populations.

    PubMed

    Samia, Yasmine; Lutscher, Frithjof

    2012-07-01

    Individuals in streams and rivers are constantly at risk of being washed downstream and thereby lost to their population. The possibility of diffusion-mediated persistence of populations in advective environments has been the focus of a multitude of recent modeling efforts. Most of these recent models are deterministic, and they predict the existence of a critical advection velocity, above which a population cannot persist. In this work, we present a stochastic approach to the persistence problem in streams and rivers. We use the dominant eigenvalue of the advection-diffusion operator to transition from a spatially explicit description to a spatially implicit birth-death process, in which individual washout from the domain appears as an additional death term. We find that the deterministic persistence threshold is replaced by a smooth transition from almost sure persistence to extinction as advection velocity increases. More interestingly, we explore how temporal variation in flow rate and other parameters affect the persistence probability. In line with general expectations, we find that temporal variation often decreases the persistence probability, and we focus on a few examples of how variation can increase population persistence.

  19. Abstract Models of Probability

    NASA Astrophysics Data System (ADS)

    Maximov, V. M.

    2001-12-01

    Probability theory presents a mathematical formalization of intuitive ideas of independent events and a probability as a measure of randomness. It is based on axioms 1-5 of A.N. Kolmogorov 1 and their generalizations 2. Different formalized refinements were proposed for such notions as events, independence, random value etc., 2,3, whereas the measure of randomness, i.e. numbers from [0,1], remained unchanged. To be precise we mention some attempts of generalization of the probability theory with negative probabilities 4. From another side the physicists tryed to use the negative and even complex values of probability to explain some paradoxes in quantum mechanics 5,6,7. Only recently, the necessity of formalization of quantum mechanics and their foundations 8 led to the construction of p-adic probabilities 9,10,11, which essentially extended our concept of probability and randomness. Therefore, a natural question arises how to describe algebraic structures whose elements can be used as a measure of randomness. As consequence, a necessity arises to define the types of randomness corresponding to every such algebraic structure. Possibly, this leads to another concept of randomness that has another nature different from combinatorical - metric conception of Kolmogorov. Apparenly, discrepancy of real type of randomness corresponding to some experimental data lead to paradoxes, if we use another model of randomness for data processing 12. Algebraic structure whose elements can be used to estimate some randomness will be called a probability set Φ. Naturally, the elements of Φ are the probabilities.

  20. Probability with Roulette

    ERIC Educational Resources Information Center

    Marshall, Jennings B.

    2007-01-01

    This article describes how roulette can be used to teach basic concepts of probability. Various bets are used to illustrate the computation of expected value. A betting system shows variations in patterns that often appear in random events.

  1. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  2. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  3. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  4. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  5. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  6. A Unifying Probability Example.

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2002-01-01

    Presents an example from probability and statistics that ties together several topics including the mean and variance of a discrete random variable, the binomial distribution and its particular mean and variance, the sum of independent random variables, the mean and variance of the sum, and the central limit theorem. Uses Excel to illustrate these…

  7. On Probability Domains

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2010-12-01

    Motivated by IF-probability theory (intuitionistic fuzzy), we study n-component probability domains in which each event represents a body of competing components and the range of a state represents a simplex S n of n-tuples of possible rewards-the sum of the rewards is a number from [0,1]. For n=1 we get fuzzy events, for example a bold algebra, and the corresponding fuzzy probability theory can be developed within the category ID of D-posets (equivalently effect algebras) of fuzzy sets and sequentially continuous D-homomorphisms. For n=2 we get IF-events, i.e., pairs ( μ, ν) of fuzzy sets μ, ν∈[0,1] X such that μ( x)+ ν( x)≤1 for all x∈ X, but we order our pairs (events) coordinatewise. Hence the structure of IF-events (where ( μ 1, ν 1)≤( μ 2, ν 2) whenever μ 1≤ μ 2 and ν 2≤ ν 1) is different and, consequently, the resulting IF-probability theory models a different principle. The category ID is cogenerated by I=[0,1] (objects of ID are subobjects of powers I X ), has nice properties and basic probabilistic notions and constructions are categorical. For example, states are morphisms. We introduce the category S n D cogenerated by Sn=\\{(x1,x2,ldots ,xn)in In;sum_{i=1}nxi≤ 1\\} carrying the coordinatewise partial order, difference, and sequential convergence and we show how basic probability notions can be defined within S n D.

  8. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  9. Fractal probability laws.

    PubMed

    Eliazar, Iddo; Klafter, Joseph

    2008-06-01

    We explore six classes of fractal probability laws defined on the positive half-line: Weibull, Frechét, Lévy, hyper Pareto, hyper beta, and hyper shot noise. Each of these classes admits a unique statistical power-law structure, and is uniquely associated with a certain operation of renormalization. All six classes turn out to be one-dimensional projections of underlying Poisson processes which, in turn, are the unique fixed points of Poissonian renormalizations. The first three classes correspond to linear Poissonian renormalizations and are intimately related to extreme value theory (Weibull, Frechét) and to the central limit theorem (Lévy). The other three classes correspond to nonlinear Poissonian renormalizations. Pareto's law--commonly perceived as the "universal fractal probability distribution"--is merely a special case of the hyper Pareto class.

  10. Waste Package Misload Probability

    SciTech Connect

    J.K. Knudsen

    2001-11-20

    The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a.

  11. Regional flood probabilities

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    2003-01-01

    The T-year annual maximum flood at a site is defined to be that streamflow, that has probability 1/T of being exceeded in any given year, and for a group of sites the corresponding regional flood probability (RFP) is the probability that at least one site will experience a T-year flood in any given year. The RFP depends on the number of sites of interest and on the spatial correlation of flows among the sites. We present a Monte Carlo method for obtaining the RFP and demonstrate that spatial correlation estimates used in this method may be obtained with rank transformed data and therefore that knowledge of the at-site peak flow distribution is not necessary. We examine the extent to which the estimates depend on specification of a parametric form for the spatial correlation function, which is known to be nonstationary for peak flows. It is shown in a simulation study that use of a stationary correlation function to compute RFPs yields satisfactory estimates for certain nonstationary processes. Application of asymptotic extreme value theory is examined, and a methodology for separating channel network and rainfall effects on RFPs is suggested. A case study is presented using peak flow data from the state of Washington. For 193 sites in the Puget Sound region it is estimated that a 100-year flood will occur on the average every 4,5 years.

  12. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    PubMed

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems. PMID:27192844

  13. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    PubMed

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems.

  14. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  15. Probability of photoassociation from a quasicontinuum approach

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha; Mackie, Matt

    1998-08-01

    We examine photoassociation by using a quasicontinuum to describe the colliding atoms. The quasicontinuum system is analyzed using methods adapted from the theory of laser spectroscopy and quantum optics, and a continuum limit is then taken. In a degenerate gas the equilibrium probability of photoassociation may be close to unity. In the continuum limit, for a thermal atomic sample, the stimulated Raman adiabatic passage (STIRAP) mechanism cannot be employed to eliminate unwanted spontaneous transitions.

  16. Emptiness Formation Probability

    NASA Astrophysics Data System (ADS)

    Crawford, Nicholas; Ng, Stephen; Starr, Shannon

    2016-08-01

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  17. People's conditional probability judgments follow probability theory (plus noise).

    PubMed

    Costello, Fintan; Watts, Paul

    2016-09-01

    A common view in current psychology is that people estimate probabilities using various 'heuristics' or rules of thumb that do not follow the normative rules of probability theory. We present a model where people estimate conditional probabilities such as P(A|B) (the probability of A given that B has occurred) by a process that follows standard frequentist probability theory but is subject to random noise. This model accounts for various results from previous studies of conditional probability judgment. This model predicts that people's conditional probability judgments will agree with a series of fundamental identities in probability theory whose form cancels the effect of noise, while deviating from probability theory in other expressions whose form does not allow such cancellation. Two experiments strongly confirm these predictions, with people's estimates on average agreeing with probability theory for the noise-cancelling identities, but deviating from probability theory (in just the way predicted by the model) for other identities. This new model subsumes an earlier model of unconditional or 'direct' probability judgment which explains a number of systematic biases seen in direct probability judgment (Costello & Watts, 2014). This model may thus provide a fully general account of the mechanisms by which people estimate probabilities.

  18. People's conditional probability judgments follow probability theory (plus noise).

    PubMed

    Costello, Fintan; Watts, Paul

    2016-09-01

    A common view in current psychology is that people estimate probabilities using various 'heuristics' or rules of thumb that do not follow the normative rules of probability theory. We present a model where people estimate conditional probabilities such as P(A|B) (the probability of A given that B has occurred) by a process that follows standard frequentist probability theory but is subject to random noise. This model accounts for various results from previous studies of conditional probability judgment. This model predicts that people's conditional probability judgments will agree with a series of fundamental identities in probability theory whose form cancels the effect of noise, while deviating from probability theory in other expressions whose form does not allow such cancellation. Two experiments strongly confirm these predictions, with people's estimates on average agreeing with probability theory for the noise-cancelling identities, but deviating from probability theory (in just the way predicted by the model) for other identities. This new model subsumes an earlier model of unconditional or 'direct' probability judgment which explains a number of systematic biases seen in direct probability judgment (Costello & Watts, 2014). This model may thus provide a fully general account of the mechanisms by which people estimate probabilities. PMID:27570097

  19. Classical and Quantum Probability for Biologists - Introduction

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei.

    2010-01-01

    The aim of this review (oriented to biologists looking for applications of QM) is to provide a detailed comparative analysis of classical (Kolmogorovian) and quantum (Dirac-von Neumann) models. We will stress differences in the definition of conditional probability and as a consequence in the structures of matrices of transition probabilities, especially the condition of double stochasticity which arises naturally in QM. One of the most fundamental differences between two models is deformation of the classical formula of total probability (FTP) which plays an important role in statistics and decision making. An additional term appears in the QM-version of FTP - so called interference term. Finally, we discuss Bell's inequality and show that the common viewpoint that its violation induces either nonlocality or "death of realism" has not been completely justified. For us it is merely a sign of non-Kolmogorovianity of probabilistic data collected in a few experiments with incompatible setups of measurement devices.

  20. Probability distributions for magnetotellurics

    SciTech Connect

    Stodt, John A.

    1982-11-01

    Estimates of the magnetotelluric transfer functions can be viewed as ratios of two complex random variables. It is assumed that the numerator and denominator are governed approximately by a joint complex normal distribution. Under this assumption, probability distributions are obtained for the magnitude, squared magnitude, logarithm of the squared magnitude, and the phase of the estimates. Normal approximations to the distributions are obtained by calculating mean values and variances from error propagation, and the distributions are plotted with their normal approximations for different percentage errors in the numerator and denominator of the estimates, ranging from 10% to 75%. The distribution of the phase is approximated well by a normal distribution for the range of errors considered, while the distribution of the logarithm of the squared magnitude is approximated by a normal distribution for a much larger range of errors than is the distribution of the squared magnitude. The distribution of the squared magnitude is most sensitive to the presence of noise in the denominator of the estimate, in which case the true distribution deviates significantly from normal behavior as the percentage errors exceed 10%. In contrast, the normal approximation to the distribution of the logarithm of the magnitude is useful for errors as large as 75%.

  1. A Tale of Two Probabilities

    ERIC Educational Resources Information Center

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  2. The Probability of Causal Conditionals

    ERIC Educational Resources Information Center

    Over, David E.; Hadjichristidis, Constantinos; Evans, Jonathan St. B. T.; Handley, Simon J.; Sloman, Steven A.

    2007-01-01

    Conditionals in natural language are central to reasoning and decision making. A theoretical proposal called the Ramsey test implies the conditional probability hypothesis: that the subjective probability of a natural language conditional, P(if p then q), is the conditional subjective probability, P(q [such that] p). We report three experiments on…

  3. Probability workshop to be better in probability topic

    NASA Astrophysics Data System (ADS)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  4. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  5. Integrated analysis of incidence, progression, regression and disappearance probabilities

    PubMed Central

    Huang, Guan-Hua

    2008-01-01

    Background Age-related maculopathy (ARM) is a leading cause of vision loss in people aged 65 or older. ARM is distinctive in that it is a disease which can transition through incidence, progression, regression and disappearance. The purpose of this study is to develop methodologies for studying the relationship of risk factors with different transition probabilities. Methods Our framework for studying this relationship includes two different analytical approaches. In the first approach, one can define, model and estimate the relationship between each transition probability and risk factors separately. This approach is similar to constraining a population to a certain disease status at the baseline, and then analyzing the probability of the constrained population to develop a different status. While this approach is intuitive, one risks losing available information while at the same time running into the problem of insufficient sample size. The second approach specifies a transition model for analyzing such a disease. This model provides the conditional probability of a current disease status based upon a previous status, and can therefore jointly analyze all transition probabilities. Throughout the paper, an analysis to determine the birth cohort effect on ARM is used as an illustration. Results and conclusion This study has found parallel separate and joint analyses to be more enlightening than any analysis in isolation. By implementing both approaches, one can obtain more reliable and more efficient results. PMID:18577235

  6. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  7. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  8. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  9. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are <1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  10. Transition probabilities in the X(5) candidate {sup 122}Ba

    SciTech Connect

    Bizzeti, P. G.; Giannatiempo, A.; Perego, A.; Bizzeti-Sona, A. M.; Tonev, D.; Petkov, P.; Ur, C. A.; Bazzacco, D.; Farnea, E.; Marginean, R.; Menegazzo, R.; Alvarez, C. Rossi; Dewald, A.; Melon, B.; Fransen, C.; Moeller, O.; Costin, A.; Pietralla, N.; De Angelis, G.; Vedova, F. Della

    2009-01-28

    The lifetimes of excited states of the {sup 122}Ba ground--state band, populated via the {sup 108}Cd({sup 16}O,2n){sup 122}Ba and the {sup 112}Sn({sup 13}C,2n){sup 122}Ba reactions, have been measured using the Recoil Distance Doppler--Shift method. The level scheme of {sup 122}Ba has also been revised.

  11. Transition probabilities in the X(5) candidate {sup 122}Ba

    SciTech Connect

    Bizzeti, P. G.; Giannatiempo, A.; Melon, B.; Perego, A.; Sona, P.; Bizzeti-Sona, A. M.; Tonev, D.; Ur, C. A.; Bazzacco, D.; Farnea, E.; Marginean, R.; Menegazzo, R.; Rossi Alvarez, C.; Dewald, A.; Fransen, C.; Michelagnoli, C.; Lenzi, S.; Lunardi, S.; Mengoni, D.; Nespolo, M.

    2010-11-15

    To investigate the possible X(5) character of {sup 122}Ba, suggested by the ground-state band energy pattern, the lifetimes of the lowest yrast states of {sup 122}Ba have been measured, via the recoil distance Doppler-shift method. The relevant levels have been populated by using the {sup 108}Cd({sup 16}O,2n){sup 122}Ba and the {sup 112}Sn({sup 13}C,3n){sup 122}Ba reactions. The B(E2) values deduced in the present work are compared to the predictions of the X(5) model and to calculations performed in the framework of the IBA-1 and IBA-2 models.

  12. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  13. Probability Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Newton, Roger G.

    1980-01-01

    This paper draws attention to the frequency meaning of the probability concept and its implications for quantum mechanics. It emphasizes that the very meaning of probability implies the ensemble interpretation of both pure and mixed states. As a result some of the "paradoxical" aspects of quantum mechanics lose their counterintuitive character.…

  14. The Probabilities of Conditionals Revisited

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2013-01-01

    According to what is now commonly referred to as "the Equation" in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of…

  15. Minimizing the probable maximum flood

    SciTech Connect

    Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )

    1994-06-01

    This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.

  16. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  17. Holographic probabilities in eternal inflation.

    PubMed

    Bousso, Raphael

    2006-11-10

    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.

  18. Reference free, high-precision measurements of transition energies in few electron argon ions

    NASA Astrophysics Data System (ADS)

    Szabo, Csilla I.; Amaro, Pedro; Guerra, Mauro; Schlesser, Sophie; Gumberidze, Alexander; Santos, José Paulo; Indelicato, Paul

    2013-04-01

    The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 → 1s2 1 S0 diagram line and the 1s2s 3 S1 → 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 Pj → 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 → 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.

  19. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  20. Dinosaurs, Dinosaur Eggs, and Probability.

    ERIC Educational Resources Information Center

    Teppo, Anne R.; Hodgson, Ted

    2001-01-01

    Outlines several recommendations for teaching probability in the secondary school. Offers an activity that employs simulation by hand and using a programmable calculator in which geometry, analytical geometry, and discrete mathematics are explored. (KHR)

  1. The Probabilities of Unique Events

    PubMed Central

    Khemlani, Sangeet S.; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  2. Calculation of inclusive probabilities from single-particle amplitudes

    NASA Astrophysics Data System (ADS)

    Kürpick, Peter; Lüdde, Hans Jürgen

    1993-04-01

    On the basis of the independent particle model, used to describe collisions between ions and atoms involving many electrons, the formalism of inclusive probabilities allows the computation of many-electron transition probabilities from single-particle amplitudes. The method presented can answer practically any experimental question formulated in terms of a certain number of vacancies and occupancies as can be measured in a typical ion-atom collision experiment. It is specialised to calculate many-particle probabilities with respect to a minimum number of vacancies or occupancies in one or more subshells as obtained e.g. in KLL- or KLM-Auger spectra.

  3. Joint probabilities and quantum cognition

    SciTech Connect

    Acacio de Barros, J.

    2012-12-18

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  4. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  5. Joint probability distributions for projection probabilities of random orthonormal states

    NASA Astrophysics Data System (ADS)

    Alonso, L.; Gorin, T.

    2016-04-01

    The quantum chaos conjecture applied to a finite dimensional quantum system implies that such a system has eigenstates that show similar statistical properties as the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.

  6. Imprecise probabilities in engineering analyses

    NASA Astrophysics Data System (ADS)

    Beer, Michael; Ferson, Scott; Kreinovich, Vladik

    2013-05-01

    Probabilistic uncertainty and imprecision in structural parameters and in environmental conditions and loads are challenging phenomena in engineering analyses. They require appropriate mathematical modeling and quantification to obtain realistic results when predicting the behavior and reliability of engineering structures and systems. But the modeling and quantification is complicated by the characteristics of the available information, which involves, for example, sparse data, poor measurements and subjective information. This raises the question whether the available information is sufficient for probabilistic modeling or rather suggests a set-theoretical approach. The framework of imprecise probabilities provides a mathematical basis to deal with these problems which involve both probabilistic and non-probabilistic information. A common feature of the various concepts of imprecise probabilities is the consideration of an entire set of probabilistic models in one analysis. The theoretical differences between the concepts mainly concern the mathematical description of the set of probabilistic models and the connection to the probabilistic models involved. This paper provides an overview on developments which involve imprecise probabilities for the solution of engineering problems. Evidence theory, probability bounds analysis with p-boxes, and fuzzy probabilities are discussed with emphasis on their key features and on their relationships to one another. This paper was especially prepared for this special issue and reflects, in various ways, the thinking and presentation preferences of the authors, who are also the guest editors for this special issue.

