Science.gov

Sample records for 1st-4th order correlation

  1. Correlation and fractional analysis of synovial fluid microscopic images for diagnostics and differentiation of pathological conditions in joints

    NASA Astrophysics Data System (ADS)

    Kvasniuk, D. I.; Vasyuk, V. L.

    2011-09-01

    In this paper, was given the basis of the method of spectral Stokes polarimetry of human synovial fluid. The optical model of polycrystalline networks of human knee joint synovial fluid is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize spectral distributions of polarization azimuth and ellipticity of the body's electromagnetic radiation and dynamics of change in optical anisotropy of this biological object. The diagnostic criteria of human knee joint inflammation processes are determined.

  2. Correlation and fractional analysis of synovial fluid microscopic images for diagnostics and differentiation of pathological conditions in joints

    NASA Astrophysics Data System (ADS)

    Kvasniuk, D. I.; Vasyuk, V. L.

    2012-01-01

    In this paper, was given the basis of the method of spectral Stokes polarimetry of human synovial fluid. The optical model of polycrystalline networks of human knee joint synovial fluid is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize spectral distributions of polarization azimuth and ellipticity of the body's electromagnetic radiation and dynamics of change in optical anisotropy of this biological object. The diagnostic criteria of human knee joint inflammation processes are determined.

  3. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  4. Ghost imaging with thermal light by third-order correlation

    SciTech Connect

    Bai Yanfeng; Han Shensheng

    2007-10-15

    Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.

  5. Competing Orders in Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Ramachandran, Ganesh

    Systems with competing orders are of great interest in condensed matter physics. When two phases have comparable energies, novel interplay effects such can be induced by tuning an appropriate parameter. In this thesis, we study two problems of competing orders - (i) ultracold atom gases with competing superfluidity and Charge Density Wave (CDW) orders, and (ii) low dimensional antiferromagnets with Neel order competing against various disordered ground states. In the first part of the thesis, we study the attractive Hubbard model which could soon be realized in ultracold atom experiments. Close to half-filling, the superfluid ground state competes with a low-lying CDW phase. We study the collective excitations of the superfluid using the Generalized Random Phase Approximation (GRPA) and strong-coupling spin wave analysis. The competing CDW phase manifests as a roton-like excitation. We characterize the collective mode spectrum, setting benchmarks for experiments. We drive competition between orders by imposing superfluid flow. Superflow leads to various instabilities: in particular, we find a dynamical instability associated with CDW order. We also find a novel dynamical incommensurate instability analogous to exciton condensation in semiconductors. In the second part, inspired by experiments on Bi3Mn 4O12(NO3)(BMNO), we first study the interlayer dimer state in spin-S bilayer antiferromagnets. At a critical bilayer coupling strength, condensation of triplet excitations leads to Neel order. In describing this transition, bond operator mean field theory suffers from systematic deviations. We bridge these deviations by taking into account corrections arising from higher spin excitations. The interlayer dimer state shows a field induced Neel transition, as seen in BMNO. Our results are relevant to the quantitative modelling of spin-S dimerized systems. We then study the J1 - J2 model on the honeycomb lattice with frustrating next-nearest neighbour exchange. For J2 >J1

  6. High-order correlation of chaotic bosons and fermions

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Chao

    2016-08-01

    We theoretically study the high-order correlation functions of chaotic bosons and fermions. Based on the different parity of the Stirling number, the products of the first-order correlation functions are well classified and employed to represent the high-order correlation function. The correlation of bosons conduces a bunching effect, which will be enhanced as order N increases. Different from bosons, the anticommutation relation of fermions leads to the parity of the Stirling number, which thereby results in a mixture of bunching and antibunching behaviors in high-order correlation. By further investigating third-order ghost diffraction and ghost imaging, the differences between the high-order correlations of bosons and fermions are discussed in detail. A larger N will dramatically improve the ghost image quality for bosons, but a good strategy should be carefully chosen for the fermionic ghost imaging process due to its complex correlation components.

  7. Quantifying higher-order correlations in a neuronal pool

    NASA Astrophysics Data System (ADS)

    Montangie, Lisandro; Montani, Fernando

    2015-03-01

    Recent experiments involving a relatively large population of neurons have shown a very significant amount of higher-order correlations. However, little is known of how these affect the integration and firing behavior of a population of neurons beyond the second order statistics. To investigate how higher-order inputs statistics can shape beyond pairwise spike correlations and affect information coding in the brain, we consider a neuronal pool where each neuron fires stochastically. We develop a simple mathematically tractable model that makes it feasible to account for higher-order spike correlations in a neuronal pool with highly interconnected common inputs beyond second order statistics. In our model, correlations between neurons appear from q-Gaussian inputs into threshold neurons. The approach constitutes the natural extension of the Dichotomized Gaussian model, where the inputs to the model are just Gaussian distributed and therefore have no input interactions beyond second order. We obtain an exact analytical expression for the joint distribution of firing, quantifying the degree of higher-order spike correlations, truly emphasizing the functional aspects of higher-order statistics, as we account for beyond second order inputs correlations seen by each neuron within the pool. We determine how higher-order correlations depend on the interaction structure of the input, showing that the joint distribution of firing is skewed as the parameter q increases inducing larger excursions of synchronized spikes. We show how input nonlinearities can shape higher-order correlations and enhance coding performance by neural populations.

  8. Higher order correlation beams in atmosphere under strong turbulence conditions.

    PubMed

    Avetisyan, H; Monken, C H

    2016-02-01

    Higher order correlation beams, that is, two-photon beams obtained from the process of spontaneous parametric down-conversion pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can be used to encode information in many modes, opening the possibility of quantum communication with large alphabets. In this paper we calculate, analytically, the fourth-order correlation function for the Hermite-Gauss and Laguerre-Gauss coherent and partially coherent correlation beams propagating through a strong turbulent medium. We show that fourth-order correlation functions for correlation beams have, under certain conditions, expressions similar to those of intensities of classical beams and are degraded by turbulence in a similar way as the classical beams. Our results can be useful in establishing limits for the use of two-photon beams in quantum communications with larger alphabets under atmospheric turbulence. PMID:26906808

  9. Irreducible many-body correlations in topologically ordered systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zeng, Bei; Zhou, D. L.

    2016-02-01

    Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation (IMC), the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits IMCs which become reducible when the holes are removed. The appearance of these IMCs then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in external magnetic fields, and show that the topological phase transition is signaled by the IMCs.

  10. athena: Tree code for second-order correlation functions

    NASA Astrophysics Data System (ADS)

    Kilbinger, Martin; Bonnett, Christopher; Coupon, Jean

    2014-02-01

    athena is a 2d-tree code that estimates second-order correlation functions from input galaxy catalogues. These include shear-shear correlations (cosmic shear), position-shear (galaxy-galaxy lensing) and position-position (spatial angular correlation). Written in C, it includes a power-spectrum estimator implemented in Python; this script also calculates the aperture-mass dispersion. A test data set is available.

  11. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2012-01-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  12. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2011-09-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  13. Weak value amplification via second-order correlated technique

    NASA Astrophysics Data System (ADS)

    Ting, Cui; Jing-Zheng, Huang; Xiang, Liu; Gui-Hua, Zeng

    2016-02-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05), the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).

  14. Machine learning using a higher order correlation network

    SciTech Connect

    Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.

    1986-01-01

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  15. Modeling Higher-Order Correlations within Cortical Microcolumns

    PubMed Central

    Köster, Urs; Sohl-Dickstein, Jascha; Gray, Charles M.; Olshausen, Bruno A.

