Science.gov

Sample records for 1st plasma experiment

  1. Heavy Ion Fusion Science Virtual National Laboratory1st Quarter FY08 Milestone Report: Report Initial Work on Developing Plasma Modeling Capability in WARP for NDCX ExperimentsReport Initial work on developing Plasma Modeling Capability in WARP for NDCX Experiments

    SciTech Connect

    Friedman, A.; Cohen, R.H.; Grote, D.P.; Vay, J.-L.

    2007-12-10

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has developed and implemented an initial beam-in-plasma implicit modeling capability in Warp; has carried out tests validating the behavior of the models employed; has compared the results of electrostatic and electromagnetic models when applied to beam expansion in an NDCX-I relevant regime; has compared Warp and LSP results on a problem relevant to NDCX-I; has modeled wave excitation by a rigid beam propagating through plasma; and has implemented and begun testing a more advanced implicit method that correctly captures electron drift motion even when timesteps too large to resolve the electron gyro-period are employed. The HIFS-VNL is well on its way toward having a state-of-the-art source-to-target simulation capability that will enable more effective support of ongoing experiments in the NDCX series and allow more confident planning for future ones.

  2. Providing simulation experiences for large cohorts of 1st year nursing students: evaluating quality and impact.

    PubMed

    Rochester, Suzanne; Kelly, Michelle; Disler, Rebecca; White, Haidee; Forber, Jan; Matiuk, Sonia

    2012-01-01

    To provide each student within a large cohort the opportunity to participate in a small group simulation that meets recognised quality indicators is a challenge for Bachelor of Nursing programmes in Australia. This paper, as part of a larger longitudinal study, describes one approach used to manage a simulation for 375 1st year nursing students and to report on the quality of the experience from the student's perspective. To ensure quality was maintained within the large cohort, aspects of the simulation were assessed against the following indicators: alignment with curriculum pedagogy and goals; preparation of students and staff; fidelity; and debriefing. Data obtained from a student focus group were analysed in the context of the quality indicators. The following themes emerged from the data: knowing what to expect; assuming roles for the simulation; authenticity and thinking on your feet; feeling the RN role; and, preparation for clinical practice. This paper demonstrates it is possible to provide students in large cohorts with active participatory roles in simulations whilst maintaining quality indicators.

  3. Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event.

    PubMed

    Benna, Carlo; Mancuso, Salvatore; Giordano, Silvio; Gioannini, Lorenzo

    2013-05-01

    The analysis of the spectral properties and dynamic evolution of a CME/shock event observed on November 1st 2003 in white-light by the LASCO coronagraph and in the ultraviolet by the UVCS instrument operating aboard SOHO, has been performed to compute the properties of some important plasma parameters in the middle corona below about 2R ⊙. Simultaneous observations obtained with the MLSO/Mk4 white-light coronagraph, providing both the early evolution of the CME expansion in the corona and the pre-shock electron density profile along the CME front, were also used to study this event. By combining the above information with the analysis of the metric type II radio emission detected by ground-based radio spectrographs, we finally derive estimates of the values of the local Alfvén speed and magnetic field strength in the solar corona.

  4. [Plasma hormone concentrations in induced abortion with local prostaglandin administration in the 1st trimester].

    PubMed

    Rath, W; König, A; Ulbrich, R; Hilgers, R; Kuske, R; Kuhn, W

    1983-01-01

    Abortion was performed by curettage on 71 women with pregnancies between the 7th and the 13th week of gestation seven to eight hours after intracervical application of a tylose gel containing 3mg prostaglandin F2 alpha. Prior to the application of the prostaglandin and immediately before the surgical intervention a sonographic examination for determining the vitality of the pregnancy was carried out.--Plasma progesteron, estradiol and HPL levels were determined radioimmunologically prior to the application of prostaglandin, at four-hour intervals on the day of intervention, and 24, 48 and 72 hours after the intervention. In 22 women a complete or an incomplete abortion occurred; in two cases a blighted ovum was observed; 47 pregnancies, according to sonographic examination, remained intact until curettage. After seven to eight hours duration of the effect of the prostaglandin gel, progesterone levels were found to be reduced to 60.5 per cent and 17-beta-estradiol to 31.4 per cent of the initial values, whereas the HPL values fell below the specificity of the testing procedure (12.5 ng/ml). Comparative investigations of the pregnancies which, according to sonographic findings, remained intact until curettage and those which were aborted after the application of prostaglandin did not, in spite of low plasma progesterone and estradiol levels in the abortive group, reveal any statistically significant differences. The abortive effect--even with local application--of the prostaglandins was confirmed. Conclusions regarding the effective mechanism of the prostaglandins upon the fetoplacental unit and the function of the corpus luteum remain subject to speculation.

  5. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    NASA Astrophysics Data System (ADS)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  6. PREFACE: 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuto; Nishikawa, Koichiro

    2011-07-01

    "Neutrino physics is largely an art of learning a great deal by observing nothing" (Haim Harari, 1988) was our general understanding of the field for the ~25 years previous. A new neutrino era was abruptly brought from outer space by a burst of SN1987A neutrinos. The detection of neutrinos from SN1987A gave a new impetus to neutrino research. As we know, new discoveries of neutrinos have since been made. Neutrinos were no longer mysterious, but attained particle citizenship. Giant liquid argon charge imaging experiments have the prospect of opening the door to the second new era in neutrino physics. The coming era would provoke not evolution, but revolution in particle physics. However, paving the way for the new era requires not evolutionary, but revolutionary detector developments. I hope this workshop will be conducive to reaping a rich harvest from its activities. In 1993, Professor Carlo Rubbia presented "The Renaissance of Experimental Neutrino Physics" in which he discussed various possibilities of shooting neutrino beams from CERN towards Gran Sasso, Super-Kamiokande at Kamioka and DUMAND in Hawaii. Now KEK hopes to shoot neutrino beams from J-PARC to Kamioka, Okinoshima, Korea and Gran Sasso. Signature Atsuto SuzukiDirector General, KEK J-PARC has moved into a new phase of operation. The commissioning of the accelerator complex and experiment facilities has begun, and it is urgent to attain initial design performance as soon as possible. For the immediate future, KEK has a 5 year plan. The plan includes the upgrade of the J-PARC accelerator to a multi-Mega-Watt facility, and detector R&Ds to form the basis for a next step in the neutrino experiment. One of the main issues of the future neutrino experiment will be the search for CP violation in neutrino oscillation, which demands much more precision than studying neutrino oscillation or non-zero theta13. This naturally requires a very massive detector with higher precision than presently available

  7. Intraoperative changes in blood pressure, heart rate, plasma vasopressin, and urinary noradrenalin during elective ovariohysterectomy in dogs: repeatability at removal of the 1st and 2nd ovary.

    PubMed

    Höglund, Odd V; Hagman, Ragnvi; Olsson, Kerstin; Olsson, Ulf; Lagerstedt, Anne-Sofie

    2014-10-01

    To investigate the physiologic reactions after removal of 1st ovary and whether this is repeated during removal of the 2nd ovary in elective ovariohysterectomy. Prospective study. Dogs (n = 10). Dogs were premedicated with acepromazine, carprofen, and methadone and anesthetized with propofol and isoflurane. Blood pressure, heart rate, and end-tidal isoflurane concentration were measured every minute. The effects of various events during surgery on physiologic variables were analyzed using mixed linear models. Blood and urine samples were collected before anesthesia, before incision, before and after removal of ovaries with a 15 minute pause between ovary removal, and after abdominal closure. Plasma vasopressin and urinary noradrenalin and creatinine concentrations were analyzed. The magnitude of blood pressure increase at removal of the 1st ovary was greater than for the 2nd ovary because of an elevation in baseline. Similarly, the heart rate increased at the removal of the 1st ovary but not at removal of the 2nd ovary. Plasma vasopressin concentration increased at removal of both ovaries. Urinary noradrenalin/creatinine ratio increased at anesthesia, removal of both ovaries, and was elevated at closure of the abdomen. End-tidal isoflurane concentration did not change. Blood pressure and vasopressin concentrations changed in parallel using z-scores for comparison. Peak values for blood pressure, heart rate, plasma vasopressin concentration, and urinary noradrenalin/creatinine ratio did not differ between removals of the ovaries. Relative changes differed between repeated noxious stimuli, which should be considered in evaluation of methods at ovary removal. © Copyright 2014 by The American College of Veterinary Surgeons.

  8. Early psychosis intervention outpatient service of the 1st Psychiatric University Clinic in Athens: 3 Years of experience.

    PubMed

    Kollias, Constantinos; Xenaki, Lida-Alkisti; Dimitrakopoulos, Stefanos; Kosteletos, Ioannis; Kontaxakis, Vassilis; Stefanis, Nikos; Papageorgiou, Charalampos

    2016-11-09

    To present the 3-year experience of the early intervention in psychosis (EIP) service implementation of the 1st Psychiatric University Clinic in Athens. An overview of: (1) the purpose of our service, (2) the referral network, (3) the selection criteria, (4) the diagnostic procedures, (5) the therapeutic interventions and (6) the research activities. The service was established in 2012 and developed gradually aiming to provide information, early detection, treatment and support to people aged 15 to 40 years with psychotic manifestations, who are either at increased risk of developing psychosis (at-risk mental state [ARMS]) or with first episode psychosis (FEP). In order to assess individuals with ARMS, we used the comprehensive assessment of at-risk mental states interview and the Social and Occupational Functioning Assessment Scale The duration of untreated psychosis was estimated by using the Nottingham Onset Schedule. So far we have had 65 referrals, of which 26 were ARMS and 17 FEP. Based on the individual needs, they were offered psychotherapeutic and/or pharmacological treatment. After 3 years, the rate of transition to psychosis was 19.2% and the rate of psychosis relapse was 11.7%. The implementation of our service has had positive results, enabling young people with early psychosis to receive prompt and effective care. The rates of transition to psychosis are the first to be published from a Greek EIP service. Further development of our referral network and inter-hospital collaboration will allow us to address the needs of a wider part of the population. © 2016 John Wiley & Sons Australia, Ltd.

  9. Creating Research-Rich Learning Experiences and Quantitative Skills in a 1st Year Earth Systems Course

    NASA Astrophysics Data System (ADS)

    King, P. L.; Eggins, S.; Jones, S.

    2014-12-01

    We are creating a 1st year Earth Systems course at the Australian National University that is built around research-rich learning experiences and quantitative skills. The course has top students including ≤20% indigenous/foreign students; nonetheless, students' backgrounds in math and science vary considerably posing challenges for learning. We are addressing this issue and aiming to improve knowledge retention and deep learning by changing our teaching approach. In 2013-2014, we modified the weekly course structure to a 1hr lecture; a 2hr workshop with hands-on activities; a 2hr lab; an assessment piece covering all face-to-face activities; and a 1hr tutorial. Our new approach was aimed at: 1) building student confidence with data analysis and quantitative skills through increasingly difficult tasks in science, math, physics, chemistry, climate science and biology; 2) creating effective learning groups using name tags and a classroom with 8-person tiered tables; 3) requiring students to apply new knowledge to new situations in group activities, two 1-day field trips and assessment items; 4) using pre-lab and pre-workshop exercises to promote prior engagement with key concepts; 5) adding open-ended experiments to foster structured 'scientific play' or enquiry and creativity; and 6) aligning the assessment with the learning outcomes and ensuring that it contains authentic and challenging southern hemisphere problems. Students were asked to design their own ocean current experiment in the lab and we were astounded by their ingenuity: they simulated the ocean currents off Antarctica; varied water density to verify an equation; and examined the effect of wind and seafloor topography on currents. To evaluate changes in student learning, we conducted surveys in 2013 and 2014. In 2014, we found higher levels of student engagement with the course: >~80% attendance rates and >~70% satisfaction (20% neutral). The 2014 cohort felt that they were more competent in writing

  10. Experiments with nonneutral plasmas

    SciTech Connect

    O’Neil, T. M.

    2016-03-25

    Selected experiments with nonneutral plasmas are discussed. These include the laser cooling of a pure ion plasma to a crystalline state, a measurement of the Salpeter enhancement factor for fusion in a strongly correlated plasma and the measurement of thermally excited plasma waves. Also, discussed are experiments that demonstrate Landau damping, trapping and plasma wave echoes in the 2D ExB drift flow of a pure electron plasma, which is isomorphic to the 2D ideal flow (incompressible and inviscid flow) of a neutral fluid.

  11. [1st experiences with the use of the new radio-protective shield in routine dental radiodiagnosis].

    PubMed

    Wiltschke, F; Taschner, P

    1977-04-01

    The authors report of practical experience with a radioprotective shield. This kind of radiohygiene is recommended for routine stomatological radiodiagnosis by the State Board of Nuclear Safety and Radiological Protection of the GDR.

  12. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  13. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  14. Plasma accelerator experiments in Yugoslavia

    NASA Astrophysics Data System (ADS)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  15. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  16. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  17. Screening for colorectal neoplasia with CT colonography: initial experience from the 1st year of coverage by third-party payers.

    PubMed

    Pickhardt, Perry J; Taylor, Andrew J; Kim, David H; Reichelderfer, Mark; Gopal, Deepak V; Pfau, Patrick R

    2006-11-01

    To evaluate our experience in the 1st year of computed tomographic (CT) colonography screening since the initiation of local third-party payer coverage. This HIPAA-compliant study was approved by the institutional review board, and informed consent was waived. Over a 1-year period that ended on April 27, 2005, 1110 consecutive adults (585 women, 525 men; mean age, 58.1 years) underwent primary CT colonography screening. More than 99% were covered by managed care agreements. CT colonographic interpretation was performed with primary three-dimensional polyp detection, and the final results were issued within 2 hours. Patients with large (> or =10-mm) polyps were referred for same-day optical colonoscopy, and patients with medium-sized (6-9-mm) lesions had the option of immediate optical colonoscopy or short-term CT colonography surveillance. Large colorectal polyps were identified at CT colonography in 43 (3.9%) of 1110 patients. Medium-sized lesions were identified in 77 (6.9%) patients, 31 (40%) of whom chose optical colonoscopy and 46 (60%) of whom chose CT colonography surveillance. Concordant lesions were identified in 65 of 71 patients who underwent subsequent optical colonoscopy (positive predictive value, 91.5%). Sixty-one (86%) of 71 optical colonoscopic procedures were performed on the same day as CT colonography, thereby avoiding the need for repeat bowel preparation. The actual endoscopic referral rate for positive findings at CT colonography was 6.4% (71 of 1110 patients). The demand for CT colonography screening from primary care physicians and their patients increased throughout the study period. As a primary colorectal screening tool, CT colonography covered by third-party payers has an acceptably low endoscopic referral rate and a high concordance of positive findings at optical colonoscopy.

  18. The Impact of Gender-Fair versus Gender-Stereotyped Basal Readers on 1st-Grade Children's Gender Stereotypes: A Natural Experiment

    ERIC Educational Resources Information Center

    Karniol, Rachel; Gal-Disegni, Michal

    2009-01-01

    Israeli 1st-grade children in two different schools in the same neighborhood who were using either a gender-stereotyped or a gender-fair basal reader were asked to judge for a series of female-stereotyped, male-stereotyped, and gender-neutral activities whether they were characteristic of females, of males, or of both. Children using the…

  19. Plasma Sterilization Experiments

    DTIC Science & Technology

    2008-12-14

    similarity of structure of the top layer ( stratum corneum ) of the artificial skin to that of human skin, because the bacteria were deposited on the...surface prior to treatment in the plasma reactor. The stratum corneum is composed of keratin-rich dead cells surrounded by lipids. This outer layer is...electrical resistance of the stratum corneum relies on the layer being intact. Research using intact skin (Fridman, G. et al. Plasma Chemistry and

  20. The Black Experience: Social, Cultural and Economic Considerations. Proceedings of a Workshop on the Black Experience. (1st, Chapel Hill, North Carolina, March 14, 1980).

    ERIC Educational Resources Information Center

    Johnson, Audreye E., Ed.

    This publication consists of the proceedings of a workshop on the social, cultural, and economic experiences of Blacks. The workshops' goals were to intensify the interest of social workers in the Black experience; to examine the values which have an impact on services to Black people; to increase the knowledge of social workers about Blacks; and…

  1. Plasma electron analysis: Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    1983-01-01

    The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.

  2. A SPHERICAL PLASMA DYNAMO EXPERIMENT

    SciTech Connect

    Spence, E. J.; Reuter, K.; Forest, C. B.

    2009-07-20

    We propose a plasma experiment to be used to investigate fundamental properties of astrophysical dynamos. The highly conducting, fast-flowing plasma will allow experimenters to explore systems with magnetic Reynolds numbers an order of magnitude larger than those accessible with liquid-metal experiments. The plasma is confined using a ring-cusp strategy and subject to a toroidal differentially rotating outer boundary condition. As proof of principle, we present magnetohydrodynamic simulations of the proposed experiment. When a von Karman-type boundary condition is specified, and the magnetic Reynolds number is large enough, dynamo action is observed. At different values of the magnetic Prandtl and Reynolds numbers the simulations demonstrate either laminar or turbulent dynamo action.

  3. Plasma Wakefield Experiments at FACET

    SciTech Connect

    Hogan, M.J.; England, R.J.; Frederico, J.; Hast, C.; Li, S.Z.; Litos, M.; Walz, D.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; Muggli, P.; Pinkerton, S.; Shi, Y.; /Southern California U.

    2011-08-19

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to {approx}20{micro}m long and focused to {approx}10{micro}m wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at the SLAC FFTB facility demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed. The FACET Facility is being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The facility will begin commissioning in summer 2011 and conduct an experimental program over the coming five years to study electron and positron beam driven plasma acceleration with strong wake loading in the non-linear regime. The FACET experiments aim to demonstrate high-gradient acceleration of electron and positron beams with high efficiency and negligible emittance growth.

  4. Experiments on TFTR supershot plasmas

    SciTech Connect

    Strachan, J.D.; Bell, M.; Janos, A.; Kaye, S.; Kilpatrick, S.; Manos, D.; Mansfield, D.; Mueller, D.; Owens, K; Timberlake, J.; Pitcher, C.S.; Snipes, J.

    1992-05-01

    Improvements to the TFTR limiter have extended the threshold for carbon blooms (an uncontrolled massive influx of carbon) to greater than 32 MW for 1 sec so that blooms seldom occur in present TFTR Supershot experiments. As a result of the progression from strong blooms to modest blooms to no blooms, improvements in confinement could be correlated with the occurrence of a carbon bloom in the plasma which immediately preceded the supershot. It is speculated that the carbon influx during a carbon bloom results in a limiter surface which has a slightly reduced self=sputtering yield for subsequent discharge. The influence on the supershot plasma seems similar to phenomena obtained by conditioning with lithium pellets.

  5. Electrodynamic plasma motor/generator experiment

    NASA Technical Reports Server (NTRS)

    Mccoy, James E.

    1987-01-01

    The Plasma Motor/Generator Proof of Function (PMG/POF) experiment, a low-cost payload for flight aboard the Shuttle Orbiter using the Hitchhiker G carrier, is discussed. The primary objective of this experiment is to verify that hollow cathode plasma sources can couple electric currents from either end of a long wire moving through the space plasma in LEO into and through that plasma to produce a PMG circuit. The support structure and the electrical components of the experiment are described. The experimental operation is discussed, including the calibration, experimental measurements, and follow-on missions.

  6. Collisionless Plasma Astrophysics Simulation Experiments using Lasers

    SciTech Connect

    Woolsey, N. C.; Ash, A. D.; Courtois, C.; Gregory, C. D.; Hall, I. M.; Howe, J.; Dendy, R. O.

    2006-04-07

    Laboratory experiment is an attractive method of exploring the plasma physics that may occur in solar and astrophysical shocks. An experiment enables repeated and detailed measurements of a plasma as the input conditions are adjusted. To form a scaled experiment of an astrophysical shock a plasma physics model of the shock is required, and the important dimensionless parameters identified and reproduced in the laboratory. A laboratory simulation of a young supernova remnant is described. The experiment uses the interaction of two millimetre-sized counter-streaming laser-produced plasmas placed in a strong transverse magnetic field to achieve this scaling. The collision-free dynamics of the two plasmas and their interaction are studied with and without the magnetic field through spatially and temporally resolved optical measurements. Laboratory astroplasma physics experiments using high-energy, high-power laser technology enables us to reproduce in the laboratory the conditions of temperature and pressure that are met in extreme stellar environments.

  7. Lithium plasma emitter for collisionless magnetized plasma experiment.

    PubMed

    Kawamori, Eiichirou; Lee, Jyun-Yi; Huang, Yi-Jue; Syugu, Wun-Jheng; Song, Sung-Xuang; Hsieh, Tung-Yuan; Cheng, C Z

    2011-09-01

    This paper presents a newly developed lithium plasma emitter, which can provide quiescent and low-temperature collisionless conditions for magnetized plasma experiments. This plasma emitter generates thermal emissions of lithium ions and electrons to produce a lithium plasma. Lithium type beta-eucryptite and lanthanum-hexaboride (LaB(6)) powders were mixed and directly heated with a tungsten heater to synthesize ion and electron emissions. As a result, a plasma with a diameter of ~15 cm was obtained in a magnetic mirror configuration. The typical range of electron density was 10(12)-10(13) m(-3) and that of electron temperature was 0.1-0.8 eV with the emitter operation temperature of about 1500 K. The amplitude fluctuations for the plasma density were lower than 1%. © 2011 American Institute of Physics

  8. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  9. E-157: A Plasma Wakefield Acceleration Experiment

    SciTech Connect

    Muggli, Patrick

    2000-10-20

    The E-157 plasma wakefield experiment addresses issues relevant to a meter long plasma accelerator module. In particular, a 1.4 m long plasma source has been developed for the experiment. The transverse dynamics of the beam in the plasma is studied: multiple betatron oscillations of the beam envelope, flipping of the beam tail, stability against the hose instability, emission of synchrotron radiation by the beam in the plasma. The bending of the 28.5 GeV beam at the plasma/vapor interface is observed for the first time. The longitudinal dynamics of the beam, i.e. the energy loss and gain by the electrons in the wake, is strongly affected by the oscillation of the beam tail instability.

  10. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  11. Ballistic piston fissioning plasma experiment.

    NASA Technical Reports Server (NTRS)

    Miller, B. E.; Schneider, R. T.; Thom, K.; Lalos, G. T.

    1971-01-01

    The production of fissioning uranium plasma samples such that the fission fragment stopping distance is less than the dimensions of the plasma is approached by using a ballistic piston device for the compression of uranium hexafluoride. The experimental apparatus is described. At room temperature the gun can be loaded up to 100 torr UF6 partial pressure, but at compression a thousand fold increase of pressure can be obtained at a particle density on the order of 10 to the 19th power per cu cm. Limited spectral studies of UF6 were performed while obtaining the pressure-volume data. The results obtained and their implications are discussed.

  12. Plasma-Pulse-Acceleration Experiments

    DTIC Science & Technology

    1987-06-01

    W. Pucher, Testing a new Type of Circuit Breaker for HVDC , Direct Current, Feb. 1966, pp. 3 - 6 /10/ D. Kind, E. Marx, K. Mollenhoff, J. Salge... breakers /4, 5/, exploding wires /6/, plasma jet tubes /7/, and high pressure radiation sources /8/. In particular current limiting circuit breakers ...length, radius, shaping, material to be evaporated etc.). Here it is possible to transfer design criteria from current-limiting circuit breakers and

  13. Plasma crystals: experiments and simulation

    NASA Astrophysics Data System (ADS)

    Piel, A.

    2017-01-01

    Dusty plasmas are a well accessible system to study crystallization of charged-particle systems at room temperature. The large mass compared to atomic particles dramatically slows down the particle velocities. The high transparency of the system allows to trace simultaneously the motion of all particles with quasi-atomic resolution. After a brief overview, the progress in this field is exemplified by studies of spherical three-dimensional plasma crystals, the so-called Yukawa balls. The static structure and eigenmodes are explained in simple terms. It is shown that shielding modifies the expansion of a Yukawa ball from a self-similar explosion to a continuous ablation process that starts at the surface. The experimental progress with three-dimensional diagnostics and laser heating and sophisticated methods for visualising the order inside the shell structure are described. Together with quantifying the diffusion coefficient these investigations reveal the details of the solid-liquid phase transition. Besides thermodynamic aspects, the liquid phase of dusty plasmas also gives access to hydrodynamic phenomena at the individual particle scale.

  14. Argonne Plasma Engineering Experiment (APEX) Tokamak

    SciTech Connect

    Norem, J.H.; Balka, L.J.; Kulovitz, E.E.; Magill, S.R.; McGhee, D.G.; Moretti, A.; Praeg, W.F.

    1981-03-01

    The Argonne Plasma Engineering Experiment (APEX) Tokamak was designed to provide hot plasmas for reactor-relevant experiments with rf heating (current drive) and plasma wall experiments, principally in-situ low-Z wall coating and maintenance. The device, sized to produce energetic plasmas at minimum cost, is small (R = 51 cm, r = 15 cm) but capable of high currents (100 kA) and long pulse durations (100 ms). A design using an iron central core with no return legs, pure tension tapewound toroidal field coils, digital radial position control, and UHV vacuum technology was used. Diagnostics include monochrometers, x-ray detectors, and a microwave interferometer and radiometer for density and temperature measurements. Stable 100 ms shots were produced with electron temperatures in the range 500 to 1000 eV. Initial results included studies of thermal desorption and recoating of wall materials.

  15. Kinetic simulation of a plasma collision experiment

    NASA Astrophysics Data System (ADS)

    Larroche, Olivier

    1993-08-01

    The ionic Fokker-Planck code which was written for describing plasma shock wave fronts [M. Casanova et al. Phys. Rev. Lett. 67, 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic (``particle-in-cell'') simulations.

  16. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  17. Results from Plasma Wakefield Experiments at FACET

    SciTech Connect

    Li, S.Z.; Clarke, C.I.; England, R.J.; Frederico, J.; Gessner, S.J.; Hogan, M.J.; Jobe, R.K.; Litos, M.D.; Walz, D.R.; Muggli, P.; An, W.; Clayton, C.E.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Tochitsky, S.; Adli, E.; /U. Oslo

    2011-12-13

    We report initial results of the Plasma Wakefield Acceleration (PWFA) Experiments performed at FACET - Facility for Advanced aCcelertor Experimental Tests at SLAC National Accelerator Laboratory. At FACET a 23 GeV electron beam with 1.8 x 10{sup 10} electrons is compressed to 20 {mu}m longitudinally and focused down to 10 {mu}m x 10 {mu}m transverse spot size for user driven experiments. Construction of the FACET facility completed in May 2011 with a first run of user assisted commissioning throughout the summer. The first PWFA experiments will use single electron bunches combined with a high density lithium plasma to produce accelerating gradients > 10 GeV/m benchmarking the FACET beam and the newly installed experimental hardware. Future plans for further study of plasma wakefield acceleration will be reviewed. The experimental hardware and operation of the plasma heat-pipe oven have been successfully commissioned. Plasma wakefield acceleration was not observed because the electron bunch density was insufficient to ionize the lithium vapor. The remaining commissioning time in summer 2011 will be dedicated to delivering the FACET design parameters for the experimental programs which will begin in early 2012. PWFA experiments require the shorter bunches and smaller transverse sizes to create the plasma and drive large amplitude wakefields. Low emittance and high energy will minimize head erosion which was found to be a limiting factor in acceleration distance and energy gain. We will run the PWFA experiments with the design single bunch conditions in early 2012. Future PWFA experiments at FACET are discussed in [5][6] and include drive and witness bunch production for high energy beam manipulation, ramped bunch to optimize tranformer ratio, field-ionized cesium plasma, preionized plasmas, positron acceleration, etc.. We will install a notch collimator for two-bunch operation as well as new beam diagnostics such as the X-band TCAV [7] to resolve the two bunches

  18. Plasma Guns for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.

    2009-11-01

    A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.

  19. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  20. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  1. SPDE: Solar Plasma Diagnostic Experiment

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  2. SPDE: Solar Plasma Diagnostic Experiment

    NASA Astrophysics Data System (ADS)

    Bruner, Marilyn E.

    1995-09-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  3. Plasmas as Antennas - Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Borg, Gerard

    1999-11-01

    A variety of antennas are employed in telecommunications and radar systems. Some applications pose special problems. Large structures are easily detected by hostile radar. The performance of multi-element HF-VHF arrays is complicated by mutual coupling between large radiating elements. High speed data communications and radar can be limited by signal decay and ringing. A novel solution is an antenna made of plasma that can be made to disappear on microsecond time scales. Recent experiments at the Australian National University (G.G. Borg et. al. App. Phys. Letts. Vol. 74, 3272-3274 [1999]), have shown that highly efficient (25 - 50radiating elements for the range 3 - 300 MHz can be formed using low power (10 - 50 W average) plasma surface waves launched at one end of a tube containing a suitable gas. Only a single capacitive coupler is needed to launch the waves - there is no electrical connection to the other end of the tube. The regimes of wave propagation correlate with expectations from plasma surface wave theory. Actual communications experiments have shown that these plasma antennas can have surprisingly low noise provided they are excited by the rf surface waves and not by a low frequency or DC ohmic current. Applications to HF-VHF communications and radar are being developed. These include both single ruggedised plasma elements and multi-element arrays.

  4. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  5. Plasma Wave Observations during Ion Gun Experiments

    DTIC Science & Technology

    1990-03-20

    Spacecraft Charging by Magnetospheric Plasma , Progress in Aeronautics and Astronautics , Vol. 47, ed. A. Rosen, IAA, pp. 15-30 (1976). 3. H. C. Koons, P. F...AIAA 75-92 (January 20-22, 1975). 2. D. A. McPherson and W. R. Schober, " Spacecraft Charging at High Altitudes: The SCATHA Satellite Program," in...on the AF/NASI P78-2 (SCATHA) satellite were conducted with a plasma /ion source in the inner magnetosphere . These experiments were monitored with

  6. Plasma focus experiments powered by explosive generators

    NASA Astrophysics Data System (ADS)

    Freeman, B. L.; Caird, R. S.; Erickson, D. J.; Fowler, C. M.; Garn, W. B.; Kruse, H. W.; King, J. C.; Bartram, D. E.; Kruse, P. J.

    1983-03-01

    The plasma focus project began as an effort to develop an intense, pulsed, expendable neutron radiographic source. Since previous efforts to power a plasma focus with explosive generators were successful, we proposed to couple plate generators to a coaxial-geometry plasma focus to achieve this goal. Utilizing a small capacitor bank and a selected set of diagnostics, the explosive experiments were successfully conducted with maximum currents of 1.5 MA to 2.4 MA. A maximum neutron yield of approx. 3 x 10 (11) (DD) neutrons was achieved at the 2.4 MA level. Since the neutron yield did scale as a power of the maximum delivered current, and the neutron-producing source region was small, this approach is an attractive option to achieve a neutron radiographic source. The need for a reliable open-circuiting switch at several megamperes has resulted in postponement of the project.

  7. Electron--positron beam--plasma experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.

    1997-11-01

    Electron-positron plasmas possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of cold positrons in Penning-Malmberg traps has made the study of such plasmas possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-plasma system by transmitting an electron beam through a positron plasma in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode electron source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-plasma system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (Δ E ≈ 0.05 eV) electron beam based on the extraction of electrons stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).

  8. Plasma Position Diagnostics for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Pizzicaroli, G.; Alladio, F.; Bombarda, F.; Licciulli, A.; Fersini, M.; Diso, D.; Paulicelli, E.

    2007-11-01

    Prototype coils of the electromagnetic diagnostics for the Ignitor experiment have been manufactured adopting innovative methods to improve the ceramic insulator resilience to neutron and gamma radiation. Thus, real time plasma position measurements should be possible over a broader range of high performance plasma regimes with D-D and D-T fuel. An alternative method is under study to provide the necessary spatial information also at the highest parameters that the Ignitor experiment can achieve (BT˜13 T, Ip˜11 MA, neutron yield˜3x10^19 n/s), where the electromagnetic diagnostics may fail. The new instrument is based on the diffraction and detection of the soft X-ray radiation emitted at the plasma edge. Gas Electron Multiplier (GEM) detectors are considered as the best candidates to provide signals with high counting rates (>1 MHz) and high S/N ratios, to be used by the control systemootnotetextD. Pacella, et al, Nucl. Instr. Meth. A 508, 414 (2003). A curved Multilayer Mirror placed inside one of the equatorial ports will diffract the radiation onto a properly shielded GEM detector that is located outside the machine vacuum and not in direct view of the plasma.

  9. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  10. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  11. Megajoule Dense Plasma Focus Solid Target Experiments

    NASA Astrophysics Data System (ADS)

    Podpaly, Y. A.; Falabella, S.; Link, A.; Povilus, A.; Higginson, D. P.; Shaw, B. H.; Cooper, C. M.; Chapman, S.; Bennett, N.; Sipe, N.; Olson, R.; Schmidt, A. E.

    2016-10-01

    Dense plasma focus (DPF) devices are plasma sources that can produce significant neutron yields from beam into gas interactions. Yield increases, up to approximately a factor of five, have been observed previously on DPFs using solid targets, such as CD2 and D2O ice. In this work, we report on deuterium solid-target experiments at the Gemini DPF. A rotatable target holder and baffle arrangement were installed in the Gemini device which allowed four targets to be deployed sequentially without breaking vacuum. Solid targets of titanium deuteride were installed and systematically studied at a variety of fill pressures, bias voltages, and target positions. Target holder design, experimental results, and comparison to simulations will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  13. Calibration of the ISEE plasma composition experiment

    NASA Technical Reports Server (NTRS)

    Baugher, C. R.; Olsen, R. C.; Reasoner, D. L.

    1986-01-01

    The Plasma Composition experiment on the ISEE-1 satellite was designed to measure ions from 1 to 16 amu, at energies from near zero to 16 keV. The two nearly identical flight instruments were calibrated by means of preflight laboratory tests and in-flight data comparisons. This document presents most of the details of those efforts, with special emphasis on the low energy (0 to 100 eV) portion of the instrument response. The analysis of the instrument includes a ray-tracing calculation, which follows an ensemble of test particles through the detector.

  14. Plasma Experiment for Planetary Exploration (PEPE)

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Nordholt, J. E.; Burch, J. L.; McComas, D. J.; Bowman, R. P.; Abeyta, R. A.; Alexander, J.; Baldonado, J.; Barker, P.; Black, R. K.; Booker, T. L.; Casey, P. J.; Cope, L.; Crary, F. J.; Cravens, J. P.; Funsten, H. O.; Goldstein, R.; Guerrero, D. R.; Hahn, S. F.; Hanley, J. J.; Henneke, B. P.; Horton, E. F.; Lawrence, D. J.; McCabe, K. P.; Reisenfeld, D.; Salazar, R. P.; Shappirio, M.; Storms, S. A.; Urdiales, C.; Waite, J. H.

    2007-04-01

    The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel technologies that helped reduce instrument mass to 5.5 kg and average power to 9.6 W. PEPE’s performance was demonstrated successfully by extensive measurements made in the solar wind and during the DS1 encounter with Comet 19P/Borrelly in September 2001.

  15. Hot ion plasma heating experiments in SUMMA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Posta, S. J.; Snyder, A.; Englert, G. W.