  7. Normal probability plots with confidence.

    PubMed

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods.

  8. Calculations of Cascade Decay Processes Using Rudimentary Probability Theory.

    ERIC Educational Resources Information Center

    Zivitz, Maury

    1979-01-01

    Presents a new derivation based on simple theorems of probability theory for the established system of equations describing successive decay transitions of quantum systems. It is indicated that this derivation that has a quantum-mechanical foundation might be more appealing to applied physicists than other derivations. (HM)

  9. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  10. Children's understanding of posterior probability.

    PubMed

    Girotto, Vittorio; Gonzalez, Michel

    2008-01-01

    Do young children have a basic intuition of posterior probability? Do they update their decisions and judgments in the light of new evidence? We hypothesized that they can do so extensionally, by considering and counting the various ways in which an event may or may not occur. The results reported in this paper showed that from the age of five, children's decisions under uncertainty (Study 1) and judgments about random outcomes (Study 2) are correctly affected by posterior information. From the same age, children correctly revise their decisions in situations in which they face a single, uncertain event, produced by an intentional agent (Study 3). The finding that young children have some understanding of posterior probability supports the theory of naive extensional reasoning, and contravenes some pessimistic views of probabilistic reasoning, in particular the evolutionary claim that the human mind cannot deal with single-case probability. PMID:17391661

  11. Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Taggi, Lorenzo

    2015-05-01

    This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by the neighbourhood of site , the transition probability is if or otherwise, . For any there exists a non-trivial critical probability that separates a phase with an absorbing state from a fluctuating phase. This paper studies how the neighbourhood affects the value of and provides lower bounds for . Furthermore, by using dynamic renormalization techniques, we prove that the expected convergence time of the processes on a finite space with periodic boundaries grows exponentially (resp. logarithmically) with the system size if (resp. ). This provides a partial answer to an open problem in Toom et al. (Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1-182. Manchester University Press, Manchester, 1990; Topics in Contemporary Probability and its Applications, pp. 117-157. CRC Press, Boca Raton, 1995).

  12. Interference of probabilities in dynamics

    SciTech Connect

    Zak, Michail

    2014-08-15

    A new class of dynamical systems with a preset type of interference of probabilities is introduced. It is obtained from the extension of the Madelung equation by replacing the quantum potential with a specially selected feedback from the Liouville equation. It has been proved that these systems are different from both Newtonian and quantum systems, but they can be useful for modeling spontaneous collective novelty phenomena when emerging outputs are qualitatively different from the weighted sum of individual inputs. Formation of language and fast decision-making process as potential applications of the probability interference is discussed.

  13. Knowledge typology for imprecise probabilities.

    SciTech Connect

    Wilson, G. D.; Zucker, L. J.

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  14. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  15. Some Surprising Probabilities from Bingo.

    ERIC Educational Resources Information Center

    Mercer, Joseph O.

    1993-01-01

    Investigates the probability of winning the largest prize at Bingo through a series of five simpler problems. Investigations are conducted with the aid of either BASIC computer programs, spreadsheets, or a computer algebra system such as Mathematica. Provides sample data tables to illustrate findings. (MDH)

  16. Probability Simulation in Middle School.

    ERIC Educational Resources Information Center

    Lappan, Glenda; Winter, M. J.

    1980-01-01

    Two simulations designed to teach probability to middle-school age pupils are presented. The first simulates the one-on-one foul shot simulation in basketball; the second deals with collecting a set of six cereal box prizes by buying boxes containing one toy each. (MP)

  17. Comments on quantum probability theory.

    PubMed

    Sloman, Steven

    2014-01-01

    Quantum probability theory (QP) is the best formal representation available of the most common form of judgment involving attribute comparison (inside judgment). People are capable, however, of judgments that involve proportions over sets of instances (outside judgment). Here, the theory does not do so well. I discuss the theory both in terms of descriptive adequacy and normative appropriateness.

  18. Understanding Y haplotype matching probability.

    PubMed

    Brenner, Charles H

    2014-01-01

    The Y haplotype population-genetic terrain is better explored from a fresh perspective rather than by analogy with the more familiar autosomal ideas. For haplotype matching probabilities, versus for autosomal matching probabilities, explicit attention to modelling - such as how evolution got us where we are - is much more important while consideration of population frequency is much less so. This paper explores, extends, and explains some of the concepts of "Fundamental problem of forensic mathematics - the evidential strength of a rare haplotype match". That earlier paper presented and validated a "kappa method" formula for the evidential strength when a suspect matches a previously unseen haplotype (such as a Y-haplotype) at the crime scene. Mathematical implications of the kappa method are intuitive and reasonable. Suspicions to the contrary raised in rest on elementary errors. Critical to deriving the kappa method or any sensible evidential calculation is understanding that thinking about haplotype population frequency is a red herring; the pivotal question is one of matching probability. But confusion between the two is unfortunately institutionalized in much of the forensic world. Examples make clear why (matching) probability is not (population) frequency and why uncertainty intervals on matching probabilities are merely confused thinking. Forensic matching calculations should be based on a model, on stipulated premises. The model inevitably only approximates reality, and any error in the results comes only from error in the model, the inexactness of the approximation. Sampling variation does not measure that inexactness and hence is not helpful in explaining evidence and is in fact an impediment. Alternative haplotype matching probability approaches that various authors have considered are reviewed. Some are based on no model and cannot be taken seriously. For the others, some evaluation of the models is discussed. Recent evidence supports the adequacy of

  19. Knot probabilities in random diagrams

    NASA Astrophysics Data System (ADS)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  20. Probability distributions for multimeric systems.

    PubMed

    Albert, Jaroslav; Rooman, Marianne

    2016-01-01

    We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.

  1. Probability, Information and Statistical Physics

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2016-03-01

    In this short survey review we discuss foundational issues of the probabilistic approach to information theory and statistical mechanics from a unified standpoint. Emphasis is on the inter-relations between theories. The basic aim is tutorial, i.e. to carry out a basic introduction to the analysis and applications of probabilistic concepts to the description of various aspects of complexity and stochasticity. We consider probability as a foundational concept in statistical mechanics and review selected advances in the theoretical understanding of interrelation of the probability, information and statistical description with regard to basic notions of statistical mechanics of complex systems. It includes also a synthesis of past and present researches and a survey of methodology. The purpose of this terse overview is to discuss and partially describe those probabilistic methods and approaches that are used in statistical mechanics with the purpose of making these ideas easier to understanding and to apply.

  2. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  3. ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Morton, Timothy D.; Johnson, John Asher E-mail: johnjohn@astro.caltech.edu

    2011-09-10

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R{sub +} < R{sub p} < 20 R{sub +}. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal-deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  4. Objective Probability and Quantum Fuzziness

    NASA Astrophysics Data System (ADS)

    Mohrhoff, U.

    2009-02-01

    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes. Most important among these are the objective fuzziness of all relative positions and momenta and the consequent incomplete spatiotemporal differentiation of the physical world. The latter makes it possible to draw a clear distinction between the macroscopic and the microscopic. This in turn makes it possible to understand the special status of measurements in all standard formulations of the theory. Whereas Bayesians have written contemptuously about the “folly” of conjoining “objective” to “probability,” there are various reasons why quantum-mechanical probabilities can be considered objective, not least the fact that they are needed to quantify an objective fuzziness. But this cannot be appreciated without giving thought to the makeup of the world, which

  5. A probability generating function method for stochastic reaction networks

    NASA Astrophysics Data System (ADS)

    Kim, Pilwon; Lee, Chang Hyeong

    2012-06-01

    In this paper we present a probability generating function (PGF) approach for analyzing stochastic reaction networks. The master equation of the network can be converted to a partial differential equation for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical schemes for finding probability distributions as well as first and second moments. We show numerical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G2/M transition model.

  6. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  7. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew R.; Piro, Anthony; Ott, Christian D.

    2015-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. Using the observed BH mass distribution from Galactic X-ray binaries, we investigate the probability that a star will make a BH as a function of its ZAMS mass. Although the shape of the black hole formation probability function is poorly constrained by current measurements, we believe that this framework is an important new step toward better understanding BH formation. We also consider some of the implications of this probability distribution, from its impact on the chemical enrichment from massive stars, to its connection with the structure of the core at the time of collapse, to the birth kicks that black holes receive. A probabilistic description of BH formation will be a useful input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  8. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  9. Lectures on probability and statistics

    SciTech Connect

    Yost, G.P.

    1984-09-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another.

  10. Practical implementation of joint multitarget probabilities

    NASA Astrophysics Data System (ADS)

    Musick, Stanton; Kastella, Keith D.; Mahler, Ronald P. S.

    1998-07-01

    A Joint Multitarget Probability (JMP) is a posterior probability density pT(x1,...,xTZ) that there are T targets (T an unknown number) with unknown locations specified by the multitarget state X equals (x1,...,xT)T conditioned on a set of observations Z. This paper presents a numerical approximation for implementing JMP in detection, tracking and sensor management applications. A problem with direct implementation of JMP is that, if each xt, t equals 1,...,T, is discretized on a grid of N elements, NT variables are required to represent JMP on the T-target sector. This produces a large computational requirement even for small values of N and T. However, when the sensor easily separates targets, the resulting JMP factorizes and can be approximated by a product representation requiring only O(T2N) variables. Implementation of JMP for multitarget tracking requires a Bayes' rule step for measurement update and a Markov transition step for time update. If the measuring sensor is only influenced by the cell it observes, the JMP product representation is preserved under measurement update. However, the product form is not quite preserved by the Markov time update, but can be restored using a minimum discrimination approach. All steps for the approximation can be performed with O(N) effort. This notion is developed and demonstrated in numerical examples with at most two targets in a 1-dimensional surveillance region. In this case, numerical results for detection and tracking for the product approximation and the full JMP are very similar.

  11. Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Haswell, Carole A.

    2010-07-01

    1. Our solar system from afar; 2. Exoplanet discoveries by the transit method; 3. What the transit lightcurve tells us; 4. The transiting exoplanet population; 5. Transmission spectroscopy and Rossiter-McLaughlin effect; 6. Secondary eclipses and phase variations; 7. Transit timing variations and orbital dynamics; 8. Brave new worlds: the future; Index.

  12. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values

  13. Lévy laws in free probability

    PubMed Central

    Barndorff-Nielsen, Ole E.; Thorbjørnsen, Steen

    2002-01-01

    This article and its sequel outline recent developments in the theory of infinite divisibility and Lévy processes in free probability, a subject area belonging to noncommutative (or quantum) probability. The present paper discusses the classes of infinitely divisible probability measures in classical and free probability, respectively, via a study of the Bercovici–Pata bijection between these classes. PMID:12473744

  14. Associativity and normative credal probability.

    PubMed

    Snow, P

    2002-01-01

    Cox's Theorem is a widely cited motivation for probabilistic models of uncertain belief. The theorem relates the associativity of the logical connectives to that of the arithmetic operations of probability. Recent questions about the correctness of Cox's Theorem have been resolved, but there are new questions about one functional equation used by Cox in 1946. This equation is missing from his later work. Advances in knowledge since 1946 and changes in Cox's research interests explain the equation's disappearance. Other associativity-based motivations avoid functional equations altogether, and so may be more transparently applied to finite domains and discrete beliefs. A discrete counterpart of Cox's Theorem can be assembled from results that have been in the literature since 1959. PMID:18238098

  15. Dynamic encoding of speech sequence probability in human temporal cortex.

    PubMed

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning.

  16. Imprecise probability for non-commuting observables

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.

    2015-08-01

    It is known that non-commuting observables in quantum mechanics do not have joint probability. This statement refers to the precise (additive) probability model. I show that the joint distribution of any non-commuting pair of variables can be quantified via upper and lower probabilities, i.e. the joint probability is described by an interval instead of a number (imprecise probability). I propose transparent axioms from which the upper and lower probability operators follow. The imprecise probability depend on the non-commuting observables, is linear over the state (density matrix) and reverts to the usual expression for commuting observables.

  17. Dynamic Stark effect and forbidden-transition spectrallineshapes

    SciTech Connect

    Stalnaker, Jason E.; Budker, D.; Freedman, S.J.; Guzman, J.S.; Rochester, S.M.; Yashchuk, V.V.

    2005-12-15

    We report on an experimental and theoretical study of thedynamic (ac) Stark effect on a for bidden transition. A general frameworkfor parameterizing and describing off-resonant ac-Stark shifts ispresented. A model is developed to calculate spectral line shapesresulting from resonant excitation of atoms in an intense standinglight-wave in the presence of off-resonant ac-Stark shifts. The model isused in the analysis and interpretation of a measurement of the ac-Starkshifts of the static-electric-field-induced 6s2 1S0 -->5d6s 3D1transition at 408 nm in atomic Yb. The results are in agreement withestimates of the ac-Stark shift of the transition under the assumptionthat the shift is dominated by that of the 6s2 1S0 ground state. Adetailed description of the experiment and analysis is presented. Abi-product of this work is an ind ependent determination (from thesaturation behavior of the 408-nm transition) of the Stark transitionpolarizability, which is found to be in agreement with our earliermeasurement. This work is part of the ongoing effort aimed at a precisionmeasurement of atomic parity-violation effects in Yb.

  18. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  19. OBSERVATIONAL WINDOW FUNCTIONS IN PLANET TRANSIT SURVEYS

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R. E-mail: skane@ipac.caltech.edu

    2009-09-01

    The probability that an existing planetary transit is detectable in one's data is sensitively dependent upon the window function of the observations. We quantitatively characterize and provide visualizations of the dependence of this probability as a function of orbital period upon several observing strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, transit duration and depth, and the minimum number of sampled transits. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of observational window functions, we explicitly address noncorrelated (Gaussian or white) noise and correlated (red) noise and discuss how these two noise components affect transit detectability in fundamentally different manners, especially for long periods and/or small transit depths. We furthermore discuss the consequence of competing effects on transit detectability, elaborate on measures of observing strategies, and examine the projected efficiency of different transit survey scenarios with respect to certain regions of parameter space.

  20. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  1. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  2. The Probability Distribution for a Biased Spinner

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  3. Theoretical Studies of Atomic Transitions

    SciTech Connect

    Charlotte Froese Fischer

    2005-07-08

    Atomic structure calculations were performed for properties such as energy levels, binding energies, transition probabilities, lifetimes, hyperfine structure, and isotope shifts. Accurate computational procedures were devised so that properties could be predicted even when they could not be obtained from experiment, and to assist in the identification of observed data. The method used was the multiconfiguration Hartree-Fock (MCHF) method, optionally corrected for relativistic effects in the Breit-Pauli approximation. Fully relativistic Dirac-Fock calculations also were performed using the GRASP code A database of energy levels, lifetimes, and transition probabilities was designed and implemented and, at present, includes many results for Be-like to Ar-like.

  4. Lévy processes in free probability

    PubMed Central

    Barndorff-Nielsen, Ole E.; Thorbjørnsen, Steen

    2002-01-01

    This is the continuation of a previous article that studied the relationship between the classes of infinitely divisible probability measures in classical and free probability, respectively, via the Bercovici–Pata bijection. Drawing on the results of the preceding article, the present paper outlines recent developments in the theory of Lévy processes in free probability. PMID:12473745

  5. Using Playing Cards to Differentiate Probability Interpretations

    ERIC Educational Resources Information Center

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  6. Pre-Service Teachers' Conceptions of Probability

    ERIC Educational Resources Information Center

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  7. Teaching Probabilities and Statistics to Preschool Children

    ERIC Educational Resources Information Center

    Pange, Jenny

    2003-01-01

    This study considers the teaching of probabilities and statistics to a group of preschool children using traditional classroom activities and Internet games. It was clear from this study that children can show a high level of understanding of probabilities and statistics, and demonstrate high performance in probability games. The use of Internet…

  8. The Cognitive Substrate of Subjective Probability

    ERIC Educational Resources Information Center

    Nilsson, Hakan; Olsson, Henrik; Juslin, Peter

    2005-01-01

    The prominent cognitive theories of probability judgment were primarily developed to explain cognitive biases rather than to account for the cognitive processes in probability judgment. In this article the authors compare 3 major theories of the processes and representations in probability judgment: the representativeness heuristic, implemented as…

  9. Illustrating Basic Probability Calculations Using "Craps"

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    Instructors may use the gambling game of craps to illustrate the use of a number of fundamental probability identities. For the "pass-line" bet we focus on the chance of winning and the expected game length. To compute these, probabilities of unions of disjoint events, probabilities of intersections of independent events, conditional probabilities…

  10. Subjective and objective probabilities in quantum mechanics

    SciTech Connect

    Srednicki, Mark

    2005-05-15

    We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.

  11. Calibrating Subjective Probabilities Using Hierarchical Bayesian Models

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.

    A body of psychological research has examined the correspondence between a judge's subjective probability of an event's outcome and the event's actual outcome. The research generally shows that subjective probabilities are noisy and do not match the "true" probabilities. However, subjective probabilities are still useful for forecasting purposes if they bear some relationship to true probabilities. The purpose of the current research is to exploit relationships between subjective probabilities and outcomes to create improved, model-based probabilities for forecasting. Once the model has been trained in situations where the outcome is known, it can then be used in forecasting situations where the outcome is unknown. These concepts are demonstrated using experimental psychology data, and potential applications are discussed.

  12. The uncertainty in earthquake conditional probabilities

    USGS Publications Warehouse

    Savage, J.C.

    1992-01-01

    The Working Group on California Earthquake Probabilities (WGCEP) questioned the relevance of uncertainty intervals assigned to earthquake conditional probabilities on the basis that the uncertainty in the probability estimate seemed to be greater the smaller the intrinsic breadth of the recurrence-interval distribution. It is shown here that this paradox depends upon a faulty measure of uncertainty in the conditional probability and that with a proper measure of uncertainty no paradox exists. The assertion that the WGCEP probability assessment in 1988 correctly forecast the 1989 Loma Prieta earthquake is also challenged by showing that posterior probability of rupture inferred after the occurrence of the earthquake from the prior WGCEP probability distribution reverts to a nearly informationless distribution. -Author

  13. Integrated statistical modelling of spatial landslide probability

    NASA Astrophysics Data System (ADS)

    Mergili, M.; Chu, H.-J.