    2014-01-01

    We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of 20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to 45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which case the higher order models continued to perform best. These results demonstrate the importance of higher-order interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation and evaluation. PMID:24991969

  16. Pump power dependence of second order correlation in nondegenerate SPDC

    NASA Astrophysics Data System (ADS)

    Kim, Charles; Kanner, Gary

    2009-08-01

    We observed the second order correlation peak for nondegenerate spontaneous parametric down conversion (SPDC) of a pulsed pump at 532 nm into 810 nm and 1550 nm entangled beams. We used a Si avalanche photodiode (APD) to detect the 810 nm photons, and an InGaAs APD to detect those at 1550 nm. We defined both a visibility and signal-to-noise ratio (SNR) based on the data, which were obtained at various pump powers. In contrast to classical imaging systems, for which SNR increases monotonically with transmitted power, the SNR for the correlation peak in our setup exhibited a gradual decay as the pump power increased. We derived an empirical relation for the SNR, which was inversely proportional to the square root of pump power.

  17. Frustration and chiral orderings in correlated electron systems.

    PubMed

    Batista, Cristian D; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect. PMID:27376461

  18. Frustration and chiral orderings in correlated electron systems

    NASA Astrophysics Data System (ADS)

    Batista, Cristian D.; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson’s proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

  19. Order and correlation contributions to the entropy of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-01

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  20. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  1. Order and correlation contributions to the entropy of hydrophobic solvation.

    PubMed

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  2. Correlation between crystalline order and vitrification in colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Tamborini, Elisa; Royall, C. Patrick; Cicuta, Pietro

    2015-05-01

    We investigate experimentally the relationship between local structure and dynamical arrest in a quasi-2d colloidal model system which approximates hard discs. We introduce polydispersity to the system to suppress crystallisation. Upon compression, the increase in structural relaxation time is accompanied by the emergence of local hexagonal symmetry. Examining the dynamical heterogeneity of the system, we identify three types of motion: ‘zero-dimensional’ corresponding to β-relaxation, ‘one-dimensional’ or stringlike motion and ‘2D’ motion. The dynamic heterogeneity is correlated with the local order, that is to say locally hexagonal regions are more likely to be dynamically slow. However, we find that lengthscales corresponding to dynamic heterogeneity and local structure do not appear to scale together approaching the glass transition.

  3. Image Segmentation Using Higher-Order Correlation Clustering.

    PubMed

    Kim, Sungwoong; Yoo, Chang D; Nowozin, Sebastian; Kohli, Pushmeet

    2014-09-01

    In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework. Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured loss function. Experimental results on various data sets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework. PMID:26352230

  4. Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor.

    PubMed

    Manby, Frederick R; Werner, Hans-Joachim; Adler, Thomas B; May, Andrew J

    2006-03-01

    The recently introduced MP2-R122*A(loc) and LMP2-R122*A(loc) methods are modified to use a short-range correlation factor expanded as a fixed linear combination of Gaussian geminals. Density fitting is used to reduce the effort for integral evaluation, and local approximations are introduced to improve the scaling of the computational resources with molecular size. The MP2-F122*A(loc) correlation energies converge very rapidly with respect to the atomic orbital basis set size. Already with the aug-cc-pVTZ basis the correlation energies computed for a set of 21 small molecules are found to be within 0.5% of the MP2 basis set limit. Furthermore the short-range correlation factor leads to an improved convergence of the resolution of the identity, and eliminates problems with long-range errors in density fitting caused by the linear r12 factor. The DF-LMP2-F122*A(loc) method is applied to compute second-order correlation energies for molecules with up to 49 atoms and more than 1600 basis functions. PMID:16526841

  5. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  6. Characterization of Diblock Copolymer Order-Order Transitions in Semidilute Aqueous Solution Using Fluorescence Correlation Spectroscopy.

    PubMed

    Clarkson, Christopher G; Lovett, Joseph R; Madsen, Jeppe; Armes, Steven P; Geoghegan, Mark

    2015-09-01

    The temperature and pH-dependent diffusion of poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) nanoparticles prepared via polymerization-induced self-assembly in water is characterized using fluorescence correlation spectroscopy (FCS). Lowering the solution temperature or raising the solution pH induces a worm-to-sphere transition and hence an increase in diffusion coefficient by a factor of between four and eight. FCS enables morphological transitions to be monitored at relatively high copolymer concentrations (10% w/w) compared to those required for dynamic light scattering (0.1% w/w). This is important because such transitions are reversible at the former concentration, whereas they are irreversible at the latter. Furthermore, the FCS data suggest that the thermal transition takes place over a very narrow temperature range (less than 2 °C). These results demonstrate the application of FCS to characterize order-order transitions, as opposed to order-disorder transitions. PMID:26096738

  7. Probing non local order parameters in highly correlated Bose insulators

    NASA Astrophysics Data System (ADS)

    Altman, Ehud

    2008-03-01

    Ground states of integer spin chains are known since the late 80's to sustain highly non local order described by infinite string operators of the spins. Such states defy the usual Landau theory description and can be considered simple prototypes of topological order. Recently we showed that spinless Bose insulators with nearest neighbor or longer range repulsion in one dimension can exhibit similar string order in terms of the boson density [1]. The tunability of cold atomic systems would allow much more flexibility in probing the non local order than spin systems do. For example the bosons can be tuned across a quantum phase transition between the exotic insulator, which we term Haldane insulator, and the usual Mott insulator. Investigating how the transition responds to external perturbations lends direct access to properties of the string order parameter. I will demonstrate this with several new results obtained from a field theoretic description of the phases and confirmed by numerical calculations using DMRG. Particularly revealing of the unusual character of the string order is the prediction that any external perturbation, which breaks the lattice inversion symmetry, would eliminate the distinction between the Haldane and Mott phases and allow a fully gapped adiabatic connection between them. This is remarkable given that neither phase involves spontaneous breaking of lattice inversion symmetry. We also predict that inter-chain tunneling destroys the direct phase transition between the two insulators by establishing an intermediate superfluid phase. Finally I will discuss how the new phases and phase transitions may be realized and probed in actual experiments with ultra cold atoms or polar molecules. [1] E. G. Dalla Torre, E. Berg and E. Altman, Phys. Rev. Lett. 97, 260401 (2006)

  8. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    SciTech Connect

    Liu Yingchuan; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  9. Clinical Risk Prediction by Exploring High-Order Feature Correlations

    PubMed Central

    Wang, Fei; Zhang, Ping; Wang, Xiang; Hu, Jianying

    2014-01-01

    Clinical risk prediction is one important problem in medical informatics, and logistic regression is one of the most widely used approaches for clinical risk prediction. In many cases, the number of potential risk factors is fairly large and the actual set of factors that contribute to the risk is small. Therefore sparse logistic regression is proposed, which can not only predict the clinical risk but also identify the set of relevant risk factors. The inputs of logistic regression and sparse logistic regression are required to be in vector form. This limits the applicability of these models in the problems when the data cannot be naturally represented vectors (e.g., medical images are two-dimensional matrices). To handle the cases when the data are in the form of multi-dimensional arrays, we propose HOSLR: High-Order Sparse Logistic Regression, which can be viewed as a high order extension of sparse logistic regression. Instead of solving one classification vector as in conventional logistic regression, we solve for K classification vectors in HOSLR (K is the number of modes in the data). A block proximal descent approach is proposed to solve the problem and its convergence is guaranteed. Finally we validate the effectiveness of HOSLR on predicting the onset risk of patients with Alzheimer’s disease and heart failure. PMID:25954428

  10. Bose-Einstein or HBT Correlation Signals of a Second Order QCD Phase Transition

    SciTech Connect

    Csoergo, T.; Hegyi, S.; Novak, T.; Zajc, W. A.