    1974-01-01

    Initial results are presented for the hot-ion plasma heating experiments conducted in the new SUMMA (superconducting magnetic mirror apparatus) at NASA Lewis Research Center. A discharge is formed by applying a radially inward dc electric field between cylindrical anodes and hallow cathodes located at the peak of the mirrors. Data were obtained at midplane magnetic field strengths from 1.0 to 3.5 tesla. Charge-exchange neutral particle energy analyzer data were reduced to ion temperatures using a plasma model that included a Maxwellian energy distribution superimposed on an azimuthal drift, finite ion orbits, and radial variations in density and electric field. The best ion temperatures in a helium plasma were 5 keV and in hydrogen the H2(+) and H(+) ions were 1.2 keV and 1 keV respectively. Optical spectroscopy line broadening measurements yielded ion temperatures about 50 percent higher than the charge-exchange neutral particle analyzer results. Spectroscopically obtained electron temperature ranged from 3 to 30 eV. Ion temperature was found to scale roughly linearly with the ratio of power input-to-magnetic field strength, P/B.

  16. Neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.

    2016-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 3 to 80 erg*cm/s. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated spectra is used to collect absorption spectra. A suite of IDL programs has been developed to process the experimental data to produce transmission spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by the DOE National Nuclear Security Administration Grant DE-FG52-09NA29551, DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  17. Statistical Physics Experiments Using Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  18. The Current Status of the 1st Electromagnetism Satellite Mission in China

    NASA Astrophysics Data System (ADS)

    Shen, Xuhui; Wang, Lanwei; Zhang, Xuemin; Yuan, Shigeng

    2014-05-01

    The 1st China Electromagnetism Satellite now is on its Phase C for Electrical Mode and Qualification mode. And according to the developing schedule, the satellite is due to be launched before the end of 2016. The first electromagnetism satellite is defined as an experiment satellite with it's major scientific objectives to monitor the global electromagnetic fields as well as plasma distribution in ionosphere, to provide seismo-eletromagnetic information for studying earthquake mechanism and short-term prediction of large earthquakes, and to share the data with earthquake sciences and space sciences. The satellite will work on Sun synchronous orbit with the attitude of about 500km and descending node 14:00LT. The payload assembly are as following: Search Coil Magnetometer, Electric Field Detector, Flux-Gate Magnetometer, Plasma Analyser, Langmuir Probe, GNSS Two-frequency Receiver, Three-frequency Transmitter, Energetic Particle Detector. The main physical parameters and products of the mission are electromagnetic field and electromagnetic wave, plasma density, temperature, and tomography in ionosphere, high energy particle disturbance, etc. The Chinese work team is ready to open the data and jointly research on common topics with international colleagues.

  19. Plasma Interaction Experiment (PIX) flight results

    NASA Technical Reports Server (NTRS)

    Grier, N. T.; Stevens, N. J.

    1979-01-01

    An auxiliary payload package called PIX (plasma interaction experiment) was launched on March 5, 1978, on the LANDSAT 3 launch vehicle to study interactions between the space charged-particle environment and surfaces at high applied positive and negative voltages. Three experimental surfaces were used in this package: a plain disk to act as a control, a disk on a Kapton sheet to determine the effect of surrounding insulation on current collection, and a small solar-array segment to evaluate the effect of distributing biased surfaces among an array of insulators. Only half of the results from the 4 hours of PIX operations were recovered. The results did verify effects found in ground simulation testing. The results of this experiment are discussed in detail.

  20. Experiments with laser driven plasma jets

    NASA Astrophysics Data System (ADS)

    Nicolai, Philippe

    2008-04-01

    Laboratory studies can address issues relevant to astrophysics^1 and in some cases improve our understanding of the physical processes that occur in astrophysical objects. So issues related to the jet propagation and collimation over considerable distance and their interactions with surrounding media have begun to be addressed these last years. Laboratory plasmas and astrophysical objects have different length, time and density scales. However, the typical velocities are the same, of a few hundred km/s and the similarity criteria^2 can be applied to scale the laboratory jets to astrophysical conditions. In this presentation, we use a method of jet formation^3 which allows to launch a very fast jet having a velocity around 400 km/s by using a relatively small laser energy, of the order of 100 J. The jet has a Mach number greater than 10, a length of a few mm, and a radius of a few tenths of mm. The interaction of these jets with a gas puff has been recently studied in an experiment carried out at the PALS laser facility. Varying gas pressure and composition, we show that the nature of interaction zone changes from a quasi adiabatic outflow to a strongly radiatively cooling jet. The use of various diagnostics, allows to relate the x-ray emission to the density map of the interaction zone. Already observed in astrophysical objets for strongly different time and space scales, these structures are interpreted in our laboratory experiment by using a semi-analytical model and 2D radiation hydrodynamic simulations. [1] B. Remington et al, Rev. Mod. Phys. 78, 755 (2007) [2] D. Ryutov et al, Phys . Plasmas 8, 1804 (2001) [3] Ph. Nicolai et al, Phys. Plasmas 13, 062701 (2007)

  1. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  2. Electron density and plasma dynamics of a colliding plasma experiment

    SciTech Connect

    Wiechula, J. Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  3. The ISPM solar-wind plasma experiment

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Glore, J. P.; Mccomas, D. J.; Moore, K. R.; Chavez, J. C.; Ellis, T. J.; Peterson, G. R.; Temple, J. H.; Wymer, F. J.

    1983-01-01

    The ISPM solar wind plasma experiment accurately characterizes the bulk flow and internal state conditions of the interplanetary plasma in three dimensions at all heliographic distances and heliographic latitudes reached by the spacecraft. Solar wind electrons, protons, alpha particles, and heavier ions are measured. Oxygen, silicon, and iron ions at various charge levels are resolved. Electrons and ions are measured simultaneously with independent curved-plate electrostatic analysers equipped with multiple continuous channel electron multipliers arranged so that particle velocity distributions are suitably resolved without gaps in spacecraft polar-angle space. Electrons with energies between 1 and 900 eV are detected at 7 polar angles and various combinations of azimuth angle to cover the unit sphere comprehensively. Ions are detected between 257 eV/Q and 35 keV/Q. Data matrices are obtained every 4 min when the spacecraft is actively transmitting and every 8 min during storage periods. These matrices contain sufficient energy and angle resolution to permit detailed calculations of ion velocity distributions.

  4. Chaos in plasma simulation and experiment

    SciTech Connect

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  5. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  6. Plasma gun pellet acceleration modeling and experiment

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1996-12-31

    Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.

  7. Plasma Source Design for the PWFA Experiments at SLAC

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Muggli, P.

    2002-12-01

    We discuss the design issues associated with producing a plasma source for the plasma wake field accelerator (PWFA) experiments at SLAC. There are many possible sources, but for our purposes uv, single photon ionized, lithium vapor, in a heat pipe oven, is our best option. Optimum parameters are derived and the plasma decay rate is estimated.

  8. Dusty Plasma Experiments Using an Electrodynamic Balance

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Abbas, M. M.; Suess, S. T.; Venturini, C. C.; Comfort, R. H.

    2000-01-01

    Knowledge of the formation, distribution, physical, chemical and optical characteristics of interstellar, interplanetary, and planetary dust grains provide valuable information about many issues dealing with the origin and formation of the solar system bodies, interplanetary and interstellar environments as well as various industrial processes. Understanding the microphysics of individual grains and their interaction with the surrounding environment is key to properly model various conditions and interpret existing data. The theory and models of individual dust grains are well developed for environments that vary from dense planetary atmospheres to dusty plasmas to diffuse environments such is interplanetary space. However, experimental investigations of individual dust grains in equilibrium are less common, perhaps due to the difficult of these experiments. Laboratory measurements of dust grains have primarily measured ensemble properties or transient properties of single grains. A technique developed in the 1950's for ion spectroscopy, known as a quadrupole trap or 'Paul Trap', has recently been used to investigate single micron-sized dust grains. This scaled ion trap called an electrodynamic balance has been used for atmospheric aerosol research. A description of this technique is provided. Recent results from experiments to investigate the equilibrium potential of dust grains exposed to far ultraviolet light or to -,in electron or ion beam are presented. This laboratory technique ]ends itself to many applications that relate to planetary atmospheres, heliospheric environments, pre-stellar and pre-planetary conditions, and industrial settings. Several planned experimental approaches are presented. Potential experiments to investigate the interaction of multiple dust grains using an electrodynamic balance are proposed.

  9. Dusty Plasma Experiments Using an Electrodynamic Balance

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Abbas, M. M.; Suess, S. T.; Venturini, C. C.; Comfort, R. H.

    2000-01-01

    Knowledge of the formation, distribution, physical, chemical and optical characteristics of interstellar, interplanetary, and planetary dust grains provide valuable information about many issues dealing with the origin and formation of the solar system bodies, interplanetary and interstellar environments as well as various industrial processes. Understanding the microphysics of individual grains and their interaction with the surrounding environment is key to properly model various conditions and interpret existing data. The theory and models of individual dust grains are well developed for environments that vary from dense planetary atmospheres to dusty plasmas to diffuse environments such is interplanetary space. However, experimental investigations of individual dust grains in equilibrium are less common, perhaps due to the difficult of these experiments. Laboratory measurements of dust grains have primarily measured ensemble properties or transient properties of single grains. A technique developed in the 1950's for ion spectroscopy, known as a quadrupole trap or 'Paul Trap', has recently been used to investigate single micron-sized dust grains. This scaled ion trap called an electrodynamic balance has been used for atmospheric aerosol research. A description of this technique is provided. Recent results from experiments to investigate the equilibrium potential of dust grains exposed to far ultraviolet light or to -,in electron or ion beam are presented. This laboratory technique ]ends itself to many applications that relate to planetary atmospheres, heliospheric environments, pre-stellar and pre-planetary conditions, and industrial settings. Several planned experimental approaches are presented. Potential experiments to investigate the interaction of multiple dust grains using an electrodynamic balance are proposed.

  10. Plasma flow switch experiments on the Pegasus facility

    SciTech Connect

    Cochrane, J.C. Jr.; Anderson, B.; Bartsch, R.R.; Bowers, R.; Findley, C.; Greene, A.; Kruse, H.; Oona, H.; Parker, J.V.; Peterson, D.; Sandoval, G. ); Lee, P.H.Y. ); Turchi, P. )

    1991-01-01

    Plasma flow switch experiments conducted on Pegasus have shown that a conducting layer of plasma shunts the load slot preventing efficient switching of current to the load. This effect is seen computationally. The magnitude of the effect depends on the specific parameters of the switch plasma and current level. Computations have also shown that a plasma boundary layer trap'' would effectively remove enough plasma from the inner conductor of the power flow channel so that efficient switching would occur. This plasma trap has been successfully demonstrated when used with a static load. It has not yet been tested with an imploding load. 3 refs., 8 figs.

  11. The Plasma Interaction Experiment (PIX) description and test program. [electrometers

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.; Haley, F. A.; Domino, E. J.; Culp, D. H.; Shaker, F. J.

    1978-01-01

    The plasma interaction experiment (PIX) is a battery powered preprogrammed auxiliary payload on the LANDSAT-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage.

  12. From laboratory plasma experiments to space plasma experiments with `CubeSat' nano-satellites

    NASA Astrophysics Data System (ADS)

    Charles, Christine

    2016-09-01

    `CubeSat' nano-satellites provide low-cost access to space. SP3 laboratory's involvement in the European Union `QB50' `CubeSat' project [www.qb50.eu] which will launch into space 50 `CubeSats' from 27 Countries to study the ionosphere and the lower thermosphere will be presented. The Chi Kung laboratory plasma experiment and the Helicon Double Layer Thruster prototype can be tailored to investigate expanding magnetized plasma physics relevant to space physics (solar corona, Earth's aurora, adiabatic expansion and polytropic studies). Chi Kung is also used as a plasma wind tunnel for ground-based calibration of the University College London QB50 Ion Neutral Mass Spectrometer. Space qualification of the three Australian QB50 `CubeSats' (June 2016) is carried out in the WOMBAT XL space simulation chamber. The QB50 satellites have attitude control but altitude control is not a requirement. SP3 is developing end-to-end miniaturised radiofrequency plasma propulsion systems (such as the Pocket Rocket and the MiniHel thrusters with power and propellant sub-systems) for future `CubeSat' missions.

  13. Plasma Reactor Modeling and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Bose, D.; Hash, D.; Hwang, H.; Cruden, B.; Sharma, S. P.; Rao, M. V. V. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Plasma processing is a key processing stop in integrated circuit manufacturing. Low pressure, high density plum reactors are widely used for etching and deposition. Inductively coupled plasma (ICP) source has become popular recently in many processing applications. In order to accelerate equipment and process design, an understanding of the physics and chemistry, particularly, plasma power coupling, plasma and processing uniformity and mechanism is important. This understanding is facilitated by comprehensive modeling and simulation as well as plasma diagnostics to provide the necessary data for model validation which are addressed in this presentation. We have developed a complete code for simulating an ICP reactor and the model consists of transport of electrons, ions, and neutrals, Poisson's equation, and Maxwell's equation along with gas flow and energy equations. Results will be presented for chlorine and fluorocarbon plasmas and compared with data from Langmuir probe, mass spectrometry and FTIR.

  14. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  15. The Burning Plasma Experiment conventional facilities

    SciTech Connect

    Commander, J.C.

    1991-12-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F&ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F&ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN{sub 2}) building; and the associated Instrumentation and Control (I&C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab.

  16. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    SciTech Connect

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-07-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 {times} 10{sup 19} ions/cm{sup 2} {center_dot} s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.

  17. An Experiment to Tame the Plasma Material Interface

    SciTech Connect

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  18. Analysis and experiments of a whistler-wave plasma thruster

    SciTech Connect

    Hooper, E.B.; Ferguson, S.W.; Makowski, M.A.; Stallard, B.W.; Power, J.L.

    1993-08-06

    A plasma thruster operating at high specific impulse ({ge} 3500 s) has been proposed to be based on electron-cyclotron resonance heating of whistler waves propagating on a plasma column on a magnetic hill. Calculations using a particle-in-cell code demonstrate that the distortion of the electron velocity distribution by the heating significantly reduces the flow of plasma up the field, greatly improving efficiency and reducing material interactions relative to a thermal plasma. These and other calculations are presented together with initial experiments on the plasma generated in the proposed device. The experiments are conducted in a magnetic field (3.3 {times} 10{sup {minus}2} T at resonance) and a magnetic mirror ratio of 5. Microwaves (0.915 GHz, <20 kW) are coupled to the plasma with a helical antenna. Vacuum field measurements are in good agreement with prediction. The desired plasma spatial distribution has not yet been achieved.

  19. Experiments and Theory of Dusty Plasmas

    SciTech Connect

    Shukla, P. K.

    2011-11-29

    The purpose of this paper is to present the most important theoretical and experimental discoveries that have been made in the area of dusty plasma physics. We describe the physics and observations of the well celebrated dust acoustic wave (DAW) and the dust ion-acoustic wave (DIAW) in dusty plasmas with weakly coupled dust grains, as well as the dust Coulomb crystal and dust lattice oscillations (DLOs) in dusty plasmas with strongly coupled dust grains. In dusty plasmas, the dust charge fluctuation is a dynamical variable, which provides a novel collisionless damping of the DA and DIA waves. The latter and the DLOs are excited by external sources, which are here discussed. Besides the Debye-Hueckel short-range repulsive force between like charged dust grains, there are novel attractive forces (e.g. due to dipole-dipole dust particle interactions, overlapping Debye spheres, ion focusing and ion wakefields, dipole magnetic moments etc.), which provide unique possibilities for attracting charged dust particles of similar polarity. The dust particle attraction is responsible for the formation of dust Coulomb crystals in laboratory dusty plasmas, as well as for the formation of planets and large astrophysical bodies in the Milky Way galaxy and in interstellar media. Furthermore, the nonlinear DAW, DIAW, and DLOs also appear in the form of solitary and shock waves, the physics and observations of which are briefly discussed. Finally, we discuss possible applications of dust-in-plasmas and dusty plasmas in laboratory and space.

  20. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have

  1. Plasma-materials interactions during rf experiments in tokamaks

    SciTech Connect

    Cohen, S.A.; Bernabei, S.; Budny, R.; Chu, T.K.; Colestock, P.; Hinnov, E.; Hooke, W.; Hosea, J.; Hwang, D.; Jobes, F.

    1984-09-01

    Plasma-materials interactions studied in recent ICRF heating and lower hybrid current drive experiments are reviewed. The microscopic processes responsible for impurity generation are discussed. In ICRF experiments, improvements in machine operation and in antenna and feedthrough design have allowed efficient plasma heating at RF powers up to 3 MW. No significant loss of energy from the plasma core due to impurity radiation occurs. Lower hybrid current drive results in the generation and maintenance of hundreds of kiloamperes of plasma current carried by suprathermal electrons. The loss of these electrons and their role in impurity generation are assessed. Methods to avoid this problem are evaluated.

  2. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  3. Plasma arc cutting technology: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Cantoro, G.; Colombo, V.; Concetti, A.; Ghedini, E.; Sanibondi, P.; Zinzani, F.; Rotundo, F.; Dallavalle, S.; Vancini, M.

    2011-01-01

    Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.

  4. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  5. Hollow cathode-based plasma contactor experiments for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1987-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors are reviewed. This research includes the definition of preliminary plasma contactor designs, and the characterization of their operation as electron collectors from a simulated space plasma. The discovery of an 'ignited mode' regime of high contactor efficiency and low impedance is discussed, as well as is the application of recent models of the plasma coupling process to contactor operation. Results indicate that ampere-level electron currents can be exchanged between hollow cathode-based plasma contactors and a dilute plasma in this regime. A discussion of design considerations for plasma contactors is given which includes expressions defining the total mass flow rate and power requirements of plasma contactors operating in both the cathodic and anodic regimes, and correlation of this to the tether current. Finally, future ground and spaceflight experiments are proposed to resolve critical issues of plasma contactor operation.

  6. Spectroscopic imaging diagnostics for burning plasma experiments

    SciTech Connect

    Stutman, D.; Finkenthal, M.; Suliman, G.; Tritz, K.; Delgado-Aparicio, L.; Kaita, R.; Johnson, D.; Soukhanovskii, V.; May, M.J.

    2005-02-01

    Spectroscopic imaging of plasma emission profiles from a few electron volts to tens of kilo-electron volts enables basic diagnostics in present day tokamaks. For the more difficult burning plasma conditions, light extraction and detection techniques, as well as instrument designs need to be investigated. As an alternative to light extraction with reflective optics, we discuss normal incidence, transmissive-diffractive optics (e.g., transmission gratings), which might withstand plasma exposure with less degradation of optical properties. Metallic multilayer reflectors are also of interest for light extraction. Although a shift of the diffraction peak might occur, instrument designs that accommodate such shifts are possible. As imaging detectors we consider 'optical' arrays based on conversion of the short-wavelength light into visible light followed by transport of the visible signal with hollow lightguides. The proposed approaches to light extraction and detection could enable radiation resistant diagnostics.

  7. Spectroscopic imaging diagnostics for burning plasma experiments

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Suliman, G.; Tritz, K.; Delgado-Aparicio, L.; Kaita, R.; Johnson, D.; Soukhanovskii, V.; May, M. J.

    2005-02-01

    Spectroscopic imaging of plasma emission profiles from a few electron volts to tens of kilo-electron volts enables basic diagnostics in present day tokamaks. For the more difficult burning plasma conditions, light extraction and detection techniques, as well as instrument designs need to be investigated. As an alternative to light extraction with reflective optics, we discuss normal incidence, transmissive-diffractive optics (e.g., transmission gratings), which might withstand plasma exposure with less degradation of optical properties. Metallic multilayer reflectors are also of interest for light extraction. Although a shift of the diffraction peak might occur, instrument designs that accommodate such shifts are possible. As imaging detectors we consider "optical" arrays based on conversion of the short-wavelength light into visible light followed by transport of the visible signal with hollow lightguides. The proposed approaches to light extraction and detection could enable radiation resistant diagnostics.

  8. Divertor plasma studies on DIII-D: Experiment and modeling

    SciTech Connect

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process.

  9. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field

  10. ISS Update: 1st Annual ISS R&D Conference

    NASA Image and Video Library

    NASA Public Affairs Officer Kelly Humphries talks by phone on Wednesday with Julie Robinson, ISS Program Scientist, about the 1st Annual International Space Station Research and Development Confere...

  11. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  12. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  13. Electronic Health Records Place 1st at Indy 500

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues EHR Electronic Health Records Place 1st at Indy 500 Past ... last May's Indy 500 had thousands of personal Electronic Health Records on hand for those attending—and ...

  14. OGO-1 and OGO-3 MIT plasma experiments S4903

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Plasma proton and plasma electron prototype and flight models were designed, fabricated, and tested. Ground support equipment for the models was also prepared. The flight models were launched aboard the first and third Orbiting Geophysical Observatories on 4 Sept. 1964 and 6 June 1966. These experiments have generally functioned in accordance with the design specifications and useful data are still being received.

  15. The 1st Grade Plant Museum.

    ERIC Educational Resources Information Center

    Wallach, Christine; Callahan, Susan

    1994-01-01

    A Saint Louis school experimenting with applying multiple intelligences theory to curricula and instruction defines "genuine understanding" as using information in novel ways. By surveying area museums and designing user-friendly botanical exhibits for a community-based project, first graders developed a better understanding of their own…

  16. Avascular necrosis of the 1st metatarsal head.

    PubMed

    Gurevich, M; Bialik, V; Eidelman, M; Katzman, A

    2008-10-01

    Idiopathic avascular necrosis of first metatarsophalangeal head in child is unique condition not described in literature in past exlude one case. It seems to be part of avascular bone necrosis syndromes, like Freiberg disease, Sever disease etc. and the same principles of treatment are appropriate in AVN of 1st MTT head. We describe the case of bilateral AVN of 1st MTT head treated conservatively with complete cure.

  17. APOLLO 17 - INFLIGHT (1ST EVA)

    NASA Image and Video Library

    1972-12-12

    S72-55065 (11 Dec. 1972) --- Scientist-astronaut Harrison H. Schmitt is seen anchoring the geophone module with a flag during the first Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site, in the black and white reproduction taken from a color television transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot of the Apollo 17 lunar landing mission. Astronaut Ronald E. Evans, command module pilot, remained with the Apollo 17 Command and Service Modules in lunar orbit while astronauts Schmitt and Eugene A. Cernan, commander, descended in the Lunar Module to explore the moon. The geophone module is part of the Lunar Seismic Profiling Experiment (S-203), a component of the Apollo Lunar Surface Experiments Package (ALSEP). Other ALSEP components are visible in the picture.

  18. SAMPIE (Solar Array Module Plasma Interactions Experiment). (Videotape)

    SciTech Connect

    Not Available

    1994-02-01

    SAMPIE is an in-space technology experiment that flew on STS-62. Its intent is to investigate the potentially damaging effects of space plasma (gases) on different types, sizes, and shapes of solar cells, solar modules, and spacecraft materials.

  19. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  20. Progress toward positron-electron pair plasma experiments

    SciTech Connect

    Stenson, E. V.; Stanja, J.; Hergenhahn, U.; Saitoh, H.; Niemann, H.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-29

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  1. ECR plasma thruster research - Preliminary theory and experiments

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Fitzgerald, Dennis J.

    1989-01-01

    A preliminary theory of the operation of the electron-cyclotron-resonance (ECR) plasma thruster is described along with an outline of recent experiments. This work is presented to communicate the status of an ongoing research effort directed at developing a unified theory to quantitatively describe the operation of the ECR plasma thruster. The theory is presented as a set of nonlinear ordinary differential equations and boundary conditions which describe the plasma density, velocity, and electron temperature. Diagnostic tools developed to measure plasma conditions in the existing research device are described.

  2. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  3. Progress toward positron-electron pair plasma experiments

    NASA Astrophysics Data System (ADS)

    Stenson, E. V.; Saitoh, H.; Stanja, J.; Niemann, H.; Hergenhahn, U.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-01

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  4. Diagnosis in Complex Plasmas for Microgravity Experiments (PK-3 plus)

    SciTech Connect

    Takahashi, Kazuo; Hayashi, Yasuaki; Thomas, Hubertus M.; Morfill, Gregor E.; Ivlev, Alexei V.; Adachi, Satoshi

    2008-09-07

    Microgravity gives the complex (dusty) plasmas, where dust particles are embedded in complete charge neutral region of bulk plasma. The dust clouds as an uncompressed strongly coupled Coulomb system correspond to atomic model with several physical phenomena, crystallization, phase transition, and so on. As the phenomena tightly connect to plasma states, it is significant to understand plasma parameters such as electron density and temperature. The present work shows the electron density in the setup for microgravity experiments currently onboard on the International Space Station.

  5. Advanced Tokamak Plasmas in the Fusion Ignition Research Experiment

    SciTech Connect

    C.E. Kessel; D. Meade; D.W. Swain; P. Titus; M.A. Ulrickson

    2003-10-13

    The Advanced Tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning AT plasmas, and indicate that these are feasible within the engineering constraints of the device.

  6. Lab- and space-based researchers discuss plasma experiments

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Yamada, M.

    Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.

  7. Electron cyclotron plasma startup in the GDT experiment

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. V.; Shalashov, A. G.; Gospodchikov, E. D.; Solomakhin, A. L.; Savkin, V. Ya.; Bagryansky, P. A.

    2017-01-01

    We report on a new plasma startup scenario in the gas dynamic trap (GDT) magnetic mirror device. The primary 5 MW neutral beam injection (NBI) plasma heating system fires into a sufficiently dense plasma target (‘seed plasma’), which is commonly supplied by an arc plasma generator. In the reported experiments, a different approach to seed plasma generation is explored. One of the channels of the electron cyclotron resonance (ECR) heating system is used to ionize the neutral gas and build up the density of plasma to a level suitable for NBI capture. After a short transition of approximately 1 ms the discharge becomes essentially similar to a standard one initiated by the plasma gun. This paper presents the discharge scenario and experimental data on the seed plasma evolution during ECRH, along with the dependencies on incident microwave power, magnetic configuration and pressure of a neutral gas. The characteristics of the consequent high-power NBI discharge are studied and differences from the conventional scenario are discussed. A theoretical model describing the ECR breakdown and the seed plasma accumulation in a large-scale mirror trap is developed on the basis of the GDT experiment.

  8. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; McComas, D. J.; Nordholdt, J. E.; Thomsen, M. F.; Berthelier, J. J.; Robson, R.

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  9. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  10. Status of Magnetic Nozzle and Plasma Detachment Experiment

    SciTech Connect

    Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim; Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey; Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg; Cassibry, Jason; Li Zhongmin

    2006-01-20

    High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.

  11. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  12. Particle Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; James, R. W.; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    A small Helicon Plasma Experiment (HPX) has been constructed at the Coast Guard Academy Plasma Lab (CGAPL) to utilize the reputed high densities at low pressure (.01 T) [1], in high temperature and density diagnostic development for future laboratory investigations. With the initial construction phase complete, HPX has produced its first plasmas. Efforts to develop and enhance the high temperature and density (10^13 cm-3 and higher) helicon plasmas at low pressures (.01 T) reported by Toki, Shinohara, et. al. continue. Currently, particle probes to measure plasmas' temperatures and densities, necessary to discern the plasma mode transitions, are in development. Construction of independent mach and triple probes for single point surface investigations are underway and once installed, they will be followed by a triple probe array to produce a more comprehensive density and surface view. Progress on the construction and findings of these probes on HPX will be reported.

  13. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  14. Plasma gasification of carbonaceous wastes: thermodynamic analysis and experiment

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mosse, A. L.; Ustimenko, A. B.

    2016-07-01

    Thermodynamic calculations of the plasma gasification process of carbonaceous wastes in air and steam ambient were carried out. A maximum yield of synthesis gas in such processes is predicted to be achieved at a temperature of 1600 K. On a specially developed plasma facility, plasma gasification experiments were performed for carbonaceous wastes. From the organic mass of carbonaceous waste and from its mineral mass, respectively, a high-calorific syngas and a neutral slag consisting predominantly of ferric carbide, calcium monosilicate, silica and iron, were obtained. A comparison between the experiment and the calculations has shown a good consistency between the data.

  15. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  16. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  17. Initial Plasma Experiment in the Levitated Ring Trap RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Ogawa, Y.; Morikawa, J.; Watanabe, S.; Yano, Y.; Suzuki, J.

    2006-10-01

    Studies on toroidal flowing plasma have started in a superconductor levitated coil device, Ring Trap 1 (RT-1) [1]. RT-1 generates a magnetosphere-like dipole magnetic field configuration that enables various kinds of experiments related to flowing plasmas. The main purpose of the Ring Trap Experiment is to explore a new high-b relaxation state of plasmas predicted by two-fluid relaxation theory of flowing plasmas [2]. Magnetic surface configuration of RT-1 also enables stable pure-magnetic trap of non-neutral plasmas [3], which is potentially suitable for the confinement of charged particles including anti-matters. As an initial experiment, hydrogen plasma is produced by electron cyclotron heating using 8.2GHz microwave generated by a klystron with the maximum power of 100kW for 1s pulse operation. The high-Tc superconductor (Bi-2223) ring with a total coil current of 250kAT is magnetically levitated in a vacuum chamber using a PID feedback control system. The field strength in the trap region is 0.03T to 0.3T. Diagnostics for the RT-1 experiment includes spectroscopy, soft X-ray pulse-height analysis with Si (Li) detector, magnetic probes, and Langmuir probes for edge plasma measurement. The initial experimental results and basic plasma parameters of RT-1 will be presented in the meeting. 1. Z. Yoshida et al., Plasma Fusion Res. 1, 008 (2006). 2. Z. Yoshida and S. M. Mahajan, Phys. Rev. Lett. 88, 095001 (2002). 3. Z. Yoshida, et al., in Nonneutral Plasma Physics III, IV.

  18. Continuous plasma perfusion of dual cartridges in series: rationale and early clinical experience.

    PubMed

    Sun, Liang; Yan, Peng-Bo; Zhang, Yu-Hua; Wei, Lu-Qing; Li, Guo-Qiang

    2016-12-01

    To improve the efficiency of plasma perfusion on eliminating plasma paraquat (PQ), we designed continuous plasma perfusion of dual cartridges in series (CPPDCS) on Diapact Braun CRRT machine. The goals of this study were to evaluate the effective of CPPDCS on paraquat removal in patients with acute paraquat intoxication. Our results show that the PQ clearance rate of dual cartridges was significantly higher than that of single cartridge at 1st, 2nd, 3(rd), and 4th plasma perfusion. Compared with single-cartridge plasma perfusion, CPPDCS significantly reduced the frequency of cartridge replacement, shorten the time of perfusion. These results indicate that CPPDCS is effective than plasma perfusion of single cartridge on PQ clearance rate and may provide an effective treatment for PQ poisoning.

  19. Comparing simulation of plasma turbulence with experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for E×B low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement.

  20. Transport studies in fusion plasmas: Perturbative experiments

    SciTech Connect

    Cardozo, N.J.L.

    1996-03-01

    By subjecting a plasma in steady state to small perturbations and measuring the response, it is possible to determine elements of the matrix of transport coefficients. Experimentally this is difficult, and results are mainly limited to transport driven by the pressure and temperature gradients. Importantly, off-diagonal elements in the transport matrix appear to be important. This has also implications for the interpretation of the so-called `power balance` diffusivity, determined from the steady state fluxes and gradients. Experimental techniques, analysis techniques, basic formulas, etc., are briefly reviewed. Experimental results are summarized. The fundamental question whether the fluxes are linear functions of the gradients or not is discussed. 31 refs.

  1. Scaled Laboratory Collisionless Shock Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Schaeffer, D.; Everson, E.; Bondarenko, A.; Winske, D.; Constantin, C.; Niemann, C.

    2013-12-01

    Collisionless shocks in space plasmas have been investigated since the fifties and are typically studied via in-situ satellite observations, which are limited due to the large structure of collisionless shocks in space environments relative to the satellite observation platform. Scaled, repeatable experiments in the Large Plasma Device (LAPD) at UCLA provide a test bed for studying collisionless shocks in the laboratory, where questions of ion and electron heating and acceleration can be addressed and examined in detail. The experiments are performed by ablating a graphite or plastic target using the Raptor kilojoule-class laser facility at UCLA. The laser provides an on-target energy in the range of 100-500 J that drives a super-Alfvénic (MA > 1) debris plasma across a background magnetic field (200-800 G) into the ambient, magnetized LAPD plasma. Typical plasma parameters in the LAPD consist of a H+ or He+ ambient plasma with a core column (diameter > 20 cm ) density ni ~ 1013 cm-3 and electron temperature Te ~ 10 eV embedded in a larger plasma discharge (diameter ~ 80 cm) of density ni ~ 1012 cm-3 and Te ~ 5 eV. The ambient ion temperature is Ti ~ 1 eV. Experimental results from the latest collisionless shock campaign will be presented and compared with two dimensional hybrid simulations of the experiment. Fielded diagnostics include Thomson scattering, ion spectroscopy, magnetic flux probes, Langmuir probes, and microwave reflectometry.

  2. Experiments on laser-produced plasmas and laser plasma- wall interactions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2001-06-01

    The study of the interaction of laser-produced plasmas with a secondary wall has both practical and theoretical significance. The laser-produced plasmas are sources of highly-charged ions, fast electrons, as well as continuum and monochromatic x-ray radiation. Intense x-ray radiation also results when a nanosecond laser-produced plasma collides with a secondary wall positioned close to the target. The study of this interaction is essential to understand the laser-produced plasma expansion, shock wave formation, recombination, collisional excitation and many other transition processes. The laser plasma-wall interaction experiment has been carried out with laser pulses with vastly different time scales. In nanosecond experiment, the plasma-wall interaction was studied with varying target-wall distance. We conclude that the isothermal plasma expansion followed by the shock wave formation near the wall surface contributes to the intense x-ray radiation. We also have done some preliminary research in the femtosecond regime. We claim that the shock wave formation that plays an important role in nanosecond experiment does not play the same role in femtosecond one. We suggest that a femtosecond laser-produced plasma could be an efficient fast electron and monochromatic x- ray source. We also provide some suggestions and predictions for further investigations.

  3. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  4. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  5. Low Pressure High Density Plasma Development on a Small Helicon Plasma Experiment (HPX)*

    NASA Astrophysics Data System (ADS)

    James, R. W.; Allen, L. A.; Paolino, R. N.; Thayer, N.; Romano, B.; Stutzman, B. S.; Welicka, C.; Coast Guard Plasma Lab Team

    2011-10-01

    Small helicon plasmas have been employed in various capacities from industry to spacecraft propulsion. At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), in high temperature and density diagnostic development for future laboratory investigations. HPX is designed to operate at these high densities and pressure to create repeatedly stable Capacitively Coupled Plasma (CCP) and Inductively Coupled Plasma (ICP) plasmas induced by an RF frequency in the 10 to 70 MHz range. Progress on the development of the RF coupling system, and qualitative observations from the optical and electric diagnostics are to be reported.

  6. Plasma Motor Generator (PMG) electrodynamic tether experiment

    NASA Technical Reports Server (NTRS)

    Grossi, Mario D.

    1995-01-01

    The Plasma Motor Generator (PMG) flight of June 26, 1993 has been the most sophisticated and most successful mission that has been carried out thus far with an electrodynamic tether. Three papers from the Smithsonian Astrophysical Observatory, Washington, DC concerned with the PMG, submitted at the Fourth International Space Conference on Tethers in Space, in Washington, DC, in April 1995, are contained in this document. The three papers are (1) Electromagnetic interactions between the PMG tether and the magneto-ionic medium of the Ionosphere; (2) Tether-current-voltage characteristics, as determined by the Hollow Cathode Operation Modes; and (3) Hawaii-Hilo ground observations on the occasion for the PMG flight of June 23, 1993.

  7. Killing Two Birds with One Stone: Improving 4th Year Student Teachers' Teaching Skills and Preparing 1st Year Student Teachers for Teaching Practice

    ERIC Educational Resources Information Center

    Saka, Ahmet Zeki; Saka, Arzu

    2004-01-01

    The aim of this study is to develop a new approach to help both 4th year students and 1st year students to get the utmost benefit from application activities. This new approach will provide 4th year students with an experience of teaching practice and also preparation of 1st student teachers to teaching practice process before they start their…

  8. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  9. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  10. Shuttle wave experiments. [space plasma investigations: design and instrumentation

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1976-01-01

    Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.