    2015-09-01

    Statistical methods are commonly employed to estimate spatial probabilities of landslide release at the catchment or regional scale. Travel distances and impact areas are often computed by means of conceptual mass point models. The present work introduces a fully automated procedure extending and combining both concepts to compute an integrated spatial landslide probability: (i) the landslide inventory is subset into release and deposition zones. (ii) We employ a simple statistical approach to estimate the pixel-based landslide release probability. (iii) We use the cumulative probability density function of the angle of reach of the observed landslide pixels to assign an impact probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial probability that at least one landslide pixel occurs within a zone of defined size. We quantify this relationship by a set of empirical curves. (v) The integrated spatial landslide probability is defined as the maximum of the release probability and the product of the impact probability and the zonal release probability relevant for each pixel. We demonstrate the approach with a 637 km2 study area in southern Taiwan, using an inventory of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the average integrated spatial landslide probability over the entire study area corresponds reasonably well to the fraction of the observed landside area; (ii) the model performs moderately well in predicting the observed spatial landslide distribution; (iii) the size of the release zone (or any other zone of spatial aggregation) influences the integrated spatial landslide probability to a much higher degree than the pixel-based release probability; (iv) removing the largest landslides from the analysis leads to an enhanced model performance.

  14. Brick tunnel randomization and the momentum of the probability mass.

    PubMed

    Kuznetsova, Olga M

    2015-12-30

    The allocation space of an unequal-allocation permuted block randomization can be quite wide. The development of unequal-allocation procedures with a narrower allocation space, however, is complicated by the need to preserve the unconditional allocation ratio at every step (the allocation ratio preserving (ARP) property). When the allocation paths are depicted on the K-dimensional unitary grid, where allocation to the l-th treatment is represented by a step along the l-th axis, l = 1 to K, the ARP property can be expressed in terms of the center of the probability mass after i allocations. Specifically, for an ARP allocation procedure that randomizes subjects to K treatment groups in w1 :⋯:wK ratio, w1 +⋯+wK =1, the coordinates of the center of the mass are (w1 i,…,wK i). In this paper, the momentum with respect to the center of the probability mass (expected imbalance in treatment assignments) is used to compare ARP procedures in how closely they approximate the target allocation ratio. It is shown that the two-arm and three-arm brick tunnel randomizations (BTR) are the ARP allocation procedures with the tightest allocation space among all allocation procedures with the same allocation ratio; the two-arm BTR is the minimum-momentum two-arm ARP allocation procedure. Resident probabilities of two-arm and three-arm BTR are analytically derived from the coordinates of the center of the probability mass; the existence of the respective transition probabilities is proven. Probability of deterministic assignments with BTR is found generally acceptable. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Bell Could Become the Copernicus of Probability

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-07-01

    Our aim is to emphasize the role of mathematical models in physics, especially models of geometry and probability. We briefly compare developments of geometry and probability by pointing to similarities and differences: from Euclid to Lobachevsky and from Kolmogorov to Bell. In probability, Bell could play the same role as Lobachevsky in geometry. In fact, violation of Bell’s inequality can be treated as implying the impossibility to apply the classical probability model of Kolmogorov (1933) to quantum phenomena. Thus the quantum probabilistic model (based on Born’s rule) can be considered as the concrete example of the non-Kolmogorovian model of probability, similarly to the Lobachevskian model — the first example of the non-Euclidean model of geometry. This is the “probability model” interpretation of the violation of Bell’s inequality. We also criticize the standard interpretation—an attempt to add to rigorous mathematical probability models additional elements such as (non)locality and (un)realism. Finally, we compare embeddings of non-Euclidean geometries into the Euclidean space with embeddings of the non-Kolmogorovian probabilities (in particular, quantum probability) into the Kolmogorov probability space. As an example, we consider the CHSH-test.

  16. Probability and Quantum Paradigms: the Interplay

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2007-12-01

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  17. Probability and Quantum Paradigms: the Interplay

    SciTech Connect

    Kracklauer, A. F.

    2007-12-03

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  18. Observational biases for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Sandford, Emily

    2016-09-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 AU of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  19. The origin of life: self-replicating asymmetrical frozen probability.

    PubMed

    Glassman, M L; Hochberg, A

    1998-01-01

    Within each of us, as within each living or extinct creature, is a broad piece from the story of life and creation. Both the evolution of the universe and the emergence of life on Earth can be considered as being the result of critical events, such as phase transitions, that occur with a certain probability and are characterized by a sudden breakage of prior symmetry. These in turn result in self-perpetuating conditions that are responsible for what we know and perceive today.

  20. Entropy analysis of systems exhibiting negative probabilities

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2016-07-01

    This paper addresses the concept of negative probability and its impact upon entropy. An analogy between the probability generating functions, in the scope of quasiprobability distributions, and the Grünwald-Letnikov definition of fractional derivatives, is explored. Two distinct cases producing negative probabilities are formulated and their distinct meaning clarified. Numerical calculations using the Shannon entropy characterize further the characteristics of the two limit cases.

  1. Calculating the CEP (Circular Error Probable)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report compares the probability contained in the Circular Error Probable associated with an Elliptical Error Probable to that of the EEP at a given confidence level. The levels examined are 50 percent and 95 percent. The CEP is found to be both more conservative and less conservative than the associated EEP, depending on the eccentricity of the ellipse. The formulas used are derived in the appendix.

  2. American Higher Education in Transition

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.

    2011-01-01

    American higher education is in transition and if there ever was a "golden age" for faculty, it probably is behind us. The best historical data on the composition of faculty is collected annually by the American Mathematical Society. Between 1967 and 2009, the share of full-time faculty with PhDs remained constant at about 90 percent at doctoral…

  3. Psychophysics of the probability weighting function

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (0<α<1 and w(0)=1,w(1e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  4. Is probability of frequency too narrow?

    SciTech Connect

    Martz, H.F.

    1993-10-01

    Modern methods of statistical data analysis, such as empirical and hierarchical Bayesian methods, should find increasing use in future Probabilistic Risk Assessment (PRA) applications. In addition, there will be a more formalized use of expert judgment in future PRAs. These methods require an extension of the probabilistic framework of PRA, in particular, the popular notion of probability of frequency, to consideration of frequency of frequency, frequency of probability, and probability of probability. The genesis, interpretation, and examples of these three extended notions are discussed.

  5. Transitional Care

    ERIC Educational Resources Information Center

    Naylor, Mary; Keating, Stacen A.

    2008-01-01

    Transitional care encompasses a broad range of services and environments designed to promote the safe and timely passage of patients between levels of health care and across care settings. High-quality transitional care is especially important for older adults with multiple chronic conditions and complex therapeutic regimens, as well as for their…

  6. Newborn transition.

    PubMed

    Graves, Barbara W; Haley, Mary Mumford

    2013-01-01

    The transition from intrauterine to extrauterine life is a complex adaptation. Although, in a sense, the entire time in utero is in preparation for this transition, there are many specific anatomic and physiologic changes that take place in the weeks and days leading up to labor that facilitate a healthy transition. Some, including increasing pulmonary vasculature and blood flow, are part of an ongoing process of maturation. Others, such as a reversal in the lung from secreting fluid to absorbing fluid and the secretion of pulmonary surfactant, are associated with the hormonal milieu that occurs when spontaneous labor is impending. Interventions such as elective cesarean birth or induction of labor may interfere with this preparation for birth. Postnatal interventions such as immediate clamping of the umbilical cord and oropharyngeal suction may also compromise the normal process of newborn transition. This article reviews the physiology of the fetal to newborn transition and explores interventions that may facilitate or hinder the optimal process.

  7. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  8. Probability: A Matter of Life and Death

    ERIC Educational Resources Information Center

    Hassani, Mehdi; Kippen, Rebecca; Mills, Terence

    2016-01-01

    Life tables are mathematical tables that document probabilities of dying and life expectancies at different ages in a society. Thus, the life table contains some essential features of the health of a population. Probability is often regarded as a difficult branch of mathematics. Life tables provide an interesting approach to introducing concepts…

  9. Average Transmission Probability of a Random Stack

    ERIC Educational Resources Information Center

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg

    2010-01-01

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  10. Teaching Probability: A Socio-Constructivist Perspective

    ERIC Educational Resources Information Center

    Sharma, Sashi

    2015-01-01

    There is a considerable and rich literature on students' misconceptions in probability. However, less attention has been paid to the development of students' probabilistic thinking in the classroom. This paper offers a sequence, grounded in socio-constructivist perspective for teaching probability.

  11. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  12. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... computed to no less than three significant digits. Probabilities will be truncated to the number of significant digits used in a particular lottery. (b) Divide the total number of applicants into 1.00 to... than .40, then multiply each such intermediate probability by the ratio of .40 to such sum. Divide...

  13. Correlation as Probability of Common Descent.

    ERIC Educational Resources Information Center

    Falk, Ruma; Well, Arnold D.

    1996-01-01

    One interpretation of the Pearson product-moment correlation ("r"), correlation as the probability of originating from common descent, important to the genetic measurement of inbreeding, is examined. The conditions under which "r" can be interpreted as the probability of "identity by descent" are specified, and the possibility of generalizing this…

  14. Phonotactic Probabilities in Young Children's Speech Production

    ERIC Educational Resources Information Center

    Zamuner, Tania S.; Gerken, Louann; Hammond, Michael

    2004-01-01

    This research explores the role of phonotactic probability in two-year-olds' production of coda consonants. Twenty-nine children were asked to repeat CVC non-words that were used as labels for pictures of imaginary animals. The CVC non-words were controlled for their phonotactic probabilities, neighbourhood densities, word-likelihood ratings, and…

  15. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  16. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  17. Probability Issues in without Replacement Sampling

    ERIC Educational Resources Information Center

    Joarder, A. H.; Al-Sabah, W. S.

    2007-01-01

    Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…

  18. Teenagers' Perceived and Actual Probabilities of Pregnancy.

    ERIC Educational Resources Information Center

    Namerow, Pearila Brickner; And Others

    1987-01-01

    Explored adolescent females' (N=425) actual and perceived probabilities of pregnancy. Subjects estimated their likelihood of becoming pregnant the last time they had intercourse, and indicated the dates of last intercourse and last menstrual period. Found that the distributions of perceived probability of pregnancy were nearly identical for both…

  19. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  20. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  1. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We describe a…

  2. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall...

  3. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  4. Alternative probability theories for cognitive psychology.

    PubMed

    Narens, Louis

    2014-01-01

    Various proposals for generalizing event spaces for probability functions have been put forth in the mathematical, scientific, and philosophic literatures. In cognitive psychology such generalizations are used for explaining puzzling results in decision theory and for modeling the influence of context effects. This commentary discusses proposals for generalizing probability theory to event spaces that are not necessarily boolean algebras. Two prominent examples are quantum probability theory, which is based on the set of closed subspaces of a Hilbert space, and topological probability theory, which is based on the set of open sets of a topology. Both have been applied to a variety of cognitive situations. This commentary focuses on how event space properties can influence probability concepts and impact cognitive modeling.

  5. Quantum probability assignment limited by relativistic causality

    PubMed Central

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  6. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  7. Assessment of the probability of contaminating Mars

    NASA Technical Reports Server (NTRS)

    Judd, B. R.; North, D. W.; Pezier, J. P.

    1974-01-01

    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth.

  8. Quantum probabilities of composite events in quantum measurements with multimode states

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Sornette, D.

    2013-10-01

    The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes.

  9. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect

    Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2009-08-26

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  10. Dissipation-induced transition of a simple harmonic oscillator.

    PubMed

    Shao, Zong-Qian; Li, Yu-Qi; Pan, Xiao-Yin

    2014-12-14

    We investigate the dissipation-induced transition probabilities between any two eigenstates of a simple harmonic oscillator. Using the method developed by Yu and Sun [Phys. Rev. A 49, 592 (1994)], the general analytical expressions for the transition probabilities are obtained. The special cases: transition probabilities from the ground state to the first few excited states are then discussed in detail. Different from the previous studies in the literature where only the effect of damping was considered, it is found that the Brownian motion makes the transitions between states of different parity possible. The limitations of the applicability of our results are also discussed.

  11. Survival probability in patients with liver trauma.

    PubMed

    Buci, Skender; Kukeli, Agim

    2016-08-01

    Purpose - The purpose of this paper is to assess the survival probability among patients with liver trauma injury using the anatomical and psychological scores of conditions, characteristics and treatment modes. Design/methodology/approach - A logistic model is used to estimate 173 patients' survival probability. Data are taken from patient records. Only emergency room patients admitted to University Hospital of Trauma (former Military Hospital) in Tirana are included. Data are recorded anonymously, preserving the patients' privacy. Findings - When correctly predicted, the logistic models show that survival probability varies from 70.5 percent up to 95.4 percent. The degree of trauma injury, trauma with liver and other organs, total days the patient was hospitalized, and treatment method (conservative vs intervention) are statistically important in explaining survival probability. Practical implications - The study gives patients, their relatives and physicians ample and sound information they can use to predict survival chances, the best treatment and resource management. Originality/value - This study, which has not been done previously, explores survival probability, success probability for conservative and non-conservative treatment, and success probability for single vs multiple injuries from liver trauma.

  12. Liquefaction probability curves for surficial geologic deposits

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2011-01-01

    Liquefaction probability curves that predict the probability of surface manifestations of earthquake-induced liquefaction are developed for 14 different types of surficial geologic units. The units consist of alluvial fan, beach ridge, river delta topset and foreset beds, eolian dune, point bar, flood basin, natural river and alluvial fan levees, abandoned river channel, deep-water lake, lagoonal, sandy artificial fill, and valley train deposits. Probability is conditioned on earthquake magnitude and peak ground acceleration. Curves are developed for water table depths of 1.5 and 5.0 m. Probabilities are derived from complementary cumulative frequency distributions of the liquefaction potential index (LPI) that were computed from 927 cone penetration tests. For natural deposits with a water table at 1.5 m and subjected to a M7.5 earthquake with peak ground acceleration (PGA)  =  0.25g, probabilities range from 0.5 for beach ridge, point bar, and deltaic deposits. The curves also were used to assign ranges of liquefaction probabilities to the susceptibility categories proposed previously for different geologic deposits. For the earthquake described here, probabilities for susceptibility categories have ranges of 0–0.08 for low, 0.09–0.30 for moderate, 0.31–0.62 for high, and 0.63–1.00 for very high. Retrospective predictions of liquefaction during historical earthquakes based on the curves compare favorably to observations.

  13. Seismicity alert probabilities at Parkfield, California, revisited

    USGS Publications Warehouse

    Michael, A.J.; Jones, L.M.

    1998-01-01

    For a decade, the US Geological Survey has used the Parkfield Earthquake Prediction Experiment scenario document to estimate the probability that earthquakes observed on the San Andreas fault near Parkfield will turn out to be foreshocks followed by the expected magnitude six mainshock. During this time, we have learned much about the seismogenic process at Parkfield, about the long-term probability of the Parkfield mainshock, and about the estimation of these types of probabilities. The probabilities for potential foreshocks at Parkfield are reexamined and revised in light of these advances. As part of this process, we have confirmed both the rate of foreshocks before strike-slip earthquakes in the San Andreas physiographic province and the uniform distribution of foreshocks with magnitude proposed by earlier studies. Compared to the earlier assessment, these new estimates of the long-term probability of the Parkfield mainshock are lower, our estimate of the rate of background seismicity is higher, and we find that the assumption that foreshocks at Parkfield occur in a unique way is not statistically significant at the 95% confidence level. While the exact numbers vary depending on the assumptions that are made, the new alert probabilities are lower than previously estimated. Considering the various assumptions and the statistical uncertainties in the input parameters, we also compute a plausible range for the probabilities. The range is large, partly due to the extra knowledge that exists for the Parkfield segment, making us question the usefulness of these numbers.

  14. Survival probability in patients with liver trauma.

    PubMed

    Buci, Skender; Kukeli, Agim

    2016-08-01

    Purpose - The purpose of this paper is to assess the survival probability among patients with liver trauma injury using the anatomical and psychological scores of conditions, characteristics and treatment modes. Design/methodology/approach - A logistic model is used to estimate 173 patients' survival probability. Data are taken from patient records. Only emergency room patients admitted to University Hospital of Trauma (former Military Hospital) in Tirana are included. Data are recorded anonymously, preserving the patients' privacy. Findings - When correctly predicted, the logistic models show that survival probability varies from 70.5 percent up to 95.4 percent. The degree of trauma injury, trauma with liver and other organs, total days the patient was hospitalized, and treatment method (conservative vs intervention) are statistically important in explaining survival probability. Practical implications - The study gives patients, their relatives and physicians ample and sound information they can use to predict survival chances, the best treatment and resource management. Originality/value - This study, which has not been done previously, explores survival probability, success probability for conservative and non-conservative treatment, and success probability for single vs multiple injuries from liver trauma. PMID:27477933

  15. The Animism Controversy Revisited: A Probability Analysis

    ERIC Educational Resources Information Center

    Smeets, Paul M.

    1973-01-01

    Considers methodological issues surrounding the Piaget-Huang controversy. A probability model, based on the difference between the expected and observed animistic and deanimistic responses is applied as an improved technique for the assessment of animism. (DP)

  16. Classical and Quantum Spreading of Position Probability

    ERIC Educational Resources Information Center

    Farina, J. E. G.

    1977-01-01

    Demonstrates that the standard deviation of the position probability of a particle moving freely in one dimension is a function of the standard deviation of its velocity distribution and time in classical or quantum mechanics. (SL)

  17. Inclusion probability with dropout: an operational formula.

    PubMed

    Milot, E; Courteau, J; Crispino, F; Mailly, F

    2015-05-01

    In forensic genetics, a mixture of two or more contributors to a DNA profile is often interpreted using the inclusion probabilities theory. In this paper, we present a general formula for estimating the probability of inclusion (PI, also known as the RMNE probability) from a subset of visible alleles when dropouts are possible. This one-locus formula can easily be extended to multiple loci using the cumulative probability of inclusion. We show that an exact formulation requires fixing the number of contributors, hence to slightly modify the classic interpretation of the PI. We discuss the implications of our results for the enduring debate over the use of PI vs likelihood ratio approaches within the context of low template amplifications.

  18. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  19. The cognitive substrate of subjective probability.

    PubMed

    Nilsson, Håkan; Olsson, Henrik; Juslin, Peter

    2005-07-01

    The prominent cognitive theories of probability judgment were primarily developed to explain cognitive biases rather than to account for the cognitive processes in probability judgment. In this article the authors compare 3 major theories of the processes and representations in probability judgment: the representativeness heuristic, implemented as prototype similarity, relative likelihood, or evidential support accumulation (ESAM; D. J. Koehler, C. M. White, & R. Grondin, 2003); cue-based relative frequency; and exemplar memory, implemented by probabilities from exemplars (PROBEX; P. Juslin & M. Persson, 2002). Three experiments with different task structures consistently demonstrate that exemplar memory is the best account of the data whereas the results are inconsistent with extant formulations of the representativeness heuristic and cue-based relative frequency. PMID:16060768

  20. Teaching Elementary Probability Through its History.

    ERIC Educational Resources Information Center

    Kunoff, Sharon; Pines, Sylvia

    1986-01-01

    Historical problems are presented which can readily be solved by students once some elementary probability concepts are developed. The Duke of Tuscany's Problem; the problem of points; and the question of proportions, divination, and Bertrand's Paradox are included. (MNS)

  1. Determining Probabilities by Examining Underlying Structure.

    ERIC Educational Resources Information Center

    Norton, Robert M.

