Science.gov

Sample records for 1st order structures

  1. Highly efficient -1st-order reflection in Littrow mounted dielectric double-groove grating

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Iizuka, Hideo

    2013-06-01

    We show that in a silicon double-groove grating with two different groove widths per period attached on top of a semi-infinite SiO2 substrate, almost 100% reflectivity is achieved for the -1st-order reflection with an incident angle of 60° in the Littrow mounting condition. The modal analysis reveals that modes propagating in the upward and downward directions have nearly the same amplitudes at resonance. They are added constructively for the -1st-order reflection and destructively for the 0th-order reflection and the -1st-order and 0th-order transmission. The asymmetric structure with a dielectric material poses a unique feature as a four port device.

  2. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  3. Dynamics of the 1st order phase transition between the nuclear ordered phases of solid 3He

    NASA Astrophysics Data System (ADS)

    Tanaka, Takayoshi; Ito, Hideaki; Sasaki, Yutaka; Mizusaki, Takao

    2005-08-01

    Dynamics of the 1st order phase transition between the U2D2 and the high field phases (HFP) was studied by field-cycling method between these phases by using ultra low temperature magnetic resonance imaging (ULT-MRI). Single Crystal of U2D2 3He was produced at the bottom of compressional cell in superfluid 3He-B at about 0.5 mK. Domain distribution in the U2D2 crystal was examined by ULT-MRI. We have measured the NMR signal intensity to extract the time-evolution of the HFP, after the static magnetic field was swept quickly through the critical field BC1 and was stayed at B=BC1+ΔB. The volume concentration of the U2D2 decreased exponentially in time during the early stage of the phase transition. The rate constant depended positively on ΔB. After the phase transition to the HFP was completed, the static field decreased through BC1 and was fixed at B=BC1-ΔB. The observed rate constant was similar to the value in the opposite direction with identical ΔB. This exponential evolution and ΔB dependence of its rate suggest that the early stage of the phase transition is controlled by the nucleation process.

  4. Modeling the Magnetic and Thermal Structure of Active Regions: 1st Year 1st Semi-Annual Progress Report

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2003-01-01

    This report covers technical progress during the first six months of the first year of NASA SR&T contract "Modeling the Magnetic and Thermal Structure of Active Regions", NASW-03008, between NASA and Science Applications International Corporation, and covers the period January 14, 2003 to July 13, 2003. Under this contract SAIC has conducted research into theoretical modeling of the properties of active regions using the MHD model.

  5. Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping.

    PubMed

    Jia, Xin-Hong; Rao, Yun-Jiang; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Han; Zhu, Ye-Yu; Peng, Fei

    2013-10-21

    A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4 km with 5 m spatial resolution and ~ ± 1.4 °C temperature uncertainty is successfully demonstrated.

  6. 1st Order Modeling of a SAW Delay Line using MathCAD(Registered)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.

  7. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-01

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  8. Signal processing of MEMS gyroscope arrays to improve accuracy using a 1st order Markov for rate signal modeling.

    PubMed

    Jiang, Chengyu; Xue, Liang; Chang, Honglong; Yuan, Guangmin; Yuan, Weizheng

    2012-01-01

    This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model.

  9. Signal Processing of MEMS Gyroscope Arrays to Improve Accuracy Using a 1st Order Markov for Rate Signal Modeling

    PubMed Central

    Jiang, Chengyu; Xue, Liang; Chang, Honglong; Yuan, Guangmin; Yuan, Weizheng

    2012-01-01

    This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model. PMID:22438734

  10. Embryonic development of chicken (Gallus Gallus Domesticus) from 1st to 19th day-ectodermal structures.

    PubMed

    Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica

    2013-12-01

    Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development. PMID:24019213

  11. Embryonic development of chicken (Gallus Gallus Domesticus) from 1st to 19th day-ectodermal structures.

    PubMed

    Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica

    2013-12-01

    Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development.

  12. Seasonal variation in nutrient uptake in a 1st-order tributary of Lake Superior and implications for climate change

    NASA Astrophysics Data System (ADS)

    Coble, A. A.; Marcarelli, A. M.

    2012-12-01

    In-stream biogeochemical cycling can control the timing and form of nutrients exported from watersheds to downstream ecosystems, and seasonal changes in light availability, discharge, temperature, or nutrient inputs may affect nutrient transformation and retention. Without an understanding of how in-stream biogeochemical cycling varies seasonally in snow-dominated regions it is uncertain how climate change will affect nutrient export to downstream ecosystems. Further compounding this uncertainty, few studies have examined in-stream nutrient processing during winter. Long-term monitoring (30 years) of climate and snowpack at Calumet watershed, a first order tributary of Lake Superior, has documented trends of increasing winter temperatures and greater snowmelt contributions to early season runoff. Identifying environmental variables that drive nutrient uptake is important because these observed trends may shift the timing of nutrient pulses relative to water temperatures and light availability. We hypothesized that ammonium (NH4) uptake velocity, a measure of nutrient uptake efficiency, would be greater in spring and fall due to increased light availability and nutrient pulses contributed by snowmelt in spring and leaf litter in fall. To test this hypothesis, we measured nutrient uptake velocity of ammonium (NH4) at 2-4 week intervals for one year in Calumet watershed by releasing inorganic nutrients (NH4Cl, KH2PO4) and a conservative tracer (rhodamine WT) into the stream and quantifying changes in nutrient and tracer concentrations along the stream reach. Canopy cover, ambient NH4 concentrations, stream water temperature, periphyton biomass, and discharge were also measured to identify which environmental covariates affected NH4 uptake velocities. The lowest NH4 uptake velocities were observed in winter (2.33 mm min-1) and summer months (2.03-2.08 mm min-1). Spring NH4 uptake velocities were variable: the greatest uptake velocities were observed following snowmelt

  13. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)

    1991-01-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  14. Nonlinear random motion analysis of coupled heave-pitch motions of a spar platform considering 1st-order and 2nd-order wave loads

    NASA Astrophysics Data System (ADS)

    Liu, Shuxiao; Tang, Yougang; Li, Wei

    2016-06-01

    In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.

  15. 1st principle simulations of ions in water solutions: Bond structure and chemistry in the hydration shells of highly charged ions

    NASA Astrophysics Data System (ADS)

    Weare, John

    2012-02-01

    Methods of direct simulation (Monte Carlo and molecular dynamics) have provided new insights into the structure and dynamics of electrolyte solutions. However, these methods are limited by the difficulty of developing reliable ion-solvent and solvent-solvent potential interactions in the highly perturbed hydration region. To model the interactions in this region methods of simulation that are based on the direct on the fly solution to the electronic Schr"odinger equation (ab-initio molecular dynamics, AIMD) are being developed. However, 1st principle methods have their own problems because the solution to the electronic structure problem is intractable unless rather uncontrolled approximations are made (e.g. density functional theory, DFT) and there is high computational cost to the solution to the Schr"odinger equation. To test the accuracy of AIMD methods we have directly simulated the XAFS spectra for a series of transition metal ions Ca^2+, Cr^3+, Mn^2+, Fe^3+, Co^2+, Ni^2+, Cu^2+, and Zn^2+. Despite DFT's well know deficiencies, the agreement between the calculated XAFS spectra and the data is almost quantitative for these test ions. This agreement supports the extension of the interpretation well beyond that of the usual XAFS analysis to include higher-order multiple scattering signals in the XAFS spectra, which provide a rigorous probe of the first shell distances and disorders. Less well resolved features of the spectra can still be analyzed and are related to 2nd shell structure. The combination of XAFS measurements and the parameter free AIMD method leads to new insights into the hydration structure of these ions. While strictly local DFT +gga provides excellent agreement with data, the addition of exact exchange seems to provide slightly better structural agreement. The computational complexity of these calculations requires the development of simulation tools that scale to high processor number on massively parallel supercomputers. Our present algorithm

  16. The truncated Newton using 1st and 2nd order adjoint-state method: a new approach for traveltime tomography without rays

    NASA Astrophysics Data System (ADS)

    Bretaudeau, F.; Metivier, L.; Brossier, R.; Virieux, J.

    2013-12-01

    named as the truncated Newton (TCN) (Métivier et al. 2012) with a more accurate estimation of the impact of the Hessian. We propose an efficient implementation for first-arrival traveltime tomography. In TCN, the model update Δm is obtained through the iterative resolution of the Newton linear system H Δm = - g. Based on a matrix-free conjugate gradient resolution, the iterative solver requires only the computation of the gradient and of Hessian-vector products. We propose a generalization of the computation of the gradient using the adjoint-state method that allows to consider receivers located anywhere. Then the Hessian-vector products are computed using an original formulation based on a 2nd-order adjoint-state method, at the cost of an additional forward modeling. The TCN algorithm is composed of two nested loops: an internal loop to compute Δm, and an external loop where a line search is performed to update the subsurface parameters. TCN thus considers locally the inversion of the traveltime data using an estimation of the full Hessian (both 1st and 2nd order terms) at an acceptable cost. Tomography with TCN is an improvement over the simple gradient-based adjoint-state tomography due to its good convergence property, to the better consideration of illumination, and is a promising tool for multi-parameter inversion as rescaling is given by the Hessian.

  17. Molecular spectroscopy and molecular structure - Selected communications presented at the 1st International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013)

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Fausto, Rui; Ünsalan, Ozan; Bayarı, Sevgi; Kuş, Nihal; Ildız, Gülce Ö.

    2016-01-01

    The First International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013) took place at the Harbiye Cultural Center & Museum, Istanbul, Turkey, September 15-20, 2013. The main aim of the congress was to encourage the exchange of scientific ideas and collaborations all around the world, introduce new techniques and instruments, and discuss recent developments in the field of molecular spectroscopy. Among the different subjects covered, particular emphasis was given to the relevance of spectroscopy to elucidate details of the molecular structure and the chemical and physical behavior of systems ranging from simple molecules to complex biochemical molecules. Besides experimental spectroscopic approaches, related computational and theoretical methods were also considered. In this volume, selected contributions presented at the congress were put together.

  18. Structural order in glassy water.

    PubMed

    Giovambattista, Nicolas; Debenedetti, Pablo G; Sciortino, Francesco; Stanley, H Eugene

    2005-06-01

    We investigate structural order in glassy water by performing classical molecular dynamics simulations using the extended simple point charge (SPC/E) model of water. We perform isochoric cooling simulations across the glass transition temperature at different cooling rates and densities. We quantify structural order by orientational and translational order metrics. Upon cooling the liquid into the glassy state, both the orientational order parameter Q and translational order parameter tau increase. At T=0 K, the glasses fall on a line in the Q-tau plane or order map. The position of this line depends only on density and coincides with the location in the order map of the inherent structures (IS) sampled upon cooling. We evaluate the energy of the IS, eIS(T), and find that both order parameters for the IS are proportional to eIS. We also study the structural order during the transformation of low-density amorphous ice (LDA) to high-density amorphous ice (HDA) upon isothermal compression and are able to identify distinct regions in the order map corresponding to these glasses. Comparison of the order parameters for LDA and HDA with those obtained upon isochoric cooling indicates major structural differences between glasses obtained by cooling and glasses obtained by compression. These structural differences are only weakly reflected in the pair correlation function. We also characterize the evolution of structural order upon isobaric annealing, leading at high pressure to very-high density amorphous ice (VHDA). PMID:16089741

  19. Structural and electronic trends for five coordinate 1(st) row transition metal complexes: Mn(ii) to Zn(ii) captured in a bis(iminopyridine) framework.

    PubMed

    Jurca, Titel; Ouanounou, Sarah; Shih, Wei-Chih; Ong, Tiow-Gan; Yap, Glenn P A; Korobkov, Ilia; Gorelsky, Serge; Richeson, Darrin

    2016-09-28

    The preparation and characterization of a series of divalent 3d transition metal complexes supported by a tridentate planar bis(iminopyridine) ligand are reported. The complexes {2,6-[PhC[double bond, length as m-dash]N(tBu2C6H3)]2C5H3N}MBr2 (M = Mn, Fe, Co, Ni, Cu, Zn), 1-6, were characterized by single crystal X-ray structural studies revealing complexes with pentacoordinate distorted square pyramidal coordination environments. This assembly of complexes provided a unique array for examining the relationship between experimental structure and computed electronic structure. While experimental structural features basically correlated with the Irving-Williams series, some clear deviations were rationalized through the computational analysis. A balance of bis(imino)pyridine/metal with bonding/antibonding π interactions was used to explain the divergent directions of Fe(ii)-N and Co(ii)-N bond lengths. Similarly, orbital details were used to justify the opposing change in Cu-Brap and Cu-Brbas bond lengths. Furthermore, computational analysis provided a unique method to document a surprising low bond order for the M-N bonds of bis(imino)pyridine ligand in this series. PMID:27539867

  20. X-ray diffraction study on ordered, disordered and reconstituted intercellular lipid lamellar structure in stratum corneum.

    PubMed

    Hatta, I; Ohta, N; Ban, S; Tanaka, H; Nakata, S

    2001-02-15

    From small angle X-ray diffraction for the stratum corneum of hairless mouse, it was obtained that in the normal stratum corneum, the 1st, 2nd and 3rd order diffraction peaks for the intercellular lipid lamellar structure appear at 13.8, 6.87 and 4.59 nm, respectively and also a broad hump for the 4th order reflection appears as observed by the previous researchers. In the damaged stratum corneum prepared by the treatment of sodium dodecyl sulfate, these small-angle diffraction peaks disappear and only the broad maxima remain around the 1st, 2nd and 3rd order diffraction peaks. These facts indicate that in the normal stratum the lamellar structure is ordered and in the damaged stratum corneum the lamellar structure is disordered. Furthermore, in the reconstituted lamellar structure obtained by immersing into the dilute suspension of the mixture of ceramide 3, cholesterol and stearic acid, the 1st, 2nd and 3rd order diffraction peaks reappear at 13.3, 6.67 and 4.44 nm, respectively. This fact indicates that the reorganization of the ordered lamellar structure takes place by adding the mixture to the damaged stratum corneum. PMID:11254216

  1. Ordering structured populations in multiplayer cooperation games

    PubMed Central

    Peña, Jorge; Wu, Bin; Traulsen, Arne

    2016-01-01

    Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated. PMID:26819335

  2. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  3. 28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ROCKET ENGINE LOCATED ON NORTH SIDE OF STATIC TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  4. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  5. Ordered macromolecular structures in ferrofluid mixtures

    SciTech Connect

    Hayter, J.B.; Pynn, R.; Charles, S.; Skjeltorp, A.T.; Trewhella, J.; Stubbs, G.; Timmins, P.

    1989-04-03

    We have observed ordering of dilute dispersions of spherical and cylindrical macromolecules in magnetized ferrofluids. The order results from structural correlations between macromolecular and ferrofluid particles rather than from macroscopic magnetostatic effects. We have aligned elongated macromolecules by this technique and have obtained anisotropic neutron-diffraction patterns, which reflect the internal structure of the macromolecules. The method provides a tool for orienting suspended macromolecular assemblies which are not amenable to conventional alignment techniques.

  6. Lock No. 1 St. Lucie Canal. Sector gates, internal struts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock No. 1- St. Lucie Canal. Sector gates, internal struts- nose beams. - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  7. ["1st Therapeutic Red Cross Hospital" during the civil war].

    PubMed

    Simonenko, V B; Abashin, V G

    2014-04-01

    The article presents the documentary information about the founding, the establishment and early years of the 1st Therapeutic Red Cross Hospital - in the future - Mandryka Central Military Clinical Hospital of the Ministry of Defence of the Russian Federation. Presented the work of the Hospital during the dificult period of the Civil War, typhus epidemic, famine and devastation. Specified its staffing structure, command, medical and administrative staff, travel and accommodation till the moment of the deployment in the Silver Lane in Moscow. PMID:25051792

  8. Structural order and disorder in Precambrian kerogens

    SciTech Connect

    Buseck, P.R.; Bo-Jun, H.; Miner, B.

    1988-01-01

    High-resolution transmission electron microscopy (HRTEM) has been used to examine the structures of a wide range of Precambrian kerogens from rocks with ages between 0.9 and 3.8 billion years. The authors find recognizable structural ordering in samples that show little or no evidence of crystallinity by powder X-ray diffraction measurements. A wide range in degree of ordering is evident in the HRTEM images. A rough correlation exists between the ordering displayed in the HRTEM images and both the sample ages and their H/C ratios. Many kerogen samples are structurally heterogeneous, possibly reflecting a variety of precursors, and source regions. The observed structural heterogeneities probably extend to other parameters; when isotopic and X-ray measurements can be made on the same scale as HRTEM images, similar scatter presumably will also be evident.

  9. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland

    NASA Astrophysics Data System (ADS)

    Widera, Marek

    2012-03-01

    The 1st Middle-Polish (1st Lusatian) Lignite Seam is exploited in open-cast mines in central Poland. A large number of lignite lithotypes, grouped in four lithotype associations, are distinguished: xylitic, detritic, xylo-detritic and detro-xylitic lithotype associations, which show various structures. Each lithotype association was produced under specific peat-forming environmental conditions. In the case of the lignite seams under study they represent all the main environments that are known from Neogene mires, i.e.: fen or open water, bush moor, wet forest swamp and dry forest swamp. For a simple and practical description in the field of both the lignite sections and borehole cores, a new codification for lignite lithotypes is proposed. It is based on the codification of clastic deposits (lithofacies). The practical value of the new lignite lithotype codification is examined in three vertical sections of the 1st Middle-Polish Lignite Seam.

  10. Generalized structure of higher order nonclassicality

    NASA Astrophysics Data System (ADS)

    Verma, Amit; Pathak, Anirban

    2010-02-01

    A generalized notion of higher order nonclassicality (in terms of higher order moments) is introduced. Under this generalized framework of higher order nonclassicality, conditions of higher order squeezing and higher order subpoissonian photon statistics are derived. A simpler form of the Hong-Mandel higher order squeezing criterion is derived under this framework by using an operator ordering theorem introduced by us in [A. Pathak, J. Phys. A 33 (2000) 5607]. It is also generalized for multi-photon Bose operators of Brandt and Greenberg. Similarly, condition for higher order subpoissonian photon statistics is derived by normal ordering of higher powers of number operator. Further, with the help of simple density matrices, it is shown that the higher order antibunching (HOA) and higher order subpoissonian photon statistics (HOSPS) are not the manifestation of the same phenomenon and consequently it is incorrect to use the condition of HOA as a test of HOSPS. It is also shown that the HOA and HOSPS may exist even in absence of the corresponding lower order phenomenon. Binomial state, nonlinear first order excited squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS) are used as examples of quantum state and it is shown that these states may show higher order nonclassical characteristics. It is observed that the Binomial state which is always antibunched, is not always higher order squeezed and NLVSS which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed in NLESS and consequently it is established that the HOSPS and HOS are two independent signatures of higher order nonclassicality.

  11. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  12. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  13. ISS Update: 1st Annual ISS R&D Conference

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries talks by phone on Wednesday with Julie Robinson, ISS Program Scientist, about the 1st Annual International Space Station Research and Development Confere...

  14. 1st Baby Born with DNA from 3 Parents

    MedlinePlus

    ... news/fullstory_161176.html 1st Baby Born With DNA From 3 Parents Technique designed to help couples ... be born using a controversial technique that combines DNA from three people -- two women and a man. ...

  15. FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy

    MedlinePlus

    ... html FDA OKs 1st Drug to Treat Duchenne Muscular Dystrophy Exondys 51 seems to fill unmet need for ... the first drug for a rare form of muscular dystrophy. Exondys 51 (eteplirsen) was granted accelerated approval to ...

  16. Order parameter for structural heterogeneity in disordered solids.

    PubMed

    Tong, Hua; Xu, Ning

    2014-07-01

    We construct a structural order parameter from the energy equipartition of normal modes of vibration to quantify the structural heterogeneity in disordered solids. The order parameter exhibits strong spatial correlations with low-temperature dynamics and local structural entropy. To characterize the role of particles with the most defective local structures identified by the order parameter, we pin them and measure the system response. It turns out that particles with the largest value of the order parameter are responsible for the quasilocalized low-frequency vibration, instability, softening, and nonaffinity of disordered solids. The order parameter thus crucially links the heterogeneous structure to low-temperature dynamics and mechanical properties of disordered solids.

  17. Higher order DNA structure and radiation damage

    SciTech Connect

    Oleinick, N.L.; Chiu, S.M.; Xue, L.Y.; Friedman, L.R.; Balasubramaniam, U.

    1995-12-31

    Work until now has implicated chromatin structure and/or chromatin proteins as both radioprotectors of cellular DNA for double-strand breaks (DSB) induction and substrates for DNA-protein crosslinks (DPC) production. In the present study, the authors have attempted further to differentiate between the possible roles of chromatin proteins by reconstitution of chromatin. One or more hypertonic salt extracts or commercial histones were added back to dehistonized nuclei, following which the preparations were irradiated and the yields of DPC and DSB were measured.

  18. Chromatin Higher-order Structure and Dynamics

    PubMed Central

    Woodcock, Christopher L.; Ghosh, Rajarshi P.

    2010-01-01

    The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional “higher order” levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study. PMID:20452954

  19. 1st HPV Test for Use with Preservative Fluid

    MedlinePlus

    ... 159789.html 1st HPV Test for Use With Preservative Fluid Human papillomavirus responsible for 70 percent of ... Roberts Friday, July 8, 2016 FRIDAY, July 8, 2016 (HealthDay News) -- The U.S. Food and Drug Administration has approved Roche's cobas HPV ...

  20. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    PubMed

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  1. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  2. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    PubMed

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  3. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  4. On choosing the order parameter of modulated magnetic structures

    SciTech Connect

    Murtazaev, A. K. Ibaev, Zh. G.

    2013-02-15

    Long-period modulated structures in the anisotropic Ising model with competing interactions (the ANNNI model) are studied by Monte Carlo methods. A new order parameter in the form of modulated phase amplitude is proposed for describing modulated structures. It is shown that the properties of the modulated phase-paramagnetic phase transition can be investigated by using the amplitude as the order parameter.

  5. Controlling flexible structures with second order actuator dynamics

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John

    1989-01-01

    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.

  6. Proceedings of the 1st Puerto Rico Biobanking Workshop

    PubMed Central

    Mora, Edna; Robb, James A.; Stefanoff, Gustavo; Mellado, Robert Hunter; Coppola, Domenico; Muñoz-Antonia, Teresita; Flores, Idhaliz

    2015-01-01

    The 1st Puerto Rico Biobanking Workshop took place on August 20th, 2014 in the Auditorium of the Comprehensive Cancer Center of the University of Puerto Rico, Medical Sciences Campus in San Juan Puerto Rico. The program for this 1-day, live workshop included lectures by three biobanking experts, followed by presentations from existing biobanks in Puerto Rico and audience discussion. The need for increasing biobanking expertise in Puerto Rico stems from the fact that Hispanics in general are underrepresented in the biobanks in existence in the US, which limits the research conducted specifically to understand the molecular differences in cancer cells compared to other better studied populations. In turn, this lack of information impairs the development of better diagnostic and therapeutic approaches for our population. Dr. James Robb, M.D., F.C.A.P., consulting pathologist to the National Cancer Institute (NCI) and the Office of Biorepositories and Biospecimen Research (OBBR), opened the workshop with a discussion on the basic aspects of the science of biobanking (e.g., what is a biobank; its goals and objectives; protocols and procedures) in his talk addressing the importance of banking tissues for advancing biomedical research. Next, Dr. Gustavo Stefanoff, from the Cancer Institutes Network of Latin America (RINC by its name in Spanish), explained the mission, objectives, and structure of the Network of Latin-American and Caribbean Biobanks (REBLAC by its name in Spanish), which despite limited resources and many challenges, currently accrue high quality human tissue specimens and data to support cancer research in the region. Dr. Robert Hunter-Mellado, Professor of Internal Medicine, Universidad Central del Caribe, followed with an examination of the ethical and regulatory aspects of biobanking tissues for future research, including informed consent of subjects; protection of human subjects rights; and balancing risks and benefit ratios. In the afternoon, the

  7. Molecular structural order and anomalies in liquid silica.

    PubMed

    Shell, M Scott; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2002-07-01

    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water. PMID:12241346

  8. Universal first-order reliability concept applied to semistatic structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1994-01-01

    A reliability design concept was developed for semistatic structures which combines the prevailing deterministic method with the first-order reliability method. The proposed method surmounts deterministic deficiencies in providing uniformly reliable structures and improved safety audits. It supports risk analyses and reliability selection criterion. The method provides a reliability design factor derived from the reliability criterion which is analogous to the current safety factor for sizing structures and verifying reliability response. The universal first-order reliability method should also be applicable for air and surface vehicles semistatic structures.

  9. Reduced Order Models for Fluid-Structure Interaction Phenomena

    NASA Astrophysics Data System (ADS)

    Gallardo, Daniele

    With the advent of active flow control devices for regulating the structural responses of systems involving fluid-structure interaction phenomena, there is a growing need of efficient models that can be used to control the system. The first step is then to be able to model the system in an efficient way based on reduced-order models. This is needed so that accurate predictions of the system evolution could be performed in a fast manner, ideally in real time. However, existing reduced-order models of fluid-structure interaction phenomena that provide closed-form solutions are applicable to only a limited set of scenarios while for real applications high-fidelity experiments or numerical simulations are required, which are unsuitable as efficient or reduced-order models. This thesis proposes a novel reduced-order and efficient model for fluid-structure interaction phenomena. The model structure employed is such that it is generic for different fluid-structure interaction problems. Based on this structure, the model is first built for a given fluid-structure interaction problem based on a database generated through high-fidelity numerical simulations while it can subsequently be used to predict the structural response over a wide set of flow conditions for the fluid-structure interaction problem at hand. The model is tested on two cases: a cylinder suspended in a low Reynolds number flow that includes the lock-in region and an airfoil subjected to plunge oscillations in a high Reynolds number regime. For each case, in addition to training profile we also present validation profiles that are used to determine the performance of the reduced-order model. The reduced-order model devised in this study proved to be an effective and efficient modeling method for fluid-structure interaction phenomena and it shown its applicability in very different kind of scenarios.

  10. The 1st All-Russian Workshop on Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    2007-08-01

    The 1st All-Russia Workshop on Archaeoastronomy “Astronomical and World-Outlook Meaning of the Archaeological Monuments of South Ural” was held on June 19-25, 2006, at the ground of the archaeological center “Arkaim” (Chelyabinsk Region). Besides about 30 talks, astronomical measurements were performed at two archaeological objects under intensive study: Arkaim Site (Bronze Epoch, XVIII-XVI c. B.C.) and tumuli “with whiskers” complex Kondurovsky (V-VIII c. A.D.). The promising character of the megalithic complex on the Vera Island (Lake Turgoyak) was stated.

  11. Orthogonal Higher Order Structure and Confirmatory Factor Analysis of the French Wechsler Adult Intelligence Scale (WAIS-III)

    ERIC Educational Resources Information Center

    Golay, Philippe; Lecerf, Thierry

    2011-01-01

    According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a…

  12. Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    PubMed Central

    Benson, Austin R.; Gleich, David F.; Leskovec, Jure

    2016-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  13. Reduced-order models for vertical human-structure interaction

    NASA Astrophysics Data System (ADS)

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-09-01

    For slender and lightweight structures, the vibration serviceability under crowd- induced loading is often critical in design. Currently, designers rely on equivalent load models, upscaled from single-person force measurements. Furthermore, it is important to consider the mechanical interaction with the human body as this can significantly reduce the structural response. To account for these interaction effects, the contact force between the pedestrian and the structure can be modelled as the superposition of the force induced by the pedestrian on a rigid floor and the force resulting from the mechanical interaction between the structure and the human body. For the case of large crowds, however, this approach leads to models with a very high system order. In the present contribution, two equivalent reduced-order models are proposed to approximate the dynamic behaviour of the full-order coupled crowd-structure system. A numerical study is performed to evaluate the impact of the modelling assumptions on the structural response to pedestrian excitation. The results show that the full-order moving crowd model can be well approximated by a reduced-order model whereby the interaction with the pedestrians in the crowd is modelled using a single (equivalent) SDOF system.

  14. Carbonate orientational order and superlattice structure in vaterite

    SciTech Connect

    Wang, Jianwei; Zhang, Fuxiang; Zhang, Jiaming; Ewing, Rodney C.; Becker, Udo; Cai, Zhonghou

    2014-01-01

    Vaterite is considered to play an important role as a precursor phase in the formation of calcium carbonate phases, including those related to biomineralization. An accurate description of vaterite's structure associated with the order of carbonate groups is essential to understanding the formation, stabilization, and functionality of vaterite in organisms. Molecular dynamics simulations, synchrotron X-ray diffraction, and transmission electron microscopy have been combined in order to investigate the structure of vaterite. The electrostatic interactions between Ca and neighboring CO3 groups promote local and long-range ordering of CO3 groups, which may result in a superstructure of vaterite. Molecular dynamics simulations show that the superstructure (P6522) with ordered carbonate ions has a relatively lower energy than the disordered structure. The kinetics of the disorder-to-order transition suggests that the transition is rapid and that the superstructure is expected to form. X-ray diffraction data confirm the presence of the P6522 superstructure. The measured diffraction peaks are consistent with the calculated diffraction peaks, especially those weak peaks predicted as a result of the superstructure. Transmission electron microscopy also reveals minor satellite electron diffraction peaks with the more intense peaks of the primary pattern, suggesting a superlattice structure resulted from ordering in both crystallographic ab plan and c direction, which is consistent with the proposed superstructure.

  15. Symplectic structures related with higher order variational problems

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Moreno, Giovanni

    2015-06-01

    In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.

  16. Geometrical structures determined by the functional order in nervous nets.

    PubMed

    Koenderink, J J

    1984-01-01

    The functional order of a collection of neural elements may be defined as the order induced through the total of covariances of signals carried by the members of the collection. Thus functional order differs from geometrical order (e.g. somatotopy) in that geometrical order is only available to external observers, whereas functional order is available to the system itself. It has been shown before that the covariances can be used to construct a partially ordered set that explicitely represents the functional order. It is demonstrated that certain constraints, if satisfied, make this set isomorphic with certain geometrical entities such as triangulations. For instance there may exist a set of hyperspheres in a n-dimensional space with overlap relations that are described with the same partially ordered set as that which describes the simultaneous/successive order of signals in a nerve. Thus it is logically possible that the optic nerve carries (functionally) two-dimensional signals, quite apart from anatomical considerations (e.g. the geometrically two-dimensional structure of the retina which exists only to external observers). The dimension of the modality defined by a collection of nervous elements can in principle be obtained from a cross-correlation analysis of multi-unit recordings without any resort to geometrical data such as somatotopic mappings.

  17. Processes of ordered structure formation in polypeptide thin film solutions.

    SciTech Connect

    Botiz, I.; Schlaad, H.; Reiter, G.

    2010-06-17

    An experimental study is presented on the hierarchical assembly of {alpha}-helical block copolymers polystyrene-poly({gamma}-benzyl-L-glutamate) into anisotropic ordered structures. We transformed thin solid films into solutions through exposure to solvent vapor and studied the nucleation and growth of ordered three-dimensional structures in such solutions, with emphasis on the dependence of these processes on supersaturation with respect to the solubility limit. Interestingly, polymer solubility could be significantly influenced via variation of humidity in the surrounding gas phase. It is concluded that the interfacial tension between the ordered structures and the solution increased with humidity. The same effect was observed for other protic non-solvents in the surrounding gas phase and is attributed to a complexation of poly({gamma}-benzyl-L-glutamate) by protic non-solvent molecules (via hydrogen-bonding interactions). This change of polymer solubility was demonstrated to be reversible by addition or removal of small amounts of protic non-solvent in the surrounding gas phase. At a constant polymer concentration, ordered ellipsoidal structures could be dissolved by removing water or methanol present in the solution. Such structures formed once again when water or methanol was reintroduced via the vapor phase.

  18. 1st Stage Separation Aerodynamics Of VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Genito, M.; Paglia, F.; Mogavero, A.; Barbagallo, D.

    2011-05-01

    VEGA is an European launch vehicle under development by the Prime Contractor ELV S.p.A. in the frame of an ESA contract. It is constituted by four stages, dedicated to the scientific/commercial market of small satellites (300 ÷ 2500 kg) into Low Earth Orbits, with inclinations ranging from 5.2° up to Sun Synchronous Orbits and with altitude ranging from 300 to 1500 km. Aim of this paper is to present a study of flow field due to retro-rockets impingement during the 1st stage VEGA separation phase. In particular the main goal of the present work is to present the aerodynamic activities performed for the justification of the separation phase.

  19. Higher-order structure of rRNA

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Woese, C. R.

    1986-01-01

    A comparative search for phylogenetically covarying basepair replacements within potential helices has been the only reliable method to determine the correct secondary structure of the 3 rRNAs, 5S, 16S, and 23S. The analysis of 16S from a wide phylogenetic spectrum, that includes various branches of the eubacteria, archaebacteria, eucaryotes, in addition to the mitochondria and chloroplast, is beginning to reveal the constraints on the secondary structures of these rRNAs. Based on the success of this analysis, and the assumption that higher order structure will also be phylogenetically conserved, a comparative search was initiated for positions that show co-variation not involved in secondary structure helices. From a list of potential higher order interactions within 16S rRNA, two higher-order interactions are presented. The first of these interactions involves positions 570 and 866. Based on the extent of phylogenetic covariation between these positions while maintaining Watson-Crick pairing, this higher-order interaction is considered proven. The other interaction involves a minimum of six positions between the 1400 and 1500 regions of the 16S rRNA. Although these patterns of covariation are not as striking as the 570/866 interaction, the fact that they all exist in an anti-parallel fashion and that experimental methods previously implicated these two regions of the molecule in tRNA function suggests that these interactions be given serious consideration.

  20. Structure of ordered coaxial and scroll nanotubes: general approach.

    PubMed

    Khalitov, Zufar; Khadiev, Azat; Valeeva, Diana; Pashin, Dmitry

    2016-01-01

    The explicit formulas for atomic coordinates of multiwalled coaxial and cylindrical scroll nanotubes with ordered structure are developed on the basis of a common oblique lattice. According to this approach, a nanotube is formed by transfer of its bulk analogue structure onto a cylindrical surface (with a circular or spiral cross section) and the chirality indexes of the tube are expressed in the number of unit cells. The monoclinic polytypic modifications of ordered coaxial and scroll nanotubes are also discussed and geometrical conditions of their formation are analysed. It is shown that tube radii of ordered multiwalled coaxial nanotubes are multiples of the layer thickness, and the initial turn radius of the orthogonal scroll nanotube is a multiple of the same parameter or its half. PMID:26697865

  1. Robust fixed order dynamic compensation for large space structure control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Byrns, Edward V., Jr.

    1989-01-01

    A simple formulation for designing fixed order dynamic compensators which are robust to both uncertainty at the plant input and structured uncertainty in the plant dynamics is presented. The emphasis is on designing low order compensators for systems of high order. The formulation is done in an output feedback setting which exploits an observer canonical form to represent the compensator dynamics. The formulation also precludes the use of direct feedback of the plant output. The main contribution lies in defining a method for penalizing the states of the plant and of the compensator, and for choosing the distribution on initial conditions so that the loop transfer matrix approximates that of a full state design. To improve robustness to parameter uncertainty, the formulation avoids the introduction of sensitivity states, which has led to complex formulations in earlier studies where only structured uncertainty has been considered.

  2. Robust simulation of buckled structures using reduced order modeling

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  3. Stable static structures in models with higher-order derivatives

    SciTech Connect

    Bazeia, D.; Lobão, A.S.; Menezes, R.

    2015-09-15

    We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.

  4. Structural order and disorder in strongly coupled Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Shahzad, Aamir; He, Mao-Gang

    2016-09-01

    The order-disorder structures (OD-structures) and the corresponding Yukawa thermal conductivity along with energies of three-dimensional strongly coupled Yukawa liquids (SCYLs) have been investigated by employing a modified homogenous nonequilibrium molecular dynamics (HNEMD) technique. The obtained results for Yukawa thermal conductivity with suitable normalization are measured over a wide range of various plasma states of the plasma coupling (Γ) and screening length (κ) in a canonical ensemble (NVT). The new HNEMD simulations indicate that the Yukawa system remains in disorder or weak to intermediate order states at the minimum value of thermal conductivity. In our new simulations, the system size does not affect the behavior of the lattice correlation [Ψ(τ)] while the long range order shifts toward high Γ with an increment of κ. The calculations for OD-structures show that the plasma system remains in the nonideal strongly coupled range during the complete simulation time. Investigations show that the Yukawa kinetic energy is not affected by the system size and it is also independent of time steps (Δτ) and κ but it depends on the system temperature (=1/Γ). The calculations show that the potential energy has its maximum when the Yukawa system remains in the moderate to higher degree of order (strongly coupled regime) and has a minimum value when system is in the disorder state (nonideal gas range). It is shown that an alternative method is employed to compute the long range order in dusty plasma systems, for making the HNEMD simulations very efficient and can be used to predict the OD-structures in 3D nonideal SCYLs.

  5. First-Order, Structural Transformations in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Corb, B. W.; O'Handley, R. C.; Megusar, J.; Grant, N. J.

    1983-10-01

    Magnetic evidence is presented for a first-order, structural transformation in the local order of a cobalt-base metallic glass. The transformation is centered at T0=180° C and shows a scan-rate-dependent thermal hysteresis of ΔT=100° C. A critical volume for nucleation of the transformation is estimated to contain approximately 200 atoms. The transformation appears in samples which show no microcrystallites greater than 30 Å and vanishes in samples with appreciable crystallinity. The observations are discussed in terms of model clusters of icosahedral, trigonal, and octahedral symmetry.

  6. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  7. Illustrated structural application of universal first-order reliability method

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1994-01-01

    The general application of the proposed first-order reliability method was achieved through the universal normalization of engineering probability distribution data. The method superimposes prevailing deterministic techniques and practices on the first-order reliability method to surmount deficiencies of the deterministic method and provide benefits of reliability techniques and predictions. A reliability design factor is derived from the reliability criterion to satisfy a specified reliability and is analogous to the deterministic safety factor. Its application is numerically illustrated on several practical structural design and verification cases with interesting results and insights. Two concepts of reliability selection criteria are suggested. Though the method was developed to support affordable structures for access to space, the method should also be applicable for most high-performance air and surface transportation systems.

  8. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  9. New structures in Pd-rich ordered alloys

    NASA Astrophysics Data System (ADS)

    Corbitt, Jacqueline; Gilmartin, Erin; Hart, Gus

    2009-10-01

    An intriguing intermetallic structure with 8:1 stoichiometry was discovered in the 1950s in the Pt-Ti system. Since then a handful of other Pt/Pd/Ni-X binary systems have been observed to exhibit this curious structure (Pt8Zr, Pd8Mo,Ni8Nb, etc). Precipitates of this ordered structure can significantly increase the hardness of an alloy. For jewelry applications involving Pt and Pd, international hallmarking standards require that the alloys be at least 95% pure by weight. However, Pt- and Pd-rich alloys are often soft when purity is high if the minority atoms are disordered. Because the 8:1 structure maintains a high weight percentage of Pt/Pd, it can satisfy purity standards while increasing performance. Recent calculations and experiments suggest that the 8:1 structure may form in about 20 previously unsuspected Pt/Pd binary systems. Using first-principles calculations and cluster expansion modeling, we have performed a ground state search to find the stable structures in Pd-Nb, Pd-Cu, and Pd-Mg, and predict the temperatures at which the new structures may form.

  10. The microscopic structure of charge order in cuprates

    NASA Astrophysics Data System (ADS)

    Comin, Riccardo

    2015-03-01

    The spontaneous self-arrangement of electrons into periodically modulated patterns, a phenomenon commonly termed as charge order or charge-density-wave (CDW), has recently resurfaced as a prominent, universal ingredient for the physics of high-temperature superconductors. In such context, resonant x-ray scattering (RXS) has rapidly become the technique of choice for the study of charge order in momentum space, owing to its ability to directly identify a breaking of translational symmetry in the electronic density. In this talk, I will present our recent RXS studies of charge order in Bi2201, which reconciled years of apparently disconnected findings in different cuprate families by showing how charge order is a universal phenomenon in hole-doped cuprates [R. Comin, et al., Charge Order Driven by Fermi-Arc Instability in Bi2Sr2 - xLaxCuO6 +d, Science 343, 390 (2014)]. Contextually, I will discuss very recent findings of charge order in NCCO, which project such phenomenology to the electron-doped materials [E. da Silva Neto*, R. Comin*, et al., Charge ordering in the electron-doped superconductor Nd2-xCexCuO4, accepted (2014) - preprint at: http://arxiv.org/abs/1410.2253]. Furthermore, in YBCO, we have succeeded to fully reconstruct the CDW order parameter in the two-dimensional momentum space and demonstrate how resonant x-ray methods can be used to peer into the microscopic structure and symmetry of the charge order. Using this new method, we have been able to demonstrate the presence of charge stripes at the nanoscale [R. Comin, et al., Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6 +y, under review (2014)], as well as evaluate the local symmetry in the charge distribution around the Cu atoms, which was found to be predominantly of a d-wave bond-order type [R. Comin, et al., The symmetry of charge order in cuprates, under review (2014) - preprint at: http://arxiv.org/abs/1402.5415].

  11. THEOS: The1st Thailand EO System and

    NASA Astrophysics Data System (ADS)

    Peanvijarnpong, Chanchai

    Thailand has engaged in remote sensing satellite technological and scientific development many years since early 1980s. Thailand Landsat Station was established as a regional center of data processing and dissemination for Thai scientists for data applications. Over the years, GISTDA and Thai user community have been gaining technical experience and expertise in satellite data applications around the country such natural resources and environmental management, forest inventory, forest change detections, soil mapping, land-use and land cover mapping, crop type mapping, coastal shrimp farming, flood zone mapping, base mapping, water and drought management. The Government of Thailand realizes that remote sensing satellite technology is an important mechanism for social and economic development of the country. So the 1st Thailand Earth Observation System (THEOS) development program was approved by the Government since 2003. THEOS system is sub-synchronous satellite orbiting around the earth at 822 km. altitude same as SPOT satellites. It carries two imaging instruments; 2-m Panchromatic telescope with 22 km. swath width and 15-m resolution camera with four-multi-spectral band and 90-km swath wide. THEOS is scheduled to launch around March 2008. A number of technological and scientific activities has been implementing for Thailand and international scientific user community. Therefore THEOS is strong endorsement from the Government of Thailand on the value of remote sensing technology. This paper presents Thailand EO activities including THEOS System and its plans.

  12. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  13. Neutron scattering studies on chromatin higher-order structure

    SciTech Connect

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  14. Order-disorder structural transition in a confined fluid

    NASA Astrophysics Data System (ADS)

    de la Calleja-Mora, E. M.; Krott, Leandro B.; Barbosa, M. C.

    2016-05-01

    In this paper we analyze the amorphous/solid to disordered liquid structural phase transitions of an anomalous confined fluid in terms of their fractal dimensions. The model studied is composed by particles interaction through a two-length scales potential confined by two infinite plates. This fluid that in the bulk exhibits water-like anomalies under confinement forms layers of particles. We show that the fluid at the contact layer forms at high densities structures and transitions that can be mapped into fractal dimensions. The multi-fractal singularity spectrum is obtained in all these cases and it is used as the order parameter to quantify the structural transitions for each stage on the confined liquid. This mapping shows that the fractal dimension increases with the density and with the temperature.

  15. Topologically ordered magnesium-biopolymer hybrid composite structures.

    PubMed

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices.