  11. Analysis of Next-Step Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Jardin, S.; Kessel, C.; Meade, D.; Rutherford, P.; Pletzer, A.; Neumeyer, C.

    2001-10-01

    We present comparison studies of candidate next-step burning plasma experiments. A new systems-level code, BPSC, has been developed to find optimal designs for a particular design concept subject to a given set of engineering and physics constraints. We have applied this to liquid Nitrogen cooled compact devices of either the ST concept, where the poloidal field (PF) coils link the toroidal field (TF) coil, or the high-field tokamak concept, where the PF and TF coils are unlinked. For the latter class, we show that the FIRE* design is near optimal for an inductively driven burning plasma experiment with Q = 10 and pulse length exceeding two current redistribution times. We also present MHD and TSC transport analysis of the FIRE* design and compare this with other proposed burning plasma experiments. It is further shown that LHCD can reduce the consequences of neoclassical tearing modes in FIRE-class devices through reduction of delta-prime.

  12. Solar Array Module Plasma Interaction Experiment (SAMPIE): Technical requirements document

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a NASA shuttle space flight experiment scheduled for launch in early 1994. The SAMPIE experiment will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased to high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here.

  13. Trends in laser-plasma-instability experiments for laser fusion

    SciTech Connect

    Drake, R.P. Lawrence Livermore National Lab., CA )

    1991-06-06

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with {approx}1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs.

  14. Experiments on Plasma Physics : Experience is the Mother of Wisdom 2.Q Machine Plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo

    Q machines, which produce low-temperature, stationary and fully-ionized plasmas in magnetic fields, have been operated for over four decades. The results obtained using the Q machine have greatly contributed toward systematizing plasma physics. Their typical examples are the clarification of Landau-damping based linear/nonlinear phenomena on ion acoustic , electron plasma , ion Bernstein waves, etc. , instability phenomena such as drift and ion-cyclotron waves, particle acceleration/heating/transport phenomena, and formation phenomena of charge-nonneutrality induced local electrostatic structure. In addition, transport coefficients in velocity and real spaces have been directly measured in quiescent and turbulent Q machine plasmas. Furthermore, as an extension to technological application, it is tried to control materials structure on nanometer scale using basic properties of the Q machine plasma.

  15. Freestanding film structures for laser plasma experiments

    SciTech Connect

    Klyuenkov, E B; Lopatin, A Ya; Luchin, V I; Salashchenko, Nikolai N; Tsybin, N N

    2013-04-30

    The technique is developed for fabricating 5-500-nm-thick freestanding films of various materials and multilayer compositions. Apart from the traditional use in spectral filtration of soft X-ray and extreme ultraviolet radiation, the possibility of using the ultrathin films fabricated by this technique as targets in experiments on laser acceleration of ions is considered. A sample of the target in the form of a 5-nm-thick carbon film on a supporting net is fabricated. (extreme light fields and their applications)

  16. Experiments on planar plasma flow switches at Los Alamos

    SciTech Connect

    Benage, J.F. Jr.; Wysocki, F.J.; Bowers, R.; Oona, H.

    1997-12-01

    The authors have performed a series of experiments on the Colt facility at Los Alamos to study the performance of plasma flow switches and to understand the important physics issues which affect that performance. These experiments were done in planar geometry on a small machine to allow for better diagnostic access and a higher repetition rate. The Colt facility is a capacitor bank which stores 300 kJ at maximum charge and produced a peak current of 1.1 MA in 2.0 microseconds for these experiments. The diagnostics used for these experiments included an array of b-dot probes, visible framing pictures, visible spectroscopy, and laser interferometry. Characteristics of the switch are determined from spatial and temporal profiles of the magnetic field and the spatial profile and temperature of the switch plasma. Here the authors present results from experiments for a variety of switch conditions.

  17. 1st Major Astronomy Convention in the Philippines - A Success!

    NASA Astrophysics Data System (ADS)

    Ty, J. K.

    2009-03-01

    February 15, 2009. The 1st Philippine Astronomy Convention was held at the Plenary Hall of the Rizal Technological University (RTU) in Boni Avenue, Mandaluyong City, Philippines. The event was organized by the Astronomical League of the Philippines as part of the International Year of Astronomy 2009 celebrations.

  18. A structured architecture for advanced plasma control experiments

    SciTech Connect

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented.

  19. Particle Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; James, R. W.; Nolan, S.; Page, E. J.; Romano, B.; Zuniga, J.; Schlank, C.; Lopez, M.; Karama, J.; Duke-Tinson, O.; Stutzman, B. S.

    2013-10-01

    Coast Guard Academy Plasma Lab(CGAPL) has constructed a Helicon Plasma Experiment. Plasmas will be used in high-temperature and -density diagnostic development for future lab investigations of fusion-grade plasma. Efforts to develop and enhance high temperature and density (1013cm-3 and up) helicon plasmas at low pressures (.01T) reported by Toki et al., continue. HPX will integrate a 32-channel National Instruments DAQ(Data Acquisition) board, designed to digitize data from tests. With LabView as the programing language, CGAPL will take samples at 12bits of precision at 2MS/s to create a Graphical User Interface (GUI). The GUI will control experimental variables (one or several concurrent tests) and monitor systems during data collection. Data collection will be conducted with particle probes, currently under construction. Probes, used to discern the plasma mode transitions, will measure plasma particle velocity, temperature, density and floating potential at different regimes. Once independent triple and mach probes for surface point investigations are installed, a triple probe array to produce a more comprehensive density and surface view will follow. Progress on development of GUI and construction of probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  20. Plasma Rotation Control Experiment in a Strongly Diverging Magnetic Field

    NASA Astrophysics Data System (ADS)

    Terasaka, Kenichiro; Furuta, Kanshi; Yoshimura, Shinji; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.

    2016-10-01

    It has been recognized that the plasma rotation affects the plasma flow structure along the magnetic field line. However, the effect of plasma rotation on structure formation in a strongly diverging magnetic field with magnetized electrons and unmagnetized ions has not been fully understood, so far. Understanding the flow structure formation in an ion-unmagnetized plasma is essential to control ion streamline detachment from the magnetic field line and also necessary to study the astrophysical phenomena in laboratory. In order to clarify the effect of plasma rotation in a diverging magnetic field, we have performed the plasma rotation control experiment in the HYPER-II device at Kyushu Univ., Japan. A set of cylindrical electrode was utilized to control the radial electric field, and the profile of azimuthal E × B rotation has been changed. We present the experimental results on the electron density pileup and the flow reversal appeared in the rotating plasma. This study was supported by JSPS KAKENHI Grant Number 16K05633.

  1. Development of plasma sources for Dipole Research EXperiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Peng, E.; Wang, Xiaogang; Xiao, Chijie; Ren, Yang; Ji, Hantao; Mao, Aohua; Li, Liyi

    2017-05-01

    Dipole Research EXperiment (DREX) is a new terrella device as part of the Space Plasma Environment Research Facility (SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance (ECR) system for the ‘whistler/chorus’ wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén’ wave study. The parameters of ‘whistler/chorus’ waves and ‘Alfvén’ waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt’ plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.

  2. Telescience operations with the solar array module plasma interaction experiment

    SciTech Connect

    Wald, L.W.; Bibyk, I.K.

    1995-09-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. Parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology.

  3. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  4. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  5. Alpha-particle Measurements Needed for Burning Plasma Experiments

    SciTech Connect

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  6. Plasma flow switch and foil implosion experiments on Pegasus II

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-07-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10`s of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  7. Plasma flow switch and foil implosion experiments on Pegasus II

    SciTech Connect

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-01-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  8. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  9. Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

    2009-08-20

    Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

  10. Web life: The Internet Plasma Physics Education Experience

    NASA Astrophysics Data System (ADS)

    2009-02-01

    An educational outreach site maintained by the Princeton Plasma Physics Laboratory in the US, IPPEX features several interactive, game-like tools (applets) for exploring the physics of fusion, the doughnut-shaped "tokamak" reactors used in fusion experiments around the world, and related topics.

  11. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    SciTech Connect

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-06-17

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed.

  12. Plasma Crystal-3 Plus experiment Chamber Leak Check

    NASA Image and Video Library

    2010-07-01

    ISS024-E-007144 (1 July 2010) --- Russian cosmonaut Alexander Skvortsov, Expedition 24 commander, performs chamber leak checks on the new Plasma Crystal-3 Plus experiment in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  13. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  14. Development of a plasma driven permeation experiment for TPE

    DOE PAGES

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; ...

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ionmore » chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.« less

  15. Development of a plasma driven permeation experiment for TPE

    SciTech Connect

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-04-18

    Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 ?C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 ?C, a new TPE membrane holder has been built to hold test specimens (=1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE’s vacuum chamber has been demonstrated by sealing tests performed up to 1000 ?C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (~700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 ?C are expected at the highest TPE fluxes.

  16. Tritium Plasma Experiment (TPE) - parameters and potentials for fusion plasma-wall interaction studies

    SciTech Connect

    Masashi Shimada; Robert D. Kolasinski; J. Phillip Sharpe; Rion A. Causey

    2011-08-01

    The Tritium plasma experiment (TPE) is a unique facility devoted to experiments on the behavior of deuterium/tritium in toxic (e.g. beryllium) and radioactive materials for fusion plasma-wall interaction (PWI) studies. A Langmuir probe was added to the system to characterize the plasma conditions in TPE. With this new diagnostic, we found the achievable electron temperature ranged from 5.0 to 10.0 eV, the electron density varied from 5.0 x 10{sup 16} to 2.5 x 10{sup 18} m{sup -3}, and the ion flux density varied between 5.0 x 10{sup 20} to 2.5 x 10{sup 22} m{sup -2}s{sup -1} along the centerline of the plasma. A comparison of these plasma parameters with the conditions expected for the plasma facing components (PFCs) in ITER shows that TPE is capable of achieving most (approximately 800 m{sup 2} of 850 m{sup 2} total PFCs area) of the expected ion flux density and electron density conditions.

  17. Tritium plasma experiment: Parameters and potentials for fusion plasma-wall interaction studies

    SciTech Connect

    Shimada, Masashi; Sharpe, J. Phillip; Kolasinski, Robert D.; Causey, Rion A.

    2011-08-15

    The tritium plasma experiment (TPE) is a unique facility devoted to experiments on the behavior of deuterium/tritium in toxic (e.g., beryllium) and radioactive materials for fusion plasma-wall interaction studies. A Langmuir probe was added to the system to characterize the plasma conditions in TPE. With this new diagnostic, we found the achievable electron temperature ranged from 5.0 to 10.0 eV, the electron density varied from 5.0 x 10{sup 16} to 2.5 x 10{sup 18} m{sup -3}, and the ion flux density varied between 5.0 x 10{sup 20} to 2.5 x 10{sup 22} m{sup -2} s{sup -1} along the centerline of the plasma. A comparison of these plasma parameters with the conditions expected for the plasma facing components (PFCs) in ITER shows that TPE is capable of achieving most ({approx}800 m{sup 2} of 850 m{sup 2} total PFCs area) of the expected ion flux density and electron density conditions.

  18. Freak waves in negative-ion plasmas: an experiment revisited

    NASA Astrophysics Data System (ADS)

    Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian

    2016-10-01

    Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.

  19. Design and Construction of the Plasma Bubble Expansion Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Lynn, A. G.; Hsu, S. C.; Gilmore, M.; Watts, Christopher

    2007-11-01

    We will present the design and construction of a new compact coaxial magnetized plasma gun and its associated hardware systems. The plasma gun will be used for experimental studies of ``magnetic bubble'' expansion into a pre-existing lower density background plasma on the HELCAT facility at UNM. These experiments will address key nonlinear plasma physics issues pertinent to plasma models of the formation and evolution of extra-galactic radio lobes. The gun will be powered by a 120μF 10kV ignitron-switched capacitor bank. High pressure gas, controlled by a gas valve system, will be puffed into an annular gap between inner and outer coaxial electrodes. An applied high voltage ionizes the gas and creates a radial current sheet. The ˜ 100kA discharge current generates toroidal flux, and an external magnet will provide poloidal ``bias'' flux. This poster will describe in detail the design and construction of the various power systems for the new plasma gun source.

  20. Progress in Development of Low Pressure High Density Plasmas on a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range and employs an electromagnet to provide the external energy in the plasma's magnetic field to transition from the H-Mode to the Helicon Mode. An acceleration coil, currently under construction, will place the plasma in the vacuum chamber for optical and particle probing. With the initial construction phase complete and first plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel DAQ system capable 12 bits of sampling precision at 2 MS/s for plasma property investigations. Progress on the development of the RF coupling system, magnetic coils, and qualitative observations from the optical and electric diagnostics are to be reported. [4pt] [1] K. Toki, et al., Thin Solid Films 506-507 (2005).

  1. Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment

    NASA Astrophysics Data System (ADS)

    Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar

    2011-10-01

    The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.

  2. Resonant Plasma Wakefield Experiment: Plasma Simulations and Multibunched Electron Beam Diagnostics

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Thomas; Yakimenko, Vitaly; Stolyarov, Daniil; Pogorelsky, Igor; Pavlishin, Igor; Kusche, Karl; Babzien, Marcus; Ben-Zvi, Ilan; Kimura, Wayne D.

    2006-11-01

    In the multibunch plasma wakefield acceleration experiment at the Brookhaven National Lab's Accelerator Test Facility a 45 MeV electron beam is initially modulated through the IFEL interaction with a CO2 laser beam at 10.6 μm into a train of short microbunches, which are spaced at the laser wavelength. It is then fed into a high-density capillary plasma with a density resonant at this spacing (1.0 × 1019cm-3). The microbunched beam can resonantly excite a plasma wakefield much larger than the wakefield excited from the non-bunched beam. Here we present plasma simulations that confirm the wakefield enhancement and the results of a series of CTR measurements performed of the multibunched electron beam.

  3. Interactive Plasma Physics Education Using Data from Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Calderon, Brisa; Davis, Bill; Zwicker, Andrew

    2010-11-01

    The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.

  4. Status and future of the tritium plasma experiment

    SciTech Connect

    Causey, R.A.; Buchenauer, D.; Taylor, D.; Harbin, W.; Anderl, B.

    1995-10-01

    The Tritium Plasma Experiment (TPE) has been recently upgraded and relocated at the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory. The first tritium plasma in the upgraded system was achieved on May 11, 1995. TPE is a unique facility devoted to experiments on the migration and retention of tritium in fusion reactor materials. This facility is now capable of delivering 100 to 200 eV tritons at a level of 1 A/cm{sup 2} to a 5 mm diameter sample, similar to that expected for the divertor of the International Thermonuclear Experimental Reactor (ITER). An aggressive research plan has been established, and experiments are expected to begin in June of 1995. 4 figs.

  5. Proceedings of the 1st Puerto Rico Biobanking Workshop.

    PubMed

    Mora, Edna; Robb, James A; Stefanoff, Gustavo; Mellado, Robert Hunter; Coppola, Domenico; Muñoz-Antonia, Teresita; Flores, Idhaliz

    2014-01-01

    The 1st Puerto Rico Biobanking Workshop took place on August 20st, 2014 in the Auditorium of the Comprehensive Cancer Center of the University of Puerto Rico, Medical Sciences Campus in San Juan Puerto Rico. The program for this 1-day, live workshop included lectures by three biobanking experts, followed by presentations from existing biobanks in Puerto Rico and audience discussion. The need for increasing biobanking expertise in Puerto Rico stems from the fact that Hispanics in general are underrepresented in the biobanks in existence in the US, which limits the research conducted specifically to understand the molecular differences in cancer cells compared to other better studied populations. In turn, this lack of information impairs the development of better diagnostic and therapeutic approaches for our population. Dr. James Robb, M.D., F.C.A.P., consulting pathologist to the National Cancer Institute (NCI) and the Office of Biorepositories and Biospecimen Research (OBBR), opened the workshop with a discussion on the basic aspects of the science of biobanking (e.g., what is a biobank; its goals and objectives; protocols and procedures) in his talk addressing the importance of banking tissues for advancing biomedical research. Next, Dr. Gustavo Stefanoff, from the Cancer Institutes Network of Latin America (RINC by its name in Spanish), explained the mission, objectives, and structure of the Network of Latin-American and Caribbean Biobanks (REBLAC by its name in Spanish), which despite limited resources and many challenges, currently accrue high quality human tissue specimens and data to support cancer research in the region. Dr. Robert Hunter-Mellado, Professor of Internal Medicine, Universidad Central del Caribe, followed with an examination of the ethical and regulatory aspects of biobanking tissues for future research, including informed consent of subjects; protection of human subjects rights; and balancing risks and benefit ratios. In the afternoon, the

  6. Proceedings of the 1st Puerto Rico Biobanking Workshop

    PubMed Central

    Mora, Edna; Robb, James A.; Stefanoff, Gustavo; Mellado, Robert Hunter; Coppola, Domenico; Muñoz-Antonia, Teresita; Flores, Idhaliz

    2015-01-01

    The 1st Puerto Rico Biobanking Workshop took place on August 20th, 2014 in the Auditorium of the Comprehensive Cancer Center of the University of Puerto Rico, Medical Sciences Campus in San Juan Puerto Rico. The program for this 1-day, live workshop included lectures by three biobanking experts, followed by presentations from existing biobanks in Puerto Rico and audience discussion. The need for increasing biobanking expertise in Puerto Rico stems from the fact that Hispanics in general are underrepresented in the biobanks in existence in the US, which limits the research conducted specifically to understand the molecular differences in cancer cells compared to other better studied populations. In turn, this lack of information impairs the development of better diagnostic and therapeutic approaches for our population. Dr. James Robb, M.D., F.C.A.P., consulting pathologist to the National Cancer Institute (NCI) and the Office of Biorepositories and Biospecimen Research (OBBR), opened the workshop with a discussion on the basic aspects of the science of biobanking (e.g., what is a biobank; its goals and objectives; protocols and procedures) in his talk addressing the importance of banking tissues for advancing biomedical research. Next, Dr. Gustavo Stefanoff, from the Cancer Institutes Network of Latin America (RINC by its name in Spanish), explained the mission, objectives, and structure of the Network of Latin-American and Caribbean Biobanks (REBLAC by its name in Spanish), which despite limited resources and many challenges, currently accrue high quality human tissue specimens and data to support cancer research in the region. Dr. Robert Hunter-Mellado, Professor of Internal Medicine, Universidad Central del Caribe, followed with an examination of the ethical and regulatory aspects of biobanking tissues for future research, including informed consent of subjects; protection of human subjects rights; and balancing risks and benefit ratios. In the afternoon, the

  7. ["1st Therapeutic Red Cross Hospital" during the civil war].

    PubMed

    Simonenko, V B; Abashin, V G

    2014-04-01

    The article presents the documentary information about the founding, the establishment and early years of the 1st Therapeutic Red Cross Hospital - in the future - Mandryka Central Military Clinical Hospital of the Ministry of Defence of the Russian Federation. Presented the work of the Hospital during the dificult period of the Civil War, typhus epidemic, famine and devastation. Specified its staffing structure, command, medical and administrative staff, travel and accommodation till the moment of the deployment in the Silver Lane in Moscow.

  8. Numerical Experiments In Strongly Coupled Complex (Dusty) Plasmas

    NASA Astrophysics Data System (ADS)

    Hou, L. J.; Ivlev A.; Hubertus M. T.; Morfill, G. E.

    2010-07-01

    Complex (dusty) plasma is a suspension of micron-sized charged dust particles in a weakly ionized plasma with electrons, ions, and neutral atoms or molecules. Therein, dust particles acquire a few thousand electron charges by absorbing surrounding electrons and ions, and consequently interact with each other via a dynamically screened Coulomb potential while undergoing Brownian motion due primarily to frequent collisions with the neutral molecules. When the interaction potential energy between charged dust particles significantly exceeds their kinetic energy, they become strongly coupled and can form ordered structures comprising liquid and solid states. Since the motion of charged dust particles in complex (dusty) plasmas can be directly observed in real time by using a video camera, such systems have been generally regarded as a promising model system to study many phenomena occurring in solids, liquids and other strongly-coupled systems at the kinetic level, such as phase transitions, transport processes, and collective dynamics. Complex plasma physics has now grown into a mature research field with a very broad range of interdisciplinary facets. In addition to usual experimental and theoretical study, computer simulation in complex plasma plays an important role in bridging experimental observations and theories and in understanding many interesting phenomena observed in laboratory. The present talk will focus on a class of computer simulations that are usually non-equilibrium ones with external perturbation and that mimic the real complex plasma experiments (i. e., numerical experiment). The simulation method, i. e., the so-called Brownian Dynamics methods, will be firstly reviewed and then examples, such as simulations of heat transfer and shock wave propagation, will be present.

  9. Updates to the Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phil; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin; Emami, Tooran; Turk, Jeremy

    2016-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas ( 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations are being developed and tested. Progress on the construction of the RF coupling system, Helicon Mode development, and magnetic coils, along with observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  10. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Duke-Tinson, Omar; Frank, John; Karama, Jackson; Hopson, Jordan; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2015-11-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas (~ 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  11. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, R. W.; Duke-Tinson, O.; Nolan, S.; Page, E. J.; Lopez, M.; Karama, J.; Paolino, R. N.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Crilly, P. B.

    2013-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. With the initial construction phase complete and repeatable plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  12. Development of a non-ideal plasma target for non-linear beam plasma interaction experiments

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Nishinomiya, S.; Niinou, T.; Kaneko, J.; Hasegawa, J.; Ogawa, M.; Oguri, Y.

    2007-07-01

    A shock-driven plasma target was developed to examine non-linear interactions between low-energy heavy ions and cold-dense plasmas. MD calculations predicted that beam-plasma coupling constant γ˜0.1 must be achieved to observe the non-linearity, which corresponds to the plasma coupling constant Γ≈0.2 for projectiles of vproj≈10 keV/u and q≈2. One-dimensional numerical estimations using SESAME equation of state showed that a shock wave propagating in 5-Torr H2 gas with 47 km/s must be produced to satisfy Γ≈0.2. Utilizing an electromagnetic shock tube with a peak current of 50 kA and a current rise time of 800 ns, we achieved a shock speed of 45 km/s. The electron density distribution of the shock-produced plasma along the beam axis was measured by a Mach-Zehnder interferometer. From this measurement we confirmed that the electron density was over 1017 cm-3 and the homogeneity was acceptable during several hundred nanoseconds. The electron temperature was also determined by optical spectroscopic measurements. The Coulomb coupling constant was evaluated using these experimental data to investigate feasibility of the beam-plasma interaction experiments.

  13. Atomic kinetics of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, Daniel C.; Mancini, Roberto; E Bailey, James; Loisel, Guillaume; Rochau, Gregory

    2017-06-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 3 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated spectra is used to collect absorption spectra. A suite of IDL programs has been developed to process the experimental data to produce transmission spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  14. [Granuloma Gravidarum in a 37-year-old 1st Gravida, 1st Para--A Case Report].

    PubMed

    Findeklee, S

    2015-10-01

    The granuloma gravidarum is a rare benign tumour with gingival origin. It occurs in circa 0.2% of pregnancies. Mostly we see an asymptomatic course of disease terminated by hormonal changes after delivery. If the granuloma is associated with complaints of the pregnant woman, for example masticational pain or recurrent bleedings, therapeutic options are conservative therapy, surgery or delivery. We report the case of a 37-year-old 1st gravida, 1st para who had an induced delivery in the 39+2 gestational week because of a symptomatic granuloma gravidarum. We saw a spontaneous remission of the granuloma within 3 months post partum. The case report underlines the importance of suitable information for pregnant women about oral hygiene and the necessity of regular dental controls during pregnancy for prophylaxis of granuloma gravidarum.

  15. Plasma Simulation for the SHIP Experiment at GDT

    SciTech Connect

    Anikeev, A.V.; Bagryansky, P.A.; Collatz, S.; Noack, K

    2005-01-15

    The concept of the Synthesized Hot Ion Plasmoid (SHIP) experiment at the gas dynamic trap (GDT) facility of the Budker Institute Novosibirsk was presented at the 29{sup th} EPS Conference. During the last year several numerical simulations were made by means of the Integrated Transport Code System (ITCS) to determine the best experimental scenario for getting high plasma parameters. This contribution presents important results of the recent numerical simulations of SHIP by means of the ITCS modules.

  16. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  17. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  18. Theory and Simulation of the LBNL Plasma Lens Experiment

    NASA Astrophysics Data System (ADS)

    Backhaus, E. Yu.; Wurtele, J. S.; Govil, R.; Leemans, W. P.

    1998-11-01

    A theoretical analysis and Particle-in-cell (PIC) simulation of the LBNL plasma lens experiment is presented. The envelope equation is used which includes the self-consistent evolution of the beam (i.e. `thick lens' effect), effects of nonlinear aberrations and full plasma return currents.(R. Govil and W.P.Leemans, proceedings of 8th workshop on advanced accelerator concepts.)^,(E. Yu. Backhaus, D. Whittum and J. S.Wurtele, proceedings of 8th workshop on advanced accelerator concepts.) The envelope equation is simplified in the limit of small k_pσ_r. It is shown that the effects of the aberrations can be of the same order as the effect of the return currents for k_pσ_r<=0.5. The full envelope equation is used to model the experiment for a wide range of k_pσ_r. The 2D relativistic, fully electromagnetic PIC code (XOOPIC) is used to simulate the experiment including the finite plasma effect. The validity of the envelope equation is discussed.

  19. Supersonic gas jets for laser-plasma experiments.

    PubMed

    Schmid, K; Veisz, L

    2012-05-01

    We present an in-depth analysis of De Laval nozzles, which are ideal for gas jet generation in a wide variety of experiments. Scaling behavior of parameters especially relevant to laser-plasma experiments as jet collimation, sharpness of the jet edges and Mach number of the resulting jet is studied and several scaling laws are given. Special attention is paid to the problem of the generation of microscopic supersonic jets with diameters as small as 150 μm. In this regime, boundary layers dominate the flow formation and have to be included in the analysis.

  20. Preliminary results on the plasma environment of Saturn from the Pioneer 11 plasma analyzer experiment

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Mihalov, J. D.; Collard, H. R.; Mckibbin, D. D.; Frank, L. A.; Intriligator, D. S.

    1980-01-01

    The Ames Research Center Pioneer 11 plasma analyzer experiment provided measurements of the solar wind interaction with Saturn and the character of the plasma environment within Saturn's magnetosphere. It is shown that Saturn has a detached bow shock wave and magnetopause quite similar to those at earth and Jupiter. The scale size of the interaction region for Saturn is roughly one-third that at Jupiter, but Saturn's magnetosphere is equally responsive to changes in the solar wind dynamic pressure. Saturn's outer magnetosphere is inflated, as evidenced by the observation of large fluxes of corotating plasma. It is postulated that Saturn's magnetosphere may undergo a large expansion when the solar wind pressure is greatly diminished by the presence of Jupiter's extended magnetospheric tail when the two planets are approximately aligned along the same solar radial vector.

  1. A 1st-Grade Teacher's Survival Guide to the Implementation and Management of Literacy Centers During Guided Reading

    ERIC Educational Resources Information Center

    Kieff, Judith

    2005-01-01

    This Classroom Idea Sparker was submitted by Pandora Zook, a 1st-grade teacher at Guilford Elementary School in Sterling, Virginia. She shares her experiences in creating self-guided literacy centers that run smoothly and encourage children to be constructively engaged in learning activities that do not require constant direct supervision.

  2. Experiments on Negative Ion Plasmas in a Q-Machine

    NASA Astrophysics Data System (ADS)

    An, Tao

    Three experiments on negative ion plasmas in the University of Iowa Q-machine IQ-2 are described in this thesis. In the Lower-Hybrid wave experiment, the low-frequency (ion-ion mode) waves are excited, waves propagate at a right angle to the magnetic field. The wave frequencies increase as the negative ion concentration increases, in agreement with the dispersion relation obtained from fluid theory. In the Kelvin-Helmholtz instability experiment, the negative ions have a generally destabilizing effect on the instability driven by a relative drift between ions in adjacent layers. However, for large negative ion concentrations, enhanced radial diffusion associated with the Kelvin-Helmholtz oscillations tends to have a stabilizing effect due to a "mixing" of ion flows in adjacent layer. In the diffusion experiment, the K^ {+} ions experience a displacement across the magnetic filed on the order of their gyroradius upon collision with a negative ion, leading to an enhancement in the rate of cross-field diffusion over that expected in the ordinary K^{+}/electron plasma.

  3. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    SciTech Connect

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-15

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH{sub 2} with 2.8% H{sub 2} served as the discharge medium. H{sub 2} was chosen in order to observe the broadening of the H{sub β} emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 10{sup 16} cm{sup −3}. Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  4. Initial experiments of RF gas plasma source for heavy ionfusion

    SciTech Connect

    Ahle, L.; Hall, R.; Molvik, A.W.; Chacon-Golcher, E.; Kwan, J.W.; Leung, K.N.; Reijonen, J.

    2002-05-22

    The Source Injector Program for the US Heavy Ion Fusion Virtual National Laboratory is currently exploring the feasibility of using RF gas plasma sources for a HIF driver. This source technology is presently the leading candidate for the multiple aperture concept, in which bright millimeter size beamlets are extracted and accelerated electrostatically up to 1 MeV before the beamlets are allowed to merge and form 1 A beams. Initial experiments have successfully demonstrated simultaneously high current density, {approx} 100 mA/cm{sup 2} and fast turn on, {approx} 1 {micro}s. These experiments were also used to explore operating ranges for pressure and RF power. Results from these experiments are presented as well as progress and plans for the next set of experiments for these sources.

  5. Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin

    2014-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (10 cm-3 and higher) at low pressure (.01 T) of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. HPX is completing construction of triple and mach particle probes, magnetic probes, and is designing a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  6. Ion Heating Experiments in a Supersonic Plasma Flow for an Advanced Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Hosokawa, Yohei; Hatanaka, Motoi; Yagai, Tsuyoshi; Tobari, Hiroyuki; Hattori, Kunihiko; Inutake, Masaaki

    2003-10-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) project in NASA, the combined system of the ion cyclotron heating and the magnetic nozzle is proposed to control a ratio od specific impulse to thrust at constant power. By now, few attempt of a direct ion heating for fast flowing plasma by waves has been done. Ion heating in a fast flowing plasma might be difficult because of the short transit time for ions to pass through a heating region only once and the modification of ion cyclotron resonance due to the effect of Doppler shift. Ion heating experiments are performed in a fast flowing plasma produced by Magneto-Plasma-Dynamic Arcjet (MPDA) operated with an externally-applied magnetic field. RF waves with an ion cyclotron range of frequency is excited by a pair of loop antennas or a helical antenna. An increase of plasma stored energy measured by a diamagnetic loop coil is observed when the waves are excited with various azimuthal mode numbers in several magnetic nozzle configurations. It is most effective to heat ions to excite the waves with an azimuthal mode number of m=±1. Dispersion relations of the propagating wave are obtained and compared with theoretical ones.

  7. Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments

    SciTech Connect

    R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson

    2002-01-29

    Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.

  8. The 1st All-Russian Workshop on Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    2007-08-01

    The 1st All-Russia Workshop on Archaeoastronomy “Astronomical and World-Outlook Meaning of the Archaeological Monuments of South Ural” was held on June 19-25, 2006, at the ground of the archaeological center “Arkaim” (Chelyabinsk Region). Besides about 30 talks, astronomical measurements were performed at two archaeological objects under intensive study: Arkaim Site (Bronze Epoch, XVIII-XVI c. B.C.) and tumuli “with whiskers” complex Kondurovsky (V-VIII c. A.D.). The promising character of the megalithic complex on the Vera Island (Lake Turgoyak) was stated.

  9. Joint Force Quarterly. Issue 64, 1st Quarter 2012

    DTIC Science & Technology

    2012-01-01

    JF Q J O I N T F O R C E Q U A R T E R L Y ISSU E SIx T Y -F O U R , 1 ST Q U A R T E R 2012 NEW SECURITY CHALLENGESAre you a professional...will pass this test, and we will do it by focusing our efforts in four areas. I will soon publish a pamphlet on these key efforts and encourage you ...to read, discuss, and debate them. I need your support, and I challenge you to do what you can in your corner of our wonderful profession to

  10. Swirling Annular Flow Experiments with Application to Plasma Torches

    NASA Astrophysics Data System (ADS)

    Fisher, L. E.; Settles, G. S.; Miller, J. D.

    2001-11-01

    Swirling flows have many applications such as combustors and cyclone separators. Here, a turbulent swirling annular cold-flow experiment is conducted in order to gain insight into conditions within a plasma cutting torch. Compressed air is forced through six circumferentially-spaced holes that impart tangential velocity to the flow at the annulus inlet. The flow subsequently traverses an annulus of L/D1 =1.8 before exiting through a sonic nozzle. The annulus (created by a cylindrical cathode in the center of the actual plasma torch) is viewable through an outer plexiglass cylinder in our 11:1 scaled-up cold-flow apparatus. Surface oil-flow visualization and laser sheet imaging are employed to investigate the annular flowfield at a Reynolds number of about 1000 based on gap width D2-D1. Results of these experiments, leading to a physical model of the flowfield, are shown. These results are helpful in understanding and improving the fluid-dynamic behavior of actual plasma torches, widely used to cut sheet metal in manufacturing. Supported by Hypertherm Inc.

  11. Surface-wave capillary plasmas in helium: modeling and experiment

    NASA Astrophysics Data System (ADS)

    Santos, M.; Alves, L. L.; Noel, C.; Belmonte, T.

    2012-10-01

    In this paper we use both simulations and experiments to study helium discharges (99.999% purity) sustained by surface-waves (2.45 GHz frequency), in capillary tubes (3 mm radius) at atmospheric pressure. Simulations use a self-consistent homogeneous and stationary collisional-radiative model that solves the rate balance equations for the different species present in the plasma (electrons, the He^+ and He2^+ ions, the He(n<7) excited states and the He2* excimers) and the gas thermal balance equation, coupled to the two-term electron Boltzmann equation (including direct and stepwise collisions as well as electron-electron collisions). Experiments use optical emission spectroscopy diagnostics to measure the electron density (Hβ Stark broadening), the gas temperature (ro-vibrational transitions of OH, present at trace concentrations), and the populations of different excited states. Model predictions at 1.7x10^13 cm-3 electron density (within the range estimated experimentally) are in good agreement with measurements (deviations < 10%) of (i) the excitation spectrum and the excitation temperatures (2795 ± 115 K, obtained from the Boltzmann-plot of the excited state populations, with energies lying between 22.7 and 24.2 eV), (ii) the power coupled to the plasma (˜ 180 ± 10 W), and (iii) the gas temperature (˜ 1700 ± 100 K). We discuss the extreme dependence of model results (particularly the gas temperature) on the power coupled to the plasma.

  12. TRW plasma wave experiment for the IMP-H mission

    NASA Technical Reports Server (NTRS)

    Virobik, P. F.; Scarf, F. L.

    1973-01-01

    The IMP-H plasma wave experiment is designed to extend knowledge of wave-particle interactions in the disturbed cislunar region, the distant geomagnetic tail, the upstream solar wind, and the flanks of the magnetosheath-shock interface. It is expected to identify plasma instabilities, study particle acceleration and heating at collisionless shocks and other discontinuities, analyze turbulent conductivity and field line merging, and provide new information on dissipation processes for suprathermal particles. Instrumentation for the plasma wave experiment is designed to measure local electric and magnetic field oscillations over the frequency range 10 Hz to 100 kHz. A 24 inch electric dipole, a 7 inch diameter air core search coil, and the associated preamplifiers are mounted on a spacecraft counterweight boom. The frequency range of 10 Hz to 100 kHz for both E and B is processed using an eight-channel spectrum analyzer located in the instrument main-body package (a standard IMP trapezoidal module, 3 inches high). Electric fields as small as 10-100 microvolts/meter and magnetic signals as small as 1-3 milligamma will be detected.