    2006-04-11

    For particles emerging from a second order QCD phase transition, we show that a recently introduced shape parameter of the Bose-Einstein correlation function, the Levy index of stability equals to the correlation exponent -- one of the critical exponents that characterize the behaviour of the matter in the vicinity of the second order phase transition point. Hence the shape of the Bose-Einstein / HBT correlation functions, when measured as a function of bombarding energy and centrality in various heavy ion reactions, can be utilized to locate experimentally the second order phase transition and the critical end point of the first order phase transition line in QCD.

  11. Using second-order generalized estimating equations to model heterogeneous intraclass correlation in cluster randomized trials

    PubMed Central

    Crespi, Catherine M.; Wong, Weng Kee; Mishra, Shiraz I.

    2009-01-01

    SUMMARY In cluster randomized trials, it is commonly assumed that the magnitude of the correlation among subjects within a cluster is constant across clusters. However, the correlation may in fact be heterogeneous and depend on cluster characteristics. Accurate modeling of the correlation has the potential to improve inference. We use second-order generalized estimating equations to model heterogeneous correlation in cluster randomized trials. Using simulation studies we show that accurate modeling of heterogeneous correlation can improve inference when the correlation is high or varies by cluster size. We apply the methods to a cluster randomized trial of an intervention to promote breast cancer screening. PMID:19109804

  12. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  13. Higher-Order Correlations in Non-Stationary Parallel Spike Trains: Statistical Modeling and Inference

    PubMed Central

    Staude, Benjamin; Grün, Sonja; Rotter, Stefan

    2009-01-01

    The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is a controversial issue in current brain research. A major difficulty is that currently available tools for the analysis of massively parallel spike trains (N >10) for higher-order correlations typically require vast sample sizes. While multiple single-cell recordings become increasingly available, experimental approaches to investigate the role of higher-order correlations suffer from the limitations of available analysis techniques. We have recently presented a novel method for cumulant-based inference of higher-order correlations (CuBIC) that detects correlations of higher order even from relatively short data stretches of length T = 10–100 s. CuBIC employs the compound Poisson process (CPP) as a statistical model for the population spike counts, and assumes spike trains to be stationary in the analyzed data stretch. In the present study, we describe a non-stationary version of the CPP by decoupling the correlation structure from the spiking intensity of the population. This allows us to adapt CuBIC to time-varying firing rates. Numerical simulations reveal that the adaptation corrects for false positive inference of correlations in data with pure rate co-variation, while allowing for temporal variations of the firing rates has a surprisingly small effect on CuBICs sensitivity for correlations. PMID:20725510

  14. Pulse shape measurement by a non-collinear third-order correlation technique

    NASA Astrophysics Data System (ADS)

    Priebe, G.; Janulewicz, K. A.; Redkorechev, V. I.; Tümmler, J.; Nickles, P. V.

    2006-03-01

    A third-order correlator suitable for detailed shape measurements of picosecond laser pulses has been developed. The working principle in both the single shot and the scanning mode is based on detection of the phase-matched difference frequency non-collinear generated signal in a non-linear crystal. This third-order OPA correlator was applied for the characterization of the specifically shaped picosecond laser pulses from the MBI CPA Nd: glass laser system.

  15. A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts

    PubMed Central

    Onken, Arno; Dragoi, Valentin; Obermayer, Klaus

    2012-01-01

    Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392

  16. Intergenerational Correlations in Educational Attainment: Birth Order and Family Size Effects Using Canadian Data

    ERIC Educational Resources Information Center

    Sen, Anindya; Clemente, Anthony

    2010-01-01

    We exploit the 1986, 1994, and 2001 waves of the Canadian general social surveys in order to estimate intergenerational correlations in education. The use of these specific data is important because of available information on the final educational attainment of survey respondents and both parents, as well as family size and birth order. OLS…

  17. Photoinduced melting of magnetic order in the correlated electron insulator NdNiO3

    NASA Astrophysics Data System (ADS)

    Caviglia, A. D.; Först, M.; Scherwitzl, R.; Khanna, V.; Bromberger, H.; Mankowsky, R.; Singla, R.; Chuang, Y.-D.; Lee, W. S.; Krupin, O.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Scagnoli, V.; Wilkins, S. B.; Cavill, S. A.; Gibert, M.; Gariglio, S.; Zubko, P.; Triscone, J.-M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A.

    2013-12-01

    Using ultrafast resonant soft x-ray diffraction, we demonstrate photoinduced melting of antiferromagnetic order in the correlated electron insulator NdNiO3. Time-dependent analysis of the resonant diffraction spectra allows us to follow the temporal evolution of the charge imbalance between adjacent Ni sites. A direct correlation between the melting of magnetic order and charge rebalancing is found. Furthermore, we demonstrate that the magnetic ordering on the Ni and Nd sites, which are locked together in equilibrium, become decoupled during this nonthermal process.

  18. Non-local bias contribution to third-order galaxy correlations

    NASA Astrophysics Data System (ADS)

    Bel, J.; Hoffmann, K.; Gaztañaga, E.

    2015-10-01

    We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.

  19. Noise Correlation Spectroscopy of the Broken Order of a Mott Insulating Phase

    SciTech Connect

    Guarrera, V.; Fabbri, N.; Fallani, L.; Fort, C.; Stam, K. M. R. van der; Inguscio, M.

    2008-06-27

    We use a two-color lattice to break the homogeneous site occupation of an atomic Mott insulator of bosonic {sup 87}Rb. We detect the disruption of the ordered Mott domains via noise correlation analysis of the atomic density distribution after time of flight. The appearance of additional correlation peaks evidences the redistribution of the atoms into a strongly inhomogeneous insulating state, in quantitative agreement with the predictions.

  20. Higher-order statistics correlation stacking for DC electrical data in the wavelet domain

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; He, Zhanxiang; Liu, Qing Huo

    2013-12-01

    DC (direct current) electrical and shallow seismic methods are indispensable to the near surface geophysical exploration, but the near surface areas are very difficult environments for any geophysical exploration due to the random noise caused by near surface inhomogeneities. As a new algorithm based on higher-order statistics theory, the higher-order correlation stacking algorithm for seismic data smoothing in the wavelet domain has been developed and applied efficiently to filter some correlation noise that the conventional second-order correlation stacking could not inhibit. In this paper, this higher-order statistics correlation stacking technology is presented for DC electrical data in wavelet domain. Taking into account the single section and multiple section data, we present two new formulations of correlation stacking for DC electrical data. Synthetic examples with Gaussian noise are designed to analyze the overall efficiency of the new algorithm and to determine its efficacy. Meanwhile, comparison with the traditional least-squares optimization inversion method for field examples from electrical imaging surveys and time-domain IP measurement in China shows its significant advantages. The quality of the new algorithm also has been assessed by physical simulation experiments. This new technology in DC electrical exploration measurements provides a new application in engineering and mining investigation.

  1. Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng; Tian, Dong-Ping

    2015-01-01

    The information-theoretic definition of quantum correlation, e.g., quantum discord, is measurement dependent. By considering the more general quantum measurements, weak measurements, which include the projective measurement as a limiting case, we show that while weak measurements can enable one to capture more quantumness of correlation in a state, it can also induce other counterintuitive quantum effects. Specifically, we show that the general measurements with different strengths can impose different orderings for quantum correlations of some states. It can also modify the monogamous character for certain classes of states as well which may diminish the usefulness of quantum correlation as a resource in some protocols. In this sense, we say that the weak measurements play a dual role in defining quantum correlation.