    2001-01-01

    Discusses how dice games pose fairness issues that appeal to students and examines a structure for three games involving two dice in a way that leads directly to the theoretical probabilities for all possible outcomes. (YDS)

  2. On Convergent Probability of a Random Walk

    ERIC Educational Resources Information Center

    Lee, Y.-F.; Ching, W.-K.

    2006-01-01

    This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.

  3. Non-Gaussian Photon Probability Distribution

    NASA Astrophysics Data System (ADS)

    Solomon, Benjamin T.

    2010-01-01

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that

  4. Probability distribution of the vacuum energy density

    SciTech Connect

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  5. Robust satisficing and the probability of survival

    NASA Astrophysics Data System (ADS)

    Ben-Haim, Yakov

    2014-01-01

    Concepts of robustness are sometimes employed when decisions under uncertainty are made without probabilistic information. We present a theorem that establishes necessary and sufficient conditions for non-probabilistic robustness to be equivalent to the probability of satisfying the specified outcome requirements. When this holds, probability is enhanced (or maximised) by enhancing (or maximising) robustness. Two further theorems establish important special cases. These theorems have implications for success or survival under uncertainty. Applications to foraging and finance are discussed.

  6. When probability trees don't work

    NASA Astrophysics Data System (ADS)

    Chan, K. C.; Lenard, C. T.; Mills, T. M.

    2016-08-01

    Tree diagrams arise naturally in courses on probability at high school or university, even at an elementary level. Often they are used to depict outcomes and associated probabilities from a sequence of games. A subtle issue is whether or not the Markov condition holds in the sequence of games. We present two examples that illustrate the importance of this issue. Suggestions as to how these examples may be used in a classroom are offered.

  7. The spline probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Sithiravel, Rajiv; Tharmarasa, Ratnasingham; McDonald, Mike; Pelletier, Michel; Kirubarajan, Thiagalingam

    2012-06-01

    The Probability Hypothesis Density Filter (PHD) is a multitarget tracker for recursively estimating the number of targets and their state vectors from a set of observations. The PHD filter is capable of working well in scenarios with false alarms and missed detections. Two distinct PHD filter implementations are available in the literature: the Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) and the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters. The SMC-PHD filter uses particles to provide target state estimates, which can lead to a high computational load, whereas the GM-PHD filter does not use particles, but restricts to linear Gaussian mixture models. The SMC-PHD filter technique provides only weighted samples at discrete points in the state space instead of a continuous estimate of the probability density function of the system state and thus suffers from the well-known degeneracy problem. This paper proposes a B-Spline based Probability Hypothesis Density (S-PHD) filter, which has the capability to model any arbitrary probability density function. The resulting algorithm can handle linear, non-linear, Gaussian, and non-Gaussian models and the S-PHD filter can also provide continuous estimates of the probability density function of the system state. In addition, by moving the knots dynamically, the S-PHD filter ensures that the splines cover only the region where the probability of the system state is significant, hence the high efficiency of the S-PHD filter is maintained at all times. Also, unlike the SMC-PHD filter, the S-PHD filter is immune to the degeneracy problem due to its continuous nature. The S-PHD filter derivations and simulations are provided in this paper.

  8. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  9. Familiarity and preference for pitch probability profiles.

    PubMed

    Cui, Anja-Xiaoxing; Collett, Meghan J; Troje, Niko F; Cuddy, Lola L

    2015-05-01

    We investigated familiarity and preference judgments of participants toward a novel musical system. We exposed participants to tone sequences generated from a novel pitch probability profile. Afterward, we either asked participants to identify more familiar or we asked participants to identify preferred tone sequences in a two-alternative forced-choice task. The task paired a tone sequence generated from the pitch probability profile they had been exposed to and a tone sequence generated from another pitch probability profile at three levels of distinctiveness. We found that participants identified tone sequences as more familiar if they were generated from the same pitch probability profile which they had been exposed to. However, participants did not prefer these tone sequences. We interpret this relationship between familiarity and preference to be consistent with an inverted U-shaped relationship between knowledge and affect. The fact that participants identified tone sequences as even more familiar if they were generated from the more distinctive (caricatured) version of the pitch probability profile which they had been exposed to suggests that the statistical learning of the pitch probability profile is involved in gaining of musical knowledge. PMID:25838257

  10. ON THE TRANSIT POTENTIAL OF THE PLANET ORBITING IOTA DRACONIS

    SciTech Connect

    Kane, Stephen R.; Reffert, Sabine; Schwab, Christian; Bergmann, Christoph; Henry, Gregory W.; Fischer, Debra; Clubb, Kelsey I.

    2010-09-10

    Most of the known transiting exoplanets are in short-period orbits, largely due to the bias inherent in detecting planets through the transit technique. However, the eccentricity distribution of the known radial velocity planets results in many of those planets having a non-negligible transit probability. One such case is the massive planet orbiting the giant star iota Draconis, a situation where both the orientation of the planet's eccentric orbit and the size of the host star inflate the transit probability to a much higher value than for a typical hot Jupiter. Here we present a revised fit of the radial velocity data with new measurements and a photometric analysis of the stellar variability. We provide a revised transit probability, an improved transit ephemeris, and discuss the prospects for observing a transit of this planet from both ground and space.

  11. Pattern formation, logistics, and maximum path probability

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  12. Probability Forecasting Using Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Duncan, M.; Frisbee, J.; Wysack, J.

    2014-09-01

    Space Situational Awareness (SSA) is defined as the knowledge and characterization of all aspects of space. SSA is now a fundamental and critical component of space operations. Increased dependence on our space assets has in turn lead to a greater need for accurate, near real-time knowledge of all space activities. With the growth of the orbital debris population, satellite operators are performing collision avoidance maneuvers more frequently. Frequent maneuver execution expends fuel and reduces the operational lifetime of the spacecraft. Thus the need for new, more sophisticated collision threat characterization methods must be implemented. The collision probability metric is used operationally to quantify the collision risk. The collision probability is typically calculated days into the future, so that high risk and potential high risk conjunction events are identified early enough to develop an appropriate course of action. As the time horizon to the conjunction event is reduced, the collision probability changes. A significant change in the collision probability will change the satellite mission stakeholder's course of action. So constructing a method for estimating how the collision probability will evolve improves operations by providing satellite operators with a new piece of information, namely an estimate or 'forecast' of how the risk will change as time to the event is reduced. Collision probability forecasting is a predictive process where the future risk of a conjunction event is estimated. The method utilizes a Monte Carlo simulation that produces a likelihood distribution for a given collision threshold. Using known state and state uncertainty information, the simulation generates a set possible trajectories for a given space object pair. Each new trajectory produces a unique event geometry at the time of close approach. Given state uncertainty information for both objects, a collision probability value can be computed for every trail. This yields a

  13. Metric transition

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes NASA's metric transition in terms of seven major program elements. Six are technical areas involving research, technology development, and operations; they are managed by specific Program Offices at NASA Headquarters. The final program element, Institutional Management, covers both NASA-wide functional management under control of NASA Headquarters and metric capability development at the individual NASA Field Installations. This area addresses issues common to all NASA program elements, including: Federal, state, and local coordination; standards; private industry initiatives; public-awareness initiatives; and employee training. The concluding section identifies current barriers and impediments to metric transition; NASA has no specific recommendations for consideration by the Congress.

  14. Tsunami probability in the Caribbean Region

    USGS Publications Warehouse

    Parsons, T.; Geist, E.L.

    2008-01-01

    We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ???500-year empirical record compiled by O'Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0 - 30% regionally. ?? irkhaueser 2008.

  15. Computing Earthquake Probabilities on Global Scales

    NASA Astrophysics Data System (ADS)

    Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.

    2016-03-01

    Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.

  16. The role of probabilities in physics.

    PubMed

    Le Bellac, Michel

    2012-09-01

    Although modern physics was born in the XVIIth century as a fully deterministic theory in the form of Newtonian mechanics, the use of probabilistic arguments turned out later on to be unavoidable. Three main situations can be distinguished. (1) When the number of degrees of freedom is very large, on the order of Avogadro's number, a detailed dynamical description is not possible, and in fact not useful: we do not care about the velocity of a particular molecule in a gas, all we need is the probability distribution of the velocities. This statistical description introduced by Maxwell and Boltzmann allows us to recover equilibrium thermodynamics, gives a microscopic interpretation of entropy and underlies our understanding of irreversibility. (2) Even when the number of degrees of freedom is small (but larger than three) sensitivity to initial conditions of chaotic dynamics makes determinism irrelevant in practice, because we cannot control the initial conditions with infinite accuracy. Although die tossing is in principle predictable, the approach to chaotic dynamics in some limit implies that our ignorance of initial conditions is translated into a probabilistic description: each face comes up with probability 1/6. (3) As is well-known, quantum mechanics is incompatible with determinism. However, quantum probabilities differ in an essential way from the probabilities introduced previously: it has been shown from the work of John Bell that quantum probabilities are intrinsic and cannot be given an ignorance interpretation based on a hypothetical deeper level of description.

  17. Approximation of Failure Probability Using Conditional Sampling

    NASA Technical Reports Server (NTRS)

    Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.

    2008-01-01

    In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.

  18. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios. PMID:12513129

  19. Detection probability of EBPSK-MODEM system

    NASA Astrophysics Data System (ADS)

    Yao, Yu; Wu, Lenan

    2016-07-01

    Since the impacting filter-based receiver is able to transform phase modulation into amplitude peak, a simple threshold decision can detect the Extend-Binary Phase Shift Keying (EBPSK) modulated ranging signal in noise environment. In this paper, an analysis of the EBPSK-MODEM system output gives the probability density function for EBPSK modulated signals plus noise. The equation of detection probability (pd) for fluctuating and non-fluctuating targets has been deduced. Also, a comparison of the pd for the EBPSK-MODEM system and pulse radar receiver is made, and some results are plotted. Moreover, the probability curves of such system with several modulation parameters are analysed. When modulation parameter is not smaller than 6, the detection performance of EBPSK-MODEM system is more excellent than traditional radar system. In addition to theoretical considerations, computer simulations are provided for illustrating the performance.

  20. Independent events in elementary probability theory

    NASA Astrophysics Data System (ADS)

    Csenki, Attila

    2011-07-01

    In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): If the n events E 1, E 2, … , E n are jointly independent then any two events A and B built in finitely many steps from two disjoint subsets of E 1, E 2, … , E n are also independent. The operations 'union', 'intersection' and 'complementation' are permitted only when forming the events A and B. Here we examine this statement from the point of view of elementary probability theory. The approach described here is accessible also to users of probability theory and is believed to be novel.

  1. Local Directed Percolation Probability in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Konno, Norio; Komatsu, Genichi; Kameoka, Koichi

    1998-01-01

    Using the series expansion method and Monte Carlo simulation,we study the directed percolation probability on the square lattice Vn0=\\{ (x,y) \\in {Z}2:x+y=even, 0 ≤ y ≤ n, - y ≤ x ≤ y \\}.We calculate the local percolationprobability Pnl defined as the connection probability between theorigin and a site (0,n). The critical behavior of P∞lis clearly different from the global percolation probability P∞g characterized by a critical exponent βg.An analysis based on the Padé approximants shows βl=2βg.In addition, we find that the series expansion of P2nl can be expressed as a function of Png.

  2. Sampling Quantum Nonlocal Correlations with High Probability

    NASA Astrophysics Data System (ADS)

    González-Guillén, C. E.; Jiménez, C. H.; Palazuelos, C.; Villanueva, I.

    2016-05-01

    It is well known that quantum correlations for bipartite dichotomic measurements are those of the form {γ=(< u_i,v_jrangle)_{i,j=1}^n}, where the vectors u i and v j are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of {α=m/n}, where the previous vectors are sampled according to the Haar measure in the unit sphere of {R^m}. In particular, we prove the existence of an {α_0 > 0} such that if {α≤ α_0}, {γ} is nonlocal with probability tending to 1 as {n→ ∞}, while for {α > 2}, {γ} is local with probability tending to 1 as {n→ ∞}.

  3. Match probabilities in racially admixed populations.

    PubMed

    Lange, K

    1993-02-01

    The calculation of match probabilities is the most contentious issue dividing prosecution and defense experts in the forensic applications of DNA fingerprinting. In particular, defense experts question the applicability of the population genetic laws of Hardy-Weinberg and linkage equilibrium to racially admixed American populations. Linkage equilibrium justifies the product rule for computing match probabilities across loci. The present paper suggests a method of bounding match probabilities that depends on modeling gene descent from ancestral populations to contemporary populations under the assumptions of Hardy-Weinberg and linkage equilibrium only in the ancestral populations. Although these bounds are conservative from the defendant's perspective, they should be small enough in practice to satisfy prosecutors.

  4. Genotypic probabilities for pairs of inbred relatives.

    PubMed

    Liu, Wenlei; Weir, B S

    2005-07-29

    Expressions for the joint genotypic probabilities of two related individuals are used in many population and quantitative genetic analyses. These expressions, resting on a set of 15 probabilities of patterns of identity by descent among the four alleles at a locus carried by the relatives, are generally well known. There has been recent interest in special cases where the two individuals are both related and inbred, although there have been differences among published results. Here, we return to the original 15-probability treatment and show appropriate reductions for relatives when they are drawn from a population that itself is inbred or when the relatives have parents who are related. These results have application in affected-relative tests for linkage, and in methods for interpreting forensic genetic profiles.

  5. Steering in spin tomographic probability representation

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2016-09-01

    The steering property known for two-qubit state in terms of specific inequalities for the correlation function is translated for the state of qudit with the spin j = 3 / 2. Since most steering detection inequalities are based on the correlation functions we introduce analogs of such functions for the single qudit systems. The tomographic probability representation for the qudit states is applied. The connection between the correlation function in the two-qubit system and the single qudit is presented in an integral form with an intertwining kernel calculated explicitly in tomographic probability terms.

  6. Conditional Probabilities and Collapse in Quantum Measurements

    NASA Astrophysics Data System (ADS)

    Laura, Roberto; Vanni, Leonardo

    2008-09-01

    We show that including both the system and the apparatus in the quantum description of the measurement process, and using the concept of conditional probabilities, it is possible to deduce the statistical operator of the system after a measurement with a given result, which gives the probability distribution for all possible consecutive measurements on the system. This statistical operator, representing the state of the system after the first measurement, is in general not the same that would be obtained using the postulate of collapse.

  7. Survival probability for the stadium billiard

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Georgiou, Orestis

    2009-12-01

    We consider the open stadium billiard, consisting of two semicircles joined by parallel straight sides with one hole situated somewhere on one of the sides. Due to the hyperbolic nature of the stadium billiard, the initial decay of trajectories, due to loss through the hole, appears exponential. However, some trajectories (bouncing ball orbits) persist and survive for long times and therefore form the main contribution to the survival probability function at long times. Using both numerical and analytical methods, we concur with previous studies that the long-time survival probability for a reasonably small hole drops like Constant×(; here we obtain an explicit expression for the Constant.

  8. Does Probability Interference Exist In Social Science?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei Yu.; Haven, Emmanuel

    2007-02-01

    In this paper we discuss the rationale why sub(super)-additive probabilities in a psychological setting could be explained via the use of quantum probability interference. We propose to measure the complementarity of two variables: i) time of processing (by experiment participants) of (non-moving) images and ii) the ability (by experiment participants) of recognizing deformations of (non-moving) pictures. We argue in the paper why we can not find this complementarity using the Heisenberg Uncertainty Principle. The paper provides for the details on the experimental set up to test the complementarity.

  9. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.

  10. Nonstationary envelope process and first excursion probability.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1972-01-01

    The definition of stationary random envelope proposed by Cramer and Leadbetter, is extended to the envelope of nonstationary random process possessing evolutionary power spectral densities. The density function, the joint density function, the moment function, and the crossing rate of a level of the nonstationary envelope process are derived. Based on the envelope statistics, approximate solutions to the first excursion probability of nonstationary random processes are obtained. In particular, applications of the first excursion probability to the earthquake engineering problems are demonstrated in detail.

  11. Probabilities for separating sets of order statistics.

    PubMed

    Glueck, D H; Karimpour-Fard, A; Mandel, J; Muller, K E

    2010-04-01

    Consider a set of order statistics that arise from sorting samples from two different populations, each with their own, possibly different distribution functions. The probability that these order statistics fall in disjoint, ordered intervals and that of the smallest statistics, a certain number come from the first populations is given in terms of the two distribution functions. The result is applied to computing the joint probability of the number of rejections and the number of false rejections for the Benjamini-Hochberg false discovery rate procedure.

  12. Non-Gaussian Photon Probability Distribution

    SciTech Connect

    Solomon, Benjamin T.

    2010-01-28

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub

  13. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    SciTech Connect

    Vourdas, A.

    2014-08-15

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H{sub 1},H{sub 2}), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H{sub 1}),P(H{sub 2}), to the subspaces H{sub 1}, H{sub 2}. As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities.

  14. Code System to Calculate Probability of Reactor Vessel Failure.

    2000-04-24

    Version: 00 VISA2 (Vessel Integrity Simulation Analysis) was developed to estimate the failure probability of nuclear reactor pressure vessels under pressurized thermal shock conditions. The deterministic portion of the code performs heat transfer, stress, and fracture mechanics calculations for a vessel subjected to a user-specified temperature and pressure transient. The probabilistic analysis performs a Monte Carlo simulation to estimate the probability of vessel failure. Parameters such as initial crack size and position, copper and nickelmore » content, fluence, and the fracture toughness values for crack initiation and arrest are treated as random variables. Linear elastic fracture mechanics methods are used to model crack initiation and growth. This includes cladding effects in the heat transfer, stress, and fracture mechanics calculations. The simulation procedure treats an entire vessel and recognizes that more than one flaw can exist in a given vessel. The flaw model allows random positioning of the flaw within the vessel wall thickness, and the user can specify either flaw length or length-to-depth aspect ratio for crack initiation and arrest predictions. The flaw size distribution can be adjusted on the basis of different inservice inspection techniques and inspection conditions. The toughness simulation model includes a menu of alternative equations for predicting the shift in the reference temperature of the nil-ductility transition. VISA2 is an upgraded release from the original VISA program developed by U.S. Nuclear Regulatory Commission staff. Improvements include a treatment of cladding effects; a more general simulation of flaw size, shape and location; a simulation of inservice inspection; a revised simulation of the reference temperature of the nil-ductility transition; and treatment of vessels with multiple welds and initial flaws.« less

  15. Technique for Evaluating Multiple Probability Occurrences /TEMPO/

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1970-01-01

    Technique is described for adjustment of engineering response information by broadening the application of statistical subjective stimuli theory. The study is specifically concerned with a mathematical evaluation of the expected probability of relative occurrence which can be identified by comparison rating techniques.