  16. Structure of ordered and disordered {alpha}-brass

    SciTech Connect

    Mu''ller, S.; Zunger, Alex

    2001-03-01

    Alloys of copper and zinc (brass) have been widely used since Neolithic times due to the discovery that unlike regular copper this alloy can be worked ''cold'' around a 3:1 copper-to-zinc ratio. While it is now known that the as-grown system is a disordered fcc solid solution, no 3:1 ordered phase has yet been directly observed even though the negative mixing enthalpy of the disordered alloy suggests ordering tendencies. Moreover, neutron scattering experiments have been deduced that this disordered alloy contains peculiar chains of Zn atoms. We have expressed the first-principles calculated total energy of general Cu-Zn fcc-lattice configurations using a mixed-space cluster expansion. Application of Monte Carlo--simulated annealing to this generalized Ising-like Hamiltonian produces the predicted low-temperature ground state as well as finite-temperature phase diagram and short-range order. We find (i) that at low temperature the disordered fcc alloy will order into the DO{sub 23} structure, (ii) the high-temperature short-range order in close agreement with experiment, and (iii) chains of Zn atoms in the [001] direction, as seen experimentally. Furthermore, our model allows a detailed study of the influence and importance of strain on the phase stability.

  17. New structures in Pd-rich ordered alloys

    NASA Astrophysics Data System (ADS)

    Corbitt, Jacqueline; Gilmartin, Erin; Hart, Gus

    2010-10-01

    An intriguing intermetallic structure with 8:1 stoichiometry was discovered in the 1950s in the Pt-Ti system. Since then a handful of other Pt/Pd/Ni binary systems have been observed to exhibit this curious structure (Pt8Zr, Pd8Mo, Ni8Nb, etc). This ordered structure can significantly increase the hardness of an alloy. For jewelry applications involving Pt and Pd, international hallmarking standards require that the alloys be at least 95% pure by weight. However, Pt- and Pd-rich alloys are often soft when purity is high if the minority atoms are disordered. Because the 8:1 structure maintains a high weight percentage of Pt/Pd, it can satisfy purity standards while increasing performance. Recent calculations and experiments suggest that the 8:1 structure may form in about 20 previously unsuspected Pt/Pd binary systems. Using first-principles calculations and cluster expansion modeling, we have performed a ground state search to find the stable structures in Pd-Nb and Pd-Cu. In collaboration with Candace Lang's group at University of Capetown South Africa, we are working to experimentally validate the predicted ground states.

  18. New structures in Pd-rich ordered alloys

    NASA Astrophysics Data System (ADS)

    Corbitt, Jacqueline; Gilmartin, Erin; Hart, Gus

    2009-03-01

    An intriguing intermetallic structure with 8:1 stoichiometry was discovered in the 1950s in the Pt-Ti system. Since then a handful of other Pt/Pd/Ni binary systems have been observed to exhibit this curious structure (Pt8Zr, Pd8Mo, Ni8Nb, etc). This ordered structure can significantly increase the hardness of an alloy. For jewelry applications involving Pt and Pd, international hallmarking standards require that the alloys be at least 95% pure by weight. However, Pt- and Pd-rich alloys are often soft when purity is high if the minority atoms are disordered. Because the 8:1 structure maintains a high weight percentage of Pt/Pd, it can satisfy purity standards while increasing performance. Recent calculations and experiments suggest that the 8:1 structure may form in about 20 previously unsuspected Pt/Pd binary systems. Using first-principles calculations and cluster expansion modeling, we have performed a ground state search to find the stable structures in Pd-Nb and Pd-Cu. In collaboration with Candace Lang's group at University of Capetown South Africa, we are working to experimentally validate the predicted ground states.

  19. New structures in Pd-rich ordered alloys

    NASA Astrophysics Data System (ADS)

    Corbitt, Jacqueline; Gilmartin, Erin; Hart, Gus

    2010-03-01

    An intriguing intermetallic structure with 8:1 stoichiometry was discovered in 1959 in the Pt-Ti system. Since then a handful of other Pt/Pd/Ni binary systems have been observed to exhibit this structure (Pt8Zr, Pd8Mo, Ni8Nb, etc). Precipitates of this ordered structure can significantly increase the hardness of an alloy. For jewelry applications involving Pt and Pd, international hallmarking standards require that the alloys be at least 95% pure by weight. However, Pt- and Pd-rich alloys are often too soft for jewelry applications when purity is high and the minority atoms are disordered. Because the 8:1 structure maintains a high weight percentage of Pt/Pd, it can satisfy hallmarking while increasing performance. Recent calculations and experiments suggest that the 8:1 structure may form in about 20 previously unsuspected Pt/Pd binary systems. Using first-principles calculations and cluster expansion modeling, we have performed a ground state search to find the stable structures in Pd-Nb and Pd-Cu. In collaboration with Candace Lang's group at University of Capetown South Africa, we are working to experimentally validate the predicted ground states.

  20. Reduced order modeling of fluid/structure interaction.

    SciTech Connect

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  1. 94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST 1857' - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. Structure and Dynamics of Quasi-Ordered Systems

    SciTech Connect

    Eckert, J.; Redondo, A.; Henson, N.J.; Wang, W.; Hay, P.J.

    1999-07-09

    The functionality of many materials of both fundamental and technological interest is often critically dependent on the nature and extent of any disorder that may be present. In addition, it is often difficult to understand the nature of disorder in quite well ordered systems. There is therefore an urgent need to develop better tools, both experimental and computational, for the study of such quasi-ordered systems. To this end, the authors have used neutron diffraction studies in an attempt to locate small metal clusters or molecules randomly distributed inside microporous catalytic materials. Specifically, they have used pair distribution function (PDF) analysis, as well as inelastic neutron scattering (INS) spectroscopy, to study interactions between adsorbate molecules and a microporous matrix. They have interfaced these experimental studies with computations of PDF analysis as well as modeling of the dynamics of adsorbates. These techniques will be invaluable in elucidating the local structure and function of many of these classes of materials.

  3. Orbital Order, Structural Transition, and Superconductivity in Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Yanagi, Yuki; Yamakawa, Youichi; Adachi, Naoko; Ōno, Yoshiaki

    2010-12-01

    We investigate the 16-band d- p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++-wave superconductivity due to the orbital fluctuation for a large g case with TQ>TN, while the s±-wave due to the magnetic fluctuation for a small g case with TQ ≤ TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts>TN.

  4. Higher-order structure of Saccharomyces cerevisiae chromatin

    SciTech Connect

    Lowary, P.T.; Widom, J. )

    1989-11-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure.

  5. [The 1st International Youth Ecologist Forum in China, 2009: a review].

    PubMed

    Xiong, You-cai; Xiong, Jun-lan; Li, Pu-fang; Li, Zhi-hua; Kong, Hai-yan; Wang, Shao-ming

    2011-04-01

    To promote the communication and cooperation between Chinese and overseas youth ecologists, a conference entitled "The 1st International Young Ecologist Forum" was held at Lanzhou University in June 29-30, 2009. This conference was organized by outstanding overseas ecologists and hosted by Lanzhou University. The presentations covered broad areas of ecology, including plant-soil interactions, structure and function of regional ecosystems, ecological security and ecological planning, global change ecology, and environmental sustainability, demonstrating that the development of China ecology is gradually from traditional basic research transforming into applied research. The presentations also reflected in some extent the development characteristics, evolution direction, and distribution pattern of China ecological research. China ecological research has gradually formed four centers, the Northeast, North, Northwest, and Southeast China, and each of them has its definite regional characteristics. Some suggestions about the organization form and future planning of the forum were put forward.

  6. Evolution of Feeding Structures in the Marine Nematode Order Enoplida.

    PubMed

    Smythe, Ashleigh B

    2015-08-01

    Marine nematodes of the order Enoplida may represent the earliest lineage of nematodes and have a variety of fixed and movable feeding structures in their stomas. This study used an 18S ribosomal RNA phylogeny of the orders Enoplida and Triplonchida (subclass Enoplia) to explore the evolution of these feeding structures in light of previous hypotheses based solely on morphology. The Enoplida and Triplonchida were found to be paraphyletic, as several taxa currently classified as Triplonchida, such as Rhabdodemania, were found to be part of the Enoplida clade. The position of Rhabdodemania within Enoplida was unclear, but a close relation to Enoplidae and Thoracostomopsidae was not supported, making it unlikely that its movable odontia are homologous with the mandibles of these families. A member of Anticomidae was well-supported as the base of the clade containing Phanodermatidae, Enoplidae, and Thoracostomopsidae, suggesting that taxa with buccal rods and mandibles evolved from nematodes with unarmed stomas. The Phanodermatidae were shown to be more closely related to the Enoplidae and Thoracostomopsidae than were the Leptosomatidae, suggesting that the buccal rods of the phanoderms (rather than the mandibular ridge/odontia complex of the Leptosomatidae), may be the origin of the mandibles. PMID:25987716

  7. The structure and ordering of ɛ-MnO 2

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hoon; Akase, Zentaro; Zhang, Lichun; Heuer, Arthur H.; Newman, Aron E.; Hughes, Paula J.

    2006-03-01

    The presence of ɛ-MnO 2 as a major component of electrolytic manganese dioxide (EMD) has been demonstrated by a combined X-ray diffraction/transmission electron microscopy (TEM) study. ɛ-MnO 2 usually has a partially ordered defect NiAs structure containing 50% cation vacancies; these vacancies can be fully ordered by a low temperature (200 °C) heat treatment to form a pseudohexagonal but monoclinic superlattice. Numerous fine-scale anti-phase domain boundaries are present in ordered ɛ-MnO 2 and cause extensive peak broadening and a massive shift of a very intense, 0.37 nm superlattice peak. This suggests a radically different explanation of the ubiquitous, very broad ˜0.42 nm peak (˜21-22° 2 θ, Cu Kα radiation) in EMDs, which heretofore has been attributed to Ramsdellite containing numerous planar defects. This work confirms the multi-phase model of equiaxed EMDs proposed by Heuer et al. [ITE Lett. 1(6) (2000) B50; Proc. Seventh Int. Symp. Adv. Phys. Fields 92 (2001)], rather than the defective single-phase model of Chabre and Pannetier [Prog. Solid State Chem. 23 (1995) 1] and Bowden et al. [ITE Lett. 4(1) (2003) B1].

  8. Structure and ordering of oxygen on unreconstructed Ir(100)

    NASA Astrophysics Data System (ADS)

    Ferstl, P.; Schmitt, T.; Schneider, M. A.; Hammer, L.; Michl, A.; Müller, S.

    2016-06-01

    The adsorption of oxygen on the unreconstructed Ir(100) surface is investigated by a combination of experimental and theoretical methods comprising low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density-functional theory (DFT). Apart from the well-known (2 ×1 ) -O phase, we find a new (3 ×1 ) -O phase for temperatures below 180 K. Our DFT calculations predict these two phases to be the only fundamental ground states of the system in the coverage range up to 0.5 monolayers. An analysis of the phase transitions as a function of coverage reveals extended coexistence ranges between the clean surface and the 3 ×1 phase, or between the 3 ×1 and 2 ×1 phases, respectively. As a function of temperature, both phases undergo order-disorder transitions at about 650 K for the 2 ×1 phase and 180 K for the 3 ×1 phase, the latter being only partially reversible. The complete ordering behavior can be consistently explained by the energetics of model defect structures calculated by DFT. The crystallographic structure of the phases is determined by full-dynamical LEED intensity analyses, yielding excellent agreement between experimental and calculated data sets (Pendry R -factors: RP≈0.1 ). Oxygen was found to assume bridge sites always inducing significant relaxations within the substrate. The derived structural parameters coincide with the respective predictions from DFT on the picometer scale. It is also shown that remnants and precursor stages of the clean surface's reconstruction can only be detected through the application of real-space methods such as STM. The overarching objective of the present study is to demonstrate how precisely and accurately such an adsorption system can be investigated nowadays by using a concerted experimental and theoretical approach.

  9. Psychiatric Diagnosis and Concomitant Medical Treatment for 1st and 2nd Grade Children

    ERIC Educational Resources Information Center

    Cornell-Swanson, La Vonne; Frankenberger, William; Ley, Katie; Bowman, Krista

    2007-01-01

    This study examined the proportion of children in 1st and 2nd grade classes who were currently prescribed medication for psychotropic disorders. The study also examined the attitudes of 1st and 2nd grade teachers toward diagnosis of psychiatric disorders and use of psychiatric medication to treat children. Results of the current study indicate…

  10. First Order Reliability Application and Verification Methods for Semistatic Structures

    NASA Technical Reports Server (NTRS)

    Verderaime, Vincent

    1994-01-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored by conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments, its stress audits are shown to be arbitrary and incomplete, and it compromises high strength materials performance. A reliability method is proposed which combines first order reliability principles with deterministic design variables and conventional test technique to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety index expression. The application is reduced to solving for a factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and with the pace of semistatic structural designs.

  11. Electrochemical and structural characterization of ordered graphite electrodes

    SciTech Connect

    McDermott, M.T.

    1993-01-01

    Highly oriented pyrolytic graphite (HOPG) was utilized to examine the structure/reactivity relationships for carbon electrodes in a well-defined matter. The basal plane of HOPG is ideal for this type of study due to its well-ordered surface structure. The electrochemical reactivity of basal plane HOPG was determined in terms of adsorption of anthraquinone 2,6-desulfonate ([Gamma][sub 2,6-AQDS]), the heterogeneous electron transfer rate constant of the ferro/ferricyanide redox couple (k[degrees] for Fe(CN)[sup [minus]3/[minus]4][sub 6]) and electrode capacitance (C[degrees]). [Gamma][sub 2,6-AQDS] tracks defects at basal plane HOPG electrodes indicating that the adsorption of 2,6-AQDS is a good marker for defects on the surface of basal plane HOPG. When measured on the same basal plane surface, k[degrees] for Fe(CN)[sup [minus]3/[minus]4][sub 6] and C[degrees] correlate with [Gamma][sub 2,6-AQDS] indicating that all three electrochemical observables are controlled by the same surface variables. This illustrates the importance of surface defects on electrochemical activity at basal plane HOPG electrodes. The correlation between k[degrees] for Fe(CN)[sup [minus]3/[minus]4][sub 6], C[degrees] and [Gamma][sub 2,6-AQDS] enabled the evaluation of these parameters at near-perfect basal plane. The data indicate that basal plane HOPG exhibits anomalously low electrochemical reactivity. An investigation of basal plane HOPG electrodes with scanning tunneling microscopy (STM) revealed that defects, in the form of cleavage steps, cover 1% of the surface for the HOPG sample studied. Atomic scale STM images of step edges revealed that structural defects induce an electronic perturbation of the surface which occupies a significant area near the defect. [Gamma][sub 2,6-AQDS], k[degrees] for Fe(CN)[sup [minus]3/[minus]4][sub 6] and C[degrees] are influenced not only by the structural defect but also by the defect induced electronic perturbation.

  12. Higher order chromatin structures in maize and Arabidopsis.

    PubMed Central

    Paul, A L; Ferl, R J

    1998-01-01

    We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is approximately 45 kb in maize and approximately 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome. PMID:9707534

  13. Order of arrival structures arbuscular mycorrhizal colonization of plants.

    PubMed

    Werner, Gijsbert D A; Kiers, E Toby

    2015-03-01

    Priority effects - the impact of a species' arrival on subsequent community development - have been shown to influence species composition in many organisms. Whether priority effects among arbuscular mycorrhizal fungi (AMF) structure fungal root communities is not well understood. Here, we investigated whether priority effects influence the success of two closely related AMF species (Rhizophagus irregularis and Glomus aggregatum), hypothesizing that a resident AMF suppresses invader success, this effect is time-dependent and a resident will experience reduced growth when invaded. We performed two glasshouse experiments using modified pots, which permitted direct inoculation of resident and invading AMF on the roots. We quantified intraradical AMF abundances using quantitative PCR and visual colonization percentages. We found that both fungi suppressed the invading species and that this effect was strongly dependent on the time lag between inoculations. In contrast to our expectations, neither resident AMF was negatively affected by invasion. We show that order of arrival can influence the abundance of AMF species colonizing a host. These priority effects can have important implications for AMF ecology and the use of fungal inocula in sustainable agriculture.

  14. Structural control design based on reduced-order observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    An observer-based structural control design method is proposed in this paper. The method is a semi-inverse design procedure in that the control law is not designed before the observer system, but is a result that comes from the observer design. However, the observer design is not completely independent of the control design either, but seeks to yield a control law that is close to a prescribed control law. First, the observer design problem is considered as the reconstruction of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the optimal feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. The semi-inverse design procedure can yield a reduced-order observer with dimension considerably smaller than that of the system. Two examples are used to demonstrate the proposed design procedure.

  15. "Lagrange functions" for order(N) electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Varga, Kalman; Zhang, Zhenyu; Pantelides, S. T.

    2004-03-01

    "Plane waves" have several highly desirable properties for electronic structure calculations, but effectively scale as N3, where N is the number of atoms, because they impose a uniform grid on which one must perform fast Fourier transforms (FFTs). To achieve near-order-N methods, it is imperative to adopt "real-space methods and non-uniform grids. The objective is usually pursued either by discretization or by adopting local basis sets, either numerical or analytical, with optimized short range. Here we report on a novel basis set, which we label "Lagrange functions" that are defined to satisfy the Lagrange interpolation condition and on a grid that corresponds to a Gaussian quadrature for integrations with optimized numerical accuracy. Lagrange functions combine the best attributes of plane waves and real-space methods. Just like plane waves, convergence is controlled by a single parameter in a systematic way, are orthonormal and defined analytically everywhere, but have the added flexibility of a weight function that controls the distribution of grid points and can be used to optimize the calculation for each system. They do not require FFTs and integrals are trivial and accurate since each Lagrange function is nonzero on a single grid point. The power of the method will be illustrated with several examples.

  16. Steps, Stages, and Structure: Finding Compensatory Order in Scientific Theories

    ERIC Educational Resources Information Center

    Rutjens, Bastiaan T.; van Harreveld, Frenk; van der Pligt, Joop; Kreemers, Loes M.; Noordewier, Marret K.

    2013-01-01

    Stage theories are prominent and controversial in science. One possible reason for their appeal is that they provide order and predictability. Participants in Experiment 1 rated stage theories as more orderly and predictable (but less credible) than continuum theories. In Experiments 2-5, we showed that order threats increase the appeal of stage…

  17. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  18. Texas Reports 1st U.S. Case of Zika from Travel to Another State

    MedlinePlus

    ... 160450.html Texas Reports 1st U.S. Case of Zika From Travel to Another State Resident had recently ... what appears to be the first case of Zika infection traveling across state lines, Texas health officials ...

  19. 45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Turn span from SE. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  20. 46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Overall view, from S. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  1. BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ELEVATION DETAIL OF GERMAN TEXT. VIEW TO NORTHEAST. - Cave Hill National Cemetery, 701 Baxter Avenue, Louisville, Jefferson County, KY

  2. U.S. Premature Births Rise for 1st Time in 8 Years

    MedlinePlus

    ... 161792.html U.S. Premature Births Rise for 1st Time in 8 Years March of Dimes' report finds ... United States increased in 2015 for the first time in eight years, and rates are especially high ...

  3. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  4. 14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, crib area of building, showing electrical and plumbing cribs, wall and ceiling detail, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  5. 7. 1ST FLOOR, LOOKING SOUTH SHOWING DINING ROOM FIREPLACE (LEFT); ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. 1ST FLOOR, LOOKING SOUTH SHOWING DINING ROOM FIREPLACE (LEFT); ENTRY SITTING ROOM FIREPLACE (RIGHT) AND LIVING ROOM (BACKGROUND). - Fort Riley, Building No. 4, 4 Barry Avenue, Riley, Riley County, KS

  6. Florida Reports 1st Locally Transmitted Zika Infections in U.S.

    MedlinePlus

    ... fullstory_160151.html Florida Reports 1st Locally Transmitted Zika Infections in U.S. 4 cases likely originated from ... apparently experiencing its first local outbreak of the Zika virus, with four human infections reported in South ...

  7. 62. Neg. No. F75A, Jun 18, 1930, INTERIORWAREHOUSE, 1ST FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Neg. No. F-75A, Jun 18, 1930, INTERIOR-WAREHOUSE, 1ST FLOOR, STORAGE OF AUTOMOBILE COMPONENTS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  8. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  9. 19. Detail of brick courses 116, back side, between 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of brick courses 1-16, back side, between 1st and 2nd windows from the right - Oklahoma State University, Boys Dormitory, Northwest corner of Hester Street & Athletic Avenue, Stillwater, Payne County, OK

  10. 20. Detail of brick courses 4675, back side, between 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of brick courses 46-75, back side, between 1st and 2nd windows from the right - Oklahoma State University, Boys Dormitory, Northwest corner of Hester Street & Athletic Avenue, Stillwater, Payne County, OK

  11. If 1st Baby's Early, 2nd Will Be Too: Study

    MedlinePlus

    ... If 1st Baby's Early, 2nd Will Be Too: Study Chances just as high for women who go ... it really is a potent factor," said senior study author Laura Jelliffe-Pawlowski. She is associate director ...

  12. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  13. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  14. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence.

  15. The Use of Partial Order Structures for Investigating Suicidal Behavior.

    ERIC Educational Resources Information Center

    Dancer, L. Suzanne

    This study had two purposes: to test the usefulness of partial order scalogram analysis with multivariate response data; and to illustrate the multidimensional nature of suicide risk. A detailed introduction describes partial order scalograms, which locate respondents' profiles in a two-dimensional space (rather than on a unidimensional Guttman…

  16. Steps, stages, and structure: finding compensatory order in scientific theories.

    PubMed

    Rutjens, Bastiaan T; van Harreveld, Frenk; van der Pligt, Joop; Kreemers, Loes M; Noordewier, Marret K

    2013-05-01

    Stage theories are prominent and controversial in science. One possible reason for their appeal is that they provide order and predictability. Participants in Experiment 1 rated stage theories as more orderly and predictable (but less credible) than continuum theories. In Experiments 2-5, we showed that order threats increase the appeal of stage theories of grief (Experiment 2) and moral development (Experiments 4 and 5). Experiment 3 yielded similar results for a stage theory on Alzheimer's disease characterized by predictable decline, suggesting that preference for stage theories is independent of valence. Experiment 4 showed that the effect of threat on theory preference was mediated by the motivated perception of order, and Experiment 5 revealed that it is particularly the fixed order of stages that increases their appeal. PMID:22642712

  17. The Molecular Structure of the Liquid Ordered Phase

    NASA Astrophysics Data System (ADS)

    Lyman, Edward

    2014-03-01

    Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μsec all-atom trajectory of liquid-ordered/liquid-disordered coexistence (Lo/Ld) , are composed of saturated hydrocarbon chains packed with local hexagonal order, and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the Lo phase are in excellent agreement with 2H NMR measurements; the local hexagonal packing is also consistent with 1H-MAS NMR spectra of the Lo phase, NMR diffusion experiments, and small angle X-ray- and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the Lo regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.

  18. Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba3Fe3O7F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Reitz, Christian; Witte, Ralf; Kruk, Robert; Smith, Ronald I.

    2016-11-01

    This article describes a detailed investigation of the crystallographic and magnetic structure of perovskite type Ba3Fe3O7F by a combined analysis of X-ray and neutron powder diffraction data. Complete ordering of vacancies within the perovskite lattice could be confirmed. In addition, the structure of the anion sublattice was studied by means of the valence bond method, which suggested partial ordering of the fluoride ions on two of the six crystallographically different anion sites. Moreover, the compound was found to show G-type antiferromagnetic ordering of Fe moments, in agreement with magnetometric measurements as well as previously recorded 57Fe Mössbauer spectroscopy data.

  19. INL FY2014 1st Quarterly Performance Analysis

    SciTech Connect

    Loran Kinghorn

    2014-07-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 76 occurrence reports and over 16 other deficiency reports (including not reportable events) identified at the INL during the period of October 2013 through December 2013. Battelle Energy Alliance (BEA) operates the INL under contract DE AC 07 051D14517

  20. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  1. Higher order structures of the caseins: a paradox?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter deals with the molecular architecture of the major milk proteins, the caseins. Earlier theories of casein structure classified them as random coils; i.e., flexible without definite structural elements. Recent advances in the field of protein chemistry have significantly enhanced ...

  2. National Institute for Rocket Propulsion Systems 1st Annual Workshop

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv; Fry, Emma; Swindell, Tina

    2012-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) is a Government -wide initiative that seeks to ensure the resiliency of the Nation fs rocket propulsion community in order for the enterprise to remain vibrant and capable of providing reliable and affordable propulsion systems for the nation fs defense, civil and commercial needs. Recognizing that rocket propulsion is a multi-use technology that ensures the nation fs leadership in aerospace, the Government has a vested interest in maintaining this strategic capability through coordinated and synchronized acquisition programs and continual investments in research and development. NIRPS is a resource for collaboration and integration between all sectors of the U.S. propulsion enterprise, supporting policy development options, identifying technology requirements, and offering solutions that maximize national resources while ensuring that capability exists to meet future demand. NIRPS functions as a multi ]agency organization that our nation fs decision makers can look to for comprehensive information regarding all issues concerning the propulsion enterprise.

  3. Wind-US Results for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis; Dippold, Vance, III; Georgiadis, Nicholas

    2012-01-01

    This presentation contains Wind-US results presented at the 1st Propulsion Aerodynamics Workshop. The The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from representatives from government, industry, academia, and commercial software companies. Participants were were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a series of convergent convergent nozzles for a range of nozzle pressure ratios between 1.4 and 7.0. These configurations included a included a reference axisymmetric nozzle as well as 15deg , 25deg , and 40deg conical nozzles. Participants were also asked also asked to examine the plume shock structure for two cases where the 25deg conical nozzle was bifurcated by a bifurcated by a solid plate. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total and total pressure at downstream rake locations were examined.

  4. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the

  5. 1st meeting on topical drug delivery to the nail.

    PubMed

    Murdan, Sudaxshina

    2007-07-01

    The first ever symposium dedicated solely to drug delivery to the nail following topical application was held on the 2nd April 2007, in London, UK, organised by Dr Clive Roper (Charles River Laboratories, Scotland) and Dr Sudaxshina Murdan (School of Pharmacy, University of London, UK), under the auspices of Skin Forum. The 1-day meeting was attended by approximately 35 delegates from industry, academia and hospitals, and provided a much-needed forum for the presentation and discussion of research and problems in this emerging field. Topical drug delivery is especially suitable for onychomycosis (fungal infections of the nail plate and/or nail bed) and nail psoriasis, which affect 2 - 13 and 1 - 3% of the general population, respectively, and make up the bulk of nail disorders. Topical therapy would avoid the adverse events and drug interactions of systemic antifungal agents and the pain of injection when antipsoriatic agents are injected into affected nail folds. However, successful topical therapy is extremely challenging due to the very low permeability of the nail plate. Five speakers spoke about various aspects of topical drug delivery to the nail, including review of the nail plate structure, function, diseases, their existing therapies (systemic and topical), limitations and global sales. The need for effective topical drug delivery to the nail to overcome the problems associated with present treatment, and the fact that there are few topical formulations available for the treatment of nail fungal infections and psoriasis, and the even fewer effective formulations, was highlighted. PMID:17683257

  6. 1st meeting on topical drug delivery to the nail.

    PubMed

    Murdan, Sudaxshina

    2007-07-01

    The first ever symposium dedicated solely to drug delivery to the nail following topical application was held on the 2nd April 2007, in London, UK, organised by Dr Clive Roper (Charles River Laboratories, Scotland) and Dr Sudaxshina Murdan (School of Pharmacy, University of London, UK), under the auspices of Skin Forum. The 1-day meeting was attended by approximately 35 delegates from industry, academia and hospitals, and provided a much-needed forum for the presentation and discussion of research and problems in this emerging field. Topical drug delivery is especially suitable for onychomycosis (fungal infections of the nail plate and/or nail bed) and nail psoriasis, which affect 2 - 13 and 1 - 3% of the general population, respectively, and make up the bulk of nail disorders. Topical therapy would avoid the adverse events and drug interactions of systemic antifungal agents and the pain of injection when antipsoriatic agents are injected into affected nail folds. However, successful topical therapy is extremely challenging due to the very low permeability of the nail plate. Five speakers spoke about various aspects of topical drug delivery to the nail, including review of the nail plate structure, function, diseases, their existing therapies (systemic and topical), limitations and global sales. The need for effective topical drug delivery to the nail to overcome the problems associated with present treatment, and the fact that there are few topical formulations available for the treatment of nail fungal infections and psoriasis, and the even fewer effective formulations, was highlighted.

  7. Simple NMR methods for evaluating higher order structures of monoclonal antibody therapeutics with quinary structure.

    PubMed

    Chen, Kang; Long, Dianna S; Lute, Scott C; Levy, Michaella J; Brorson, Kurt A; Keire, David A

    2016-09-01

    Monoclonal antibody (mAb) drugs constitute the largest class of protein therapeutics currently on the market. Correctly folded protein higher order structure (HOS), including quinary structure, is crucial for mAb drug quality. The quinary structure is defined as the association of quaternary structures (e.g., oligomerized mAb). Here, several commonly available analytical methods, i.e., size-exclusion-chromatography (SEC) FPLC, multi-angle light scattering (MALS), circular dichroism (CD), NMR and multivariate analysis, were combined and modified to yield a complete profile of HOS and comparable metrics. Rituximab and infliximab were chosen for method evaluation because both IgG1 molecules are known to be homologous in sequence, superimposable in Fab crystal structure and identical in Fc structure. However, herein the two are identified to be significantly different in quinary structure in addition to minor secondary structure differences. All data collectively showed rituximab was mostly monomeric while infliximab was in mono-oligomer equilibrium driven by its Fab fragment. The quinary structure differences were qualitatively inferred from the less used but more reproducible dilution-injection-SEC-FPLC curve method. Quantitative principal component analysis (PCA) was performed on NMR spectra of either the intact or the in-situ enzymatic-digested mAb samples. The cleavage reactions happened directly in NMR tubes without further separation, which greatly enhanced NMR spectra quality and resulted in larger inter- and intra-lot variations based on PCA. The new in-situ enzymatic digestion method holds potential in identifying structural differences on larger therapeutic molecules using NMR.

  8. Crystal structures and second-order NLO properties of borogermanates

    SciTech Connect

    Zhang, Jian-Han; Kong, Fang; Xu, Xiang; Mao, Jiang-Gao

    2012-11-15

    Borogermanates are a class of very important compounds in materials chemistry. In this paper, the syntheses, structures, and properties of metal borogermanates are reviewed. Organically templated borogermanates with zeolite-like open-frameworks show potential applications as microporous materials. Many compounds in alkali or alkaline-earth borogermanate systems are structurally acentric or polar, some of which exhibit excellent Second Harmonic Generation (SHG) coefficients, wide transparency regions, and high optical-damage thresholds as well as excellent thermal stability. Most of the lanthanide borogermanates are structurally centrosymmetric and not SHG active; however, they are able to emit strong luminescence in visible or near-IR region. In the B-rich compounds, BO{sub 3} and BO{sub 4} groups can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures via B-O-B bridges; whereas in the Ge-rich compounds, GeO{sub 4} and GeO{sub 6} polyhedra can also be polymerized. The combinations of borate and germinate afforded rich structural and topological types. - Graphical abstract: Borogermanates are a class of very important compounds in materials chemistry. Both BO{sub x} (x=3, 4) and GeO{sub y} (y=4, 6) polyhedra can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures. The combinations of borate and germanate groups in the same oxide framework not only give rise to a rich structural chemistry, but also afford many polar compounds with good SHG properties. Highlights: Black-Right-Pointing-Pointer Borogermanates are a class of new materials. Black-Right-Pointing-Pointer They feature to be the combination of B and Ge atoms into the same oxide framework. Black-Right-Pointing-Pointer They can form a large number of novel 2D and 3D framework structures. Black-Right-Pointing-Pointer Some of them are acentric or polar with moderate strong SHG responses.

  9. Fabrication and structural characterization of highly ordered titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  10. Switchable photooxygenation catalysts that sense higher-order amyloid structures.

    PubMed

    Taniguchi, Atsuhiko; Shimizu, Yusuke; Oisaki, Kounosuke; Sohma, Youhei; Kanai, Motomu

    2016-10-01

    Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein. PMID:27657874

  11. Switchable photooxygenation catalysts that sense higher-order amyloid structures

    NASA Astrophysics Data System (ADS)

    Taniguchi, Atsuhiko; Shimizu, Yusuke; Oisaki, Kounosuke; Sohma, Youhei; Kanai, Motomu

    2016-10-01

    Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.

  12. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation.

    PubMed

    Tian, Hongmiao; Shao, Jinyou; Hu, Hong; Wang, Li; Ding, Yucheng

    2016-06-29

    The extensive applications of hierarchical structures in optoelectronics, micro/nanofluidics, energy conservation, etc., have led to the development of a variety of approaches for their fabrication, which can be categorized as bottom-up or top-down strategies. Current bottom-up and top-down strategies bear a complementary relationship to each other due to their processing characteristics, i.e., the advantages of one method correspond to the disadvantages of the other, and vice versa. Here we propose a novel method based on electrohydrodynamic structure formation, aimed at combining the main advantages of the two strategies. The method allows the fabrication of a hierarchically ordered structure with well-defined geometry and high mechanical durability on a polymer film, through a simple and low-cost process also suitable for mass-production. In this approach, upon application of an electric field between a template and a substrate sandwiching an air gap and a polymer film, the polymer is pulled toward the template and further flows into the template cavities, resulting in a hierarchical structure with primary and secondary patterns determined by electrohydrodynamic instability and by the template features, respectively. In this work, the fabrication of a hierarchical structure by electrohydrodynamic structure formation is studied using numerical simulations and experimental tests. The proposed method is then employed for the one-step fabrication of a hierarchical structure exhibiting a gradual transition in the periodicity of the primary structure using a slant template and a flat polymer film, which presents an excellent performance on controllable wettability.

  13. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation.

    PubMed

    Tian, Hongmiao; Shao, Jinyou; Hu, Hong; Wang, Li; Ding, Yucheng

    2016-06-29

    The extensive applications of hierarchical structures in optoelectronics, micro/nanofluidics, energy conservation, etc., have led to the development of a variety of approaches for their fabrication, which can be categorized as bottom-up or top-down strategies. Current bottom-up and top-down strategies bear a complementary relationship to each other due to their processing characteristics, i.e., the advantages of one method correspond to the disadvantages of the other, and vice versa. Here we propose a novel method based on electrohydrodynamic structure formation, aimed at combining the main advantages of the two strategies. The method allows the fabrication of a hierarchically ordered structure with well-defined geometry and high mechanical durability on a polymer film, through a simple and low-cost process also suitable for mass-production. In this approach, upon application of an electric field between a template and a substrate sandwiching an air gap and a polymer film, the polymer is pulled toward the template and further flows into the template cavities, resulting in a hierarchical structure with primary and secondary patterns determined by electrohydrodynamic instability and by the template features, respectively. In this work, the fabrication of a hierarchical structure by electrohydrodynamic structure formation is studied using numerical simulations and experimental tests. The proposed method is then employed for the one-step fabrication of a hierarchical structure exhibiting a gradual transition in the periodicity of the primary structure using a slant template and a flat polymer film, which presents an excellent performance on controllable wettability. PMID:27268135

  14. Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2014-01-01

    Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon

  15. Swarm intelligence algorithm for interconnect model order reduction with sub-block structure preserving

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Wang, Chenxu; Yu, Mingyan

    2016-07-01

    In this paper, we propose a generalised sub-block structure preservation interconnect model order reduction (MOR) technique based on the swarm intelligence method, that is, particle swarm optimisation (PSO). The swarm intelligence-based structure preservation MOR can be used for a standard model as a criterion for different structure preservation interconnect MOR methods. In the proposed technique, the PSO method is used for predicting the unknown elements of structure-preserving reduced-order modelling of interconnect circuits. The prediction is based on minimising the difference of transform function between the original full-order and desired reduced-order systems maintaining the full-order structure in the reduced-order model. The proposed swarm-intelligence-based structure-preserving MOR method is compared with published work on structure preservation MOR SPRIM techniques. Simulation and synthesis results verify the accuracy and validity of the new structure-preserving MOR technique.

  16. MJO structure associated with the higher-order CEOF modes

    NASA Astrophysics Data System (ADS)

    Liu, Ping

    2014-10-01

    The real-time multivariate Madden-Julian oscillation (RMM; MJO) index has been widely employed to monitor the amplitude, phase, and time evolution of MJO events, as the index is formulated from the leading two combined-empirical orthogonal function (CEOF) modes of daily anomalous OLR and 850- and 200-hPa zonal winds, and the modes describe the MJO dynamics well. These two CEOF modes, however, are known to dominate in power spectra at zonal wavenumber one and may underestimate the power and structure at wavenumbers 2-5 where many MJO events are also prominent. This study approximated a baseline for MJO by applying band-pass filters to daily anomalies on 30-100 day periods and at 1-5 eastward propagating waves, as slightly different bands led to the same conclusions. Following the procedures to develop the RMM index, the daily anomalous data were derived and subjected to the CEOF analysis with all modes archived for diagnosis. Different numbers of the leading modes were compared in explained variance, standard deviation (STD), and wavenumber power spectra to describe the overall MJO magnitude and structure, and on the Hovmöller diagrams to represent the evolution of three distinct MJO events. Results show that the two leading CEOF modes explain only a small portion of the power spectra at wavenumbers 2-5. This spectral leakage notably reduces the MJO amplitude, particularly of the OLR in the western Pacific. The CEOF modes 3-10 can withhold power sufficiently such that the anomalies reconstructed by the first 10 modes contribute most of the baseline variance; their structures agree well with the baseline by constituting nearly the same proportion in the region from the central Indian Ocean to the dateline and by providing more complete evolutions of the three MJO events on the Hovmöller diagrams. Meanwhile, these modes introduce a notable amount of power for the equatorial Rossby and Kelvin waves that are partially embedded in the evolution of MJO. The first 50 of

  17. Minimally Invasive Arthrodesis of 1st Metatarsophalangeal Joint for Hallux Rigidus.

    PubMed

    Sott, A H

    2016-09-01

    First metatarsophalangeal joint arthrodesis plays a significant role in the management of symptomatic hallux rigidus/osteoarthritis of the 1st metatarsophalangeal joint. Several open and few percutaneous techniques have been described in the literature. This article describes and discusses a percutaneous technique that has been successfully used to achieve a pain-free stable and functional 1st metatarsophalangeal joint. All aspects of surgical indication and operative technique and details of patient-reported outcomes are presented with a referenced discussion. PMID:27524706

  18. Bacteria repelling on highly-ordered alumina-nanopore structures

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Zhou, Yan; Cirillo, Jeffrey D.; Polycarpou, Andreas A.; Liang, Hong

    2015-04-01

    Bacteria introduce diseases and infections to humans by their adherence to biomaterials, such as implants and surgical tools. Cell desorption is an effective step to reduce such damage. Here, we report mechanisms of bacteria desorption. An alumina nanopore structure (ANS) with pore size of 35 nm, 55 nm, 70 nm, and 80 nm was used as substrate to grow Escherichia coli (E. coli) cells. A bacteria repelling experimental method was developed to quantitatively evaluate the area percentage of adherent bacterial cells that represent the nature of cell adhesion as well as desorption. Results showed that there were two crucial parameters: contact angle and contact area that affect the adhesion/desorption. The cells were found to be more easily repelled when the contact angle increased. The area percentage of adherent bacterial cells decreased with the decrease in the contact area of a cell on ANS. This means that cell accessibility on ANS depends on the contact area. This research reveals the effectiveness of the nanopored structures in repelling cells.

  19. Continuation of tailored composite structures of ordered staple thermoplastic material

    NASA Technical Reports Server (NTRS)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses

  20. Gene structure and evolution of transthyretin in the order Chiroptera.

    PubMed

    Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip

    2016-02-01

    Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

  1. Low-order design and high-order simulation of active closed-loop control for aerospace structures under construction

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.

    1989-01-01

    Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.

  2. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  3. 130. Post1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. Post-1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT AND STOREKEEPER, A.P. ASS'N CANNERY, SHIP STAR OF ALASKA.' View forward from mizzenmast, post side. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  4. 47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Latching mechanism, E end of turn span, viewed from W. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  5. 42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of postcard ca. 1900. Copy owned and made by Jack Donnell, Columbus, Ms. Shows two-span steel truss, built by Phoenix Bridge Co. in 1878. Negative copied by: Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  6. 48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms Latching mechanism, E end of turn span, view from N. Sarcone Photography, Columbus, MS. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  7. 49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Top of pier and underside of w end of turn span. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  8. The Student View of 1st Year Laboratory Work in the Biosciences--Score Gamma?

    ERIC Educational Resources Information Center

    Collis, Mike; Gibson, Alan; Hughes, Ian; Sayers, Gill; Todd, Martin

    2008-01-01

    Students registered on 1st year bioscience courses in 9 universities were surveyed for their views on the laboratory classes they were taking. Returns were obtained from 695 (70%). Student views were varied, some viewing particular features of laboratory classes as "good" while others viewed the same features as "bad". Students identified as the…

  9. How Many Attempts Until Success in Some Core 1st. Year Disciplines?

    ERIC Educational Resources Information Center

    Fernandes, Graça Leão; Andrade e Silva, João; Lopes, Margarida Chagas

    2012-01-01

    Due to a general development in education brought about by democracy, Portugal has witnessed tremendous development in Higher Education (HE) since the beginning of the 1980s. Nevertheless, the percentage of graduates among the Portuguese population still ranks far below most European countries. This is why academic performance in HE 1st cycle…

  10. First-Generation College Students' 1st-Year College Experiences: Challenges Attending a Private University

    ERIC Educational Resources Information Center

    Reid, Josephine

    2013-01-01

    First-generation college students (FGCS) face challenges when switching from high school to college and during their 1st-year in college. Additionally, FGCS may have difficulty understanding the steps required to prepare for and enroll in postsecondary education. The social capital theory examines support of social, academic, and cultural networks…

  11. 24. OVERALL OF 1st FLOOR OF MILL NO. 1. PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. OVERALL OF 1st FLOOR OF MILL NO. 1. PALLETS HELD CLOTH IN STORAGE IN LATE 20th CENTURY. IRON POSTS IN LEFT DISTANCE FRONTED CLOTH BINS. HISTORIAN LEEANN LANDS IN BACKGROUND WITH LIGHT. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  12. 77 FR 22574 - Filing Dates for the Washington Special Election In the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Washington Special Election In the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Washington has...

  13. The Course of Psychological Disorders in the 1st Year After Cancer Diagnosis

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    This study investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) and comorbid anxiety, depressive, and substance use disorders over the first 12-month period following a cancer diagnosis. Individuals recently diagnosed with 1st onset head and neck or lung malignancy were assessed for ASD within…

  14. Perceptual Narrowing of Linguistic Sign Occurs in the 1st Year of Life

    ERIC Educational Resources Information Center

    Palmer, Stephanie Baker; Fais, Laurel; Golinkoff, Roberta Michnick; Werker, Janet F.

    2012-01-01

    Over their 1st year of life, infants' "universal" perception of the sounds of language narrows to encompass only those contrasts made in their native language (J. F. Werker & R. C. Tees, 1984). This research tested 40 infants in an eyetracking paradigm and showed that this pattern also holds for infants exposed to seen language--American Sign…

  15. Requirement of copper for 1st-log growth of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Como, S.A.; Valerio, V.; Nickless, S.; Connelly, J.L.