  2. Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit

    NASA Astrophysics Data System (ADS)

    Bechtold, A.; Li, F.; Müller, K.; Simmet, T.; Ardelt, P.-L.; Finley, J. J.; Sinitsyn, N. A.

    2016-07-01

    We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T2* and T2, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics.

  3. Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit.

    PubMed

    Bechtold, A; Li, F; Müller, K; Simmet, T; Ardelt, P-L; Finley, J J; Sinitsyn, N A

    2016-07-01

    We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T_{2}^{*} and T_{2}, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics. PMID:27447523

  4. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators.

    PubMed

    Endres, M; Cheneau, M; Fukuhara, T; Weitenberg, C; Schauss, P; Gross, C; Mazza, L; Bañuls, M C; Pollet, L; Bloch, I; Kuhr, S

    2011-10-14

    Quantum phases of matter are characterized by the underlying correlations of the many-body system. Although this is typically captured by a local order parameter, it has been shown that a broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic Mott insulators, the ground state properties are governed by quantum fluctuations in the form of correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical lattice, we directly detect these pairs with single-site and single-particle sensitivity and observe string order in the one-dimensional case. PMID:21998381

  5. Hidden topological order and its correlation with glass-forming ability in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Li, M. Z.; Wang, W. H.; Liu, K. X.

    2015-01-01

    Unlike the well-defined long-range periodic order that characterizes crystals, so far the inherent atomic packing mode in glassy solids remains mysterious. Based on molecular dynamics simulations, here we find medium-range atomic packing orders in metallic glasses, which are hidden in the diffraction data in terms of structure factors or pair correlation functions. The analysis of the hidden orders in various metallic glasses indicates that the glassy and crystalline solids share a nontrivial structural homology in short-to-medium range, and the hidden orders are formulated by inheriting partial crystalline orders during glass formation. As the number of chemical components increases, more hidden orders are often developed in a metallic glass and entangled topologically. We use this phenomenon to explain the geometric frustration in glass formation and the glass-forming ability of metallic alloys.

  6. Hidden topological order and its correlation with glass-forming ability in metallic glasses.

    PubMed

    Wu, Z W; Li, M Z; Wang, W H; Liu, K X

    2015-01-01

    Unlike the well-defined long-range periodic order that characterizes crystals, so far the inherent atomic packing mode in glassy solids remains mysterious. Based on molecular dynamics simulations, here we find medium-range atomic packing orders in metallic glasses, which are hidden in the diffraction data in terms of structure factors or pair correlation functions. The analysis of the hidden orders in various metallic glasses indicates that the glassy and crystalline solids share a nontrivial structural homology in short-to-medium range, and the hidden orders are formulated by inheriting partial crystalline orders during glass formation. As the number of chemical components increases, more hidden orders are often developed in a metallic glass and entangled topologically. We use this phenomenon to explain the geometric frustration in glass formation and the glass-forming ability of metallic alloys. PMID:25580857

  7. Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order

    SciTech Connect

    Brambilla, Nora; Vairo, Antonio; Ghiglieri, Jacopo; Petreczky, Peter

    2010-10-01

    We study the Polyakov loop and the correlator of two Polyakov loops at finite temperature in the weak-coupling regime. We calculate the Polyakov loop at order g{sup 4}. The calculation of the correlator of two Polyakov loops is performed at distances shorter than the inverse of the temperature and for electric screening masses larger than the Coulomb potential. In this regime, it is accurate up to order g{sup 6}. We also evaluate the Polyakov-loop correlator in an effective field theory framework that takes advantage of the hierarchy of energy scales in the problem and makes explicit the bound-state dynamics. In the effective field theory framework, we show that the Polyakov-loop correlator is at leading order in the multipole expansion the sum of a color-singlet and a color-octet quark-antiquark correlator, which are gauge invariant, and compute the corresponding color-singlet and color-octet free energies.

  8. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    ERIC Educational Resources Information Center

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  9. Extension of local-type inequality for the higher order correlation functions

    SciTech Connect

    Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  10. Non-local Coulomb correlations in metals close to a charge order insulator transition

    NASA Astrophysics Data System (ADS)

    Merino, Jaime

    2008-03-01

    Recent extensions of dynamical mean-field theory (DMFT) to clusters either in its real space (CDMFT) or momentum space versions (DCA) have become important tools for the description of electronic properties of low dimensional strongly correlated systems. In contrast to single site DMFT, short range correlation effects on electronic properties of systems close to the Mott transition can be analyzed. We have investigated the charge ordering transition induced by the nearest-neighbor Coulomb repulsion V in the 1/4-filled extended Hubbard model using CDMFT. We find a transition to a strongly renormalized charge ordered Fermi liquid at VCO and a metal-to- insulator transition at VMI>VCO. Short range antiferromagnetism occurs concomitantly with the CO transition. Approaching the charge ordered insulator, V

  11. Hidden String Order in a Hole Superconductor with Extended Correlated Hopping

    NASA Astrophysics Data System (ADS)

    Chhajlany, Ravindra W.; Grzybowski, Przemysław R.; Stasińska, Julia; Lewenstein, Maciej; Dutta, Omjyoti

    2016-06-01

    Ultracold fermions in one-dimensional, spin-dependent nonoverlapping optical lattices are described by a nonstandard Hubbard model with next-nearest-neighbor correlated hopping. In the limit of a kinetically constraining value of the correlated hopping equal to the normal hopping, we map the invariant subspaces of the Hamiltonian exactly to free spinless fermion chains of varying lengths. As a result, the system exactly manifests spin-charge separation and we obtain the system properties for arbitrary filling: ground state collective order characterized by a spin gap, which can be ascribed to an unconventional critical hole superconductor associated with finite long range nonlocal string order. We study the system numerically away from the integrable point and show the persistence of both long range string order and spin gap for appropriate parameters as well as a transition to a ferromagnetic state.

  12. Self-assembled DNA-cationic-lipid complexes: Two-dimensional smectic ordering, correlations, and interactions

    NASA Astrophysics Data System (ADS)

    Salditt, T.; Koltover, I.; Rädler, J. O.; Safinya, C. R.

    1998-07-01

    We report a synchrotron small-angle x-ray scattering (SAXS) study of the mutilayered, self-assembled structure (complex) that is formed by mixing DNA with cationic liposomes. In these complexes the DNA is confined between charged lipid bilayers and orders as a two-dimensional (2D) smectic liquid crystal. The power-law bilayer-bilayer correlations of the 3D multilayer smectic liquid crystal, which are coupled to the 2D lattice of DNA chains, are found to deviate significantly from those described by the standard Caillé model of smectic-A phases. To model the DNA ordering, the 2D smectic correlation function and the corresponding structure factor are derived from the smectic Hamiltonian in harmonic approximation. The resulting line shape is then fitted to the DNA correlation peak. It is found that for samples of higher d, short-range correlations between the DNA in adjacent sheets have to be assumed to explain the data. From the least-square fitting, the 2D DNA interchain compressibility modulus B is extracted as a function of d and discussed in view of different possible microscopic interactions responsible for the ordering.

  13. Charge-correlation effects in calculations of atomic short-range order in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pinski, F. J.; Staunton, J. B.; Johnson, D. D.

    1998-06-01

    The ``local'' chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only ``band-energy'' contributions.