  16. The Smart Potential behind Probability Matching

    ERIC Educational Resources Information Center

    Gaissmaier, Wolfgang; Schooler, Lael J.

    2008-01-01

    Probability matching is a classic choice anomaly that has been studied extensively. While many approaches assume that it is a cognitive shortcut driven by cognitive limitations, recent literature suggests that it is not a strategy per se, but rather another outcome of people's well-documented misperception of randomness. People search for patterns…

  17. Assessing Schematic Knowledge of Introductory Probability Theory

    ERIC Educational Resources Information Center

    Birney, Damian P.; Fogarty, Gerard J.; Plank, Ashley

    2005-01-01

    The ability to identify schematic knowledge is an important goal for both assessment and instruction. In the current paper, schematic knowledge of statistical probability theory is explored from the declarative-procedural framework using multiple methods of assessment. A sample of 90 undergraduate introductory statistics students was required to…

  18. Automatic Item Generation of Probability Word Problems

    ERIC Educational Resources Information Center

    Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina

    2009-01-01

    Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…

  19. Probability & Perception: The Representativeness Heuristic in Action

    ERIC Educational Resources Information Center

    Lu, Yun; Vasko, Francis J.; Drummond, Trevor J.; Vasko, Lisa E.

    2014-01-01

    If the prospective students of probability lack a background in mathematical proofs, hands-on classroom activities may work well to help them to learn to analyze problems correctly. For example, students may physically roll a die twice to count and compare the frequency of the sequences. Tools such as graphing calculators or Microsoft Excel®…

  20. Probability & Statistics: Modular Learning Exercises. Teacher Edition

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2012

    2012-01-01

    The purpose of these modules is to provide an introduction to the world of probability and statistics to accelerated mathematics students at the high school level. The modules also introduce students to real world math concepts and problems that property and casualty actuaries come across in their work. They are designed to be used by teachers and…

  1. Probable Bright Supernovae discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-01-01

    Three bright transients, which are probable supernovae, have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  2. Probable Bright Supernova discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-09-01

    A bright transient, which is a probable supernova, has been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  3. Probability distribution functions in turbulent convection

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Sirovich, L.

    1991-01-01

    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.

  4. Confusion between Odds and Probability, a Pandemic?

    ERIC Educational Resources Information Center

    Fulton, Lawrence V.; Mendez, Francis A.; Bastian, Nathaniel D.; Musal, R. Muzaffer

    2012-01-01

    This manuscript discusses the common confusion between the terms probability and odds. To emphasize the importance and responsibility of being meticulous in the dissemination of information and knowledge, this manuscript reveals five cases of sources of inaccurate statistical language imbedded in the dissemination of information to the general…

  5. Posterior Probabilities for a Consensus Ordering.

    ERIC Educational Resources Information Center

    Fligner, Michael A.; Verducci, Joseph S.

    1990-01-01

    The concept of consensus ordering is defined, and formulas for exact and approximate posterior probabilities for consensus ordering are developed under the assumption of a generalized Mallows' model with a diffuse conjugate prior. These methods are applied to a data set concerning 98 college students. (SLD)

  6. Rethinking the learning of belief network probabilities

    SciTech Connect

    Musick, R.

    1996-03-01

    Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rote learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neural networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.

  7. Probability & Statistics: Modular Learning Exercises. Student Edition

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2012

    2012-01-01

    The purpose of these modules is to provide an introduction to the world of probability and statistics to accelerated mathematics students at the high school level. The materials are centered on the fictional town of Happy Shores, a coastal community which is at risk for hurricanes. Actuaries at an insurance company figure out the risks and…

  8. Quantum temporal probabilities in tunneling systems

    NASA Astrophysics Data System (ADS)

    Anastopoulos, Charis; Savvidou, Ntina

    2013-09-01

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines 'classical' time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems.

  9. Teaching Mathematics with Technology: Probability Simulations.

    ERIC Educational Resources Information Center

    Bright, George W.

    1989-01-01

    Discussed are the use of probability simulations in a mathematics classroom. Computer simulations using regular dice and special dice are described. Sample programs used to generate 100 rolls of a pair of dice in BASIC and Logo languages are provided. (YP)

  10. Conceptual Variation and Coordination in Probability Reasoning

    ERIC Educational Resources Information Center

    Nilsson, Per

    2009-01-01

    This study investigates students' conceptual variation and coordination among theoretical and experimental interpretations of probability. In the analysis we follow how Swedish students (12-13 years old) interact with a dice game, specifically designed to offer the students opportunities to elaborate on the logic of sample space,…

  11. Probability in Action: The Red Traffic Light

    ERIC Educational Resources Information Center

    Shanks, John A.

    2007-01-01

    Emphasis on problem solving in mathematics has gained considerable attention in recent years. While statistics teaching has always been problem driven, the same cannot be said for the teaching of probability where discrete examples involving coins and playing cards are often the norm. This article describes an application of simple probability…

  12. Independent Events in Elementary Probability Theory

    ERIC Educational Resources Information Center

    Csenki, Attila

    2011-01-01

    In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): If the n events E[subscript 1],…

  13. Large Deviations: Advanced Probability for Undergrads

    ERIC Educational Resources Information Center

    Rolls, David A.

    2007-01-01

    In the branch of probability called "large deviations," rates of convergence (e.g. of the sample mean) are considered. The theory makes use of the moment generating function. So, particularly for sums of independent and identically distributed random variables, the theory can be made accessible to senior undergraduates after a first course in…

  14. [Humanitarian transition].

    PubMed

    Mattei, Jean-François; Troit, Virginie

    2016-02-01

    In two centuries, modern humanitarian action has experienced several fractures often linked to crises. Although its professionalism and intervention force remain indisputable, it faces, since the 2000s, a new context that limits its ability to act and confronts it with new dilemmas, even though it must deal with needs for aid of unprecedented scale. These difficulties reveal a humanitarian transition period that was not anticipated. This transition period reflects the change from a dominant paradigm of North-South solidarity of Western origin to a much more complex model. This article provides a summary of the current mutations that are dominated by the States' assertion of sovereignty. Among the possible solutions, it argues for an ethical approach and a better integration of the research carried out in the Global South, prerequisites for building a true partnership and placing the victims at the heart of the operations which involve them. PMID:26936180

  15. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  16. Eliminating Transitions

    ERIC Educational Resources Information Center

    Gallick, Barb; Lee, Lisa

    2010-01-01

    Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…

  17. Quantum temporal probabilities in tunneling systems

    SciTech Connect

    Anastopoulos, Charis Savvidou, Ntina

    2013-09-15

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.

  18. The albedo effect on neutron transmission probability.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    The aim of this study is to evaluate the albedo effect on the neutron transmission probability through slab shields. For this reason we have considered an infinite homogeneous slab having a fixed thickness equal to 20 lambda (lambda is the mean free path of the neutron in the slab). This slab is characterized by the factor Ps (scattering probability) and contains a vacuum channel which is formed by two horizontal parts and an inclined one (David, M. C. (1962) Duc and Voids in shields. In Reactor Handbook, Vol. III, Part B, p. 166). The thickness of the vacuum channel is taken equal to 2 lambda. An infinite plane source of neutrons is placed on the first of the slab (left face) and detectors, having windows equal to 2 lambda, are placed on the second face of the slab (right face). Neutron histories are sampled by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) using exponential biasing in order to increase the Monte Carlo calculation efficiency (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Abouker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco) and we have applied the statistical weight method which supposes that the neutron is born at the source with a unit statistical weight and after each collision this weight is corrected. For different values of the scattering probability and for different slopes of the inclined part of the channel we have calculated the neutron transmission probability for different positions of the detectors versus the albedo at the vacuum channel-medium interface. Some analytical representations are also presented for these transmission probabilities. PMID:9463883

  19. An Alternative Version of Conditional Probabilities and Bayes' Rule: An Application of Probability Logic

    ERIC Educational Resources Information Center

    Satake, Eiki; Amato, Philip P.

    2008-01-01

    This paper presents an alternative version of formulas of conditional probabilities and Bayes' rule that demonstrate how the truth table of elementary mathematical logic applies to the derivations of the conditional probabilities of various complex, compound statements. This new approach is used to calculate the prior and posterior probabilities…

  20. Killeen's Probability of Replication and Predictive Probabilities: How to Compute, Use, and Interpret Them

    ERIC Educational Resources Information Center

    Lecoutre, Bruno; Lecoutre, Marie-Paule; Poitevineau, Jacques

    2010-01-01

    P. R. Killeen's (2005a) probability of replication ("p[subscript rep]") of an experimental result is the fiducial Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. "p[subscript rep]" is now routinely reported in "Psychological Science" and has also begun to appear in other journals. However, there is…

  1. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    ERIC Educational Resources Information Center

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  2. You Say "Probable" and I Say "Likely": Improving Interpersonal Communication With Verbal Probability Phrases

    ERIC Educational Resources Information Center

    Karelitz, Tzur M.; Budescu, David V.

    2004-01-01

    When forecasters and decision makers describe uncertain events using verbal probability terms, there is a risk of miscommunication because people use different probability phrases and interpret them in different ways. In an effort to facilitate the communication process, the authors investigated various ways of converting the forecasters' verbal…

  3. Using High-Probability Foods to Increase the Acceptance of Low-Probability Foods

    ERIC Educational Resources Information Center

    Meier, Aimee E.; Fryling, Mitch J.; Wallace, Michele D.

    2012-01-01

    Studies have evaluated a range of interventions to treat food selectivity in children with autism and related developmental disabilities. The high-probability instructional sequence is one intervention with variable results in this area. We evaluated the effectiveness of a high-probability sequence using 3 presentations of a preferred food on…

  4. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    SciTech Connect

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-08-26

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  5. Approaches to Evaluating Probability of Collision Uncertainty

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.

  6. Conflict Probability Estimation for Free Flight

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    1996-01-01

    The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.

  7. A quantum probability perspective on borderline vagueness.

    PubMed

    Blutner, Reinhard; Pothos, Emmanuel M; Bruza, Peter

    2013-10-01

    The term "vagueness" describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substantial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon. PMID:24039093

  8. Approximate probability distributions of the master equation

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Grima, Ramon

    2015-07-01

    Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.

  9. Earthquake probabilities: theoretical assessments and reality

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2013-12-01

    It is of common knowledge that earthquakes are complex phenomena which classification and sizing remain serious problems of the contemporary seismology. In general, their frequency-magnitude distribution exhibit power law scaling. This scaling differs significantly when different time and/or space domains are considered. At the scale of a particular earthquake rupture zone the frequency of similar size events is usually estimated to be about once in several hundred years. Evidently, contemporary seismology does not possess enough reported instrumental data for any reliable quantification of an earthquake probability at a given place of expected event. Regretfully, most of the state-of-the-art theoretical approaches to assess probability of seismic events are based on trivial (e.g. Poisson, periodic, etc) or, conversely, delicately-designed (e.g. STEP, ETAS, etc) models of earthquake sequences. Some of these models are evidently erroneous, some can be rejected by the existing statistics, and some are hardly testable in our life-time. Nevertheless such probabilistic counts including seismic hazard assessment and earthquake forecasting when used on practice eventually mislead to scientifically groundless advices communicated to decision makers and inappropriate decisions. As a result, the population of seismic regions continues facing unexpected risk and losses. The international project Global Earthquake Model (GEM) is on the wrong track, if it continues to base seismic risk estimates on the standard, mainly probabilistic, methodology to assess seismic hazard. It is generally accepted that earthquakes are infrequent, low-probability events. However, they keep occurring at earthquake-prone areas with 100% certainty. Given the expectation of seismic event once per hundred years, the daily probability of occurrence on a certain date may range from 0 to 100% depending on a choice of probability space (which is yet unknown and, therefore, made by a subjective lucky chance

  10. Cheating Probabilities on Multiple Choice Tests

    NASA Astrophysics Data System (ADS)

    Rizzuto, Gaspard T.; Walters, Fred

    1997-10-01

    This paper is strictly based on mathematical statistics and as such does not depend on prior performance and assumes the probability of each choice to be identical. In a real life situation, the probability of two students having identical responses becomes larger the better the students are. However the mathematical model is developed for all responses, both correct and incorrect, and provides a baseline for evaluation. David Harpp and coworkers (2, 3) at McGill University have evaluated ratios of exact errors in common (EEIC) to errors in common (EIC) and differences (D). In pairings where the ratio EEIC/EIC was greater than 0.75, the pair had unusually high odds against their answer pattern being random. Detection of copying of the EEIC/D ratios at values >1.0 indicate that pairs of these students were seated adjacent to one another and copied from one another. The original papers should be examined for details.

  11. A quantum probability perspective on borderline vagueness.

    PubMed

    Blutner, Reinhard; Pothos, Emmanuel M; Bruza, Peter

    2013-10-01

    The term "vagueness" describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substantial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon.

  12. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  13. Nuclear data uncertainties: I, Basic concepts of probability

    SciTech Connect

    Smith, D.L.

    1988-12-01

    Some basic concepts of probability theory are presented from a nuclear-data perspective, in order to provide a foundation for thorough understanding of the role of uncertainties in nuclear data research. Topics included in this report are: events, event spaces, calculus of events, randomness, random variables, random-variable distributions, intuitive and axiomatic probability, calculus of probability, conditional probability and independence, probability distributions, binomial and multinomial probability, Poisson and interval probability, normal probability, the relationships existing between these probability laws, and Bayes' theorem. This treatment emphasizes the practical application of basic mathematical concepts to nuclear data research, and it includes numerous simple examples. 34 refs.

  14. Non-signalling Theories and Generalized Probability

    NASA Astrophysics Data System (ADS)

    Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek

    2016-09-01

    We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.

  15. Neural coding of uncertainty and probability.

    PubMed

    Ma, Wei Ji; Jazayeri, Mehrdad

    2014-01-01

    Organisms must act in the face of sensory, motor, and reward uncertainty stemming from a pandemonium of stochasticity and missing information. In many tasks, organisms can make better decisions if they have at their disposal a representation of the uncertainty associated with task-relevant variables. We formalize this problem using Bayesian decision theory and review recent behavioral and neural evidence that the brain may use knowledge of uncertainty, confidence, and probability.

  16. Computational methods for probability of instability calculations

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Burnside, O. H.

    1990-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of a dynamic system than can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the roots of the characteristics equation or Routh-Hurwitz test functions are investigated. Computational methods based on system reliability analysis methods and importance sampling concepts are proposed to perform efficient probabilistic analysis. Numerical examples are provided to demonstrate the methods.

  17. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  18. Neural coding of uncertainty and probability.

    PubMed

    Ma, Wei Ji; Jazayeri, Mehrdad

    2014-01-01

    Organisms must act in the face of sensory, motor, and reward uncertainty stemming from a pandemonium of stochasticity and missing information. In many tasks, organisms can make better decisions if they have at their disposal a representation of the uncertainty associated with task-relevant variables. We formalize this problem using Bayesian decision theory and review recent behavioral and neural evidence that the brain may use knowledge of uncertainty, confidence, and probability. PMID:25032495

  19. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  20. Understanding Deutsch's probability in a deterministic multiverse

    NASA Astrophysics Data System (ADS)

    Greaves, H.

    2004-09-01

    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from 'probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular rationality principle. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future Everettian measurement outcome is subjective uncertainty. I argue that subjective uncertainty is not available to the Everettian, but I offer an alternative: we can justify the Everettian application of decision theory on the basis that an Everettian should care about all her future branches. The probabilities appearing in the decision-theoretic representation theorem can then be interpreted as the degrees to which the rational agent cares about each future branch. This reinterpretation, however, reduces the intuitive plausibility of one of the Deutsch-Wallace axioms (measurement neutrality).

  1. The Probability Distribution of Daily Streamflow

    NASA Astrophysics Data System (ADS)

    Blum, A.; Vogel, R. M.

    2015-12-01

    Flow duration curves (FDCs) are a graphical illustration of the cumulative distribution of streamflow. Daily streamflows often range over many orders of magnitude, making it extremely challenging to find a probability distribution function (pdf) which can mimic the steady state or period of record FDC (POR-FDC). Median annual FDCs (MA-FDCs) describe the pdf of daily streamflow in a typical year. For POR- and MA-FDCs, Lmoment diagrams, visual assessments of FDCs and Quantile-Quantile probability plot correlation coefficients are used to evaluate goodness of fit (GOF) of candidate probability distributions. FDCs reveal that both four-parameter kappa (KAP) and three-parameter generalized Pareto (GP3) models result in very high GOF for the MA-FDC and a relatively lower GOF for POR-FDCs at over 500 rivers across the coterminous U.S. Physical basin characteristics, such as baseflow index as well as hydroclimatic indices such as the aridity index and the runoff ratio are found to be correlated with one of the shape parameters (kappa) of the KAP and GP3 pdfs. Our work also reveals several important areas for future research including improved parameter estimators for the KAP pdf, as well as increasing our understanding of the conditions which give rise to improved GOF of analytical pdfs to large samples of daily streamflows.

  2. Detection probabilities in fuel cycle oriented safeguards

    SciTech Connect

    Canty, J.J.; Stein, G.; Avenhaus, R. )

    1987-01-01

    An intensified discussion of evaluation criteria for International Atomic Energy Agency (IAEA) safeguards effectiveness is currently under way. Considerations basic to the establishment of such criteria are derived from the model agreement INFCIRC/153 and include threshold amounts, strategic significance, conversion times, required assurances, cost-effectiveness, and nonintrusiveness. In addition to these aspects, the extent to which fuel cycle characteristics are taken into account in safeguards implementations (Article 81c of INFCIRC/153) will be reflected in the criteria. The effectiveness of safeguards implemented under given manpower constraints is evaluated. As the significant quantity and timeliness criteria have established themselves within the safeguards community, these are taken as fixed. Detection probabilities, on the other hand, still provide a certain degree of freedom in interpretation. The problem of randomization of inspection activities across a fuel cycle, or portions thereof, is formalized as a two-person zero-sum game, the payoff function of which is the detection probability achieved by the inspectorate. It is argued, from the point of view of risk of detection, that fuel cycle-independent, minimally accepted threshold criteria for such detection probabilities cannot and should not be applied.

  3. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  4. Bacteria survival probability in bactericidal filter paper.

    PubMed

    Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2014-05-01

    Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive.

  5. Instability of Wave Trains and Wave Probabilities

    NASA Astrophysics Data System (ADS)

    Babanin, Alexander

    2013-04-01

    Centre for Ocean Engineering, Science and Technology, Swinburne University of Technology, Melbourne, Australia, ababanin@swin.edu.au Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of distribution, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave heights and crests, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Typical approach is the treating all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be obtained. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is available. We would expect the probability distributions of wave height to depend on a) whether the waves are at the spectral peak or at the tail; b) on wave spectrum and mean steepness in the wave field; c) on the directional distribution of the peak waves; d) on whether the waves are in deep water, in intermediate depth or in shallow water; e) on wave breaking; f) on the wind, particularly if it is very strong, and on the currents if they have suitable horizontal gradients. Probability distributions in the different circumstances according to these groups of conditions should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extremes. The groups have to be separated and their probability

  6. Probability sampling in legal cases: Kansas cellphone users

    NASA Astrophysics Data System (ADS)

    Kadane, Joseph B.