  13. Progress toward positron-electron pair plasma experiments

    NASA Astrophysics Data System (ADS)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Hugenschmidt, Ch.; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.

    2014-10-01

    Matter-antimatter pair plasmas have been of great theoretical and astrophysical interest for a long time. A Positron-Electron Experiment (APEX) aims for the creation and study of such a plasma in the laboratory. It will be operated at the NEPOMUC facility which provides a cold and high-intensity positron beam. To achieve at least 10 Debye length within APEX's flux surfaces the beam needs to initially pass through several stages of manipulation. Presented here is an overview of work from the APEX team. Topics include E-> × B-> beam handling for separation into multiple beams in order to reduce the energy spread of the positron beam; injection and trapping of electrons in a prototype dipole field device with a permanent magnet; and design plans for the next generation of confinement device. on behalf of the APEX/PAX Team and Collaborators.

  14. High Performance Plasmas on the National Spherical Torus Experiment

    SciTech Connect

    D.A. Gates; M.G. Bell; R.E. Bell; J. Bialek; T. Bigelow; M. Bitter; P. Bonoli; D. Darrow; P. Efthimion; J. Ferron; E. Fredrickson; L. Grisham; J. Hosea; D. Johnson; R. Kaita; S. Kaye; S. Kubota; H. Kugel; B. LeBlanc; R. Maingi; J. Manickam; T.K. Mau; R.J. Maqueda; E. Mazzucato; J. Menard; D. Mueller; B. Nelson; N. Nishino; M. Ono; F. Paoletti; S. Paul; Y-K.M. Peng; C.K. Phillips; R. Raman; P. Ryan; S.A. Sabbagh; M. Schaffer; C.H. Skinner; D. Stutman; D. Swain; E. Synakowski; Y. Takase; J. Wilgen; J.R. Wilson; W. Zhu; S. Zweben; A. Bers; M. Carter; B. Deng; C. Domier; E. Doyle; M. Finkenthal; K. Hill; T. Jarboe; S. Jardin; H. Ji; L. Lao; K.C. Lee; N. Luhmann; R. Majeski; H. Park; T. Peebles; R.I. Pinsker; G. Porter; A. Ram; M. Rensink; T. Rognlien; D. Stotler; B. Stratton; G. Taylor; W. Wampler; G.A. Wurden; X.Q. Xu; L. Zeng; and the NSTX Team

    2001-07-10

    The National Spherical Torus Experiment (NSTX) has produced toroidal plasmas at low aspect ratio (A = R/a = 0.86 m/0.68 m approximately equal to 1.3, where R is the major radius and a is the minor radius of the torus) with plasma currents of 1.4 MA. The rapid development of the machine has led to very exciting physics results during the first full year of physics operation. Pulse lengths in excess of 0.5 sec have been obtained with inductive current drive. Up to 4 MW of High Harmonic Fast Wave (HHFW) heating power has been applied with 6 MW planned. Using only 2 MW of HHFW heating power clear evidence of electron heating is seen with HHFW, as observed by the multi-point Thomson scattering diagnostic. A noninductive current drive concept known as Coaxial Helicity Injection (CHI) has driven 260 kA of toroidal current. Neutral-beam heating power of 5 MW has been injected. Plasmas with beta toroidal (= 2 mu(subscript ''0'')

    /B(superscript ''2'') = a measure of magnetic confinement efficiency ) of 22% have been achieved, as calculated using the EFIT equilibrium reconstruction code. Beta-limiting phenomena have been observed, and the maximum beta toroidal scales with I(subscript ''p'')/aB(subscript ''t''). High frequency (>MHz) magnetic fluctuations have been observed. High-confinement mode plasmas are observed with confinement times of >100 msec. Beam-heated plasmas show energy confinement times in excess of those predicted by empirical scaling expressions. Ion temperatures in excess of 2.0 keV have been measured, and power balance suggests that the power loss from the ions to the electrons may exceed the calculated classical input power to the ions.

  15. Joint Experiments on X-ray/Particle Emission from Plasmas Produced by Laser Irradiating Nano Structured Targets

    NASA Astrophysics Data System (ADS)

    Hegazy, H.; Allam, S. H.; Chaurasia, S.; Dhareshwar, L.; El-Sherbini, Th. M.; Kunze, H.-J.; Mank, G.; McDaniel, D. H.; Rosinski, M.; Ryc, L.; Stewart, B.; Wolowski, J.; Abd El-Ghany, H.; Abd El-Latif, G.; Abd El-Rahim, F. M.; Bedrane, Z.; Diab, F.; Farrag, A.; Hedwig, R.; Helal, A.; Pardede, M.; Refaie, A.; Sharkawy, H.; El-khatim, A., Sir

    2008-04-01

    The 1st Joint (Host Laboratory) Experiment on laser plasma involving more than twenty scientists from eight countries has been carried out at the Laser and New Materials Laboratory, Faculty of Science, Cairo University, Egypt. It was co-ordinated by the International Atomic Energy Agency (IAEA) and supported through the IAEA and the ICTP (International Centre for Theoretical Physics, Trieste). The main experimental programme was aimed at characterising the possible enhancement of x-ray and particle emission from plasmas produced by laser incidence on nano-structured targets. Laser beams at 1.064 μm of 250 mJ and 532 nm of 165 mJ focused at the target surface using a nanosecond laser type Quantel were used in the present study. In the present experiments nano-copper structures evaporated onto copper bulk disks and nano-gold structures evaporated onto gold ones were used. The thickness of the nano-materials on their bulk material was 1 μm. An ion collector and x-ray semiconductor diode were used to study the ion and x-ray emission, respectively. Both were positioned at the same port at 90° with respect to the target surface and at 90 cm from the surface in the case of the ion collector and 55 cm in the case of the x-ray detector. These experiments were performed at vacuum pressures of (5—8)×10-6 mbar. Comparison of both studies in the case of nano structured targets and bulk targets were performed at different laser fluencies (1×109-1×1012 W/cm2) on the target. A 20% increase of the X-ray emission for nano gold with respect to bulk gold was observed, however, the x-ray emission in the of nano copper and copper was the same.

  16. Joint Experiments on X-ray/Particle Emission from Plasmas Produced by Laser Irradiating Nano Structured Targets

    SciTech Connect

    Hegazy, H.; Diab, F.; Allam, S. H.; El-Sherbini, Th. M.; Abd El-Latif, G.; Farrag, A.; Helal, A.; Refaie, A.; Sharkawy, H.; Chaurasia, S.; Dhareshwar, L.; Kunze, H.-J.; Mank, G.; McDaniel, D. H.; Rosinski, M.; Ryc, L.; Wolowski, J.; Stewart, B.; Abd El-Ghany, H.; Abd El-Rahim, F. M.

    2008-04-07

    The 1st Joint (Host Laboratory) Experiment on laser plasma involving more than twenty scientists from eight countries has been carried out at the Laser and New Materials Laboratory, Faculty of Science, Cairo University, Egypt. It was co-ordinated by the International Atomic Energy Agency (IAEA) and supported through the IAEA and the ICTP (International Centre for Theoretical Physics, Trieste). The main experimental programme was aimed at characterising the possible enhancement of x-ray and particle emission from plasmas produced by laser incidence on nano-structured targets. Laser beams at 1.064 {mu}m of 250 mJ and 532 nm of 165 mJ focused at the target surface using a nanosecond laser type Quantel were used in the present study. In the present experiments nano-copper structures evaporated onto copper bulk disks and nano-gold structures evaporated onto gold ones were used. The thickness of the nano-materials on their bulk material was 1 {mu}m. An ion collector and x-ray semiconductor diode were used to study the ion and x-ray emission, respectively. Both were positioned at the same port at 90 deg. with respect to the target surface and at 90 cm from the surface in the case of the ion collector and 55 cm in the case of the x-ray detector. These experiments were performed at vacuum pressures of (5--8)x10{sup -6} mbar. Comparison of both studies in the case of nano structured targets and bulk targets were performed at different laser fluencies (1x10{sup 9}-1x10{sup 12} W/cm{sup 2}) on the target. A 20% increase of the X-ray emission for nano gold with respect to bulk gold was observed, however, the x-ray emission in the of nano copper and copper was the same.

  17. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  18. Volumetric-driven flows on the Plasma Couette Experiment

    NASA Astrophysics Data System (ADS)

    Flanagan, Ken; Clark, M. M.; Lynn, J.; Siller, R.; Tabbutt, M.; Wallace, J.; Xu, Y.; Forest, C. B.

    2016-10-01

    Experiments for driving Keplerian-like flow profiles with the goal of exciting the magnetorotational instability (MRI) on the Plasma Couette Experiment Upgrade (PCX-U) are described. Instead of driving flow at the boundaries as is typical in many liquid metal Couette experiments, a global drive is implemented. A large (20+ A) radial current is drawn across a small (1-3 G) axial field generating torque across the whole profile. This volumetric-driven flow (VDF) is capable of producing profiles similar to Keplerian flow with Alfvén Mach numbers of order unity-ideal for MRI studies. Experimental measurements will be compared to numerical calculations that show that at sufficiently high magnetic and fluid Reynolds numbers, VDF can drive the MRI. This work is supported by the NSF.

  19. AIDS. 1st annual George H. Gallup Memorial Survey.

    PubMed

    1988-06-01

    Acquired immunodeficiency syndrome (AIDS) was selected as the subject for the 1st annual George H Gallup Memorial Survey. This survey, conducted in August 1987-April 1988 in 35 countries, measured the level of awareness of AIDS, the extent of concern about AIDS, knowledge, changes in behavior resulting form the AIDS epidemic, and attitudes toward people with AIDS. Overall, the poll's findings attest to the effectiveness of the health education efforts of governmental and nongovernmental organizations. Awareness that AIDS poses an urgent international health problem was almost universal in the 35 samples. In about half of these countries, AIDS was identified as the most important national health problem; in the remaining countries, AIDS was ranked 2nd to cancer. The proportion of respondents expressing a fear of personally contracting the AIDS virus ranged from lows of under 10% in most of Europe to a high of 45% among South African blacks. A majority of respondents in the US, Colombia, the Philippines, Brazil, Nigeria, Ecuador, El Salvador, and Chile believed that AIDS will soon spread beyond current risk groups to the general population. Despite widespread awareness of the grave threat posed by AIDS, insufficient numbers of respondents reported that they had made specific behavioral changes intended to protect themselves form HIV infection. Overall, about half of those interviewed indicated they are now more cautious in their choice of sexual partners; similarly, about half are using condoms more or for the 1st time.

  20. Gas-injection experiments on a dense plasma focus

    SciTech Connect

    Barnouin, O.; Javedani, J.; Del Medico, S.; Miley, G.H.; Bromley, B.

    1994-12-31

    Rockford Technology Associates, Inc. (RTA) has been doing experiments on the Dense Plasma focus (DPF) device at the Fusion Studies Laboratory of the University of Illinois. This DPF consists of four racks of five 2-{mu}F capacitors whose charge is switched onto the inner electrode of a plasma focus by four Trigatron spark gaps. The stored energy is 12.5 kJ at 25 kV. The bank is usually discharged in a static fill of H{sub 2} at {approx} 6 torr. Preliminary experiments aimed at exploring the potential of the DPF device as a magnetoplasmadynamic (MPD) thruster and as an x-ray source for lithography have investigated various alternative ways of injecting gas between the electrodes. One of those approaches consists of injecting gas from the tip of the inner electrode at a steady rate. In this operation, the DPF chamber pressure was held constant by running the vacuum pump at full throttle. This operation simulated simultaneous pulsed injection at the base insulator and electrode tip. Hydrogen was fed through a 1/16th-inch hole at a flow rate of {approx} 90 cm/s. Pulsing was then performed at 23 kV, and the corresponding variations of the current were observed using a Rogowski coil. It is found that the plasma collapses into a pinch at the same time as in conventional experiments using a static fill. The singularity in the current waveform is slightly smaller with tip injection, but its size and shape are easily reproducible. Further details and comparison of this operation with conventional pulsing will be presented.

  1. The AMPTE/CCE Hot-Plasma Composition Experiment (HPCE)

    NASA Astrophysics Data System (ADS)

    Shelley, E. G.; Ghielmetti, A.; Hertzberg, E.; Battel, S. J.; Altwegg-von Burg, K.; Balsiger, H.

    1985-05-01

    The Hot-Plasma Composition Experiment (HPCE) on the AMPTE-CCE spacecraft consists of an energetic ions-mass spectrometer and an electron background-environment monitor (EBEM). The mass spectrometer covers the entire mass per charge range from below 1 to greater than 150 amu/e and the energy per charge range from 0 eV/e (spacecraft potential) to 17 keV/e. The EBEM measures electrons between 50 eV and 25 keV in eight broad energy bands. The ion and electron data are processed into color spectrogram formats for the data pool.

  2. The AMPTE/CCE Hot-Plasma Composition Experiment (HPCE)

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Ghielmetti, A.; Hertzberg, E.; Battel, S. J.; Altwegg-Von Burg, K.; Balsiger, H.

    1985-01-01

    The Hot-Plasma Composition Experiment (HPCE) on the AMPTE-CCE spacecraft consists of an energetic ions-mass spectrometer and an electron background-environment monitor (EBEM). The mass spectrometer covers the entire mass per charge range from below 1 to greater than 150 amu/e and the energy per charge range from 0 eV/e (spacecraft potential) to 17 keV/e. The EBEM measures electrons between 50 eV and 25 keV in eight broad energy bands. The ion and electron data are processed into color spectrogram formats for the data pool.

  3. Flowing dusty plasma experiments: generation of flow and measurement techniques

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  4. Plasma interaction experiment 2 (PIX 2): Laboratory and flight results

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1985-01-01

    The Plasma Interaction Experiments 1 and 2 (PIX 1 and 2) were designed as first steps toward understanding interactions between high-voltage solar arrays and the surrounding plasma. The PIX 2 consisted of an approximately 2000-sq cm array divided into four equal segments. Each of the segments could be biased independently and the current measured separately. In addition to the solar array segments, PIX 2 had a hot-wire-filament electron emitter and a spherical Langmuir probe. The emitter was operated when the array segments were biased positively bove 125 V. Thermal electrons from the emitter aided in balancing the electron currents collected by the array. Laboratory and flight results of PIX 2 are presented. At high positive voltages on the solar array segments, the flight currents were approximately an order of magnitude larger than the ground test currents. This is attributed to the tank walls in the laboratory interfering with the electron currents to the array segments. From previous tests it is known that the tank walls limit the electron currents at high voltages. This was the first verification of the extent of the laboratory tank effect on the plasma coupling current.

  5. THz Radiation Generation via Laser Plasma Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru; Higashiguchi, Takeshi

    2008-12-01

    Recently radiation generation from the interaction between laser and plasma is studied. Terahertz radiation from photo-conductive antenna which is based on semiconductor technology is widely used, The power is in the order of nano-watt level so that it is hard to use for application. On the other hand, terahertz radiation from laser plasma interaction is much higher than that of semiconductor technology. In our experiments, we have studied by use DARC (dc to ac radiation converter) mechanism by using YAG laser with nano-second pulse duration. DARC is novel radiation source using the interaction between laser-created ionization front and static electric field. The frequency of radiation is determined by both plasma density of ionization front and the geometry of DARC structure. We observed radiation pulse of frequency of 1.2 THz and pulse duration of 2 ps with ZnSe crystal as media detected by EO (electro-optics) sampling technique. Note from Publisher: This article contains the abstract only.

  6. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Hooper, E. B.; Woodruff, S.; Bulmer, R. H.; Hill, D. N.; McLean, H. S.; Wood, R. D.

    2003-07-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX.

  7. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect

    Warren, Harry P.; Doschek, George A.; Mariska, John T.

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  8. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  9. LHCD experiments in high performance plasmas in JET

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Baranov, Y.; Dobbing, J. A.; Fischer, B.; Goniche, M.; Gormezano, C.; Romero, J. A.; Schild, P.; Söldner, F. X.; Challis, C. D.; Sips, A. C. C.; Tubbing, B.

    1997-04-01

    Lower Hybrid Current Drive (LHCD) has been used for current profile shaping in the shear optimisation experiments in 1996/97 in JET. PLH≲3MW has been applied in the initial current ramp-up in order to control the internal inductance. An internal transport barrier with improved central electron confinement has been produced in this phase with LHCD alone. This has resulted in a peaking of the electron temperature profile and Te0 above 10keV at ne0⩽1.5×1019 m-3. The profile of the LH driven current, as determined by hard X-ray mesurements, is peaked at approximately mid-radius in these conditions. Good coupling of the LH waves has been obtained by the use of a near gas feed. This method reduces the risk of plasma-launcher interaction, since the launcher can be positioned in the shadow of the poloidal limiters. A reflection coefficient of 5% has been maintained at a plasma-launcher distance of 8 cm and PLH=5 MW has been coupled to divertor plasmas in L-mode with this method.

  10. Non-equilibrium plasma experiments at The Pennsylvania State University

    NASA Astrophysics Data System (ADS)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  11. ISEE-1 data reduction and analysis plasma composition experiment

    NASA Astrophysics Data System (ADS)

    Lennartsson, W.; Sharp, R. D.

    1985-03-01

    The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.

  12. Modeling Hohlraum-Based Laser Plasma Instability Experiments

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.

    2005-10-01

    Laser fusion targets must control laser-plasma instabilities (LPI) in order to perform as designed. We present analyses of recent hohlraum LPI experiments from the Omega laser facility. The targets, gold hohlraums filled with gas or SiO2 foam, are preheated by several 3φ beams before an interaction beam (2φ or 3φ) is fired along the hohlraum axis. The experiments are simulated in 2-D and 3-D using the code hydra. The choice of electron thermal conduction model in hydra strongly affects the simulated plasma conditions. This work is part of a larger effort to systematically explore the usefulness of linear gain as a design tool for fusion targets. We find that the measured Raman and Brillouin backscatter scale monotonically with the peak linear gain calculated for the target; however, linear gain is not sufficient to explain all trends in the data. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  13. Parallel collisionless-shock experiments at the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Weidl, Martin; Heuer, Peter; Bondarenko, Anton; Schaeffer, Derek; Winske, Dan; Constantin, Carmen; Jenko, Frank; Niemann, Christoph

    2017-04-01

    Previous research on parallel collisionless shocks, which constitute an important part of the Earth's bow shock region, has been limited to satellite measurements and simulations. However, whether and how these collisionless shocks form depends on a wide range of parameters and scales, some of which can be established and measured more easily in a laboratory experiment. Using a kJ-class laser, an ongoing experimental campaign at the Large Plasma Device (LAPD) at UCLA in Los Angeles is expected to produce the first laboratory measurements of the formation of a parallel collisionless shock. We present hybrid kinetic/MHD simulations which show how ion-beam instabilities in the background plasma can be driven by ablating carbon ions from a polyethylene target, causing non-linear density oscillations which eventually develop into a propagating shock front. The free-streaming carbon ions can excite both the resonant right-hand instability and the non-resonant firehose mode, the latter of which has also received a lot of attention among astrophysicists as Bell's instability. We present measurements from a first trial experiment at LAPD, in which we have identified these instabilities, and discuss their respective roles for future shock formation and the basic microphysical processes which drive them.

  14. ISEE-1 data reduction and analysis plasma composition experiment

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Sharp, R. D.

    1985-01-01

    The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.

  15. 1st Workshop of the Canadian Society for Virology

    PubMed Central

    McCormick, Craig; Grandvaux, Nathalie

    2017-01-01

    The 1st Workshop of the Canadian Society for Virology (CSV2016) was a Special Workshop of the 35th Annual Meeting for the American Society for Virology, held on 18 June 2016 on the beautiful Virginia Tech campus in Blacksburg, Virginia. The workshop provided a forum for discussion of recent advances in the field, in an informal setting conducive to interaction with colleagues. CSV2016 featured two internationally-renowned Canadian keynote speakers who discussed translational virology research; American Society for Virology President Grant McFadden (then from University of Florida, now relocated to Arizona State University) who presented his studies of oncolytic poxviruses, while Matthew Miller (McMaster University) reviewed the prospects for a universal influenza vaccine. The workshop also featured a variety of trainee oral and poster presentations, and a panel discussion on the topic of the future of the CSV and virus research in Canada. PMID:28335511

  16. 1st Workshop of the Canadian Society for Virology.

    PubMed

    McCormick, Craig; Grandvaux, Nathalie

    2017-03-20

    The 1st Workshop of the Canadian Society for Virology (CSV2016) was a Special Workshop of the 35th Annual Meeting for the American Society for Virology, held on 18 June 2016 on the beautiful Virginia Tech campus in Blacksburg, Virginia. The workshop provided a forum for discussion of recent advances in the field, in an informal setting conducive to interaction with colleagues. CSV2016 featured two internationally-renowned Canadian keynote speakers who discussed translational virology research; American Society for Virology President Grant McFadden (then from University of Florida, now relocated to Arizona State University) who presented his studies of oncolytic poxviruses, while Matthew Miller (McMaster University) reviewed the prospects for a universal influenza vaccine. The workshop also featured a variety of trainee oral and poster presentations, and a panel discussion on the topic of the future of the CSV and virus research in Canada.

  17. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  18. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  19. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  20. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    SciTech Connect

    Cooper, C. M.; Brookhart, M.; Collins, C.; Khalzov, I.; Milhone, J.; Nornberg, M.; Weisberg, D.; Forest, C. B.; Wallace, J.; Clark, M.; Flanagan, K.; Li, Y.; Nonn, P.; Ding, W. X.; Whyte, D. G.; Zweibel, E.

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ∼14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M{sub A}{sup 2}=(v/v{sub A}){sup 2}>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  1. Proceedings of the 1st Space Plasma Computer Analysis Network (SCAN) Workshop. [space plasma computer networks

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Waite, J. H.; Johnson, J. F. E.; Doupnik, J. R.; Heelis, R. A.

    1983-01-01

    The purpose of the workshop was to identify specific cooperative scientific study topics within the discipline of Ionosphere Magnetosphere Coupling processes and to develop methods and procedures to accomplish this cooperative research using SCAN facilities. Cooperative scientific research was initiated in the areas of polar cusp composition, O+ polar outflow, and magnetospheric boundary morphology studies and an approach using a common metafile structure was adopted to facilitate the exchange of data and plots between the various workshop participants. The advantages of in person versus remote workshops were discussed also.

  2. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  3. Cryogenic heat loads analysis from SST-1 plasma experiments

    NASA Astrophysics Data System (ADS)

    Bairagi, N.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Cryogenic heat load analysis is an important aspect for stable operation of Tokamaks employing large scale superconducting magnets. Steady State Superconducting Tokamak (SST-1) at IPR is equipped with superconducting magnets system (SCMS) comprising sixteen numbers of modified ‘D’ shaped toroidal field (TF) and nine poloidal field (PF) superconducting coils which are wound using NbTi/Cu based cable-in conduit conductor (CICC). SST-1 magnets operation has flexibility to cool either in two-phase with sub-cooling, two-phase without sub-cooling or single phase (supercritical) helium using a dedicated 1.3 kW helium refrigerator cum liquefier (HRL). Here, we report gross heat losses for integrated TF superconducting magnets of SST-1 during the plasma campaign using cryogenic helium supply/return thermodynamic data from cryoplant. Heat loads mainly comprising of steady state as well as transient loads are smoothly absorbed by SST-1 cryogenic helium plant during plasma experiments. The corresponding heat produced in the coils is totally released to the helium flowing through the TF coils, which in turn is dumped into liquid helium stored in main control Dewar. These results are very useful reference for heat loss analysis for TF as well as PF coils and provides database for future operation of SST-1 machine.

  4. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Donkó, Z.; Schulze, J.; Czarnetzki, U.; Derzsi, A.; Hartmann, P.; Korolov, I.; Schüngel, E.

    2012-12-01

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach.

  5. Comparing MHD simulations of RFP plasmas to RELAX experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sauppe, J. P.; Masamune, S.; Sanpei, A.

    2015-11-01

    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, which can be applied to general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we calculate linear stability and simulate the nonlinear evolution of plasmas similar to those in the RELAX RFP experiment, whose relatively modest Lundquist numbers of order 104 make the simulations tractable given present computing resources. The chosen RELAX cases cover a broad range of RFP reversal parameters and have also been previously simulated with the MIPS code (N. Mizuguchi et al., TH/P3-26, IAEA FEC, 2012). Experimental diagnostics that can be used for validation purposes include Thomson scattering for electron temperature, interferometry for electron density, SXR imaging, and external and internal magnetic probes. RELAX's small aspect ratio (~ 2) motivates a comparison study using toroidal and cylindrical geometries in NIMROD. This work is supported by the U.S. DOE and NSF and by the Japan Society for the Promotion of Science.

  6. Plasma flow switch experiments on Pegasus-II

    SciTech Connect

    Shlachter, J.S.; Bartsch, R.R.; Benage, J.F.

    1994-12-31

    Pegasus-II, a 4.3 MJ capacitor bank facility at Los Alamos National Laboratory, has a current rise time of 5 {mu}s and requires the use of a fast ({approx} 500 ns) opening switch with long conduction time for some applications. Development of plasma flow opening switches (PFS), based on the design of the Shiva Star experiments, has been conducted during the last year. The PFS for these experiments consisted of two components: an annular aluminum conductor bridging the gap between the coaxial conductors in the Pegasus-II power-flow channel and an annular mylar foil located 6.3 mm downstream of the aluminum. The authors have investigated assemblies with 1/r{sup 2} mass distributions, designed to produce planar motion down the power flow channel. The total mass of the PFS assembly has been varied as has the construction of the aluminum component. The downstream load in the load slot was either a high inductance, 1-cm radius non-imploding pipe or a cylindrical, 12.7-mg pure aluminum imploding foil with 5-cm radius. Experiments have been conducted both with and without a trap region in the downstream inner conductor; the trap is one mechanism for preventing PFS material from entering the load slot.

  7. Convex crystal x-ray spectrometer for laser plasma experiments

    SciTech Connect

    May, M.; Heeter, R.; Emig, J.

    2004-10-01

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC.

  8. Plasma Jog Experiments on MRX in Collaboration with MMS team

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki; Yoo, Jongsoo; Tharp, Tim; Ji, Hantao; Lawrence, Eric

    2011-10-01

    In the Magnetic Reconnection Experiment (MRX), a multi-probe mock-up system is utilized to investigate the fine structure of the diffusion region of the reconnection layer and to identify data signatures which indicate the nearby presence of a reconnection neutral sheet. The reconnection layer is swept through the probe system in controlled speeds of 0.01-0.2 of the Alfvén velocity. This situation is very similar to the space measurements in which the current sheet moves with respect to satellites as expected in the Magnetosphere Multi-scale Satellite (MMS) cluster configuration. The main objectives of the proposed joint research are (1) to compare basic properties of the reconnection regions in the neutral sheet of space and laboratory plasmas, (2) to study their roles in the process of magnetic reconnection, and (3) to measure fine scale profiles of the thin electron diffusion layer. A series of the first results from the experimental campaign are presented.

  9. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2016-09-01

    Hysteresis, which is the history dependence of physical systems, indicates that there are more-than-two stable points in a given condition, and it has been considered to one of the most important topics in fundamental physics. Recently, the hysteresis of plasma has become a focus of research because stable plasma operation is very important for fusion reactors, bio-medical plasmas, and industrial plasmas for nano-device fabrication process. Interestingly, the bi-stability characteristics of plasma with a huge hysteresis loop have been observed in inductive discharge plasmas Because hysteresis study in such plasmas can provide a universal understanding of plasma physics, many researchers have attempted experimental and theoretical studies. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. This research was partially supported by Korea Research Institute of Standard and Science.

  10. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  11. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Hahn, Michael; Vincena, Steve

    2017-06-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfven speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfven speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  12. MACH2 modeling of LANL plasma-flow-switch experiments

    SciTech Connect

    Wysocki, F.J.

    1994-12-31

    The plasma-flow opening-switch (PFS) is being developed at the Los Alamos National Laboratory as part of the Athena Program. The present goal is to switch 10--20 MA of current into a cylindrical-foil implosion load in 300--400 ns. Primary drivers currently in use include the Pegasus-II capacitor bank which delivers 8--10 MA to the PFS in 3--4 {mu}s and the Procyon explosively-driven flux-compression generator which delivers 15--18 MA in 2--3 {mu}s. A series of experiments using Pegasus-II and Procyon have characterized the PFS performance for a variety of experimental conditions. Issues examined with Pegasus-II include switch-mass (50-mg vs. 100-mg), switch fabrication (wire-array vs. graded-thickness-foil), current level (7 MA vs. 10 MA), presence or absence of a plasma trap, and static load vs. implosion load. Procyon has been used to characterize a PFS with a 1/r aerial-mass-density profile (as opposed to the Pegasus-II 1/r{sup 2} profile). The MACH2 two-dimensional magnetohydrodynamic code has been used to model these experiments and comparison of simulation data to the experimental data has been made. This includes direct comparison of data from an array of B-dot probes present on all tests (19--23 probes), direct comparison of x-ray yield and power for those tests with implosion loads, and qualitative comparison to framing and streak data. The agreement between simulation data and experimental data is reasonably good.

  13. T1/ST2 promotes T helper 2 cell activation and polyfunctionality in bronchopulmonary mycosis.

    PubMed

    Piehler, D; Grahnert, A; Eschke, M; Richter, T; Köhler, G; Stenzel, W; Alber, G

    2013-03-01

    Interleukin (IL)-33 enhances T helper (Th)2 immunity via its receptor T1/ST2. Infection with the yeast-like pathogen Cryptococcus neoformans is usually controlled by a Th1-mediated immune response. The mechanisms responsible for nonprotective Th2 immunity leading to allergic inflammation in pulmonary cryptococcosis are still not fully understood. Using a murine pulmonary model of C. neoformans infection, we report that T1/ST2 expression correlates with the intensity of Th2 activation, as demonstrated by the expression of CD25 and CD44 and downregulation of CD62L. Antigen-specific T1/ST2(+) Th cells are the primary source of the Th2 cytokines IL-5 and IL-13 as compared with wild-type T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. In addition, T1/ST2(+) Th cells almost exclusively contain bi- and trifunctional Th2 cytokine-producing Th cells compared with T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. Finally, T1/ST2-driven Th2 development resulted in defective pulmonary fungal control. These data demonstrate that T1/ST2 directs Th2 cell activation and polyfunctionality in allergic bronchopulmonary mycosis.

  14. Active experiments in space in conjunction with Skylab. [barium plasma injection experiment and magnetic storm of March 7, 1972

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1974-01-01

    Two papers are presented which relate to the Skylab barium shaped charge experiments. The first describes the L=6.6 OOSIK barium plasma injection experiment and magnetic storm of March 7, 1972. Rocket payload, instrumentation, data reduction methods, geophysical environment at the time of the experiment, and results are given. The second paper presents the observation of an auroral Birkeland current which developed from the distortion of a barium plasma jet during the above experiment.

  15. Conference report: 1st Medicon Valley Inhalation Symposium.

    PubMed

    Lastow, Orest

    2013-02-01

    The 1st Medicon Valley Inhalation Symposium was arranged by the Medicon Valley Inhalation Consortium. It was held at the Medicon Village site, which is the former AstraZeneca site in Lund, Sweden. It was a 1-day symposium focused on inhaled drug delivery and inhalation product development. A total of 90 delegates listened to 15 speakers. The program was organized to follow the value chain of an inhalation product development. The benefits and future opportunities of inhaled drug delivery were discussed together with some new disease areas that can be targeted with inhalation. The pros and cons of the two main formulation types; dry powder and liquid formulations, were discussed by a panel. The different requirements of the drug molecules from a pharmacology, chemical and physical perspective were explained. The modeling of the physics inside an inhaler was demonstrated and the potential strategic benefits of device design were highlighted together with the many challenges of formulation manufacturing. Lung deposition mechanisms and the difficulties of the generic bioequivalence concept were discussed. Using an anatomically correct impactor inlet is a valuable tool in lung deposition predictions and the planning of clinical trials. The management of the biological material generated in clinical studies is key to successful studies.

  16. Small satellite attitude determination during plasma brake deorbiting experiment

    NASA Astrophysics Data System (ADS)

    Khurshid, Osama; Selkäinaho, Jorma; Soken, Halil Ersin; Kallio, Esa; Visala, Arto

    2016-12-01

    This paper presents a study on attitude estimation during the Plasma Brake Experiment (PBE) onboard a small satellite. The PBE demands that the satellite be spun at a very high angular velocity, up to 200 deg/s, to deploy the tether using centrifugal force. The spin controller, based on purely magnetic actuation, and the PBE demands accurate attitude estimation for the successful execution of the experiment. The biases are important to be estimated onboard small satellites due to the closely integrated systems and relatively higher interference experienced by the sensors. However, bias estimation is even more important for PBE due to the presence of a high voltage unit, onboard the satellite, that is used to charge the tether and can be the source of interference. The attitude and the biases, when estimated simultaneously, results in an augmented state vector that poses a challenge to the proper tuning of process noise. The adaptation of process noise covariance has, therefore, been studied and analysed for the challenging PBE. It has been observed that adapting the process noise covariance improves the estimation accuracy during the spin-up phase. Therefore, it is very important to use adaptive process noise covariance estimation.

  17. Some diagnostic interpretations from railgun plasma profile experiments

    SciTech Connect

    Stainsby, D.F.; Bedford, A.J.

    1984-03-01

    Some aspects of a railgun experimental series to investigate plasma profiles are reviewed. Certain diagnostic records clearly show plasma leakage past the projectile, and correspondence between various in-bore events and muzzle voltage. A muzzle flash detector is shown to have a useful role as a plasma diagnostic tool.

  18. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1983-01-01

    Sensitive, high resolution plasma probes for analysis of the distribution functions and plasma wave instruments for measurements of electromagnetic and electrostatic wave modes are commonly flown together to provide information on plasma instabilities and wave particle interactions. Analysis of the data for the ISEE 3 mission is provided.

  19. Systems Analysis of a Compact Next Step Burning Plasma Experiment

    SciTech Connect

    S.C. Jardin; C.E. Kessel; D. Meade; C. Neumeyer

    2002-02-06

    A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study.

  20. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  1. Advanced simulations of application plasmas: Comparisons with experiments and validations

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo

    2005-10-01

    Continuum-fluid and particle-in-cell models are the numerical simulation techniques commonly used for simulating low-temperature plasmas for plasma technology applications. Simulations can often identify research guidelines and propose novel designs leading to performance improvements in different plasma systems. We present an overview of the principles, strengths and limitations of the these. These modeling results are benchmarked by comparing in different plasma systems (capacitively and inductively coupled plasmas) with experimentally measured data and with other numerical results. The potential profile and the electron/ion kinetic information such as electron/ion energy distributions and temperatures are important for understanding the plasma phenomena. Kinetic 1d particle-in-cell/Monte-Carlo-collision and fluid modelings of Ar-oxygen plasma sources are carried out in the wide parameter range.

  2. 94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST 1857' - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, CONTINENTAL GIN COMPANY HYDRAULIC TANK - Magnolia Plantation, Cotton Gins & Presses, LA Route 119, Natchitoches, Natchitoches Parish, LA

  4. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Ide, T.; Kuwada, M.; Koga, M.; Kato, T.; Norimatsu, T.; Gregory, C.; Woolsey, N.; Murphy, C.; Gregori, G.; Schaar, K.; Diziere, A.; Koenig, M.; Pelka, A.; Wang, S.; Dong, Q.; Li, Y.; Takabe, H.