  14. Multilabel image classification via high-order label correlation driven active learning.

    PubMed

    Zhang, Bang; Wang, Yang; Chen, Fang

    2014-03-01

    Supervised machine learning techniques have been applied to multilabel image classification problems with tremendous success. Despite disparate learning mechanisms, their performances heavily rely on the quality of training images. However, the acquisition of training images requires significant efforts from human annotators. This hinders the applications of supervised learning techniques to large scale problems. In this paper, we propose a high-order label correlation driven active learning (HoAL) approach that allows the iterative learning algorithm itself to select the informative example-label pairs from which it learns so as to learn an accurate classifier with less annotation efforts. Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to example-label pair; 2) different labels are seldom independent, and label correlations provide critical information for efficient learning; 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning; and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining method is required to discover informative label correlations. The proposed approach is tested on public data sets, and the empirical results demonstrate its effectiveness. PMID:24723538

  15. Approach to the glass transition studied by higher order correlation functions

    NASA Astrophysics Data System (ADS)

    Lacevic, N.; Glotzer, S. C.

    2003-08-01

    We present a theoretical framework based on a higher order density correlation function, analogous to that used to investigate spin glasses, to describe dynamical heterogeneities in simulated glass-forming liquids. These higher order correlation functions are a four-point, time-dependent density correlation function g4(r,t) and a corresponding 'structure factor' S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times. g4(r,t) and S4(q,t) were extensively studied via molecular dynamics simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above in Franz et al (1999 Phil. Mag. B 79 1827), Donati et al (2002 J. Non-Cryst. Solids 307 215), Glotzer et al (2000 J. Chem. Phys. 112 509), Lacevic et al (2002 Phys. Rev. E 66 030101), Lacevic et al (2003 J. Chem. Phys. submitted) and Lacevic (2003 Dissertation The Johns Hopkins University). Here, we examine the contribution to g4(r,t), S4(q,t) and the corresponding dynamical correlation length, as well as the corresponding order parameter Q(t) and generalized susceptibility chi4(t), from localized particles. We show that the dynamical correlation length xi4SS(t) of localized particles has a maximum as a function of time t, and the value of the maximum of xi4SS(t) increases steadily in the temperature range approaching the mode coupling temperature from above.

  16. Kohn–Sham exchange-correlation potentials from second-order reduced density matrices

    SciTech Connect

    Cuevas-Saavedra, Rogelio; Staroverov, Viktor N.; Ayers, Paul W.

    2015-12-28

    We describe a practical algorithm for constructing the Kohn–Sham exchange-correlation potential corresponding to a given second-order reduced density matrix. Unlike conventional Kohn–Sham inversion methods in which such potentials are extracted from ground-state electron densities, the proposed technique delivers unambiguous results in finite basis sets. The approach can also be used to separate approximately the exchange and correlation potentials for a many-electron system for which the reduced density matrix is known. The algorithm is implemented for configuration-interaction wave functions and its performance is illustrated with numerical examples.

  17. Scaled Opposite Spin Second Order Moller-Plesset Correlation Energy: An Economical Electronic Structure Method

    SciTech Connect

    Jung, Yousung; Lochan, Rohini C.; Dutoi, Anthony D.; Head-Gordon, Martin

    2004-08-02

    A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Moller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite spin second order energy (SOS-MP2) yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the 5th order computational steps associated with MP2 theory, even without exploiting any spatial locality. A 4th order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

  18. Order parameter, correlation functions, and fidelity susceptibility for the BCS model in the thermodynamic limit

    NASA Astrophysics Data System (ADS)

    El Araby, Omar; Baeriswyl, Dionys

    2014-04-01

    The exact ground state of the reduced BCS Hamiltonian is investigated numerically for large system sizes and compared with the BCS ansatz. A "canonical" order parameter is found to be equal to the largest eigenvalue of Yang's reduced density matrix in the thermodynamic limit. Moreover, the limiting values of the exact analysis agree with those obtained for the BCS ground state. Exact results for the ground-state energy, level occupations, and a pseudospin-pseudospin correlation function are also found to converge to the BCS values already for relatively small system sizes. However, discrepancies persist for a pair-pair correlation function, for interlevel correlations of occupancies and for the fidelity susceptibility, even for large system sizes where these quantities have visibly converged to well-defined limits. Our results indicate that there exist nonperturbative corrections to the BCS predictions in the thermodynamic limit.

  19. Correlation between contrast sensitivity and higher-order aberration based on pupil diameter after cataract surgery

    PubMed Central

    Yamaguchi, Takefumi; Negishi, Kazuno; Ohnuma, Kazuhiko; Tsubota, Kazuo

    2011-01-01

    Background The purpose of this study was to evaluate the correlation between contrast sensitivity and calculated higher-order aberrations based on individual natural pupil diameter after cataract surgery. Methods This prospective study included 120 eyes from 92 patients who were randomized to receive one of four lenses, including three aspheric lenses (Acrysof SN60WF, Tecnis ZA9000, and Hoya Py60AD) and one spherical lens (Acrysof SN60AT). Contrast sensitivity, higher-order aberrations of the whole eye, and pupil diameter under photopic and mesopic conditions were measured 1 month postoperatively. Higher-order aberrations were decomposed into Zernike coefficients, calculated according to individual pupil diameter. The correlation between higher-order aberrations and contrast sensitivity was evaluated. Results There were no significant differences in contrast sensitivity function between the four types of lenses under photopic conditions. However, the contrast sensitivity function and area under log contrast sensitivity function in the aspheric lenses were significantly better than in the spherical lens under mesopic conditions. Under mesopic conditions, spherical aberration in eyes with aspheric lenses was significantly lower than in eyes with spherical lenses (P < 0.05). Under photopic conditions, coma aberration had a significant negative correlation with contrast sensitivity at 12 cycles/degree. Under mesopic conditions, spherical aberration had a significant negative correlation with contrast sensitivity at 3, 6, and 12 cycles/degree with glare, and with contrast sensitivity at 6 and 18 cycles/degree without glare. Conclusion In terms of influence on visual function, coma aberration may be more significant under photopic conditions and spherical aberration under mesopic conditions. PMID:22205829

  20. Seeing the unseen: Second-order correlation learning in 7- to 11-month-olds.

    PubMed

    Yermolayeva, Yevdokiya; Rakison, David H

    2016-07-01

    We present four experiments with the object-examining procedure that investigated 7-, 9-, and 11-month-olds' ability to associate two object features that were never presented simultaneously. In each experiment, infants were familiarized with a number of 3D objects that incorporated different correlations among the features of those objects and the body of the objects (e.g., Part A and Body 1, and Part B and Body 1). Infants were then tested with objects with a novel body that either possessed both of the parts that were independently correlated with one body during familiarization (e.g., Part A and B on Body 3) or that were attached to two different bodies during familiarization. The experiments demonstrate that infants as young as 7months of age are capable of this kind of second-order correlation learning. Furthermore, by at least 11months of age infants develop a representation for the object that incorporates both of the features they experienced during training. We suggest that the ability to learn second-order correlations represents a powerful but as yet largely unexplored process for generalization in the first years of life. PMID:27038738

  1. Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta

    SciTech Connect

    Giovannini, Massimo

    2011-01-15

    The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical properties of the initial quantum state. The strongly bunched curvature phonons are not only super-Poissonian but also superchaotic. Testable inequalities are derived in the limit of large-angular scales and can be physically interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum mechanical results are compared and contrasted with different situations including the one where intensity correlations are the result of a classical stochastic process. The survival of second-order correlations (not necessarily related to the purity of the initial quantum state) is addressed by defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density matrix and turns out to be associated with finite volume effects which are expected to vanish in the thermodynamic limit.