    2012-10-01

    Probability sampling is a standard statistical technique. This article introduces the basic ideas of probability sampling, and shows in detail how probability sampling was used in a particular legal case.

  7. CPROB: A COMPUTATIONAL TOOL FOR CONDUCTING CONDITIONAL PROBABILITY ANALYSIS

    EPA Science Inventory

    Conditional probability analysis measures the probability of observing one event given that another event has occurred. In an environmental context, conditional probability analysis helps assess the association between an environmental contaminant (i.e. the stressor) and the ec...

  8. [Subjective probability of reward receipt and the magnitude effect in probability discounting].

    PubMed

    Isomura, Mieko; Aoyama, Kenjiro

    2008-06-01

    Previous research suggested that larger probabilistic rewards were discounted more steeply than smaller probabilistic rewards (the magnitude effect). This research tests the hypothesis that the magnitude effect reflects the extent to which individuals distrust the stated probability of receiving different amounts of rewards. The participants were 105 college students. Probability discounting of two different amounts of rewards (5 000 yen and 100 000 yen) and the subjective probability of reward receipt of the different amounts (5 000 yen, 100 000 yen and 1 000 000 yen) were measured. The probabilistic 100 000 yen was discounted more steeply than the probabilistic 5 000 yen. The subjective probability of reward receipt was higher in the 5 000 yen than in the 100 000 yen condition. The proportion of subjective probability of receiving 5 000 yen to that of receiving 100 000 yen was significantly correlated with the proportion of degree of probability discounting for 5 000 yen to that for 100 000 yen. These results were consistent with the hypothesis stated above.

  9. On the universality of knot probability ratios

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Rechnitzer, A.

    2011-04-01

    Let pn denote the number of self-avoiding polygons of length n on a regular three-dimensional lattice, and let pn(K) be the number which have knot type K. The probability that a random polygon of length n has knot type K is pn(K)/pn and is known to decay exponentially with length (Sumners and Whittington 1988 J. Phys. A: Math. Gen. 21 1689-94, Pippenger 1989 Discrete Appl. Math. 25 273-8). Little is known rigorously about the asymptotics of pn(K), but there is substantial numerical evidence (Orlandini et al 1988 J. Phys. A: Math. Gen. 31 5953-67, Marcone et al 2007 Phys. Rev. E 75 41105, Rawdon et al 2008 Macromolecules 41 4444-51, Janse van Rensburg and Rechnitzer 2008 J. Phys. A: Math. Theor. 41 105002) that pn(K) grows as p_n(K) \\simeq C_K \\mu _\\emptyset ^n n^{\\alpha -3+N_K}, \\qquad as\\quad n \\rightarrow \\infty, where NK is the number of prime components of the knot type K. It is believed that the entropic exponent, α, is universal, while the exponential growth rate, μ∅, is independent of the knot type but varies with the lattice. The amplitude, CK, depends on both the lattice and the knot type. The above asymptotic form implies that the relative probability of a random polygon of length n having prime knot type K over prime knot type L is \\frac{p_n(K)/p_n}{p_n(L)/p_n} = \\frac{p_n(K)}{p_n(L)} \\simeq \\left[ \\frac{C_K}{C_L} \\right].\\\\[-8pt] In the thermodynamic limit this probability ratio becomes an amplitude ratio; it should be universal and depend only on the knot types K and L. In this communication we examine the universality of these probability ratios for polygons in the simple cubic, face-centred cubic and body-centred cubic lattices. Our results support the hypothesis that these are universal quantities. For example, we estimate that a long random polygon is approximately 28 times more likely to be a trefoil than be a figure-eight, independent of the underlying lattice, giving an estimate of the intrinsic entropy associated with knot

  10. Snell Envelope with Small Probability Criteria

    SciTech Connect

    Del Moral, Pierre Hu, Peng; Oudjane, Nadia

    2012-12-15

    We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

  11. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  12. Symmetry, probability, and recognition in face space.

    PubMed

    Sirovich, Lawrence; Meytlis, Marsha

    2009-04-28

    The essential midline symmetry of human faces is shown to play a key role in facial coding and recognition. This also has deep and important connections with recent explorations of the organization of primate cortex, as well as human psychophysical experiments. Evidence is presented that the dimension of face recognition space for human faces is dramatically lower than previous estimates. One result of the present development is the construction of a probability distribution in face space that produces an interesting and realistic range of (synthetic) faces. Another is a recognition algorithm that by reasonable criteria is nearly 100% accurate.

  13. The Prediction of Spatial Aftershock Probabilities (PRESAP)

    NASA Astrophysics Data System (ADS)

    McCloskey, J.

    2003-12-01

    It is now widely accepted that the goal of deterministic earthquake prediction is unattainable in the short term and may even be forbidden by nonlinearity in the generating dynamics. This nonlinearity does not, however, preclude the estimation of earthquake probability and, in particular, how this probability might change in space and time; earthquake hazard estimation might be possible in the absence of earthquake prediction. Recently, there has been a major development in the understanding of stress triggering of earthquakes which allows accurate calculation of the spatial variation of aftershock probability following any large earthquake. Over the past few years this Coulomb stress technique (CST) has been the subject of intensive study in the geophysics literature and has been extremely successful in explaining the spatial distribution of aftershocks following several major earthquakes. The power of current micro-computers, the great number of local, telemeter seismic networks, the rapid acquisition of data from satellites coupled with the speed of modern telecommunications and data transfer all mean that it may be possible that these new techniques could be applied in a forward sense. In other words, it is theoretically possible today to make predictions of the likely spatial distribution of aftershocks in near-real-time following a large earthquake. Approximate versions of such predictions could be available within, say, 0.1 days after the mainshock and might be continually refined and updated over the next 100 days. The European Commission has recently provided funding for a project to assess the extent to which it is currently possible to move CST predictions into a practically useful time frame so that low-confidence estimates of aftershock probability might be made within a few hours of an event and improved in near-real-time, as data of better quality become available over the following day to tens of days. Specifically, the project aim is to assess the

  14. Mapping probability of shipping sound exposure level.

    PubMed

    Gervaise, Cédric; Aulanier, Florian; Simard, Yvan; Roy, Nathalie

    2015-06-01

    Mapping vessel noise is emerging as one method of identifying areas where sound exposure due to shipping noise could have negative impacts on aquatic ecosystems. The probability distribution function (pdf) of sound exposure levels (SEL) is an important metric for identifying areas of concern. In this paper a probabilistic shipping SEL modeling method is described to obtain the pdf of SEL using the sonar equation and statistical relations linking the pdfs of ship traffic density, source levels, and transmission losses to their products and sums.

  15. Probability of detection calculations using MATLAB

    NASA Astrophysics Data System (ADS)

    Wei, Yung-Chung

    1993-06-01

    A set of highly efficient computer programs based on the Marcum and Swerling's analysis on radar detection has been written in MATLAB to evaluate the probability of detection. The programs are based on accurate methods unlike the detectability method which is based on approximation. This thesis also outlines radar detection theory and target models as a background. The goal of this effort is to provide a set of efficient computer programs for student usage and teacher's aid. Programs are designed to be user friendly and run on personal computers.

  16. Disintegration rate and gamma ray emission probability per decay measurement of 123I.

    PubMed

    Koskinas, M F; Gishitomi, K C; Brito, A B; Yamazaki, I M; Dias, M S

    2012-09-01

    A series of (123)I measurements have been carried out in a 4π(e(A),X)-γ coincidence system. The experimental extrapolation curve was determined and compared to Monte Carlo simulation, performed by code ESQUEMA. From the slope of the experimental curve, the total conversion coefficient for the 159 keV total gamma transition, α(159), was determined. All radioactive sources were also measured in an HPGe spectrometry system, in order to determine the gamma-ray emission probability per decay for several gamma transitions. All uncertainties involved and their correlations were analyzed applying the covariance matrix methodology and the measured parameters were compared with those from the literature.

  17. Radioactive transitions in the helium isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1971-01-01

    The principles of the atomic spectrum theory are used to quantitatively analyze radiation transitions in two-electron helium-like atomic systems. Quantum theoretical methods, describing absorption and emission of a single photon in a radiative transition between two stationary states of an atomic system, reproduced the energy level diagram for the low lying states of helium. Reliable values are obtained from accurate variationally determined two-electron nonrelativistic wave functions for radiative transition probabilities of 2 3p states in the helium isoelectric sequence, and for the 2 1s and 2 3s1 states of the helium sequence.

  18. Uncertainty analysis for Probable Maximum Precipitation estimates

    NASA Astrophysics Data System (ADS)

    Micovic, Zoran; Schaefer, Melvin G.; Taylor, George H.

    2015-02-01

    An analysis of uncertainty associated with Probable Maximum Precipitation (PMP) estimates is presented. The focus of the study is firmly on PMP estimates derived through meteorological analyses and not on statistically derived PMPs. Theoretical PMP cannot be computed directly and operational PMP estimates are developed through a stepwise procedure using a significant degree of subjective professional judgment. This paper presents a methodology for portraying the uncertain nature of PMP estimation by analyzing individual steps within the PMP derivation procedure whereby for each parameter requiring judgment, a set of possible values is specified and accompanied by expected probabilities. The resulting range of possible PMP values can be compared with the previously derived operational single-value PMP, providing measures of the conservatism and variability of the original estimate. To our knowledge, this is the first uncertainty analysis conducted for a PMP derived through meteorological analyses. The methodology was tested on the La Joie Dam watershed in British Columbia. The results indicate that the commonly used single-value PMP estimate could be more than 40% higher when possible changes in various meteorological variables used to derive the PMP are considered. The findings of this study imply that PMP estimates should always be characterized as a range of values recognizing the significant uncertainties involved in PMP estimation. In fact, we do not know at this time whether precipitation is actually upper-bounded, and if precipitation is upper-bounded, how closely PMP estimates approach the theoretical limit.

  19. On the probability of matching DNA fingerprints.

    PubMed

    Risch, N J; Devlin, B

    1992-02-01

    Forensic scientists commonly assume that DNA fingerprint patterns are infrequent in the general population and that genotypes are independent across loci. To test these assumptions, the number of matching DNA patterns in two large databases from the Federal Bureau of Investigation (FBI) and from Lifecodes was determined. No deviation from independence across loci in either database was apparent. For the Lifecodes database, the probability of a three-locus match ranges from 1 in 6,233 in Caucasians to 1 in 119,889 in Blacks. When considering all trios of five loci in the FBI database, there was only a single match observed out of more than 7.6 million comparisons. If independence is assumed, the probability of a five-locus match ranged from 1.32 x 10(-12) in Southeast Hispanics to 5.59 x 10(-14) in Blacks, implying that the minimum number of possible patterns for each ethnic group is several orders of magnitude greater than their corresponding population sizes in the United States. The most common five-locus pattern can have a frequency no greater than about 10(-6). Hence, individual five-locus DNA profiles are extremely uncommon, if not unique. PMID:1738844

  20. Estimating flood exceedance probabilities in estuarine regions

    NASA Astrophysics Data System (ADS)

    Westra, Seth; Leonard, Michael

    2016-04-01

    Flood events in estuarine regions can arise from the interaction of extreme rainfall and storm surge. Determining flood level exceedance probabilities in these regions is complicated by the dependence of these processes for extreme events. A comprehensive study of tide and rainfall gauges along the Australian coastline was conducted to determine the dependence of these extremes using a bivariate logistic threshold-excess model. The dependence strength is shown to vary as a function of distance over many hundreds of kilometres indicating that the dependence arises due to synoptic scale meteorological forcings. It is also shown to vary as a function of storm burst duration, time lag between the extreme rainfall and the storm surge event. The dependence estimates are then used with a bivariate design variable method to determine flood risk in estuarine regions for a number of case studies. Aspects of the method demonstrated in the case studies include, the resolution and range of the hydraulic response table, fitting of probability distributions, computational efficiency, uncertainty, potential variation in marginal distributions due to climate change, and application to two dimensional output from hydraulic models. Case studies are located on the Swan River (Western Australia), Nambucca River and Hawkesbury Nepean River (New South Wales).

  1. Probably maximum flood of the Sava River

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Vidmar, Andrej; Raj, Mojca Å.

    2010-05-01

    The Nuclear Power Plant Krško (NEK) situated on the left bank of the Save River close to the border of Croatia. Probably Maximum Flood, on the location of the NEK could result in combination of probably maximum precipitation, sequential storm before PMP or snowmelt on the Sava River watershed. Mediterranean climate characterises very high precipitation and temporary high snow pack. The HBV-96 model as Integrated Hydrological Modelling System (IHMS) used for modelling. Model was calibrated and verification for daily time step at first for time period 1190-2006. Calibration and verification for hourly time step was done for period 1998-1999. The stream routing parameters were calibrated for flood event in years 1998 and 2007 and than verification for flood event in 1990. Discharge routing data analysis shown that possible inundation of Ljubljana and Savinja valley was not properly estimated. The flood areas are protected with levees and water does not spread over flooded areas in events used for calibration. Inundated areas in Ljubljana valley and Savinja valley are protected by levees and model could not simulate properly inundation of PMF. We recalibrate parameters controlled inundation on those areas for the worst scenario. Calculated PMF values drop down tramendosly after recalibration.

  2. Measures, Probability and Holography in Cosmology

    NASA Astrophysics Data System (ADS)

    Phillips, Daniel

    This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We

  3. Data-driven probability concentration and sampling on manifold

    NASA Astrophysics Data System (ADS)

    Soize, C.; Ghanem, R.

    2016-09-01

    A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation method for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.

  4. Interband Transitions

    NASA Astrophysics Data System (ADS)

    Varma, Shikha

    We have studied thin (1-7 monolayer) overlayers of Hg on Ag(100) and Cu(100) using angle-resolved photoemission and low energy electron diffraction. We have investigated the electronic states of well ordered, disordered and the liquid overlayers of mercury. We show that the electronic structure of the well ordered overlayers is very different than that of the disordered and the liquid overlayers. The well ordered overlayers of Hg on Ag(100) exhibit a new electronic state which is absent for the disordered overlayers of mercury as well as for gaseous mercury. We will argue that this new Hg state is a result of the interaction among the Hg-Hg atoms, when adsorbed on Ag(100). The strain among adlayer atoms also plays a crucial role in the development of the new electronic state. We have used the synchrotron radiation to study the partial cross-section and the branching ratio of the 5d electronic state of Hg. We have measured the partial cross-section and branching ratio of the well-ordered, disordered and liquid overlayers of mercury on Ag(100) and Cu(100). We have observed resonances in the photoemission intensities of the mercury 5d orbitals for thin films of mercury for incident photon energies near the 5p _{3/2}, 4f_{7/2 } and 4f_{5/2} thresholds. The results indicate that interband transitions from the 5p and 4f levels to the 5d orbitals can occur for a thin overlayer of mercury, as a result of final state 5f contributions, though such interband transitions are forbidden for the free isolated Hg atom. These resonances are attributed to the formation of a solid state band structure incorporating new itinerant mercury electronic state. These resonances are absent when the mercury film is disordered or melted. We have measured the branching ratio of the 5d orbital for thin mercury overlayers in the photon energy range between 26 to 105 eV. The branching ratios deviate from the nonrelativistic statistical value of 1.5, reaching values of 8.0. These results indicate

  5. Anomalous transition in {sup 10}B

    SciTech Connect

    Kurath, D.

    1995-08-01

    The transitions between the J,T = 3,0 ground state of {sup 10}B and the 3,0 state at 4.77 MeV present some puzzling features. The gamma transition between the states is of unknown multipolarity and very weak, with a strength of only 0.1 WU even if it is a pure E2. The shell model with the Cohen-Kurath POT interaction predicts a nearly pure E2 transition but with a transition probability about 4 times too strong. Recent inelastic pion scattering experiments on {sup 10}B excited this state with a strength only one tenth the value predicted by the shell model. It was found that these weak transitions are very sensitive to the wave functions and that orthogonally mixing the states with an intensity of 2% can satisfy both the pion scattering and the {gamma} decay (60% E2, 40% M1).

  6. Significance of "high probability/low damage" versus "low probability/high damage" flood events

    NASA Astrophysics Data System (ADS)

    Merz, B.; Elmer, F.; Thieken, A. H.

    2009-06-01

    The need for an efficient use of limited resources fosters the application of risk-oriented design in flood mitigation. Flood defence measures reduce future damage. Traditionally, this benefit is quantified via the expected annual damage. We analyse the contribution of "high probability/low damage" floods versus the contribution of "low probability/high damage" events to the expected annual damage. For three case studies, i.e. actual flood situations in flood-prone communities in Germany, it is shown that the expected annual damage is dominated by "high probability/low damage" events. Extreme events play a minor role, even though they cause high damage. Using typical values for flood frequency behaviour, flood plain morphology, distribution of assets and vulnerability, it is shown that this also holds for the general case of river floods in Germany. This result is compared to the significance of extreme events in the public perception. "Low probability/high damage" events are more important in the societal view than it is expressed by the expected annual damage. We conclude that the expected annual damage should be used with care since it is not in agreement with societal priorities. Further, risk aversion functions that penalise events with disastrous consequences are introduced in the appraisal of risk mitigation options. It is shown that risk aversion may have substantial implications for decision-making. Different flood mitigation decisions are probable, when risk aversion is taken into account.

  7. Transition Metal Homeostasis.

    PubMed

    Nies, Dietrich H; Grass, Gregor

    2009-08-01

    This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the

  8. Economic choices reveal probability distortion in macaque monkeys.

    PubMed

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing.

  9. Economic Choices Reveal Probability Distortion in Macaque Monkeys

    PubMed Central

    Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-01-01

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. PMID:25698750

  10. Model estimates hurricane wind speed probabilities

    NASA Astrophysics Data System (ADS)

    Mumane, Richard J.; Barton, Chris; Collins, Eric; Donnelly, Jeffrey; Eisner, James; Emanuel, Kerry; Ginis, Isaac; Howard, Susan; Landsea, Chris; Liu, Kam-biu; Malmquist, David; McKay, Megan; Michaels, Anthony; Nelson, Norm; O Brien, James; Scott, David; Webb, Thompson, III

    In the United States, intense hurricanes (category 3, 4, and 5 on the Saffir/Simpson scale) with winds greater than 50 m s -1 have caused more damage than any other natural disaster [Pielke and Pielke, 1997]. Accurate estimates of wind speed exceedance probabilities (WSEP) due to intense hurricanes are therefore of great interest to (re)insurers, emergency planners, government officials, and populations in vulnerable coastal areas.The historical record of U.S. hurricane landfall is relatively complete only from about 1900, and most model estimates of WSEP are derived from this record. During the 1899-1998 period, only two category-5 and 16 category-4 hurricanes made landfall in the United States. The historical record therefore provides only a limited sample of the most intense hurricanes.