    2013-11-01

    The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII) HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness) is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2˜0.3 T) perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ˜150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  5. The Plasma Interaction Experiment /PIX/ - Description and flight qualification test program

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.; Haley, F. A.; Domino, E. J.; Culp, D. H.; Shaker, F. J.

    1978-01-01

    The Plasma Interaction Experiment (PIX) is a battery powered preprogrammed auxiliary payload on the Landsat-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus 1 kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage-biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage.

  6. The Plasma Interaction Experiment /PIX/ - Description and flight qualification test program

    NASA Technical Reports Server (NTRS)

    Ignaczak, L. R.; Haley, F. A.; Domino, E. J.; Culp, D. H.; Shaker, F. J.

    1978-01-01

    The Plasma Interaction Experiment (PIX) is a battery powered preprogrammed auxiliary payload on the Landsat-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus 1 kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage-biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage.

  7. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    SciTech Connect

    Kyle A. Morrison; Stephen F. Paul; Ronald C. Davidson

    2003-08-11

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion.

  8. Convex Crystal X-ray Spectrometer for Laser Plasma Experiments

    SciTech Connect

    May, M; Heeter, R; Emig, J

    2004-04-15

    Measuring time and space-resolved spectra is important for understanding Hohlraum and Halfraum plasmas. Experiments at the OMEGA laser have used the Nova TSPEC which was not optimized for the OMEGA diagnostic space envelope or for the needed spectroscopic coverage and resolution. An improved multipurpose spectrometer snout, the MSPEC, has been constructed and fielded on OMEGA. The MSPEC provides the maximal internal volume for mounting crystals without any beam interferences at either 2x or 3x magnification. The RAP crystal is in a convex mounting geometry bent to a 20 cm radius of curvature. The spectral resolution, E/dE, is about 200 at 2.5 keV. The spectral coverage is 2 to 4.5 keV. The MSPEC can record four separate spectra on the framing camera at time intervals of up to several ns. The spectrometer design and initial field-test performance will be presented and compared to that of the TSPEC. Work supported by U. S. DoE/UC LLNL contract W-7405-ENG-48

  9. Turbulent hydrodynamics experiments using a new plasma piston

    SciTech Connect

    Edwards, J.; Glendinning, S. G.; Suter, L. J.; Remington, B. A.; Landen, O.; Turner, R. E.; Shepard, T. J.; Lasinski, B.; Budil, K.; Robey, H.

    2000-05-01

    A new method for performing compressible hydrodynamic instability experiments using high-power lasers is presented. A plasma piston is created by supersonically heating a low-density carbon based foam with x-rays from a gold hohlraum heated to {approx}200 eV by a {approx}1 ns Nova laser pulse [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)]. The piston causes an almost shockless acceleration of a thin, higher-density payload consisting of a layer of gold, initially 1/2 {mu}m thick, supported on 10 {mu}m of solid plastic, at {approx}45 {mu}m/ns{sup 2}. The payload is also heated by hohlraum x-rays to in excess of 150 eV so that the Au layer expands to {approx}20 {mu}m prior to the onset of instability growth. The Atwood number between foam and Au is {approx}0.7. Rayleigh-Taylor instability, seeded by the random fibrous structure of the foam, causes a turbulent mixing region with a Reynolds number >10{sup 5} to develop between piston and Au. The macroscopic width of the mixing region was inferred from the change in Au layer width, which was recorded via time resolved x-radiography. The mix width thus inferred is demonstrated to depend on the magnitude of the initial foam seed. For a small initial seed, the bubble front in the turbulent mixing region is estimated indirectly to grow as {approx}0.036{+-}0.19 [{integral}{radical}(Ag)dt]{sup 2} which would imply for a constant acceleration 0.036{+-}0.019 Agt{sup 2}. More direct measurement techniques must be developed in larger scale experiments to remove potential complicating factors and reduce the error bar to a level that would permit the measurements to discriminate between various theories and models of turbulent mixing. (c) 2000 American Institute of Physics.

  10. Laser Plasma Instability Experiments with KrF Lasers

    DTIC Science & Technology

    2007-01-01

    L. Phillips, A. J. Schmitt, J. D. Sethain, R . K. McCrory, W. Seka, C. Verdon, J. P. Knauer, B. B. Afeyan, H. T . Powell, Physics of Plasmas, 5, 5...Physics of Plasmas. 8 R . Betti, K. Anderson, J. Knauer, T . J. B. Collins, R . L. McCrory, R . W. McKenty, S. Skupsky, Physics of Plasmas, 12, 4, 042703...2005). 9 W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Boulder, 1988). 10 J. M. McMahon, R . P. Burns, T . H. DeRieux, R

  11. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE PAGES

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...

    2017-09-21

    Highmore » $$\\beta$$ plasma response to the rotating n=1 external magnetic perturbations is numerically studied and compared with National Spherical Torus eXperiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows the drift kinetic effects are important to resolve the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit [F. Troyon et al., Plasma Phys. Control. Fusion 26, 209 (1984)]. Thus, since the external rotating fields and high plasma rotation are presented in NSTX experiments, the importance of resistive wall effect and plasma rotation on determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy, due to plasma rotation, destabilizes the plasma. Finally, the complexity of plasma response, in this study, indicates that MHD modeling, including comprehensive physics e.g. the drift kinetic effects, resistive wall and plasma rotation, is essential to reliably predict the plasma behavior in high beta spherical tokamak device.« less

  12. The Electron and ion Plasma Experiment for Fast

    NASA Astrophysics Data System (ADS)

    Carlson, C. W.; McFadden, J. P.; Turin, P.; Curtis, D. W.; Magoncelli, A.

    2001-08-01

    The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a

  13. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    NASA Astrophysics Data System (ADS)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  14. ISEE-1 and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Felthauser, H. E.; Glore, J. P.; Paschmann, G.; Hemmerich, P.; Lehmann, K.; Rosenbauer, H.

    1978-01-01

    Identical fast plasma experiment (FPE) systems were placed on the ISEE-1 and ISEE-2 spacecraft. The FPE consists of three high efficiency 90 deg spherical section electrostatic analyzers using large secondary emitters and discrete dynode multipliers to detect analyzed particles. Two of them, viewing in opposite directions, produce complete 2D velocity distribution measurements of both protons and electrons every spacecraft revolution. A third FPE analyzer with a divided emitter measures 3D distributions at a slower rate. ISEE-1 also carries a solar-wind experiment (SWE) to measure solar-wind ions with high resolution. The SWE is composed of two 150 deg spherical section analyzers using the same set of plates. The two acceptance fans are tilted with respect to each other so that 3D characteristics of the ion distributions can be derived.

  15. Psychiatric Diagnosis and Concomitant Medical Treatment for 1st and 2nd Grade Children

    ERIC Educational Resources Information Center

    Cornell-Swanson, La Vonne; Frankenberger, William; Ley, Katie; Bowman, Krista

    2007-01-01

    This study examined the proportion of children in 1st and 2nd grade classes who were currently prescribed medication for psychotropic disorders. The study also examined the attitudes of 1st and 2nd grade teachers toward diagnosis of psychiatric disorders and use of psychiatric medication to treat children. Results of the current study indicate…

  16. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  17. Electron beam-plasma interaction experiments with the Versatile Toroidal Facility (VTF)

    SciTech Connect

    Murphy, S.M.; Lee, M.C.; Moriarty, D.T.; Riddolls, R.J.

    1995-12-31

    The laboratory investigation of electron beam-plasma interactions is motivated by the recent space shuttle experiments. Interesting but puzzling phenomena were observed in the shuttle experiments such as the bulk heating of background ionospheric plasmas by the injected electron beams and the excitation of plasma waves in the frequency range of ELF waves. The plasma machine, the Versatile Toroidal Facility (VTF) can generate a large magnetized plasma with the electron plasma frequency greater than the electron gyrofrequency by a factor of 3--5 similar to the plasma condition in the ionosphere. Short pulses of electron beams are injected into the VTF plasmas in order to simulate the beam injection from spacecrafts in the ionosphere. A Langmuir probe installed at a bottom port of VTF monitors the spatial variation of electron beams emitted from LaB6 filaments. An energy analyzer has been used to determine the particle energy distribution in the VTF plasmas. Several mechanisms will be tested as potential causes of the bulk heating of background plasmas by the injected electron beams as seen in the space shuttle experiments. It is speculated that the observed ELF emissions result from the excitation of purely growing modes detected by the space shuttle-borne detectors. Results of the laboratory experiments will be reported to corroborate this speculation.

  18. Plasma-filled applied B ion diode experiments using a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Renk, T. J.

    1994-12-01

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 Ohm, 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  19. Plasma-filled applied B ion diode experiments using a plasma opening switch

    SciTech Connect

    Renk, T.J. )

    1994-12-15

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 [Omega], 40 ns) at Cornell University. This plasma readily crossed the 2.1 T magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.

  20. Plasma skin resurfacing: personal experience and long-term results.

    PubMed

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4.

  1. UCLA/FNPL Underdense Plasma Lens Experiment: Results and Analysis

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Fliller, R; Kazakevich, G M; Piot, P; Santucci, J; Li, J; Tikhoplav, R

    2006-08-04

    Focusing of a 15 MeV, 16 nC electron bunch by a gaussian underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated. The strong 1.9 cm focal length plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Time resolved measurements of the focused electron bunch are also reported and compared to simulations.

  2. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    NASA Technical Reports Server (NTRS)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  3. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    NASA Technical Reports Server (NTRS)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  4. Experiments With Radiatively Cooled Supersonic Plasma Jets Generated in Conical Wire Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Ampleford, D. J.; Bland, S. N.; Chittenden, J. P.; Ciardi, A.; Naz, N.; Haines, M. G.; Frank, A.; Blackman, E.; Gardiner, T.

    2002-12-01

    We present results of astrophysically relevant experiments where highly supersonic plasma jets are generated via conically convergent plasma flows in a conical wire array Z-pinch. Stagnation of plasma flow on the axis of symmetry forms a standing conical shock effectively collimating the flow in the axial direction. This scenario is essentially similar to that discussed by Canto and collaborators [1] as a purely hydrodynamic mechanism for jet formation in astrophysical systems. Experiments using different materials (Al, Fe and W) show that a hypersonic (M ~ 20), well-collimated jet is generated when the radiative cooling rate of the plasma is significant.

  5. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission is presented. The performance of work on the data analysis phase is summarized.

  6. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  7. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-01

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ˜10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ˜50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  8. Experiments on viscous transport in pure-electron plasmas

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason M.; Driscoll, C. Fred

    1999-12-01

    Viscous transport in pure-electron plasmas is a rearrangement of particles due to like-particle interactions, eventually leading to a confined global thermal equilibrium state. The measured transport is observed to be proportional to the shear in the total (E×B+diamagnetic) fluid rotation of the plasma, for both hollow and monotonic rotation profiles. We determine the local kinematic viscosity, κ, from measurements of the local flux of electrons. The measured viscosity is 50-104 times larger than expected from classical transport due to short-range velocity-scattering collisions, but is within a factor of 10 of recent theories by O'Neil and Dubin of transport due to long-range drift collisions. The measured viscosity scales with magnetic field and plasma length roughly as κ∝B/L. This scaling suggests a finite-length transport enhancement caused by particles interacting multiple times as they bounce axially between the ends of the plasma.

  9. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  10. Experiments on a current-toggled plasma-opening switch

    SciTech Connect

    Mendel, C.W. Jr.; Savage, M.E.; Zagar, D.M.; Simpson, W.W.; Grasser, T.W.; Quintenz, J.P. )

    1992-04-15

    Plasma-opening switches have been used to improve pulsed-power wave shapes for over a decade. These switches have used the inertia of the plasma to hold the switch closed. This results in conflicting requirements when long hold-off time and fast opening are required, and also results in variation in opening current due to variation in initial plasma fill. The current-toggled plasma-opening switch attempts to overcome these problems by using external magnetic fields rather than inertia to control the plasma conductor. Data will be presented showing several features of the operation of this switch. These data will be compared to models used to design the switch. The comparisons indicate that the mass can be measured approximately from fast coil data and that the slow coil flux does set the opening level of the current. They also indicate that the opening current is somewhat dependent upon plasma mass, and that the design of the field coils that provide the control fields must be done more carefully to provide a switch that opens satisfactorily.

  11. Waves In Space Plasmas (WISP): A space plasma lab active experiment

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.

    1983-01-01

    The Waves in Space Plasmas (WISP) series of Spacelab Space Plasma Labs devoted to active experimentation, are introduced. Space Plasma Lab-1 is keyed to active probing of the ionosphere and magnetosphere using controlled wave injections by the WISP VLF and HF transmitters, supported by a free-flying plasma diagnostics package instrumented with wave receivers and particle probe diagnostics, designed to measure radiation and propagation of plasma waves, precipitated particle fluxes due to wave/particle interactions, and similar phenomena resulting from wave injectons. The VLF transmitter delivers up to 1 kW of RF power into the antenna terminals over the range from 0.3 to 30 kHz. The HF transmitter delivers up to 500 W to the antenna over the range from 1 to 30 MHz. A dipole antenna commandable to any extension up to 300 m tip-to-tip is available.

  12. Plasma Jet Motion Across the Geomagnetic Field in the ``North Star'' Active Geophysical Experiment

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Zetzer, J. I.; Podgorny, I. M.; Sobyanin, D. B.; Meng, C.-I.; Erlandson, R. E.; Stenbaek-Nielsen, H. C.; Pfaff, R. F.; Lynch, K. A.

    2003-01-01

    The active geophysical rocket experiment ``North Star'' was carried out in the auroral ionosphere on January 22, 1999, at the Poker Flat Research Range (Alaska, USA) using the American research rocket Black Brant XII with explosive plasma generators on board. Separable modules with scientific equipment were located at distances of from 170 to 1595 m from the plasma source. The experiment continued the series of the Russian-American joint experiments started by the ``Fluxus'' experiment in 1997. Two injections of aluminum plasma across the magnetic field were conducted in the ``North Star'' experiment. They were different, since in the first injection a neutral gas cloud was formed in order to increase the plasma ionization due to the interaction of neutrals of the jet and cloud. The first and second injections were conducted at heights of 360 and 280 km, respectively. The measurements have shown that the charged particle density was two orders of magnitude higher in the experiment with the gas release. The magnetic field in the first injection was completely expelled by the dense plasma of the jet. The displacement of the magnetic field in the second injection was negligible. The plasma jet velocity in both injections decreased gradually due to its interaction with the geomagnetic field. One of the most interesting results of the experiment was the conservation of high plasma density during the propagation of the divergent jet to considerable distances. This fact can be explained by the action of the critical ionization velocity mechanism.

  13. Review of upconverted Nd-glass laser plasma experiments at the Lawrence Livermore National Laboratory

    SciTech Connect

    Manes, K.R.

    1982-05-01

    Systematic scaling experiments aimed at deducing the dependence of laser-plasma interaction phenomena on target plasma material and target irradiation history have been underway in laboratories all over the world in recent years. During 1980 and 1981 the Livermore program undertook to measure the laser light absorption of high and low Z plasmas and the partition of the absorbed energy amongst the thermal and suprathermal electron populations as a function of both laser intensity and wavelength. Simulations suggested that short wavelength laser light would couple more efficiently than longer wavelengths to target plasmas. Shorter wavelength heating of higher electron plasma densities would, it was felt, lead to laser-plasma interactions freer of anomalous absorption processes. The following sections review LLNL experiments designed to test these hypotheses.

  14. Diagnostic Online Assessment of Basic IT Skills in 1st-Year Undergraduates in the Medical Sciences Division, University of Oxford

    ERIC Educational Resources Information Center

    Sieber, Vivien

    2009-01-01

    Attitude, experience and competence (broadly covered by the European Computer Driving Licence syllabus) in information technology (IT) were assessed in 846 1st-year Medical Sciences Division undergraduates (2003-06) at the start of their first term. Online assessments delivered during induction workshops were presented as an opportunity for…

  15. Diagnostic Online Assessment of Basic IT Skills in 1st-Year Undergraduates in the Medical Sciences Division, University of Oxford

    ERIC Educational Resources Information Center

    Sieber, Vivien

    2009-01-01

    Attitude, experience and competence (broadly covered by the European Computer Driving Licence syllabus) in information technology (IT) were assessed in 846 1st-year Medical Sciences Division undergraduates (2003-06) at the start of their first term. Online assessments delivered during induction workshops were presented as an opportunity for…

  16. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  17. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J. Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Fox, W.; Igumenshchev, I.; Stoeckl, C.; Glebov, V.; Town, R. P. J.

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  18. Proposal for a one GeV plasma wakefield acceleration experiment at SLAC

    SciTech Connect

    Assmann, R.; Chen, P.; Decker, F.J.

    1998-04-01

    A plasma-based wakefield acceleration experiment E-157 has been approved at SLAC to study acceleration of parts of an SLC bunch by up to 1 GeV/m over a length of 1 m. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness the resulting beam acceleration. The experiment will explore and further development the techniques that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter length of the experiment is about two orders of magnitude larger than other high gradient plasma wakefield acceleration experiments and the 1 GeV/m accelerating gradient is roughly ten times larger than that achieved with conventional metallic structures. Using existing SLAC facilities, the experiment will study high gradient acceleration at the forefront of advanced accelerator research.

  19. Plasma action on helium flow in cold atmospheric pressure plasma jet experiments

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Fontane, J.; Joly, L.; Dozias, S.; Robert, E.

    2017-10-01

    In this work, helium flow modifications, visualized by schlieren imaging, induced by the plasma generated in a plasma jet have been studied in conditions used for biomedical treatments (jet being directed downwards with a low helium flow rate). It has been shown that the plasma action can shift up to few centimeters downstream the effects of buoyancy, which allows to the helium flow to reach a target below in conditions for which it is not the case when the plasma is off. This study reveals the critical role of large and long lifetime negative ions during repetitive operations in the kHz regime, inducing strong modifications in the gas propagation. The cumulative added streamwise momentum transferred to ambient air surrounding molecules resulting from a series of applied voltage pulses induces a gradual built up of a helium channel on tens of millisecond timescale. In some conditions, a remarkable stable cylindrical helium channel can be generated to the target with plasma supplied by negative polarity voltage pulses whereas a disturbed flow results from positive polarity operation. This has a direct effect on air penetration in the helium channel and then on the reactive species production over the target which is of great importance for biomedical applications. It has also been shown that with an appropriate combination of negative and positive polarity pulses, it is possible to benefit from both polarity features in order to optimize the plasma plume propagation and plasma delivery to a target.

  20. Experiment and Results on Plasma Etching of SRF cavities

    SciTech Connect

    Upadhyay, Janardan; Im, Do; Peshl, J.; Vuskovic, Leposova; Popovic, Svetozar; Valente, Anne-Marie; Phillips, H. Lawrence

    2015-09-01

    The inner surfaces of SRF cavities are currently chemically treated (etched or electropolished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically etched and RF tested to establish a baseline performance. This cavity is plasma etched and RF tested afterwards. The effect of plasma etching on the RF performance of this cavity will be presented and discussed.

  1. Commercialization of Plasma-Assisted Technologies: The Indian Experience

    NASA Astrophysics Data System (ADS)

    John, P. I.

    The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.

  2. Driving Flows in Laboratory Astrophysical Plasma Jets: The Mochi.LabJet Experiment

    NASA Astrophysics Data System (ADS)

    Carroll, Evan G.

    Mochi.Labjet is a new experiment at the University of Washington developed to investigate the interaction of shear flows in plasma jets with boundary conditions similar to an accretion disc system. This thesis details the engineering design and first plasmas of the Mochi.Labjet experiment. The experiment required construction of a new three electrode plasma gun with azimuthal symmetric gas injection, two optically-isolated pulsed power supplies for generating and sustaining plasma, and one optically-isolated pulsed power supply for generating a background magnetic field. Optical isolation is achieved with four custom circuits: the TTL-optical transmitter, optical-TTL receiver, optical-relay, and optical-tachometer circuits. First plasmas, during the commissioning phase of the apparatus, show evidence of flared jet structures with significant azimuthal symmetry.

  3. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  4. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  5. Experiments with an rf dusty plasma and an external plasma jet

    SciTech Connect

    Ticos, C. M.

    2010-12-14

    A plasma jet produced in a coaxial plasma gun was aimed at a cloud of dust particles levitated in the sheath of a radio-frequency (rf) plasma produced between two parallel-plate electrodes. A high-speed camera with a side-view on the dust cloud was used to track the dust particles. Several cases of dust motion could be observed. When the jet was parallel with the horizontal electrodes of the rf plasma the dust particles were either pushed out of the trapping region by the plasma jet or were only perturbed from their equilibrium position, oscillating with a frequency of the order of a few kHz. In the first case the trajectory of the dust particles followed the curvature of the sheath. In the second case, when the jet was fired at a small angle with the horizontal electrodes the dust particles hit the bottom electrode and ricocheted back into the sheath. Finally, another situation was observed when the jet perturbed the rf plasma and its sheath and the whole dust crystal fell to the electrode.

  6. Experiments with an rf dusty plasma and an external plasma jet

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.

    2010-12-01

    A plasma jet produced in a coaxial plasma gun was aimed at a cloud of dust particles levitated in the sheath of a radio-frequency (rf) plasma produced between two parallel-plate electrodes. A high-speed camera with a side-view on the dust cloud was used to track the dust particles. Several cases of dust motion could be observed. When the jet was parallel with the horizontal electrodes of the rf plasma the dust particles were either pushed out of the trapping region by the plasma jet or were only perturbed from their equilibrium position, oscillating with a frequency of the order of a few kHz. In the first case the trajectory of the dust particles followed the curvature of the sheath. In the second case, when the jet was fired at a small angle with the horizontal electrodes the dust particles hit the bottom electrode and ricocheted back into the sheath. Finally, another situation was observed when the jet perturbed the rf plasma and its sheath and the whole dust crystal fell to the electrode.

  7. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    SciTech Connect

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; Zylstra, A.  B.; Stoeckl, C.; Séguin, F.  H.; Frenje, J.  A.; Petrasso, R. D.

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.

  8. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGES

    Rosenberg, M.  J.; Li, C.  K.; Fox, W.; ...

    2015-05-20

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. Themore » absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  9. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1983-01-01

    An analysis of data from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 Mission is provided. Work on the data analysis phase of the contract from 1 October 1982 through 30 March 1983 is summarized.

  10. Plasma Chamber and First Wall of the Ignitor Experiment^*

    NASA Astrophysics Data System (ADS)

    Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.

    2005-10-01

    The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  11. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    SciTech Connect

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Aßmus, D.; Wauters, T.

    2014-02-12

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

  12. Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Laqua, H. P.; Otte, M.; Stange, T.; Wauters, T.; Aßmus, D.

    2014-02-01

    Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.

  13. Electrons precipitation stimulated by plasma jets injection in FLUXUS and NORTH STAR active rocket experiments

    NASA Astrophysics Data System (ADS)

    Gavrilov, B.; Erlandson, R.; Lynch, K.; Meng, C.; Podgorny, I.; Pfaff, R.; Stenbaek-Nielsen, H.; Sobyanin, D.; Zetzer, J.

    In Russian-American active rocket experiments FLUXUS (49? N, 47? E, 1997) and NORTH STAR (70? N, 148? W, 1999) high-velocity plasma jets were injected along and across the geomagnetic field respectively. In the both experiments high- density plasma jets pushed out the magnetic field. Later, when the magnetic field penetrated into the plasma jet, plasma was polarized and E=-VxB/c electric field was registered. As a result, Alfvén waves, carrying the field-aligned currents, propagate along the magnetic field lines. If the current density is rather high, the field-aligned electric fields can appear, and electrons would be accelerated along the magnetic field lines. Electron fluxes with energy from several eV to 2 keV were revealed in the both experiments. During NORTH STAR experiment electron fluxes caused by auroral precipitation were also registered

  14. Kotov works with Plasma Crystal-3 Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035439 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  15. Kotov works with Plasma Crystal-3 Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035438 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, uses a computer while servicing the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  16. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040615 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, uses a computer while servicing the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  17. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035434 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  18. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-25

    ISS022-E-035436 (25 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, works with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  19. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040617 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  20. Kotov works with Plasma Crystal-3+ Experiment in the SM during Expedition 22

    NASA Image and Video Library

    2010-01-28

    ISS022-E-040614 (28 Jan. 2010) --- Russian cosmonaut Oleg Kotov, Expedition 22 flight engineer, is pictured while working with the Plasma Crystal-3 experiment in the Zvezda Service Module of the International Space Station.

  1. 28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ROCKET ENGINE LOCATED ON NORTH SIDE OF STATIC TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  2. Introduction to the 1st International Symposium on Phytochemicals in Medicine and Food (ISPMF 2015).

    PubMed

    Zheng, Yafeng; Jassbi, Amir Reza; Xiao, Jianbo

    2016-03-30

    The 1st International Symposium on Phytochemicals in Medicine and Food (ISPMF 2015) was held in Shanghai, China, from June 26th to 29th, 2015. The 1st ISPMF was organized by the Phytochemical Society of Europe (PSE) and the Phytochemical Society of Asia (PSA). More than 270 scientists from 48 countries attended this meeting. The program of ISPMF 2015 consisted of 12 plenary lectures, 20 invited talks, and 55 short oral presentations in 16 sessions, including phytochemistry, phytomedicine, pharmacology, and application of phytochemicals in medicine and food. The 1st ISPMF has obtained support from Critical Reviews in Food Science and Nutrition, Food Chemistry, Phytochemistry Reviews, and Nutrients. As supported by Prof. Thomas F. Hofmann, a special issue on Journal of Agricultural and Food Chemistry (ACS) for the 1st ISPMF was initiated in January 2015.

  3. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  4. FDA Approves 1st Direct-to-Consumer Genetic Risk Tests

    MedlinePlus

    ... 164507.html FDA Approves 1st Direct-to-Consumer Genetic Risk Tests They screen for gene variants linked ... on Thursday approved the first direct-to-consumer genetic health risk tests. Known as the 23andMe Personal ...

  5. 45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Turn span from SE. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  6. 46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Overall view, from S. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  7. 14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, crib area of building, showing electrical and plumbing cribs, wall and ceiling detail, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  8. 62. Neg. No. F75A, Jun 18, 1930, INTERIORWAREHOUSE, 1ST FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Neg. No. F-75A, Jun 18, 1930, INTERIOR-WAREHOUSE, 1ST FLOOR, STORAGE OF AUTOMOBILE COMPONENTS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  9. 15. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, piping for sprinkler system, S end of building, E wall. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  10. BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ELEVATION DETAIL OF GERMAN TEXT. VIEW TO NORTHEAST. - Cave Hill National Cemetery, 701 Baxter Avenue, Louisville, Jefferson County, KY

  11. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  12. 24. Interior, 1st floor, hewn timber braced framing for interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Interior, 1st floor, hewn timber braced framing for interior wall between northeast and northwest "kitchen" rooms in older section, looking west - Brawner Farmhouse, Lee Highway/Route 29, Manassas, Manassas, VA

  13. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  14. Experiment study of edge localized mode with plasma vertical jogging in HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Wu, N.; Chen, S. Y.; Song, X. M.; Mou, M. L.; Huang, J.; Wang, Z. T.; Tang, C. J.; Song, X.; Xia, F.; Jiang, M.; HL-2A Team

    2017-09-01

    The effect of plasma vertical jogging on edge localized modes (ELMs) is investigated in HL-2A tokamak. During the experiment, plasma jogging with a period of about 75 ms is performed, and the results show that both the ELM amplitude and period decrease when the plasma moves upward, which are qualitatively explained by the simulation based on the theory of peeling-ballooning mode including the resistivity effect. The upward movement of plasma causes a change in pedestal parameters, and then the dominant toroidal mode shifts to a relatively high-n mode with the effects of resistivity and diamagnetic, which lead to smaller ELM amplitudes.

  15. Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Loisel, G. P.; Bailey, J. E.; Liedahl, D. A.; Fontes, C. J.; Kallman, T. R.; Nagayama, T.; Hansen, S. B.; Rochau, G. A.; Mancini, R. C.; Lee, R. W.

    2017-08-01

    The interpretation of x-ray spectra emerging from x-ray binaries and active galactic nuclei accreted plasmas relies on complex physical models for radiation generation and transport in photoionized plasmas. These models have not been sufficiently experimentally validated. We have developed a highly reproducible benchmark experiment to study spectrum formation from a photoionized silicon plasma in a regime comparable to astrophysical plasmas. Ionization predictions are higher than inferred from measured absorption spectra. Self-emission measured at adjustable column densities tests radiation transport effects, demonstrating that the resonant Auger destruction assumption used to interpret black hole accretion spectra is inaccurate.

  16. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  17. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  18. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  19. ECH/EBW Plasma Coupling and Heating Experiments on the Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Bigelow, Tim; Caughman, John; Caneses, Juan; Diem, Stephanie; Goulding, Richard; Kafle, Nischal; Rapp, Juergen

    2016-10-01

    ECH and EBW have been under development on the Proto-Material Plasma Exposure eXperiment device (Proto-MPEX) to provide additional plasma electron heating. Proto-MPEX has a linear magnetic field configuration and a helicon plasma source that forms a high-density medium-temperature central core plasma of typically 0.08m diameter. A plasma density of up to 6x1019m-3 is generated which is >6 times over-dense for 28 GHz microwave power available from the experiment's gyrotron system. Modeling using Genray-C code has indicated that some heating of the plasma core should be possible at this frequency using the optimum O-X-EBW coupling scheme. Several improvements to the waveguide system have been made to increase the reliable operating power level and launch beam quality. To improve the plasma heating efficiency, work is underway to optimize the beam launch by adding a remotely adjustable launch angle, adding a polarization rotating miter bend, moving the launch point closer to the plasma edge and providing some beam focusing. Preliminary heating experiments have indicated some over-dense heating has been achieved. A launch power of 75 kW has been achieved out of a possible 150 kW. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  20. High power microwave source for a plasma wakefield experiment

    NASA Astrophysics Data System (ADS)

    Shafir, G.; Shlapakovski, A.; Siman-Tov, M.; Bliokh, Yu.; Leopold, J. G.; Gleizer, S.; Gad, R.; Rostov, V. V.; Krasik, Ya. E.

    2017-01-01

    The results of the generation of a high-power microwave (˜550 MW, 0.5 ns, ˜9.6 GHz) beam and feasibility of wakefield-excitation with this beam in under-dense plasma are presented. The microwave beam is generated by a backward wave oscillator (BWO) operating in the superradiance regime. The BWO is driven by a high-current electron beam (˜250 keV, ˜1.5 kA, ˜5 ns) propagating through a slow-wave structure in a guiding magnetic field of 2.5 T. The microwave beam is focused at the desired location by a dielectric lens. Experimentally obtained parameters of the microwave beam at its waist are used for numerical simulations, the results of which demonstrate the formation of a bubble in the plasma that has almost 100% electron density modulation and longitudinal and transverse electric fields of several kV/cm.

  1. Drift waves and chaos in a LAPTAG plasma physics experiment

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  2. Experiments on pure electron plasmas confined in a toroidal geometry

    SciTech Connect

    Nakashima, Chihiro; Yoshida, Zensho; Morikawa, Junji; Himura, Haruhiko; Kakuno, Hidekazu; Tahara, Shigeru; Shibayama, Norihisa

    1999-12-10

    The toroidal magnetic trap has an advantage in achieving long orbit lengths, which allows us to apply a slow process of energy reduction to the trapped particles. On Proto-RT (Prototype Ring Trap), we have demonstrated the confinement of a pure electron plasma without the help of external electric fields. We have injected electrons with the energy of 2 keV inside a separatrix. The electrostatic potential of the electron cloud is of order 100 V. The corresponding density of the electron plasma is calculated to be of order 10{sup 13} m{sup -3}. In order to modulate the kinetic energy of the electrons we are now planning RF assisted injection of electrons.

  3. Plasma wave experiment for the ISEE-3 mission

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1982-01-01

    Results of analyses of data received from a scientific instrument designed to study solar wind and plasma wave phenomena on the ISEE-3 mission are discussed in two papers prepared for publication. A study of plasma wave levels in and interplanetary magnetic field orientation preceding observations of interplanetary shocks by the satellite infers that quasi-parallel, interplanetary shocks are preceded by foreshocks whose presence is not obviously attributable to scattering of ion beams generated at quasi-perpendicular zones of these interplanetary shocks. Investigations of whistler mode turbulence in the disturbed solar wind resulted in various indirect lines of evidence indicating that these whistler waves are generated propagating at large angles to the local interplanetary field, a fact which helps identify possible free energy sources for their growth.

  4. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  5. Restrike Particle Beam Experiments on a Dense Plasma Focus.

    DTIC Science & Technology

    1980-11-30

    soft Xray spectrometer should enable the formation of a fairly complete picture of the plasma phenomena as well as that of the beams for input into the...SSNTD are insensitive to light, electrons or Xrays 2) Record is virtually permanent 3) Direct measurement of fast particles is possible and (detection...detectors. The bands are delimited by Ross balanced filtering technique. This technique uses the fact that the stopping power for xrays has 3narp edges at

  6. High Performance Plasmas on the National Spherical Torus Experiment

    DTIC Science & Technology

    2001-06-01

    time as determined by magnetic analysis using the EFIT code [11] plotted against two conventional tokamak scaling relations, ITER89P and ITER98y2...injected. Plasmas with βt (=2µ0<p>/B 2 = a measure of magnetic confinement efficiency) of 22% have been achieved, as calculated using the EFIT ...efficiency) of 22% have been achieved, as calculated using the EFIT equilibrium reconstruction code. â limiting phenomena have been observed, and the

  7. Rayleigh-Taylor instability in dusty plasma experiment

    SciTech Connect

    Avinash, K.; Sen, A.

    2015-08-15

    The stability of a stratified dust cloud levitated in an anodic plasma is studied in the weakly and strongly coupled dust regimes. It is shown that the cloud is predominantly unstable to a Rayleigh-Taylor (RT) instability driven by a component of the ambient gravity in a direction opposite to the direction of dust density stratification in the cloud. The elasticity of the strongly coupled dust is shown to set a threshold for the RT instability, which is consistent with experimental observations.

  8. High Magnetic field generation for laser-plasma experiments

    SciTech Connect

    Pollock, B B; Froula, D H; Davis, P F; Ross, J S; Fulkerson, S; Bower, J; Satariano, J; Price, D; Glenzer, S H

    2006-05-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented.

  9. The effect of artificial gravity on plasma and tissue lipids in rats: The Cosmos 936 experiment

    NASA Astrophysics Data System (ADS)

    Ahlers, I.; Praslička, M.; Tigranyan, R. A.

    Plasma and tissue lipids in male SPF Wistar rats flown for 18.5 days aboard the Cosmos 936 biosatellite were analyzed. One group of rats was subjected to artificial gravity by use of a centrifuge during the flight. An experiment simulating known space flight factors other than weightlessness was done on Earth. An increase of total cholesterol in plasma, of nonesterified fatty acids in plasma and brown adipose tissue, of triacylglycerols in plasma, liver, thymus and bone marrow was noted several hours after biosatellite landing. Smaller changes were observed in the terrestrial control experiment. With the exception of triacylglycerol accumulation in bone marrow, these increases disappeared 25 days after biosatellite landing. Exposing the rats aboard the biosatellite to artificial gravity was beneficial in the sense that such exposure inhibited the phospholipid and triacylglycerol increase in plasma and inhibited the increase of triacylglycerol in liver and especially in bone marrow.