    1986-05-01

    Routine evaluation of the role of copper (Cu) in the growth of various mutants of the yeast Saccharomyces Cerevisiae disclosed an unexpected effect of Cu on the fermentative first-log growth. The authors subsequent studies are attempting to ascertain the nature and significance of this observation. Cells are grown on glucose in a supplemented minimal media at 29/sup 0/C for 48-72 hrs. using New Brunswick incubator shaking at 200 rpm. Cu concentration was varied by addition of Cu salts or bathocuproine disulfonate (BC), a highly specific Cu chelator. Samples were removed periodically from flasks and dry weights were determined. Growth curve plots of normal yeasts grown in the presence of 1mM to 38mM Cu showed little variation in the expected 1st log; diauxi; 2nd log; stationary phase picture. However, in the presence of BC growth rate in the 1st log was significantly slowed and as expected 2nd log growth was essentially stopped. The low 1st log growth rate could be titrated to normal (+Cu) levels by increments of added Cu but not by added iron. The effect was not seen when Rho-minus strains were used nor when growth was followed under anaerobic conditions. Results to date implicate a mitochondrial protein, oxygen and copper in the 1st log growth of S Cerevisiae. The character of the protein agent and the possible contribution of cytochrome oxidase activity to the lst log growth are being evaluated.

  16. Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Hamhalter, Jan; Turilova, Ekaterina

    2014-10-01

    It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.

  17. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  18. Ordering and Magnetism in Fe-Co: Dense Sequence of Ground-State Structures

    NASA Astrophysics Data System (ADS)

    Drautz, Ralf; Díaz-Ortiz, Alejandro; Fähnle, Manfred; Dosch, Helmut

    2004-08-01

    We discover that Fe-Co alloys develop a series of ordered ground-state structures in addition to the known CsCl-type structure. This new set of structures is found from a combinatorial ground-state search of 1.5×1010 bcc-based structures. The energies of the searched bcc structures are constructed with the cluster expansion method from few first-principles calculations of ordered Fe-Co structures. The set of new ground-state structures is explained from the decay behavior of the cluster expansion coefficients which allows us to identify a simple geometric motif common to all structures. The appearance of these FeCo superstructures offers a broader view of the ordering reactions in bipartite-lattice based binary alloys.

  19. Effect of 1st-trimester loss on restoration of the hypothalamic-pituitary-ovarian axis.

    PubMed

    Elkas, J C; Cunningham, D S

    1995-01-01

    This randomized prospective study was conducted to determine the length of time required for re-establishment of the reproductive axis following a 1st-trimester spontaneous abortion. The spontaneous gonadotropin secretion was significantly depressed during the first menstrual cycle after pregnancy loss, while the estradiol levels had normalized. Provocative testing revealed blunted gonadotropin release in the first menstrual cycle with return to normal during the first menstrual cycle after a spontaneous abortion. Endometrial biopsy specimens were also abnormal during the first menstrual cycle with normal histological characteristics by the second menstrual cycle. Therefore, restoration of the hypothalamic-pituitary- ovarian axis after a 1st-trimester loss is achieved within two menstrual cycles, as determined by return of normal pituitary function.

  20. 44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Detail from Camille Drie's map: A Bird's Eye View of Columbus, Mississippi ca. 1875-76. Shows M&O RR bridge before the Phoenix Bridge Co. erected iron truss spans in 1878. Credit: Photostat of map in Lowndes Co. Public Library Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  1. 43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of photo 1900. Shows 1878 M&O RR bridge. The steamboat, 'Gopher,' in foreground, was an archeological survey vessel from the Franklin Institute in Philadelphia. Published in Art in Mississippi (1901). Credit: Copied from print in Lowndes Co. Public Library by Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  2. 46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW PICKER AND CLOTH ROOM AREA. FUNCTION OF THIS SPACE UNKNOWN AT PRESENT. NOTE THAT EYE BEAM REPLACES ORIGINAL WALL OF 1892 PICKER HOUSE. CENTER (OR LEFT) DOOR IS ENTRY TO MILL NO. 2. RIGHT DOOR IS ENTRY TO 1892 NAPPER ROOM. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  3. 7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND 2ND FLOOR PLANS, SHEET 10 of 11, DRAWING NO. 35-03-05 SF 5/1677, U.S. Army Engineer District, Detroit, Corps of Engineers, 9 June, 1959, on file Selfridge Base Museum. - Selfridge Field, Building No. 1041, West of E Street, north of D Street, Mount Clemens, Macomb County, MI

  4. Priming word order by thematic roles: no evidence for an additional involvement of phrase structure.

    PubMed

    Pappert, Sandra; Pechmann, Thomas

    2014-01-01

    Three experiments are reported that studied the priming of word order in German. Experiment 1 demonstrated priming of the order of case-marked verb arguments. However, order of noun phrases and order of thematic roles were confounded. In Experiment 2, we therefore aimed at disentangling the impact of these two possible factors. By using primes that differed from targets in phrase structure but were parallel with regard to the order of thematic roles, we nevertheless found priming demonstrating the critical impact of thematic roles. Experiment 3 replicated the priming effects from Experiments 1 and 2 within participants and revealed no evidence for a modulation of priming by phrase structure. Consequently, our findings suggest that word order priming crucially depends on the structural outline of thematic roles rather than on the linearization of phrases.

  5. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributed to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.

  6. Modal Response of Trapezoidal Wing Structures Using Second Order Shape Sensitivities

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    The modal response of wing structures is very important for assessing their dynamic response including dynamic aeroelastic instabilities. Moreover, in a recent study an efficient structural optimization approach was developed using structural modes to represent the static aeroelastic wing response (both displacement and stress). In this paper, the modal response of general trapezoidal wing structures is approximated using shape sensitivities up to the 2nd order. Also different approaches of computing the derivatives are investigated.

  7. Short-range order and near-field effects on optical scattering and structural coloration

    SciTech Connect

    Liew, S.F.; Forster, J.; Noh, H.; Schreck, C.F.; Saranathan, V.; Lu, X.; Yang, L.; Prum, Richard O.; O’Hern, C.S.; Dufresne, E.R.; Cao, H.

    2012-03-26

    We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation.

  8. Short-range Order and Near-field Effects on Optical Scattering and Structural Coloration

    SciTech Connect

    S Liew; J Forster; H Noh; C Schreck; V Saranathan; X Lu; L Yang; E Dufresne; H Cao; et al.

    2011-12-31

    We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation.

  9. Word Order and Information Structure in Czech 3- and 4-Year-Olds' Comprehension

    ERIC Educational Resources Information Center

    Smolík, Filip

    2015-01-01

    This article reports on an experiment that examined the comprehension of transitive sentences in Czech children and its relationship to case marking, word order and information structure. A total of 107 Czech children aged 2;9-4;5 were tested for comprehension of noun-verb-noun sentences in which word order and given-new status of individual nouns…

  10. Development of higher-order modal methods for transient thermal and structural analysis

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Haftka, Raphael T.

    1989-01-01

    A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.

  11. RETURN TO DIVISION IA FOOTBALL FOLLOWING A 1ST METATARSOPHALANGEAL JOINT DORSAL DISLOCATION

    PubMed Central

    Cook, Chad; Zarzour, Hap; Moorman, Claude T.

    2010-01-01

    Background. Although rare in occurrence, a dorsal dislocation of the 1st metatarsophalangeal (MTP) joint has been successfully treated using surgical and/or non-operative treatment. No descriptions of conservative intervention following a dorsal dislocation of the MTP joint in an athlete participating in a high contact sport are present in the literature. Objectives. The purpose of this case report is to describe the intervention and clinical reasoning during the rehabilitative process of a collegiate football player diagnosed with a 1st MTP joint dorsal dislocation. The plan of care and return to play criteria used for this athlete are presented. Case Description. The case involved a 19-year-old male Division IA football player, who suffered a traumatic dorsal dislocation of the 1st MTP joint during practice. The dislocation was initially treated on-site by closed reduction. Non-operative management included immobilization, therapeutic exercises, non-steroidal anti-inflammatories, manual treatment, modalities, prophylactic athletic taping, gait training, and a sport specific progression program for full return to Division IA football. Outcomes. Discharge from physical therapy occurred after six weeks of treatment. At discharge, no significant deviations existed during running, burst, and agility related drills. At a six-month follow-up, the patient reported full return to all football activities including contact drills without restrictions. Discussion. This case describes an effective six-week rehabilitation intervention for a collegiate football player who sustained a traumatic great toe dorsal dislocation. Further study is suggested to evaluate the intervention strategies and timeframe for return to contact sports. PMID:21589669

  12. Atomic-scale structural evolution from disorder to order in an amorphous metal

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-12-01

    In this paper, we performed molecular dynamics simulations to study the atomic-scale structural evolution from disorder to order during the isothermal annealing of an amorphous Ni. Three plateaus in the time dependent potential energy and mean square displacement (MSD) curves were observed, indicating that the atomic ordering process from amorphous to nanocrystalline Ni undergoes three distinct stages. The structural analyses reveal that the atomic structural evolution is associated with these three stages: Disordered atoms adjust their relative positions to form a one-dimensional (1D) periodic structure at the first stage, then form a 2D periodic structure at the second stage, and finally form a 3D periodic nanocrystal. Further analyses of potential energy and MSD difference and dynamics demonstrate that the structural change from the 2D to 3D structure is more difficult than that from the 1D to 2D structure, because both the 1D and 2D quasi-ordered structures belong to transition states and have similar structural features in nature. Our findings may provide new insights into the nanocrystallization of amorphous alloys and implications for producing nanostructured materials.

  13. Hydrogen-induced modification of the medium-range structural order in amorphous silicon films

    SciTech Connect

    Nittala, L.N.; Jayaraman, S.; Sperling, B.A.; Abelson, J.R.

    2005-12-12

    We use fluctuation electron microscopy to determine changes in the medium-range structural order of un-hydrogenated amorphous silicon thin films after they are exposed to atomic hydrogen at a substrate temperature of 230 deg. C. The films are deposited by magnetron sputtering at either 230 or 350 deg. C substrate temperature to obtain starting states with small or large initial medium-range order, respectively. The in-diffusion of atomic hydrogen causes the medium-range order to decrease for the small initial order but to increase for the large initial order. We suggest that this behavior can be understood in terms of classical nucleation theory: The ordered regions of small diameter are energetically unstable and can lower their energy by evolving towards a continuous random network, whereas the ordered regions of large diameter are energetically stable and can lower their energy by coarsening towards the nanocrystalline state.

  14. Temperature dependence of the structural order in the {gamma}{prime} phase of nickel base superalloy

    SciTech Connect

    Royer, A.; Bastie, P.; Veron, M.

    1999-03-19

    Single crystal nickel base superalloys are used for the high-temperature parts of aircraft engines like turbine blades. Their good mechanical properties at high temperature are related to the precipitation of an ordered {gamma}{prime} phase which induces a structural hardening of the material. The {gamma}{prime} phase has an ordered L1{sub 2} structure while the {gamma} matrix is disordered and has a FCC structure. The volume fraction of f{gamma}{prime} of the {gamma}{prime} phase evolves with the temperature and a complete solutionizing occurs above 1,280 C in the AM1 superalloy. The {gamma}{prime} phase of Ni based superalloys is usually analyzed through its prototype Ni{sub 3}Al. As the Ni{sub 3}Al structure remains totally ordered up to temperature very close to the melting point, it is commonly assumed in superalloys that the {gamma}{prime} phase precipitates are fully ordered up to their solutionizing and that the volume fraction of the precipitates is equivalent to the volume fraction of the ordered phase. However, in superalloys, it is difficult to separate experimentally the effects related to the solutionizing of the precipitates from those due to a possible partial disordering of the {gamma}{prime} phase and this assumption has not been verified yet. The aim of this paper is to study the structural order in the {gamma}{prime} phase of a superalloy.

  15. An inverse strategy for relocation of eigenfrequencies in structural design. Part II: second order approximate solutions

    NASA Astrophysics Data System (ADS)

    Farahani, K.; Bahai, H.

    2004-07-01

    This paper extends the first order formulations presented in Part I to second order methods for relocation of structural natural frequencies from their initial design values to new modified frequencies. The method is based on an inverse formulation and solution algorithm of the eigenvalue problem. Using the second order Taylor's expansion series, the required parameter variation to achieve a desired natural frequency shift for the structure is computed through second order differential or binomial equations. The proposed technique can also incorporate the design constraints or objective functions in the system equations. The formulations are quite generic and applicable to all finite element structures. The accuracy of the proposed methods is tested by conducting several case studies, the results of which demonstrate the validity of the technique for a wide range of practical problems.

  16. Design of high-order elliptic filter from a versatile mode generic OTA-C structure

    NASA Astrophysics Data System (ADS)

    Ghosh, K.; Ray, B. N.

    2015-03-01

    A new synthesis methodology for high-order versatile mode programmable Operational transconductance amplifier and capacitor (OTA-C) generic filter structure is proposed. The structure fulfills the three main criteria of high frequency operation i.e it uses (1) less number of components (2) only single ended input OTAs (3) only grounded capacitors. Any nth order transfer function can be realised from it. Elliptic filter is designed from the generic structure using optimisation technique to reduce the number of OTAs. SPICE simulation with BSIM level 53 model and 0.13 μm process confirms the theoretical analysis. Frequency response of third-order and fourth-order elliptic filter is shown as representative set of simulated result. Sensitivity and non-ideal effect of the designed filter are studied.

  17. Defect structures and ordering behaviours of diblock copolymers self-assembling on spherical substrates.

    PubMed

    Zhang, Liangshun; Wang, Liquan; Lin, Jiaping

    2014-09-21

    One of the main differences of ordered structures constrained on curved surfaces is the nature of topological defects. We here explore the defect structures and ordering behaviours of both lamellar and cylindrical phases of block copolymers confined on spherical substrates by the Landau-Brazovskii theory, which is numerically solved by a highly accurate spectral method with a spherical harmonic basis. For the cylindrical phase, isolated disclinations and scars are generated on the spherical substrates. The number of excess dislocations in a scar depends linearly on the sphere radius. The defect fraction characterizing the ordering dynamics decays exponentially. The scars are formed from the isolated disclinations via mini-scars. For the lamellar phase, three types of defect structures (hedgehog, spiral and quasi-baseball) are identified. The disclination annihilation is the primary ordering mechanism of the lamellar phase.

  18. Structure, magnetic order and excitations in the 245 family of Fe-based superconductors.

    PubMed

    Bao, Wei

    2015-01-21

    Elastic neutron scattering simultaneously probes both the crystal structure and magnetic order in a material. Inelastic neutron scattering measures phonons and magnetic excitations. Here, we review the average composition, crystal structure and magnetic order in the 245 family of Fe-based superconductors and in related insulating compounds from neutron diffraction works. A three-dimensional phase-diagram summarizes various structural, magnetic and electronic properties as a function of the sample composition. A high pressure phase diagram for the superconductor is also provided. Magnetic excitations and the theoretic Heisenberg Hamiltonian are provided for the superconductor. Issues for future works are discussed. PMID:25427222

  19. Supramolecular order and structural dynamics: A STM study of 2H-tetraphenylporphycene on Cu(111)

    SciTech Connect

    Stark, Michael; Träg, Johannes; Ditze, Stefanie; Steinrück, Hans-Peter; Marbach, Hubertus; Brenner, Wolfgang; Jux, Norbert

    2015-03-14

    The adsorption of 2H-tetraphenylporphycene (2HTPPc) on Cu(111) was investigated by scanning tunneling microscopy (STM). At medium coverages, supramolecular ordered islands are observed. The individual 2HTPPc molecules appear as two pairs of intense protrusions which are separated by an elongated depression. In the islands, the molecules are organized in rows oriented along one of the close packed Cu(111) substrate rows; the structure is stabilized by T-type interactions of the phenyl substituents of neighboring molecules. Two types of rows are observed, namely, highly ordered rows in which all molecules exhibit the same orientation, and less ordered rows in which the molecules exhibit two perpendicular orientations. Altogether, three different azimuthal orientations of 2HTPPc are observed within one domain, all of them rotated by 15° ± 1° relative to one closed packed Cu direction. The highly ordered rows are always separated by either one or two less ordered rows, with the latter structure being the thermodynamically more stable one. The situation in the islands is highly dynamic, such that molecules in the less ordered rows occasionally change orientation, also complete highly ordered rows can move. The supramolecular order and structural dynamics are discussed on the basis of the specific molecule-substrate and molecule-molecule interactions.

  20. Treatment of Second-Order Structures of Proteins Using Oxygen Radio Frequency Plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Liu, Hao; Goto, Masaaki

    2010-08-01

    Decomposition characteristics of second-order structures of proteins are determined using an oxygen radio frequency (RF) plasma sterilizer in order to prevent infectious proteins from contaminating medical equipment in hospitals. The removal of casein protein as a test protein with a concentration of 50 mg/cm2 on the plane substrate requires approximately 8 h when singlet atomic oxygen is irradiated. The peak intensity of Fourier transform infrared spectroscopy (FTIR) spectra of the β-sheet structures decreases at approximately the same rate as those of the α-helix and first-order structures of proteins. Active oxygen has a sufficient oxidation energy to dissociate hydrogen bonds within the β-sheet structure.

  1. Order in the Heisenberg pyrochlore: The magnetic structure of Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Champion, J. D. M.; Wills, A. S.; Fennell, T.; Bramwell, S. T.; Gardner, J. S.; Green, M. A.

    2001-10-01

    The rare-earth pyrochlore material Gd2Ti2O7 is considered to be an ideal model frustrated Heisenberg antiferromagnet with additional dipolar interactions. For this system there are several untested theoretical predictions of the ground state ordering pattern. Here we establish the magnetic structure of isotopically enriched 160Gd2Ti2O7, using powder neutron diffraction at a temperature of 50 mK. The magnetic structure at this temperature is a partially ordered, noncollinear antiferromagnetic structure, with propagation vector k=121212. It can be described as a set of ``q=0'' ordered kagomé planes separated by zero interstitial moments. This magnetic structure agrees with theory only in part, leaving an interesting problem for future research.

  2. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure.

    PubMed

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-21

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. PMID:27355160

  3. Proposal for electronic nematic order parameter sensitive to intra unit cell structures

    NASA Astrophysics Data System (ADS)

    Lawler, Michael; Fujita, K.; Schmidt, A.; Lee, Jhinhwan; Kim, Chung Koo; Eisaki, H.; Uchida, S.; Davis, J. C.; Sethna, J. P.; Kim, Eun-Ah

    2010-03-01

    We propose an order parameter for detecting signatures of electronic nematic ordering using local probes such as scanning tunneling microscopy(STM). The order parameter is designed to measure rotational symmetry breaking without prejudice towards translational symmetry breaking -- achieved by focusing on intra unit cell structures. This order parameter utilizes Fourier space information much the same way as in diffraction measurements, opening the possibility for a comparative study of nematicity between different probes. Our study is primarily motivated by the patterns observed in STM measurements on underdoped cuprates. We discuss theoretical implications of our results in this light.

  4. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure

    NASA Astrophysics Data System (ADS)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-01

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on.Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. Electronic supplementary information (ESI) available: SEM image of hexagonal silicon pillar templates, AFM images of clay platelets on a silicon substrate, photographs of free-standing gels, X-ray diffraction profiles for dried materials, FTIR and TGA of the samples, and

  5. Technical decision making with higher order structure data: impact of a formulation change on the higher order structure and stability of a mAb.

    PubMed

    Gruia, Flaviu; Du, Jiali; Santacroce, Paul V; Remmele, Richard L; Bee, Jared S

    2015-04-01

    Changes in formulation may be required during the development of protein therapeutics. Some of the changes may alter the protein higher order structure (HOS). In this note, we show how the change from a trehalose-based formulation to an arginine-based formulation concomitantly impacted the tertiary structure and the thermal stability of a mAb (mAb1). The secondary structure was not disrupted by the formulation change. The destabilization of the tertiary structure did not affect the long-term stability or the bioactivity of mAb1. This indicates that loss of conformational stability was likely compensated by improvements in the colloidal stability of mAb1 in the arginine-based formulation. The formulation-induced changes in HOS were reversible as proven by measurements after dilution in a common buffer (phosphate-buffered saline). For aggregation driven by assembly of aggregates (colloidally limited), small changes in conformational structure and stability as measured by HOS methods may not necessarily be predictive of long-term stability.

  6. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  7. Autopsy as a tool for learning gross anatomy during 1st year MBBS

    PubMed Central

    Goyal, Parmod Kumar; Gupta, Monika; Kaur, Jaswinder

    2016-01-01

    Introduction: Embalmed cadavers are the primary tool for teaching anatomy. However, difficulties are encountered due to changed color/texture of organs, hardening of tissues, and smell of formaldehyde. To overcome these difficulties, dissections on a fresh human body were shown to the 1st year MBBS students, and their perception was noted. Materials and Methods: After taking universal precautionary measures, postmortem dissections were shown to students on voluntary donated bodies in the dissection hall, in addition to the traditional teaching on embalmed cadavers. Feedback was taken from students and faculty regarding the utility of these sessions. Results: Better appreciation of texture, orientation, location, and relations of organs in fresh body, integration of teaching, awareness of the process and laws related to body donations were the outcomes of the study. However, the smell and sight of blood was felt to be nauseating by some students, and some students were worried about the spread of infectious diseases. Conclusions: Visualizing single fresh body dissection during 1st year professional MBBS is recommended either on medicolegal autopsy or on voluntarily-donated bodies. PMID:27563594

  8. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  9. Environmental constraints shaping constituent order in emerging communication systems: Structural iconicity, interactive alignment and conventionalization.

    PubMed

    Christensen, Peer; Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    Where does linguistic structure come from? Recent gesture elicitation studies have indicated that constituent order (corresponding to for instance subject-verb-object, or SVO in English) may be heavily influenced by human cognitive biases constraining gesture production and transmission. Here we explore the alternative hypothesis that syntactic patterns are motivated by multiple environmental and social-interactional constraints that are external to the cognitive domain. In three experiments, we systematically investigate different motivations for structure in the gestural communication of simple transitive events. The first experiment indicates that, if participants communicate about different types of events, manipulation events (e.g. someone throwing a cake) and construction events (e.g. someone baking a cake), they spontaneously and systematically produce different constituent orders, SOV and SVO respectively, thus following the principle of structural iconicity. The second experiment shows that participants' choice of constituent order is also reliably influenced by social-interactional forces of interactive alignment, that is, the tendency to re-use an interlocutor's previous choice of constituent order, thus potentially overriding affordances for iconicity. Lastly, the third experiment finds that the relative frequency distribution of referent event types motivates the stabilization and conventionalization of a single constituent order for the communication of different types of events. Together, our results demonstrate that constituent order in emerging gestural communication systems is shaped and stabilized in response to multiple external environmental and social factors: structural iconicity, interactive alignment and distributional frequency. PMID:26402649

  10. Environmental constraints shaping constituent order in emerging communication systems: Structural iconicity, interactive alignment and conventionalization.

    PubMed

    Christensen, Peer; Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    Where does linguistic structure come from? Recent gesture elicitation studies have indicated that constituent order (corresponding to for instance subject-verb-object, or SVO in English) may be heavily influenced by human cognitive biases constraining gesture production and transmission. Here we explore the alternative hypothesis that syntactic patterns are motivated by multiple environmental and social-interactional constraints that are external to the cognitive domain. In three experiments, we systematically investigate different motivations for structure in the gestural communication of simple transitive events. The first experiment indicates that, if participants communicate about different types of events, manipulation events (e.g. someone throwing a cake) and construction events (e.g. someone baking a cake), they spontaneously and systematically produce different constituent orders, SOV and SVO respectively, thus following the principle of structural iconicity. The second experiment shows that participants' choice of constituent order is also reliably influenced by social-interactional forces of interactive alignment, that is, the tendency to re-use an interlocutor's previous choice of constituent order, thus potentially overriding affordances for iconicity. Lastly, the third experiment finds that the relative frequency distribution of referent event types motivates the stabilization and conventionalization of a single constituent order for the communication of different types of events. Together, our results demonstrate that constituent order in emerging gestural communication systems is shaped and stabilized in response to multiple external environmental and social factors: structural iconicity, interactive alignment and distributional frequency.

  11. Beyond pairs: definition and interpretation of third-order structure in spatial point patterns.

    PubMed

    Kaito, Chiho; Dieckmann, Ulf; Sasaki, Akira; Takasu, Fugo

    2015-05-01

    Spatial distributions of biological species are an important source of information for understanding local interactions at the scale of individuals. Technological advances have made it easier to measure these distributions as spatial point patterns, specifying the locations of individuals. Extensive attention has been devoted to analyzing the second-order structure of such point patterns by focusing on pairs of individuals, and it is well known that the local crowdedness of individuals can thus be quantified. Statistical measures such as a point pattern׳s pair correlation function or Ripley׳s K function show whether a given point pattern is clustered (excess of short-distance pairs) or overdispersed (shortage of short-distance pairs). These notions are naturally defined in comparison with control patterns exhibiting complete spatial randomness, i.e., an absence of any spatial structure. However, there is no rational reason why the analysis of point patterns should stop at the second order. In this paper, we focus on triplets of individuals in an attempt to quantify and interpret the third-order structure of a point pattern. We demonstrate that point patterns with "bandedness", in which individuals are primarily distributed within bands, can be detected by an excess of thinner triplets at a characteristic spatial scale linked to the band׳s width. In this context, we show how the generation of control patterns as a reference for gauging a test pattern׳s triplet frequencies is critical for defining and interpreting the third-order structure of point patterns. Since perfect information on a point pattern׳s second-order structure typically suffices for its unique reconstruction (up to translation, rotation, and reflection), we conjecture that it is essential to minimally coarse-grain such second-order information before using it to generate control patterns for identifying a point pattern׳s third-order structure. We recommend the further exploration of this

  12. A general protocol for determining the structures of molecularly ordered but noncrystalline silicate frameworks.

    PubMed

    Brouwer, Darren H; Cadars, Sylvian; Eckert, Juergen; Liu, Zheng; Terasaki, Osamu; Chmelka, Bradley F

    2013-04-17

    A general protocol is demonstrated for determining the structures of molecularly ordered but noncrystalline solids, which combines constraints provided by X-ray diffraction (XRD), one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, and first-principles quantum chemical calculations. The approach is used to determine the structure(s) of a surfactant-directed layered silicate with short-range order in two dimensions but without long-range periodicity in three-dimensions (3D). The absence of long-range 3D molecular order and corresponding indexable XRD reflections precludes determination of a space group for this layered silicate. Nevertheless, by combining structural constraints obtained from solid-state (29)Si NMR analyses, including the types and relative populations of distinct (29)Si sites, their respective (29)Si-O-(29)Si connectivities and separation distances, with unit cell parameters (though not space group symmetry) provided by XRD, a comprehensive search of candidate framework structures leads to the identification of a small number of candidate structures that are each compatible with all of the experimental data. Subsequent refinement of the candidate structures using density functional theory calculations allows their evaluation and identification of "best" framework representations, based on their respective lattice energies and quantitative comparisons between experimental and calculated (29)Si isotropic chemical shifts and (2)J((29)Si-O-(29)Si) scalar couplings. The comprehensive analysis identifies three closely related and topologically equivalent framework configurations that are in close agreement with all experimental and theoretical structural constraints. The subtle differences among such similar structural models embody the complexity of the actual framework(s), which likely contain coexisting or subtle distributions of structural order that are intrinsic to the material. PMID:23560776

  13. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    SciTech Connect

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Prum, Richard O.; Dufresne, Eric R.; Cao, Hui

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures. Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.

  14. Vacancies in ordered and disordered titanium monoxide: Mechanism of B1 structure stabilization

    SciTech Connect

    Kostenko, M.G.; Lukoyanov, A.V.; Zhukov, V.P.; Rempel, A.A.

    2013-08-15

    The electronic structure and stability of three phases of titanium monoxide TiO{sub y} with B1 type of the basic structure have been studied. Cubic phase without structural vacancies, TiO, and two phases with structural vacancies, monoclinic Ti{sub 5}O{sub 5} and cubic disordered TiO{sub 1.0}, was treated by means of first-principles calculations within the density functional theory with pseudo-potential approach based on the plane wave's basis. The ordered monoclinic phase Ti{sub 5}O{sub 5} was found to be the most stable and the cubic TiO without vacancies the less stable one. The role of structural vacancies in the titanium sublattice is to decrease the Fermi energy, the role of vacancies in the oxygen sublattice is to contribute to the appearance of Ti–Ti bonding interactions through these vacancies and to reinforce the Ti–Ti interactions close to them. Listed effects are significantly pronounced if the vacancies in the titanium and oxygen sublattices are associated in the so called “vacancy channels” which determine the formation of vacancy ordered structure of monoclinic Ti{sub 5}O{sub 5}-type. - Graphical abstract: Changes in total DOS of titanium monoxide when going from vacancy-free TiO to TiO with disordered structural vacancies and to TiO with ordered structural vacancies. Highlights: • Ordered monoclinic Ti{sub 5}O{sub 5} is the most stable phase of titanium monoxide. • Vacancy-free TiO is the less stable phase of the titanium monoxide. • Ordering of oxygen vacancies leads to the appearance of Ti–Ti bonding interactions. • Titanium vacancies contribute significantly to the decreasing of the Fermi energy.

  15. Ordered structures of small numbers of nanorods induced by semiflexible star polymers.

    PubMed

    Zhang, Dong; He, Lilin; Zhang, Linxi

    2014-09-14

    The ordered structures of nanorods (NRs) in the semiflexible star polymer/NR mixtures are explored by employing molecular dynamics simulation. The structures of small numbers of NRs can be well controlled by varying the stiffness of semiflexible star polymers. At a moderate binding energy between star polymers and NRs, four completely different structures of small numbers of NRs are observed, including that the side-to-side hexagonal aggregation structures of NRs for flexible star polymers, the partly parallel aggregation structures of NRs and the end-to-end contact parallel aggregation structures of NRs for semiflexible star polymers, and the partial dispersion of NRs for rigid star polymers. Helical conformations of semiflexible star polymers binding with NRs are responsible for the formation of the end-to-end contact parallel aggregation structures for small numbers of NRs. This investigation may provide a possible pathway to develop ''smart'' medium to construct novel materials with high performance.

  16. Local orderings in long-range-disordered bismuth-layered intergrowth structure

    SciTech Connect

    Zhang, Faqiang; Li, Yongxiang; Gu, Hui; Gao, Xiang

    2014-04-01

    A series of intergrowth bismuth-layered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) ceramics were prepared by conventional solid-state reaction to study the characteristics of the local orderings in long-range-disordered intergrowth structures. High-resolution high-angle annular dark-field (HAADF) imaging reveals the intergrowth structure composed of mixtures of -23-, -223-, -2223- and -22- sequences, while the -223- structure is the thermodynamic stable state of this intergrowth system. It was confirmed by the crystals of recurrent -223- structure prepared by self-flux method and the nature of the local ordering was discussed from their differences in repeating units. The statistics show that when repeating units reach 4 or higher, the independent -223- intergrowth ordering emerges clearly among the competing associated orderings. We infer it is the kinetic factor that induces local compositional variance to result in long-range disordered intergrowth structures. - Graphical abstract: The long-range-disordered intergrowth structure in a (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) grain, which is composed of various types of local orderings, such as -22-, -23- and -223-. - Highlights: • The characteristic of the long-range-disordered (Bi{sub 3}TiNbO{sub 9}){sub 2}(Bi{sub 4}Ti{sub 3}O{sub 12}) (2{sub 2}3) structure was statistically analyzed, and the ordered -223- structure was speculated to be the thermodynamic stable state of the system. • The crystals of the -223- structure were successfully prepared for the first time by self-melt method. • The lower limit of the repeating units (L) to uniquely determine an independent intergrowth structure was speculated to be L=4. • The analysis inferred that the kinetic process is the controlling factor to limit the structural continuity and induce the long-range-disordered intergrowth structure.

  17. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  18. FeAs2 formation and electronic nematic ordering: Analysis in terms of structural transformations

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Rubin, P.

    2016-02-01

    By combining DFT-based computational analysis and symmetry constraints in terms of group-subgroup relations, we analyzed the formation of the native crystalline structure of loellingite FeAs2. We showed that the ground state of the material exhibits the ordered patterns of the electronic localization which are mainly associated with iron 3 dx2-y2 orbitals and can be characterized in terms of nematiclike ordering. The ordering is the result of the close interplay of the lattice and the electron degrees of freedom. In a structural aspect, the interplay pursues an energy quest to select the orthorhombic crystal lattice attributed to the P n n m space group. In a charge aspect, the ordering is connected with the valence charge density redistribution that not only provides a high electronic polarizability but also gives rise to an extra-large magnitude of the negative component of the dynamical p -d charge transfer.

  19. Structure-Specific Ribonucleases for MS-Based Elucidation of Higher-Order RNA Structure

    NASA Astrophysics Data System (ADS)

    Scalabrin, Matteo; Siu, Yik; Asare-Okai, Papa Nii; Fabris, Daniele

    2014-07-01

    Supported by high-throughput sequencing technologies, structure-specific nucleases are experiencing a renaissance as biochemical probes for genome-wide mapping of nucleic acid structure. This report explores the benefits and pitfalls of the application of Mung bean (Mb) and V1 nuclease, which attack specifically single- and double-stranded regions of nucleic acids, as possible structural probes to be employed in combination with MS detection. Both enzymes were found capable of operating in ammonium-based solutions that are preferred for high-resolution analysis by direct infusion electrospray ionization (ESI). Sequence analysis by tandem mass spectrometry (MS/MS) was performed to confirm mapping assignments and to resolve possible ambiguities arising from the concomitant formation of isobaric products with identical base composition and different sequences. The observed products grouped together into ladder-type series that facilitated their assignment to unique regions of the substrate, but revealed also a certain level of uncertainty in identifying the boundaries between paired and unpaired regions. Various experimental factors that are known to stabilize nucleic acid structure, such as higher ionic strength, presence of Mg(II), etc., increased the accuracy of cleavage information, but did not completely eliminate deviations from expected results. These observations suggest extreme caution in interpreting the results afforded by these types of reagents. Regardless of the analytical platform of choice, the results highlighted the need to repeat probing experiments under the most diverse possible conditions to recognize potential artifacts and to increase the level of confidence in the observed structural information.

  20. Structural ordering of multi-walled carbon nanotubes (MWCNTs) caused by gamma (γ)-ray irradiation

    SciTech Connect

    Silambarasan, D. Vasu, V.; Iyakutti, K.; Asokan, K.

    2015-06-24

    Multi-walled carbon nanotubes (MWCNTs) were irradiated by Gamma (γ)-rays in air with absorbed doses of 25 and 50 kGy. As a result of γ-ray irradiation, the inter-wall distance of MWCNTs was decreased and their graphitic order was improved. The reduction in inter-wall distance and structural ordering was improved with the increasing dosage of irradiation. Experimental evidences are provided by powder XRD and micro-Raman analyses.

  1. Next-to leading order analysis of target mass corrections to structure functions and asymmetries

    SciTech Connect

    L. T. Brady, A. Accardi, T. J. Hobbs, W. Melnitchouk

    2011-10-01

    We perform a comprehensive analysis of target mass corrections (TMCs) to spin-averaged structure functions and asymmetries at next-to-leading order. Several different prescriptions for TMCs are considered, including the operator product expansion, and various approximations to it, collinear factorization, and xi-scaling. We assess the impact of each of these on a number of observables, such as the neutron to proton F{sub 2} structure function ratio, and parity-violating electron scattering asymmetries for protons and deuterons which are sensitive to gamma-Z interference effects. The corrections from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also quantified.

  2. Gold–promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Wu, Lijun; Zhu, Yimei; Adzic, Radoslav R.

    2014-11-06

    Considerable efforts to make palladium and palladium alloys active catalysts and a possible replacement for platinum have had a marginal success. Here, we report on a structurally ordered Au₁₀Pd₄₀Co₅₀ catalyst that exhibits comparable activity to conventional platinum catalysts in both acid and alkaline media. Electron microscopic techniques demonstrate that via addition of gold atoms PdCo nanoparticles undergo at elevated temperatures an atomic structural transition from core-shell to a rare intermetallic ordered structure with twin boundaries forming stable {111}, {110} and {100} facets. The superior stability of this catalyst compared to platinum after 10,000 potential cycles in alkaline media is attributedmore » to the atomic structural order of PdCo nanoparticles along with protective effect of clusters of gold atoms on the surface. This strategy of making ordered palladium intermetallic alloy nanoparticles can be used in diverse heterogeneous catalysis where particle size and structural stability matters.« less

  3. Characterization of the Local Structure in Liquid Water by Various Order Parameters

    PubMed Central

    2015-01-01

    A wide range of geometric order parameters have been suggested to characterize the local structure of liquid water and its tetrahedral arrangement, but their respective merits have remained elusive. Here, we consider a series of popular order parameters and analyze molecular dynamics simulations of water, in the bulk and in the hydration shell of a hydrophobic solute, at 298 and 260 K. We show that these parameters are weakly correlated and probe different distortions, for example the angular versus radial disorders. We first combine these complementary descriptions to analyze the structural rearrangements leading to the density maximum in liquid water. Our results reveal no sign of a heterogeneous mixture and show that the density maximum arises from the depletion in interstitial water molecules upon cooling. In the hydration shell of the hydrophobic moiety of propanol, the order parameters suggest that the water local structure is similar to that in the bulk, with only a very weak depletion in ordered configurations, thus confirming the absence of any iceberg-type structure. Finally, we show that the main structural fluctuations that affect water reorientation dynamics in the bulk are angular distortions, which we explain by the jump hydrogen-bond exchange mechanism. PMID:26054933

  4. Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters

    NASA Astrophysics Data System (ADS)

    Andreazza, Pascal; Pierron-Bohnes, Véronique; Tournus, Florent; Andreazza-Vignolle, Caroline; Dupuis, Véronique

    2015-06-01

    Among nanoalloys, Co-Pt type (CoPt or FePt) supported nanostructures are very interesting systems due to the direct link between atom arrangement and magnetic behavior. In addition, these alloys become model systems in the field of nanoalloys, due to the diversity of atom arrangements either present in the bulk state or specific to the nanoscale (chemically ordered L10, L12, or disordered fcc structures, core-shell, five-fold structures - icosahedral or decahedral, etc.). The synergy between experimental and modeling efforts has allowed the emergence of an overview of the structural, morphological and chemical behaviors of CoPt-based supported nanoparticles in terms of phase diagrams (temperature, composition, size effect), kinetic behavior (growth, annealing, ordering), and also in terms of environment effects (substrate, capping, matrix, gas) and of magnetic properties. All aspects of this complexity are reviewed: synthesis strategies (physical deposition, cluster beam deposition and wet chemical methods), magnetic behavior (atomic magnetic moment, magnetic anisotropy energy), structural transitions (non-crystalline/crystalline structures, order/disorder, surface/interface segregation), etc. In this field, the investigation techniques, such as electron microscopy and X-ray scattering or absorption techniques, are generally used at their ultimate limit due the small size of the studied objects. Finally, several aspects of the annealing process, which is a key phenomenon to achieve the chemical order, have been discussed in both thermodynamic and kinetic points of view (size effect, critical temperature, annealing time, twinning, coalescence, etc.).

  5. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  6. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating.

    PubMed

    Dasbiswas, K; Majkut, S; Discher, D E; Safran, Samuel A

    2015-01-19

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  7. Formation and atomic structure of ordered Sr-induced nanostrips on Ge(100)

    NASA Astrophysics Data System (ADS)

    Lukanov, Boris R.; Garrity, Kevin F.; Ismail-Beigi, Sohrab; Altman, Eric I.

    2014-04-01

    The deposition of alkaline earths onto Ge(100) surfaces leads to well-ordered arrays of narrow trenches and elongated plateaus that extend for thousands of angstroms. Using scanning tunneling microscopy (STM) in conjunction with density functional theory (DFT), the atomic scale details of these nanostructures are revealed and the driving force responsible for their formation is evaluated. The STM data reveal a dramatic contrast reversal when the polarity of the imaging bias is switched. An energetically favorable structure for the plateaus was found using DFT that can reproduce all of the observed features. This structure is based upon a double dimer vacancy model in which Sr atoms displace two Ge dimers from the surface. Interestingly, the ordered plateau-trench structure is unique to Ge(100) despite the structural and chemical similarities to the Si(100) surface.

  8. Formation of ordered cellular structures in suspension via label-free negative magnetophoresis

    PubMed Central

    Krebs, Melissa D.; Erb, Randall M.; Yellen, Benjamin B.; Samanta, Bappaditya; Bajaj, Avinash; Rotello, Vincent M.; Alsberg, Eben

    2009-01-01

    The creation of ordered cellular structures is important for tissue engineering research. Here we present a novel strategy for the assembly of cells into linear arrangements by negative magnetophoresis using inert, cytocompatible magnetic nanoparticles. In this approach, magnetic nanoparticles dictate the cellular assembly without relying on cell binding or uptake. The linear cell structures are stable and can be further cultured without the magnetic field or nanoparticles, making this an attractive tool for tissue engineering. PMID:19326920

  9. Local slope, hillslope length and upslope unstable area as 1st order controls on co-seismic landslide hazard.

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Densmore, A. L.; Petley, D. N.; Bellugi, D. G.; Li, G.

    2015-12-01

    Many communities in mountainous areas have limited access to and/or understanding of co-seismic landslide hazard maps. Furthermore these maps rarely provide the information that a community seeks: Where is safest? How big could the landslide be? Geomorphic intuition suggests that: 1) on the ridges one is less likely to be hit by a landslide than elsewhere in the landscape; 2) hazard increases with the amount of upslope unstable area; 3) longer slopes contain more candidate landslides and are also capable of producing larger landslides thus they constitute a more severe hazard. These observations could help communities in siting infrastructure or making earthquake plans but have not, to our knowledge, been tested against past landslide inventories. Co-seismic landslide models make no attempt to predict landslide size and focus on initiation, ignoring the runout which is critical in the slope length control on hazard. Here we test our intuitive hypotheses using an inventory of co-seismic landslides from the 2008 Wenchuan earthquake. The inventory is mapped from high-resolution remote imagery using an automated algorithm and manual delineation and does not distinguish between source and runout zones. Discretizing the study area into 30 m cells we define landslide hazard as the probability that a cell is within a mapped landslide polygon (p(ls)). We find that p(ls) increases rapidly with increasing slope and upslope area. Locations with low local slope (<10˚) or upslope area (<900 m2/m) have p(ls) less than one third of the areal average. The joint p(ls) conditional on local slope and upslope area identifies long steep slopes as particularly hazardous and ridges (where slope and upslope area are both low) as particularly low hazard. Examining the slope lengths associated with each landslide in the inventory we find that hillslope length sets an upper limit on landslide size but that its influence on the detailed size distribution is more difficult to untangle. Finally, we combine local slope and upslope unstable area in a simple mechanistic rule-based model of landslide runout hazard and test its ability to predict p(ls). Our findings support the intuitive view that long steep slopes are among the most hazardous locations while ridges are the least hazardous locations in terms of co-seismic landslides.