  11. Audio feature extraction using probability distribution function

    NASA Astrophysics Data System (ADS)

    Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.

    2015-05-01

    Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.

  12. Probability density function learning by unsupervised neurons.

    PubMed

    Fiori, S

    2001-10-01

    In a recent work, we introduced the concept of pseudo-polynomial adaptive activation function neuron (FAN) and presented an unsupervised information-theoretic learning theory for such structure. The learning model is based on entropy optimization and provides a way of learning probability distributions from incomplete data. The aim of the present paper is to illustrate some theoretical features of the FAN neuron, to extend its learning theory to asymmetrical density function approximation, and to provide an analytical and numerical comparison with other known density function estimation methods, with special emphasis to the universal approximation ability. The paper also provides a survey of PDF learning from incomplete data, as well as results of several experiments performed on real-world problems and signals. PMID:11709808

  13. Probability of Brownian motion hitting an obstacle

    SciTech Connect

    Knessl, C.; Keller, J.B.

    2000-02-01

    The probability p(x) that Brownian motion with drift, starting at x, hits an obstacle is analyzed. The obstacle {Omega} is a compact subset of R{sup n}. It is shown that p(x) is expressible in terms of the field U(x) scattered by {Omega} when it is hit by plane wave. Therefore results for U(x), and methods for finding U(x) can be used to determine p(x). The authors illustrate this by obtaining exact and asymptotic results for p(x) when {Omega} is a slit in R{sup 2}, and asymptotic results when {Omega} is a disc in R{sup 3}.

  14. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  15. On the probability of dinosaur fleas.

    PubMed

    Dittmar, Katharina; Zhu, Qiyun; Hastriter, Michael W; Whiting, Michael F

    2016-01-11

    Recently, a set of publications described flea fossils from Jurassic and Early Cretaceous geological strata in northeastern China, which were suggested to have parasitized feathered dinosaurs, pterosaurs, and early birds or mammals. In support of these fossils being fleas, a recent publication in BMC Evolutionary Biology described the extended abdomen of a female fossil specimen as due to blood feeding.We here comment on these findings, and conclude that the current interpretation of the evolutionary trajectory and ecology of these putative dinosaur fleas is based on appeal to probability, rather than evidence. Hence, their taxonomic positioning as fleas, or stem fleas, as well as their ecological classification as ectoparasites and blood feeders is not supported by currently available data.

  16. Parabolic Ejecta Features on Titan? Probably Not

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Melosh, H. J.

    1996-03-01

    Radar mapping of Venus by Magellan indicated a number of dark parabolic features, associated with impact craters. A suggested mechanism for generating such features is that ejecta from the impact event is 'winnowed' by the zonal wind field, with smaller ejecta particles falling out of the atmosphere more slowly, and hence drifting further. What discriminates such features from simple wind streaks is the 'stingray' or parabolic shape. This is due to the ejecta's spatial distribution prior to being winnowed during fallout, and this distribution is generated by the explosion plume of the impact piercing the atmosphere, allowing the ejecta to disperse pseudoballistically before re-entering the atmosphere, decelerating to terminal velocity and then being winnowed. Here we apply this model to Titan, which has a zonal wind field similar to that of Venus. We find that Cassini will probably not find parabolic features, as the winds stretch the deposition so far that ejecta will form streaks or bands instead.

  17. Trending in Probability of Collision Measurements

    NASA Technical Reports Server (NTRS)

    Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.

    2015-01-01

    A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.

  18. Quantum probabilities for inflation from holography

    SciTech Connect

    Hartle, James B.; Hawking, S.W.; Hertog, Thomas E-mail: S.W.Hawking@damtp.cam.ac.uk

    2014-01-01

    The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in h-bar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.

  19. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  20. 5426 Sharp: A Probable Hungaria Binary

    NASA Astrophysics Data System (ADS)

    Warner, Brian D.; Benishek, Vladimir; Ferrero, Andrea

    2015-07-01

    Initial CCD photometry observations of the Hungaria asteroid 5426 Sharp in 2014 December and 2015 January at the Center of Solar System Studies-Palmer Divide Station in Landers, CA, showed attenuations from the general lightcurve, indicating the possibility of the asteroid being a binary system. The secondary period was almost exactly an Earth day, prompting a collaboration to be formed with observers in Europe, which eventually allowed establishing two periods: P1 = 4.5609 ± 0.0003 h, A1 = 0.18 ± 0.01 mag and P2 = 24.22 ± 0.02 h, A2 = 0.08 ± 0.01 mag. No mutual events, i.e., occultations and/or eclipses, were seen, therefore the asteroid is considered a probable and not confirmed binary

  1. On the probability of dinosaur fleas.

    PubMed

    Dittmar, Katharina; Zhu, Qiyun; Hastriter, Michael W; Whiting, Michael F

    2016-01-01

    Recently, a set of publications described flea fossils from Jurassic and Early Cretaceous geological strata in northeastern China, which were suggested to have parasitized feathered dinosaurs, pterosaurs, and early birds or mammals. In support of these fossils being fleas, a recent publication in BMC Evolutionary Biology described the extended abdomen of a female fossil specimen as due to blood feeding.We here comment on these findings, and conclude that the current interpretation of the evolutionary trajectory and ecology of these putative dinosaur fleas is based on appeal to probability, rather than evidence. Hence, their taxonomic positioning as fleas, or stem fleas, as well as their ecological classification as ectoparasites and blood feeders is not supported by currently available data. PMID:26754250

  2. Evolution probabilities and phylogenetic distance of dinucleotides.

    PubMed

    Michel, Christian J

    2007-11-21

    We develop here an analytical evolution model based on a dinucleotide mutation matrix 16 x 16 with six substitution parameters associated with the three types of substitutions in the two dinucleotide sites. It generalizes the previous models based on the nucleotide mutation matrices 4 x 4. It determines at some time t the exact occurrence probabilities of dinucleotides mutating randomly according to these six substitution parameters. Furthermore, several properties and two applications of this model allow to derive 16 evolutionary analytical solutions of dinucleotides and also a dinucleotide phylogenetic distance. Finally, based on this mathematical model, the SED (Stochastic Evolution of Dinucleotides) web server has been developed for deriving evolutionary analytical solutions of dinucleotides.

  3. Measurement-assisted Landau-Zener transitions

    NASA Astrophysics Data System (ADS)

    Pechen, Alexander; Trushechkin, Anton

    2015-05-01

    Nonselective quantum measurements, i.e., measurements without reading the results, are often considered as a resource for manipulating quantum systems. In this work, we investigate optimal acceleration of the Landau-Zener (LZ) transitions by nonselective quantum measurements. We use the measurements of a population of a diabatic state of the LZ system at certain time instants as control and find the optimal time instants which maximize the LZ transition. We find surprising nonmonotonic behavior of the maximal transition probability with increase of the coupling parameter when the number of measurements is large. This transition probability gives an optimal approximation to the fundamental quantum Zeno effect (which corresponds to continuous measurements) by a fixed number of discrete measurements. The difficulty for the analysis is that the transition probability as a function of time instants has a huge number of local maxima. We resolve this problem both analytically by asymptotic analysis and numerically by the development of efficient algorithms mainly based on the dynamic programming. The proposed numerical methods can be applied, besides this problem, to a wide class of measurement-based optimal control problems.

  4. Codon information value and codon transition-probability distributions in short-term evolution

    NASA Astrophysics Data System (ADS)

    Jiménez-Montaño, M. A.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Ramos-Fernández, A.

    2016-07-01

    To understand the way the Genetic Code and the physical-chemical properties of coded amino acids affect accepted amino acid substitutions in short-term protein evolution, taking into account only overall amino acid conservation, we consider an underlying codon-level model. This model employs codon pair-substitution frequencies from an empirical matrix in the literature, modified for single-base mutations only. Ordering the degenerated codons according to their codon information value (Volkenstein, 1979), we found that three-fold and most of four-fold degenerated codons, which have low codon values, were best fitted to rank-frequency distributions with constant failure rate (exponentials). In contrast, almost all two-fold degenerated codons, which have high codon values, were best fitted to rank-frequency distributions with variable failure rate (inverse power-laws). Six-fold degenerated codons are considered to be doubly assigned. The exceptional behavior of some codons, including non-degenerate codons, is discussed.

  5. Mixed-Effects Logistic Regression for Estimating Transitional Probabilities in Sequentially Coded Observational Data

    ERIC Educational Resources Information Center

    Ozechowski, Timothy J.; Turner, Charles W.; Hops, Hyman

    2007-01-01

    This article demonstrates the use of mixed-effects logistic regression (MLR) for conducting sequential analyses of binary observational data. MLR is a special case of the mixed-effects logit modeling framework, which may be applied to multicategorical observational data. The MLR approach is motivated in part by G. A. Dagne, G. W. Howe, C. H.…

  6. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  7. VizieR Online Data Catalog: Vanadium log(gf) and transition probabilities (Lawler+, 2014)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Wood, M. P.; den Hartog, E. A.; Feigenson, T.; Sneden, C.; Cowan, J. J.

    2015-02-01

    Data from two complementary spectrometers are used in this work on VI and in recent work on VII (Wood et al. 2014, J/ApJS/214/18). One of these is the venerable National Solar Observatory (NSO) 1m Fourier transform spectrometer (FTS) developed for the McMath Solar telescope on Kitt Peak, AZ. The second instrument is the 3m focal length echelle spectrometer at the Univ. of Wisconsin. Table 1 lists the 14 spectra from the NSO 1m FTS taken from 1979 Dec 12 to 1986 Jul 30. Table 2 lists the spectra from the 3m echelle spectrometer used in this VI study; taken from 2013 May 15 to 2014 May 14. (5 data files).

  8. VizieR Online Data Catalog: NiI transition probability measurements (Wood+, 2014)

    NASA Astrophysics Data System (ADS)

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J.

    2014-04-01

    As in much of our previous branching fraction work, this NiI branching fraction study makes use of archived FTS data from both the 1.0m Fourier Transform Spectrometer (FTS) previously at the National Solar Observatory (NSO) on Kitt Peak and the Chelsea Instruments FT500 UV FTS at Lund University in Sweden. Table 1 lists the 37 FTS spectra used in our NiI branching fraction study. All NSO spectra, raw interferograms, and header files are available in the NSO electronic archives. The 80 CCD frames of spectra from commercial Ni HCD lamps of the echelle spectrograph are listed in Table 2. (6 data files).

  9. Beyond Transitional Probability Computations: Extracting Word-Like Units when Only Statistical Information Is Available

    ERIC Educational Resources Information Center

    Perruchet, Pierre; Poulin-Charronnat, Benedicte

    2012-01-01

    Endress and Mehler (2009) reported that when adult subjects are exposed to an unsegmented artificial language composed from trisyllabic words such as ABX, YBC, and AZC, they are unable to distinguish between these words and what they coined as the "phantom-word" ABC in a subsequent test. This suggests that statistical learning generates knowledge…

  10. The electron excited ultraviolet spectrum of HD : cross sections and transition probabilities

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph; Palle, Prahlad Vatti; Abgrall, Herve'; Roueff, Evelyne; Bhardwaj, Anil; Gustin, Jacques

    2005-01-01

    We have analyzed the high-resolution ultraviolet (UV) emission spectrum of molecular deuterium hydride (HD) excited by electron impact at 100 eV under optically thin, single-scattering experimental conditions. The high-resolution spectrum (FWHM=160 mA) spans the wavelength range from 900 to 1650 A and contains the two Rydberg series of HD: (sup 1)Sigma(sub u)(sup +)1s(sigma), np(si n=2, 3, 4) --> X(sup 1)Sigma(sub g)(sup +) and (sup 1)Pi(sub u)(sup +)1s(sigma), np(pi)(C,D,D',D'', n=2, 3, 4, 5) -->X(sup 1)Sigma(sub g)(sup +). A model spectrum of HD, based on newly calculated tra rovibrational coupling for the strongest band systems, B (sup 1)Sigma(sub u)(sup +)-X(sup 1)Sigma(sub g)(sup +),B'(sup 1)Sigma(sub g)(sup +)-X(sup 1)Sigma(sub g)(sup +),C(sup 1)Pi(sub u)-X(sup 1)Sigm sections for direct excitation at 100 eV of the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were derived from a model analysis of the state. The absolute cross section values for excitation to the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were found to be (2.57+/-0. and (0.17+/-0.04)x10(exp -17) sq cm, respectively. We have also determined the dissociative excitation cross sections at 100 eV for the emission of Ly(alpha) at 1216 A and Ly(Beta) at 1025 A lines, which are (7.98+/-1.12)x10(exp -18) and (0.40+/-0.10)x10(exp -18) sq cm, respectively. The summed excitation function of the closely spaced pair of lines, H Ly(alpha) and D Ly(Beta), resulting from excitation of HD, has been measured from the threshold to 800 eV and is analytically modeled with a semiempirical relation. The model cross sections are in good agreement with the corrected Ly(alpha) cross sections of Mohlmann et al. up to 2 keV. Based on measurements of H, D (2s) production cross section values by Mohlmann et al., the H, D (n=2) cross section is estimated to be 1.6 x 10(exp -17) sq cm at 100 eV.

  11. How Transitional Probabilities and the Edge Effect Contribute to Listeners' Phonological Bootstrapping Success

    ERIC Educational Resources Information Center

    Sohail, Juwairia; Johnson, Elizabeth K.

    2016-01-01

    Much of what we know about the development of listeners' word segmentation strategies originates from the artificial language-learning literature. However, many artificial speech streams designed to study word segmentation lack a salient cue found in all natural languages: utterance boundaries. In this study, participants listened to a…

  12. Computational Modeling of Statistical Learning: Effects of Transitional Probability versus Frequency and Links to Word Learning

    ERIC Educational Resources Information Center

    Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.

    2010-01-01

    Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…

  13. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect

    Zhong, J.Y. . E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G.; Zhang, J.

    2006-09-15

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  14. Homonymous Hemianopsia Associated with Probable Alzheimer's Disease.

    PubMed

    Ishiwata, Akiko; Kimura, Kazumi

    2016-01-01

    Posterior cortical atrophy (PCA) is a rare neurodegenerative disorder that has cerebral atrophy in the parietal, occipital, or occipitotemporal cortices and is characterized by visuospatial and visuoperceptual impairments. The most cases are pathologically compatible with Alzheimer's disease (AD). We describe a case of PCA in which a combination of imaging methods, in conjunction with symptoms and neurological and neuropsychological examinations, led to its being diagnosed and to AD being identified as its probable cause. Treatment with donepezil for 6 months mildly improved alexia symptoms, but other symptoms remained unchanged. A 59-year-old Japanese woman with progressive alexia, visual deficit, and mild memory loss was referred to our neurologic clinic for the evaluation of right homonymous hemianopsia. Our neurological examination showed alexia, constructional apraxia, mild disorientation, short-term memory loss, and right homonymous hemianopsia. These findings resulted in a score of 23 (of 30) points on the Mini-Mental State Examination. Occipital atrophy was identified, with magnetic resonance imaging (MRI) showing left-side dominance. The MRI data were quantified with voxel-based morphometry, and PCA was diagnosed on the basis of these findings. Single photon emission computed tomography with (123)I-N-isopropyl-p-iodoamphetamine showed hypoperfusion in the corresponding voxel-based morphometry occipital lobes. Additionally, the finding of hypoperfusion in the posterior associate cortex, posterior cingulate gyrus, and precuneus was consistent with AD. Therefore, the PCA was considered to be a result of AD. We considered Lewy body dementia as a differential diagnosis because of the presence of hypoperfusion in the occipital lobes. However, the patient did not meet the criteria for Lewy body dementia during the course of the disease. We therefore consider including PCA in the differential diagnoses to be important for patients with visual deficit, cognitive

  15. Repetition probability effects for inverted faces.

    PubMed

    Grotheer, Mareike; Hermann, Petra; Vidnyánszky, Zoltán; Kovács, Gyula

    2014-11-15

    It has been shown, that the repetition related reduction of the blood-oxygen level dependent (BOLD) signal is modulated by the probability of repetitions (P(rep)) for faces (Summerfield et al., 2008), providing support for the predictive coding (PC) model of visual perception (Rao and Ballard, 1999). However, the stage of face processing where repetition suppression (RS) is modulated by P(rep) is still unclear. Face inversion is known to interrupt higher level configural/holistic face processing steps and if modulation of RS by P(rep) takes place at these stages of face processing, P(rep) effects are expected to be reduced for inverted when compared to upright faces. Therefore, here we aimed at investigating whether P(rep) effects on RS observed for face stimuli originate at the higher-level configural/holistic stages of face processing by comparing these effects for upright and inverted faces. Similarly to previous studies, we manipulated P(rep) for pairs of stimuli in individual blocks of fMRI recordings. This manipulation significantly influenced repetition suppression in the posterior FFA, the OFA and the LO, independently of stimulus orientation. Our results thus reveal that RS in the ventral visual stream is modulated by P(rep) even in the case of face inversion and hence strongly compromised configural/holistic face processing. An additional whole-brain analysis could not identify any areas where the modulatory effect of probability was orientation specific either. These findings imply that P(rep) effects on RS might originate from the earlier stages of face processing.

  16. Probability matching involves rule-generating ability: a neuropsychological mechanism dealing with probabilities.

    PubMed

    Unturbe, Jesús; Corominas, Josep

    2007-09-01

    Probability matching is a nonoptimal strategy consisting of selecting each alternative in proportion to its reinforcement contingency. However, matching is related to hypothesis testing in an incidental, marginal, and methodologically disperse manner. Although some authors take it for granted, the relationship has not been demonstrated. Fifty-eight healthy participants performed a modified, bias-free probabilistic two-choice task, the Simple Prediction Task (SPT). Self-reported spurious rules were recorded and then graded by two independent judges. Participants who produced the most complex rules selected the probability matching strategy and were therefore less successful than those who did not produce rules. The close relationship between probability matching and rule generating makes SPT a complementary instrument for studying decision making, which might throw some light on the debate about irrationality. The importance of the reaction times, both before and after responding, is also discussed.

  17. A quarter of a century of job transitions in Germany☆

    PubMed Central

    Kattenbach, Ralph; Schneidhofer, Thomas M.; Lücke, Janine; Latzke, Markus; Loacker, Bernadette; Schramm, Florian; Mayrhofer, Wolfgang

    2014-01-01

    By examining trends in intra-organizational and inter-organizational job transition probabilities among professional and managerial employees in Germany, we test the applicability of mainstream career theory to a specific context and challenge its implied change assumption. Drawing on data from the German Socio-Economic Panel (GSOEP), we apply linear probability models to show the influence of time, economic cycle and age on the probability of job transitions between 1984 and 2010. Results indicate a slight negative trend in the frequency of job transitions during the analyzed time span, owing to a pronounced decrease in intra-organizational transitions, which is only partly offset by a comparatively weaker positive trend towards increased inter-organizational transitions. The latter is strongly influenced by fluctuations in the economic cycle. Finally, the probability of job transitions keeps declining steadily through the course of one's working life. In contrast to inter-organizational transitions, however, this age effect for intra-organizational transitions has decreased over time. PMID:24493876

  18. The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Quang, Nguyen Vinh

    1996-01-01

    For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.