  10. Incorporation of the Data Acquisition System with a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Nolan, Stephen; James, R. W.; Page, E. L.; Zuniga, J.; Schlank, C.; Lopez, M.; Sherman, J.; Stutzman, B. S.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], in high temperature and density diagnostic development for future laboratory investigations. With first plasmas at hand, HPX is constructing triple and mach particle probes, magnetic probes, and a single point Thompson Scattering system for HPX plasma property investigations. A 32-channel National Instruments Data Acquisition (DAQ) Board capable of sampling at 12 bits of precision at 2 MS/s and running multiple simultaneous experiments is currently under construction. This DAQ System with integrated storage and GUI's will gather and digitize plasma data from the associated diagnostics for further analysis. Progress on the current implementation of the DAQ system will be reported.

  11. Joint Force Quarterly. Issue 76, 1st Quarter 2015

    DTIC Science & Technology

    2015-01-01

    rather than “coercing” them with grades, tests , and onerous reading lists. The net effect is an educational experience that, while impressive in...Fridman is a Ph.D. Candidate at the University of Reading , United Kingdom. Soldier aims XM-25 weapon system, Aberdeen Test Center, Maryland (U.S...the Editor: As I read Rebecca Patterson and Jodi Vittori’s article titled “Why Military Offi- cers Should Study Political Economy” in Joint Force

  12. Radar observations of field-aligned plasma propagations associated with NASA's PMG experiment

    NASA Astrophysics Data System (ADS)

    Olson, Darren M.

    1994-09-01

    NASA's Plasma Motor Generator (PMG) tethered satellite mission was launched in June 1993 to verify the ability of hollow cathode plasma sources to couple electric currents from an electrodynamic tether into the ambient ionospheric plasma. This large-scale coupling process resulted in turbulent plasma signatures associated with the orbiting plasma generator, which propagated over great distances along the earth's geomagnetic field lines. VHF radars in Hilo, Hawaii and Jicamarca, Peru recorded observations of these field-aligned disturbances as part of the experiment. Based on analysis of these radar observations and tracking data of PMG's orbit, the effective propagation velocity of these traveling plasma waveforms was calculated to be of the order of 1000 meters per second. Detection of these disturbances, associated with PMG's passage overhead, supports the existence of a phantom current loop allowing current flow along the magnetic field lines of the earth and into the lower ionosphere from either end of an electrodynamic tether.

  13. Radiation hydrodynamic simulation of a photoionised plasma experiment at the Z facility

    NASA Astrophysics Data System (ADS)

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2011-11-01

    New, high spectral resolution X-ray observations from astrophysical photoionised plasmas have been recorded in recent years by the Chandra and XMM-Newton orbiting telescopes. These observations provide a wealth of detailed information and have motivated new efforts at developing a detailed understanding of the atomic kinetics and radiation physics of photoionised plasmas. The Z facility at Sandia National Laboratories is a powerful source of X-rays that enables us to produce and study photoionised plasmas in the laboratory under well characterised conditions. We discuss a series of radiation-hydrodynamic simulations to help understand the X-ray environment, plasma hydrodynamics and atomic kinetics in experiments where a collapsing wire array at Z is used as an ionising source of radiation to create a photoionised plasma. The numerical simulations are used to investigate the role that the key experimental parameters have on the photoionised plasma characteristics.

  14. Radar observations of field-aligned plasma propagations associated with nasa's PMG experiment. Master's thesis

    SciTech Connect

    Olson, D.M.

    1994-09-01

    NASA's Plasma Motor Generator (PMG) tethered satellite mission was launched in June 1993 to verify the ability of hollow cathode plasma sources to couple electric currents from an electrodynamic tether into the ambient ionospheric plasma. This large-scale coupling process resulted in turbulent plasma signatures associated with the orbiting plasma generator, which propagated over great distances along the earth's geomagnetic field lines. VHF radars in Hilo, Hawaii and Jicamarca, Peru recorded observations of these field-aligned disturbances as part of the experiment. Based on analysis of these radar observations and tracking data of PMG's orbit, the effective propagation velocity of these traveling plasma waveforms was calculated to be of the order of 1000 meters per second. Detection of these disturbances, associated with PMG's passage overhead, supports the existence of a phantom current loop allowing current flow along the magnetic field lines of the earth and into the lower ionosphere from either end of an electrodynamic tether.

  15. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    SciTech Connect

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-05-12

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered.

  16. Results from the Ucla/fnpl Underdense Plasma Lens Experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.; Edwards, H.; Fuller, R.; Kazakevich, G. M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.

    2007-09-01

    A gaussian underdense plasma lens with peak density 5 × 1012 cm-3 and a full width half maximum (FWHM) length of 2.2 cm has been used to focus a relativistic electron beam. This plasma lens is equivalent in strength to a quadrupole magnet with a 150 T/m field gradient. The lens focused a 15 MeV, 16 nC electron beam with initial dimensions σx,y ≈ 650 μm and σz ≈ 6.5 mm onto an optical transition radiation (OTR) screen ~2 cm downstream of the lens. The average transverse area of the plasma focused electron beam was typically demagnified by a factor of 23. The evolution of the beam envelope in the area near the beam waist was measured for both round beams and asymmetric beams with x:y aspect ratios as large as 1:5. The light from the OTR screen in the round beam case was also imaged into a streak camera in order to directly measure the correlation between z and σr within the beam.

  17. Results from the Ucla/fnpl Underdense Plasma Lens Experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travish, G.; Edwards, H.; Fliller, R.; Kazakevich, G. M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.

    A gaussian underdense plasma lens with peak density 5 × 1012 cm-3 and a full width half maximum (FWHM) length of 2.2 cm has been used to focus a relativistic electron beam. This plasma lens is equivalent in strength to a quadrupole magnet with a 150 T/m field gradient. The lens focused a 15 MeV, 16 nC electron beam with initial dimensions σx,y ≈ 650 μm and σz ≈ 6.5 mm onto an optical transition radiation (OTR) screen ~2 cm downstream of the lens. The average transverse area of the plasma focused electron beam was typically demagnified by a factor of 23. The evolution of the beam envelope in the area near the beam waist was measured for both round beams and asymmetric beams with x:y aspect ratios as large as 1:5. The light from the OTR screen in the round beam case was also imaged into a streak camera in order to directly measure the correlation between z and σr within the beam.

  18. Results from the UCLA/FNPL underdense plasma lens experiment

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Edwards, H.; Fliller, R.; Kazakevich, G.M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.; /Rochester U.

    2007-01-01

    A gaussian underdense plasma lens with peak density 5 x 10{sup 12} cm{sup -3} and a full width half maximum (FWHM) length of 2.2 cm has been used to focus a relativistic electron beam. This plasma lens is equivalent in strength to a quadrupole magnet with a 150 T/m field gradient. The lens focused a 15 MeV, 16 nC electron beam with initial dimensions {sigma}{sub x,y} {approx} 650 {micro}m and {sigma}{sub z} {approx} 6.5 mm onto an optical transition radiation (OTR) screen {approx}2 cm downstream of the lens. The average transverse area of the plasma focused electron beam was typically demagnified by a factor of 23. The evolution of the beam envelope in the area near the beam waist was measured for both round beams and asymmetric beams with x:y aspect ratios as large as 1:5. The light from the OTR screen in the round beam case was also imaged into a streak camera in order to directly measure the correlation between z and {sigma}{sub r} within the beam.

  19. Experiments on Viscous Transport in Pure-Electron Plasmas.

    NASA Astrophysics Data System (ADS)

    Kriesel, J. M.; Driscoll, C. F.

    1999-11-01

    Viscous transport in pure-electron plasmas is a rearrangement of particles due to like-particle interactions, leading to the confined global thermal equilibrium state. The measured transport is observed to be proportional to the shear in the total (E × B + diamagnetic) fluid rotation of the plasma for both hollow and monotonic rotation profiles. We determine the local viscosity coefficient η in the plasma from measurements of the local flux of particles. The measured viscosity is 50-10^4 times larger than expected from classical transport due to short-range velocity-scattering collisions, but is within a factor of 10 agreement with recent theories by O'Neil and Dubin of transport due to long-range drift collisions. The measured viscosity scales with magnetic field B and length L roughly as η ∝ B/L. This scaling suggests a finite length enhancement of the viscosity, which occurs because particles interact many times as they bounce axially before they are sheared apart azimuthally.

  20. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    NASA Astrophysics Data System (ADS)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  1. CO2 Laser Beat-Wave Experiment in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Hwang, David; Horton, Robert; Hong, Sean; Evans, Russell

    2012-10-01

    The ability to remotely generate plasma current in dense plasmas is a basic yet important investigation in experimental plasma physics and fusion energy research. It is even more advantageous if the wave penetration is independent of the electron acceleration process. Plasma current can be generated through beat-wave mixing process by launching two intense electromagnetic waves (φ>>φpe) into plasma. The beat wave formation process can be efficient if the difference frequency of the two pump waves is matched to a local resonant frequency of the medium, i.e. in this case the local plasma frequency. Beat wave can accelerate plasma electrons via quasi-linear Landau process, which has been demonstrated in a low-density plasma using microwaves.footnotetextRogers, J. H. and Hwang, D. Q., Phys. Rev. Lett. v68 p3877 (1992). The CO2 lasers provide the high tunability for the wave-particle interaction experiment at a variety of plasma densities with plasma frequency in THz range. Two sections of Lumonics TEA CO2 lasers have been modified to serve as the two pump wave sources with peak power over 100MW. The development of the tunable CO2 lasers, a high-density plasma target source and diagnostics system will be presented. The initial results of unbalanced beat-wave experiment using one high-power pulsed and one low-power CW CO2 lasers will be presented and discussed using the independent plasma source to control the φpe of the interaction region. This work is supported by U.S. DOE under Contract No. DE-FG02-10ER55083.

  2. Plasma Diagnostics for Plasma Polymer Coatings Used in Fabrication of Thin Wall CH Shells for Direct Drive OMEGA Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Ross, P.; Nikroo, A.; Czechowicz, D.; Dicken, M.

    2002-11-01

    High aspect ratio CH shells, 1 μm thick, 9001 μm diameter, are crucial for the success of the cryogenic direct drive inertial confinement fusion (ICF) experiments at the OMEGA laser facility at the University of Rochester's Laboratory for Laser Energetics (LLE). Plasma polymer coatings are currently used in fabrication of such shells, which can be made substantially stronger by altering parameters. High strength is important for inherently fragile high aspect ratio shells. The plasma characteristics used in the deposition process were studied in order to determine a correlation between the plasma parameters and the strength of shells. Several plasma processing parameters such as deposition pressure, power and relative and absolute gas flow rates were varied. The plasma was studied using several techniques such as optical emission spectroscopy, Langmuir probe diagnostics, and mass spectrometry. These diagnostic results were then correlated with direct measurements of the target strength (burst testing and buckle testing) and permeability to determine the ideal parameters for creating the strongest and most permeable ICF targets.

  3. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    SciTech Connect

    Not Available

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  4. 1st ACT global trajectory optimisation competition: Results found at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Petropoulos, Anastassios E.; Kowalkowski, Theresa D.; Vavrina, Matthew A.; Parcher, Daniel W.; Finlayson, Paul A.; Whiffen, Gregory J.; Sims, Jon A.

    2007-11-01

    Results obtained at the Jet Propulsion Laboratory for the 1st ACT global trajectory optimisation competition are presented and the methods used to obtain them are described. The search for the globally optimal, low-thrust, gravity-assist trajectory for maximally deflecting an asteroid is performed in two steps. The first step involves a rough global search of the global search space, which has, however, been somewhat bounded based on prior mission-design experience, intuition, and energy arguments. A shape-based method is used to represent the low-thrust arcs, while the ballistic portions are searched almost exhaustively. The second step involves local optimisation of trajectories which stand out from the rough global search. The low-thrust optimisation problem is turned into a parameter optimisation problem by approximating the continuous thrusting as a series of impulsive manoeuvres. Of the many trajectories found, three optimal trajectories are reported and compared, including the one submitted for the competition. The best one employed a double-Venus, quadruple-Earth, Jupiter Saturn Jupiter gravity-assist sequence. The trajectory submitted for the competition used one less Venus flyby and one less Earth flyby.

  5. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    SciTech Connect

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-05-15

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  6. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    NASA Astrophysics Data System (ADS)

    Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.

  7. Experiments on hot and dense laser-produced plasmas

    SciTech Connect

    Back, C.A.; Woolsey, N.C.; Asfaw, A.; Glenzer, S.H.; Hammel, B.A.; Keane, C.J.; Lee, R.W.; Liedahl, D.; Moreno, J.C.; Nash, J.K.; Osterheld, A.L.; Calisti, A.; Stamm, R.; Talin, B.; Godbert, L.; Mosse, C.; Ferri, S.; Klein, L.

    1996-08-05

    Plasmas generated by irradiating targets with {approx}20 kJ of laser energy are routinely created in inertial confinement fusion research. X-ray spectroscopy provides one of the few methods for diagnosing the electron temperature and electron density. For example, electron densities approaching 10{sup 24} cm{sup -3} have been diagnosed by spectral linewidths. However, the accuracy of the spectroscopic diagnostics depends on the population kinetics, the radiative transfer, and the line shape calculations. Analysis for the complex line transitions has recently been improved and accelerated by the use of a database where detailed calculations can be accessed rapidly and interactively. Examples of data from Xe and Ar doped targets demonstrate the current analytic methods. First we will illustrate complications that arise from the presence of a multitude of underlying spectral lines. Then, we will consider the Ar He-like 1s{sup 2}({sup 1}S{sub 0}) - 1s3p({sup 1}P{sub 0}) transition where ion dynamic effects may affect the profile. Here, the plasma conditions are such that the static ion microfield approximation is no longer valid; therefore in addition to the width, the details of the line shape can be used to provide additional information. We will compare the data to simulations and discuss the possible pitfalls involved in demonstrating the effect of ion dynamics on lineshapes.

  8. Experiment to Study Alfven Wave Propagation in Plasma Loops

    NASA Astrophysics Data System (ADS)

    Kendall, Mark; Bellan, Paul

    2010-11-01

    Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.

  9. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    NASA Astrophysics Data System (ADS)

    Postupaev, V. V.; Batkin, V. I.; Burdakov, A. V.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.

    2016-04-01

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. At present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5-4.5 T is demonstrated. In these experiments, the axial plasma density was (1-4) × 1020 m-3 and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.

  10. Washer-Gun Plasma Source for Magnetic Reconnection Experiments on VTF

    NASA Astrophysics Data System (ADS)

    Vrublevskis, A.; Egedal, J.; Fox, W.; Katz, N.; Le, A.; Porkolab, M.

    2009-11-01

    We present a recently built electrostatic washer-gun plasma source for the Versatile Toroidal Facility (VTF). The source produces plasmas with estimated densities of ˜10^19 m^- 3 and electron temperatures of ˜5-20 eV. The present plasma source for VTF is microwave-induced electron cyclotron resonant breakdown and requires a strong toroidal magnetic field, which acts as a guide field in reconnection experiments. The gun will allow reconnection experiments with no guide field. The source is based on the design developed by Sterling Scientific [1, 2]. To operate, gas is injected into a channel formed by a stack of alternating molybdenum and boron nitride washers with a molybdenum electrode washer at each end. A capacitor bank is discharged through these electrodes and the gas. The resulting plasma escapes the channel into the main chamber of the experiment. If available, we will present data on argon plasma produced by the gun inside the VTF. [1ex] [1] G. Fiksel, et al., Plasma Sources Sci. Technol., 5, 78 (1996)[0ex] [2] D. Hartog et al., Plasma Sources Sci. Technol., 6, 492 (1997)

  11. Experiments on the transportation of a magnetized plasma stream in the GOL-3 facility

    SciTech Connect

    Postupaev, V. V. Batkin, V. I.; Burdakov, A. V.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.

    2016-04-15

    The program of the deep upgrade of the GOL-3 multiple-mirror trap is presented. The upgrade is aimed at creating a new GOL-NB open trap located at the GOL-3 site and intended to directly demonstrate the efficiency of using multiple-mirror magnetic cells to improve longitudinal plasma confinement in a gasdynamic open trap. The GOL-NB device will consist of a new central trap, adjoint cells with a multiple-mirror magnetic field, and end tanks (magnetic flux expanders). Plasma in the central trap will be heated by neutral beam injection with a power of up to 1.5 MW and duration of 1 ms. At present, physical experiments directed at developing plasma technologies that are novel for this facility are being carried out using the 6-m-long autonomous part of the GOL-3 solenoid. The aim of this work was to develop a method for filling the central trap with a low-temperature start plasma. Transportation of a plasma stream from an arc source over a distance of 3 m in a uniform magnetic field with an induction of 0.5–4.5 T is demonstrated. In these experiments, the axial plasma density was (1–4) × 10{sup 20} m{sup –3} and the mirror ratio varied from 5 to 60. In general, the experiments confirmed the correctness of the adopted decisions for the start plasma source of the GOL-NB device.

  12. LHCD and ICRF heating experiments in H-mode plasmas on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Wan, B. N.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.; Collaboration: EAST Team

    2014-02-12

    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report.

  13. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the

  14. D-alpha Probe Investigation on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; James, Royce; Sherman, Justin; Page, Eric; Schlank, Carter; Stutzman, Brook; Duke-Tenson, Omar; Coast Guard Academy Plasma Laboratory Team

    2013-10-01

    Now that reproducible plasmas have been created on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) we are starting to set up a spectral probes to help verify plasma mode transitions to the W-mode. These optical probes will utilize movable filters, ccd cameras and diodes, to gather data at selected spectral frequency bands. Data collected will be used to investigate the plasma's structure and behavior during experiments. The spectral probes will take advantage of HPX's magnetic fields to define and measure the plasma's radiation temp as a function of time. A d-alpha filter will allow for the collection of neutral density fluctuations for different plasma behaviors. In d-alpha mode, the probe may also provide some information on the internal plasma structure and perhaps reveal some global plasma interactions. The spectral probe will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the construction of the probe will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  15. Combining the Strong Drive Regime with Evaporative Cooling to Control Plasma Parameters in the ALPHA Experiment

    NASA Astrophysics Data System (ADS)

    Carruth, Celeste; Fajans, Joel; Alpha Collaboration

    2016-10-01

    To make antihydrogen at the ALPHA experiment at CERN, we need to produce antiproton and positron plasmas with consistent plasma parameters. We developed a technique that allows us to eliminate initial variations in the density and the number of particles by combining evaporative cooling and the strong drive regime. The strong drive regime is a non-neutral plasma regime driven by a rotating electric field, where the drive frequency synchronizes with the plasma rotation frequency; this controls the density. Evaporative cooling is a space-charge dominated effect where a potential well is completely filled with the space charge of a plasma and one side is lowered, which sets the on-axis potential. For cold non-neutral plasmas, the density and on-axis potential give a unique solution to the plasma parameters, so we want to simultaneously combine these two techniques. Experimental results using electron plasmas show this combination of techniques does an excellent job at producing plasmas with the same number of particles and densities from a wide range of initial conditions. Special thanks to the United States Department of Energy and to the ALPHA collaboration for supporting this research.

  16. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  17. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  18. A table top experiment to study plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Baitha, Anuj Ram

    2016-10-01

    There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.

  19. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  20. Synergy Between Experiments and Simulations in Laser and Beam-Driven Plasma Acceleration and Light Sources

    NASA Astrophysics Data System (ADS)

    Mori, Warren B.

    2015-11-01

    Computer simulations have been an integral part of plasma physics research since the early 1960s. Initially, they provided the ability to confirm and test linear and nonlinear theories in one-dimension. As simulation capabilities and computational power improved, then simulations were also used to test new ideas and applications of plasmas in multi-dimensions. As progress continued, simulations were also used to model experiments. Today computer simulations of plasmas are ubiquitously used to test new theories, understand complicated nonlinear phenomenon, model the full temporal and spatial scale of experiments, simulate parameters beyond the reach of current experiments, and test the performance of new devices before large capital expenditures are made to build them. In this talk I review the progress in simulations in a particular area of plasma physics: plasma based acceleration (PBA). In PBA a short laser pulse or particle beam propagates through long regions of plasma creating plasma wave wakefields on which electrons or positrons surf to high energies. In some cases the wakefields are highly nonlinear, involve three-dimensional effects, and the trajectories of plasma particles cross making it essential that fully kinetic and three-dimensional models are used. I will show how particle-in-cell (PIC) simulations were initially used to propose the basic idea of PBA in one dimension. I will review some of the dramatic progress in the experimental demonstration of PBA and show how this progress was dramatically helped by a synergy between experiments and full-scale multi-dimensional PIC simulations. This will include a review of how the capability of PIC simulation tools has improved. I will also touch on some recent progress on improvements to PIC simulations of PBA and discuss how these improvements may push the synergy further towards real time steering of experiments and start to end modeling of key components of a future linear collider or XFEL based on PBA

  1. Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials

    SciTech Connect

    Lee, Nicolas; Close, Sigrid; Goel, Ashish; Johnson, Theresa; Lauben, David; Linscott, Ivan; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf

    2013-03-15

    Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10{sup -16} g to 10{sup -11} g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space

  2. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    C.E. Kessel; D. Meade; S.C. Jardin

    2002-01-18

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE.

  3. Statistical analysis plan for the Laser-1st versus Drops-1st for Glaucoma and Ocular Hypertension Trial (LiGHT): a multi-centre randomised controlled trial.

    PubMed

    Vickerstaff, Victoria; Ambler, Gareth; Bunce, Catey; Xing, Wen; Gazzard, Gus

    2015-11-11

    The LiGHT trial (Laser-1st versus Drops-1st for Glaucoma and Ocular Hypertension Trial) is a multicentre randomised controlled trial of two treatment pathways for patients who are newly diagnosed with open-angle glaucoma (OAG) and ocular hypertension (OHT). The main hypothesis for the trial is that lowering intraocular pressure (IOP) with selective laser trabeculoplasty (SLT) as the primary treatment ('Laser-1st') leads to a better health-related quality of life than for those started on IOP-lowering drops as their primary treatment ('Medicine-1st') and that this is associated with reduced costs and improved tolerability of treatment. This paper describes the statistical analysis plan for the study. The LiGHT trial is an unmasked, multi-centre randomised controlled trial. A total of 718 patients (359 per arm) are being randomised to two groups: medicine-first or laser-first treatment. Outcomes are recorded at baseline and at 6-month intervals up to 36 months. The primary outcome measure is health-related quality of life (HRQL) at 36 months measured using the EQ-5D-5L. The main secondary outcome is the Glaucoma Utility Index. We plan to analyse the patient outcome data according to the group to which the patient was originally assigned. Methods of statistical analysis are described, including the handling of missing data, the covariates used in the adjusted analyses and the planned sensitivity analyses. The trial was registered with the ISRCTN register on 23/07/2012, number ISRCTN32038223 .

  4. Developing the Science and Technology for the Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Biewer, Theodore; Bigelow, Timothy; Caughman, John; Goulding, Richard; Lumsdaine, Arnold; MPEX Team Team

    2016-10-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH) with a total installed power of 800 kW. The science and technology for this source system is currently being tested on Proto-MPEX. This is a linear device utilizing 12 water-cooled copper coils able to achieve peak magnetic fields of 1.6T. The currently total installed heating power (for helicon, EBW and ICRH) is 330kW. An overview of the status of this development program is given with an outlook to the next steps.

  5. On the experiments of Surfatron concept with use of capillary plasma

    SciTech Connect

    Nishida, Y.; Ito, H.; Rajyaguru, C.; Yugami, N.

    2004-12-07

    In the middle of 1980th, the VpxB concept for accelerating electrons are found by Nishida et al, with the use of plasma wave excited by high power microwave in the interaction with weakly magnetized plasma. This acceleration concept was called 'Surfatron effect' in the relativistic regime. However, there is no experimental evidence so far in the relativistic regime, although the acceleration efficiency is highest in all of the concepts based on the plasma wave acceleration scheme, and we are now under experiments. In order to make longer the acceleration distances, there are several ideas including 1)ducting of the electromagnetic waves (EM wave) in the preformed plasma, 2)self-channeling of the EM waves, and others. In this paper, the experimental results are shown on the ducting phenomena by using strong microwave for simulating the laser ducting, and on the capillary plasma scheme.

  6. Flow dynamics and magnetic induction in the von-Kármán plasma experiment

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Bousselin, G.; Palermo, F.; Morales, J.; Bos, W. J. T.; Godeferd, F.; Bourgoin, M.; Pinton, J.-F.; Moulin, M.; Aanesland, A.

    2015-01-01

    The von-Kármán plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (1016-1019 particles. m-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through J × B azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the J × B azimuthal torque.

  7. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  8. Proposal for secondary enclosure setup for experiments to expose plasma facing materials to tritiated plasma in VISIONI

    SciTech Connect

    Broeckx, W.E.K.; Dylst, K.; Bornea, A.; Zamfirache, M.

    2015-03-15

    VISIONI is an equipment at SCK-CEN that allows the exposure of candidate plasma facing materials to tritium - deuterium plasmas at ITER first wall conditions. VISIONI itself, being a vacuum setup, acts as primary confinement. To protect operators against exposure to a tritiated atmosphere VISIONI must be placed in a secondary confinement. The current Tritium lab at SCK-CEN has a walk-in process cell which can be used to enclose the plasma chamber and diagnostics of the VISIONI setup, which have a limited tritium inventory. This allows easy accessibility to the setup in a well-ventilated environment. Routine operations should be conducted from outside the process cell and maintenance operations can be conducted from within the process cell with proper protections. The tritium storage and supply can be enclosed in a glove box with a dedicated air detritiation system which is activated during an experiment or in case of an incident. The detritiation system will oxidize tritium and capture it on molecular sieves. By using this confinement approach it is possible to expose materials to a tritiated plasma while maintaining good accessibility of the VISIONI setup. This paper describes the proposed confinement system and compares it to the most common approach where the entire system is enclosed into one large glovebox.

  9. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    SciTech Connect

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-08-29

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented.

  10. Laboratory plasma interactions experiments: Results and implications to future space systems

    NASA Technical Reports Server (NTRS)

    Leung, Philip

    1986-01-01

    The experimental results discussed show the significance of the effects caused by spacecraft plasma interactions, in particular the generation of Electromagnetic Interference. As the experimental results show, the magnitude of the adverse effects induced by Plasma Interactions (PI) will be more significant for spacecraft of the next century. Therefore, research is needed to control possible adverse effects. Several techniques to control the selected PI effects are discussed. Tests, in the form of flight experiments, are needed to validate these proposed ideas.

  11. Post-disruptive plasma loss in the Princeton Beta Experiment (PBX)

    SciTech Connect

    Jardin, S.C.; DeLucia, J.; Okabayashi, M.; Pomphrey, N.; Reusch, M.; Kaye, S.; Takahashi, H.

    1986-07-01

    The free-boundary, axisymmetric tokamak simulation code TSC is used to model the transport time scale evolution and positional stability of PBX. A disruptive thermal quench will cause the plasma column to move inward in major radius. It is shown that the plasma can then lose axisymmetric stability, causing it to displace exponentially off the midplane, terminating the discharge. We verify the accuracy of the code by modeling several controlled experiments shots in PBX.

  12. Numerical Simulations of Collisionless Shock Formation in Merging Plasma Jet Experiments

    DTIC Science & Technology

    2013-06-01

    the interaction. I. INTRODUCTION Collisionless shocks play an important role in energy transport and evolution of charged-particle distribution...functions in space and astrophysical environments. Although collisionless shocks in plasmas were first predicted in the 1950s [1] and discovered in...laboratory collisionless shock experiments stems from the fact that modern laboratory plasmas can satisfy key physics criteria for the shocks to

  13. Plasma waves produced by the xenon ion beam experiment on the Porcupine sounding rocket

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M.

    1982-01-01

    The production of electrostatic ion cyclotron waves by a perpendicular ion beam in the F-region ionosphere is described. The ion beam experiment was part of the Porcupine program and produced electrostatic hydrogen cyclotron waves just above harmonics of the hydrogen cyclotron frequency. The plasma process may be thought of as a magnetized background ionosphere through which an unmagnetized beam is flowing. The dispersion equation for this hypothesis is constructed and solved. Preliminary solutions agree well with the observed plasma waves.

  14. Preliminary Pioneer 10 encounter results from the Ames Research Center plasma analyzer experiment

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Collard, H. R.; Mihalov, J. D.; Intriligator, D. S.

    1974-01-01

    Preliminary results from the Ames Research Center plasma analyzer experiment for the Pioneer 10 Jupiter encounter indicate that Jupiter has a detached bow shock and magnetopause similar to the case at Earth but much larger in spatial extent. In contrast to Earth, Jupiter's outer magnetosphere appears to be highly inflated by thermal plasma and therefore highly responsive in size to changes in solar wind dynamic pressure.

  15. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  16. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    SciTech Connect

    Lucia, Matthew James

    2015-09-01

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma performance

  17. Solvent/detergent-treated plasma: a tale of 30 years of experience.

    PubMed

    Liumbruno, Giancarlo Maria; Marano, Giuseppe; Grazzini, Gioia; Capuzzo, Enrico; Franchini, Massimo

    2015-06-01

    Solvent/detergent-treated plasma was licensed >30 years ago. It has several specific characteristics, the most important being the standardized content of clotting factors, the lack of antibodies implicated in transfusion-related acute lung injury pathogenesis and the very high level of safety against transfusion-related viral infections. Since 1992, many clinical studies have confirmed its safety and efficacy in a wide range of congenital and acquired bleeding disorders. After a brief analysis of the pharmaceutical characteristics of solvent/detergent plasma, this review will focus on the clinical experience with this virus-inactivated plasma.

  18. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    DTIC Science & Technology

    2009-06-01

    DESIGN OF A COMPACT COAXIAL MAGNETIZED PLASMA GUN FOR MAGNETIC BUBBLE EXPANSION EXPERIMENTS Y. Zhang1, A. G. Lynn1, S. C. Hsu2, M. Gilmore1, C...coaxial magnetized plasma gun and its associated hardware systems are discussed in detail. The plasma gun is used for experimental studies of...medium. The gun is powered by a 120µF, 10kV ignitron- switched capacitor bank. High-pressure gas is puffed into an annular gap between inner and outer

  19. Experimental observations and model calculations of impurity radiation in a plasma gun compact torus experiment

    SciTech Connect

    Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.

    1982-08-10

    Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.

  20. X-ray shadowgraphing in laser-produced plasma experiments.

    PubMed

    VanHulsteyn, D B; Benjamin, R F

    1977-08-01

    We discuss a design for an x-ray framing camera. Shadowgraphing experiments using a laser-generated x-ray source demonstrate that 5-microm spatial resolution can be obtained for this camera with less than 7 J of laser energy to produce the x-ray source.

  1. Development of plasma sources for ICRF heating experiment in KMAX mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Liu, Ming; Yi, Hongshen; Lin, Munan; Shi, Peiyun

    2016-10-01

    KMAX, Keda Mirror with AXisymmeticity, is a tandem mirror machine with a length of 10 meters and diameters of 1.2 meters in the central cell and 0.3 meters in the mirror throat. In the past experiments, the plasma was generated by helicon wave launched from the west end. We obtained the blue core mode in argon discharge, however, it cannot provide sufficient plasma for hydrogen discharge, which is at least 1012 cm-3 required for effective ICRF heating. Several attempts have thus been tried or under design to increase the central cell's plasma density: (1) a washer gun with aperture of 1cm has been successfully tested, and a plasma density of 1013 cm-3 was achieved in the west cell near the gun, however, the plasma is only 1011 cm-3 in the central cell possible due to the mirror trapping and/or neutral quenching effect (2) a larger washer gun with aperture of 2.5 cm and a higher power capacitor bank are being assembled in order to generate more plasmas. In addition, how to mitigate the neutrals is under consideration (3) A hot cathode is been designed and will be tested in combination with plasma gun or alone. Preliminary results from those plasma sources will be presented and discussed.

  2. Allied Forces. 1st Airborne Task Force. Field Order Number 1

    DTIC Science & Technology

    1944-08-05

    D761 ALLIED FORCES. 1st . AIRBORNE TASK FORCE. FIELD ORDER W6> 1 D 761 .A63 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...Allied Forces. 1st . Airborne Task Force. Field Order No. 1 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...34 .83d Cml B n CO, jCo "A" 2d Cml Bn CO,,’AT CO, /:/•"’""a| Regt CO I 5"L?’ih ’j 67^’th Med Co "Oet, 3d Ord 1 1st ABTF 5, PSTF G3,. ABTF ACofS

  3. "European Resuscitation Council 2015 burn 1st Aid recommendations-concerns and issues for first responders".

    PubMed

    Goodwin, Nicholas S

    2016-08-01

    As the lead author of a recently published systematic review on hydrogel burn dressings in pre-hospital, I was alarmed to read the claim by the authors to the effect no one method of burn wound cooling was superior to any other; "There is no evidence to recommend a specific temperature or method of cooling". The reputation and prominence of the ERC within the circle of resuscitation councils now delving into 1st Aid recommendations leads to the conclusion that misguided recommendations may cause confusion amongst first responders, may falsely misdirect 1st Aid providers to unsupported practices or alternatively create a window of opportunity for marketers or sellers of alternative burn 1st Aid technologies to make unsupported claims in respect of comparable efficacy of their own product versus "traditional" methods. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  4. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  5. Laser-plasma interaction in the context of inertial fusion: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Labaune, C.; Lewis, K.; Bandulet, H.; Depierreux, S.; Hüller, S.; Masson-Laborde, P. E.; Pesme, D.; Loiseau, P.

    2007-08-01

    Many nonlinear processes may affect the laser beam propagation and the laser energy deposition in the underdense plasma surrounding the pellet. These processes, associated with anomalous and nonlinear absorption mechanisms, are fundamental issues in the context of Inertial Confinement Fusion. The work presented in this article refers to laser-plasma interaction experiments which were conducted under well-controlled conditions, and to their theoretical and numerical modeling. Thanks to important diagnostics improvements, the plasma and laser parameters were sufficiently characterized in these experiments to make it possible to carry out numerical simulations modeling the laser plasma interaction in which the hydrodynamics conditions were very close to the experimental ones. Two sets of experiments were carried out with the LULI 2000 and the six beam LULI laser facilities. In the first series of experiments, the interaction between two single hot spots was studied as a function of their distance, intensity and light polarization. In the second series, the intensity distribution of stimulated Brillouin scattering (SBS) inside the plasma was studied by means of a new temporally resolved imaging system. Two-dimensional (2D) simulations were carried out with our code Harmony2D in order to model these experiments. For both series of experiments, the numerical results show a very good agreement with the experimental ones for what concerns the main SBS features, namely the spatial and temporal behavior of the SBS-driven acoustic waves, as well as the average SBS reflectivities. Thus, these well diagnosed experiments, carried out with well defined conditions, make it possible to benchmark our theoretical and numerical modelings and, hence, to improve our predictive capabilities for future experiments.

  6. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    SciTech Connect

    Nakamura, K.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Panasenko, D.; Toth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Lin, C.

    2009-01-22

    Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 {mu}m diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 {mu}m capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

  7. Rotating plasma disks in dense Z-pinch experiments

    SciTech Connect

    Bennett, M. J. E-mail: s.lebedev@imperial.ac.uk; Lebedev, S. V. E-mail: s.lebedev@imperial.ac.uk; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Hall, G. N.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-12-15

    We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms{sup −1} for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as T{sub i} ∼ 60 eV and ZT{sub e} ∼ 150 to 200 eV.

  8. Artificial plasma experiments. Chemical release observations associated with the CRRES program

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.

    1994-01-01

    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.

  9. The Solar Array Module Plasma Interactions Experiment (SAMPIE): Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is an approved NASA Space Shuttle space flight experiment to be launched in Jul. 1993. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of cell coupons, representing technologies of current interest, will be biased to high voltages to characterize both negative potential arcing and positive potential current collection. Additionally, various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of these interactions. The rationale for a space flight experiment, the measurements to be made, the significance of the expected results, and the current design status of the flight hardware are described.