  10. EDITORIAL: The 1st International Conference on Nanomanufacturing (NanoMan2008) The 1st International Conference on Nanomanufacturing (NanoMan2008)

    NASA Astrophysics Data System (ADS)

    Luo, Jack Jiqui; Fang, Fengzhou

    2009-05-01

    Nanomanufacturing is an emerging technology in the field of synthesis of nanomaterials, manufacture of nanodevices, nanosystems and the relevant characterization technologies, and will greatly impact our society and environment: speeding up scientific discovery, technological development, improving healthcare and living standards and slowing down the exhaustion of energy resources, to name but few. The 1st International Conference on Nanomanufacturing (NanoMan2008) was held on the 13-16 July 2008 in Singapore in conjunction with ThinFilm2008 (The 4th International Conference on Technological Advances of Thin Films & Surface Coatings). Approximately 140 delegates from all over the world have participated in the conference and presented their latest discoveries and technological developments. The main focuses of the conference were modern nanomanufacturing by laser machining, focused ion beam fabrication, nano/micro-molding/imprinting, nanomaterial synthesis and characterization, nanometrology and nano/microsystems fabrication and characterization. There was also great interest in applications of nanomanufacturing technologies in traditional areas such as free form machining, polishing and grinding with nano-scale precision and the smoothness of surfaces of objects, and applications in space exploration, military and medicine. This special issue is devoted to NanoMan2008 with a collection of 9 invited talks presented at the conference, covering all the topics of nanomanufacturing technology and development. These papers have been upgraded by the authors with new results and discoveries since the preparation of the conference manuscripts, hence presenting the latest developments. We would like to take this opportunity to thank all the delegates who attended the conference and made the conference successful, and to the authors who contributed papers to this special issue. Thanks also go to the conference committee for their efforts and devotion to the conference. We

  11. Controlled evaporative self-assembly of confined microfluids: A route to complex ordered structures

    NASA Astrophysics Data System (ADS)

    Byun, Myunghwan

    The evaporative self-assembly of nonvolatile solutes such as polymers, nanocrystals, and carbon nanotubes has been widely recognized as a non-lithographic means of producing a diverse range of intriguing complex structures. Due to the spatial variation of evaporative flux and possible convection, however, these non-equilibrium dissipative structures (e.g., fingering patterns and polygonal network structures) are often irregularly and stochastically organized. Yet for many applications in microelectronics, data storage devices, and biotechnology, it is highly desirable to achieve surface patterns having a well-controlled spatial arrangement. To date, only a few elegant studies have centered on precise control over the evaporation process to produce ordered structures. In a remarked comparison with conventional lithography techniques, surface patterning by controlled solvent evaporation is simple and cost-effective, offering a lithography- and external field-free means to organize nonvolatile materials into ordered microscopic structures over large surface areas. The ability to engineer an evaporative self-assembly process that yields a wide range of complex, self-organizing structures over large areas offers tremendous potential for applications in electronics, optoelectronics, and bio- or chemical sensors. We developed a facile, robust tool for evaporating polymer, nanoparticle, or DNA solutions in curve-on-flat geometries to create versatile, highly regular microstructures, including hierarchically structured polymer blend rings, conjugated polymer "snake-skins", block copolymer stripes, and punch-hole-like meshes, biomolecular microring arrays, etc. The mechanism of structure formation was elucidated both experimentally and theoretically. Our method further enhances current fabrication approaches to creating highly ordered structures in a simple and cost-effective manner, envisioning the potential to be tailored for use in photonics, optoelectronics, microfluidic

  12. Perceptual narrowing of linguistic sign occurs in the 1st year of life.

    PubMed

    Palmer, Stephanie Baker; Fais, Laurel; Golinkoff, Roberta Michnick; Werker, Janet F

    2012-01-01

    Over their 1st year of life, infants'"universal" perception of the sounds of language narrows to encompass only those contrasts made in their native language (J. F. Werker & R. C. Tees, 1984). This research tested 40 infants in an eyetracking paradigm and showed that this pattern also holds for infants exposed to seen language-American Sign Language (ASL). Four-month-old, English-only, hearing infants discriminated an ASL handshape distinction, while 14-month-old hearing infants did not. Fourteen-month-old ASL-learning infants, however, did discriminate the handshape distinction, suggesting that, as in heard language, exposure to seen language is required for maintenance of visual language discrimination. Perceptual narrowing appears to be a ubiquitous learning mechanism that contributes to language acquisition. PMID:22277043

  13. Meeting report for the 1st skin microbiota workshop, boulder, CO October 15-16 2012

    PubMed Central

    2014-01-01

    This report details the outcome of the 1st Skin Microbiota Workshop, Boulder, CO, held on October 15th-16th 2012. The workshop was arranged to bring Department of Defense personnel together with experts in microbial ecology, human skin physiology and anatomy, and computational techniques for interrogating the microbiome to define research frontiers at the intersection of these important areas. The workshop outlined a series of questions and created several working groups to address those questions, specifically to promote interdisciplinary activity and potential future collaboration. The US Army provided generous grant support and the meeting was organized and hosted by the University of Colorado at Boulder. A primary forward vision of the meeting was the importance of understanding skin microbial communities to improve the health and stealth of US Army warfighters.

  14. 1st ESMO Consensus Conference in lung cancer; Lugano 2010: small-cell lung cancer.

    PubMed

    Stahel, R; Thatcher, N; Früh, M; Le Péchoux, C; Postmus, P E; Sorensen, J B; Felip, E

    2011-09-01

    The 1st ESMO Consensus Conference on lung cancer was held in Lugano, Switzerland on 21st and 22nd May 2010 with the participation of a multidisciplinary panel of leading professionals in pathology and molecular diagnostics and medical, surgical and radiation oncology. Before the conference, the expert panel prepared clinically relevant questions concerning five areas as follows: early and locally advanced non-small-cell lung cancer (NSCLC), first-line metastatic NSCLC, second-/third-line NSCLC, NSCLC pathology and molecular testing, and small-cell lung cancer (SCLC) to be addressed through discussion at the Consensus Conference. All relevant scientific literature for each question was reviewed in advance. During the Consensus Conference, the panel developed recommendations for each specific question. The consensus agreement in SCLC is reported in this article. The recommendations detailed here are based on an expert consensus after careful review of published data. All participants have approved this final update.

  15. 4th generation of the 1st level surface detector trigger in the Pierre Auger Observator

    NASA Astrophysics Data System (ADS)

    Szadkowski, Z.

    The proposal of a new 4th generation of the Front-End with the advanced 1st level triggers for the Infill Array of the Pierre Auger Observatory and for the Auger North is described. Newest FPGA chips offer much higher capacity of logic registers and memories, as well as DSP blocks. The calibration channel, previously supported by an external dual-port RAM, has been fully implemented into FPGA chip, through a large internal memory. In turn DSP blocks allowed on implementation of much more sophisticated spectral trigger algorithms. A single chip simplified board design, newer architecture of FPGA reduced resouces utilization and power consumption. Higher sampling in the new Front- End in comparison with previous 40 MHz designs as well as free resources for new detection algotithms can be a good platform for CR radio detection technique at Auger enhancing a duty cycle for the detection of UHECR’s.

  16. The reduced order model problem in distributed parameter systems adaptive identification and control. [large space structures

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Lawrence, D.

    1981-01-01

    The basic assumption that a large space structure can be decoupled preceding the application of reduced order active control was considered and alternative solutions to the control of such structures (in contrast to the strict modal control) were investigated. The transfer function matrix from the actuators to the sensors was deemed to be a reasonable candidate. More refined models from multivariable systems theory were studied and recent results in the multivariable control field were compared with respect to theoretical deficiencies and likely problems in application to large space structures.

  17. Evidence of Second-Order Factor Structure in a Diagnostic Problem Space: Implications for Medical Education.

    ERIC Educational Resources Information Center

    Papa, Frank J.; And Others

    1997-01-01

    Chest pain was identified as a specific medical problem space, and disease classes were modeled to define it. Results from a test taken by 628 medical residents indicate a second-order factor structure that suggests that chest pain is a multidimensional problem space. Implications for medical education are discussed. (SLD)

  18. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  19. The Higher Order Factor Structure and Gender Invariance of the Pathological Narcissism Inventory

    ERIC Educational Resources Information Center

    Wright, Aidan G. C.; Lukowitsky, Mark R.; Pincus, Aaron L.; Conroy, David E.

    2010-01-01

    The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a…

  20. Orthogonal Higher Order Structure of the WISC-IV Spanish Using Hierarchical Exploratory Factor Analytic Procedures

    ERIC Educational Resources Information Center

    McGill, Ryan J.; Canivez, Gary L.

    2016-01-01

    As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…

  1. Constituent Structure and Linear Order in Language Production: Evidence from Subject-Verb Agreement

    ERIC Educational Resources Information Center

    Haskell, Todd R.; MacDonald, Maryellen C.

    2005-01-01

    A number of studies have shown that structural factors play a much larger role than the linear order of words during the production of grammatical agreement. These findings have been used as evidence for a stage in the production process at which hierarchical relations between constituents have been established (a necessary precursor to…

  2. Is Word-Order Similarity Necessary for Cross-Linguistic Structural Priming?

    ERIC Educational Resources Information Center

    Chen, Baoguo; Jia, Yuefang; Wang, Zhu; Dunlap, Susan; Shin, Jeong-Ah

    2013-01-01

    This article presents two experiments employing two structural priming paradigms that investigated whether cross-linguistic syntactic priming occurred in Chinese and English passive sentences that differ in word order (production-to-production priming in Experiment 1 and comprehension-to-production priming in Experiment 2). Results revealed that…

  3. Making Ordered DNA and Protein Structures from Computer-Printed Transparency Film Cut-Outs

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Instructions are given for building physical scale models of ordered structures of B-form DNA, protein [alpha]-helix, and parallel and antiparallel protein [beta]-pleated sheets made from colored computer printouts designed for transparency film sheets. Cut-outs from these sheets are easily assembled. Conventional color coding for atoms are used…

  4. Medium range order and structural relaxation in As–Se network glasses through FSDP analysis

    SciTech Connect

    Golovchak, R.; Lucas, P.; Oelgoetz, J.; Kovalskiy, A.; York-Winegar, J.; Saiyasombat, Ch.; Shpotyuk, O.; Feygenson, M.; Neuefeind, J.; Jain, H.

    2015-03-01

    Synchrotron X-ray diffraction and neutron scattering studies are performed on As–Se glasses in two states: as-prepared (rejuvenated) and aged for ~27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. The comparison of structural information shows that density fluctuations, which were thought previously to have a significant contribution to FSDP, have much smaller effect than the cation–cation correlations, presence of ordered structural fragments or cage molecules.

  5. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages. PMID:24048197

  6. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  7. Atomic-Resolution Kinked Structure of an Alkylporphyrin on Highly Ordered Pyrolytic Graphite.

    PubMed

    Chin, Yiing; Panduwinata, Dwi; Sintic, Maxine; Sum, Tze Jing; Hush, Noel S; Crossley, Maxwell J; Reimers, Jeffrey R

    2011-01-20

    The atomic structure of the chains of an alkyl porphyrin (5,10,15,20-tetranonadecylporphyrin) self-assembled monolayer (SAM) at the solid/liquid interface of highly ordered pyrolytic graphite (HOPG) and 1-phenyloctane is resolved using calibrated scanning tunneling microscopy (STM), density functional theory (DFT) image simulations, and ONIOM-based geometry optimizations. While atomic structures are often readily determined for porphyrin SAMs, the determination of the structure of alkyl-chain connections has not previously been possible. A graphical calibration procedure is introduced, allowing accurate observation of SAM lattice parameters, and, of the many possible atomic structures modeled, only the lowest-energy structure obtained was found to predict the observed lattice parameters and image topography. Hydrogen atoms are shown to provide the conduit for the tunneling current through the alkyl chains.

  8. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure.

    PubMed

    Aranda-Anzaldo, Armando

    2012-03-01

    Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316

  9. Accurate calculation of control-augmented structural eigenvalue sensitivities using reduced-order models

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1989-01-01

    A method is presented for generating mode shapes for model order reduction in a way that leads to accurate calculation of eigenvalue derivatives and eigenvalues for a class of control augmented structures. The method is based on treating degrees of freedom where control forces act or masses are changed in a manner analogous to that used for boundary degrees of freedom in component mode synthesis. It is especially suited for structures controlled by a small number of actuators and/or tuned by a small number of concentrated masses whose positions are predetermined. A control augmented multispan beam with closely spaced natural frequencies is used for numerical experimentation. A comparison with reduced-order eigenvalue sensitivity calculations based on the normal modes of the structure shows that the method presented produces significant improvements in accuracy.

  10. Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries.

    PubMed

    Jung, Yongjo; Kang, Byoungwoo

    2016-08-01

    In this study, electrochemical behaviors of Li2S such as a large potential barrier at the beginning of the 1st charging process and a continuous increase in potential to ∼4 V during the rest of this process were understood through X-ray photoelectron spectroscopy measurements and electrochemical evaluations for a full utilization of Li2S. The large potential barrier to the 1st charge in Li2S can be caused by the presence of insulating oxidized products (Li2SO3 or Li2SO4-like structures) on the surface; simple surface etching can remove them and thereby reduce the potential barrier. Even though the potential barrier was substantially reduced, the electrochemical activity of Li2S might not be improved due to the continuous increase in potential. This increase in potential was related to the polarization caused by the Li2S-conversion reaction; the polarization can affect the utilization of Li2S in subsequent cycles. We speculate that the increase in potential is related to the decomposition of oxidized products such as Li2CO3-like or Li2O-like structures on the surface of the Li2S particles. These findings indicate that the full utilization of Li2S can be achieved by controlling their surface characteristics, especially the surface oxidation products. PMID:27426215

  11. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure

    PubMed Central

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate that multiple high-order spoof localized surface plasmons (spoof-LSPs) modes can be supported on a complementary metallic spiral structure, which were absent in the previously reported spoof-LSPs modes. Through exact numerical simulations and near-field imaging experiments, we directly observe these high-order spoof-LSPs modes at microwave frequencies. We also show that these higher-order spoof-LSPs modes exhibit larger frequency shifts caused by the local environmental refractive index change than the previously reported low-order spoof-LSPs modes. Hence the complementary MSS may find potential applications as plasmonic sensor in the microwave and terahertz frequencies. PMID:27079658

  12. Technical decision-making with higher order structure data: specific binding of a nonionic detergent perturbs higher order structure of a therapeutic monoclonal antibody.

    PubMed

    Budyak, Ivan L; Doyle, Brandon L; Weiss, William F

    2015-04-01

    Robust higher order structure (HOS) characterization capability and strategy are critical throughout biopharmaceutical development from initial candidate selection and formulation screening to process optimization and manufacturing. This case study describes the utility of several orthogonal HOS methods as investigational tools during purification process development. An atypically high level of residual detergent in a development drug substance batch of a therapeutic monoclonal antibody triggered a root cause investigation. Several orthogonal biophysical techniques were used to uncover and characterize a specific interaction between the detergent and the antibody. Isothermal titration calorimetry (ITC) was used to quantify the molar ratio and affinity of the binding event, and circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC) were used to evaluate corresponding impacts on secondary/tertiary structure and thermal stability, respectively. As detergents are used routinely in biopharmaceutical processing, this case study highlights the value and power of HOS data in informing technical investigations and underlines the importance of HOS characterization as a component of overall biopharmaceutical analytical control strategy.

  13. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.

    PubMed

    Cheng, Daojian; Yuan, Shuai; Ferrando, Riccardo

    2013-09-01

    Equilibrium structures, chemical ordering and thermal properties of Pt-Ni nanoalloys are investigated by using basin hopping-based global optimization, Monte Carlo (MC) and molecular dynamics (MD) methods, based on the second-moment approximation of the tight-binding potentials (TB-SMA). The TB-SMA potential parameters for Pt-Ni nanoalloys are fitted to reproduce the results of density functional theory calculations for small clusters. The chemical ordering in cuboctahedral (CO) Pt-Ni nanoalloys with 561 and 923 atoms is obtained from the so called semi-grand-canonical ensemble MC simulation at 100 K. Two ordered phases of L12 (PtNi3) and L10 (PtNi) are found for the CO561 and CO923 Pt-Ni nanoalloys, which is in good agreement with the experimental phase diagram of the Pt-Ni bulk alloy. In addition, the order-disorder transition and thermal properties of these nanoalloys are studied by using MC and MD methods, respectively. It is shown that the typical perfect L10 PtNi structure is relatively stable, showing high order-disorder transition temperature and melting point among these CO561 and CO923 Pt-Ni nanoalloys.

  14. OPTICON: Pro-Matlab software for large order controlled structure design

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    1989-01-01

    A software package for large order controlled structure design is described and demonstrated. The primary program, called OPTICAN, uses both Pro-Matlab M-file routines and selected compiled FORTRAN routines linked into the Pro-Matlab structure. The program accepts structural model information in the form of state-space matrices and performs three basic design functions on the model: (1) open loop analyses; (2) closed loop reduced order controller synthesis; and (3) closed loop stability and performance assessment. The current controller synthesis methods which were implemented in this software are based on the Generalized Linear Quadratic Gaussian theory of Bernstein. In particular, a reduced order Optimal Projection synthesis algorithm based on a homotopy solution method was successfully applied to an experimental truss structure using a 58-state dynamic model. These results are presented and discussed. Current plans to expand the practical size of the design model to several hundred states and the intention to interface Pro-Matlab to a supercomputing environment are discussed.

  15. Formation mechanism of orderly structures in Au films deposited on silicone oil surfaces [rapid communication

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2005-06-01

    An optical microscopy study of ordered structures, namely bands, and self-organized phenomena in a continuous gold film system deposited on silicone oil surfaces is presented. The bands are composed of a large number of parallel keys with different width w but nearly uniform length L; the characteristic length of the bands is of the order of 101 102 μm. After disturbed with an external force, the growth process of the bands is observed directly. The experiment indicates that the formation mechanism of bands can be explained in terms of the relaxation of the compressive stress, which mainly results from the characteristic boundary condition of the nearly free sustained films.

  16. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    PubMed

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail.

  17. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?

    PubMed Central

    Luger, Karolin; Dechassa, Mekonnen L.; Tremethick, David J.

    2012-01-01

    The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions. PMID:22722606

  18. Competing ordered structures formed by particles with a regular tetrahedral patch decoration.

    PubMed

    Doppelbauer, Günther; Noya, Eva G; Bianchi, Emanuela; Kahl, Gerhard

    2012-07-18

    We study the ordered equilibrium structures of patchy particles where the patches are located on the surface of the colloid such that they form a regular tetrahedron. Using optimization techniques based on ideas of evolutionary algorithms we identify possible candidate structures. We retain not only the energetically most favourable lattices but also include a few energetically less favourable particle arrangements (i.e., local minima on the enthalpy landscape). Using suitably developed Monte Carlo based simulation techniques in an NPT ensemble we evaluate the thermodynamic properties of these candidate structures along selected isobars and isotherms and identify thereby the respective ranges of stability. We demonstrate on a quantitative level that the equilibrium structures at a given state point result from a delicate compromise between entropy, energy (i.e., the lattice sum) and packing.

  19. Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron P.; Kingdom, Frederick A. A.; Baker, Curtis L.

    2005-10-01

    Spatial filters that mimic receptive fields of visual cortex neurons provide an efficient representation of achromatic image structure, but the extension of this idea to chromatic information is at an early stage. Relatively few studies have looked at the statistical relationships between the modeled responses to natural scenes of the luminance (LUM), red-green (RG), and blue-yellow (BY) postreceptoral channels of the primate visual system. Here we consider the correlations among these channel responses in terms of pixel, first-order, and second-order information. First-order linear filtering was implemented by convolving the cosine-windowed images with oriented Gabor functions, whose gains were scaled to give equal amplitude response across spatial frequency to random fractal images. Second-order filtering was implemented via a filter-rectify-filter cascade, with Gabor functions for both first- and second-stage filters. Both signed and unsigned filter responses were obtained across a range of filter parameters (spatial frequency, 2-64 cycles/image orientation, 0-135°). The filter responses to the LUM channel images were larger than those for either RG or BY channel images. Cross correlations between the first-order channel responses and between the first- and second-order channel responses were measured. Results showed that the unsigned correlations between first-order channel responses were higher than expected on the basis of previous studies and that first-order channel responses were highly correlated with LUM, but not with RG or BY, second-order responses. These findings imply that course-scale color information correlates well with course-scale changes of fine-scale texture.

  20. Structural Insights into Higher Order Assembly and Function of the Bacterial Microcompartment Protein PduA*

    PubMed Central

    Pang, Allan; Frank, Stefanie; Brown, Ian; Warren, Martin J.; Pickersgill, Richard W.

    2014-01-01

    Bacterial microcompartments are large proteinaceous assemblies that are found in the cytoplasm of some bacteria. These structures consist of proteins constituting a shell that houses a number of enzymes involved in specific metabolic processes. The 1,2-propanediol-utilizing microcompartment is assembled from seven different types of shell proteins, one of which is PduA. It is one of the more abundant components of the shell and intriguingly can form nanotubule-like structures when expressed on its own in the cytoplasm of Escherichia coli. We propose a model that accounts for the size and appearance of these PduA structures and underpin our model using a combinatorial approach. Making strategic mutations at Lys-26, Val-51, and Arg-79, we targeted residues predicted to be important for PduA assembly. We present the effect of the amino acid residue substitution on the phenotype of the PduA higher order assemblies (transmission electron microscopy) and the crystal structure of the K26D mutant with one glycerol molecule bound to the central pore. Our results support the view that the hexamer-hexamer interactions seen in PduA crystals persist in the cytoplasmic structures and reveal the profound influence of the two key amino acids, Lys-26 and Arg-79, on tiling, not only in the crystal lattice but also in the bacterial cytoplasm. Understanding and controlling PduA assemblies is valuable in order to inform manipulation for synthetic biology and biotechnological applications. PMID:24873823

  1. An approach for generating the first order structure of multi-movable zoom lens

    NASA Astrophysics Data System (ADS)

    Song, Qiang; Huang, Hao; Lv, Xiangbo; Zhu, Jing; Huang, Huijie

    2016-01-01

    This work provides a method to obtain the first order structure of a zoom system based on particle swarm optimization (PSO) algorithm. The kinematic rule of a zoom system with fixed image plane is described by differential equations. PSO algorithm is introduced to solve the differential equations with considering both the merit functions and the boundary constraint. The smooth of the kinematic function of the zoom system is checked for considering the fabrication feasibility. Examples with two types of zoom system are presented for verifying the proposed method. This approach provides a powerful and practical tool for construction of a zoom structure.

  2. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance.

    PubMed

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.

  3. Cooperative interactions and novel structural ordering in H2S-H2

    SciTech Connect

    Strobel, Timothy A; Ganesh, Panchapakesan; Somayazulu, Maddury S; Kent, Paul R; Hemley, Russell

    2011-01-01

    Hydrogen sulfide (H{sub 2}S) and hydrogen (H{sub 2}) crystallize into a 'guest-host' structure at 3.5 GPa and, at the initial formation pressure, the rotationally disordered component molecules exhibit weak van der Waals-type interactions. With increasing pressure, hydrogen bonding develops and strengthens between neighboring H{sub 2}S molecules, reflected in a pronounced drop in S-H vibrational stretching frequency and also observed in first-principles calculations. At 17 GPa, an ordering process occurs where H{sub 2}S molecules orient themselves to maximize hydrogen bonding and H{sub 2} molecules simultaneously occupy a chemically distinct lattice site. Intermolecular forces in the H{sub 2}S+H{sub 2} system may be tuned with pressure from the weak hydrogen-bonding limit to the ordered hydrogen-bonding regime, resulting in a novel clathrate structure stabilized by cooperative interactions.

  4. Novel cooperative interactions and structural ordering in H2S-H2

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydrogen sulfide (H2S) and hydrogen (H2) crystallize into a 'guest-host' structure at 3.5 GPa and, at the initial formation pressure, the rotationally disordered component molecules exhibit weak van der Waals type interactions. With increasing pressure, hydrogen bonding develops and strengthens between neighboring H2S molecules, reflected in a pronounced drop in S-H vibrational stretching frequency and also observed in first-principles calculations. At 17 GPa, an ordering process occurs where H2S molecules orient themselves to maximize hydrogen bonding and H2 molecules simultaneously occupy a chemically distinct lattice site. Intermolecular forces in the H2S+H2 system may be tuned with pressure from the weak hydrogen-bonding limit to the ordered hydrogen-bonding regime, resulting in a novel clathrate structure stabilized by cooperative interactions.

  5. Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models

    SciTech Connect

    Iannelli, M; Kostova, T; Milner, F A

    2008-01-08

    In many applications of age- and size-structured population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model.

  6. Novel Cooperative Interactions and Structural Ordering in H[subscript 2]S-H[subscript 2

    SciTech Connect

    Strobel, Timothy A.; Ganesh, P.; Somayazulu, Maddury; Kent, P.R.C.; Hemley, Russell J.

    2012-02-07

    Hydrogen sulfide (H{sub 2}S) and hydrogen (H{sub 2}) crystallize into a 'guest-host' structure at 3.5 GPa and, at the initial formation pressure, the rotationally disordered component molecules exhibit weak van der Waals-type interactions. With increasing pressure, hydrogen bonding develops and strengthens between neighboring H{sub 2}S molecules, reflected in a pronounced drop in S-H vibrational stretching frequency and also observed in first-principles calculations. At 17 GPa, an ordering process occurs where H{sub 2}S molecules orient themselves to maximize hydrogen bonding and H{sub 2} molecules simultaneously occupy a chemically distinct lattice site. Intermolecular forces in the H{sub 2}S+H{sub 2} system may be tuned with pressure from the weak hydrogen-bonding limit to the ordered hydrogen-bonding regime, resulting in a novel clathrate structure stabilized by cooperative interactions.

  7. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    PubMed Central

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-01-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575

  8. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal

    PubMed Central

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine

    2010-01-01

    Summary Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C. PMID:20625522

  9. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian

    2016-05-01

    Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields.

  10. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism

    SciTech Connect

    Michel, F. Marc; Barrón, Vidal; Torrent, José; Morales, María P.; Serna, Carlos J.; Boily, Jean-François; Liu, Qingsong; Ambrosini, Andrea; Cismasu, A. Cristina; Brown, Jr., Gordon E.

    2010-11-19

    The natural nanomineral ferrihydrite is an important component of many environmental and soil systems and has been implicated as the inorganic core of ferritin in biological systems. Knowledge of its basic structure, composition, and extent of structural disorder is essential for understanding its reactivity, stability, and magnetic behavior, as well as changes in these properties during aging. Here we investigate compositional, structural, and magnetic changes that occur upon aging of '2-line' ferrihydrite in the presence of adsorbed citrate at elevated temperature. Whereas aging under these conditions ultimately results in the formation of hematite, analysis of the atomic pair distribution function and complementary physicochemical and magnetic data indicate formation of an intermediate ferrihydrite phase of larger particle size with few defects, more structural relaxation and electron spin ordering, and pronounced ferrimagnetism relative to its disordered ferrihydrite precursor. Our results represent an important conceptual advance in understanding the nature of structural disorder in ferrihydrite and its relation to the magnetic structure and also serve to validate a controversial, recently proposed structural model for this phase. In addition, the pathway we identify for forming ferrimagnetic ferrihydrite potentially explains the magnetic enhancement that typically precedes formation of hematite in aerobic soil and weathering environments. Such magnetic enhancement has been attributed to the formation of poorly understood, nano-sized ferrimagnets from a ferrihydrite precursor. Whereas elevated temperatures drive the transformation on timescales feasible for laboratory studies, our results also suggest that ferrimagnetic ferrihydrite could form naturally at ambient temperature given sufficient time.

  11. Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm.

    PubMed

    Chae, Su-Kyoung; Kang, Edward; Khademhosseini, Ali; Lee, Sang-Hoon

    2013-06-11

    A new method for the microfluidic spinning of ultrathin fibers with highly ordered structures is proposed by mimicking the spinning mechanism of silkworms. The self-aggregation is driven by dipole-dipole attractions between polar polymers upon contact with a low-polarity solvent to form fibers with nanostrands. The induction of Kelvin-Helmholtz instabilities at the dehydrating interface between two miscible fluids generates multi-scale fibers in a single microchannel.

  12. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition

    NASA Astrophysics Data System (ADS)

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-02-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.

  13. Tracing the structure of asymmetric molecules from high-order harmonic generation

    SciTech Connect

    Chen Yanjun; Zhang, Bing

    2011-11-15

    We investigate high-order harmonic generation (HHG) from asymmetric molecules exposed to intense laser fields. We show that the emissions of odd and even harmonics depend differently on the orientation angle, the internuclear distance, as well as the effective charge. This difference mainly comes from different roles of intramolecular interference in the HHG of odd and even harmonics. These roles map the structure of the asymmetric molecule to the odd vs even HHG spectra.

  14. Structural Evolution and Medium Range Order in Permanently Densified Vitreous SiO2

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Baldi, G.; Brusa, R. S.; Egger, W.; Fontana, A.; Gilioli, E.; Mariazzi, S.; Monaco, G.; Ravelli, L.; Sacchetti, F.

    2014-01-01

    Positron annihilation lifetime spectroscopy is employed to measure the size of the interstitial void spaces characterizing the structure of a set of permanently densified SiO2 glasses. The average volume of the voids is markedly affected by the densification process and linearly shrinks by almost an order of magnitude after a relative density variation of 22%. In addition, x-ray diffraction shows that this change of density does not modify appreciably the short range order, which remains organized in SiO4 tetrahedra. These results strongly suggest a porous medium description for v-SiO2 glasses where the compressibility and the medium range order are dominated by the density variation of the voids volume up to densities close to that of α-quartz.

  15. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  16. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    PubMed Central

    Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico

    2016-01-01

    This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938

  17. Treatment of Second Order Structures of Protein on Medical Equipments Using Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Kitazaki, Satoshi; Goto, Masaaki; Yagyu, Yoshihito; Yonesu, Akira

    2009-10-01

    Removal of proteins from the surface of medical equipments are attempted using an RF plasma. Oxygen gas is introduced into a vacuum chamber with dimensions of 450 mm in length, 200 mm in diameter and 20L of capacity. When an RF power (13.56 MHz, 60W) is applied to an ICP type antenna, oxygen radicals (atomic oxygen and excited oxygen molecule) are produced below the antenna. The characteristics of removing protein from the medical equipments was investigated using casein and heat-resistive keratin proteins. Initial concentration of the proteins on a CaF2 substrate is several mg/cm2. The treatment effect of proteins is determined by the peak height of chemical bonds in amide and second order structures appeared on FTIR spectra. The second order structure of a protein such as alpha-helix and beta-sheet are decomposed with the treatment period. Complete treatment of proteins including the second order structure requires several hours avoiding the damage to medical equipments.

  18. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    NASA Astrophysics Data System (ADS)

    Jena, Sushree Sangita; Panda, S. K.; Rout, G. C.

    2016-05-01

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the dxz and dyz orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green's function by using Zuvareb's Green's function technique and hence calculate an expression for the temperature dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.

  19. Parametric reduced-order models of battery pack vibration including structural variation and prestress effects

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Kwon; Epureanu, Bogdan I.; Castanier, Matthew P.

    2014-09-01

    The goal of this work is to develop a numerical model for the vibration of hybrid electric vehicle (HEV) battery packs to enable probabilistic forced response simulations for the effects of variations. There are two important types of variations that affect their structural response significantly: the prestress that is applied when joining the cells within a pack; and the small, random structural property discrepancies among the cells of a battery pack. The main contributions of this work are summarized as follows. In order to account for these two important variations, a new parametric reduced order model (PROM) formulation is derived by employing three key observations: (1) the stiffness matrix can be parameterized for different levels of prestress, (2) the mode shapes of a battery pack with cell-to-cell variation can be represented as a linear combination of the mode shapes of the nominal system, and (3) the frame holding each cell has vibratory motion. A numerical example of an academic battery pack with pouch cells is presented to demonstrate that the PROM captures the effects of both prestress and structural variation on battery packs. The PROM is validated numerically by comparing full-order finite element models (FEMs) of the same systems.

  20. Evaporation induced self-assembly of ordered structures from a capillary-held solution

    NASA Astrophysics Data System (ADS)

    Hong, Suck Won

    The use of spontaneous self-assembly as a lithography and external fields-free means to construct well-ordered, often intriguing structures has received much attention as a result of the ease of producing complex structures with small feature sizes. Self-assembly via irreversible solvent evaporation of a droplet containing nonvolatile solutes (polymers, nanoparticles, and colloids) represents one such case. However, the flow instabilities within the evaporating droplet often result in irregular dissipative structures (e.g., convection patterns and fingering instabilities). Therefore, fully utilizing evaporation as a simple tool for creating well-ordered structures that have numerous technological applications requires delicate control over several factors, including the evaporative flux, solution concentration, interfacial interaction between the solute and the substrate, etc. In this study, we developed a simple route to produce highly regular polymeric structures in an easily controllable, cost-effective, and reproducible manner simply by allowing a drop to evaporate in a confined geometry consisting of a sphere on a Si surface (i.e., a sphere-on-Si geometry). The confined geometry provides unique environment for controlling the flow within the evaporating droplet, which, in turn, regulates the structure formation. A variety of polymers, including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly(ferrocenyldimethylsilane) (PFS), polystyrene (PS), poly(methyl methacrylate) (PMMA), and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA), are selected as nonvolatile solutes. A number of parameters are found to effectively mediate the structure formation, including the solution concentration, the interfacial interaction between the solute and the substrate, curvature and molecular effect. This simple, lithography-free route allows subsequent preparation of various metal, metal oxide, and carbon nanotube patterns with controlled spacing

  1. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  2. Structural responses of benthic macroinvertebrate communities from different stream orders to zinc

    SciTech Connect

    Kiffney, P.M.; Clements, W.H. . Dept. of Fishery and Wildlife Biology)

    1994-03-01

    It is well established that benthic invertebrate community structure and function shift in a predictable fashion along longitudinal stream gradients as a result of variation in environmental conditions. The authors research is concerned with experimentally testing whether this shift in community structure influences the response of benthic macroinvertebrates to heavy metals. Using artificial streams, they compared effects of Zn on natural assemblages of benthic macroinvertebrates communities collected from Little Beaver Creek (LBC; a third-order stream) and the Big South Fork of the Cache la Poudre, Colorado, catchment. Organisms collected from LBC and SFP were exposed to 0 or 130 [mu]g/L Zn in indoor experimental streams for 7 d. In general, similar taxa were found at both sites, but densities were generally higher at SFP than at LBC. They observed significant effects at the community and population level as a result of Zn, stream order, and the interaction between Zn and stream order. Specifically, mayflies from both sides were sensitive to Zn, but the magnitude of the response varied between sites. The results indicate that benthic macroinvertebrate communities from different stream order may vary in sensitivity to Zn.

  3. Structural ordering of self-assembled clusters with competing interactions: transition from faceted to spherical clusters.

    PubMed

    Galván-Moya, J E; Nelissen, K; Peeters, F M

    2015-01-27

    The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.

  4. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    SciTech Connect

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y. Sasaki, M.

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  5. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn(N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed.

  6. Enzyme-mediated self-assembly of highly ordered structures from disordered proteins

    NASA Astrophysics Data System (ADS)

    Athamneh, Ahmad I.; Barone, Justin R.

    2009-10-01

    Wheat gluten is an amorphous storage protein. Trypsin hydrolysis of wheat gluten produced glutamine-rich peptides. Some peptides were able to self-assemble into fibrous structures extrinsic to native wheat gluten. The final material was an in situ formed peptide composite of highly ordered nanometer-sized fibrils and micron-sized fibers embedded in an unassembled peptide matrix. Fourier transform infrared spectroscopic and x-ray diffraction data suggested that the new structures resembled that of cross- β fibrils found in some insect silk and implicated in prion diseases. The largest self-assembled fibers were about 10 µm in diameter with right-handed helicity and appeared to be bundles of smaller nanometer-sized fibrils. Results demonstrated the potential for utilizing natural mechanisms of protein self-assembly to design advanced materials that can provide a wide range of structural and chemical functionality.

  7. Determining the effects of microwave heating on the ordered structures of rice starch by NMR.

    PubMed

    Fan, Daming; Ma, Wenrui; Wang, Liyun; Huang, Jianlian; Zhang, Fengmin; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2013-02-15

    The effects of microwave heating on the double helices, single helix and amorphous structures and the relative crystallinity of rice starch were studied by (13)C CP/MAS NMR method, with rapid heating in an oil bath and conventional slow heating as controls. The results indicated that compared with rapid heating, microwave heating did not significantly change the ordered and disordered structures. All of the heating methods exhibited similar content changes to the double helices, V-type single helix and amorphous structures with rising temperature. The rapid heating effects caused by microwave and oil bath accelerated the destruction of the V-type single helix in the starch granules. The electromagnetic effect of microwave heating did not affect the decrease of the double helices or the amorphous content of the starch.

  8. Analysis of noise produced by an orderly structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1973-01-01

    The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.

  9. Representation of higher-order statistical structures in natural scenes via spatial phase distributions.

    PubMed

    MaBouDi, HaDi; Shimazaki, Hideaki; Amari, Shun-ichi; Soltanian-Zadeh, Hamid

    2016-03-01

    Natural scenes contain richer perceptual information in their spatial phase structure than their amplitudes. Modeling phase structure of natural scenes may explain higher-order structure inherent to the natural scenes, which is neglected in most classical models of redundancy reduction. Only recently, a few models have represented images using a complex form of receptive fields (RFs) and analyze their complex responses in terms of amplitude and phase. However, these complex representation models often tacitly assume a uniform phase distribution without empirical support. The structure of spatial phase distributions of natural scenes in the form of relative contributions of paired responses of RFs in quadrature has not been explored statistically until now. Here, we investigate the spatial phase structure of natural scenes using complex forms of various Gabor-like RFs. To analyze distributions of the spatial phase responses, we constructed a mixture model that accounts for multi-modal circular distributions, and the EM algorithm for estimation of the model parameters. Based on the likelihood, we report presence of both uniform and structured bimodal phase distributions in natural scenes. The latter bimodal distributions were symmetric with two peaks separated by about 180°. Thus, the redundancy in the natural scenes can be further removed by using the bimodal phase distributions obtained from these RFs in the complex representation models. These results predict that both phase invariant and phase sensitive complex cells are required to represent the regularities of natural scenes in visual systems.

  10. Identifying 1st instar larvae for three forensically important blowfly species using "fingerprint" cuticular hydrocarbon analysis.

    PubMed

    Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P

    2014-07-01

    Calliphoridae are known to be the most forensically important insects when it comes to establishing the minimum post mortem interval (PMImin) in criminal investigations. The first step in calculating the PMImin is to identify the larvae present to species level. Accurate identification which is conventionally carried out by morphological analysis is crucial because different insects have different life stage timings. Rapid identification in the immature larvae stages would drastically cut time in criminal investigations as it would eliminate the need to rear larvae to adult flies to determine the species. Cuticular hydrocarbon analysis on 1st instar larvae has been applied to three forensically important blowflies; Lucilia sericata, Calliphora vicina and Calliphora vomitoria, using gas chromatography-mass spectrometry (GC-MS) and principal component analysis (PCA). The results show that each species holds a distinct "fingerprint" hydrocarbon profile, allowing for accurate identification to be established in 1-day old larvae, when it can be challenging to apply morphological criteria. Consequently, this GC-MS based technique could accelerate and strengthen the identification process, not only for forensically important species, but also for other entomological samples which are hard to identify using morphological features.

  11. The U.S. Naval Observatory Robotic Astrometric Telescope 1st Catalog (URAT1)

    NASA Astrophysics Data System (ADS)

    Zacharias, Norbert; Finch, Charlie T.; Subasavage, John P.; Tilleman, Trudy; DiVittorio, Mike; Harris, Hugh C.; Rafferty, Ted; Wieder, Gary; Eric Ferguson, Chris Kilian, Albert Rhodes, Mike Schultheis

    2015-01-01

    The 1st USNO Robotic Astrometric Telescope Catalog (URAT1) is about tobe released. It contains accurate positions (typically 10 to 30 mas std.error) of 220 million stars, mainly on the northern hemisphere. Propermotions were obtained for 85% of these stars utilizing the 2MASS as 1stepoch. URAT1 is supplemented by 2MASS and APASS photometry. The URAT1catalog was derived from 2 years of operations (April 2012 to April 2014)of the USNO "redlens" astrograph with its 474 Mpx 4-shooter camera at theNaval Observatory Flagstaff Station (NOFS) in a joint effort betweenUSNO's Astrometry Department and NOFS. Due to a combination of longexposures and short exposures with objective grating, URAT1 observationscover the large 3 to 18.5 magnitude range in a single 680-750 nm bandpass.The catalog properties are presented together with a brief summary ofobservations and reductions methods. URAT1 has on average about 4-timesthe number of stars per square degree and is 4-times more accurate thanUCAC4. URAT1 will serve as the currently most accurate astrometric anddeep photometric optical reference star catalog until the delivery ofthe Gaia catalog.

  12. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    SciTech Connect

    Not Available

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  13. 1st paleomagnetic investigation of Nubia Sandstone at Kalabsha, south Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, R.; Khashaba, A.; El-Hemaly, I. A.; Takla, E. M.; Abdel Aal, E.; Odah, H.

    2016-06-01

    Two profiles have been sampled from the Nubia Sandstone at Aswan, south Western Desert: the 1st profile has been taken from Abu Aggag Formation and the 2nd one was from Sabaya Formation (23.25 °N, 32.75 °E). 136 oriented cores (from 9 sites) have been sampled. Abu Aggag Formation is of Late Cretaceous (Turonian) and Sabaya Formation is of early Cretaceous (Albian-Cenomanian). The studied rocks are subjected to rock magnetic measurements as well as demagnetization treatment. It has been found that hematite is the main magnetic mineral in both formations. Four profile sections from Abu Aggag Formation, yielded a magnetic component with D = 352.7°, I = 36.6° with α95 = 5.2° and the corresponding pole lies at Lat. = 82.8 °N and Long. = 283.1 °E. Five profile sections from Sabaya Formation, yielded a magnetic component with D = 348.6°, I = 33.3° with α95 = 5.8° and the corresponding pole lies at Lat. = 78.3 °N and Long. = 280.4 °E. The obtained paleopole for the two formations lies at Lat. = 80.5 °N and Long. = 281.7 °E. The obtaind magnetic components are considered primary and the corresponding paleopole reflects the age of Nubia Sandstone when compared with the previously obtained Cretaceous poles for Egypt.

  14. Self-assembly of hierarchically ordered structures in DNA nanotube systems

    NASA Astrophysics Data System (ADS)

    Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.