  2. Quantum correlation with sandwiched relative entropies: Advantageous as order parameter in quantum phase transitions.

    PubMed

    Misra, Avijit; Biswas, Anindya; Pati, Arun K; Sen De, Aditi; Sen, Ujjwal

    2015-05-01

    Quantum discord is a measure of quantum correlations beyond the entanglement-separability paradigm. It is conceptualized by using the von Neumann entropy as a measure of disorder. We introduce a class of quantum correlation measures as differences between total and classical correlations, in a shared quantum state, in terms of the sandwiched relative Rényi and Tsallis entropies. We compare our results with those obtained by using the traditional relative entropies. We find that the measures satisfy all the plausible axioms for quantum correlations. We evaluate the measures for shared pure as well as paradigmatic classes of mixed states. We show that the measures can faithfully detect the quantum critical point in the transverse quantum Ising model and find that they can be used to remove an unquieting feature of nearest-neighbor quantum discord in this respect. Furthermore, the measures provide better finite-size scaling exponents of the quantum critical point than the ones for other known order parameters, including entanglement and information-theoretic measures of quantum correlations. PMID:26066137

  3. nth-order photon correlation spectroscopy: From theory and instrumentation to intermittency in granular flows

    NASA Astrophysics Data System (ADS)

    Lemieux, Pierre-Anthony

    This dissertation proceeds in two steps. It first extends traditional dynamic light scattering techniques by introducing intensity correlation of higher-order. It then investigates the intermittency transition in granular flow using this newly developed formalism. The intermittency transition occurs when a granular system relaxes intermittently despite being driven continuously. It is of practical importance as granular materials play a crucial role in geophysical phenomena and industry. It is of theoretical importance as similar behavior has been observed other systems such as colloidal glasses and foams near the onset of jamming. In order to study such flows we need to simultaneously capture the fast single-grain dynamics and the much slower collective intermittency. For this, we turn to dynamic light scattering techniques. In these techniques, the dynamic properties of the medium are extracted from a second-order quantity, the intensity auto-correlation g(2). This approach is limited to systems where the scattered electric field is a Gaussian random variable, and breaks down when the scattering sites are few or correlated. We first demonstrate that intensity correlations functions g (n) of higher-order can be used to both detect non-Gaussian scattering processes, and extract information not available in g (2) alone. The g(n) are experimentally measured by a combination of a commercial correlator and a custom-designed digital delay line. This approach is first tested in prototypical experimental situations, then specialized to the study of intermittent dynamics. We then introduce a model system for the study of granular flows near the intermittency transition, in the form of a granular heap by the steady addition of grains at its top. Using the higher-order light intensity framework we obtain the first continuous picture of granular dynamics across the intermittency transition. We find that microscopic gain dynamics during an avalanche are similar to those in the

  4. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    NASA Astrophysics Data System (ADS)

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-09-01

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclear data constants by a series of coupled algebraic equations - the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This work represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.

  5. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    SciTech Connect

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclear data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.

  6. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGESBeta

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  7. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks

    PubMed Central

    Jovanović, Stojan

    2016-01-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. PMID:27271768

  8. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. PMID:27271768

  9. Correlation-driven charge order at the interface between a Mott and a band insulator.

    PubMed

    Pentcheva, Rossitza; Pickett, Warren E

    2007-07-01

    To study digital Mott insulator LaTiO3 and band insulator SrTiO3 interfaces, we apply correlated band theory within the local density approximation including a Hubbard U to (n, m) multilayers, 1ordering, and Ti3+ dxy-orbital ordering, with antiferromagnetic exchange coupling between the spins in the interface layer. Lattice relaxations lead to conducting behavior by shifting (slightly but importantly) the lower Hubbard band, but the charge and orbital order is robust against relaxation. PMID:17678179

  10. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction.

    PubMed

    Chan, Kam Wai C; O'Sullivan, Malcolm N; Boyd, Robert W

    2010-03-15

    We compare the performance of high-order thermal ghost imaging with that of conventional (that is, lowest-order) thermal ghost imaging for different data processing methods. Particular attention is given to high-order thermal ghost imaging with background normalization and conventional ghost imaging with background subtraction. The contrast-to-noise ratio (CNR) of the ghost image is used as the figure of merit for the comparison.We find analytically that the CNR of the normalized high-order ghost image is inversely proportional to the square root of the number of transmitting pixels of the object. This scaling law is independent of the exponents used in calculating the high-order correlation and is the same as that of conventional ghost imaging with background subtraction. We find that no data processing procedure performs better than lowest-order ghost imaging with background subtraction. Our results are found to be able to explain the observations of a recent experiment [Chen et al., arXiv:0902.3713v3 [quant-ph

  11. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    NASA Astrophysics Data System (ADS)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb–Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb–Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the

  12. Effects of high-order correlations on personalized recommendations for bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng

    2010-02-01

    In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.

  13. Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers.

    PubMed

    Alparone, Andrea

    2013-08-01

    Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β(μ)) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree-Fock, Møller-Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning's correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β(μ) (9H)/β(μ) (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β(μ) values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer. PMID:23605138

  14. A generative spike train model with time-structured higher order correlations

    PubMed Central

    Trousdale, James; Hu, Yu; Shea-Brown, Eric; Josić, Krešimir

    2013-01-01

    Emerging technologies are revealing the spiking activity in ever larger neural ensembles. Frequently, this spiking is far from independent, with correlations in the spike times of different cells. Understanding how such correlations impact the dynamics and function of neural ensembles remains an important open problem. Here we describe a new, generative model for correlated spike trains that can exhibit many of the features observed in data. Extending prior work in mathematical finance, this generalized thinning and shift (GTaS) model creates marginally Poisson spike trains with diverse temporal correlation structures. We give several examples which highlight the model's flexibility and utility. For instance, we use it to examine how a neural network responds to highly structured patterns of inputs. We then show that the GTaS model is analytically tractable, and derive cumulant densities of all orders in terms of model parameters. The GTaS framework can therefore be an important tool in the experimental and theoretical exploration of neural dynamics. PMID:23908626

  15. Relative ordering of square-norm distance correlations in open quantum systems

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Song, Xue-Ke; Ye, Liu

    2014-10-01

    We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local decoherence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geometric discord (GD) and its modified geometric discord (MGD), as the measures of the square-norm distance correlations. Moreover, an explicit comparison between them is made in detail. The results show that there is no distinct dominant relative ordering between them. Furthermore, we obtain that the GD just gradually deceases to zero, while MGD initially has a large freezing interval, and then suddenly changes in evolution. The longer the freezing interval, the less the MGD is. Interestingly, it is shown that the dynamic behaviors of the two geometric discords under the three noisy environments for the Werner-type initial states are the same.

  16. Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Umrigar, C. J.; Nightingale, M. P.

    1997-08-01

    Compact and accurate wave functions can be constructed by quantum Monte Carlo methods. Typically, these wave functions consist of a sum of a small number of Slater determinants multiplied by a Jastrow factor. In this paper we study the importance of including high-order, nucleus-three-electron correlations in the Jastrow factor. An efficient algorithm based on the theory of invariants is used to compute the high-body correlations. We observe significant improvements in the variational Monte Carlo energy and in the fluctuations of the local energies but not in the fixed-node diffusion Monte Carlo energies. Improvements for the ground states of physical, fermionic atoms are found to be smaller than those for the ground states of fictitious, bosonic atoms, indicating that errors in the nodal surfaces of the fermionic wave functions are a limiting factor.

  17. Next-to-leading order perturbative QCD corrections to baryon correlators in matter

    SciTech Connect

    Groote, S.; Koerner, J. G.; Pivovarov, A. A.