  10. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    NASA Astrophysics Data System (ADS)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  11. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  12. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  13. Updates on the Optical Emission Spectroscopy and Thomson Scattering Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Duke-Tinson, Omar; Karama, Jackson; Azzari, Phillip; Royce, James; Page, Eric; Schlank, Carter; Sherman, Justin; Stutzman, Brooke; Zuniga, Jonathan

    2014-10-01

    HPX at the Coast Guard Academy Plasma Laboratory (CGAPL) have set up spectral probes to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Raw data collected will be used to measure the plasma's relative density, temperature, structure, and behavior during experiments. Direct measurements of the plasma's properties can be determined through modeling and by comparison with the state transition tables, using Optical Emission Spectroscopy (OES). The spectral probes will take advantage of HPX's magnetic field structure to define and measure the plasma's radiation temp as a function of time and space. In addition, the Thomson Scattering (TS) device will measure internal temperature and density data as the HPX plasma transitions through capacitive and inductive modes while developing into helicon plasma. Currently CGAPL is focused on building its laser beam transport and scattered light collection optical systems. Recently, HPX has acquired an Andor ICCD spectrometer for the spectral analysis. Data collected by the TS system will be logged in real time by CGAPL's Data Acquisition (DAQ) system with LabView remote access. Further progress on HPX will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  14. Plasma stabilization experiment. Final report, 1 October 1979-30 April 1980

    SciTech Connect

    Sziklas, E. A.; Fader, W. J.; Jong, R. A.; Stufflebeam, J. H.

    1980-07-01

    The Plasma Stabilization Experiment is an effort to enhance stability in a mirror-confined plasma by trapping cold ions with rf fields applied near the mirror throats. Nagoya Type III antennas, coupled to a 60 kW rf power supply are mounted in the throats of the UTRC baseball magnet. An external washer gun provides a source of plasma for both streaming and confined plasma tests. Results show a strong stoppering effect on streaming plasmas and a marginal effect on confined plasmas. Theoretical calculations provide an explanation for the experimental observations. The field generates a ponderomotive force acting on the electrons. The resultant improvement in electron confinement changes the ambipolar potential and inhibits the flow of ions through the mirror throat. Criteria are derived for the validity of this trapping concept. The requisite field strengths are significantly lower than those required to trap ions directly. Scaling laws are developed for application of cold ion trapping to large mirror devices containing dense plasmas. The use of slow-wave antenna structures operated at frequencies above the lower hybrid frequency is recommended for these applications.

  15. Washer-Gun Plasma Source for Magnetic Reconnection Experiments on VTF

    NASA Astrophysics Data System (ADS)

    Vrublevskis, A.; Egedal, J.; Fox, W.; Katz, N.; Le, A.; Porkolab, M.

    2008-11-01

    We present an electrostatic washer-gun plasma source for the Versatile Toroidal Facility (VTF). The gun will produce plasmas with densities on the order of 10^18 m-3 and electron temperatures on the order of 10-20 eV. It will extend the range of configurations achievable on VTF since the present plasma production method is limited to configurations with strong toroidal magnetic fields, which are required for microwave-induced electron cyclotron resonant breakdown. The gun is based on the design developed by Sterling Scientific [1] with detailed operation described in [1, 2]. During the gun's operation gas is injected into a channel formed by a stack of alternating molybdenum and boron nitride washers with a molybdenum electrode washer at each end. A voltage from a capacitor bank is applied to these electrodes and breaks down the gas in the channel. The resulting plasma escapes the channel into the main chamber of the experiment. If available we will present data characterizing the argon plasma produced by the device.[1ex] [1] Fiksel G et al. Plasma Sources Sci. Technol. 5 (1996) 78[1ex] [2] Den Hartog D et al. Plasma Sources Sci. Technol. 6 (1997) 492

  16. Improvements and modeling calculations for a laboratory photoionized plasma experiment at Z relevant to astrophysics

    NASA Astrophysics Data System (ADS)

    Lockard, T. E.; Mayes, D. C.; Durmaz, T.; Mancini, R. C.; Loisel, G.; Bailey, J. E.; Rochau, G. A.; Liedahl, D. A.; Heeter, R. F.

    2013-10-01

    Creating a photoionized plasma in a controlled laboratory environment is difficult due to the intense x-ray flux needed to drive the plasma. This is overcome by the intense flux of x-ray photons produced by the pulsed power Z-machine at Sandia National Laboratories. We discuss improvements to a gascell experiment at Z including new ultrathin windows and window plates, and lower filling pressures that permit producing photoionized plasmas of larger ionization parameters. To understand the radiation environment, constrained view-factor calculations have been performed to model the x-ray flux at the gascell. Radiation-hydrodynamic simulations were also done to provide information on the overall evolution of the plasma and, in particular, the radiation heating of the plasma including non-equilibrium effects. We will also discuss a series of collisional-radiative atomic kinetics calculations that were done using a collection of laboratory and astrophysics codes. These results are useful to understand the relative importance of photon- and particle-driven atomic processes in the plasma. This work is sponsored in part by the National Nuclear Security Administration under the High Energy Density Laboratory Plasmas grant program through DOE Grant DE-FG52-09NA29551, and the Z Facility Fundamental Science Program of SNL.

  17. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGES

    Rosenberg, M. J.; Li, C. K.; Fox, W.; ...

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  18. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  19. Two Non-Invasive Optical Diagnostics for the Plasma Couette Experiment

    NASA Astrophysics Data System (ADS)

    Tabbutt, Megan; Flanagan, Ken; Milhone, Jason; Nornberg, Mark; Roesler, Fred; Forest, Cary; WiPAL Team Team

    2016-10-01

    Two non-invasive optical diagnostics have been developed for the Plasma Couette Experiment Upgrade (PCX-U). PCX-U is capable of producing electron temperatures of 5 to 15 eV, densities between 1010 and 5 ×1011 cm-3, and ion temperatures between 0.5 eV to 2 eV. The first diagnostic described utilizes a low cost USB spectrometer for optical emission spectroscopy (OES). Combined with a modified coronal model, OES is used to measure electron temperature in Argon plasmas. A higher resolution spectrometer is used to image ion lines which can be analyzed to determine moments of the ion energy distribution function, particularly ion temperature and flow. Both optical diagnostics are mounted on a linear stage for scanning chords across the plasma volume. Abel transform techniques are used to create radial profiles of measured plasma properties. DOE, NSF.

  20. Five years of industrial experience with the plasma dross treatment process

    SciTech Connect

    Lavoie, S.; Lachance, J.

    1995-12-31

    Alcan`s Guillaume-Tremblay plant, located in Jonquiere, Quebec, has been in operation since 1990. This was the first plasma dross processing plant ever built. In addition to the use of the plasma heating technology, Guillaume-Tremblay has other unique features making it a modern and efficient dross processing facility. This paper presents a general over-view of the practical experience at the Guillaume-Tremblay plant. In particular, the utilization of plasma heating in industrial conditions, the metallurgical performance, the unique dross handling system, the control and information management system and the reclaiming of the by-products will be discussed. Finally, the use of the plasma process for salty dross will be addressed briefly.

  1. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  2. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  3. First application of a TES microcalorimeter to a thermonuclear fusion plasma experiment

    NASA Astrophysics Data System (ADS)

    Shinozaki, K.; Hoshino, A.; Ishisaki, Y.; Morita, U.; Ohashi, T.; Mihara, T.; Mitsuda, K.; Tanaka, K.; Yagi, Y.; Koguchi, H.; Hirano, Y.; Sakakita, H.

    2006-04-01

    We report the first application of a superconductive transition edge sensor (TES) microcalorimeter to a thermonuclear fusion plasma experiment in the toroidal pinch experiment RX (TPE-RX). The TES microcalorimeter was installed in a portable adiabatic demagnetization refrigerator (ADR), which is originally designed for a rocket experiment. The ADR was directly connected to TPE-RX with a vacuum duct, and thin Toray-Lumirror or parylene films were used for entrance windows to allow soft X-rays coming into the detector with good efficiency. The detector box was designed to shield the strong magnetic field produced by ADR and TPE-RX. A total of 3472 counts of X-ray signals were detected in 0.2-3.0 keV for 210 plasma shots during the flat-top phase (35-70 ms) after discarding pile-up events. Combining the data with that measured in the energy range of 1.3-8 keV using a SiLi detector, we examined a wide band X-ray spectrum of the plasma. The obtained spectrum is dominated by thermal plasma emission, although at least four different temperature components are required to account for the whole band spectral shape. Impurities in the deuterium plasma are also investigated.

  4. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  5. Experiments and PIC simulations on liquid crystal plasma mirrors for pulse contrast enhancement

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Krygier, A.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Heery, R.; Purcell, J.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-10-01

    High pulse contrast is crucial for performing many experiments on high intensity lasers in order to minimize modification of the target surface by pre-pulse. This is often achieved through the use of solid dielectric plasma mirrors which can limit laser shot rates. Liquid crystal films, originally developed as variable thickness ion acceleration targets, have been demonstrated as effective plasma mirrors for pulse cleaning, reaching peak reflectivities over 70%. These films were used as plasma mirrors in an ion acceleration experiment on the Scarlet laser and the resultant increase in peak proton energy and change in acceleration direction will be discussed. Also presented here are novel 2D3V, LSP particle-in-cell simulations of dielectric plasma mirror operation. By including multiphoton ionization and dimensionality corrections, an excellent match to experiment is obtained over 4 decades in intensity. Analysis of pulse shortening and plasma critical surface behavior in these simulations will be discussed. Formation of thin films at 1.5 Hz will also be presented. Performed with support from the DARPA PULSE program through AMRDEC, from NNSA, and from OSC.

  6. Integrated Simulation Studies of Plasma Performances and Fusion Reactions in the Deuterium Experiment of LHD

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Yamaguchi, H.; Homma, M.; Maeta, S.; Saito, Y.; Fukuyama, A.; Nagaoka, K.; Takahashi, H.; Nakano, H.; Osakabe, M.; Yokoyama, M.; Tanaka, K.; Ida, K.; Yoshinuma, M.; Isobe, M.; Tomita, H.; Ogawa, K.; LHD Exp Group Team

    2016-10-01

    The deuterium experiment project from 2017 is planned in LHD, where the deuterium NBI heating beams with the power more than 30MW are injected into the deuterium plasma. Principal objects of this project are to clarify the isotope effect on the heat and particle transport in the helical plasma and to study energetic particle confinement in a helical magnetic configuration measuring triton burn-up neutrons. We study the deuterium experiment plasma of LHD applying the integrated simulation code, TASK3D [Murakami, PPCF2015], and the 5-D drift kinetic equation solver, GNET [Murakami, NF2006]. (i) More than 20% of ion temperature increment is obtained in the deuterium plasma (nD /nH +nD = 0.8) due to the isotope effect assuming the turbulent transport model based on the H/He plasma experiment of LHD. (ii) The triton burn-up simulation shows the triton slowing down distribution and the strong magnetic configuration dependency of the triton burn-up ratio in LHD. This work was supported by JSPS KAKENHI Grant Number 26420851.

  7. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  8. 25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL NO. 1 CEILING. WATER-POWERED MACHINERY LOCATED IN BASEMENT RAN LEATHER BELTS THROUGH THESE HOLES. POWER WAS THEN TRANSMITTED TO SHAFTS AND PULLEYS TO RUN MACHINERY ON MILL FLOORS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  9. How Many Attempts Until Success in Some Core 1st. Year Disciplines?

    ERIC Educational Resources Information Center

    Fernandes, Graça Leão; Andrade e Silva, João; Lopes, Margarida Chagas

    2012-01-01

    Due to a general development in education brought about by democracy, Portugal has witnessed tremendous development in Higher Education (HE) since the beginning of the 1980s. Nevertheless, the percentage of graduates among the Portuguese population still ranks far below most European countries. This is why academic performance in HE 1st cycle…

  10. Perceptual Narrowing of Linguistic Sign Occurs in the 1st Year of Life

    ERIC Educational Resources Information Center

    Palmer, Stephanie Baker; Fais, Laurel; Golinkoff, Roberta Michnick; Werker, Janet F.

    2012-01-01

    Over their 1st year of life, infants' "universal" perception of the sounds of language narrows to encompass only those contrasts made in their native language (J. F. Werker & R. C. Tees, 1984). This research tested 40 infants in an eyetracking paradigm and showed that this pattern also holds for infants exposed to seen language--American Sign…

  11. The Course of Psychological Disorders in the 1st Year After Cancer Diagnosis

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    This study investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) and comorbid anxiety, depressive, and substance use disorders over the first 12-month period following a cancer diagnosis. Individuals recently diagnosed with 1st onset head and neck or lung malignancy were assessed for ASD within…

  12. 77 FR 22574 - Filing Dates for the Washington Special Election In the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Washington Special Election In the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Washington has...

  13. Perceptual Narrowing of Linguistic Sign Occurs in the 1st Year of Life

    ERIC Educational Resources Information Center

    Palmer, Stephanie Baker; Fais, Laurel; Golinkoff, Roberta Michnick; Werker, Janet F.

    2012-01-01

    Over their 1st year of life, infants' "universal" perception of the sounds of language narrows to encompass only those contrasts made in their native language (J. F. Werker & R. C. Tees, 1984). This research tested 40 infants in an eyetracking paradigm and showed that this pattern also holds for infants exposed to seen language--American Sign…

  14. Breaking Down Barriers for 1st-Year Teachers: What Teacher Preparation Programs Can Do

    ERIC Educational Resources Information Center

    Brashier, Allison; Norris, Elizabeth

    2008-01-01

    A developmentally appropriate learning environment for young children is vital for successful learning. However, implementing developmentally appropriate practices can be a challenge for 1st-year teachers because of the pressures of standardized testing. The purpose of this study was to examine the struggles teachers encounter in implementing…

  15. 130. Post1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. Post-1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT AND STOREKEEPER, A.P. ASS'N CANNERY, SHIP STAR OF ALASKA.' View forward from mizzenmast, post side. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  16. 75 FR 12544 - Filing Dates for the Hawaii Special Election In the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Filing Dates for the Hawaii Special Election In the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Hawaii has scheduled a Special... Campaign Committees All principal campaign committees of candidates who participate in the Hawaii Special...

  17. 26. Photograph of original Fresnel lens a 1st order fixed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photograph of original Fresnel lens a 1st order fixed white light. (Installed 1874 and first illuminated Feb. 1, 1875. This is the only known photograph of this lens - - removed in 1929.)ca. 1918. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  18. 48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms Latching mechanism, E end of turn span, view from N. Sarcone Photography, Columbus, MS. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  19. 49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Top of pier and underside of w end of turn span. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  20. 47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Latching mechanism, E end of turn span, viewed from W. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  1. 42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of postcard ca. 1900. Copy owned and made by Jack Donnell, Columbus, Ms. Shows two-span steel truss, built by Phoenix Bridge Co. in 1878. Negative copied by: Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  2. The Course of Psychological Disorders in the 1st Year After Cancer Diagnosis

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    This study investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) and comorbid anxiety, depressive, and substance use disorders over the first 12-month period following a cancer diagnosis. Individuals recently diagnosed with 1st onset head and neck or lung malignancy were assessed for ASD within…

  3. 24. OVERALL OF 1st FLOOR OF MILL NO. 1. PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. OVERALL OF 1st FLOOR OF MILL NO. 1. PALLETS HELD CLOTH IN STORAGE IN LATE 20th CENTURY. IRON POSTS IN LEFT DISTANCE FRONTED CLOTH BINS. HISTORIAN LEEANN LANDS IN BACKGROUND WITH LIGHT. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  4. The Student View of 1st Year Laboratory Work in the Biosciences--Score Gamma?

    ERIC Educational Resources Information Center

    Collis, Mike; Gibson, Alan; Hughes, Ian; Sayers, Gill; Todd, Martin

    2008-01-01

    Students registered on 1st year bioscience courses in 9 universities were surveyed for their views on the laboratory classes they were taking. Returns were obtained from 695 (70%). Student views were varied, some viewing particular features of laboratory classes as "good" while others viewed the same features as "bad". Students…

  5. Highlights of the 1st Student Symposium of the ISCB RSG UK

    PubMed Central

    Rahman, Farzana; Farmer, Rohit; Das, Sayoni; Vayani, Fatima; Hassan, Mehedi

    2015-01-01

    This short report summarises the scientific content and activities of a student-led event, the 1st student symposium by the UK Regional Student Group of the International Society for Computational Biology. The event took place on the 8th of October 2014. PMID:26998223

  6. Aedes aegypti pharate 1st instar quiescence: a case for anticipatory reproductive plasticity.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2013-03-01

    Aedes aegypti mosquitoes use pharate 1st instar quiescence to cope with fluctuations in water availability hosting a fully developed 1st instar larvae within the chorion. The duration of this quiescence has been shown to affect larval fitness. This study sought to determine if an extended egg quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Our findings indicate that extended pharate 1st instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner. This study demonstrates that phenotypic plasticity results as a consequence of the duration of pharate 1st instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. These findings have implications for A. aegypti's success as a vector, geographic distribution, vector capacity and control.

  7. The Student View of 1st Year Laboratory Work in the Biosciences--Score Gamma?

    ERIC Educational Resources Information Center

    Collis, Mike; Gibson, Alan; Hughes, Ian; Sayers, Gill; Todd, Martin

    2008-01-01

    Students registered on 1st year bioscience courses in 9 universities were surveyed for their views on the laboratory classes they were taking. Returns were obtained from 695 (70%). Student views were varied, some viewing particular features of laboratory classes as "good" while others viewed the same features as "bad". Students…

  8. Plasmodium falciparum malaria in 1(st)-2(nd) century CE southern Italy.

    PubMed

    Marciniak, Stephanie; Prowse, Tracy L; Herring, D Ann; Klunk, Jennifer; Kuch, Melanie; Duggan, Ana T; Bondioli, Luca; Holmes, Edward C; Poinar, Hendrik N

    2016-12-05

    The historical record attests to the devastation malaria exacted on ancient civilizations, particularly the Roman Empire [1]. However, evidence for the presence of malaria during the Imperial period in Italy (1st-5th century CE) is based on indirect sources, such as historical, epigraphic, or skeletal evidence. Although these sources are crucial for revealing the context of this disease, they cannot establish the causative species of Plasmodium. Importantly, definitive evidence for the presence of malaria is now possible through the implementation of ancient DNA technology. As malaria is presumed to have been at its zenith during the Imperial period [1], we selected first or second molars from 58 adults from three cemeteries from this time: Isola Sacra (associated with Portus Romae, 1st-3rd century CE), Velia (1st-2nd century CE), and Vagnari (1st-4th century CE). We performed hybridization capture using baits designed from the mitochondrial (mtDNA) genomes of Plasmodium spp. on a prioritized subset of 11 adults (informed by metagenomic sequencing). The mtDNA sequences generated provided compelling phylogenetic evidence for the presence of P. falciparum in two individuals. This is the first genomic data directly implicating P. falciparum in Imperial period southern Italy in adults.

  9. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-01-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  10. Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)

    SciTech Connect

    Not Available

    1985-11-01

    The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

  11. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  12. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  13. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  14. PLASMA-F experiment: Three years of on-orbit operation

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Zastenker, G. N.; Petrukovich, A. A.; Chesalin, L. S.; Nazarov, V. N.; Prokhorenko, V. I.; Balaz, J.; Kudela, K.; Strgarski, I.; Slivka, M.; Gladyshev, V. A.; Kirpichev, I. P.; Sarris, E.; Sarris, T.; Lakutina, E. V.; Minskaya, L. K.; Krukovskaya, E. V.; Beznos, A. V.; Markov, Y. I.; Tretyakov, A. E.; Batanov, O. V.; Korotkov, F. V.; Melnik, A. P.; Konoplev, V. V.; Ryabova, A. D.; Gevorkova, E. V.; Klimenchenko, M. V.; Bazhenov, A. G.; Belova, I. E.; Gavrilova, E. A.; Ananenkova, A. N.; Rudnevskaya, L. V.; Dyachkov, A. V.; Starostina, O. A.; Ryazanova, E. E.; Eismont, N. A.; Safrankova, J.; Nemecek, Z.; Prech, L.; Cermak, I.; Vaverka, J.; Komarek, A.; Vojta, J.; Karimov, B. T.; Agafonov, Y. N.; Borodkova, N. L.; Gagua, T. I.; Gagua, I. T.; Koloskova, I. V.; Leibov, A. V.; Parhomov, V. A.; Ryazanceva, M. O.; Khrapchenkov, V. V.; Chugunova, O. M.

    2015-12-01

    Composition and tasks of the PLAZMA-F experiment onboard the SPEKTR-R satellite are described in this paper. A record high time resolution is a feature of solar wind plasma flux and energetic particle flux measurements. It allowed detecting a number of new and significant properties and parameters.

  15. Evolution of plasma loops in a semi-toroidal pinch experiment

    SciTech Connect

    Mackel, F. Ridder, S.; Tenfelde, J.; Tacke, T.; Soltwisch, H.

    2015-04-15

    The FlareLab experiment is a pulsed-power discharge generating magnetized plasma loops similar to a pinch experiment in a semi-toroidal configuration. After gas breakdown along a circular magnetic guide field, the structure expands in its major radius as the plasma becomes highly conductive and the discharge current rises. Photographs, current and electron density measurements reveal a significant broadening in the lateral direction leading to an increasing departure from radial symmetry of plasma parameters in the cross section. It is shown that the luminosity is related to both high electron density and high current density. Simultaneous measurements of current density and electric field reveal a high parallel resistivity of the plasma leading to fast diffusion across the magnetic field. Indications for anomalous resistivity are found by comparison with the Spitzer formula. As the experiment differs from a z-pinch experiment only by the semi-circular shape of the current path, the observed evolution is unexpected and might be of more fundamental significance.

  16. Experiments in diamond film fabrication in table-top plasma apparatus

    NASA Technical Reports Server (NTRS)

    Masi, James V.

    1994-01-01

    The objectives of this experiment are to illustrate the process of plasma assisted chemical vapor deposition and to show devices which can be made simply in the laboratory. These devices illustrate clearly the concepts of bandgap, junctions, and photoelectronic processes. Films and devices are measured electrically, optically, and thermally.

  17. Exploring the universe in the laboratory: photoionized plasma experiments at Z relevant to astrophysics

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto

    2014-08-01

    Many astrophysical environments such as x-ray binaries, active galactic nuclei, and accretion disks of compact objects have photoionized plasmas. Detailed x-ray spectral observations performed with the Chandra and XMM-Newton orbiting telescopes provide critical information on the state of photoionized plasmas. However, the complexity of the astrophysical environment makes the spectral analysis challenging, and thus laboratory experiments are important for data interpretation and testing of modeling codes. The Z facility at Sandia National Laboratories is a powerful source of x-rays to produce and study in the laboratory photoionized plasmas relevant for astrophysics. We discuss an experimental and theory/modeling effort in which the intense x-ray flux emitted at the collapse of a z-pinch implosion conducted at the Z pulsed-power machine is employed to produce a neon photoionized plasma. The broadband x-ray radiation flux from the z-pinch is used to both create the photoionized plasma and provide a source of backlighting photons to study the atomic kinetics through K-shell line absorption spectroscopy. The plasma is contained in a cm-scale gas cell that can be located at different distances from the z-pinch, thus effectively controlling the x-ray flux producing the plasma. Time-integrated transmission spectra have been observed with a spectrometer equipped with two elliptically-bent KAP crystals from photoionized plasmas covering an order of magnitude range in ionization parameter. The transmission data shows a rich line absorption spectrum that spans over several ionization stages of neon including Be-, Li-, He- and H-like ions. Modeling calculations are used to interpret the transmission spectra recorded in the Z experiments with the goal of extracting the charge- state distribution, electron temperature and the radiation flux driving the plasma, as well as to determine the ionization parameter of the plasma. This work is sponsored in part by the National Nuclear

  18. [1st report on the use of an autogenous tissue adhesive in otorhinolaryngology].

    PubMed

    Wolf, G; Stammberger, H

    1985-04-01

    An autogenous tissue glue has been developed at the ENT Department of the University Clinic Graz. It is prepared from the patient's own plasma, and has the following advantages: There is no danger of transmitting infectious diseases, there are no problems with storage, temperature and expiration date. The glue is produced at room temperature and is cheap. The production and application of this autologous tissue glue are described and a first report is given on initial experiences.

  19. Correlated-intensity velocimeter for arbitrary reflector for laser-produced plasma experiments

    SciTech Connect

    Wang Zhehui; Luo Shengnian; Barnes, Cris W.; Briggs, Matthew E.; Paisley, Dennis L.; Paul, Stephen F.

    2006-10-15

    A laser-based technique, called correlated-intensity velocimeter for arbitrary reflector (CIVAR), is described for velocity measurement of reflecting surfaces in real time. Velocity versus time is an important measurement in laser-produced high-energy density plasma experiments because the motion of the surface depends on both the equation of the state of the surface material and laser-produced plasma. The physics and working principle of CIVAR are the same as those of a previous concept that resolves Doppler shift of plasma light emission using a pair of narrow passband interference filters. One unique feature of CIVAR is that a reflected laser beam is used instead of plasma emission. Therefore, CIVAR is applicable to both emitting and nonemitting reflecting surfaces. Other advantages of CIVAR include its simplicity, lower cost, and unambiguous data analysis that can be fully automated. The design of a single-point CIVAR is described in detail with emphasis on laser wavelength selection and signal-to-noise ratio. The single-point CIVAR system can be expanded into a multiple-point system straightforwardly. It is possible to use CIVAR concept to construct a two-dimensional imaging system for a nonuniform velocity field of a large reflecting surface; such a velocity imaging system may have applications beyond laser-produced plasma experiments, for example, in shock compression of condensed matter.

  20. Experiments and simulations on non-plasma ignition of semiconductor bridge igniter

    NASA Astrophysics Data System (ADS)

    Du, Weiqiang; Zhou, Bin; Liu, Jupeng; Li, Yong; Wang, Jun

    2017-01-01

    Since semiconductor bridge (SCB) igniter has been invented, it is commonly considered as a plasma generator. However, the plasma ignition mechanism may be affected by the hotspot ignition temperature of the primary explosives that is lower than the melting point of SCB in the igniter. In an effort to investigate the non-plasma ignition performance of SCB igniter, a one-dimensional model was established for temperature distribution analysis under constant current and capacitor discharge excitation. The simulation results featured the progress of heat transfer and the energy level required by non-plasma ignition of SCB was estimated. Furthermore, sensitivity experiments were carried out to test simulation results and to obtain the firing current range of SCB igniter with lead styphnate (LTNR). Experiment results indicated that safety conditions are 1.953 A constant current input lasting 1 ms under constant current excitation and 7.072 V voltage input using 47 µF storage capacitor under capacitor discharge excitation. All-firing conditions of non-plasma ignition are 2.035 A constant current input lasting 1 ms under constant current excitation and 7.647 V voltage input using 47 µF storage capacitor under capacitor discharge excitation.

  1. Updates on Optical Emission Spectroscopy & Langmuir Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; Frank, John; Azzari, Phillip; Hopson, Jordan; James, Royce; Duke-Tinson, Omar; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Eva; Turk, Jeremy

    2015-11-01

    HPX is developing a to shorter lifetime (20 - 30 ns) more reproducible plasma at the Coast Guard Academy Plasma Laboratory (CGAPL). Once achieved, spectral and particle probes will help to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Once corrections for the RF field are in place for the Langmuir probe, raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Direct measurements of plasma properties can be determined with modeling and by comparison with the state transition tables, both using Optical Emission Spectroscopy (OES). The spectral will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the implementation of the OES and Langmuir probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  2. Empirical modeling of plasma clouds produced by the Metal Oxide Space Clouds experiment

    NASA Astrophysics Data System (ADS)

    Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel; Holmes, Jeffrey M.; Groves, Keith M.; Sutton, Eric

    2017-05-01

    The Advanced Research Project Agency (ARPA) Long-Range Tracking And Instrumentation Radar (ALTAIR) radar at Kwajalein Atoll was used in incoherent scatter mode to measure plasma densities within two artificial clouds created by the Air Force Research Laboratory (AFRL) Metal Oxide Space Clouds (MOSC) experiment in May 2013. Optical imager, ionosonde, and ALTAIR measurements were combined to create 3-D empirical descriptions of the plasma clouds as a function of time, which match the radar measurements to within 15%. The plasma clouds closely track the location of the optical clouds, and the best fit plasma cloud widths are generally consistent with isotropic neutral diffusion. Cloud plasma densities decreased as a power of time, with exponents between -0.5 and -1.0, or much more slowly than the -1.5 predicted by diffusion. These exponents and estimates of total ion number from integration through the model volume are consistent with a scenario of slow ionization and a gradually increasing total number of ions with time, reaching a net ionization fraction of 20% after approximately half an hour. These robust representations of the plasma density are being used to study impacts of the artificial clouds on the dynamics of the background ionosphere and on RF propagation.

  3. PREFACE: 1st-2nd Young Researchers Meetings in Rome - Proceedings

    NASA Astrophysics Data System (ADS)

    YRMR Organizing Committee; Cannuccia, E.; Mazzaferro, L.; Migliaccio, M.; Pietrobon, D.; Stellato, F.; Veneziani, M.

    2011-03-01

    Students in science, particularly in physics, face a fascinating and challenging future. Scientists have proposed very interesting theories, which describe the microscopic and macroscopic world fairly well, trying to match the quantum regime with cosmological scales. Between the extremes of this scenario, biological phenomena in all their complexity take place, challenging the laws we observe in the atomic and sub-atomic world. More and more accurate and complex experiments have been devised and these are now going to test the paradigms of physics. Notable experiments include: the Large Hadronic Collider (LHC), which is going to shed light on the physics of the Standard Model of Particles and its extensions; the Planck-Herschel satellites, which target a very precise measurement of the properties of our Universe; and the Free Electron Lasers facilities, which produce high-brilliance, ultrafast X-ray pulses, allowing the investigation of the fundamental processes of solid state physics, chemistry, and biology. These projects are the result of huge collaborations spread across the world, involving scientists belonging to different and complementary research fields: physicists, chemists, biologists and others, keen to make the best of these extraordinary laboratories. Even though each branch of science is experiencing a process of growing specialization, it is very important to keep an eye on the global picture, remaining aware of the deep interconnections between inherent fields. This is even more crucial for students who are beginning their research careers. These considerations motivated PhD students and young post-docs connected to the Roman scientific research area to organize a conference, to establish the background and the network for interactions and collaborations. This resulted in the 1st and 2nd Young Researchers Meetings in Rome (http://ryrm.roma2.infn.it), one day conferences aimed primarily at graduate students and post-docs, working in physics in Italy

  4. Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment

    SciTech Connect

    Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.

    2006-01-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  5. Empirical Modeling of Plasma Clouds Produced by the Metal Oxide Space Clouds (MOSC) Experiment

    NASA Astrophysics Data System (ADS)

    Pedersen, T.; Caton, R. G.; Miller, D.; Holmes, J. M.; Groves, K. M.

    2015-12-01

    The Metal Oxide Space Clouds (MOSC) chemical release experiments employed the ALTAIR radar as a primary measurement of plasma density in the clouds. However, the radar provides only the local plasma density along the beam line of sight, and the measurements are of limited value without context to determine the location of the radar beam relative to the larger plasma cloud. We have constructed an empirical model of the cloud locations, shapes, and sizes as a function of time for both MOSC launches using fits to all-sky images recorded from near the launch site. When combined with ALTAIR radar measurements of local plasma density at the sampled point and ionosonde measurements of the peak plasma density, a robust 4-D representation of the plasma density can be derived and used to estimate ionization yields and to study impacts on the background ionosphere and RF propagation. Optical image data was fit to a 2-D Gaussian model to derive peak intensity, background, rotation of the cloud in the horizontal plane, and half-widths in the N-S and E-W directions. The optical images show a closely linear increase in half-width after the first minute or two. Very good agreement between the model and radar integrated total electron content (TEC) measurements are obtained with a simple exponential envelope to the peak TEC within the cloud, indicating that the optical distribution closely tracks the plasma density. Comparison of TEC with peak plasma density and the observed spatial dimensions of the cloud are used to estimate the rate of change in total electron number during the period of observation and to compare with predictions of prior theoretical and numerical models.

  6. ECH Plasma Experiments on an Internal Coil Device with a High Temperature Superconductor Coil

    SciTech Connect

    Ogawa, Yuichi; Morikawa, Junji; Ohkuni, Kotaro; Yamakoshi, Shigeo; Goto, Takuya; Mito, Toshiyuki; Yanagi, Nagato; Iwakuma, Masataka

    2005-01-15

    Self-organization related with relaxation phenomenon is playing an important role in various aspects of magnetic confined plasmas. Recently a relaxation theory including the plasma flow has been developed by Mahajan-Yoshida, and a new relaxation state has been identified. The two-fluid relaxation condition is given by {beta} + (V/V{sub A}){sup 2} = const. To study a self-organized structure with strong plasma flow, we have introduced an internal coil device. By inducing a radial electric field with appropriate methods, we could drive a toroidal plasma flow, and confine a high beta plasma in a core region. The internal coil device Mini-RT with a high temperature superconductor(HTS) coil(Rc=0.15m, Ic=50kA) has been constructed. The vacuum chamber is 1 m in diameter and {approx}0.7 m in height. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. We have started ECH plasma experiments with the coil supported mechanically. The electron density, which has a peak near the internal coil, is of order 10{sup 16} m{sup -3}, reaching the cut-off density of the microwave. While, the electron temperature is of order 10 eV with a broad profile. Estimated energy confinement time is of order 10{sup -(5-6)} sec. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured with laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded to levitating the HTS coil during one hour with an accuracy of less than 20 {omega}m. A preliminary experiment for the plasma production at the floating condition of the HTS coil has been initiated. It is affirmed that the levitation system works well and plasma with separatrix configuration is produced.

  7. Workshop on Plasma Experiments in the Laboratory and in Space. Abstracts

    DTIC Science & Technology

    1991-01-01

    Region I. Roth (Space Sciences Laborazory, University of California, Berkeley, Cali- fornia 94720) M . K. Hudson (Physics and Astronomy Department...of cbarpd gramins forming a Couomb lattce is brieflydescribed. m 4~o i L PL-ASN’A - ILASM^ IN1rERA4C1-rlONS Experiments on the Merging of Currents in...quiescent plasma column which is 0.5 m in diameter. The ambient magnetic field is Bz 3 kG and plasma density n < 5.0X10 12 /cm 3 in Ar. The two current

  8. [Argon plasma coagulation (APC): a new mode in gastrointestinal endoscopy--first experience].

    PubMed

    Dajcman, D; Skalicky, M; Pernat, C; Pocajt, M

    2001-01-01

    Argon plasma coagulation (APC) is a new method of non-contact electrocoagulation in which current is applied to tissues by means of ionised argon gas (argon plasma). The development of special applicators has made this method applicable for gastrointestinal endoscopy. The primary indication for APC is the treatment of hemorrhage in the gastrointestinal tract. APC has been proven to be highly effective and easily used, with clear advantages over previously used methods. This article describes the introduction of APC in Slovenia and the first experiences with this method in the clinical department of internal medicine in Maribor.

  9. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    SciTech Connect

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  10. The Effect of Precursor Plasma Flow on Foam Targets in Wire Array Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Palmer, James B. A.; Lebedev, Sergey V.; Bland, Simon N.; Chittenden, Jeremy P.; Ampleford, David J.