    2016-05-01

    The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable

  15. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse

  16. A Framework for Efficient Structured Max-Margin Learning of High-Order MRF Models.

    PubMed

    Komodakis, Nikos; Xiang, Bo; Paragios, Nikos

    2015-07-01

    We present a very general algorithm for structured prediction learning that is able to efficiently handle discrete MRFs/CRFs (including both pairwise and higher-order models) so long as they can admit a decomposition into tractable subproblems. At its core, it relies on a dual decomposition principle that has been recently employed in the task of MRF optimization. By properly combining such an approach with a max-margin learning method, the proposed framework manages to reduce the training of a complex high-order MRF to the parallel training of a series of simple slave MRFs that are much easier to handle. This leads to a very efficient and general learning scheme that relies on solid mathematical principles. We thoroughly analyze its theoretical properties, and also show that it can yield learning algorithms of increasing accuracy since it naturally allows a hierarchy of convex relaxations to be used for loss-augmented MAP-MRF inference within a max-margin learning approach. Furthermore, it can be easily adapted to take advantage of the special structure that may be present in a given class of MRFs. We demonstrate the generality and flexibility of our approach by testing it on a variety of scenarios, including training of pairwise and higher-order MRFs, training by using different types of regularizers and/or different types of dissimilarity loss functions, as well as by learning of appropriate models for a variety of vision tasks (including high-order models for compact pose-invariant shape priors, knowledge-based segmentation, image denoising, stereo matching as well as high-order Potts MRFs). PMID:26352450

  17. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Jin, Si

    In contrast to conventional non-destructive evaluation methods, dynamics-based damage detection methods are capable of rapid integrity evaluation of large structures and have received considerable attention from aerospace, mechanical, and civil engineering communities in recent years. However, the identifiable damage size using dynamics-based methods is determined by the number of sensors used, level of measurement noise, accuracy of structural models, and signal processing techniques. In this thesis we study dynamics of structures with damage and then derive and experimentally verify new model-independent structural damage detection methods that can locate small damage to structures. To find sensitive damage detection parameters we develop a higher-order beam element that enforces the continuity of displacements, slopes, bending moments, and shear forces at all nodes, and a higher-order rectangular plate element that enforces the continuity of displacements, slopes, and bending and twisting moments at all nodes. These two elements are used to study the dynamics of beams and plates. Results show that high-order spatial derivatives of high-frequency modes are important sensitive parameters that can locate small structural damage. Unfortunately the most powerful and popular structural modeling technique, the finite element method, is not accurate in predicting high-frequency responses. Hence, a model-independent method using dynamic responses obtained from high density measurements is concluded to be the best approach. To increase measurement density and reduce noise a Polytec PI PSV-200 scanning laser vibrometer is used to provide non-contact, dense, and accurate measurements of structural vibration velocities. To avoid the use of structural models and to extract sensitive detection parameters from experimental data, a brand-new structural damage detection method named BED (Boundary-Effect Detection) is developed for pinpointing damage locations using Operational

  18. 78 FR 47698 - Notice to all Interested Parties of the Termination of the Receivership of 10183, 1st American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... From the Federal Register Online via the Government Publishing Office FEDERAL DEPOSIT INSURANCE CORPORATION Notice to all Interested Parties of the Termination of the Receivership of 10183, 1st American State Bank of Minnesota Hancock, MN Notice is hereby given that the Federal Deposit...

  19. Laying a Foundation for Lifelong Learning: Case Studies of E-Assessment in Large 1st-Year Classes

    ERIC Educational Resources Information Center

    Nicol, David

    2007-01-01

    Concerns about noncompletion and the quality of the 1st-year student experience have been linked to recent changes in higher education such as modularisation, increased class sizes, greater diversity in the student intake and reduced resources. Improving formative assessment and feedback processes is seen as one way of addressing academic failure,…

  20. 78 FR 7781 - Filing Dates for the South Carolina Special Elections in the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the South Carolina Special Elections in the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special elections. SUMMARY: South Carolina...

  1. Bills to Increase Employment Opportunities through the Youth Conservation Corps and Other Means, 95th Congress, 1st Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC.

    This packet contains nine Senate bills and eight House bills from the 95th Congress, 1st session, all dealing with various means of increasing employment opportunities. Most of the bills deal with the creation of new jobs or with programs for job training, counseling, or placement. Seven of the bills constitute amendments to the Youth Conservation…

  2. Jordanian Kindergarten and 1st-Grade Teachers' Beliefs about Child-Based Dimensions of School Readiness

    ERIC Educational Resources Information Center

    Fayez, Merfat; Ahmad, Jamal Fathi; Oliemat, Enass

    2016-01-01

    The purpose of this study was to explore the beliefs of Jordanian kindergarten and 1st-grade teachers regarding six child-based dimensions of school readiness: academic knowledge, basic thinking skills, socioemotional maturity, physical well-being and motor development, self-discipline, and communication skills. Questionnaires were used to collect…

  3. Maternal Sleep-Related Cognitions and Infant Sleep: A Longitudinal Study from Pregnancy through the 1st Year

    ERIC Educational Resources Information Center

    Tikotzky, Liat; Sadeh, Avi

    2009-01-01

    Infant sleep is a major source of concern for many parents. The aims of this longitudinal study were to assess: (a) the development of sleep patterns among infants, (b) the development of maternal cognitions regarding infant sleep, and (c) the relations between these domains during the 1st year of life. Eighty-five mothers were recruited during…

  4. Addressing the Effects of Reciprocal Teaching on the Receptive and Expressive Vocabulary of 1st-Grade Students

    ERIC Educational Resources Information Center

    Mandel, Eliana; Osana, Helena P.; Venkatesh, Vivek

    2013-01-01

    This study evaluated the effects of Adapted Reciprocal Teaching (ART) on the receptive and expressive flight-word vocabulary of 1st-grade students. During ART, classroom interactions produced narrative contexts within which students assumed responsibility for applying new flight words in personally meaningful ways. Students in the control group…

  5. Hardware efficient implementation of DFT using an improved first-order moments based cyclic convolution structure

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Liu, J. G.; Cao, Li

    2015-12-01

    This paper presents hardware efficient designs for implementing the one-dimensional (1D) discrete Fourier transform (DFT). Once DFT is formulated as the cyclic convolution form, the improved first-order moments-based cyclic convolution structure can be used as the basic computing unit for the DFT computation, which only contains a control module, a barrel shifter and (N-1)/2 accumulation units. After decomposing and reordering the twiddle factors, all that remains to do is shifting the input data sequence and accumulating them under the control of the statistical results on the twiddle factors. The whole calculation process only contains shift operations and additions with no need for multipliers and large memory. Compared with the previous first-order moments-based structure for DFT, the proposed designs have the advantages of less hardware consumption, lower power consumption and the flexibility to achieve better performance in certain cases. A series of experiments have proven the high performance of the proposed designs in terms of the area time product and power consumption. Similar efficient designs can be obtained for other computations, such as DCT/IDCT, DST/IDST, digital filter and correlation by transforming them into the forms of the first-order moments based cyclic convolution.

  6. The higher-order structure in the cells nucleus as the structural basis of the post-mitotic state.

    PubMed

    Aranda-Anzaldo, Armando; Dent, Myrna A R; Martínez-Gómez, Alejandro

    2014-05-01

    In metazoan cells during the interphase nuclear DNA is organized in supercoiled, topologically constrained loops anchored to a proteinaceous compartment or substructure commonly known as the nuclear matrix (NM). The DNA-NM interactions result from a thermodynamically-driven process leading to the necessary dissipation of structural stress along chromosomal DNA, otherwise the chromosomes would break into pieces. Such DNA-NM interactions define a nuclear higher-order structure that is independent of chromatin proteins. On the other hand, a metazoan cell no longer able to undergo mitosis is defined as post-mitotic and this condition indicates a terminally differentiated cell that may survive in such a state for indefinite time. The non-reversible nature of the post-mitotic state suggests a non-genetic basis for it since no spontaneous or induced mutations can revert it. Yet in individual cells the loss of proliferative potential has both a developmental and a stochastic component. Here we discuss evidence suggesting that the stability of the nuclear higher-order structure is the factor that links the stochastic and developmental components leading to the post-mitotic state. PMID:24556025

  7. Ordered Silicon Vacancies in the Framework Structure of the Zeolite Catalyst SSZ-74

    SciTech Connect

    Baerlocher,C.; Xie, D.; McCusker, L.; Hwang, S.; Chan, I.; Ong, K.; Burton, A.; Zones, S.

    2008-01-01

    Physico-chemical characterization of the high-silica zeolite catalyst SSZ-74 (ref. 1) suggested that it, like the related materials TNU-9 (ref. 2) and IM-5 (ref. 3), has a multidimensional 10-ring channel system4. Such pore systems are ideal for many petrochemical applications, and indeed SSZ-74 has been shown to be a good catalyst for a wide variety of reactions1. The elucidation of its framework structure, however, proved to be difficult. Comparable problems were encountered with TNU-9 and IM-5, which were synthesized with related structure-directing agents. Their framework structures, which are the two most complex ones known, both have 24 Si atoms in the asymmetric unit, and were finally solved by combining high-resolution powder diffraction data with information derived from high-resolution electron microscopy images5, 6. Therefore, a similar approach, using the powder charge-flipping algorithm7 to combine the two types of data and molecular modelling to help to locate the structure-directing agent, was applied to SSZ-74. This procedure eventually revealed a most unusual 23-Si-atom framework structure (|(C16H34N2)4|[Si92square4O184(OH)8]) with ordered Si vacancies.

  8. Tuning the magnetocaloric response of Er-based metallic glasses by varying structural order in disorder

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Tang, Meibo; Shen, Jun

    2016-03-01

    The effects of structural order on magnetocaloric response have been explored in Er60Al16Co20Ni4 metallic glass (MG). Compared with the fully amorphous structure of the as-spun ribbon (cooling rate ∼106 K/s), the rod sample fabricated with a lower cooling rate (∼103 K/s) contains a few crystalline phases embedded in the amorphous matrix. Annealing the ribbon in the supercooled liquid region results in formation of a large amount of nanocrystalline phase. Both the as-spun ribbon and rod samples show a single spin-glass-like transition behavior, while the annealed sample exhibits double-freezing processes. It is found that the sparsely distributed micro-sized crystalline phases (content fraction of 13%) exert a slight effect on the magnetic entropy change (MEC). However, densely distributed nanocrystallization phase (∼50%) in amorphous matrix leads to an obvious reduction of the MEC and refrigerant capacity (RC). The exponent n of field dependence of MEC is found to related to exchange frustration, random anisotropy, and structure ordering degrees.

  9. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices

    PubMed Central

    2015-01-01

    Dodecanethiol-capped gold (Au) nanocrystal superlattices can undergo a surprisingly diverse series of ordered structure transitions when heated (Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Nano Lett.2013, 13, 5710–5714). These are the result of highly uniform changes in nanocrystal size, which subsequently force a spontaneous rearrangement of superlattice structure. Here, we show that halide-containing surfactants play an essential role in these transitions. In the absence of any halide-containing surfactant, superlattices of dodecanethiol-capped (1.9-nm-diameter) Au nanocrystals do not change size until reaching about 190–205 °C, at which point the gold cores coalesce. In the presence of halide-containing surfactant, such as tetraoctylphosphonium bromide (TOPB) or tetraoctylammounium bromide (TOAB), the nanocrystals ripen at much lower temperature and superlattices undergo various ordered structure transitions upon heating. Chloride- and iodide-containing surfactants induce similar behavior, destabilizing the Au–thiol bond and reducing the thermal stability of the nanocrystals. PMID:26013597

  10. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    PubMed

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  11. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)

    PubMed Central

    Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.

    2010-01-01

    Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054

  12. Multiple Ordering Transitions in a Liquid Stabilized by Low Symmetry Structures

    NASA Astrophysics Data System (ADS)

    Ronceray, Pierre; Harrowell, Peter

    2014-01-01

    We present a numerical study of a lattice model of a liquid characterized by a low-symmetry favored local structure. We find that the freezing point is depressed far enough to reveal an exotic liquid-liquid transition characterized by the appearance of an extended chirality, prior to freezing. The ordered liquid can be readily supercooled to zero temperature, as the combination of critical slowing down and competing crystal polymorphs results in a dramatically slow crystallization process. These results provide an explicit scenario by which the ordering of a liquid can proceed via an intermediate liquid-liquid transition, a scenario that may prove helpful in the analysis of low temperature liquids interacting by more realistic interactions.

  13. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  14. Multiple ordering transitions in a liquid stabilized by low symmetry structures.

    PubMed

    Ronceray, Pierre; Harrowell, Peter

    2014-01-10

    We present a numerical study of a lattice model of a liquid characterized by a low-symmetry favored local structure. We find that the freezing point is depressed far enough to reveal an exotic liquid-liquid transition characterized by the appearance of an extended chirality, prior to freezing. The ordered liquid can be readily supercooled to zero temperature, as the combination of critical slowing down and competing crystal polymorphs results in a dramatically slow crystallization process. These results provide an explicit scenario by which the ordering of a liquid can proceed via an intermediate liquid-liquid transition, a scenario that may prove helpful in the analysis of low temperature liquids interacting by more realistic interactions. PMID:24483932

  15. Signatures of symmetry and electronic structure in high-order harmonic generation in polyatomic molecules

    SciTech Connect

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.

    2010-06-15

    We report detailed measurements of high-order harmonic generation in chloromethane molecules (CCl{sub 4}, CHCl{sub 3}, and CH{sub 2}Cl{sub 2}) to show that fingerprints of symmetry and electronic structure can be decoded from high-order harmonic generation even in complex randomly oriented molecules. In our measurements, orbital symmetries of these molecules are manifested as both extended harmonic cutoffs and a local minimum in the ellipticity dependence of the cut-off harmonics, suggesting the occurrence of quantum interferences during ionization. The harmonic spectra exhibit distinct interference minima at {approx}42 and {approx}60 eV. We attribute the former to the Cooper minimum in the photoionization cross section and the latter to intramolecular interference during the recombination process.

  16. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. PMID:26428150

  17. Phase 1. Screening guidelines to determine the structures exempt from Executive Order 12941

    SciTech Connect

    1995-09-01

    This report presents data regarding the guidelines for determining structures that are exempt from executive order 12941. Executive order 12941 was enacted to assure seismic safety of existing federally owned or leased buildings. This reports considered only the minimum amount of information. This information varied from building to building and from site to site. The scope of the guidelines is to cover all five DOE sites that fall under the DOE Oak Ridge Operations and are operated by LMES. These facilities are the ORNL, Y-12 Plant, K-25 Site all at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant, Paducah, Kentucky; and the Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio. Off site facilities, owned or leased, that are occupied by LMES are also included.

  18. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing.

  19. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    SciTech Connect

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.

  20. Construction of minimum energy high-order Helmholtz bases for structured elements

    NASA Astrophysics Data System (ADS)

    Rodrigues, Caio F.; Suzuki, Jorge L.; Bittencourt, Marco L.

    2016-02-01

    We present a construction procedure for high-order expansion bases for structured finite elements specific for the operator under consideration. The procedure aims to obtain bases in such way that the condition numbers for the element matrices are almost constant or have a moderate increase in terms of the polynomial order. The internal modes of the mass and stiffness matrices are made simultaneously diagonal and the minimum energy concept is used to make the boundary modes orthogonal to the internal modes. The performance of the proposed bases is compared to the standard basis using Jacobi polynomials. This is performed through numerical examples for Helmholtz problem and transient linear elasticity employing explicit and implicit time integration algorithms and the conjugate gradient method with diagonal, SSOR and Gauss-Seidel pre-conditioners. The sparsity patterns, conditioning and solution costs are investigated. A significant speedup and reduction in the number of iterations are obtained when compared to the standard basis.

  1. ANOVA-HDMR structure of the higher order nodal diffusion solution

    SciTech Connect

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-07-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  2. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.

    PubMed

    Bandyopadhyay, Dibyendu; Mohan, S; Ghosh, S K; Choudhury, Niharendu

    2013-07-25

    We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it. On the basis of this view, the origin of the appearance of a non-tetrahedral peak at a higher temperature in the distribution of tetrahedral order parameters has been explained. It is found that a neighbor that is hydrogen-bonded to the central molecule is tetrahedrally coordinated even at higher temperatures. The non-tetrahedral peak at a higher temperature arises due to the strained orientation of the neighbors that are non-hydrogen-bonded to the central molecule. With the new definition of the solvation shell, liquid water can be viewed as an instantaneously changing random hydrogen-bonded network consisting of differently coordinated hydrogen-bonded molecules with their distinct solvation shells. The variation of the composition of these hydrogen-bonded molecules against temperature accounts for the density anomaly without introducing the concept of large-scale structural polyamorphism in water.

  3. Detecting Memory and Structure in Human Navigation Patterns Using Markov Chain Models of Varying Order

    PubMed Central

    Singer, Philipp; Helic, Denis; Taraghi, Behnam; Strohmaier, Markus

    2014-01-01

    One of the most frequently used models for understanding human navigation on the Web is the Markov chain model, where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another. Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in numerous applications such as Google's PageRank algorithm and others. Recently, new studies suggested that human navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments reveal that the complexity of higher order models grows faster than their utility, and thus we confirm that the memoryless model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a topical level, where we abstract away from specific page transitions to transitions between topics, we find that the memoryless assumption is violated and specific regularities can be observed. We report results from experiments with two types of navigational datasets (goal-oriented vs. free form) and observe interesting structural differences that make a strong argument for more contextual studies of human navigation in future work. PMID:25013937

  4. HL7 Structured Product Labeling - electronic prescribing information for provider order entry decision support.

    PubMed

    Schadow, Gunther

    2005-01-01

    Prescribing errors are an important cause of adverse events, and lack of knowledge of the drug is a root cause for prescribing errors. The FDA is issuing new regulations that will make the drug labels much more useful not only to physicians, but also to computerized order entry systems that support physicians to practice safe prescribing. For this purpose, FDA works with HL7 to create the Structured Product Label (SPL) standard that includes a document format as well as a drug knowledge representation, this poster introduces the basic concepts of SPL.

  5. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  6. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Lynch, Brian; Konopka, Uwe; Merlino, Robert L.; Rosenberg, Marlene

    2015-03-01

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the "dust grid" and point out potential implications and applications of these observations.

  7. Diffraction anomalous near-edge structure in ordered GaInP

    NASA Astrophysics Data System (ADS)

    Alagna, L.; Prosperi, T.; Turchini, S.; Ferrari, C.; Francesio, L.; Franzosi, P.

    1998-04-01

    We report the diffraction anomalous near-edge structure (DANES) of a nominally lattice matched GaxIn1-xP/GaAs (x=0.51) heteroepitaxial layer, grown by metal organic chemical vapor deposition, which shows long range ordering in the cationic sublattice along the <111> direction. DANES spectra, originating from the 004 reflections of the substrate and of the epi-layer and that from the "forbidden" -5/2 5/2 -5/2 reflection of the superstructure, have been recorded at the Ga K edge. A full theoretical simulation, based on the kinematic formalism, largely agrees with the experimental data.

  8. Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Kawaguchi, Ryutaro; Goto, Masaaki

    2010-10-01

    Removal of proteins from the surface of medical equipments is attempted using oxygen plasma produced by RF discharge. FTIR spectra indicate that the bonding of C-H and N-H in the casein protein is reduced after irradiation of oxygen plasma. Also, the second order structure of a protein such as α-helix and β-sheet are modified by the oxygen plasma. Complete removal of casein protein with the concentration of 0.016 mg/cm2 that is equivalent to remnants on the medical equipment requires two hours avoiding the damage to medical equipments.

  9. Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma

    SciTech Connect

    Hayashi, Nobuya; Nakahigashi, Akari; Kawaguchi, Ryutaro; Goto, Masaaki

    2010-10-13

    Removal of proteins from the surface of medical equipments is attempted using oxygen plasma produced by RF discharge. FTIR spectra indicate that the bonding of C-H and N-H in the casein protein is reduced after irradiation of oxygen plasma. Also, the second order structure of a protein such as {alpha}-helix and {beta}-sheet are modified by the oxygen plasma. Complete removal of casein protein with the concentration of 0.016 mg/cm{sup 2} that is equivalent to remnants on the medical equipment requires two hours avoiding the damage to medical equipments.

  10. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    SciTech Connect

    Thomas, Edward Lynch, Brian; Konopka, Uwe; Merlino, Robert L.; Rosenberg, Marlene

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  11. Computational Benefits Using an Advanced Concatenation Scheme Based on Reduced Order Models for RF Structures

    NASA Astrophysics Data System (ADS)

    Heller, Johann; Flisgen, Thomas; van Rienen, Ursula

    The computation of electromagnetic fields and parameters derived thereof for lossless radio frequency (RF) structures filled with isotropic media is an important task for the design and operation of particle accelerators. Unfortunately, these computations are often highly demanding with regard to computational effort. The entire computational demand of the problem can be reduced using decomposition schemes in order to solve the field problems on standard workstations. This paper presents one of the first detailed comparisons between the recently proposed state-space concatenation approach (SSC) and a direct computation for an accelerator cavity with coupler-elements that break the rotational symmetry.

  12. Three-dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency.

    PubMed

    Wu, Min; Li, Yu; Deng, Zhao; Su, Bao-Lian

    2011-10-17

    The three dimensional photonic crystals concept has been employed for photocatalysis. Slow photons observed in photonic crystal structures will enhance the absorption of materials when the photon energy matches the absorbance of the materials, which would improve the photocatalytic efficiency. In this work, three dimensionally ordered macroporous (3DOM) titania was prepared by applying the colloidal templating method with a range of pore diameters. Calcination at different temperatures to remove the templates resulted in different crystalline phases. The structural and photonic properties were characterized and their effects on photocatalytic activity are presented as well. A strong effect of the pore diameter on the photocatalytic activity was observed and correlated with the photon energy involved in the photodegradation process of organics. A very interesting phenomenon was also observed: the sample prepared by using PS spheres of 250 nm had a high photocatalytic efficiency, which mismatched the effect of pore diameter, probably owing to the slow photon effect. PMID:21994156

  13. Nonlinear Acoustic Response of an Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Groen, David S.

    2006-01-01

    A reduced-order nonlinear analysis of a structurally complex aircraft fuselage sidewall panel is undertaken to explore issues associated with application of such analyses to practical structures. Of primary interest is the trade-off between computational efficiency and accuracy. An approach to modal basis selection is offered based upon the modal participation in the linear regime. The nonlinear static response to a uniform pressure loading and nonlinear random response to a uniformly distributed acoustic loading are computed. Comparisons of the static response with a nonlinear static solution in physical degrees-of-freedom demonstrate the efficacy of the approach taken for modal basis selection. Changes in the modal participation as a function of static and random loading levels suggest a means for improvement in the basis selection.

  14. High Ordered Structure of Polyurea Thin Films Prepared by Vapor Deposition Polymerization

    NASA Astrophysics Data System (ADS)

    Kumagai, Taisuke; Suga, Takahiro; Kubono, Atushi

    Vapor deposition polymerization(VDP) have been utilized for producing polymeric thin films, such as polyimides, polyamides, and polyureas by co-evaporation of two types of bifunctional monomers onto the substrate surface. Through the use of poling treatment, polyureas acquire pyroelectric and piezoelectric activities comparable to those of PVDF. In this study, polyurea thin films were prepared by vapor deposition polymerization. The ordered structures and physical properties were investigated by means of infrared spectroscopy. The infrared spectra indicate that the dipoles of urea groups in the polymer were oriented normal to the surface of substrate. This results that strong interaction between the substrate interface and the urea groups results in the orientation of the urea dipoles during annealing. Moreover, the introduction of aliphatic moieties into the polymer main chain gives rise to easy thermal reorientation of the dipoles in comparison with aromatic moieties. In comparison with aromatic moieties which have rigid frame structure need poling treatment to dipoles reorientation.

  15. Exchange and polarization effect in high-order harmonic imaging of molecular structures

    SciTech Connect

    Sukiasyan, Suren; Ivanov, Misha Yu.; Patchkovskii, Serguei; Smirnova, Olga; Brabec, Thomas

    2010-10-15

    We analyze the importance of exchange, polarization, and electron-electron correlation in high-order harmonic generation in molecules interacting with intense laser fields. We find that electron exchange can become particularly important for harmonic emission associated with intermediate excitations in the molecular ion. In particular, for orbitals associated with two-hole one-particle excitations, exchange effects can eliminate structure-related minima and maxima in the harmonic spectra. Laser-induced polarization of the neutral molecule may also have major effects on orbital structure-related minima and maxima in the harmonic spectra. Finally, we show how exchange terms in recombination can be viewed as a shakedownlike process induced by sudden electronic excitation in the ion.

  16. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    NASA Astrophysics Data System (ADS)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  17. Foreword to Selected presentations from the 1st European Hip Sport Meeting.

    PubMed

    Dallari, Dante; Ribas, Manuel

    2016-05-14

    Recent years have witnessed a growing number of people practising sports both at professional and amateur level. This trend led to a progressive rise in the incidence and prevalence of acute and chronic hip damage. The treatment of hip disease in subjects practising sports is a major challenge for the orthopaedic surgeon. The evaluation of patients, in particular those of young age with high functional demands, is inevitably complex and should be performed with a multidisciplinary approach; from a surgical point of view, it is essential to carefully assess whether the indication is towards conservative surgery or hip replacement surgery. The advent of arthroscopic surgery in recent years has allowed us to improve our knowledge of hip joint diseases, such as femoroacetabular impingement that is typical of sports and overuse activity. A correct and early diagnosis of the disease can direct the patient promptly to a conservative surgical treatment that could reduce the progression of degenerative pathology. However, when the joint is permanently damaged, the only reliable solution remains prosthetic surgery, leading to a series of issues that the orthopaedic surgeon should be able to master, leading to a thoughtful decision on, for example, which implant to use, which biomaterials, which surgical approach or which sport to practise after surgery. This supplement contains selected contributions stemming from the work performed by internationally recognised experts in the field and presented during the 1st European Hip Sport Meeting held in Bologna on May 19th, 20th, 2016 that we had the honour to co-chair. We hope that these contributions will help the orthopaedic surgeon, the sports physician and physiotherapist in their day-to-day practice, and will help in fulfilling our ultimate aim to improve the knowledge of the hip pathology related to sports and overuse activities. PMID:27174057

  18. Patterns of Irregular Burials in Western Europe (1st-5th Century A.D.)

    PubMed Central

    Milella, Marco; Mariotti, Valentina; Belcastro, Maria Giovanna; Knüsel, Christopher J.

    2015-01-01

    Background Irregular burials (IB—burials showing features that contrast with the majority of others in their geographic and chronological context) have been the focus of archaeological study because of their relative rarity and enigmatic appearance. Interpretations of IB often refer to supposed fear of the dead or to social processes taking place in time-specific contexts. However, a comprehensive and quantitative analysis of IB for various geographical contexts is still lacking, a fact that hampers any discussion of these burials on a larger scale. Methods Here, we collected a bibliographic dataset of 375 IB from both Britain and Continental Europe, altogether spanning a time period from the 1st to the 5th century AD. Each burial has been coded according to ten dichotomous variables, further analyzed by means of chi-squared tests on absolute frequencies, non-metric multidimensional scaling, and cluster analysis. Results Even acknowledging the limits of this study, and in particular the bias represented by the available literature, our results point to interesting patterns. Geographically, IB show a contrast between Britain and Continental Europe, possibly related to historical processes specific to these regions. Different types of IB (especially prone depositions and depositions with the cephalic extremity displaced) present a series of characteristics and associations between features that permit a more detailed conceptualization of these occurrences from a socio-cultural perspective that aids to elucidate their funerary meaning. Conclusions and Significance Altogether, the present work stresses the variability of IB, and the need to contextualize them in a proper archaeological and historical context. It contributes to the discussion of IB by providing a specific geographic and chronological frame of reference that supports a series of hypotheses about the cultural processes possibly underlying their occurrence. PMID:26115408

  19. Lying to ourselves: rationality, critical reflexivity, and the moral order as 'structured agency'.

    PubMed

    Goodman, Benny

    2016-07-01

    A report suggests that United States' army officers may engage in dishonest reporting regarding their compliance procedures. Similarly, nurses with espoused high ethical standards sometimes fail to live up to them and may do so while deceiving themselves about such practices. Reasons for lapses are complex. However, multitudinous managerial demands arising within 'technical and instrumental rationality' may impact on honest decision-making. This paper suggests that compliance processes, which operates within the social structural context of the technical and instrumental rationality manifest as 'managerialism', contributes to professional 'dishonesty' about lapses in care, sometimes through 'thoughtlessness'. The need to manage risk, measure, account, and control in order to deliver efficiency, effectiveness, and economy (technical rationality) thus has both unintended and dysfunctional consequences. Meeting compliance requirements may be mediated by factors such as the 'affect heuristic' and 'reflexive deliberations' as part of the 'structured agency' of nurses. It is the complexity of 'structured agency' which may explain why some nurses fail to respond to such things as sentinel events, a failure to recognize 'personal troubles' as 'public issues', a failure which to outsiders who expect rational and professional responses may seem inconceivable. There is a need to understand these processes so that nurses can critique the context in which they work and to move beyond either/or explanations of structure or agency for care failures, and professional dishonesty.

  20. Lying to ourselves: rationality, critical reflexivity, and the moral order as 'structured agency'.

    PubMed

    Goodman, Benny

    2016-07-01

    A report suggests that United States' army officers may engage in dishonest reporting regarding their compliance procedures. Similarly, nurses with espoused high ethical standards sometimes fail to live up to them and may do so while deceiving themselves about such practices. Reasons for lapses are complex. However, multitudinous managerial demands arising within 'technical and instrumental rationality' may impact on honest decision-making. This paper suggests that compliance processes, which operates within the social structural context of the technical and instrumental rationality manifest as 'managerialism', contributes to professional 'dishonesty' about lapses in care, sometimes through 'thoughtlessness'. The need to manage risk, measure, account, and control in order to deliver efficiency, effectiveness, and economy (technical rationality) thus has both unintended and dysfunctional consequences. Meeting compliance requirements may be mediated by factors such as the 'affect heuristic' and 'reflexive deliberations' as part of the 'structured agency' of nurses. It is the complexity of 'structured agency' which may explain why some nurses fail to respond to such things as sentinel events, a failure to recognize 'personal troubles' as 'public issues', a failure which to outsiders who expect rational and professional responses may seem inconceivable. There is a need to understand these processes so that nurses can critique the context in which they work and to move beyond either/or explanations of structure or agency for care failures, and professional dishonesty. PMID:27197710

  1. Local structure order in Pd78Cu6Si16 liquid

    PubMed Central

    Yue, G. Q.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.

    2015-01-01

    The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motif is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability. PMID:25652079

  2. Local structure order in Pd78Cu6Si16 liquid

    DOE PAGES

    Yue, G. Q.; Zhang, Y.; Sun, Y.; Shen, B.; Dong, F.; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Kramer, M. J.; Wang, S. Y.; et al

    2015-02-05

    The short-range order (SRO) in Pd78Cu6Si16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd9Si2 motif, namely the structure of which motifmore » is similar to the structure of Pd-centered clusters in the Pd9Si2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less

  3. The effect of composition and structural ordering on the magnetism of FePt nanoparticles.

    PubMed

    Kalogirou, O; Angelakeris, M; Dendrinou-Samara, C; Mourdikoudis, S; Simeonidis, K; Gloystein, K; Vilalta-Clemente, A; Tsiaoussis, I

    2010-09-01

    Spherical 4 nm FePt nanoparticles were synthesized by the simultaneous decomposition of Fe(CO)5 and the polyol reduction of Pt(acac)2. The final Fe-to-Pt composition was tuned between 15-55 at.% by varying the ingredient precursor ratios. The effect of composition and structural ordering on the macroscopic magnetic features of final FePt nanoparticles was examined via post-synthetic annealing stages at different conditions. Structural ordering is promoted in all cases, though samples approximating equiatomic Fe/Pt ratios eventually transform to fct-FePt phase while the FePt3-phase is favored for the Pt-richer samples. Consequently, the magnetic features of the annealed nanoparticles may be categorized; the hard magnetic FePt region dominating for Fe content between 40-55 at.% and the soft magnetic FePt3 region dominating in the region 20-30 at.% while Fe content less than 20 at.% results in Pt-richer phases with diminishing ferromagnetic behavior. PMID:21133141

  4. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures.

    PubMed

    Zhang, Z; Han, Y; Xiao, F S; Qiu, S; Zhu, L; Wang, R; Yu, Y; Zhang, Z; Zou, B; Wang, Y; Sun, H; Zhao, D; Wei, Y

    2001-05-30

    Highly ordered hexagonal mesoporous aluminosilicates (MAS-5) with uniform pore sizes have been successfully synthesized from assembly of preformed aluminosilcate precursors with cetyltrimethylammonium bromide (CTAB) surfactant. The aluminosilicate precursors were obtained by heating, at 100--140 degrees C for 2--10 h, aluminasilica gels at the Al(2)O(3)/SiO(2)/TEAOH/H(2)O molar ratios of 1.0/7.0--350/10.0--33.0/500--2000. Mesoporous MAS-5 shows extraordinary stability both in boiling water (over 300 h) and in steam (800 degrees C for 2 h). Temperature-programmed desorption of ammonia shows that the acidic strength of MAS-5 is much higher than that of MCM-41 and is comparable to that of microporous Beta zeolite. In catalytic cracking of 1,3,5-triisopropylbenzene and alkylation of isobutane with butene, MAS-5 exhibits greater catalytic activity and selectivity, as compared with MCM-41 and HZSM-5. The MAS-5 samples were characterized with infrared, UV--Raman, and NMR spectroscopy and numerous other techniques. The results suggest that MAS-5 consists of both mesopores and micropores and that the pore walls of MAS-5 contain primary and secondary structural building units, similar to those of microporous zeolites. Such unique structural features might be responsible for the observed strong acidity and high thermal stability of the mesoporous aluminosilicates with well-ordered hexagonal symmetry.

  5. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  6. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGES

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  7. Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals.

    PubMed

    Koteja, Anna; Matusik, Jakub

    2015-10-01

    Efficient sorbents based on widely available clay minerals are of particular value in the field of pollution control. The research shows mineral-based sorbents formed through organic modification of two kaolinites differing in structural order. Their structure and texture was characterized by XRD, FTIR, DTA/TG, CHN, XPS and N2 adsorption/desorption methods. The obtained materials were tested as adsorbents of Cd(II), Zn(II), Pb(II) and Cu(II) in equilibrium and kinetic experiments. Moreover, the sorption mechanisms were subjected to investigation. The synthesis procedure involved interlayer grafting of kaolinites with diethanolamine (DEA) and triethanolamine (TEA). The organo-kaolinites showed resistance to hydrolysis and temperature up to ∼300 °C. The adsorption improvement was observed for the modified materials, particular the DEA derivatives and materials based on the poorly ordered kaolinite. The XPS analyses of elements local environment coupled with binding strength tests enabled to confirm the immobilization mechanisms. The pure kaolinites removed metal ions through either the ion-exchange or the surface complexation, exclusively on the external surfaces. In turn, the grafted materials additionally immobilized ions in the interlayer space which was expanded. The ions were attracted by the grafted DEA or TEA, which are N and O-donors and readily form complexes with metals, particularly with the Cu(II).

  8. Preparation and Crystal Structure of Ordered and Disordered Lithium Nitride Dichloride, Li 5NCl 2

    NASA Astrophysics Data System (ADS)

    Marx, Rupert; Mayer, Hans-Michael

    1997-04-01

    A previosly unknown ordered low-temperature phase Li5NCl2-II has been obtained from the disordered high-temperature phase Li5NCl2-I by slow cooling (100°/h), while prolonged annealing at 400°C resulted in a decomposition to Li4NCl and LiCl. Neutron powder diffraction data were collected for both compounds and analyzed by the Rietveld method of profile refinement. Li5NCl2-II crystallizes in the hexagonal rhombohedral space groupRoverline3m,a=366.10 (3),c=2851.6 (3) pm with three formula units per unit cell. Its structure may be regarded as composed of lithium nitride-like [Li4N]+layers and rock-salt-like [LiCl2]-double-layers, stacked along the hexagonalcaxis. A redetermination of the Li2O-type structure of Li5NCl2-I indicates the presence of N-Cl short-range order.

  9. The structure and ordering of {epsilon}-MnO{sub 2}

    SciTech Connect

    Kim, Chang-Hoon; Akase, Zentaro; Zhang Lichun; Heuer, Arthur H. . E-mail: heuer@case.edu; Newman, Aron E.; Hughes, Paula J.

    2006-03-15

    The presence of {epsilon}-MnO{sub 2} as a major component of electrolytic manganese dioxide (EMD) has been demonstrated by a combined X-ray diffraction/transmission electron microscopy (TEM) study. {epsilon}-MnO{sub 2} usually has a partially ordered defect NiAs structure containing 50% cation vacancies; these vacancies can be fully ordered by a low temperature (200 deg. C) heat treatment to form a pseudohexagonal but monoclinic superlattice. Numerous fine-scale anti-phase domain boundaries are present in ordered {epsilon}-MnO{sub 2} and cause extensive peak broadening and a massive shift of a very intense, 0.37 nm superlattice peak. This suggests a radically different explanation of the ubiquitous, very broad {approx}0.42 nm peak ({approx}21-22 deg. 2{theta}, CuK{alpha} radiation) in EMDs, which heretofore has been attributed to Ramsdellite containing numerous planar defects. This work confirms the multi-phase model of equiaxed EMDs proposed by Heuer et al. [ITE Lett. 1(6) (2000) B50; Proc. Seventh Int. Symp. Adv. Phys. Fields 92 (2001)], rather than the defective single-phase model of Chabre and Pannetier [Prog. Solid State Chem. 23 (1995) 1] and Bowden et al. [ITE Lett. 4(1) (2003) B1].

  10. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells.

    PubMed

    Barutcu, A Rasim; Lajoie, Bryan R; Fritz, Andrew J; McCord, Rachel P; Nickerson, Jeffrey A; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Dekker, Job; Stein, Gary S; Imbalzano, Anthony N

    2016-09-01

    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934

  11. Higher-order structure in the trajectories of depression and anxiety following sudden involuntary unemployment.

    PubMed

    Howe, George W; Hornberger, Anna P; Weihs, Karen; Moreno, Francisco; Neiderhiser, Jenae M

    2012-05-01

    Recent work on comorbidity finds evidence for hierarchical structure of mood and anxiety disorders and symptoms. This study tests whether a higher-order internalizing factor accounts for variation in depression and anxiety symptom severity and change over time in a sample experiencing a period of major life stress. Data on symptoms of depression, chronic worry, and social anxiety were collected five times across seven months from 426 individuals who had recently lost jobs. Growth models for each type of symptom found significant variation in individual trajectories. Slopes were highly correlated across symptom type, as were intercepts. Multilevel confirmatory factor analyses found evidence for a higher-order internalizing factor for both slopes and intercepts, reflective of comorbidity of depression and anxiety, with the internalizing factor accounting for 54% to 91% of the variance in slopes and intercepts of specific symptom sets, providing evidence for both a general common factor and domain-specific factors characterizing level and change in symptoms. Loadings on the higher order factors differed modestly for men and women, and when comparing African American and White participants, but did not differ by age, education, or history of depression. More distal factors including gender and history of depression were strongly associated with internalizing in the early weeks after job loss, but rates of change in internalizing were associated most strongly with reemployment. Findings suggest that stressors may contribute in different ways to the common internalizing factor as compared to variance in anxiety and depression that is independent of that factor.

  12. Phase field crystal modelling of the order-to-disordered atomistic structure transition of metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Mi, J.

    2016-03-01

    Bulk metallic glass composites are a new class of metallic alloy systems that have very high tensile strength, ductility and fracture toughness. This unique combination of mechanical properties is largely determined by the presence of crystalline phases uniformly distributed within the glassy matrix. However, there have been very limited reports on how the crystalline phases are nucleated in the super-cooled liquid and their growth dynamics, especially lack of information on the order-to-disordered atomistic structure transition across the crystalline-amorphous interface. In this paper, we use phase field crystal (PFC) method to study the nucleation and growth of the crystalline phases and the glass formation of the super cooled liquid of a binary alloy. The study is focused on understanding the order-to-disordered transition of atomistic configuration across the interface between the crystalline phases and amorphous matrix of different chemical compositions at different thermal conditions. The capability of using PFC to simulate the order-to-disorder atomistic transition in the bulk material or across the interface is discussed in details.

  13. Crystal structure refinement and Mössbauer spectroscopy of an ordered, triclinic clinochlore

    USGS Publications Warehouse

    Smyth, Joseph R.; Dyar, M. Darby; May, Howard M.; Bricker, Owen P.; Acker, James G.

    1997-01-01

    The crystal structure of a natural, ordered IIb-4 triclinic clinochlore has been refined in space group C1¯ from 4282 unique X-ray intensity measurements of which 3833 are greater than 3 times the statistical counting error (3σ). Unit cell parameters are a = 5.3262(6) Å; b = 9.226(1) Å; c = 14.334(3) Å; α = 90.56(2)°; β = 97.47(2)°; and γ = 89.979(9)°, which represents the greatest deviation from monoclinic symmetry yet recorded for a triclinic chlorite. The final weighted R is 0.059 for reflections with I > 3σ and 0.064 for all reflections. The chemical formula is (Mg0.966Fe0.034)M1(Mg0.962Fe0.038)M22(Si2.96Al1.04)O10 (OH)2(Mg0.996Fe0.004)M32(Al0.841FeIII0.102Cr0.004Ti0.004)M4(OH)6, which is consistent with electron microprobe (EMP), wet chemical analyses, Mössbauer spectroscopy and X-ray structure refinement. The high degree of ordering of the divalent versus trivalent octahedral cations in the interlayer is noteworthy, with FeIII and Al in M4 and virtually no Fe in M3. In the 2:1 layer, M1 and M2 each contain similar amounts of Fe. The 2 tetrahedral sites have nearly identical mean oxygen distances and volumes, and thus show no evidence of long-range cation ordering.

  14. Hydrated goethite (alpha-FeOOH) (100) interface structure: Ordered water and surface functional groups.

    SciTech Connect

    Ghose, S.K.; Waychunas, G.A.; Trainor, T.P.; Eng, P.J.

    2009-12-15

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous stud-ies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite(100) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the(100) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface

  15. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  16. Creating Research-Rich Learning Experiences and Quantitative Skills in a 1st Year Earth Systems Course

    NASA Astrophysics Data System (ADS)

    King, P. L.; Eggins, S.; Jones, S.

    2014-12-01

    We are creating a 1st year Earth Systems course at the Australian National University that is built around research-rich learning experiences and quantitative skills. The course has top students including ≤20% indigenous/foreign students; nonetheless, students' backgrounds in math and science vary considerably posing challenges for learning. We are addressing this issue and aiming to improve knowledge retention and deep learning by changing our teaching approach. In 2013-2014, we modified the weekly course structure to a 1hr lecture; a 2hr workshop with hands-on activities; a 2hr lab; an assessment piece covering all face-to-face activities; and a 1hr tutorial. Our new approach was aimed at: 1) building student confidence with data analysis and quantitative skills through increasingly difficult tasks in science, math, physics, chemistry, climate science and biology; 2) creating effective learning groups using name tags and a classroom with 8-person tiered tables; 3) requiring students to apply new knowledge to new situations in group activities, two 1-day field trips and assessment items; 4) using pre-lab and pre-workshop exercises to promote prior engagement with key concepts; 5) adding open-ended experiments to foster structured 'scientific play' or enquiry and creativity; and 6) aligning the assessment with the learning outcomes and ensuring that it contains authentic and challenging southern hemisphere problems. Students were asked to design their own ocean current experiment in the lab and we were astounded by their ingenuity: they simulated the ocean currents off Antarctica; varied water density to verify an equation; and examined the effect of wind and seafloor topography on currents. To evaluate changes in student learning, we conducted surveys in 2013 and 2014. In 2014, we found higher levels of student engagement with the course: >~80% attendance rates and >~70% satisfaction (20% neutral). The 2014 cohort felt that they were more competent in writing

  17. A Bioinformatics Approach to the Structure, Function, and Evolution of the Nucleoprotein of the Order Mononegavirales

    PubMed Central

    Cleveland, Sean B.; Davies, John; McClure, Marcella A.