    2008-08-01

    We compute the next-to-leading order (NLO) perturbative QCD corrections to the correlators of nucleon interpolating currents in relativistic nuclear matter. The main new result is the calculation of the O({alpha}{sub s}) perturbative corrections to the coefficient functions of the vector quark condensate in matter. This condensate appears in matter due to the violation of Lorentz invariance. The NLO perturbative QCD corrections turn out to be large which implies that the NLO corrections must be included in a sum rule analysis of the properties of both bound nucleons and relativistic nuclear matter.

  18. Communication: Explicitly correlated four-component relativistic second-order Møller-Plesset perturbation theory.

    PubMed

    Ten-no, Seiichiro; Yamaki, Daisuke

    2012-10-01

    We propose explicitly correlated Ansatz for four-component relativistic methods within the framework of the no-pair approximation. Kinetically balanced geminal basis is derived to satisfy the cusp conditions in the non-relativistic limit based on the Lévy-Leblend-like equation. Relativistic variants of strong-orthogonality projection operator (Ansätze 2α and 2β) suitable for practical calculations are introduced by exploiting the orthogonal complement of the large-component basis. A pilot implementation is performed for the second order Møller-Plesset perturbation theory. PMID:23039576

  19. Effects of gender, birth order, and other correlates on childhood mortality in China.

    PubMed

    Choe, M K; Hao, H; Wang, F

    1995-01-01

    Using data from the 1988 Two-Per-Thousand Survey of Fertility and Birth Control, this paper examines the effects of gender, birth order, and other correlates of childhood mortality in China. Controlling for family-level factors, childhood mortality is found to be associated with the child's gender and birth order. Among firstborn children the difference between male and female childhood mortality is not statistically significant, but among others, female children between ages 1 and 5 experience higher mortality than male children. Childhood mortality is slightly higher for children who have older brothers only than for those who have older sisters only, and it is highest for those who have both older brothers and sisters. Other factors affecting childhood mortality in China include mortality of older siblings, birth interval, urban/rural residence, mother's level of education, and mother's occupation. All interactive effects between gender and family-level characteristics are found to be statistically insignificant. PMID:7481920

  20. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  1. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating.

    PubMed

    Dasbiswas, K; Majkut, S; Discher, D E; Safran, Samuel A

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment. PMID:25597833

  2. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.

    PubMed

    Jiang, Hong; Engel, Eberhard

    2005-12-01

    Second-order perturbation theory based on the Kohn-Sham Hamiltonian leads to an implicit density functional for the correlation energy E(c) (MP2), which is explicitly dependent on both occupied and unoccupied Kohn-Sham single-particle orbitals and energies. The corresponding correlation potential v(c) (MP2), which has to be evaluated by the optimized potential method, was found to be divergent in the asymptotic region of atoms, if positive-energy continuum states are included in the calculation [Facco Bonetti et al., Phys. Rev. Lett. 86, 2241 (2001)]. On the other hand, Niquet et al., [J. Chem. Phys. 118, 9504 (2003)] showed that v(c) (MP2) has the same asymptotic -alpha(2r(4)) behavior as the exact correlation potential, if the system under study has a discrete spectrum only. In this work we study v(c) (MP2) for atoms in a spherical cavity within a basis-set-free finite differences approach, ensuring a completely discrete spectrum by requiring hard-wall boundary conditions at the cavity radius. Choosing this radius sufficiently large, one can devise a numerical continuation procedure which allows to normalize v(c) (MP2) consistent with the standard choice v(c)(r-->infinity)=0 for free atoms, without modifying the potential in the chemically relevant region. An important prerequisite for the success of this scheme is the inclusion of very high-energy virtual states. Using this technique, we have calculated v(c) (MP2) for all closed-shell and spherical open-shell atoms up to argon. One finds that v(c) (MP2) reproduces the shell structure of the exact correlation potential very well but consistently overestimates the corresponding shell oscillations. In the case of spin-polarized atoms one observes a strong interrelation between the correlation potentials of the two spin channels, which is completely absent for standard density functionals. However, our results also demonstrate that E(c) (MP2) can only serve as a first step towards the construction of a suitable

  3. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  4. Orientational ordering in hard rectangles: The role of three-body correlations.

    PubMed

    Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis

    2006-07-01

    We investigate the effect of three-body correlations on the phase behavior of hard rectangle two-dimensional fluids. The third virial coefficient B3 is incorporated via an equation of state that recovers scaled particle theory for parallel hard rectangles. This coefficient, a functional of the orientational distribution function, is calculated by Monte Carlo integration, using an accurate parametrized distribution function, for various particle aspect ratios in the range of 1-25. A bifurcation analysis of the free energy calculated from the obtained equation of state is applied to find the isotropic (I)-uniaxial nematic (N(u)) and isotropic-tetratic nematic (N(t)) spinodals and to study the order of these phase transitions. We find that the relative stability of the N(t) phase with respect to the isotropic phase is enhanced by the introduction of B3. Finally, we have calculated the complete phase diagram using a variational procedure and compared the results with those obtained from scaled particle theory and with Monte Carlo simulations carried out for hard rectangles with various aspect ratios. The predictions of our proposed equation of state as regards the transition densities between the isotropic and orientationally ordered phases for small aspect ratios are in fair agreement with simulations. Also, the critical aspect ratio below which the N(t) phase becomes stable is predicted to increase due to three-body correlations, although the corresponding value is underestimated with respect to simulation. PMID:16863310

  5. Polygonal Web Representation for Higher Order Correlation Functions of Consistent Polygonal Markov Fields in the Plane

    NASA Astrophysics Data System (ADS)

    Schreiber, Tomasz

    2010-08-01

    We consider polygonal Markov fields originally introduced by Arak in 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of Communications, 1982; Arak and Surgailis in Probab. Theory Relat. Fields 80:543-579, 1989. Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of salient features with the two-dimensional Ising model. The purpose of this paper is to establish an explicit stochastic representation for the higher-order correlation functions of polygonal Markov fields in their consistency regime. The representation is given in terms of the so-called crop functionals (defined by a Möbius-type formula) of polygonal webs which arise in a graphical construction dual to that giving rise to polygonal fields. The proof of our representation formula goes by constructing a martingale interpolation between the correlation functions of polygonal fields and crop functionals of polygonal webs.

  6. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  7. N(th)-order correlation functions of galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Ross, Ashley Jacob

    I present the correlation function measurements and analysis I have conducted with SDSS data. I have focused my measurements on angular N -point area- averaged correlation functions ( o N ([straight theta]) ) and auto-correlation functions (o 2 ([straight theta])) of galaxies. The measured o N ([straight theta]) are used to calculate the projected, s N , and real space, S N , hierarchical amplitudes. I have used SDSS DR3 data to show that the measurements are robust against the systematic effects of reddening and seeing, and to determine that large differences exist in the higher-order clustering of early- and late-type galaxies--quantified in terms of bias parameters. Using photometric redshift catalogs from SDSS DR5 data, I have created two volume limited samples of galaxies, allowing me to measure o N ([straight theta]) as a function of type, redshift, and luminosity. I have found that the higher-order bias of early-type galaxies does not vary significantly with changes in either redshift or luminosity, as c 2, early is consistent with 0.09 for all measurements. I have shown that the higher-order clustering of late-type galaxies shows dramatic differences for galaxies selected with redshifts above and below z = 0.3. Using LRGs photometrically selected from SDSS DR5, I have measured the 2nd-order bias tern, c 2 , using both o 2 ([straight theta]) and s 3 , and I have combined these measurements to determine that the normalization of the matter power spectrum at 8 h -1 Mpc, s 8 , is 0.79 ± 0.05 and c 2, LRG = 0.09 ± 0.04--consistent with the DR5 early-type results. I have calculated o 2 ([straight theta]) of galaxies from SDSS DR5 to constrain the HOD of galaxies as a function of type. I found that a new model that separated early- and late- type galaxies into different dark matter halos as much as possible was required to allow good fits to the measurements. Throughout, my findings are interpreted with respect to both the evolution of structure formation and