    2002-12-01

    Previous experiments have demonstrated that the slow ablation rate of material from wire arrays results in the formation of a precursor plasma stream bombarding the axis [1]. This could have major repercussions for the centrally located foam targets used in dynamic and static walled hohlraum configurations on the Z facility at Sandia National Laboratory (SNL) [2]. Experiments to characterise the effect of precursor plasma flow on foam targets were carried out on the MAGPIE generator at Imperial College. The TPX foam used is similar in size and density to foam used in the experiments at SNL. Diagnostics included: x-pinch backlighter; x-ray framing cameras; diamond PCDs; laser shadowgraphy and interferometry; optical streak photography. Backlighter results suggested that the foam was compressed at a rate consistent with experimental estimates of the momentum of the bombarding plasma streams. Laser probing images, however, showed expansion of low density plasma from the foam surface that exhibited structure similar to an m=0 instability. Side-on XUV and x-ray imaging showed axially modulated emission from the foam.

  11. Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Hornung, J.; Schmidt, C.; Eckhardt, M.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2017-02-01

    We report on the development and implementation of a time resolved backscatter diagnostics for high power laser plasma experiments at the petawatt-class laser facility PHELIX. Pulses that are backscattered or reflected from overcritical plasmas are characterized spectrally and temporally resolved using a specially designed second harmonic generation frequency resolved optical gating system. The diagnostics meets the requirements made by typical experiments, i.e., a spectral bandwidth of more than 30 nm with sub-nanometer resolution and a temporal window of 10 ps with 50 fs temporal resolution. The diagnostics is permanently installed at the PHELIX target area and can be used to study effects such as laser-hole boring or relativistic self-phase-modulation which are important features of laser-driven particle acceleration experiments.

  12. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  13. Experience from the 1st Year running a Massive High Quality Videoconferencing Service for the LHC

    NASA Astrophysics Data System (ADS)

    Fernandes, Joao; Baron, Thomas; Bompastor, Bruno

    2014-06-01

    In the last few years, we have witnessed an explosion of visual collaboration initiatives in the industry. Several advances in video services and also in their underlying infrastructure are currently improving the way people collaborate globally. These advances are creating new usage paradigms: any device in any network can be used to collaborate, in most cases with an overall high quality. To keep apace with this technology progression, the CERN IT Department launched a service based on the Vidyo product. This new service architecture introduces Adaptive Video Layering, which dynamically optimizes the video for each endpoint by leveraging the H.264 Scalable Video Coding (SVC)-based compression technology. It combines intelligent AV routing techniques with the flexibility of H.264 SVC video compression, in order to achieve resilient video collaboration over the Internet, 3G and WiFi. We present an overview of the results that have been achieved after this major change. In particular, the first year of operation of the CERN Vidyo service will be described in terms of performance and scale: The service became part of the daily activity of the LHC collaborations, reaching a monthly usage of more than 3200 meetings with a peak of 750 simultaneous connections. We also present some key features such as the integration with CERN Indico. LHC users can now join a Vidyo meeting either from their personal computer or a CERN videoconference room simply from an Indico event page, with the ease of a single click. The roadmap for future improvements, service extensions and core infrastructure tendencies such as cloud based services and virtualization of system components will also be discussed. Vidyo's strengths allowed us to build a universal service (it is accessible from PCs, but also videoconference rooms, traditional phones, tablets and smartphones), developed with 3 key ideas in mind: ease of use, full integration and high quality.

  14. The proceedings of the 1st international workshop on laboratory astrophysics experiments with large lasers

    SciTech Connect

    Remington, B.A.; Goldstein, W.H.

    1996-08-09

    The world has stood witness to the development of a number of highly sophisticated and flexible, high power laser facilities (energies up to 50 kJ and powers up to 50 TW), driven largely by the world-wide effort in inertial confinement fusion (ICF). The charter of diagnosing implosions with detailed, quantitative measurements has driven the ICF laser facilities to be exceedingly versatile and well equipped with diagnostics. Interestingly, there is considerable overlap in the physics of ICF and astrophysics. Both typically involve compressible radiative hydrodynamics, radiation transport, complex opacities, and equations of state of dense matter. Surprisingly, however, there has been little communication between these two communities to date. With the recent declassification of ICF in the USA, and the approval to commence with construction of the next generation ``superlasers``, the 2 MJ National Ignition Facility in the US, and its equivalent, the LMJ laser in France, the situation is ripe for change. . Given the physics similarities that exist between ICF and astrophysics, one strongly suspects that there should exist regions of overlap where supporting research on the large lasers could be beneficial to the astrophysics community. As a catalyst for discussions to this end, Lawrence Livermore National Laboratory sponsored this workshop. Approximately 100 scientists attended from around the world, representing eight countries: the USA, Canada, UK, France, Germany, Russia, Japan, and Israel. A total of 30 technical papers were presented. The two day workshop was divided into four sessions, focusing on nonlinear hydrodynamics, radiative hydrodynamics, radiation transport, and atomic physics-opacities. Copies of the presentations are contained in these proceedings.

  15. Search for 1st Generation Leptoquarks in the eejj channel with the DZero experiment

    SciTech Connect

    Barfuss, Anne-Fleur

    2008-09-12

    An evidence of the existence of leptoquarks (LQ) would prove the validity of various extensions of the Standard Model of Particle Physics (SM). The search for first generation leptoquarks presented in this dissertation has been performed by analyzing a 1.02 fb-1 sample of data collected by the D0 detector, events with a final state comprising two light jets and two electrons. The absence of an excess of events in comparison to SM expectations leads to exclude scalar LQ masses up to 292 GeV and vector LQ masses from 350 to 458 GeV, depending on the LQ-l-q coupling type. The great importance of a good jet energy measurement motivated the study of the instrumental backgrounds correlated to the calorimeter, as much as studies of the hadronic showers energy resolution in γ + jets events.

  16. Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2017-03-01

    The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.

  17. On the Observation of Jitter Radiation in Solid-Density Laser-Plasma Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Medvedev, Mikhail

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., ``sub-Larmor scales''. Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence, known as jitter radiation, has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, jitter radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  18. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  19. Radiofrequency antenna for suppression of parasitic discharges in a helicon plasma thruster experiment.

    PubMed

    Takahashi, Kazunori

    2012-08-01

    A radiofrequency (rf) antenna for helicon plasma thruster experiments is developed and tested using a permanent magnets helicon plasma source immersed in a vacuum chamber. A magnetic nozzle is provided by permanent magnets arrays and an argon plasma is produced by a 13.56 MHz radiofrequency helicon-wave or inductively-coupled discharge. A parasitic discharge outside the source tube is successfully suppressed by covering the rf antenna with a ceramic ring and a grounded shield; a decrease in the ion saturation current of a Langmuir probe located outside the source tube is observed and the ion saturation current on axis increases simultaneously, compared with the case of a standard uncovered rf antenna. It is also demonstrated that the covered antenna can yield stable operation of the source.

  20. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  1. Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport

    SciTech Connect

    Mueller, S. H.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podesta, M.

    2007-11-15

    Detaching plasma blobs with very similar properties to tokamaks are observed in the basic toroidal plasma experiment TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The blobs originate from the breaking of wave crests of a drift-interchange wave, which span over regions characterized by strongly inhomogeneous background parameters. Once decoupled from the wave, the blobs follow a predominantly radial trajectory pattern. The blob-induced cross-field transport can instantaneously exceed the steady-state parallel fluxes by one order of magnitude, while accounting for only 10% of the time-average device losses. If the particles were confined in the parallel direction, as is the case in tokamaks, blobs would constitute the dominant loss mechanism in TORPEX. The presented results show that the presence of grad B is sufficient and neither a magnetic-topology change nor the presence of limiters, both absent in TORPEX, are necessary for the generation of blobs.

  2. The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation

    SciTech Connect

    Rapson, Christopher; Grulke, Olaf; Matyash, Konstantin; Klinger, Thomas

    2014-05-15

    The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.

  3. SU-E-T-188: Commission of World 1st Commercial Compact PBS Proton System

    SciTech Connect

    Ding, X; Patel, B; Song, X; Syh, J; Syh, J; Zhang, J; Freund, D; Rosen, L; Wu, H

    2015-06-15

    Purpose: ProteusONE is the 1st commercial compact PBS proton system with an upstream scanning gantry and C230 cyclotron. We commissioned XiO and Raystation TPS simultaneously. This is a summary of beam data collection, modeling, and verification and comparison without range shiter for this unique system with both TPS. Methods: Both Raystation and XiO requires the same measurements data: (i) integral depth dose(IDDs) of single central spot measured in water tank; (ii) absolute dose calibration measured at 2cm depth of water with mono-energetic 10×10 cm2 field with spot spacing 4mm, 1MU per spot; and (iii) beam spot characteristics in air at 0cm and ± 20cm away from ISO. To verify the beam model for both TPS, same 15 cube plans were created to simulate different treatment sites, target volumes and positions. PDDs of each plan were measured using a Multi-layer Ionization Chamber(MLIC), absolute point dose verification were measured using PPC05 in water tank and patient-specific QA were measured using MatriXX PT, a 2D ion chamber array. Results: All the point dose measurements at midSOBP were within 2% for both XiO and Raystation. However, up to 5% deviations were observed in XiO’s plans at shallow depth while within 2% in Raystation plans. 100% of the ranges measured were within 1 mm with maximum deviation of 0.5 mm. 20 patient specific plan were generated and measured in 3 planes (distal, proximal and midSOBP) in Raystation. The average of gamma index is 98.7%±3% with minimum 94% Conclusions: Both TPS were successfully commissioned and can be safely deployed for clinical use for ProteusONE. Based on our clinical experience in PBS planning, user interface, function and workflow, we preferably use Raystation as our main clinical TPS. Gamma Index >95% at 3%/3 mm criteria is our institution action level for patient specific plan QAs.

  4. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our

  5. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    SciTech Connect

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

  6. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  7. The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem

    NASA Astrophysics Data System (ADS)

    Yousef, S. M.

    The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.

  8. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    SciTech Connect

    .R. Wilson, C.E. Kessel, S. Wolfe, I.H. Hutchinson, P. Bonoli, C. Fiore, A.E. Hubbard, J. Hughes, Y. Lin, Y. Ma, D. Mikkelsen, M. Reinke, S. Scott, A.C.C. Sips, S. Wukitch and the C-Mod Team

    2010-09-24

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also. __________________________________________________

  9. Design, development, and results from a charge-collector diagnostic for a toroidal electron plasma experiment

    SciTech Connect

    Pahari, Sambaran; Lachhvani, Lavkesh Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P. K.

    2015-08-15

    A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset “hold” time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the “non-neutrality” of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

  10. The Charged Aerosol Release Experiment (Care II) to Study Artificial Dusty Plasmas in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Gatling, G.; Briczinski, S. J., Jr.; Vierinen, J.; Bhatt, A.; Holzworth, R. H., II; McCarthy, M.; Gustavsson, B.; La Hoz, C.; Latteck, R.

    2015-12-01

    A sounding rocket launched from Andoya, Norway in September 2015 carried 37 rocket motors and a multi-instrument daughter payload into the ionosphere to study the generation of plasma wave electric fields and ionospheric density disturbances by the high-speed injection of dust particles. The primary purpose of the CARE II mission is to validate the dress-particle theory of enhanced incoherent scatter from a dusty plasma and to validate models of plasma instabilities driven by high-speed charged particles. The CARE II chemical payload produces 66 kg of micron-sized dust particles composed of aluminium oxide. In addition to the dust, simple molecular combustion products such as N2, H2, CO2, CO, H20 and NO will be injected into the bottomside of the F-layer. Charging of the dust and ion charge exchange with the molecules yields plasma particles moving at hypersonic velocities. Streaming instabilities and shear electric fields causes plasma turbulence that can be detected using ground radars and in situ plasma instruments. The instrument payload was separated from the chemical release payload soon after launch to measure electric field vectors, electron and ion densities, and integrated electron densities from the rocket to the ground. The chemical release of high speed dust was directed upward on the downleg of the rocket trajectory to intersect the F-Layer. The instrument section was about 600 meters from the dust injection module at the release time. Ground HF and UHF radars were operated to detected scatter and refraction by the modified ionosphere. Optical instruments from airborne and ground observatories were used to map the dispersal of the dust using scattered sunlight. The plasma interactions are being simulated with both fluid and particle-in-cell (PIC) codes. CARE II is a follow-on to the CARE I rocket experiment conducted from Wallops Island Virginia in September 2009.

  11. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    SciTech Connect

    Eck, H. J. N. van; Koppers, W. R.; Rooij, G. J. van; Goedheer, W. J.; Cardozo, N. J. Lopes; Kleyn, A. W.; Engeln, R.; Schram, D. C.

    2009-03-15

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial magnetic field. In this way, the neutrals are prevented to reach the target region. The neutral flux to the target must be lower than the plasma flux to enable ITER relevant plasma-surface interaction (PSI) studies. It is therefore essential to control the neutral gas dynamics. The DSMC method was used to model the expansion of a hot gas in a low pressure vessel where a small discrepancy in shock position was found between the simulations and a well-established empirical formula. Two stage differential pumping was modeled and applied in the linear plasma devices Pilot-PSI and PLEXIS. In Pilot-PSI a factor of 4.5 pressure reduction for H{sub 2} has been demonstrated. Both simulations and experiments showed that the optimum skimmer position depends on the position of the shock and therefore shifts for different gas parameters. The shape of the skimmer has to be designed such that it has a minimum impact on the shock structure. A too large angle between the skimmer and the forward direction of the gas flow leads to an influence on the expansion structure. A pressure increase in front of the skimmer is formed and the flow of the plasma beam becomes obstructed. It has been shown that a skimmer with an angle around 53 deg. gives the best performance. The use of skimmers is implemented in the design of the large linear plasma generator Magnum-PSI. Here, a three stage differentially pumped vacuum system is used to reach low enough neutral pressures near the target, opening a door to PSI research in the ITER relevant regime.

  12. An experiment to measure the electron ion thermal equilibration rate in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Taccetti, J. M.; Shurter, R. P.; Roberts, J. P.; Benage, J. F.; Graden, B.; Haberle, B.; Murillo, M. S.; Vigil, B.; Wysocki, F. J.

    2006-04-01

    We present the most recent results from an experiment aimed at obtaining the temperature equilibration rate between ions and electrons in a strongly coupled plasma by directly measuring the temperature of each component. The plasma is formed by heating a sonic gas jet with a 10 ps laser pulse. The electrons are preferentially heated by the short pulse laser (we are aiming for Te ~ 100 eV), while the ions, after undergoing very rapid (sub-ps timescale) disorder-induced heating, should only reach a temperature of 10-15 eV. This results in a strongly coupled ion plasma with a Γii ~ 3-5. We plan to measure the electron and ion temperatures of the resulting plasma independently during and after heating, using collective Thomson scattering for electrons and a high-resolution x-ray spectrometer for the ions (measuring Doppler-broadened absorption lines). Theory indicates that the equilibration rate could be significantly lower than that given by the usual weakly coupled model (Landau-Spitzer) due to coupled collective modes present in the dense plasma.

  13. Current Status of MPPE (Mercury Plasma Particle Experiment) on BepiColombo/MMO

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Hirahara, Masafumi; Barabash, Stas; Delcourt, Dominique; André, Nicolas; Takashima, Takeshi; Asamura, Kazushi

    2015-04-01

    Mercury's plasma/particle environment has gradually become clear thanks to the new observations made by MESSENGER spacecraft orbiting around Mercury. However, it is also true that many questions will be left unsolved. In order to elucidate the detailed plasma structure and dynamics around Mercury, an orbiter BepiColombo MMO (Mercury Magnetospheric Orbiter) is going to be launched in 2016 as a joint mission between ESA and ISAS/JAXA. Mercury Plasma/Particle Experiment (MPPE) is a comprehensive instrument package for plasma, high-energy particle and energetic neutral atom measurements. It consists of 7 sensors: two Mercury Electron Analyzers (MEA1 and MEA2), Mercury Ion Analyzer (MIA), Mass Spectrum Analyzer (MSA), High Energy Particle instrument for electron (HEP-ele), High Energy Particle instrument for ion (HEP-ion), and Energetic Neutrals Analyzer (ENA). Currently, the MPPE sensors are on the MMO spacecraft under system integration test at ISAS/JAXA (Institute of Space and Astronautical Science / Japan Aerospace Exploration Agency). Evaluation of the sensor calibration data and the final check of the onboard processing software are being made in order to realize the flawless future plasma/particle observations around Mercury.

  14. The effect of seed electrons on the repeatability of atmospheric pressure plasma plume propagation: I. Experiment

    NASA Astrophysics Data System (ADS)

    Nie, L.; Chang, L.; Xian, Y.; Lu, X.

    2016-09-01

    One of the significant differences between the traditional streamers and the plasma jets is the repeatability of their propagation. In this paper, the effect of the seed electron density on the repeatability of the plasma jets is investigated. The seed electron density plays an essential role in the propagation of plasma plume which is in either repeatable mode or random mode depending on the frequency of the applied voltage and the mixture percentage of the working gas. By measuring the propagation velocities and the ignition delay time, it is found that the propagation velocities of the plasma plume are independent of the seed electron density. However, the jitter of the ignition delay time strongly depends on the frequency of the applied voltage and the mixture percentage of the working gas. After detailed analyzing of the experiment results, it is concluded that the minimum seed electron density required for the plasma bullet to propagate in repeatable mode is on the order of 108 cm-3 for gas pressure of 2 × 104 Pa. The minimum required seed electron density for the gas pressure of 4 × 103 Pa is on the order of 107 cm-3. Further analysis shows that, at one atmospheric pressure, the required minimum seed electron density for repeatable mode is on the order of 109 cm-3.

  15. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    NASA Astrophysics Data System (ADS)

    Squire, Jared P.

    2005-09-01

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense (˜ 1019 m-3) flowing plasma to velocities useful for space propulsion (˜100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process has proven efficient (˜ 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3×10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.

  16. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    SciTech Connect

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process has proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.

  17. One year's experience using a rotating filter for therapeutic plasma exchange.

    PubMed

    Kaplan, A A; Halley, S E; Reardon, J; Sevigny, J

    1989-01-01

    The authors previously demonstrated the feasibility of using a rotating filter system for therapeutic plasma exchange. They now report on the technical details of a 1 year clinical experience. Seventeen patients underwent 188 treatments. Hemoaccess was provided by antecubital veins (147 Rx), femoral catheters (37 Rx), or an a-v fistula (3 Rx). Blood flows ranged from 75 to 100 ml/min. Net plasma removed per treatment was 3,231 +/- 53 ml (mean +/- SE, n = 188). Mean plasma removal rate per treatment was 40.2 +/- 0.6 ml/min; mean treatment time was 83 +/- 2 min. Platelet counts before and after treatment revealed a 15 +/- 4% decline (n = 46 Rx). Despite filtration fractions up to 86% there was no evidence of significant membrane plugging or hemolysis. For semiselective removal of cholesterol, the rotating filter was used in a cascade system with a secondary filter. Eighty percent of processed plasma was returned to the patient, but the treatment time was prolonged by 37% and the total cholesterol removed was 26% less when compared with the single pass system. The authors conclude that an inexpensive rotating filter can provide a highly efficient plasma exchange. The inherent efficiency of this system must be considered when evaluating its use with secondary filtration techniques.

  18. 46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW PICKER AND CLOTH ROOM AREA. FUNCTION OF THIS SPACE UNKNOWN AT PRESENT. NOTE THAT EYE BEAM REPLACES ORIGINAL WALL OF 1892 PICKER HOUSE. CENTER (OR LEFT) DOOR IS ENTRY TO MILL NO. 2. RIGHT DOOR IS ENTRY TO 1892 NAPPER ROOM. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  19. 7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND 2ND FLOOR PLANS, SHEET 10 of 11, DRAWING NO. 35-03-05 SF 5/1677, U.S. Army Engineer District, Detroit, Corps of Engineers, 9 June, 1959, on file Selfridge Base Museum. - Selfridge Field, Building No. 1041, West of E Street, north of D Street, Mount Clemens, Macomb County, MI

  20. 1st Central and Eastern European Proteomic Conference and 3rd Czech Proteomic Conference.

    PubMed

    Kovarova, Hana; Gadher, Suresh Jivan; Archakov, Alexander

    2008-02-01

    The 1st Central and Eastern European Proteomic Conference was organized together with the 3rd Czech Proteomic Conference in the TOP Hotel, Prague in the Czech Republic from the 29th to the 31st October, 2007. The aim was to strengthen links with scientists from Central and Eastern Europe including Russia, which until now have been weak or nonexistent, and to highlight the emergence of excellent proteomic studies from various countries, which until now were not visible.

  1. 1st Cavalry Division’s Effectiveness In Conducting Airmobile Operations During Operation Pegasus

    DTIC Science & Technology

    2016-05-26

    company movements, to complex movements of entire divisions. From April 1 to April 15, 1968, 1st Cavalry Division successfully conducted Operation Pegasus...Siege of Khe Sanh (Boston, MA: Houghton Mifflin Company , 1991), 418-419. 13 Ibid., 417. 5...Tokyo, Japan: Dai Nippon Printing Company , 1968), 9. 34 John Galvin Air Assault: the development of airmobile warfare (New York, NY: Hawthorn Books, 1969

  2. Development of repair mechanism of FSX-414 based 1st stage nozzle of gas turbine

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Tawfiqur

    2017-06-01

    This paper describes the failure mechanism and repair technology of 1st stage nozzle or vane of industrial gas turbine which is made of cobalt based super alloy FSX-414. 1st stage nozzles or vanes are important stationery components of gas turbine based power plant. Those are the parts of hot gas path components of gas turbine and their manufacturing process is casting. At present, it is widely accepted that gas turbine based combined cycle power plant is the most efficient and cost effective solution to generate electricity. One of the factors of high efficiency of this type of gas turbine is the increase of its turbine inlet temperature. As an effect of this factor and in conjunction with some other factors, the 1st stage nozzle of gas turbine operates under extremely high temperature and thermal stresses. As a result, the design lifetime of these components becomes limited. Furthermore, attention on nozzles or vanes is required in order to achieve their design lifetime. However, due to unfriendly operational condition and environmental effect, anytime failure can occur on these heat resistant alloy based components which may lead to severe damage of gas turbine. To mitigate these adverse effects, schedule maintenance is performed on a predetermined time interval of hot gas path components of gas turbine based power plant. This paper addresses common failures in gas turbine's 1st stage nozzles or vanes. Usually these are repaired by using ADH process but for several reasons ADH process is not used here. Hence the challenging task is performed using gas tungsten arc welding which is presented in this article systematically.

  3. Aedes aegypti pharate 1st instar quiescence affects larval fitness and metal tolerance.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2012-06-01

    The eggs of the mosquito Aedes aegypti possess the ability to undergo an extended quiescence hosting a fully developed 1st instar larvae within the chorion. As a result of this life history trait pharate larvae can withstand months of quiescence inside the egg where they depend on stored maternal reserves. A. aegypti mosquitoes are frequently associated with urban habitats that may contain significant metal pollution. Therefore, the duration of quiescence and extent of nutritional depletion may affect the physiology and survival of larvae that hatch in a suboptimal habitat. The aim of this study was to determine the effect of an extended quiescence on larval nutrient reserves and the subsequent effects of metal exposure on larval fitness, survival and development. We hypothesized that an extended quiescence would reduce nutritional reserves and alter the molecular response to metal exposure thereby reducing larval survival and altering larval development. As a molecular marker for metal stress responses, we evaluated transcriptional changes in the metallothionein gene (AaMtn) in response to quiescence and metal exposure. Extended 1st instar quiescence resulted in a significant decrease in lipid reserves and negatively affected larval fitness and development. AaMtn transcription and metal tolerance were compromised in first instars emerged from eggs that had undergone an extended quiescence. These findings suggest that newly emerged mosquito larvae that had survived a relatively long pharate 1st instar quiescence (as might occur during a dry season) are more vulnerable to environmental stress. Pharate 1st instar quiescence could have implications for vector control strategies. Newly emerged mosquito larvae at the end of the dry season or start of the wet season are physiologically compromised, and therefore potentially more susceptible to vector control strategies than mosquito larvae hatched subsequently throughout the wet season. Published by Elsevier Ltd.

  4. 44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Detail from Camille Drie's map: A Bird's Eye View of Columbus, Mississippi ca. 1875-76. Shows M&O RR bridge before the Phoenix Bridge Co. erected iron truss spans in 1878. Credit: Photostat of map in Lowndes Co. Public Library Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  5. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  6. 43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of photo 1900. Shows 1878 M&O RR bridge. The steamboat, 'Gopher,' in foreground, was an archeological survey vessel from the Franklin Institute in Philadelphia. Published in Art in Mississippi (1901). Credit: Copied from print in Lowndes Co. Public Library by Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  7. [Effectiveness of teaching gerontology and geriatrics in students of the 1st Faculty of Medicine, Charles University in Prague].

    PubMed

    Mádlová, P; Neuwirth, J; Topinková, E

    2006-01-01

    Increasing number of seniors in the society requires more university-degree educated professionals--health care professionals, social care workers and managers with basic exposure to and knowledge of gerontology and geriatrics. The aim of our paper was to evaluate the effectiveness of undergraduate training of gerontology and geriatrics among students of the 1st Faculty of Medicine, Charles University in Prague. To get information about knowledge of medical students and students of ergotherapy and physiotherapy and about their attitudes towards senior citizens we conducted a survey using two anonymous questionnaires prepared in our department and piloted earlier. The survey ran during the academic year 2004/2005. Students completed identical questionnaires twice, first time before the start of the clinical rotation and second time after the training end (n=134). Evaluation of knowledge and attitudes confirmed that one to two weeks clinical rotation at Department of Geriatrics was effective and increased knowledge of students in the topic trained. The percentage of correct answers in all three evaluated training programmes increased after the completion of the clinical rotation and reached 83% and more. From 134 participating students, 54.5 % appreciated life experience and wisdom of seniors they met, 98.4 % of students were satisfied with the training programme and 67.2 % of students reported that after training they changed their attitude towards senior population. Our survey confirmed that clinical training in geriatric medicine at 1st Faculty of Medicine, Charles University in Prague, prepared in agreement with current European recommendations is sufficiently effective and well accepted by the students. Therefore we recommend introduction of formal geriatric training for students in all medical faculties in the Czech Republic.

  8. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  9. Radiation-Hydrodynamic Simulation of Experiments With Intense Lasers Generating Collisionless Interpenetrating Plasmas

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Drake, R.; Kuranz, C.; Park, H.; Kugland, N.; Pollaine, S.; Ross, J.; Remington, B.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Meinecke, J.; Reville, B.; Sakawa, Y.; Kuramitsu, Y.; Takabe, H.; Froula, D.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Liang, E.; Woolsey, N.

    2012-05-01

    Collisionless shocks, shocks generated by plasma wave interactions in regions where the collisional mean-free-path for ions is long compared to the length scale for instabilities that generate magnetic fields, are found in many astrophysical systems such as supernova remnants and planetary bow shocks. Generating conditions to investigate collisionless shock physics is difficult to achieve in a laboratory setting; however, high-energy-density physics facilities have made this a possibility. Experiments whose goal is to investigate the production and growth of magnetic fields in collisionless shocks in laboratory-scale systems are being carried out on intense lasers, several of which are measuring the plasma properties and magnetic field strength in counter-streaming, collisionless flows generated by laser ablation. This poster reports radiation-hydrodynamic simulations using the CRASH code to model the ablative flow of plasma generated in order to assess potential designs, as well as infer properties of collected data from previous experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  10. Magnetic field induced 1st order transitions: Recent studies, and some new concepts

    NASA Astrophysics Data System (ADS)

    Chaddah, P.

    2015-05-01

    Phase transitions are caused by varying temperature, or pressure, or magnetic field. The observation of 1st order magneto-structural transitions has created application possibilities based on magnetoresistance, magnetocaloric effect, magnetic shape memory effect, and magneto-dielectric effect. Magnetic field induced transitions, and phase coexistence of competing magnetic phases down to the lowest temperature, gained prominence over a decade ago with theoretical models suggesting that the ground state is not homogeneous. Researchers at Indore pushed an alternative view that this phase coexistence could be due to glasslike "kinetic arrest" of a disorder-broadened first-order magnetic transition between two states with long-range magnetic order, resulting in phase coexistence down to the lowest temperatures. The CHUF (cooling and heating in unequal field) protocol created at Indore allows the observation of `devitrification', followed by `melting'. I show examples of measurements establishing kinetic arrest in various materials, emphasizing that glasslike arrest of 1st order magnetic transitions may be as ubiquitous as glass formation following the arrest of 1st order structural transitions.

  11. Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas

    SciTech Connect

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Sano, T.; Takabe, H.; Dono, S.; Ide, T.; Tanji, H.; Shiroshita, A.; Shibata, S.; Aoki, H.; Waugh, J. N.; Woolsey, N. C.; Gregory, C. D.

    2012-10-15

    A temporally and spatially resolved optical pyrometer system has been fielded on Gekko XII experiments. The system is based on the self-emission measurements with a gated optical imager (GOI) and a streaked optical pyrometer (SOP). Both detectors measure the intensity of the self-emission from laser-produced plasmas at the wavelength of 450 nm with a bandpass filter with a width of {approx}10 nm in FWHM. The measurements were calibrated with different methods, and both results agreed with each other within 30% as previously reported [T. Morita et al., Astrophys. Space Sci. 336, 283 (2011)]. As a tool for measuring the properties of low-density plasmas, the system is applicable for the measurements of the electron temperature and density in collisionless shock experiments [Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)].

  12. Plasma kinetic effects on interfacial mix in settings relevant to inertial confinement fusion and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Bergen, B.; Bowers, K. J.; Vold, E. L.; Molvig, K.; Fernández, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Hegelich, B. M.; Dyer, G.; Roycroft, R.

    2015-11-01

    Mixing of high-Z/low-Z interfaces in dense plasma media is a problem of importance for understanding mix in inertial confinement fusion experiments and recent experiments at the LANL Trident facility. In this presentation, we apply the VPIC particle-in-cell code with a binary collision model to explore kinetic effects of the atomic mixing. Comparisons are made to published analytic theory and hybrid modeling results and conditions are identified under which plasma kinetic behavior may lead to anomalously rapid atomic mixing. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  13. The electric field structure of auroral arcs as determined from barium plasma injection experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1981-01-01

    Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.

  14. A design of experiment study of plasma sprayed alumina-titania coatings

    SciTech Connect

    Steeper, T.J.; Varacalle, D.J. Jr.; Wilson, G.C.; Riggs, W.L. II; Rotolico, A.J.; Nerz, J.E.

    1992-08-01

    An experimental study of the plasma spraying of alumina-titania powder is presented in this paper. This powder system is being used to fabricate heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Coating experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coating. The coatings were characterized by hardness and electrical tests, image analysis, and optical metallography. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. The attributes of the coatings are correlated with the changes in operating parameters.

  15. Fusion Reactor and Break-Even Experiment Based on Stabilized Liner Compression of Plasma

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael

    2016-10-01

    An optimum regime, known as magnetized-target or magneto-inertial fusion (MTF/MIF), requires magnetic fields at megagauss levels, which are attainable by use of dynamic conductors called liners. The stabilized liner compressor (SLC) provides the basis for controlled implosion and re-capture of the liner for reversible energy exchange between liner kinetic energy and the internal energy of a magnetized-plasma target. This exchange requires rotational stabilization of Rayleigh-Taylor modes on the inner surface of the liner and pneumatically driven free-pistons that eliminate such modes at the outer surface. We discuss the implications of the SLC approach for the power reactor, a breakeven experiment, and intermediate experiments to develop the plasma target. Features include the importance of pneumatic drive and the liner-blanket for economic feasibility of MTF/MIF. Supported by ARPA-E ALPHA Program.

  16. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    SciTech Connect

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasma facing components are identified and attributes of an experiment to close those gaps are presented.

  17. Experiments on plasma heating by CO/sub 2/ laser radiation in the TIR-1 facility

    SciTech Connect

    Akimov, A.E.; Baranov, V.Y.; Boiko, V.A.; Borzenko, V.L.; Bryunetkin, B.A.; Kozochkin, S.M.; Makarov, K.N.; Malyuta, D.D.; Pis'mennyi, V.D.; Satov, Y.A.

    1983-08-01

    The results are given of experiments performed on the TIR-1 high-power laser facility, utilizing x-ray plasma diagnostic methods. The experiments were carried out at an energy of approx.50 J for a focal spot of approx.300 ..mu.. and a pulse duration of approx.2 nsec. The effective electron temperature in the energy cutoff range E/sub c//sub o/approx.3.5--5 keV was 7 keV. Photons with energies of 10--100 keV were detected. Spectra of the H-, He-, and Li-like fluorine ions were recorded and used to determine the plasma parameters: T/sub e/ = 220 eV, N/sub H//N/sub N/ = 13, N/sub H//sub e//N/sub H/ = 2.1, N/sub L//sub i//N/sub H//sub e/ = 0.06.

  18. Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K.-H.; Coates, A. J.; Goldstein, R.; Acuna, M. H.

    1990-01-01

    This paper describes 13 very short events in the magnetic field of the inner magnetic pile-up region of Comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cometary dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events derived from spacecraft attitude perturbations by the Giotto camera. Their characteristic shape generally involves a sudden decrease in magnetic-field magnitude, a subsequent overshoot beyond initial field values, and an asymptotic approach to the initial field (somewhat reminiscent of the magnetic-field signature after the AMPTE releases in the solar wind). These observations give a new way of analyzing ultra-fast dust particles incident on a spacecraft.

  19. SBS in Long-Scale-Length Plasmas for Direct-Drive ICF: Comparing Experiments with Simulations

    NASA Astrophysics Data System (ADS)

    Seka, W.; Myatt, J.; Maximov, A. V.; Short, R. W.; Craxton, R. S.; Regan, S. P.; Meyerhofer, D. D.; Stoeckl, C.; Yaakobi, B.

    2002-11-01

    Single- and multiple-beam SBS experiments will be compared to detailed simulations for plasmas representing direct-drive NIF conditions. The SBS spectra exhibit red- and blue-shifted features. The blue-shifted component is clearly identified with SBS in a flat velocity gradient that rapidly moves to higher expansion velocities. This feature can be reduced or suppressed by beam-smoothing techniques in both the experiments and simulations. The red-shifted spectrum originates near the critical density; it arises from EM seeding and is not reduced by beam smoothing. The agreement between experimental data and simulations now allows for more-confident extrapolation to other plasma conditions. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  20. In situ measurements of ionospheric plasma turbulence over five frequency decades: Heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE)

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Enloe, C. L.; McHarg, M. G.

    2013-12-01

    Observations of ionospheric plasma density and frequency-dependent broadband plasma turbulence made during the heritage flight of the Plasma Local Anomalous Noise Experiment (PLANE) are presented. Rather than record high frequency time series data, the experiment was designed to record Power Spectral Distributions (PSDs) in five decadal frequency bins with upper limits ranging from 1.0 Hz to 10 kHz. Additionally, PLANE was designed distinguish turbulence in the ambient plasma from that local to the spacecraft. The instrument consists of two retarding potential analyzers (RPAs) connected together via a feedback loop to force one analyzer into the I-V trace retardation region at all times. Fluctuations in this measurement are believed to be ambient only as the RPA's voltage would be too high for locally turbulent plasma to surmount the potential barrier, which is nominally at ram energy. The instrument requires pointing along the spacecraft's ram velocity vector to make this measurement, thus requiring stabilization in pitch and yaw. During PLANE's heritage flight, though the satellite's attitude control system failed early in the mission, plasma data were collected during opportune times in which the instrument rotated into and out of the ram. Observations of plasma density and PSDs of high frequency plasma turbulence were recorded on several occasions. Additionally, a plasma source onboard the satellite was used to generate artificial plasma turbulence, and the PLANE data observed periodic structure presumably associated with the rotation of the spacecraft during these source firings. A brief comparison with other high frequency in situ plasma instruments is presented.