    2011-01-01

    The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae) we predict the regions of protein disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted regions illustrate a strong division between families while high- lighting conservation within individual families. These results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae, but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus are responsible for N∶N stability and interactions identified by the presence or lack of co-evolving intra-protein contact predictions. The validation of these prediction results by current structural information illustrates the benefits of the Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC) pipeline as a method for quickly characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that have little structural information available. PMID:21559282

  18. Structural evolution of polyelectrolyte-complex-core micelles and ordered-phase bulk materials

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew; Krogstad, Daniel; Kramer, Edward

    2015-03-01

    The kinetics of formation and structural evolution of novel polyelectrolyte complex materials formed by the assembly of water-soluble di- and tri-block copolymers, with one neutral block and one block either cationic or anionic, have been investigated. The mechanism and speed of the assembly process, and the organization of these domains, were probed using dynamic mechanical spectroscopy and small angle X-ray scattering (SAXS). SAXS revealed that the equilibrium morphologies of both the di-block copolymer and the tri-block copolymer materials were generally qualitatively the same with some apparent quantitative differences in phase boundaries, possibly attributable to lack of full equilibration. Slow kinetics and difficulties in reaching equilibrium phase structures, especially in tri-block materials, is a principal message of this article. Detailed analysis of the SAXS data revealed that the tri-block copolymer materials formed ordered phases via a nucleation and growth pathway and that the addition of small amounts (~20%) of corresponding di-block copolymers increased the rate of structure formation and enhanced several key physical properties. This work was supported by the U.S. Department of Energy Office of Science Program in Basic Energy Sciences, Materials Sciences and Engineering Division.

  19. Evidence of structural order recovery in LDPE based copolymers prepared by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Leal, J. P.; Casimiro, M. H.; Cruz, C.; Lancastre, J. J. H.; Falcão, A. N.

    2014-01-01

    PE-g-HEMA films prepared by the mutual gamma irradiation method were prepared to be used as catalyst support in catalytic membrane reactors (CMR). These copolymeric films showed good structural stability, even the high grafted ones, with a consistent correlation between their grafting degree and crystallinity. However, it was observed that above a certain radiation dose threshold, the structural changes induced in polyethylene (PE) backbone do not depend only on the extend of poly(HEMA) graft but also in what seems to be the reorganization of the amorphous regions in the PE matrix. The recovery of some crystallinity (up to 8%) in the copolymeric films was attested by DSC data. FTIR analysis confirmed this observation, revealing a slight increase in intensity and definition of the characteristic peak indicator of high crystalline regions in PE. This process seems to result from a radiation protective effect on copolymers matrix carried out by grafted poly(HEMA) which give to PE the ability to recover some of the lost structural order.

  20. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order.

    PubMed

    Wang, Xiao; Broch, Katharina; Scholz, Reinhard; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2014-04-01

    Cylindrical vector beams, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin films, allowing us to correlate Raman spectroscopy with intermolecular interactions depending on the particular pentacene polymorph. Polarization-dependent Raman spectra of the C-H bending vibrations are resolved layer by layer within a thin film of ∼20 nm thickness. The variation of the Raman peak positions indicates changes in the molecular orientation and in the local environment at different heights of the pentacene film. With the assistance of a theoretical model based on harmonic oscillator and perturbation theory, our method reveals the local structural order and the polymorph at different locations within the same pentacene thin film, depending mainly on its thickness. In good agreement with the crystallographic structures reported in the literature, our observations demonstrate that the first few monolayers grown in a structure are closer to the thin-film phase, but for larger film thicknesses, the morphology evolves toward the crystal-bulk phase with a larger tilting angle of the pentacene molecules against the substrate normal.

  1. Direct visualization of quasi-ordered oxygen chain structures on Au(110)-(1 × 2)

    NASA Astrophysics Data System (ADS)

    Hiebel, F.; Montemore, M. M.; Kaxiras, E.; Friend, C. M.

    2016-08-01

    The Au(110) surface offers unique advantages for atomically-resolved model studies of catalytic oxidation processes on gold. We investigate the adsorption of oxygen on Au(110) using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) methods. We identify the typical (empty-states) STM contrast resulting from adsorbed oxygen as atomic-sized dark features of electronic origin. DFT-based image simulations confirm that chemisorbed oxygen is generally detected indirectly, from the binding-induced electronic structure modification of gold. STM images show that adsorption occurs without affecting the general structure of the pristine Au(110) missing-row reconstruction. The tendency to form one-dimensional structures is observed already at low coverage (< 0.05 ML), with oxygen adsorbing on alternate sides of the reconstruction ridges. Consistently, calculations yield preferred adsorption on the (111) facets of the reconstruction, on a 3-fold coordination site, with increased stability when adsorbed in chains. Gold atoms with two oxygen neighbors exhibit enhanced electronic hybridization with the O states. Finally, the species observed are reactive to CO oxidation at 200 K and desorption of CO2 leaves a clean and ordered gold surface.

  2. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our

  3. PREFACE: 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies

    NASA Astrophysics Data System (ADS)

    Shuja Syed, Ahmed

    2013-12-01

    The 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies (ICSICCST-2013), took place in Karachi, Pakistan, from 24-26 June 2013. It was organized by Indus University, Karachi, in collaboration with HEJ Research Institute of Chemistry, University of Karachi, Karachi. More than 80 abstracts were submitted to the conference and were double blind-reviewed by an international scientific committee. The topics of the Conference were: Video, Image & Voice Sensing Sensing for Industry, Environment, and Health Automation and Controls Laser Sensors and Systems Displays for Innovative Applications Emerging Technologies Unmanned, Robotic, and Layered Systems Sensing for Defense, Homeland Security, and Law Enforcement The title of the conference, 'Sensing for Industry, Control, Communication & Security Technologies' is very apt in capturing the main issues facing the industry of Pakistan and the world. We believe the sensing industry, particularly in Pakistan, is currently at a critical juncture of its development. The future of the industry will depend on how the industry players choose to respond to the challenge of global competition and opportunities arising from strong growth in the Asian region for which we are pleased to note that the conference covered a comprehensive spectrum of issues with an international perspective. This will certainly assist industry players to make informed decisions in shaping the future of the industry. The conference gathered qualified researchers from developed countries like USA, UK, Sweden, Saudi Arabia, China, South Korea and Malaysia etc whose expertise resulting from the research can be drawn upon to build an exploitable area of new technology that has potential Defense, Homeland Security, and Military applicability. More than 250 researchers/students attended the event and made the event great success as the turnout was 100%. An exceptional line-up of speakers spoke at the occasion. We want

  4. Effects of the April 1st, 2014 GLONASS Outage on GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.; Romero, I.; D'Anastasio, E.

    2014-12-01

    The use of multi-constellation GNSS receivers has been assumed as a way to increase system integrity both by increased coverage during normal operations and failover redundancy in the event of a constellation failure. At approximately 21:00 UTC on April 1st the entire GLONASS constellation was disrupted as illegal ephemeris uploaded to each satellite took effect simultaneously. The outage continued for more than 10 hours. While ephemeris were incorrect, pseudoranges were correctly broadcast on both L1 and L2 and carrier phases were not affected; in the best case, GNSS receivers could be expected to continue to track all signals including GLONASS and at the worst to continue to track GPS and other constellations. It became clear to operators of the GeoNet network in New Zealand that the majority of their 79 GLONASS-enabled receivers experienced total tracking failures. Further detailed analysis of data from these and 315 additional GLONASS-enabled stations worldwide showed that receiver tracking behavior was affected for most receiver brands and models, both for GLONASS and GPS. Findings regarding the impacts of the GLONASS outage on receiver behavior will be highlighted. We use data recorded by GLONASS enabled global sites for the days during, preceding and following the outage to evaluate the impact of the outage on tracking and positioning performance. We observe that for some receiver types the onboard receiver autonomous integrity monitoring (RAIM) failed to ignore the incorrect messages, resulting in degraded GLONASS and GPS tracking and in some cases complete tracking failures and significant data loss. In addition, many of the receivers with clock steering enabled showed outliers in their receiver clock bias estimates that also coincided with the outage. Our results show in detail how different brands, configurations, and distributions of receivers were affected to varying extents, but no common factors are apparent. This event shows that many manufacturers

  5. Structural Properties, Order-Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms.

    PubMed

    Braun, Doris E; Nartowski, Karol P; Khimyak, Yaroslav Z; Morris, Kenneth R; Byrn, Stephen R; Griesser, Ulrich J

    2016-03-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  6. Correlation of early orientational ordering of engineered λ 6-85 structure with kinetics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Larios, Edgar; Pitera, Jed W.; Swope, William C.; Gruebele, Martin

    2006-03-01

    Experimental and computational Φ-value analysis of two-state helical proteins has shown that definite interactions among helix-forming segments build up in the transition state ensemble, but this type of analysis is not applicable to downhill folders. Here, we ask whether orientational ordering of helix-forming segments occurs early on during folding of a downhill λ 6-85 mutant, and how much it correlates with the thermodynamics and kinetics of various λ 6-85 mutants that do have folding barriers. From a grand total of 5 μs of implicit solvent replica-exchange molecular dynamics, we conclude that under folding conditions segments 1 and 4 form more helical structure and orient correctly relative to the native structure more often than do segments 2 and 3. Helices 1 and 2 retain the most residual structure and orientation at high temperatures. This is further supported by experimental data showing that perturbations in helices 1 and 4 of this well-designed folder affect folding kinetics and stability more sensitively than elsewhere in the protein, and that the helix 1-2 only bundle retains a cooperative melting transition and helical CD spectrum. The correct orientational propensity of helices 1 and 4 at low temperature is in agreement with the work by Takada, Portman and Wolynes proposing initial structure formation during folding in helices 1 and 4 of the wild-type λ 6-85 protein, a two-state folder. Thus, the absence of a large barrier in the downhill mutant does not fundamentally alter the steps the wild-type protein takes to fold.

  7. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  8. Technical decision-making with higher order structure data: starting a new dialogue.

    PubMed

    Gabrielson, John P; Weiss, William F

    2015-04-01

    Characterization of the higher order structure (HOS) of biological products has been growing in importance in recent years. Scientists in the biopharmaceutical industry, academic researchers, and regulators are all increasingly aware of the critical role that HOS plays in maintaining the stability and intended biological function of biopharmaceutical products. We organized a consortium of scientists and researchers from industry and academic institutions to address how HOS data can be used most effectively to drive decisions during product development. In this commentary, we introduce the purpose, objectives, and scope of the consortium and then provide some brief points to consider in the context of characterizing HOS of biopharmaceutical products. Scientific advances in HOS analysis, as well as continued dialogue among academia, industry, and regulatory agencies will ensure that appropriate methodologies are used to inform technical decision-making during biopharmaceutical development.

  9. Structure and the failure of the linear theory of continuous ordering

    SciTech Connect

    Gross, N.; Klein, W.; Ludwig, K. Center for Polymer Physics, Boston University, Boston, Massachusetts 02215 )

    1994-11-14

    We present the results of numerical investigations of Ising models undergoing continuous ordering which indicate, for systems with large but finite interaction range [ital R], that the time interval during which the linear theory of Cahn, Hilliard, and Cook fits the simulation data depends strongly on the length scale of observation. We associate the initial linear theory deviation at small length scales with the appearance of isolated structures or domains which form after a quench into the unstable region of thermodynamic space. These domains cannot be described by a linear theory; this implies, in contrast to earlier results, that the linear theory breakdown'' cannot be obtained by investigation of the linear itself for inconsistencies.

  10. Structural Features and Biological Properties of Ellagitannins in Some Plant Families of the Order Myrtales

    PubMed Central

    Yoshida, Takashi; Amakura, Yoshiaki; Yoshimura, Morio

    2010-01-01

    Plant tannins, including hydrolysable and condensed varieties, are well known antioxidants in medicinal plants, foods, and edible fruits. Their diverse biological properties and potential for disease prevention have been demonstrated by various in vitro and in vivo assays. A number of ellagitannins, the largest group of hydrolysable tannins, have been isolated from dicotyledoneous angiosperms and characterized. This diverse class of tannins is sub-grouped into simple ellagitannins, C-glycosidic ellagitannins, complex tannins (condensates of C-glycosidic tannins with flavan-3-ol), and oligomers up to pentamers. This review outlines and describes the chemotaxonomic significance of structural features in various types of ellagitannins found in plants belonging to the Myrtaceae, Onagraceae, and Melastomataceae families, which are all included in the order Myrtales. Any biological activities that have been reported, including antitumor and antibacterial effects as well as enzyme inhibition, are also reviewed. PMID:20162003

  11. Ordered and isomorphic mapping of periodic structures in the parametrically forced logistic map

    NASA Astrophysics Data System (ADS)

    Maranhão, Dariel M.

    2016-09-01

    We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply them to other more complex, discussing how the topography on parameter space is affected. By use of the winding number as defined in periodically forced oscillators, we show that the hierarchical organization of the periodic domains is manifested in global and local scales.

  12. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons

    PubMed Central

    Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L

    2014-01-01

    The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738

  13. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  14. Structural ordering tendencies in the new ferromagnetic Ni-Co-Fe-Ga-Zn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Dannenberg, Antje; Siewert, Mario; Gruner, Markus E.; Wuttig, Manfred; Entel, Peter

    In search for new ferromagnetic shape memory alloys (FSMA) we have calculated structural energy differences, magnetic exchange interaction constants and mixing energies of quaternary (X1X2)YZ Heusler alloys with X1,X2,Y =Ni,Co,Fe and Z=Ga, Zn using density functional theory. The comparison of the energy profiles of (NiCo)FeZ, (FeNi)CoZ, and (FeCo)NiZ with Z=Ga and Zn as a function of the tetragonal distortion c / a reveals that the energetically preferred ordering type is (NiCo)FeGa and (NiCo)FeZn which shows that Fe prefers to occupy the same cubic sublattice as Ga or Zn what implies that Fe favors Co and Ni as nearest neighbors, respectively. The Curie temperatures of (NiCo)FeGa and (NiCo)FeZn are high of the order of 600 K. (NiCo)FeGa, which has the same valence electron concentration (e/a=7.5) as Ni2MnGa and also possesses a high martensitic transformation temperature (>500 K), is of interest for future magnetic shape memory devices.

  15. Evolved structure of language shows lineage-specific trends in word-order universals.

    PubMed

    Dunn, Michael; Greenhill, Simon J; Levinson, Stephen C; Gray, Russell D

    2011-05-01

    Languages vary widely but not without limit. The central goal of linguistics is to describe the diversity of human languages and explain the constraints on that diversity. Generative linguists following Chomsky have claimed that linguistic diversity must be constrained by innate parameters that are set as a child learns a language. In contrast, other linguists following Greenberg have claimed that there are statistical tendencies for co-occurrence of traits reflecting universal systems biases, rather than absolute constraints or parametric variation. Here we use computational phylogenetic methods to address the nature of constraints on linguistic diversity in an evolutionary framework. First, contrary to the generative account of parameter setting, we show that the evolution of only a few word-order features of languages are strongly correlated. Second, contrary to the Greenbergian generalizations, we show that most observed functional dependencies between traits are lineage-specific rather than universal tendencies. These findings support the view that-at least with respect to word order-cultural evolution is the primary factor that determines linguistic structure, with the current state of a linguistic system shaping and constraining future states.

  16. Dynamic Snap-Through of Thermally Buckled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2007-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced-order analysis, four categories of modal basis functions are identified including those having symmetric transverse, anti-symmetric transverse, symmetric in-plane, and anti-symmetric in-plane displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the anti-symmetric transverse and symmetric in-plane modes must be included in the basis as they participate in the snap-through behavior.

  17. Dynamic Snap-Through of Thin-Walled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced order analysis, four categories of modal basis functions are identified including those having symmetric transverse (ST), anti-symmetric transverse (AT), symmetric in-plane (SI), and anti-symmetric in-plane (AI) displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the AT and SI modes must be included in the basis as they participate in the snap-through behavior.

  18. Evolved structure of language shows lineage-specific trends in word-order universals.

    PubMed

    Dunn, Michael; Greenhill, Simon J; Levinson, Stephen C; Gray, Russell D

    2011-05-01

    Languages vary widely but not without limit. The central goal of linguistics is to describe the diversity of human languages and explain the constraints on that diversity. Generative linguists following Chomsky have claimed that linguistic diversity must be constrained by innate parameters that are set as a child learns a language. In contrast, other linguists following Greenberg have claimed that there are statistical tendencies for co-occurrence of traits reflecting universal systems biases, rather than absolute constraints or parametric variation. Here we use computational phylogenetic methods to address the nature of constraints on linguistic diversity in an evolutionary framework. First, contrary to the generative account of parameter setting, we show that the evolution of only a few word-order features of languages are strongly correlated. Second, contrary to the Greenbergian generalizations, we show that most observed functional dependencies between traits are lineage-specific rather than universal tendencies. These findings support the view that-at least with respect to word order-cultural evolution is the primary factor that determines linguistic structure, with the current state of a linguistic system shaping and constraining future states. PMID:21490599

  19. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition.

    PubMed

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-12-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.Self-ordered hexagonal pyramid-shaped nanostructures were formed at thermal deposition of gold on the Si (111), whereas only monolayer hexagonal formation could be observed on the plane Si (110). Gold monolayer flake nanostructures were obtained under certain technological parameters.Atomically smooth Ag film cannot be obtained on the Si (111) surface by means of thermal spraying at room temperature. The formation of two-dimensional (2D) clusters takes place; heating of these clusters at several hundred degrees Celsius leads to their transformation into atomically smooth covering.The weak interaction between Ag multilayer coatings and substrate was established that allows to clear crystal surface from metal with reproduction of the reconstructed Si (111) 7 × 7 surface by slight warming. The offered method can be used for single-crystal surface protection from destruction.

  20. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic order.

    PubMed

    White, K L; Wong, M; Li, P; Miyamoto, M; Higaki, Y; Takahara, A; Sue, H-J

    2015-02-01

    We have investigated the rheology of an uncured epoxy fluid containing high aspect ratio (length/thickness ≈ 160) α-zirconium phosphate (ZrP) nanoplatelets with smectic order. The nanoplatelets were exfoliated into monocrystalline sheets with uniform thickness using a monoamine-terminated oligomer. The oligomers were densely grafted to the plate surfaces and behave as a molecular brush. Suspensions containing ∼ 2 vol.% ZrP and above show liquid crystalline order with scattering peaks characteristic of a smectic (layered) mesophase. At much higher loading, ∼ 4 vol.% ZrP, there is a sharp transition in visual appearance, steady shear rheology, and linear and non-linear viscoelasticity that is attributed to the reversible interdigitation of oligomer chains between closely spaced layers. The oligomers are proposed to serve as inter-lamellar bridges that store elastic stresses for intermediate rates of deformation, but are able to relax on longer time scales. Under steady shearing conditions, the smectic suspensions with "overlapped" microstructure show a discontinuous flow curve characteristic of shear banding that is attributed to the dynamic pull-out of oligomer chains from the overlap region. At high shear rates, the limiting viscosity of the concentrated suspensions is on the same order of magnitude as the unfilled suspending fluid. When the rate of deformation is reduced below a critical time scale, the original network strength, and corresponding microstructure, is recovered through a passive self-healing process. The unique combination of concentration-dependent yield stress, low post-yield viscosity, and self-healing is potentially useful for various applications in the liquid state, and desirable for scalable processing of nanocomposite materials for structural applications. PMID:25519712

  1. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic order.

    PubMed

    White, K L; Wong, M; Li, P; Miyamoto, M; Higaki, Y; Takahara, A; Sue, H-J

    2015-02-01

    We have investigated the rheology of an uncured epoxy fluid containing high aspect ratio (length/thickness ≈ 160) α-zirconium phosphate (ZrP) nanoplatelets with smectic order. The nanoplatelets were exfoliated into monocrystalline sheets with uniform thickness using a monoamine-terminated oligomer. The oligomers were densely grafted to the plate surfaces and behave as a molecular brush. Suspensions containing ∼ 2 vol.% ZrP and above show liquid crystalline order with scattering peaks characteristic of a smectic (layered) mesophase. At much higher loading, ∼ 4 vol.% ZrP, there is a sharp transition in visual appearance, steady shear rheology, and linear and non-linear viscoelasticity that is attributed to the reversible interdigitation of oligomer chains between closely spaced layers. The oligomers are proposed to serve as inter-lamellar bridges that store elastic stresses for intermediate rates of deformation, but are able to relax on longer time scales. Under steady shearing conditions, the smectic suspensions with "overlapped" microstructure show a discontinuous flow curve characteristic of shear banding that is attributed to the dynamic pull-out of oligomer chains from the overlap region. At high shear rates, the limiting viscosity of the concentrated suspensions is on the same order of magnitude as the unfilled suspending fluid. When the rate of deformation is reduced below a critical time scale, the original network strength, and corresponding microstructure, is recovered through a passive self-healing process. The unique combination of concentration-dependent yield stress, low post-yield viscosity, and self-healing is potentially useful for various applications in the liquid state, and desirable for scalable processing of nanocomposite materials for structural applications.

  2. Major Variations in HIV-1 Capsid Assembly Morphologies Involve Minor Variations in Molecular Structures of Structurally Ordered Protein Segments.

    PubMed

    Lu, Jun-Xia; Bayro, Marvin J; Tycko, Robert

    2016-06-17

    We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282

  3. Educational impact of a clinical anatomy workshop on 1st-year orthopedic and rheumatology fellows in Mexico City.

    PubMed

    Saavedra, M A; Villaseñor-Ovies, P; Harfush, L A; Navarro-Zarza, J E; Canoso, J J; Cruz-Domínguez, P; Vargas, A; Hernández-Díaz, C; Chiapas-Gasca, K; Camacho-Galindo, J; Alvarez-Nemegyei, J; Kalish, R A

    2016-05-01

    We aim to study the educational impact of a clinical anatomy workshop in 1st-year orthopedic and rheumatology fellows. First-year rheumatology fellows (N = 17) and a convenience sample of 1st-year orthopedic fellows (N = 14) from Mexico City in the 9th month of training participated in the study. The pre- and the post- workshop tests included the same 20 questions that had to be answered by identification or demonstration of relevant anatomical items. The questions, arranged by anatomical regions, were asked in five dynamic stations. Overall, the 31 participants showed an increase of correct answers, from a median of 6 (range 1 to 12) in the pre-workshop test, to a median of 14 (range 7 to 19) in the post-workshop test. In the pre-workshop test, the correct median answers were 7 (range 2 to 12) in the orthopedic fellows and 5 (range 1 to 10) in the rheumatology fellows (p = 0.297). Corresponding scores in the post-workshop were 15 (range 10 to 19) and 12 (range 7 to 18) (p = 0.026) showing a significant difference favoring the orthopedic group. Our clinical anatomy workshop was efficacious, in the short term, as a teaching instrument for 1st-year orthopedic and rheumatology fellows. The post-workshop scores, although significantly improved in both groups, particularly in the orthopedic fellows, were still suboptimal. Further refinements of our workshop might yield better results.

  4. Gene-Environment Interaction Effects on the Development of Immune Responses in the 1st Year of Life

    PubMed Central

    Hoffjan, Sabine; Nicolae, Dan; Ostrovnaya, Irina; Roberg, Kathy; Evans, Michael; Mirel, Daniel B.; Steiner, Lori; Walker, Karen; Shult, Peter; Gangnon, Ronald E.; Gern, James E.; Martinez, Fernando D.; Lemanske, Robert F.; Ober, Carole

    2005-01-01

    Asthma is a common disease that results from both genetic and environmental risk factors. Children attending day care in the 1st year of life have lower risks for developing asthma, although the mechanism for this “day care” effect is largely unknown. We investigated the interactions between day care exposure in the 1st 6 mo of life and genotypes for 72 polymorphisms at 45 candidate loci and their effects on cytokine response profiles and on the development of atopic phenotypes in the 1st year of life in the Childhood Onset of Asthma (COAST) cohort of children. Six interactions (at four polymorphisms in three loci) with “day care” that had an effect on early-life immune phenotypes were significant at P<.001. The estimated false-discovery rate was 33%, indicating that an estimated four P values correspond to true associations. Moreover, the “day care” effect at some loci was accounted for by the increased number of viral infections among COAST children attending day care, whereas interactions at other loci were independent of the number of viral infections, indicating the presence of additional risk factors associated with day care environment. This study identified significant gene-environment interactions influencing the early patterning of the immune system and the subsequent development of asthma and highlights the importance of considering environmental risk factors in genetic analyses. PMID:15726497

  5. RF-Thermal-Structural Analysis of a Waveguide Higher Order Mode Absorber

    SciTech Connect

    G. Cheng; E. F. Daly; R. A. Rimmer; M. Stirbet; L. Vogel; H. Wang; K. M. Wilson

    2007-07-03

    For an ongoing high current cryomodule project, a total of 5 higher order mode (HOM) absorbers are required per cavity. The load is designed to absorb Radio Frequency (RF) heat induced by HOMs in a 748.5MHz cavity. Each load is targeted at a 4 kW dissipation capability. Water cooling is employed to remove the heat generated in ceramic tiles and by surface losses on the waveguide walls. A sequentially coupled RF-thermal-structural analysis was developed in ANSYS to optimize the HOM load design. Frequency-dependent dielectric material properties measured from samples and RF power spectrum calculated by the beam-cavity interaction codes were considered. The coupled field analysis capability of ANSYS avoided mapping of results between separate RF and thermal/structural simulation codes. For verification purposes, RF results obtained from ANSYS were compared to those from MAFIA, HFSS, and Microwave Studio. Good agreement was reached and this confirms that multiple-field coupled analysis is a desirable choice in analysis of HOM loads. Similar analysis could be performed on other particle accelerator components where distributed RF heating and surface current induced losses are inevitable.

  6. Miscibility and ordered structures of MgO-ZnO alloys under high pressure

    PubMed Central

    Tian, Fubo; Duan, Defang; Li, Da; Chen, Changbo; Sha, Xiaojing; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian

    2014-01-01

    The MgxZn1−xO alloy system may provide an optically tunable family of wide band gap materials that can be used in various UV luminescences, absorption, lighting, and display applications. A systematic investigation of the MgO-ZnO system using ab initio evolutionary simulations shows that MgxZn1−xO alloys exist in ordered ground-state structures at pressures above about 6.5 GPa. Detailed enthalpy calculations for the most stable structures allowed us to construct the pressure-composition phase diagram. In the entire composition, no phase transition from wurzite to rock-salt takes place with increasing Mg content. We also found two different slops occur at near x = 0.75 of Eg-x curves for different pressures, and the band gaps of high pressure ground-state MgxZn1−xO alloys at the Mg concentration of x > 0.75 increase more rapidly than x < 0.75. PMID:25044101

  7. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    PubMed

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  8. An evaluation of higher-order modal methods for calculating transient structural response

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Haftka, Raphael T.; Riley, Michael F.

    1987-01-01

    The present study evaluates a higher-order modal method proposed by Leung for transient structural analysis entitled the force-derivative method. This method repeatedly integrates by parts with respect to time the convolution-integral form of the structural response to produce successively better approximations to the contribution of the higher modes which are neglected in the modal summation. Comparisons are made of the force-derivative, the mode-displacement, and the mode-acceleration methods for several numerical example problems for various times, levels of damping, and forcing functions. The example problems include a tip-loaded cantilevered beam and a simply-supported multispan beam. The force-derivative method is shown to converge to an accurate solution in fewer modes than either the mode-displacement or the mode-acceleration methods. In addition, for problems in which there are a large number of closely-spaced frequencies whose mode shapes have a negligible contribution to the response, the force derivative method is very effective in representing the effect of the important, but otherwise neglected, higher modes.

  9. An evaluation of higher-order model methods for calculating transient structural response

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Haftka, Raphael T.; Riley, Michael F.

    1987-01-01

    A higher-order modal method proposed by Leung for transient structural analysis entitled the force-derivative method is evaluated. This method repeatedly integrates by parts with respect to time the convolution-integral form of the structural response to produce successively better approximations to the contribution of the higher modes which are neglected in the modal summation. Comparisons are made of the force-derivative, the mode-displacement, and the mode-acceleration methods for several numerical example problems for various times, levels of damping, and forcing functions. The example problems include a tip-loaded cantilevered beam and a simply-supported multispan beam. The force-derivative method is shown to converge to an accurate solution in fewer modes than either the mode-displacement or the mode-acceleration methods. In addition, for problems in which there are a large number of closely-spaced frequencies whose mode shapes have a negligible contribution to the response, the force-derivative method is very effective in representing the effect of the important, but otherwise neglected, higher modes.

  10. Seed Storage Globulins: Origin and Evolution of Primary and Higher Order Structures.

    PubMed

    Rudakova, A S; Cherdivară, A M; Wilson, K A; Shutov, A D

    2015-10-01

    Legumin and vicilin are two-domain seed storage globulins similar in primary and higher order structures of their domains to single-domain plant germins as well as to the domains of two-domain and single-domain bacterial oxalate decarboxylases. Independent evolutionary pathways have been shown for the descent of the storage globulins and germins from two-domain and single-domain bacterial oxalate decarboxylases, respectively. As compared to vicilins, the primary and tertiary structures of legumins were found to most closely reflect the ancient features characteristic of a common precursor of storage globulins. During the evolution of the storage globulins, a mechanism specifically controlling their degradation has been formed. We found that limited proteolysis of soybean legumin and kidney bean vicilin in germinating seeds and in vitro leads to their regular changes, which initiate an extensive cleavage of storage globulin molecules by the one-by-one mechanism. As also shown, limited proteolysis of soybean legumin loosens the intersubunit interactions in its oligomeric molecule. Based on these data, we hypothesize that the deep one-by-one degradation of soybean legumin is triggered by its dissociation, which bares peptide bonds potentially susceptible to proteolytic attack but are masked in the oligomer.

  11. Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure

    NASA Astrophysics Data System (ADS)

    Xiao, Junping; Yao, Mingguang; Zhu, Kai; Zhang, Dong; Zhao, Shijia; Lu, Shuangchen; Liu, Bo; Cui, Wen; Liu, Bingbing

    2013-10-01

    We report a synthesis of hydrogenated carbon nanospheres (HCNSs) via a facile solvothermal route at low temperatures (60-100 °C), using CHCl3 as the carbon source and potassium (K) as the reductant. Selective cleavage of the relatively lower stable C-Cl bonds (compared to C-H bonds) of the carbon precursor (CHCl3) by K metal results in the growth of HCNSs. The diameter of HCNSs ranges from 40 to 90 nm. The HCNSs have a graphite-like ordered carbon structure in spite of their high degree of hydrogenation. The HCNSs exhibit an average Brunauer-Emmett-Teller (BET) surface area of 43 m2 g-1, containing a small amount of mesopores and macropores in the structure. The nanospheres' sample as an anode material for lithium ion batteries (LIBs) has been studied. It exhibits a high discharge capacity (3539 mA h g-1 in the first cycle, 978 mA h g-1 after 50 cycles) and good cycling stability, demonstrating advantages as a promising candidate for anode materials in LIBs. The high capacity of the HCNSs is due to their unique nanostructures and high percentage hydrogenation, as well as hydrogenation induced structural defects.We report a synthesis of hydrogenated carbon nanospheres (HCNSs) via a facile solvothermal route at low temperatures (60-100 °C), using CHCl3 as the carbon source and potassium (K) as the reductant. Selective cleavage of the relatively lower stable C-Cl bonds (compared to C-H bonds) of the carbon precursor (CHCl3) by K metal results in the growth of HCNSs. The diameter of HCNSs ranges from 40 to 90 nm. The HCNSs have a graphite-like ordered carbon structure in spite of their high degree of hydrogenation. The HCNSs exhibit an average Brunauer-Emmett-Teller (BET) surface area of 43 m2 g-1, containing a small amount of mesopores and macropores in the structure. The nanospheres' sample as an anode material for lithium ion batteries (LIBs) has been studied. It exhibits a high discharge capacity (3539 mA h g-1 in the first cycle, 978 mA h g-1 after 50 cycles

  12. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.

    PubMed

    Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  13. Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols.

    PubMed

    Libster, Dima; Aserin, Abraham; Yariv, Doron; Shoham, Gil; Garti, Nissim

    2009-11-01

    This paper describes the formation and characterization of liquid crystalline dispersions based on the hexagonal phase of GMO/tricaprylin/water. As a stabilizer of the soft particles dispersed in the aqueous phase, a non-ionic, non-polymeric surfactant--ethoxylated phytosterol with 30 oxyethylene units (PhEO) was utilized. In contrast to Pluronic copolymers, normally utilized in the stabilization of liquid crystalline dispersions with ordered inner structure, use of such non-polymeric surfactant is not a common practice in this field. We revealed how properties of these particles, such as internal structure, size, and stability, can be rationally modified by the concentration of the stabilizing agent and processing conditions. The physical stability of the hexosomes was further examined by the LUMiFuge technique. Structural effect of PhEO solubilization on the properties of the bulk H(II) mesophase system showed that phase behavior was greatly influenced following phase transitions: H(II)-->H(II)+cubic-->cubic+L(alpha)-->L(alpha). The decrease of hydrogen bonding of the hydroxyl and carbonyl groups of monoolein with water and simultaneous hydration of EO groups of PhEO appeared to be important for the observed behavior. The use of PhEO as a dispersant resulted in a soft matter multi-phase water dispersion with bimodal distribution of the particle population. Effective stabilization of hexosomes was obtained in an extremely narrow concentration range of PhEO (0.1-0.2 wt%), coexisting with small vesicles and disordered particles. At higher PhEO content, particles had disordered inner structure, and unilamellar and multilamellar vesicles, at the expense of hexosomes in consequence of incorporation of the dispersant into the hexosome structure. PhEO was found to induce lamellar phase formation, introducing disorder into the hexagonal LLC and reducing their domain size. Finally, hexosomes were evaluated as delivery vehicles for the therapeutic peptide desmopressin

  14. Continued Stabilization of the Nuclear Higher-Order Structure of Post-Mitotic Neurons In Vivo

    PubMed Central

    Alva-Medina, Janeth; Maya-Mendoza, Apolinar; Dent, Myrna A. R.; Aranda-Anzaldo, Armando

    2011-01-01

    Background Cellular terminal differentiation (TD) correlates with a permanent exit from the cell cycle and so TD cells become stably post-mitotic. However, TD cells express the molecular machinery necessary for cell proliferation that can be reactivated by experimental manipulation, yet it has not been reported the stable proliferation of any type of reactivated TD cells. Neurons become post-mitotic after leaving the ventricular zone. When neurons are forced to reenter the cell cycle they invariably undergo cell death. Wider evidence indicates that the post-mitotic state cannot solely depend on gene products acting in trans, otherwise mutations in the corresponding genes may lead to reentry and completion of the cell cycle in TD cells, but this has not been observed. In the interphase, nuclear DNA of metazoan cells is organized in supercoiled loops anchored to a nuclear nuclear matrix (NM). The DNA-NM interactions define a higher-order structure in the cell nucleus (NHOS). We have previously compared the NHOS of aged rat hepatocytes with that of early post-mitotic rat neurons and our results indicated that a very stable NHOS is a common feature of both senescent and post-mitotic cells in vivo. Principal Findings In the present work we compared the NHOS in rat neurons from different post-natal ages. Our results show that the trend towards further stabilization of the NHOS in neurons continues throughout post-natal life. This phenomenon occurs in absence of overt changes in the post-mitotic state and transcriptional activity of neurons, suggesting that it is independent of functional constraints. Conclusions Apparently the continued stabilization of the NHOS as a function of time is basically determined by thermodynamic and structural constraints. We discuss how the resulting highly stable NHOS of neurons may be the structural, non-genetic basis of their permanent and irreversible post-mitotic state. PMID:21731716

  15. Structural changes of small amplitude kinetic Alfvén solitary waves due to second-order corrections

    SciTech Connect

    Choi, Cheong R.

    2015-10-15

    The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-order equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.

  16. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and

  17. Structural fluctuations and orientational glass of levoglucosan--High stability against ordering and absence of structural glass.

    PubMed

    Tombari, Elpidio; Johari, G P

    2015-03-14

    To investigate whether a non-exponential relaxation always indicates 2-4 nm-size regions of dynamic heterogeneity, we studied the kinetic freezing and unfreezing of structural fluctuations involving the rotational modes in orientationally disordered crystal (ODIC) of levoglucosan by calorimetry. The heat capacity, Cp, of levoglucosan measured over the 203 K-463 K range shows that its low-temperature, orientationally ordered crystal (ORC) transforms to ODIC phase on heating, which then melts to a low viscosity liquid. On cooling, the melt transforms to the ODIC which then does not transform to the ORC. Instead, the ODIC supercools. Fluctuations resulting from hindered (random) rotations of levoglucosan molecules confined to the lattice sites and from their conformational changes become progressively slower on cooling and an orientational glass (O-G) forms showing the sigmoid shape decrease in Cp characteristic of structural arrest like that of a glass. On heating the O-G state, rotational fluctuations begin to contribute to Cp at To-g of 247.8 K and there is an overshoot in Cp and thermal hysteresis (characteristic of physical ageing) in the temperature range of 230-260 K. The non-exponential relaxation parameter, β(cal), determined by fitting the Cp data to a non-exponential, nonlinear model for relaxation of a glass is 0.60, which is similar to β(cal) found for polymers, molecular liquids, and metal-alloy melts in which Brownian diffusion occurs. Such β(cal) < 1 are seen to indicate 2-4 nm-size dynamically heterogeneous domains in an ultraviscous liquid near the glass formation, but its value of 0.60 for ODIC levoglucosan, in which Brownian diffusion does not occur, would not indicate such domains. Despite the lack of Brownian diffusion, we discuss these findings in the potential energy landscape paradigm. Levoglucosan melt, which is believed to vitrify and to stabilize a protein's disordered structure, did not supercool even at 200 K/min cooling rate. The

  18. Structural fluctuations and orientational glass of levoglucosan—High stability against ordering and absence of structural glass

    NASA Astrophysics Data System (ADS)

    Tombari, Elpidio; Johari, G. P.

    2015-03-01

    To investigate whether a non-exponential relaxation always indicates 2-4 nm-size regions of dynamic heterogeneity, we studied the kinetic freezing and unfreezing of structural fluctuations involving the rotational modes in orientationally disordered crystal (ODIC) of levoglucosan by calorimetry. The heat capacity, Cp, of levoglucosan measured over the 203 K-463 K range shows that its low-temperature, orientationally ordered crystal (ORC) transforms to ODIC phase on heating, which then melts to a low viscosity liquid. On cooling, the melt transforms to the ODIC which then does not transform to the ORC. Instead, the ODIC supercools. Fluctuations resulting from hindered (random) rotations of levoglucosan molecules confined to the lattice sites and from their conformational changes become progressively slower on cooling and an orientational glass (O-G) forms showing the sigmoid shape decrease in Cp characteristic of structural arrest like that of a glass. On heating the O-G state, rotational fluctuations begin to contribute to Cp at To-g of 247.8 K and there is an overshoot in Cp and thermal hysteresis (characteristic of physical ageing) in the temperature range of 230-260 K. The non-exponential relaxation parameter, βcal, determined by fitting the Cp data to a non-exponential, nonlinear model for relaxation of a glass is 0.60, which is similar to βcal found for polymers, molecular liquids, and metal-alloy melts in which Brownian diffusion occurs. Such βcal < 1 are seen to indicate 2-4 nm-size dynamically heterogeneous domains in an ultraviscous liquid near the glass formation, but its value of 0.60 for ODIC levoglucosan, in which Brownian diffusion does not occur, would not indicate such domains. Despite the lack of Brownian diffusion, we discuss these findings in the potential energy landscape paradigm. Levoglucosan melt, which is believed to vitrify and to stabilize a protein's disordered structure, did not supercool even at 200 K/min cooling rate. The findings

  19. Magnetic ordering and exchange interactions in structural modifications of M n3Ga alloys: Interplay of frustration, atomic order, and off-stoichiometry

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Ruban, Andrei V.; Mohn, Peter

    2016-05-01

    Mn-Ga alloys close to the M n3Ga stoichiometry can be synthesized in three different crystal modifications: hexagonal, tetragonal, and face-centered cubic, both in bulk and in thin-film forms. The magnetic ordering of these modifications is varying from noncollinear antiferromagnetic in the hexagonal case to ferrimagnetic order in the tetragonal one, whereas it is still unknown for the atomically disordered fcc structure. Here we study the onset of magnetic order at finite temperatures in these systems on a first-principles basis calculating the interatomic magnetic exchange interactions in the high-temperature paramagnetic regime. We employ the disordered local moment formalism and the magnetic force theorem within the framework of the local spin-density approximation and Monte Carlo simulations taking also the effects of atomic disorder in fcc alloys into account. In particular we find the origin of the stabilization of the noncollinear 3 k structure in competition between antiferromagnetic inter- and in-plane couplings of frustrated kagome planes in hexagonal M n3Ga and predict the antiferromagnetic-1 collinear order due to frustration in fcc alloys. Special attention is paid to the effects of the off-stoichiometry and the consequences of atomic disorder. We calculate the site-preference energy of Ga antisite atoms in the tetragonal structures in the range of the compositions from M n3Ga to M n2Ga and slightly beyond and confirm the earlier explanation of the effect of magnetization increase due to Ga preferentially occupying one of the Mn sites.

  20. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering.

    PubMed

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  1. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    PubMed Central

    Gao, Xiang; Zhang, Xiaohong; Song, Jinlin; Xu, Xiao; Xu, Anxiu; Wang, Mengke; Xie, Bingwu; Huang, Enyi; Deng, Feng; Wei, Shicheng

    2015-01-01

    The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL) nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA) was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than cells on randomly oriented nanofibers. Furthermore, the aligned nanofibers with osteoinductive peptides could direct osteogenic differentiation of human mesenchymal stem cells even in the absence of osteoinducting factors, suggesting superior osteogenic efficacy of biomimetic design that combines the advantages of osteoinductive peptide signal and highly ordered nanofibers on cell fate decision. The presented peptide-decorated bone-mimic nanofiber scaffolds hold a promising potential in the context of bone tissue engineering. PMID:26604759

  2. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Reverse Monte Carlo study on structural order in liquid and glassy AlFe alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Xiang; Li, Hui; Zhang, Jie; Song, Xi-Gui; Bian, Xiu-Fang

    2009-11-01

    This paper reports that anomalous local order in liquid and glassy AlFeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. The element Ce favours interpenetration of the icosahedra by sharing a common face and edges. It argues that frustration between this short-range order and the long-range crystalline order controls the glass-forming ability of these liquids. The obtained results suggest that a system having a stronger tendency to show local icosahedral order should be a better glass-former. This scenario also naturally explains the close relationship between the local icosahedral order in a liquid, glass-forming ability, and the nucleation barrier. Such topological local order has also been analysed directly using the reverse Monte Carlo method. It also estimated the fraction of local ordered and disordered structural units in a glassy AlFeCe alloy.

  3. Structural and Kinetic Properties of Lumazine Synthase Isoenzymes in the Order Rhizobiales

    SciTech Connect

    Klinke,S.; Zylberman, V.; Bonomi, H.; Haase, I.; Guimaraes, B.; Braden, B.; Bacher, A.; Fischer, M.; Goldbaum, F.

    2007-01-01

    6, 7-Dimethyl-8-ribityllumazine synthase (lumazine synthase; LS) catalyzes the penultimate step in the biosynthesis of riboflavin in plants and microorganisms. This protein is known to exhibit different quaternary assemblies between species, existing as free pentamers, decamers (dimers of pentamers) and icosahedrally arranged dodecamers of pentamers. A phylogenetic analysis on eubacterial, fungal and plant LSs allowed us to classify them into two categories: Type I LSs (pentameric or icosahedral) and Type II LSs (decameric). The Rhizobiales represent an order of ?-proteobacteria that includes, among others, the genera Mesorhizobium, Agrobacterium and Brucella. Here, we present structural and kinetic studies on several LSs from Rhizobiales. Interestingly, Mesorhizobium and Brucella encode both a Type-I LS and a Type-II LS called RibH1 and RibH2, respectively. We show that Type II LSs appear to be almost inactive, whereas Type I LSs present a highly variable catalytic activity according to the genus. Additionally, we have solved four RibH1/RibH2 crystallographic structures from the genera Mesorhizobium and Brucella. The relationship between the active-site architecture and catalytic properties in these isoenzymes is discussed, and a model that describes the enzymatic behavior is proposed. Furthermore, sequence alignment studies allowed us to extend our results to the genus Agrobacterium. Our results suggest that the selective pressure controlling the riboflavin pathway favored the evolution of catalysts with low reaction rates, since the excess of flavins in the intracellular pool in Rhizobiales could act as a negative factor when these bacteria are exposed to oxidative or nitrosative stress.