  19. COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION FOR BANDED PROBABILITY DISTRIBUTIONS

    SciTech Connect

    Gjerløw, E.; Mikkelsen, K.; Eriksen, H. K.; Næss, S. K.; Seljebotn, D. S.; Górski, K. M.; Huey, G.; Jewell, J. B.; Rocha, G.; Wehus, I. K.

    2013-11-10

    We investigate sets of random variables that can be arranged sequentially such that a given variable only depends conditionally on its immediate predecessor. For such sets, we show that the full joint probability distribution may be expressed exclusively in terms of uni- and bivariate marginals. Under the assumption that the cosmic microwave background (CMB) power spectrum likelihood only exhibits correlations within a banded multipole range, Δl{sub C}, we apply this expression to two outstanding problems in CMB likelihood analysis. First, we derive a statistically well-defined hybrid likelihood estimator, merging two independent (e.g., low- and high-l) likelihoods into a single expression that properly accounts for correlations between the two. Applying this expression to the Wilkinson Microwave Anisotropy Probe (WMAP) likelihood, we verify that the effect of correlations on cosmological parameters in the transition region is negligible in terms of cosmological parameters for WMAP; the largest relative shift seen for any parameter is 0.06σ. However, because this may not hold for other experimental setups (e.g., for different instrumental noise properties or analysis masks), but must rather be verified on a case-by-case basis, we recommend our new hybridization scheme for future experiments for statistical self-consistency reasons. Second, we use the same expression to improve the convergence rate of the Blackwell-Rao likelihood estimator, reducing the required number of Monte Carlo samples by several orders of magnitude, and thereby extend it to high-l applications.

  20. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  1. Parameterizing deep convection using the assumed probability density function method

    SciTech Connect

    Storer, R. L.; Griffin, B. M.; Hoft, Jan; Weber, J. K.; Raut, E.; Larson, Vincent E.; Wang, Minghuai; Rasch, Philip J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.

  2. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  3. Probability, conditional probability and complementary cumulative distribution functions in performance assessment for radioactive waste disposal

    SciTech Connect

    Helton, J.C.

    1996-03-01

    A formal description of the structure of several recent performance assessments (PAs) for the Waste Isolation Pilot Plant (WIPP) is given in terms of the following three components: a probability space (S{sub st}, S{sub st}, p{sub st}) for stochastic uncertainty, a probability space (S{sub su}, S{sub su}, p{sub su}) for subjective uncertainty and a function (i.e., a random variable) defined on the product space associated with (S{sub st}, S{sub st}, p{sub st}) and (S{sub su}, S{sub su}, p{sub su}). The explicit recognition of the existence of these three components allows a careful description of the use of probability, conditional probability and complementary cumulative distribution functions within the WIPP PA. This usage is illustrated in the context of the U.S. Environmental Protection Agency`s standard for the geologic disposal of radioactive waste (40 CFR 191, Subpart B). The paradigm described in this presentation can also be used to impose a logically consistent structure on PAs for other complex systems.

  4. Exercise in probability and statistics, or the probability of winning at tennis

    NASA Astrophysics Data System (ADS)

    Fischer, Gaston

    1980-01-01

    The relationships between the probabilities p, x, s, and M, of winning, respectively, a point, a game, a set, or a match have been derived. The calculations are carried out under the assumption that these probabilities are averages. For example, x represents an average probability of winning a game when serving and receiving, and the same value of x is assumed to hold also for tie-break games. The formulas derived are for sets played with a tie-break game at the level of 6-6, as well as for the traditional rule requiring an advantage of two games to win a set. Matches to the best of three and five sets are considered. As is to be expected, a small advantage in the probability p of winning a point leads to advantages which are amplified by large factors : 2.5 for games, 7.1 for sets with tie-break at 6-6, 10.6 for matches to the best of three sets, and 13.3 for matches to the best of five sets. When sets are decided according to the traditional rule, the last three factors become, respectively, 7.4, 11.1, and 13.8. The theoretical calculations are compared with real and synthetic tennis scores and good agreement is found. The scatter of the data is seen to obey the predictions of a normal distribution. Some classroom problems are suggested at the end.

  5. Transitions: A Personal Perspective.

    ERIC Educational Resources Information Center

    Wood, Ann Stace

    1995-01-01

    Distinguishes between unchosen transitions (children maturing and leaving, parents aging, companies downsizing) and chosen ones (moving, divorce, marriage, career changes). Describes the steps one goes through: uneasiness, renewed energy, complaining, exploration, partial transition, and the completed transition. (JOW)

  6. Enhanced awakening probability of repetitive impulse sounds.

    PubMed

    Vos, Joos; Houben, Mark M J

    2013-09-01

    In the present study relations between the level of impulse sounds and the observed proportion of behaviorally confirmed awakening reactions were determined. The sounds (shooting sounds, bangs produced by door slamming or by container transshipment, aircraft landings) were presented by means of loudspeakers in the bedrooms of 50 volunteers. The fragments for the impulse sounds consisted of single or multiple events. The sounds were presented during a 6-h period that started 75 min after the subjects wanted to sleep. In order to take account of habituation, each subject participated during 18 nights. At equal indoor A-weighted sound exposure levels, the proportion of awakening for the single impulse sounds was equal to that for the aircraft sounds. The proportion of awakening induced by the multiple impulse sounds, however, was significantly higher. For obtaining the same rate of awakening, the sound level of each of the successive impulses in a fragment had to be about 15-25 dB lower than the level of one single impulse. This level difference was largely independent of the degree of habituation. Various explanations for the enhanced awakening probability are discussed. PMID:23967934

  7. Lectures on probability and statistics. Revision

    SciTech Connect

    Yost, G.P.

    1985-06-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. They begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probabilty of any specified outcome. They finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another. Hopefully, the reader will come away from these notes with a feel for some of the problems and uncertainties involved. Although there are standard approaches, most of the time there is no cut and dried ''best'' solution - ''best'' according to every criterion.

  8. The probability of finding suitable directed donors.

    PubMed

    Kanter, M; Selvin, S; Myhre, B A

    1989-02-01

    A series of tables based on mathematical calculations is given as guidelines for the number of directed donors needed by members of various ethnic/racial groups to provide a desired number of units of blood with a selected probability of achieving this result. From these tables, certain conclusions can be drawn. Unrelated donors who do not know their blood type are an inefficient source of directed donors. Rh-negative patients are unlikely to obtain enough directed-donor units from either related or unrelated donors with confidence unless these donors known their blood type. In general, siblings, parents, and offspring are the most efficient directed donors from the standpoint of compatibility. Cousins, uncles, aunts, nieces, and nephews are not much more likely to be compatible than unrelated donors are. It is easier to obtain suitable directed-donor units among Hispanics than among whites, blacks, or Asians, due to their skewed blood group frequencies. In general, using O-negative directed donors for Rh-positive recipients does not significantly increase the likelihood of finding suitable donors.

  9. Probability of rupture of multiple fault segments

    USGS Publications Warehouse

    Andrews, D.J.; Schwerer, E.

    2000-01-01

    Fault segments identified from geologic and historic evidence have sometimes been adopted as features limiting the likely extends of earthquake ruptures. There is no doubt that individual segments can sometimes join together to produce larger earthquakes. This work is a trial of an objective method to determine the probability of multisegment ruptures. The frequency of occurrence of events on all conjectured combinations of adjacent segments in northern California is found by fitting to both geologic slip rates and to an assumed distribution of event sizes for the region as a whole. Uncertainty in the shape of the distribution near the maximum magnitude has a large effect on the solution. Frequencies of individual events cannot be determined, but it is possible to find a set of frequencies to fit a model closely. A robust conclusion for the San Francisco Bay region is that large multisegment events occur on the San Andreas and San Gregorio faults, but single-segment events predominate on the extended Hayward and Calaveras strands of segments.

  10. Essays on probability elicitation scoring rules

    NASA Astrophysics Data System (ADS)

    Firmino, Paulo Renato A.; dos Santos Neto, Ademir B.

    2012-10-01

    In probability elicitation exercises it has been usual to considerer scoring rules (SRs) to measure the performance of experts when inferring about a given unknown, Θ, for which the true value, θ*, is (or will shortly be) known to the experimenter. Mathematically, SRs quantify the discrepancy between f(θ) (the distribution reflecting the expert's uncertainty about Θ) and d(θ), a zero-one indicator function of the observation θ*. Thus, a remarkable characteristic of SRs is to contrast expert's beliefs with the observation θ*. The present work aims at extending SRs concepts and formulas for the cases where Θ is aleatory, highlighting advantages of goodness-of-fit and entropy-like measures. Conceptually, it is argued that besides of evaluating the personal performance of the expert, SRs may also play a role when comparing the elicitation processes adopted to obtain f(θ). Mathematically, it is proposed to replace d(θ) by g(θ), the distribution that model the randomness of Θ, and do also considerer goodness-of-fit and entropylike metrics, leading to SRs that measure the adherence of f(θ) to g(θ). The implications of this alternative perspective are discussed and illustrated by means of case studies based on the simulation of controlled experiments. The usefulness of the proposed approach for evaluating the performance of experts and elicitation processes is investigated.

  11. Do aftershock probabilities decay with time?

    USGS Publications Warehouse

    Michael, Andrew J.

    2012-01-01

    So, do aftershock probabilities decay with time? Consider a thought experiment in which we are at the time of the mainshock and ask how many aftershocks will occur a day, week, month, year, or even a century from now. First we must decide how large a window to use around each point in time. Let's assume that, as we go further into the future, we are asking a less precise question. Perhaps a day from now means 1 day 10% of a day, a week from now means 1 week 10% of a week, and so on. If we ignore c because it is a small fraction of a day (e.g., Reasenberg and Jones, 1989, hereafter RJ89), and set p = 1 because it is usually close to 1 (its value in the original Omori law), then the rate of earthquakes (K=t) decays at 1=t. If the length of the windows being considered increases proportionally to t, then the number of earthquakes at any time from now is the same because the rate decrease is canceled by the increase in the window duration. Under these conditions we should never think "It's a bit late for this to be an aftershock."

  12. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  13. Probability judgments under ambiguity and conflict

    PubMed Central

    Smithson, Michael

    2015-01-01

    Whether conflict and ambiguity are distinct kinds of uncertainty remains an open question, as does their joint impact on judgments of overall uncertainty. This paper reviews recent advances in our understanding of human judgment and decision making when both ambiguity and conflict are present, and presents two types of testable models of judgments under conflict and ambiguity. The first type concerns estimate-pooling to arrive at “best” probability estimates. The second type is models of subjective assessments of conflict and ambiguity. These models are developed for dealing with both described and experienced information. A framework for testing these models in the described-information setting is presented, including a reanalysis of a multi-nation data-set to test best-estimate models, and a study of participants' assessments of conflict, ambiguity, and overall uncertainty reported by Smithson (2013). A framework for research in the experienced-information setting is then developed, that differs substantially from extant paradigms in the literature. This framework yields new models of “best” estimates and perceived conflict. The paper concludes with specific suggestions for future research on judgment and decision making under conflict and ambiguity. PMID:26042081

  14. Precise measurements of the absolute γ-ray emission probabilities of (223)Ra and decay progeny in equilibrium.

    PubMed

    Collins, S M; Pearce, A K; Regan, P H; Keightley, J D

    2015-08-01

    Precise measurements of the absolute γ-ray emission probabilities have been made of radiochemically pure solutions of (223)Ra in equilibrium with its decay progeny, which had been previously standardised by 4π(liquid scintillation)-γ digital coincidence counting techniques. Two high-purity germanium γ-ray spectrometers were used which had been accurately calibrated using a suite of primary and secondary radioactive standards. Comparison of the activity concentration determined by the primary technique against γ-ray spectrometry measurements using the nuclear data evaluations of the Decay Data Evaluation Project exhibited a range of ~18% in the most intense γ-ray emissions (>1% probability) of the (223)Ra decay series. Absolute γ-ray emission probabilities and standard uncertainties have been determined for the decay of (223)Ra, (219)Rn, (215)Po, (211)Pb, (211)Bi and (207)Tl in equilibrium. The standard uncertainties of the measured γ-ray emission probabilities quoted in this work show a significant improvement over previously reported γ-ray emission probabilities. Correlation coefficients for pairs of the measured γ-ray emission probabilities from the decays of the radionuclides (223)Ra, (219)Rn and (211)Pb have been determined and are presented. The α-transition probabilities of the (223)Ra have been deduced from P(γ+ce) balance using the γ-ray emission probabilities determined in this work with some agreement observed with the published experimental values of the α-emission probabilities.

  15. A photometric search for transiting planets

    NASA Astrophysics Data System (ADS)

    Baliber, Nairn Reese

    In the decade since the discovery of the first planet orbiting a main-sequence star other than the Sun, more than 160 planets have been detected in orbit around other stars, most of them discovered by measuring the velocity of the reflexive motion of their parent stars caused by the gravitational pull of the planets. These discoveries produced a population of planets much different to the ones in our Solar System and created interest in other methods to detect these planets. One such method is searching for transits, the slight photometric dimming of stars caused by a close-orbiting, Jupiter-sized planet passing between a star and our line of sight once per orbit. We report results from TeMPEST, the Texas, McDonald Photometric Extrasolar Search for Transits, a transit survey conducted with the McDonald Observatory 0.76 m Prime Focus Corrector (PFC). We monitored five fields of stars in the plane of the Milky Way over the course of two and a half years. We created a photometry pipeline to perform high-precision differential photometry on all of the images, and used a software detection algorithm to detect transit signals in the light curves. Although no transits were found, we calculated our detection probability by determining the fraction of the stars monitored by TeMPEST which were suitable to show transits, measuring the probability of detecting transit signals based on the temporal coverage of our fields, and measuring our detection efficiency by inserting false transits into TeMPEST data to see what fraction could be recovered by our automatic detection software. We conclude that in our entire data set, we generated an effective sample of 2660 stars, a sample in which if any star is showing a transit, it would have been detected. We found no convincing transits in our data, but current statistics from radial velocity surveys indicate that only one in about 1300 of these stars should be showing transits. These numbers are consistent with the lack of transits

  16. Projection of postgraduate students flow with a smoothing matrix transition diagram of Markov chain

    NASA Astrophysics Data System (ADS)

    Rahim, Rahela; Ibrahim, Haslinda; Adnan, Farah Adibah

    2013-04-01

    This paper presents a case study of modeling postgraduate students flow at the College of Art and Sciences, Universiti Utara Malaysia. First, full time postgraduate students and the semester they were in are identified. Then administrative data were used to estimate the transitions between these semesters for the year 2001-2005 periods. Markov chain model is developed to calculate the -5 and -10 years projection of postgraduate students flow at the college. The optimization question addressed in this study is 'Which transitions would sustain the desired structure in the dynamic situation such as trend towards graduation?' The smoothed transition probabilities are proposed to estimate the transition probabilities matrix of 16 × 16. The results shows that using smoothed transition probabilities, the projection number of postgraduate students enrolled in the respective semesters are closer to actual than using the conventional steady states transition probabilities.

  17. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  18. Levetiracetam: Probably Associated Diurnal Frequent Urination.

    PubMed

    Ju, Jun; Zou, Li-Ping; Shi, Xiu-Yu; Hu, Lin-Yan; Pang, Ling-Yu

    2016-01-01

    Diurnal frequent urination is a common condition in elementary school children who are especially at risk for associated somatic and behavioral problems. Levetiracetam (LEV) is a broad-spectrum antiepileptic drug that has been used in both partial and generalized seizures and less commonly adverse effects including psychiatric and behavioral problems. Diurnal frequent urination is not a well-known adverse effect of LEV. Here, we reported 2 pediatric cases with epilepsy that developed diurnal frequent urination after LEV administration. Case 1 was a 6-year-old male patient who presented urinary frequency and urgency in the daytime since the third day after LEV was given as adjunctive therapy. Symptoms increased accompanied by the raised dosage of LEV. Laboratory tests and auxiliary examinations did not found evidence of organic disease. Diurnal frequent urination due to LEV was suspected, and then the drug was discontinued. As expected, his frequency of urination returned to normal levels. Another 13-year-old female patient got similar clinical manifestations after oral LEV monotherapy and the symptoms became aggravated while in stress state. Since the most common causes of frequent micturition had been ruled out, the patient was considered to be diagnosed with LEV-associated psychogenic frequent urination. The dosage of LEV was reduced to one-third, and the frequency of urination was reduced by 60%. Both patients got the Naranjo score of 6, which indicated that LEV was a "probable" cause of diurnal frequent urination. Although a definite causal link between LEV and diurnal urinary frequency in the 2 cases remains to be established, we argue that diurnal frequent urination associated with LEV deserves clinician's attention. PMID:26938751

  19. Doppler spectroscopy of an ytterbium Bose-Einstein condensate on the clock transition

    NASA Astrophysics Data System (ADS)

    Dareau, A.; Scholl, M.; Beaufils, Q.; Döring, D.; Beugnon, J.; Gerbier, F.

    2015-02-01

    We describe Doppler spectroscopy of Bose-Einstein condensates of ytterbium atoms using a narrow optical transition. We address the optical clock transition around 578 nm between the 1S0 and the 3P0 states with a laser system locked on a high-finesse cavity. We show how the absolute frequency of the cavity modes can be determined within a few tens of kilohertz using high-resolution spectroscopy on molecular iodine. We show that optical spectra reflect the velocity distribution of expanding condensates in free fall or after release inside an optical waveguide. We demonstrate subkilohertz spectral linewidths, with long-term drifts of the resonance frequency well below 1 kHz/h. These results open the way to high-resolution spectroscopy of many-body systems.

  20. Probably good diagrams for learning: representational epistemic recodification of probability theory.

    PubMed

    Cheng, Peter C-H

    2011-07-01

    The representational epistemic approach to the design of visual displays and notation systems advocates encoding the fundamental conceptual structure of a knowledge domain directly in the structure of a representational system. It is claimed that representations so designed will benefit from greater semantic transparency, which enhances comprehension and ease of learning, and plastic generativity, which makes the meaningful manipulation of the representation easier and less error prone. Epistemic principles for encoding fundamental conceptual structures directly in representational schemes are described. The diagrammatic recodification of probability theory is undertaken to demonstrate how the fundamental conceptual structure of a knowledge domain can be analyzed, how the identified conceptual structure may be encoded in a representational system, and the cognitive benefits that follow. An experiment shows the new probability space diagrams are superior to the conventional approach for learning this conceptually challenging topic.