  4. Atomic study on the ordered structure in Al melts induced by liquid/substrate interface with Ti solute

    SciTech Connect

    Zhang, H. L.; Han, Y. F. E-mail: bdsun@sjtu.edu.cn; Zhou, W.; Dai, Y. B.; Wang, J.; Sun, B. D. E-mail: bdsun@sjtu.edu.cn

    2015-01-26

    Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energy in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.

  5. Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2005-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  6. Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  7. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    NASA Astrophysics Data System (ADS)

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-03-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ•g-1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research.

  8. Two substrate-confined sol-gel coassembled ordered macroporous silica structures with an open surface.

    PubMed

    Guo, Wenhua; Wang, Ming; Xia, Wei; Dai, Lihua

    2013-05-21

    A sol-gel cooperative assembly method was demonstrated for the fabrication of inverse opal films with an open surface. In this method, a sol-gel silicate precursor was cooperatively assembled into the interstitial spaces of microspheres at the same time when polystyrene templates formed in between two desired substrates. Silica inverse opals with a three-dimensional ordered macroporous (3DOM) structure were obtained after selective removing the colloidal templates by calcination. The open surfaces with a high degree of interconnected porosity and extremely uniform pore size were characterized by scanning electron microscope (SEM). Optical transmission spectra reveals the existence of considerable deep band gaps of up to 70% and steep band edges of up to 6%/nm in the [111] directions of the 3DOM silica samples. A little shrinkage confirmed by transmission spectra is not larger than 3%, in consistent with the results measured by SEM, which revealing the sufficient and compact infiltration into the interstitial spaces by our confined sol-gel coassembly method. With different incidence angles, the positions of pseudogaps can be easily tuned in the wide range from 720 nm to 887 nm, agreed well with the calculated values by the Bragg law. All the results prove that the sol-gel coassembly method with two substrates confinement is a simple, low cost, convenient and versatile method for the fabrication of silica inverse opals without overlayers in large domains. PMID:23614663

  9. On bulk singularity structures and all order α‧ contact terms of BPS string amplitudes

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2016-10-01

    The entire form of the amplitude of three SYM (involving two transverse scalar fields, a gauge field) and a potential Cn-1 Ramond-Ramond (RR) form field is found out. We first derive and then start constructing an infinite number of t , s channel bulk singularity structures by means of all order α‧ corrections to pull-back of brane in an Effective Field Theory (EFT). Due to presence of the complete form of S-matrix, several new contact interactions as well as new couplings are explored. It is also shown that these couplings can be verified at the level of EFT by either the combinations of Myers terms, pull-back, Taylor expanded of scalar fields or the mixed combination of the couplings of this paper as well as employed Bianchi identities. For the first time, we also derive the algebraic and the complete form of the integrations for some arbitrary combinations of Mandelstam variables and for the most general case ∫d2 z | 1 - z|a | z|b(z - z bar) c(z + z bar) 3 on upper half plane as well.

  10. DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.

    2015-08-01

    We present an algorithm for the computation of finite-time Lyapunov exponent (FTLE) fields using discontinuous-Galerkin (dG) methods in two dimensions. The algorithm is designed to compute FTLE fields simultaneously with the time integration of dG-based flow solvers of conservation laws. Fluid tracers are initialized at Gauss-Lobatto quadrature nodes within an element. The deformation gradient tensor, defined by the deformation of the Lagrangian flow map in finite time, is determined per element with high-order dG operators. Multiple flow maps are constructed from a particle trace that is released at a single initial time by mapping and interpolating the flow map formed by the locations of the fluid tracers after finite time integration to a unit square master element and to the quadrature nodes within the element, respectively. The interpolated flow maps are used to compute forward-time and backward-time FTLE fields at several times using dG operators. For a large finite integration time, the interpolation is increasingly poorly conditioned because of the excessive subdomain deformation. The conditioning can be used in addition to the FTLE to quantify the deformation of the flow field and identify subdomains with material lines that define Lagrangian coherent structures. The algorithm is tested on three benchmarks: an analytical spatially periodic gyre flow, a vortex advected by a uniform inviscid flow, and the viscous flow around a square cylinder. In these cases, the algorithm is shown to have spectral convergence.

  11. Kolmogorov constants for the second-order structure function and the energy spectrum.

    PubMed

    Ni, Rui; Xia, Ke-Qing

    2013-02-01

    We examine the behavior of the Kolmogorov constants C(2), C(k), and C(k1), which are, respectively, the prefactors of the second-order longitudinal structure function and the three-dimensional and one-dimensional longitudinal energy spectrum in the inertial range. We show that their ratios, C(2)/C(k1) and C(k)/C(k1), exhibit clear dependence on the microscale Reynolds number R(λ), implying that they cannot all be independent of R(λ). In particular, it is found that (C(k1)/C(2)-0.25)=1.95R(λ)(-0.68). The study further reveals that the widely used relation C(2)=4.02C(k1) holds only asymptotically when R(λ)>/~10(5). It is also found that C(2) has much stronger R(λ) dependence than either C(k) or C(k1) if the latter indeed has a systematic dependence on R(λ). We further show that the varying dependence on R(λ) of these three numbers can be attributed to the difference of the inertial range in real- and wave-number space, with the inertial range in real-space known to be much shorter than that in wave-number space.

  12. Measuring the cascade rate in anisotropic turbulence through 3rd order structure functions.

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Landi, Simone; Hellinger, Petr

    2014-05-01

    We employ the Von-Karman-Howart-Yaglom-Politano-Poquet (KHYPP)law, to compute the cascade rate by means of 3rd order structure functions in homogeneous, forced, DNS at high resolution. We consider first the isotropic case (no guide field) and verify that the cascade rate is consistent with the dissipation rate. Then we consider an anisotropic case (with guide field) for which the isotropic KHYPP law does not apply. We compute the parallel and perpendicular cascade rates and find that the latter basically accounts for the total dissipation rate, as expected for anisotropic turbulence. Also, the cascade rate derived from the isotropic law is found to be a good approximation for the total cascade rate. Recent works have shown that the hypothesis of stationary turbulence must be probably relaxed in the solar wind. We present preliminary results on the measure of the cascade rate in the expanding solar wind, obtained with DNS of MHD turbulence in the expanding box model. Such model incorporates the basic physic of expansion thus inducing anisotropies driven by both the magnetic field and expansion, along with an energy decrease due to the conservation of linear invariants (angular momentum and magnetic flux). The correction due to non-stationary conditions is found to be important and to become negligible only at small scales, thus suggesting that solar wind measurements over- estimate the actual cascade rate.

  13. Higher-Order Theory: Structural/MicroAnalysis Code (HOTSMAC) Developed

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.

    2002-01-01

    The full utilization of advanced materials (be they composite or functionally graded materials) in lightweight aerospace components requires the availability of accurate analysis, design, and life-prediction tools that enable the assessment of component and material performance and reliability. Recently, a new commercially available software product called HOTSMAC (Higher-Order Theory--Structural/MicroAnalysis Code) was jointly developed by Collier Research Corporation, Engineered Materials Concepts LLC, and the NASA Glenn Research Center under funding provided by Glenn's Commercial Technology Office. The analytical framework for HOTSMAC is based on almost a decade of research into the coupled micromacrostructural analysis of heterogeneous materials. Consequently, HOTSMAC offers a comprehensive approach for analyzing/designing the response of components with various microstructural details, including certain advantages not always available in standard displacement-based finite element analysis techniques. The capabilities of HOTSMAC include combined thermal and mechanical analysis, time-independent and time-dependent material behavior, and internal boundary cells (e.g., those that can be used to represent internal cooling passages, see the preceding figure) to name a few. In HOTSMAC problems, materials can be randomly distributed and/or functionally graded (as shown in the figure, wherein the inclusions are distributed linearly), or broken down by strata, such as in the case of thermal barrier coatings or composite laminates.

  14. Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry.

    PubMed

    McClintock, Carlee; Kertesz, Vilmos; Hettich, Robert L

    2008-05-01

    We report here the novel use of electrochemistry to generate covalent oxidative labels on intact proteins in both non-native and physiologically relevant solutions as a surface mapping probe of higher order protein structure. Two different working electrode types were tested across a range of experimental parameters including voltage, flow rate, and solution electrolyte composition to affect the extent of oxidation on intact proteins, as measured both on-line and off-line with mass spectrometry. Oxidized proteins were collected off-line for proteolytic digestion followed by LC-MS/MS analysis. Peptide MS/MS data were searched with the InsPecT scoring algorithm for 46 oxidative mass shifts previously reported in the literature. Preliminary data showed reasonable agreement between amino acid solvent accessibility and the resulting oxidation status of these residues in aqueous buffer, while more buried residues were found to be oxidized in non-native solution. Our results indicate that electrochemical oxidation using a boron-doped diamond electrode has the potential to become a useful and easily accessible tool for conducting oxidative surface mapping experiments.

  15. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    NASA Astrophysics Data System (ADS)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  16. Gravitational-wave implications for structure formation: A second-order approach

    NASA Astrophysics Data System (ADS)

    Pazouli, Despoina; Tsagas, Christos G.

    2016-03-01

    Gravitational waves are propagating undulations in the spacetime fabric, which interact very weakly with their environment. In cosmology, gravitational-wave distortions are produced by most of the inflationary scenarios and their anticipated detection should open a new window to the early Universe. Motivated by the relative lack of studies on the potential implications of gravitational radiation for the large-scale structure of the Universe, we consider its coupling to density perturbations during the postrecombination era. We do so by assuming an Einstein-de Sitter background cosmology and by employing a second-order perturbation study. At this perturbative level and on superhorizon scales, we find that gravitational radiation adds a distinct and faster growing mode to the standard linear solution for the density contrast. Given the expected weakness of cosmological gravitational waves, however, the effect of the new mode is currently subdominant and it could start becoming noticeable only in the far future. Nevertheless, this still raises the intriguing possibility that the late-time evolution of large-scale density perturbations may be dictated by the long-range (the Weyl), rather than the local (the Ricci) component of the gravitational field.

  17. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion.

    PubMed

    Lambert, Simon A; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-28

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5  μm in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  18. Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties

    PubMed Central

    Xie, Jingwei; MacEwan, Matthew R.; Li, Xiaoran; Sakiyama-Elbert, Shelly E.; Xia, Younan

    2009-01-01

    Electrospun nanofibers can be readily assembled into various types of scaffolds for applications in neural tissue engineering. The objective of this study is to examine and understand the unique patterns of neurite outgrowth from primary dorsal root ganglia (DRG) cultured on scaffolds of electrospun nanofibers having different orders, structures, and surface properties. We found that the neurites extended radially outward from the DRG main body without specific directionality when cultured on a nonwoven mat of randomly oriented nanofibers. In contrast, the neurites preferentially extended along the long axis of fiber when cultured on a parallel array of aligned nanofibers. When seeded at the border between regions of aligned and random nanofibers, the same DRG simultaneously expressed aligned and random neurite fields in response to the underlying nanofibers. When cultured on a double-layered scaffold where the nanofibers in each layer were aligned along a different direction, the neurites were found to be dependent on the fiber density in both layers. This bi-axial pattern clearly demonstrates that neurite outgrowth can be influenced by nanofibers in different layers of a scaffold, rather than the topmost layer only. Taken together, these results will provide valuable information pertaining to the design of nanofiber scaffolds for neuroregenerative applications, as well as the effects of topology on neurite outgrowth, growth cone guidance, and axonal regeneration. PMID:19397333

  19. Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    PubMed Central

    Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin

    2016-01-01

    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405

  20. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: A novel approach to topological defects in a vector order parameter system

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Rong, Shu-Jun; Zhu, Tao

    2009-07-01

    Based on Duan's topological current theory, we propose a novel approach to study the topological properties of topological defects in a two-dimensional complex vector order parameter system. This method shows explicitly the fine topological structure of defects. The branch processes of defects in the vector order parameter system have also been investigated with this method.

  1. Kermesite, Sb2S2O: crystal structure revision and order-disorder interpretation.

    PubMed

    Hybler, Jiří; Durovič, Slavomil

    2013-12-01

    Kermesite, Sb2S2O, is a desymmetrized order-disorder (OD) structure of layers. Two data sets were recorded using twinned crystals from Pezinok, Slovakia (named as Pz21, Pz24). The primitive unit cell is triclinic, P1, Z = 4, cell parameters are a = 8.1416 (3), b = 10.6968 (3), c = 5.7835 (2) Å, α = 102.758 (3), β = 110.657 (3), γ = 101.020 (3)°, R(obs) = 0.0243 (Pz21), and a = 8.1372 (2), b = 10.6969 (2), c = 5.7840 (1) Å, α = 102.787 (2), β = 110.606 (2), γ = 100.983 (2)°, R(obs) = 0.0321 (Pz24). The structure can also be described in the non-standard pseudo-monoclinic octuple (Z = 32), F-centered (Kupčík) cell with extra points in 1/4,1/4,0; 1/4,3/4,1/2; 3/4,1/4,1/2; 3/4,3/4,0, with parameters a = 21.6466 (9), b = 8.1416 (3), c = 20.3824 (9) Å, α = 90.079 (4), β = 101.985 (5), γ = 89.948 (4)° (Pz21), and a = 21.6558 (5), b = 8.1372 (2), c = 20.3859 (8) Å, α = 90.028 (3), β = 101.994 (3), γ = 89.986 (2)° (Pz24). The structure is built of layers parallel to the bc plane, stacked along the a vector of the octuple cell, composed of ribbons parallel to the b vector: (i) ribbon of two strips of SbO5 flattened quadrangular pyramids, sharing apical edges; (ii) ribbon of edge-sharing corrugated lozenges SbO3S. Basal S atoms of pyramids share corners of lozenges. Sb atoms are displaced out of coordination polyhedra into the inter-layer space. The OD layer comprises adjacent halves of the structure building layers. The layer group is A(1)2/m1, the protocell is defined by b, c, (a/4)sin β. The MDO1 (4A) polytype is generated by repetition of the t(1,1/4,0) [or alternatively t(1,-1/4,0)] translation. The co-existence of two kinds of domains give rise to the twinning. The twin operation is 2[010], twin index 2. The total continuation of [. a2 .] generates the MDO2 (2M) polytype, space group A12/a1. Simulated and real diffraction patterns are presented. The important values (edges, angles) and

  2. Structures of ordered tungsten- or molybdenum-containing quaternary perovskite oxides

    SciTech Connect

    Day, Bradley E.; Bley, Nicholas D.; Jones, Heather R.; McCullough, Ryan M.; Eng, Hank W.; Porter, Spencer H.; Woodward, Patrick M.; Barnes, Paris W.

    2012-01-15

    The room temperature crystal structures of six A{sub 2}MMoO{sub 6} and A{sub 2}MWO{sub 6} ordered double perovskites were determined from X-ray and neutron powder diffraction data. Ba{sub 2}MgWO{sub 6} and Ba{sub 2}CaMoO{sub 6} both adopt cubic symmetry (space group Fm3-bar m, tilt system a{sup 0}a{sup 0}a{sup 0}). Ba{sub 2}CaWO{sub 6} has nearly the same tolerance factor (t=0.972) as Ba{sub 2}CaMoO{sub 6} (t=0.974), yet it surprisingly crystallizes with I4/m symmetry indicative of out-of-phase rotations of the MO{sub 6} octahedra about the c-axis (a{sup 0}a{sup 0}c{sup -}). Sr{sub 2}ZnMoO{sub 6} (t=0.979) also adopts I4/m symmetry; whereas, Sr{sub 2}ZnWO{sub 6} (t=0.976) crystallizes with monoclinic symmetry (P2{sub 1}/n) with out-of-phase octahedral tilting distortions about the a- and b-axes, and in-phase tilting about the c-axis (a{sup -}a{sup -}c{sup +}). Ca{sub 2}CaWO{sub 6} (t=0.867) also has P2{sub 1}/n symmetry with large tilting distortions about all three crystallographic axes and distorted CaO{sub 6} octahedra. Analysis of 93 double perovskites and their crystal structures showed that while the type and magnitude of the octahedral tilting distortions are controlled primarily by the tolerance factor, the identity of the A-cation acts as the secondary structure directing factor. When A=Ba{sup 2+} the boundary between cubic and tetragonal symmetries falls near t=0.97, whereas when A=Sr{sup 2+} this boundary falls somewhere between t=1.018 and t=0.992. - Graphical abstract: A survey of the tolerance factor of 41 Mo/W- and 52 Nb/Ta-containing quaternary perovskites plotted as a function of the difference between the two six-coordinate M-cation ionic radii. Compounds with cubic symmetry are represented by diamonds, those with tetragonal symmetry are represented by squares, those with I2/m monoclinic symmetry are represented by Multiplication-Sign , and those with P2{sub 1}/n monoclinic symmetry are represented by triangles. White symbols represent

  3. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore

    2016-09-01

    The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c (r ) , rather than the total correlation function h (r ) , diverges. We expand on the notion that c (r ) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the n th derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c (r ) with regards to singularities it inherits from h (r ) . These relations provide a concrete means of identifying features that must be expressed in c (r ) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c (r )∝-1 /r as r →0 that accompanies the formation of the delta function at c (D ) that indicates the formation of contacts in all cases, and show

  4. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and created a high degree of enthusiasm and stimulation among the participants (as is demonstrated by this special issue). The 2nd YSM is therefore firmly planned to take place in 2013, back-to-back with the 4th PAGES OSM. Crucial and gratefully acknowledged contributions to the success of the YSM were made by the numerous co-sponsors (see logos below), who provided the financial basis for the YSM and supported the attendance of many early-career researchers from various parts of the world. Furthermore, we cordially thank all reviewers for shaping this proceeding issue with their insightful and helpful reviews. Conference photograph

  5. Impact of Implementing a Wiki to Develop Structured Electronic Order Sets on Physicians' Intention to Use Wiki-Based Order Sets

    PubMed Central

    Beaupré, Pierre; Bégin, Laura; Dupuis, Audrey; Côté, Mario; Légaré, France

    2016-01-01

    Background Wikis have the potential to promote best practices in health systems by sharing order sets with a broad community of stakeholders. However, little is known about the impact of using a wiki on clinicians’ intention to use wiki-based order sets. Objective The aims of this study were: (1) to describe the use of a wiki to create structured order sets for a single emergency department; (2) to evaluate whether the use of this wiki changed emergency physicians’ future intention to use wiki-based order sets; and (3) to understand the impact of using the wiki on the behavioral determinants for using wiki-based order sets. Methods This was a pre/post-intervention mixed-methods study conducted in one hospital in Lévis, Quebec. The intervention was comprised of receiving access to and being motivated by the department head to use a wiki for 6 months to create electronic order sets designed to be used in a computer physician order entry system. Before and after our intervention, we asked participants to complete a previously validated questionnaire based on the Theory of Planned Behavior. Our primary outcome was the intention to use wiki-based order sets in clinical practice. We also assessed participants’ attitude, perceived behavioral control, and subjective norm to use wiki-based order sets. Paired pre- and post-Likert scores were compared using Wilcoxon signed-rank tests. The post-questionnaire also included open-ended questions concerning participants’ comments about the wiki, which were then classified into themes using an existing taxonomy. Results Twenty-eight emergency physicians were enrolled in the study (response rate: 100%). Physicians’ mean intention to use a wiki-based reminder was 5.42 (SD 1.04) before the intervention, and increased to 5.81 (SD 1.25) on a 7-point Likert scale (P=.03) after the intervention. Participants’ attitude towards using a wiki-based order set also increased from 5.07 (SD 0.90) to 5.57 (SD 0.88) (P=.003). Perceived

  6. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  7. Valence-band ordering and magneto-optic exciton fine structure in ZnO

    NASA Astrophysics Data System (ADS)

    Lambrecht, Walter R.; Rodina, Anna V.; Limpijumnong, Sukit; Segall, B.; Meyer, Bruno K.

    2002-02-01

    Using first-principles linear muffin-tin orbital density functional band structure calculations, the ordering of the states in the wurtzite ZnO valence-band maximum, split by crystal-field and spin-orbit coupling effects, is found to be Γ7(5)>Γ9(5)>Γ7(1), in which the number in parentheses indicates the parent state without spin-orbit coupling. This results from the negative spin-orbit splitting, which in turn is due to the participation of the Zn 3d band. The result is found to be robust even when effects beyond the local density approximation on the Zn 3d band position are included. Using a Kohn-Luttinger model parametrized by our first-principles calculations, it is furthermore shown that the binding energies of the excitons primarily derived from each valence band differ by less than the valence-band splittings even when interband coupling effects are included. The binding energies of n=2 and n=1 excitons, however, are not in a simple 1/4 ratio. Our results are shown to be in good agreement with the recent magneto-optical experimental data by Reynolds et al. [Phys. Rev. B 60, 2340 (1999)], in spite of the fact that on the basis of these data these authors claimed that the valence-band maximum would have Γ9 symmetry. The differences between our and Reynolds' analysis of the data are discussed and arise from the sign of the Landé g factor for holes, which is here found to be negative for the upper Γ7 band.

  8. Surface-induced ordering of a molecular fluid of flat hexagonal structure in a narrow graphite slit.

    PubMed

    Chakrabarti, J; Kerkhof, P J

    1999-07-01

    We systematically investigate by Monte Carlo simulations the role of the wall structure on a fluid of flat hexagonal molecules confined between two graphite walls. Our simulations show that the centers of mass of the molecules in different layers undergo an order-disorder transition as the wall separation increases, irrespective of the details of the wall structure. The wall structure thus becomes insignificant for the intervening fluid even down to a surprisingly low wall separation. PMID:11969788

  9. Fabrication of silica moth-eye structures by photo-nanoimprinting using ordered anodic porous alumina molds

    NASA Astrophysics Data System (ADS)

    Yanagishita, Takashi; Endo, Takahide; Nishio, Kazuyuki; Masuda, Hideki

    2014-01-01

    Moth-eye structures composed of an ordered array of tapered SiO2 pillars were fabricated by photo-nanoimprinting using anodic porous alumina as a mold. The formation of SiO2 moth-eye structures was carried out using a photosensitive polysilane solution as a precursor of silica. The SiO2 moth-eye structures formed on the surface of a glass plate effectively suppressed the reflection of incident light.

  10. Fermi surface and order parameter driven vortex lattice structure transitions in twin-free YBa2Cu3O7.

    PubMed

    White, J S; Hinkov, V; Heslop, R W; Lycett, R J; Forgan, E M; Bowell, C; Strässle, S; Abrahamsen, A B; Laver, M; Dewhurst, C D; Kohlbrecher, J; Gavilano, J L; Mesot, J; Keimer, B; Erb, A

    2009-03-01

    We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL structure phase is stabilized at intermediate fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy. PMID:19392554

  11. Hamiltonian structure of the higher-order corrections to the Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Menyuk, C. R.; Chen, H.-H.

    1985-10-01

    Higher-order corrections to the Korteweg-de Vries equation are examined by Hamiltonian methods. Starting from the underlying Hamiltonian systems (e.g., the two-fluid equations in the case of ion-acoustic waves), one finds that the corrected equations have the same Poisson bracket as the Korteweg-de Vries equation at every order. One also finds that the underlying equations become nonlocal at sufficiently high order.

  12. Structural ordering at solid-liquid interfaces in Al-Sm system: A molecular-dynamics study

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Mendelev, Mikhail I.; Kramer, Matthew J.; Wang, Cai -Zhuang; Ho, Kai -Ming

    2016-07-12

    The structural ordering at solid-liquid interfaces far from equilibrium is studied with molecular dynamics simulations for the Al-Sm system. Using the van-Hove self-correlation function as the criterion to identify attachment/detachment events that occur at the interface, we are able to determine the time-dependent interface position, and characterize the detailed interfacial structure ordering surrounding the attached atoms. For the interface between an undercooled Al90Sm10 liquid and a metastable cubic structure, the solid induces the crystalline order of the cubic phase in the liquid layers, promoting the continuous growth of the crystal phase. When the same liquid is put in contact withmore » f.c.c. Al, Sm from the liquid can still attach to the solid interface despite its insolubility in the Al lattice. Non-f.c.c. order is revealed surrounding the attached Sm atoms. Lastly, we show that the local structure ordering at interface is highly correlated to solid packing and liquid ordering.« less

  13. BMI differences in 1st and 2nd generation immigrants of Asian and European origin to Australia.

    PubMed

    Hauck, Katharina; Hollingsworth, Bruce; Morgan, Lawrie

    2011-01-01

    We estimate assimilation of immigrants' body mass index (BMI) to the host population of Australia over one generation, conducting separate analyses for immigrants from 7 regions of Europe and Asia. We use quantile regressions to allow for differing impact of generational status across 19 quantiles of BMI from under-weight to morbidly obese individuals. We find that 1st generation South European immigrants have higher, and South and East Asian immigrants have lower BMI than Australians, but have assimilated to the BMI of their hosts in the 2nd generation. There are no or only small BMI differences between Australians and 1st and 2nd generation immigrants from East Europe, North-West Europe, Middle East and Pacific regions. We conclude that both upward and downward assimilation in some immigrant groups is most likely caused by factors which can change over one generation (such as acculturation), and not factors which would take longer to change (such as genetics). Our results suggest that public health policies targeting the lifestyles of well educated Asian immigrants may be effective in preventing BMI increase in this subgroup.

  14. Attitudes towards General Practice: a comparative cross-sectional survey of 1st and 5th year medical students

    PubMed Central

    Kruschinski, Carsten; Wiese, Birgitt; Hummers-Pradier, Eva

    2012-01-01

    Objective: Positive attitudes towards General Practice can be understood as a prerequisite for becoming a General Practitioner (GP) and for collaboration with GPs later on. This study aimed to assess attitudes of medical students at the beginning and the end of medical school. Methods: A total of 160 1st year students at Hannover Medical School were surveyed. Their attitudes were compared to those of 287 5th year students. Descriptive, bi- and multivariate analyses were performed to investigate influences of year of study and gender. Results: Year of study and gender both were associated with the attitudes towards General Practice. The interest in General Practice and patient-orientation (communication, care of older patients with chronic diseases) was higher in 1st year students compared to more advanced students. Female students valued such requirements more than male students, the differences in attitudes between the years of study being more pronounced in male students. Conclusion: Despite some limitations caused by the cross-sectional design, the attitudes towards General Practice competencies changed to their disadvantage during medical school. This suggests a formative influence of the strategies used in medical education. Educational strategies, however, could be used to bring about a change of attitudes in the other direction. PMID:23255966

  15. Non-thermal separation of electronic and structural orders in a persisting charge density wave.

    PubMed

    Porer, M; Leierseder, U; Ménard, J-M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R

    2014-09-01

    The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, X-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge density wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter--excitonic correlations and a periodic lattice distortion (PLD)--respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PLD can persist in a coherently excited state. This observation proves that excitonic correlations are not the sole driving force of the CDW transition in 1T-TiSe2, and exemplifies the sort of profound insight that disentangling strongly coupled components of order parameters in the time domain may provide for the understanding of a broad class of phase transitions.

  16. Show & Tell. Proceedings of the Ontario Universities' Conference (1st, Guelph, Canada, May 1987).

    ERIC Educational Resources Information Center

    Herrmann, Thom, Ed.

    Twenty-three conference papers focus on the use of information technology in Ontario's technical colleges and universities: "The Analytic Criticism Module--Authorial Structures & Design" (P. Beam); "Computing by Design" (R. D. Brown & J. D. Milliken); "Engineers and Computers" (P. S. Chisholm, M. Iwaniw, and G. Hayward); "Designing the CAL Screen:…

  17. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum.

    PubMed

    Burger, Virginia M; Nolasco, Diego O; Stultz, Collin M

    2016-03-25

    The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.

  18. Effects of external strain on the order-disorder phase transition and the hierarchical structure on the Si(001) surface

    NASA Astrophysics Data System (ADS)

    Yata, Masanori

    2006-10-01

    Externally applied tensile strain on the Si(001)-c(4×2) surface was found to induce the flip-flop motion of the buckled dimers. This motion occurred cooperatively to form the disordered phase of the (2×1) structure. As the strain increased, the disordered phase grew and conversely the ordered phase of the c(4×2) structure shrank. The domain shape of the ordered phase depended on the tensile strain and its direction, which was governed mainly by the dependence of the domain wall energies parallel and perpendicular to the direction of the dimer bond on the strain.

  19. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures.

    PubMed

    Li, Rui; Zhu, Hongliang; Luo, Yunbo

    2016-01-01

    Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure-function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2'-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level. PMID:27196897

  20. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    David S. Smith

    2006-04-20

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  1. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015)

    PubMed Central

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  2. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015).

    PubMed

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  3. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants

    PubMed Central

    Endress, Peter K.; Davis, Charles C.; Matthews, Merran L.

    2013-01-01

    Background and Aims Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. Methods The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. Key Results Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. Conclusions Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused

  4. Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition.

    PubMed

    Duan, Guotao; Cai, Weiping; Luo, Yuanyuan; Li, Zhigang; Lei, Yong

    2006-08-17

    Fabrication of micro/nano-hierarchical Ni ordered nanostructured arrays is demonstrated by electrochemical deposition on the ordered alumina through-pore template induced by solution-dipping the colloidal monolayer. The morphology of the Ni nanostructured arrays exhibits a ringlike or hollow spherical structure depending on the template geometry and appropriate deposition parameters. The skeletons of the arrays are of floc- or flakelet-like fine structure on the nanoscale. The formation of such morphologies is attributed to the preferential growth along the inner wall of the alumina pores, while the nanoflakelet fine structure originates from a morphology inheritance process or the transitional product Ni(OH)2 which leads to the final nanostructured Ni crystals. This morphology inherence could be useful in the field of nanofabrication. Such micro/nano-hierarchically structured arrays show good magnetic properties and will find applications in the fields of catalysis, magnetics, optoelectrics, surface-enhanced Raman scattering (SERS), and new nanodevices.

  5. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures

    PubMed Central

    Li, Rui; Zhu, Hongliang; Luo, Yunbo

    2016-01-01

    Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure–function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2′-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level. PMID:27196897

  6. Impact of volcanic eruptions on the climate of the 1st millennium AD in a comprehensive climate simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Zorita, Eduardo

    2015-04-01

    The climate of the 1st millennium AD shows some remarkable differences compared to the last millennium concerning variation in external forcings. Together with an orbitally induced increased solar insolation during the northern hemisphere summer season and a general lack of strong solar minima, the frequency and intensity of large tropical and extratropical eruptions is decreased. Here we present results of a new climate simulation carried out with the comprehensive Earth System Model MPI-ESM-P forced with variations in orbital, solar, volcanic and greenhouse gas variations and land use changes for the last 2,100 years. The atmospheric model has a horizontal resolution of T63 (approx. 125x125 km) and therefore also allows investigations of regional-to-continental scale climatic phenomena. The volcanic forcing was reconstructed based on a publication by Sigl et al. (2013) using the sulfate records of the NEEM and WAIS ice cores. To obtain information on the aerosol optical depth (AOD) these sulfate records were scaled to an established reconstruction from Crowley and Unterman (2010), which is also a standard forcing in the framework of CMIP5/PMIP3. A comparison between the newly created data set with the Crowley and Unterman dataset reveals that the new reconstruction shows in general weaker intensities, especially of the large tropical outbreaks and fewer northern hemispheric small-to-medium scale eruptions. However, the general pattern in the overlapping period is similar. A hypothesis that can be tested with the simulation is whether the reduced volcanic intensity of the 1st millennium AD contributed to the elevated temperature levels over Europe, evident within a new proxy-based reconstruction. On the other hand, the few but large volcanic eruptions, e.g. the 528 AD event, also induced negative decadal-scale temperature anomalies. Another interesting result of the simulation relates to the 79 AD eruption of the Vesuvius, which caused the collapse of the city of

  7. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds.

    PubMed

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-01-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.

  8. Lowest-order phase space structure of a simplified beam halo Hamiltonian

    SciTech Connect

    Bruhwiler, D.L.

    1996-06-01

    Hamiltonian perturbation theory is applied to the particle-core model for zero-angular-momentum test-particles in the limit of small mismatch and moderate space charge. A first-order treatment captures the lowest-order averaged dynamics arising from the dominant 2:1 parametric resonance, neglecting any chaotic effects that might arise from the overlap of higher-order resonances. The analysis shows that test-particles from a matched Kapchinskij-Vladimirskij (KV) distribution are driven into the halo by the oscillations of the mismatched core KV distribution, if the mismatch factor exceeds a critical value which depends on the space charge parameter {mu}. This dynamical effect persists, although the time scale grows without bound, even in the limit {mu}{r_arrow}0. A symplectic test-particle code and self-consistent particle simulations both show good agreement with the analysis. {copyright} {ital 1996 American Institute of Physics.}

  9. Proceedings of the 1st Space Plasma Computer Analysis Network (SCAN) Workshop. [space plasma computer networks

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Waite, J. H.; Johnson, J. F. E.; Doupnik, J. R.; Heelis, R. A.

    1983-01-01

    The purpose of the workshop was to identify specific cooperative scientific study topics within the discipline of Ionosphere Magnetosphere Coupling processes and to develop methods and procedures to accomplish this cooperative research using SCAN facilities. Cooperative scientific research was initiated in the areas of polar cusp composition, O+ polar outflow, and magnetospheric boundary morphology studies and an approach using a common metafile structure was adopted to facilitate the exchange of data and plots between the various workshop participants. The advantages of in person versus remote workshops were discussed also.

  10. Structural order and melting of a quasi-one-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Rees, David G.; Beysengulov, Niyaz R.; Teranishi, Yoshiaki; Tsao, Chun-Shuo; Yeh, Sheng-Shiuan; Chiu, Shao-Pin; Lin, Yong-Han; Tayurskii, Dmitrii A.; Lin, Juhn-Jong; Kono, Kimitoshi

    2016-07-01

    We investigate the influence of confinement on the positional order of a quasi-1D electron system trapped on the surface of liquid helium. We find evidence that the melting of the Wigner solid (WS) depends on the confinement strength, as well as electron density and temperature. A reentrant solid-liquid-solid transition is observed for increasing electron density under constant electrostatic confinement. As the electron row number Ny changes, varying commensurability results in a modulation of the WS order, even when Ny is large (several tens). This is confirmed by Monte Carlo simulations.

  11. Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions

    SciTech Connect

    Prudnikov, P. V. Prudnikov, V. V.; Nosikhin, E. A.

    2008-05-15

    The effect of structural defects on the critical ultrasound absorption and ultrasound velocity dispersion in Ising-like three-dimensional systems is studied. A field-theoretical description of the dynamic effects of acoustic-wave propagation in solids during phase transitions is performed with allowance for both fluctuation and relaxation absorption mechanisms. The temperature and frequency dependences of the scaling functions of the absorption coefficient and the ultrasound velocity dispersion are calculated in a two-loop approximation for homogeneous and structurally disordered systems, and their asymptotic behavior in hydrodynamic and critical regions is separated. As compared to a homogeneous system, the presence of structural defects in it is shown to cause a stronger increase in the sound absorption coefficient and the sound velocity dispersion even in the hydrodynamic region as the critical temperature is reached. As compared to homogeneous analogs, structurally disordered systems should exhibit stronger temperature and frequency dependences of the acoustic characteristics in the critical region.

  12. 77 FR 39215 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Advance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year... Investigations Lemon Juice from Argentina (A-357-818) (1st Sally Gannon Review). (202) 482-0162 Lemon Juice...

  13. Serial Order and Consonant-Vowel Structure in a Graphemic Output Buffer Model

    ERIC Educational Resources Information Center

    Glasspool, D.W.; Houghton, G.

    2005-01-01

    We review features of the spelling errors of dysgraphic patients with ''Graphemic Buffer Disorder'' (GBD). We argue that the errors made by such patients suggest the breakdown of a system used to generate serial order in the output stages of spelling production, and we develop a model for this system based on an existing theory of sequential…

  14. Second-Order Factor Structure of the MBTI: A Construct Validity Assessment.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Borrello, Gloria M.

    1986-01-01

    Factor adequacy and other results based on data from college students (N=359) provided positive evidence regarding the construct validity of the Myers-Briggs Type Indicator (MBTI). Second order factor analysis supported the appropriateness of the MBTI item weighting procedures. (Author/ABB)

  15. Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities

    NASA Astrophysics Data System (ADS)

    Scholtes, Ingo; Wider, Nicolas; Garas, Antonios

    2016-03-01

    Despite recent advances in the study of temporal networks, the analysis of time-stamped network data is still a fundamental challenge. In particular, recent studies have shown that correlations in the ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based on static, time-aggregated representations of time-stamped data. These findings not only highlight an important dimension of complexity in temporal networks, but also call for new network-analytic methods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge, here we introduce a novel framework for the study of path-based centralities in temporal networks. Studying betweenness, closeness and reach centrality, we first show than an application of these measures to time-aggregated, static representations of temporal networks yields misleading results about the actual importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate networks, a recently proposed generalization of the commonly used static representation of time-stamped data. Using data on six empirical temporal networks, we show that the resulting higher-order measures better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally efficient data mining techniques for time-stamped relational data.

  16. A Model-Based Approach for Visualizing the Dimensional Structure of Ordered Successive Categories Preference Data

    ERIC Educational Resources Information Center

    DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J.

    2008-01-01

    A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…

  17. An Examination of the Higher-Order Structure of Psychopathology and its Relationship to Personality.

    PubMed

    Uliaszek, Amanda A; Zinbarg, Richard E

    2016-04-01

    This study compared a series of higher-order models encompassing symptoms of both clinical and personality disorders. The final model was then correlated with a latent variable model of normal personality traits. A total of 420 undergraduates completed a battery of self-report symptom and personality questionnaires, with informant-reports and diagnostic interviews provided by overlapping subsamples. A three-level model with two factors at the highest level and four factors at the second level was the best fitting model. The higher-order internalizing and externalizing factors were then correlated with 30 latent personality facets. Results demonstrate an elevation on the neuroticism facets for the higher-order internalizing factor, along with low positive emotions, low actions, and low competence. The higher-order externalizing factor was negatively associated with most conscientiousness and agreeableness factors, while showing an elevation on excitement-seeking, impulsivity, and angry hostility. Future studies should replicate these models with the inclusion of more low base-rate disorders (i.e., psychosis).

  18. Conceptual categories or operational constructs? Evaluating higher order theory of planned behavior structures in the exercise domain.

    PubMed

    Rhodes, Ryan E; Blanchard, Chris M

    2006-01-01

    The theory of planned behavior (TPB) is a popular framework for understanding the informational and motivational influences of exercise behavior One tenet of this model that has not been examined is the belief that direct measures of TPB component constructs are organized through higher order constructs. The authors'purpose of this article was to test this higher order conceptualization in comparison with a multidimensional TPB model using structural equation modeling. Participants (N=268) completed direct measures of the TPB and a 2-week follow-up of exercise behavior The results generally supported multidimensional TPB constructs over higher order structures. Direct measures of attitude (i.e., affective and instrumental) and subjective norm (i.e., injunctive and descriptive) had better psychometric properties when considered multidimensionally. Perceived behavioral control (i.e., self-efficacy, controllability), however, had estimation problems for both the multidimensional and the higher order model. Aggregation of TPB components is not warranted, and the perceived behavioral control components may possess a structure more complex than simple multidimensionality or a superordinate higher order construct.

  19. Valence state, hybridization and electronic band structure in the charge ordered AlV2O4.

    PubMed

    Kalavathi, S; Amirthapandian, S; Chandra, Sharat; Sahu, P Ch; Sahu, H K

    2014-01-01

    The valence state, hybridization and electronic band structure of charge ordered AlV2O4 are investigated by measuring the electron energy loss spectra (EELS) and performing band structure calculations using the WIEN2k code. White line ratio and O K edges of V2O5, VO2, V2O3 and AlV2O4, obtained using electron energy loss spectroscopy, are analysed specifically to probe systematically the VO6 octahedra in all of them. The systematic decrease of the L2 intensity and the O K edge intensity from V(5+) in V2O5 to AlV2O4 indicates a progressive increase in the occupancy of the hybridized states, which is corroborated by the absence of a transition from O 1s to hybridized 2t(2g). Band structure calculations on the parent charge frustrated cubic phase and the charge ordered rhombohedral phase clearly document a band gap in the charge ordered state. From the structural information obtained after convergence and the spectroscopic information from EELS, it appears that partial orbital occupancy may lead to a deviation from an integral valence state on all the vanadium in this exotic charge ordered spinel system.

  20. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  1. Valence state, hybridization and electronic band structure in the charge ordered AlV2O4.

    PubMed

    Kalavathi, S; Amirthapandian, S; Chandra, Sharat; Sahu, P Ch; Sahu, H K

    2014-01-01

    The valence state, hybridization and electronic band structure of charge ordered AlV2O4 are investigated by measuring the electron energy loss spectra (EELS) and performing band structure calculations using the WIEN2k code. White line ratio and O K edges of V2O5, VO2, V2O3 and AlV2O4, obtained using electron energy loss spectroscopy, are analysed specifically to probe systematically the VO6 octahedra in all of them. The systematic decrease of the L2 intensity and the O K edge intensity from V(5+) in V2O5 to AlV2O4 indicates a progressive increase in the occupancy of the hybridized states, which is corroborated by the absence of a transition from O 1s to hybridized 2t(2g). Band structure calculations on the parent charge frustrated cubic phase and the charge ordered rhombohedral phase clearly document a band gap in the charge ordered state. From the structural information obtained after convergence and the spectroscopic information from EELS, it appears that partial orbital occupancy may lead to a deviation from an integral valence state on all the vanadium in this exotic charge ordered spinel system. PMID:24285259

  2. Orthogonal Higher Order Factor Structure of the Stanford-Binet Intelligence Scales--Fifth Edition for Children and Adolescents

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2008-01-01

    Orthogonal higher-order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition (SB-5; Roid, 2003a) for child and adolescent samples is reported. Multiple criteria for factor extraction unanimously supported extraction of only one dimension and a unidimensional model. However, following results from DiStefano and Dombrowski (2006)…

  3. A decadal gridded hyperspectral infrared record for climate Sep 1st 2002--Aug 31st 2012

    NASA Astrophysics Data System (ADS)

    Chapman, David Raymond

    We present a gridded Fundamental Decadal Data Record (FDDR) of Brightness Temperatures (BT) from the NASA Atmospheric Infrared Sounder (AIRS) from ten years of hyperspectral Infrared Radiances onboard the NASA EOS Aqua satellite. Although global surface temperature data records are available for over 130 years, it was not until 1978 when the Microwave Sounding Unit (MSU) was the first instrument series to reliably monitor long-term trends of the upper atmosphere. AIRS, operational on September 1, 2002 is the first successful hyperspectral satellite weather instrument of more than 1 year, and provides a 10 year global hyperspectral IR radiance data record. Our contribution was to prepare a gridded decadal data record of climate resolution from the AIRS Outgoing Longwave Spectrum (OLS). In order to do this, we developed a robust software infrastructure "Gridderama" using large multivariate array storage to facilitate this multi-terabyte parallel data processing task while ensuring integrity, tracking provenance, logging errors, and providing extensive visualization. All of our data, code, logs and visualizations are freely available online and browsable via a real-time "Data Catalog" interface. We show that these global all-sky trends are consistent with the expected radiative forcings from an increase in greenhouse gasses. We have also measured high global correlations with the GISS global surface air temperatures as well as high regional anticorrelations with the NOAA ONI index of El Niño phase. In addition, we have performed inter-annual inter-comparisons with the Moderate Resolution Spectro-radiometer (MODIS) on the same Aqua satellite to examine the relative consistency of their calibrations. The comparisons of the two instruments for the 4µ spectral channels (between 3.9µ and 4.1µ) indicate an inter-annual warming of 0.13K per decade of AIRS more than MODIS. This decadal relative drift is small compared to inter-annual variability but on the order of

  4. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  5. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga. PMID:27421419

  6. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-01

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  7. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    PubMed

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness.

  8. Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event

    PubMed Central

    Benna, Carlo; Mancuso, Salvatore; Giordano, Silvio; Gioannini, Lorenzo

    2012-01-01

    The analysis of the spectral properties and dynamic evolution of a CME/shock event observed on November 1st 2003 in white-light by the LASCO coronagraph and in the ultraviolet by the UVCS instrument operating aboard SOHO, has been performed to compute the properties of some important plasma parameters in the middle corona below about 2R⊙. Simultaneous observations obtained with the MLSO/Mk4 white-light coronagraph, providing both the early evolution of the CME expansion in the corona and the pre-shock electron density profile along the CME front, were also used to study this event. By combining the above information with the analysis of the metric type II radio emission detected by ground-based radio spectrographs, we finally derive estimates of the values of the local Alfvén speed and magnetic field strength in the solar corona. PMID:25685432

  9. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D

    PubMed Central

    Fabris, Daniele; Yu, Eizadora T.

    2010-01-01

    Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers, but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown substrates or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns, and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures, while highlighting common elements, salient distinctions, and complementary capabilities exhibited by methods employed in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological substrates. PMID:20648672

  10. Levels of innate immune factors in preterm and term mothers' breast milk during the 1st month postpartum.

    PubMed

    Trend, Stephanie; Strunk, Tobias; Lloyd, Megan L; Kok, Chooi Heen; Metcalfe, Jessica; Geddes, Donna T; Lai, Ching Tat; Richmond, Peter; Doherty, Dorota A; Simmer, Karen; Currie, Andrew

    2016-04-14

    There is a paucity of data on the effect of preterm birth on the immunological composition of breast milk throughout the different stages of lactation. We aimed to characterise the effects of preterm birth on the levels of immune factors in milk during the 1st month postpartum, to determine whether preterm milk is deficient in antimicrobial factors. Colostrum (days 2-5 postpartum), transitional milk (days 8-12) and mature milk (days 26-30) were collected from mothers of extremely preterm (<28 weeks of gestation, n 15), very preterm (28-<32 weeks of gestation, n 15), moderately preterm (32-<37 weeks of gestation, n 15) and term infants (37-41 weeks of gestation, n 15). Total protein, lactoferrin, secretory IgA, soluble CD14 receptor (sCD14), transforming growth factor-β2 (TGF-β2), α defensin 5 (HD5), β defensins 1 (HBD1) and 2, IL-6, IL-10, IL-13, interferon-γ, TNF-α and lysozyme (LZ) were quantified in milk. We examined the effects of lactation stage, gestational age, volume of milk expressed, mode of delivery, parity and maternal infection on milk immune factor concentrations using repeated-measures regression analysis. The concentrations of all factors except LZ and HD5 decreased over the 1st month postpartum. Extremely preterm mothers had significantly higher concentrations of HBD1 and TGF-β2 in colostrum than term mothers did. After controlling for other variables in regression analyses, preterm birth was associated with higher concentrations of HBD1, LZ and sCD14 in milk samples. In conclusion, preterm breast milk contains significantly higher concentrations of some immune proteins than term breast milk.

  11. High-order micro-ring resonator with perfect transmission using symmetrical Fibonacci structures.

    PubMed

    Tsao, C W; Cheng, Y H; Hsueh, W J

    2015-09-15

    A symmetrical Fibonacci micro-ring resonator (SFMR) has been presented to avoid the coupled resonator optical waveguide (CROW) bottle, which is a bottle-shaped distribution for high orders in transmission spectra. The SFMR features three advantages that improve filtering quality compared to that provided by traditional periodic micro-ring resonators. First, sharper resonances are obtained by eliminating the CROW bottle from the mini gaps that appear in the major-band region. Second, peaks with perfect transmission are always obtained without a radius and coupling modulation in the mini-band regions and major-band regions. Third, the full width at half-maximum of the band-edge peak decreases with the increasing generation order. PMID:26371905

  12. Experience from the 1st Year running a Massive High Quality Videoconferencing Service for the LHC

    NASA Astrophysics Data System (ADS)

    Fernandes, Joao; Baron, Thomas; Bompastor, Bruno

    2014-06-01

    In the last few years, we have witnessed an explosion of visual collaboration initiatives in the industry. Several advances in video services and also in their underlying infrastructure are currently improving the way people collaborate globally. These advances are creating new usage paradigms: any device in any network can be used to collaborate, in most cases with an overall high quality. To keep apace with this technology progression, the CERN IT Department launched a service based on the Vidyo product. This new service architecture introduces Adaptive Video Layering, which dynamically optimizes the video for each endpoint by leveraging the H.264 Scalable Video Coding (SVC)-based compression technology. It combines intelligent AV routing techniques with the flexibility of H.264 SVC video compression, in order to achieve resilient video collaboration over the Internet, 3G and WiFi. We present an overview of the results that have been achieved after this major change. In particular, the first year of operation of the CERN Vidyo service will be described in terms of performance and scale: The service became part of the daily activity of the LHC collaborations, reaching a monthly usage of more than 3200 meetings with a peak of 750 simultaneous connections. We also present some key features such as the integration with CERN Indico. LHC users can now join a Vidyo meeting either from their personal computer or a CERN videoconference room simply from an Indico event page, with the ease of a single click. The roadmap for future improvements, service extensions and core infrastructure tendencies such as cloud based services and virtualization of system components will also be discussed. Vidyo's strengths allowed us to build a universal service (it is accessible from PCs, but also videoconference rooms, traditional phones, tablets and smartphones), developed with 3 key ideas in mind: ease of use, full integration and high quality.

  13. Dimensionality and its effects upon the valence electronic structure of ordered metallic systems

    SciTech Connect

    Tobin, J.G.

    1983-07-01

    The system c(10x2)Ag/Cu(001) was investigated with Angle-Resolved Photoemission (ARP), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES). LEED and AES provided the calibration of a quartz microbalance used to measure the amount of silver evaporated onto the copper single crystal and also established the monolayer geometrical structure at one monolayer exposure. An off-normal ARP bandmapping study performed with polarized HeI and NeI radiation demonstrated the electronically two-dimensional nature of the silver d-bands at coverages of near one monolayer. The states at the surface Brillouin Zone center were assigned upon the basis of their polarization dependences and a structural model of hexagonal symmetry. A normal emission ARP experiment was performed at the Stanford Synchrotron Radiation Laboratory (SSRL) over the photon energy range of 6 to 32 eV. Data from it documented the evolution of the valence electronic structure of the silver overlayer from a two-dimensional hexagonal valence to a three-dimensional behavior converging towards that of bulk Ag(111). A structural study was attempted using the ARP technique of Normal Emission Photoelectron Diffraction over the photon energy range of 3.4 to 3.7 keV at SSRL, the results of which are inconclusive.

  14. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sakamaki, Tatsuya; Kono, Yoshio; Wang, Yanbin; Park, Changyong; Yu, Tony; Jing, Zhicheng; Shen, Guoyin

    2014-04-01

    X-ray diffraction and ultrasonic velocity measurements of three silicate glasses (in jadeite, albite, and diopside compositions) show a sharp contrast in pressure-induced changes in structure and elasticity. With increasing pressure to around 6 GPa, polymerized glasses (jadeite and albite) display large shift in the first sharp diffraction peak (FSDP) in the structure factor, S(Q), to higher-Q values, indicating rapid shrinkage in the intermediate-range ordered (IRO) structure. Above 6 GPa, the shift of FSDP decelerates, suggesting that shrinkage in the IRO structure has been largely completed and the structure evolution is now dominated by the diminution of the interstitial volume in a more densely packed arrangement. Associated with this structural change, sound velocities increase with pressure above 6 GPa. In contrast, the depolymerized diopside glass exhibits smaller changes in the pressure dependence for both sound velocities and FSDP positions. Compared to the polymerized glasses, the velocities are faster and the positions of FSDP appear at higher-Q under the same experimental conditions. The results suggest that the depolymerized diopside glass has an initially denser IRO structure compared to that of the polymerized glasses, and there are no sufficient interstitial voids to shrink. The different behaviors between polymerized and depolymerized glasses are apparently related to the initial linkage of tetrahedra and the pressure-induced structural reactions. These results suggest that under compression up to 10 GPa, the degree of polymerization is a major factor affecting the IRO network structure and the sound velocity of silicate glasses.

  15. Assessment of the orbits from the 1st IGS reprocessing campaign (Invited)

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Gendt, G.; Nischan, T.; Ray, J.

    2009-12-01

    combinations for the years 2000 to 2007 can be used as a measure of the quality improvement of the reprocessed combined orbits. Whereas the historic IGS orbits show differences between the ACs and the combined orbits on the order of 3 to 4 cm in 2000, the reprocessed IGS orbits have differences of 1 to 1.5 cm in 2000, nearly the same quality as in recent years. With a similar improvement in the clock solutions, more precise PPP results can be obtained for the past years. Also, the scale, rotation and translation Helmert transformation parameters for each of the individual AC orbits have improved by at least a factor of two in 2000, which will give more consistent orbits over time, and thus better PPP derived station position time series.

  16. Report of the 1st meeting of the "Vienna Initiative to Save European Academic Research (VISAER)".

    PubMed

    Druml, Christiane; Singer, Ernst A; Wolzt, Michael

    2006-04-01

    The European Directive 2001/20/EC ("Clinical Trials Directive") was aimed at simplifying and harmonising European clinical research. The directive's attempt represents an important step because many European Member States lack national laws that specifically address details of research, but the goal has been only partly achieved. For academic investigators doing national or multi-national research the new European law and the requirements following its implementation are likely to have the opposite effect. Some areas seem to be of particular concern: trial sponsorship, the ethical review process, the participation of patients who are temporarily not able to consent in clinical trials, in particular the informed consent process, an accepted European registry for all clinical trials, insurance and pharmacovigilance. Furthermore there are fundamental problems of the conduct of clinical trials that could have been foreseen at the time of implementation of the new law, which are impeding academic basic clinical research. The bureaucratic burden for academic investigators has tremendously increased without representing any contribution to patients' safety or to the scientific value of research. Furthermore some large European academic trials cannot be conducted anymore due to the new regulations. This result in a reduction in the number of trials and additionally in a reduction in the number of patients enrolled in a study. European research and thus European patients will suffer from the loss of potential benefits of research. The Vienna Initiative to Save European Academic Research (VISEAR) brings together leading stakeholders from academic research groups and interested parties from industry, international organisations and regulatory authorities to focus on the issues of concern regarding the organisational and funding of academic clinical research in order to improve the development and use of medicines in Europe. The first step of the initiative was a meeting held

  17. Chemical Speciation of Neptunium in Spent Fuel. 1st Progress Report

    SciTech Connect

    Czerwinski, Ken; Sherman, Christi; Reed, Don

    2000-03-02

    This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste.

  18. Social and moral norm differences among Portuguese 1st and 6th year medical students towards their intention to comply with hand hygiene.

    PubMed

    Roberto, Magda S; Mearns, Kathryn; Silva, Silvia A

    2012-01-01

    This study examines social and moral norms towards the intention to comply with hand hygiene among Portuguese medical students from 1st and 6th years (N = 175; 121 from the 1st year, 54 from the 6th year). The study extended the theory of planned behaviour theoretical principles and hypothesised that both subjective and moral norms will be the best predictors of 1st and 6th year medical students' intention to comply with hand hygiene; however, these predictors ability to explain intention variance will change according to medical students' school year. Results indicated that the subjective norm, whose referent focuses on professors, is a relevant predictor of 1st year medical students' intention, while the subjective norm that emphasises the relevance of colleagues predicts the intentions of medical students from the 6th year. In terms of the moral norm, 6th year students' intention is better predicted by a norm that interferes with compliance; whereas intentions from 1st year students are better predicted by a norm that favours compliance. Implications of the findings highlight the importance of role models and mentors as key factors in teaching hand hygiene in medical undergraduate curricula. PMID:22111788

  19. Local atomic and electronic structure in LaMnO{sub 3} across the orbital ordering transition

    SciTech Connect

    Souza, Raquel A.; Souza-Neto, Narcizo M.; Ramos, Aline Y.; Tolentino, Helio C.N.; Granado, Eduardo

    2004-12-01

    The local atomic disorder and electronic structure in the environment of manganese atoms in LaMnO{sub 3} has been studied by x-ray absorption spectroscopy over a temperature range (300-870 K) covering the orbital ordering transition ({approx}710 K). The Mn-O distance splitting into short and long bonds (1.95 and 2.15 A) is kept across the transition temperature, so that the MnO{sub 6} octahedra remain locally Jahn-Teller distorted. Discontinuities in the Mn local structure are identified in the extended x-ray fine structure spectra at this temperature, associated with a reduction of the disorder in the superexchange angle and to the removal of the anisotropy in the radial disorder within the coordination shell. Subtle changes in the electronic local structure also take place at the Mn site at the transition temperature. The near-edge spectra show a small drop of the Mn 4p hole count and a small enhancement in the pre-edge structures at the transition temperature. These features are associated with an increase of the covalence of the Mn-O bonds. Our results shed light on the local electronic and structural phenomena in a model of order-disorder transition, where the cooperative distortion is overcome by the thermal disorder.

  20. TiO2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; Heiman, Don; Menon, Latika; Arena, Dario A.; Lewis, Laura H.

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure

  1. The Role of Aromatic Structural Units of Conjugated Copolymers in Reaching High Solid-State Order and Optoelectronic Performances

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Lung; Hsu, Chain-Shu; Wu, Kuan-Yi; Lee, Tien-Hsin

    2014-03-01

    Solid-state order of conjugated polymers is determinative in converting molecular properties into useful optoelectronic performances. The rapid development in donor-acceptor conjugated copolymers not only prompted device performances of polymeric optoelectronics, but also created wide varieties of complicate aromatic structural units, whose role in the solid-state order remains under studied. The roles of two widely used axisymmetrical aromatic units- 5,6-difluorobenzo-2,1,3-thiadiazole, and dithienocyclopentacarbazole will be discussed in this presentation. 2-dimensional X-ray diffraction, electron diffraction and theoretical molecular simulation showed that ordered solid-state structures were reached in copolymers with strong interchain interaction and good backbone linearity. The enhanced interchain interaction was supported by higher melting temperature and dis-aggregation temperature in the solution. High mobility of 0.29 cm2/Vs and power conversion efficiency of 6.82% were reached in copolymers possess ordered solid-state structure with long correlation lengths. This work is supported by the National Science Council and ``ATP'' of the National Chiao Tung University and Ministry of Education, Taiwan.

  2. A Preliminary Analysis of Cometary Dust in the 1st Year of the NEOWISE Restarted Mission

    NASA Astrophysics Data System (ADS)

    Kramer, Emily A.; Bauer, James M.; Fernández, Yanga R.; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph R.; Nugent, Carolyn R.; Sonnett, Sarah; Cutri, Roc; Stevenson, Rachel

    2015-11-01

    As some of the most pristine objects in the Solar System, comets present an opportunity to understand the mechanics and chemistry of the planetary formation era. By studying a large number of comets in different dynamical classes, we can better understand the ensemble properties of the different classes, and begin to characterize the evolution that may have occurred since their formation.In late 2013, the WISE spacecraft was brought out of hibernation, and renamed NEOWISE with a renewed goal to detect and characterize small bodies using its 3.4 and 4.6-micron bands. Survey operations began in December 2013 [1], and the first year of data was publicly released in March 2015 [2]. During the course of the first year of the restarted mission, over 60 comets were serendipitously detected by NEOWISE at heliocentric distances between ~1-7.5 AU, including 3 newly discovered comets. The comets detected were split roughly evenly between short-period and long-period comets, and many displayed extended dust structures. Several of the comets were detected multiple times over the course of the year, and some were also seen during the prime WISE mission. This long baseline allows for an intriguing analysis of long-term cometary behavior.NEOWISE has sampled the behavior of these comet dynamical sub-types over the thermal infrared and near-infrared reflected-light regimes, where effects from different particle size ranges of dust may dominate the morphologies and observed fluxes. We present a preliminary analysis of the cometary dust seen in these data, including dynamical models to constrain the sizes and ages of the dust particles. We discuss how these results compare to those obtained for the comets seen in the 12 and 22-micron WISE prime mission data.Acknowledgments: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science

  3. CO 1st overtone spectra of cool evolved stars: Diagnostics for hydrodynamic atmosphere models

    NASA Astrophysics Data System (ADS)

    Bieging, J. H.; Rieke, M. J.; Rieke, G. H.

    2002-03-01

    We present spectra covering the wavelength range 2.28 to 2.36 mu m at a resolution of Delta lambda = 0.0007 mu m (or R = 3500) for a sample of 24 cool evolved stars. The sample comprises 8 M supergiants, 5 M giants, 3 S stars, 6 carbon stars, and 2 RV Tauri variables. The wavelengths covered include the main parts of the 12C16O v = 2-0 and 3-1 overtone bands, as well as the v = 4-2 and 13CO v = 2-0 bandhead regions. CO lines dominate the spectrum for all the stars observed, and at this resolution most of the observed features can be identified with individual CO R- or P-branch lines or blends. The observed transitions arise from a wide range of energy levels extending from the ground state to E/k > 20 000 K. We looked for correlations between the intensities of various CO absorption line features and other stellar properties, including IR colors and mass loss rates. Two useful CO line features are the v = 2-0 R14 line, and the CO v = 2-0 bandhead. The intensity of the 2-0 bandhead shows a trend with K-[12] color such that the reddest stars (K-[12] > 3 mag) exhibit a wide range in 2-0 bandhead depth, while the least reddened have the deepest 2-0 bandheads, with a small range of variation from star to star. Gas mass loss rates for both the AGB stars and the red supergiants in our sample correlate with the K-[12] color, consistent with other studies. The data imply that stars with dot M_gas < 5x 10-7 Msun y-1 exhibit a much narrower range in the relative strengths of CO 2-0 band features than stars with higher mass loss rates. The range in observed spectral properties implies that there are significant differences in atmospheric structure among the stars in this sample. Figures 4-9, 11-14, 16, 17, 19-21, 23, 24 are only avalaible in electronic form at http://www.edpsciences.org

  4. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    SciTech Connect

    Sathyaseelan, B.; Manigandan, A.; Anbarasu, V.; Sivakumar, K.

    2015-06-24

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers.

  5. Small-x evolution of structure functions in the next-to-leading order

    SciTech Connect

    Giovanni A. Chirilli

    2010-01-01

    The high-energy behavior of amplitudes in gauge theories can be reformulated in terms of the evolution of Wilson-line operators. In the leading order this evolution is governed by the non-linear Balitsky-Kovchegov (BK) equation. In QCD the NLO kernel has both conformal and non-conformal parts. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal N = 4 SYM theory, then we define the "composite dipole operator", and the resulting Mobius invariant kernel for this operator agrees with the forward NLO BFKL calculation.

  6. Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions

    NASA Astrophysics Data System (ADS)

    Nishikawa, Yoshihiko; Hukushima, Koji

    2016-08-01

    Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.

  7. Low amplitude insult project: Structural analysis and prediction of low order reaction

    SciTech Connect

    Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Haberman, K.S.; Bennett, J.G.

    1998-12-31

    The low velocity impact sensitivity of PBX 9501 has been investigated through a series of experiments based on the Steven Test targets and a set of Shear Impact experiments. The authors describe calculations done using DYNA2D, SPRONTO and DYNA3D to support these, and other, low amplitude insult experiments. The calculations allow them to study pressure and strain rate variables, to investigate structural aspects of the experiment, and to predict velocities required for reaction. Structural analyses have played an active role in this project beginning with the original target design and continuing through analyses of the experimental results. Alternative designs and various ideas for active instrumentation were examined as part of the experiment evolution process. Predictions of reaction are used to guide these design studies, even though the authors do not yet have enough experimental data to fully calibrate any of the models.

  8. Subtle noise structures as control signals in high-order biocognition

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2016-02-01

    A dynamic stochastic structural property related to noise 'color' may act as a control signal for large-scale cognitive biological phenomena that recruit simpler cognitive modules into temporary, dynamic working coalitions. Subtle noise characteristics, in addition to magnitude measures, can thus convey essential system control information that evolutionary process may have exapted as a tool for the regulation of biological phenomena, supplementing molecular signals.

  9. Method and apparatus for forming ceramic oxide superconductors with ordered structure

    DOEpatents

    Nellis, W.J.; Maple, M.B.

    1987-12-23

    Disclosed are products and processes for making improved magnetic and superconducting articles from anisotropic starting materials by initially reducing the starting materials into a powdered form composed of particles of uniform directional crystal structures, forming a directionally uniform aggregate of particles by exposing the aggregate to a magnetic field of desired magnitude and direction, and then compacting the aggregate into an integral solid body. 2 Figs.

  10. Strain-effect for controlled growth mode and well-ordered structure of quaterrylene thin films

    NASA Astrophysics Data System (ADS)

    Hayakawa, Ryoma; Turak, Ayse; Zhang, XueNa; Hiroshiba, Nobuya; Dosch, Helmut; Chikyow, Toyohiro; Wakayama, Yutaka

    2010-07-01

    We investigated the evolution of quaterrylene thin films on SiO2 and on an octadecyltrichlorosilane self-assembled monolayer (OTS-SAM) to examine the impact of film strains on the growth processes and evolving structure. Surface modification by SAMs allowed tailoring of the growth process from a Stranski-Krastanov (SK) mode (layer-plus-island) on the SiO2 surface to a Frank-van der Merwe mode (layer-by-layer) on the OTS surface. Detailed structural analysis by x-ray diffraction techniques confirmed that the SK mode was driven by lattice strain in the initial wetting layers on the SiO2 surface. On the other hand, strain-free wetting layers were already formed at the beginning of growth on the OTS surface, thereby suppressing three-dimensional island formation. Moreover, the films on the SiO2 surface were found to incorporate high microstrain induced by crystal defects such as dislocations and a mosaic structure. In contrast, few crystal defects were present in the films on OTS surface, demonstrating that OTS treatment enables marked improvement of the molecular alignment. These results clearly indicate that the lattice strain induced by the molecular-substrate interaction is essential for controlling the overall growth process.

  11. Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings

    NASA Astrophysics Data System (ADS)

    Hanifpour, M.; Francois, N.; Robins, V.; Kingston, A.; Vaez Allaei, S. M.; Saadatfar, M.

    2015-06-01

    Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕBernal≈0.64 . We study packings of monosized hard spheres whose density spans over a wide range (0.59 <ϕ <0.72 ) . These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕBernal≈0.64 and ϕc≈0.68 . These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.

  12. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  13. Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings.

    PubMed

    Hanifpour, M; Francois, N; Robins, V; Kingston, A; Allaei, S M Vaez; Saadatfar, M

    2015-06-01

    Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕ(Bernal)≈0.64. We study packings of monosized hard spheres whose density spans over a wide range (0.59<ϕ<0.72). These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕ(Bernal)≈0.64 and ϕ(c)≈0.68. These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable. PMID:26172700

  14. Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion

    SciTech Connect

    Barabash, Sergey V.; Blum, Volker; Zunger, Alex; Mueller, Stefan

    2006-07-15

    We describe an iterative procedure which yields an accurate cluster expansion for Au-Pd using only a limited number of ab initio formation enthalpies. Our procedure addresses two problems: (a) given the local-density-approximation (LDA) formation energies for a fixed set of structures, it finds the pair and many-body cluster interactions best able to predict the formation energies of new structures, and (b) given such pair and many-body interactions, it augments the LDA set of 'input structures' by identifying additional structures that carry most information not yet included in the 'input'. Neither step can be done by intuitive selection. Using methods including genetic algorithm and statistical analysis to iteratively solve these problems, we build a cluster expansion able to predict the formation enthalpy of an arbitrary fcc lattice configuration with precision comparable to that of ab initio calculations themselves. We also study possible competing non-fcc structures of Au-Pd, using the results of a 'data mining' study. We then address the unresolved problem of bulk ordering in Au-Pd. Experimentally, the phase diagram of Au-Pd shows only a disordered solid solution. Even though the mixing enthalpy is negative, implying ordering, no ordered bulk phases have been detected. Thin film growth shows L1{sub 2}-ordered structures with composition Au{sub 3}Pd and AuPd{sub 3} and L1{sub 0} structure with composition AuPd. We find that (i) all the ground states of Au-Pd are fcc structures; (ii) the low-T ordered states of bulk Au-Pd are different from those observed experimentally in thin films; specifically, the ordered bulk Au{sub 3}Pd is stable in D0{sub 23} structure and and AuPd in chalcopyritelike Au{sub 2}Pd{sub 2} (201) superlattice structure, whereas thin films are seen in the L1{sub 2} and L1{sub 0} structures; (iii) AuPd{sub 3} L1{sub 2} is stable and does not phase separate, contrary to the suggestions of an earlier investigation; (iv) at compositions around

  15. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity.

    PubMed

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen.

  16. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity.

    PubMed

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  17. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    PubMed Central

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  18. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity

    NASA Astrophysics Data System (ADS)

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-09-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen.

  19. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures.

    PubMed

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage. PMID:26675481

  20. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  1. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures.

    PubMed

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  2. Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure

    SciTech Connect

    Petrovic, Marin; Sadowski, Jerzy T.; Siber, Antonio; Kralj, Marko

    2015-07-17

    The large-scale production of graphene monolayer greatly relies on epitaxial samples which often display stress-relaxation features in the form of wrinkles. Wrinkles of graphene on Ir(111) are found to exhibit a fairly well ordered interconnecting network which is characterized by low-energy electron microscopy (LEEM). The high degree of quasi-hexagonal network arrangement for the graphene aligned to the underlying substrate can be well described as a (non-Poissonian) Voronoi partition of a plane. The results obtained strongly suggest that the wrinkle network is frustrated at low temperatures, retaining the order inherited from elevated temperatures when the wrinkles interconnect in junctions which most often join three wrinkles. Such frustration favors the formation of multi-lobed wrinkles which are found in scanning tunneling microscopy (STM) measurements. The existence of multiple lobes is explained within a model accounting for the interplay of the van der Waals attraction between graphene and iridium and bending energy of the wrinkle. The presented study provides new insights into wrinkling of epitaxial graphene and can be exploited to further expedite its application.

  3. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange

    SciTech Connect

    Weidman, Mark C.; Yager, Kevin G.; Tisdale, William A.

    2014-12-12

    Controlling the interparticle spacing in quantum dot (QD) thin films is the most readily accessible way to control transport rates between neighboring QDs and a critical component of device optimization. Here, we use X-ray scattering measurements to accurately measure the interparticle spacing in films of highly monodisperse lead sulfide (PbS) QDs that have undergone a variety of device-relevant ligand exchanges. We tabulate these values for use in simulations and data analysis. We find that monothiol and dithiol ligand species typically result in interparticle spacing values that are equal to the length of a single monothiol or dithiol ligand. Additionally, we find that spin-coating a thick film of QDs followed by a long-duration ligand exchange results in a more complete ligand exchange than spin-coating many thin layers with short-duration ligand exchanges in between. The former method also preserves a remarkable degree of the long-range ordering that was present in the film prior to ligand exchange. These results shed light on ways to produce highly-ordered QD solids with compact and functional ligands, which could lead to enhanced interdot coupling and transport phenomena.

  4. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange

    DOE PAGES

    Weidman, Mark C.; Yager, Kevin G.; Tisdale, William A.

    2014-12-12

    Controlling the interparticle spacing in quantum dot (QD) thin films is the most readily accessible way to control transport rates between neighboring QDs and a critical component of device optimization. Here, we use X-ray scattering measurements to accurately measure the interparticle spacing in films of highly monodisperse lead sulfide (PbS) QDs that have undergone a variety of device-relevant ligand exchanges. We tabulate these values for use in simulations and data analysis. We find that monothiol and dithiol ligand species typically result in interparticle spacing values that are equal to the length of a single monothiol or dithiol ligand. Additionally, wemore » find that spin-coating a thick film of QDs followed by a long-duration ligand exchange results in a more complete ligand exchange than spin-coating many thin layers with short-duration ligand exchanges in between. The former method also preserves a remarkable degree of the long-range ordering that was present in the film prior to ligand exchange. These results shed light on ways to produce highly-ordered QD solids with compact and functional ligands, which could lead to enhanced interdot coupling and transport phenomena.« less

  5. Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure

    DOE PAGES

    Petrovic, Marin; Sadowski, Jerzy T.; Siber, Antonio; Kralj, Marko

    2015-07-17

    The large-scale production of graphene monolayer greatly relies on epitaxial samples which often display stress-relaxation features in the form of wrinkles. Wrinkles of graphene on Ir(111) are found to exhibit a fairly well ordered interconnecting network which is characterized by low-energy electron microscopy (LEEM). The high degree of quasi-hexagonal network arrangement for the graphene aligned to the underlying substrate can be well described as a (non-Poissonian) Voronoi partition of a plane. The results obtained strongly suggest that the wrinkle network is frustrated at low temperatures, retaining the order inherited from elevated temperatures when the wrinkles interconnect in junctions which mostmore » often join three wrinkles. Such frustration favors the formation of multi-lobed wrinkles which are found in scanning tunneling microscopy (STM) measurements. The existence of multiple lobes is explained within a model accounting for the interplay of the van der Waals attraction between graphene and iridium and bending energy of the wrinkle. The presented study provides new insights into wrinkling of epitaxial graphene and can be exploited to further expedite its application.« less

  6. A Study of Fixed-Order Mixed Norm Designs for a Benchmark Problem in Structural Control

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Calise, Anthony J.; Hsu, C. C.

    1998-01-01

    This study investigates the use of H2, p-synthesis, and mixed H2/mu methods to construct full-order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodelled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full-order compensators that are robust to both unmodelled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H, design performance levels while providing the same levels of robust stability as the u designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H, designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.

  7. Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Reimold, W. U.

    2004-09-01

    Breccias in the crater floor of large impact structures are pseudotachylites (sensu largo), authigenic monomict and polymict clastic-matrix breccias, so-called footwall breccias, and impact melt breccias. Pseudotachylite bodies in the center of large impact structures (e.g., Vredefort Dome, South Africa) appear to have a random distribution and orientation, but most dip steeply or vertically. Large bodies of pseudotachylite in the more distal sectors of the >200-km-diameter Sudbury Structure have been interpreted as ring and terrace collapse features. In the Vredefort Dome, networks of randomly distributed pseudotachylite veins accompany large ("mother lode") pseudotachylite dikes. In general, pseudotachylites in the floors of central parts of impact craters may form through explosive transfer of thermal shock energy, in a process that could be termed "flash replacement melting", whereas pseudotachylites at large distances from the centers of large impact structure are believed to have formed through friction leading to partial or complete melting, similar to the formation of tectonic pseudotachylites. In smaller structures (e.g., Ries and Slate Islands), clastic-matrix breccias instead of pseudotachylites occur as the most common breccias in the crater floors. They have a chaotic distribution pattern. Their dips are commonly also steep to vertical. Melt breccia dikes in the target rocks of the crater floor are associated with melt sheets that fill the lower part of the excavation cavity. At Vredefort, erosion has removed the coherent melt sheet, but melt breccia dikes (Vredefort Granophyre) in the crater floor are preserved. They are characterized by a remarkably homogeneous chemical composition and are believed to represent the initial, undifferentiated impact melt. Near the Vredefort collar, the Granophyre forms more or less concentric dikes. In the more central parts of the Dome, their orientation is more random, but, in places, may be controlled by the Archean

  8. The Local and Surface Structure of Ordered Mesoporous Carbons from Nitrogen Sorption, NEXAFS and Synchrotron Radiation Studies

    SciTech Connect

    Smith,M.; Lobo, R.

    2006-01-01

    Ordered mesoporous carbon materials were prepared by pyrolysis of sucrose and furfuryl alcohol templated in the ordered mesoporous silicate SBA-15. The structure of SBA-15 template was modified by changing the calcination temperature, we investigate the structural transformation of the silica template with calcination temperature using X-ray diffraction and nitrogen adsorption isotherms. SBA-15 calcined to 300 C has a total pore volume of 1.13 cm{sup 3}/g, a BET surface area of 1100 m2/g, and a pore spacing of 114 Angstroms; when calcined to 90 C the corresponding values are 0.40 cm{sup 3}/g, 330 m{sup 2}/g and 92.5 Angstroms. Despite marked differences in SBA-15 template structure, the pore size distribution of the ordered mesoporous carbons is more dependent on the choice of precursor than on SBA-15 pore geometry. The BET surface areas of ordered mesoporous carbons made from aqueous sucrose solutions (850-1050 m2/g) are independent of template geometry; while surface area of materials made from furfuryl alcohol (530-1190 m2/g) are a reflection of template geometry. Near-edge X-ray fine-structure (NEXAFS) spectroscopy reveal that the template-carbon interaction during the pyrolysis of sucrose-based carbons exerts a strong influence on the surface structure of final product, and that such effects are largely absent in the furfuryl alcohol-based materials. The pair-distribution function (PDF) calculated from high-energy synchrotron scattering measurements corroborates the NEXAFS results, yet also show that the template effect on the bulk carbon is minimal. Template compression acting in conjunction with hydrothermally induced effects exerted on the carbon during pyrolysis drives the resulting carbon to a more graphitic state.

  9. Order-disorder phase transition in the antiperovskite-type structure of synthetic kogarkoite, Na3SO4F

    NASA Astrophysics Data System (ADS)

    Avdontceva, Margarita S.; Zolotarev, Andrey A.; Krivovichev, Sergey V.

    2015-11-01

    High-temperature phase transition of synthetic kogarkoite, Na3SO4F, has been studied by high-temperature X-ray powder and single-crystal diffraction. The temperature of the phase transition can be estimated as 112.5±12.5 °C. The low-temperature phase, α-Na3SO4F, at 293 K, is monoclinic, P21/m, a=18.065(3), b=6.958(1), c=11.446(1) Å, β=107.711(1)°, Z=12. The structure contains thirteen symmetrically independent Na sites with coordination numbers varying from 6 to 8, and six independent S sites. The high-temperature β-phase at 423 K is rhombohedral, R-3m, a=6.94(1), c=24.58(4) Å, Z=9. The crystal structure of both polymorphs of Na3SO4F can be described as a 9R antiperovskite polytype based upon triplets of face-sharing [FNa6] octahedra linked into a three-dimensional framework by sharing corners. In the α-modification, the SO4 tetrahedra are completely ordered and located in the framework cavities. In the β-modification, there are only two symmetrically independent Na atoms in the structure. The main difference between the structures of the α- and β-phases is the degree of ordering of the SO4 tetrahedra: in the α-modification, they are completely ordered, whereas, in the β-modification, the complete disorder is observed, which is manifested in a number of low-occupied O sites around fully occupied S sites. The phase transition is therefore has an order-disorder character and is associated with the decrease of structural complexity measured as an information content per unit cell [577.528 bits for the low- (α) and 154.830 bits for the high- (β) temperature modifications].

  10. Measurements of structural and chemical order in Zr80Pt20 and Zr77Rh23 liquids

    DOE PAGES

    Johnson, M. L.; Blodgett, M. E.; Lokshin, K. A.; Mauro, N. A.; Neuefeind, J.; Pueblo, C.; Quirinale, D. G.; Vogt, A. J.; Egami, T.; Goldman, A. I.; et al

    2016-02-03

    In this study, the short-range order (SRO) and medium-range order of electrostatically levitated Zr80Pt20 and Zr77Rh23 liquids are presented founded on a combination of high-energy x-ray diffraction and time-of-flight neutron diffraction studies. The atomic structures of the Zr80Pt20 liquids were determined as a function of temperature from constrained reverse Monte Carlo simulations using x-ray and elastic neutron scattering measurements and two partial pair-distribution functions obtained from molecular dynamics (MD) simulations.

  11. dc measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter

    NASA Astrophysics Data System (ADS)

    Crankshaw, D. S.; Segall, K.; Nakada, D.; Orlando, T. P.; Levitov, L. S.; Lloyd, S.; Valenzuela, S. O.; Markovic, N.; Tinkham, M.; Berggren, K. K.

    2004-04-01

    dc measurements are made in a superconducting, persistent current qubit structure with a time-ordered meter. The persistent-current qubit has a double-well potential, with the two minima corresponding to magnetization states of opposite sign. Macroscopic resonant tunneling between the two wells is observed at values of energy bias that correspond to the positions of the calculated quantum levels. The magnetometer, a superconducting quantum interference device, detects the state of the qubit in a time-ordered fashion, measuring one state before the other. This results in a different meter output depending on the initial state, providing different signatures of the energy levels for each tunneling direction.

  12. Icosahedral Order, Frustration, and the Glass Transition: Evidence from Time-Dependent Nucleation and Supercooled Liquid Structure Studies

    SciTech Connect

    Shen, Y.T.; Kim, T.H.; Gangopadhyay, A.K.; Kelton, K.F.

    2009-06-05

    One explanation for the glass transition is a geometrical frustration owing to the development of non-space-filling short-range order (icosahedral, tetrahedral). However, experimental demonstrations of this are lacking. Here, the first quantitative measurements of the time-dependent nucleation rate in a Zr59Ti3Cu20Ni8Al10 bulk metallic glass are combined with the first measurements of the evolution of the supercooled liquid structure to near the glass transition temperature to provide strong support for an icosahedral-order-based frustration model for the glass transition in Zr-based glasses.

  13. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    NASA Astrophysics Data System (ADS)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  14. Stability of linear systems in second-order form based on structure preserving similarity transformations

    SciTech Connect

    Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard

    2015-10-31

    This paper deals with two stability aspects of linear systems of the form I ¨ x +B˙ x +Cx = 0 given by the triple (I;B;C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices of the transformation parameters into a new system (I;B1;C1) with a symmetrizable matrix C1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.

  15. Alkali aluminosilicate melts and glasses: structuring at the middle range order of amorphous matter

    NASA Astrophysics Data System (ADS)

    Le Losq, C.; neuville, D. R.

    2012-12-01

    Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviours. It is well known that several parameters impact strongly these properties, such as for instance the temperature, pressure, chemical composition and volatiles concentration, finally influencing eruptive behaviour of volcanoes. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts, like for instance the Vesuvius (Italy) or Erebus (Antartica) magmas. In an oncoming paper in Chemical Geology (Le Losq and Neuville, 2012), we have communicated results of the study of mixing Na-K in tectosilicate melts containing a high concentration of silica (≥75mol%). In the present communication, we will enlarge this first point of view to tectosilicate melts presenting a lower silica concentration. We will first present our viscosity data, and then the Adam and Gibbs theory that allows theoretically modelling Na-K mixing in aluminosilicate melts by using the so-called "mixed alkali effect". On the basis of the rheological results, the Na-K mixing cannot be explained with the ideal "mixed alkali effect", which involves random exchange of Na-K cationic pairs. To go further and as rheological properties are directly linked with structural properties, we will present our first results obtained by Raman and NMR spectroscopy. These last ones provide important structural pieces of information on the polymerization state of glasses and melts, and also on the environment of tetrahedrally coordinated cations. Rheological and structural results all highlight that Na and K are not randomly distributed in aluminosilicate glasses and melts networks. Na melts present a network with some channels and a non-random distribution of Al and Si. K networks are different. They also present a non-random distribution of Al and Si, but in two sub

  16. Structural ordering and glass forming of soft spherical particles with harmonic repulsions

    SciTech Connect

    Sun, Bin; Sun, Zhiwei; Ouyang, Wenze Xu, Shenghua

    2014-04-07

    We carry out dissipative particle dynamics simulations to investigate the dynamic process of phase transformation in the system with harmonic repulsion particles. Just below the melting point, the system undergoes liquid state, face-centered cubic crystallization, body-centered cubic crystallization, and reentrant melting phase transition upon compression, which is in good agreement with the phase diagram constructed previously via thermodynamic integration. However, when the temperature is decreased sufficiently, the system is trapped into an amorphous and frustrated glass state in the region of intermediate density, where the solid phase and crystal structure should be thermodynamically most stable.

  17. The structure of the second-order non-Born-Oppenheimer density matriz D2:

    NASA Astrophysics Data System (ADS)

    Ludena, Eduardo; Iza, Peter; Aray, Yosslen; Cornejo, Mauricio; Zambrano, Dik

    Properties of the non-Born-Oppenheimer 2-matrix are examined. Using a coordinate system formed by internal translationally invariant plus the total center-of-mass coordinates it is shown that regardless of the point of reference selected, the operator for the reduced second order density matrix, 2-RDM, solely depends upon the translationally invariant internal coordinates. We apply this result to examine the nature of the 2-RDM extracted from the exact analytical solutions for model non-Born-Oppenheimer four-particle systems of the Coulomb-Hooke and Moshinsky types. We obtain for both these models explicit closed-form analytic expressions for the electron and nuclear 2-RDM. An explicit expression is also obtained for the electron-nuclear 2-RDM in the Moshinsky case, which shows coupling between the electron and nuclear coordinates. EVL and YA acknowledge support of SENESCYT's Prometheus Program.

  18. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  19. Structure Evolution of Ordered Mesoporous Carbons Induced by Water Content of Mixed Solvents Water/Ethanol.

    PubMed

    Li, Peng; Liang, Shujun; Li, Zhenzhong; Zhai, Yan; Song, Yan

    2016-12-01

    In this work, mesostructure evolution of ordered mesoporous carbons (OMCs) from the 2-D hexagonal (space group p6mm) to the discontinuous cubic [Formula: see text], then towards the face-centered cubic lattice [Formula: see text], and finally, to the simple cubic Pm3n is achieved by simply adjusting the cosolvent water content of the mixed solvents water/ethanol in the presence of a reverse nonionic triblock copolymer and low molecular resin by evaporation-induced self-assembly method. Experimental results demonstrate that both the cosolvent and the reverse triblock copolymer play a key role in the mesophase transitions of OMCs. Furthermore, the OMCs with Pm3n symmetry are reported for the first time. Finally, the mechanism of mesostructure transition was discussed and proposed. PMID:27518232

  20. Structure Evolution of Ordered Mesoporous Carbons Induced by Water Content of Mixed Solvents Water/Ethanol

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liang, Shujun; Li, Zhenzhong; Zhai, Yan; Song, Yan

    2016-08-01

    In this work, mesostructure evolution of ordered mesoporous carbons (OMCs) from the 2-D hexagonal (space group p6mm) to the discontinuous cubic Fdoverline{3}m , then towards the face-centered cubic lattice Fmoverline{3}m , and finally, to the simple cubic Pm3n is achieved by simply adjusting the cosolvent water content of the mixed solvents water/ethanol in the presence of a reverse nonionic triblock copolymer and low molecular resin by evaporation-induced self-assembly method. Experimental results demonstrate that both the cosolvent and the reverse triblock copolymer play a key role in the mesophase transitions of OMCs. Furthermore, the OMCs with Pm3n symmetry are reported for the first time. Finally, the mechanism of mesostructure transition was discussed and proposed.