  8. Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions

    NASA Astrophysics Data System (ADS)

    Jukić, Damir; Denić-Jukić, Vesna

    2015-11-01

    Time series of rainfall and karst-spring discharge are influenced by various space-time-variant processes involved in the transfer of water in hydrological cycle. The effects of these processes can be exhibited in auto-correlation and cross-correlation functions. Consequently, ambiguities with respect to the effects encoded in the correlation functions exist. To solve this problem, a new statistical method for investigating relationships between rainfall and karst-spring discharge is proposed. The method is based on the determination and analysis of higher-order partial correlation functions and their spectral representations. The study area is the catchment of the Jadro Spring in Croatia. The analyzed daily time series are the air temperature, relative humidity, spring discharge, and rainfall at seven rain-gauges over a period of 19 years, from 1995 to 2013. The application results show that the effects of spatial and temporal variations of hydrological time series and the space-time-variant behaviours of the karst system can be separated from the correlation functions. Specifically, the effect of evapotranspiration can be separated to obtain the forms of correlation functions that represent the hydrogeological characteristics of the karst system. Using the proposed method, it is also possible to separate the effects of the process of groundwater recharge that occurs in neighbouring parts of a catchment to identify the specific contribution of each part of the catchment to the karst-spring discharge. The main quantitative results obtained for the Jadro Spring show that the quick-flow duration is 14 days, the intermediate-flow duration is 80 days, and the pure base flow starts after 80 days. The base flow consists of an inter-catchment groundwater flow. The system memory of the spring is 80 days. The presented results indicate the far-reaching applicability of the proposed method in the analyses of relationships between rainfall and karst-spring discharge; e

  9. Bias and high-order galaxy correlation functions in the APM galaxy survey

    NASA Technical Reports Server (NTRS)

    Gaztanaga, Enrique; Frieman, Joshua A.

    1994-01-01

    On large scales, the higher order moments of the mass distribution, S(sub J) = bar-zeta(sub J)/bar-zeta(sup J-1)(sub 2), e.g., the skewness S(sub 3) and kurtosis S(sub 4), can be predicted using nonlinear perturbation theory. Comparison of these predictions with moments of the observed galaxy distribution probes the bias between galaxies and mass. Applying this method to models with initially Gaussian fluctuations and power spectra P(k) similar to that of galaxies in the Automatic Plate Measuring (APM) survey, we find that the predicted higher order moments S(sub J)(R) are in good agreement with those directly inferred from the APM survey in the absence of bias. We use this result to place limits on the linear and nonlinear bias parameters. Models in which the extra power observed on large scales (with respect to the standard cold dark matter (CDM) model) is produced by scale-dependent bias match the APM higher order amplitudes only if nonlinear bias (rather than nonlinear gravity) generates the observed higher order moments. When normalized to Cosmic Background Explorer Differential Microwave Radiometer (COBE DMR), these models are siginificantly ruled out by the S(sub 3) observations. The cold plus hot dark matter model normalized to COBE can reproduce the APM higher order correlations if one introduces nonlinear bias terms, while the low-density CDM model with a cosmological constant does not require any bias to fit the large-scale amplitudes.

  10. Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends.

    PubMed

    Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh

    2016-08-10

    In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells. PMID:27415029

  11. Block correlated second order perturbation theory with a generalized valence bond reference function

    SciTech Connect

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a “multi-orbital” block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Møller–Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  12. Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Ren, Xinguo; Rinke, Patrick; Scuseria, Gustavo E.; Scheffler, Matthias

    2013-07-01

    We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as ``renormalization'' of the second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrödinger perturbation theory based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE) contribution was treated approximately, has already been benchmarked for molecular atomization energies and chemical reaction barrier heights and shows a well-balanced performance [J. Paier , New J. Phys.1367-263010.1088/1367-2630/14/4/043002 14, 043002 (2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers, and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an overall satisfactory performance across different electronic situations, and is a promising step towards a generally applicable electronic-structure approach.

  13. First-Order Melting of a Weak Spin-Orbit Mott Insulator into a Correlated Metal.

    PubMed

    Hogan, Tom; Yamani, Z; Walkup, D; Chen, Xiang; Dally, Rebecca; Ward, Thomas Z; Dean, M P M; Hill, John; Islam, Z; Madhavan, Vidya; Wilson, Stephen D

    2015-06-26

    The electronic phase diagram of the weak spin-orbit Mott insulator (Sr(1-x)La(x))(3)Ir(2)O(7) is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. As the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state. PMID:26197142

  14. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    DOE PAGESBeta

    Hogan, Tom; Yamani, Z.; Walkup, D.; Chen, Xiang; Dally, Rebecca; Ward, Thomas Zac; Dean, M. P. M.; Hill, John P.; Islam, Z.; Madhavan, Vidya; et al

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr1-xLax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortion develops and suggests a competingmore » instability with the parent spin-orbit Mott state.« less

  15. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    SciTech Connect

    Hogan, Tom; Yamani, Z.; Walkup, D.; Chen, Xiang; Dally, Rebecca; Ward, Thomas Zac; Dean, M. P. M.; Hill, John P.; Islam, Z.; Madhavan, Vidya; Wilson, Stephen D.

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr1-xLax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state.

  16. First-Order Melting of a Weak Spin-Orbit Mott Insulator into a Correlated Metal

    NASA Astrophysics Data System (ADS)

    Hogan, Tom; Yamani, Z.; Walkup, D.; Chen, Xiang; Dally, Rebecca; Ward, Thomas Z.; Dean, M. P. M.; Hill, John; Islam, Z.; Madhavan, Vidya; Wilson, Stephen D.

    2015-06-01

    The electronic phase diagram of the weak spin-orbit Mott insulator (Sr1 -xLax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x ≈0.04 . Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. As the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state.

  17. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  18. Doping-dependent charge order correlations in electron-doped cuprates

    PubMed Central

    da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea

    2016-01-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  19. Explicitly correlated atomic orbital basis second order Møller-Plesset theory

    NASA Astrophysics Data System (ADS)

    Hollman, David S.; Wilke, Jeremiah J.; Schaefer, Henry F.

    2013-02-01

    The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)], 10.1063/1.3693908. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N^5) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.

  20. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

    PubMed Central

    Davis, J. C. Séamus; Lee, Dung-Hai

    2013-01-01

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  1. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    PubMed

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  2. COSMO-RSC: Second-Order Quasi-Chemical Theory Recovering Local Surface Correlation Effects.

    PubMed

    Klamt, A

    2016-03-31

    The conductor-like screening model for realistic solvation (COSMO-RS) was introduced 20 years ago and meanwhile has become an important tool for the prediction of fluid phase equilibrium properties. Starting from quantum chemical information about the surface polarity of solutes and solvents, it solves the statistical thermodynamics of molecules in liquid phases by the very efficient approximation of independently pairwise interacting surfaces, which meanwhile was shown to be equivalent to Guggenheim's quasi-chemical theory. One of the basic limitations of COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, i.e., of local correlations of surface types on the molecular surface. In this paper we present the completely novel concept of using the first-order COSMO-RS contact probabilities for the construction of local surface correlation functions. These are fed as an entropic correction for the pair interactions into a second COSMO-RS self-consistency loop, which yields new contact probabilities, enthalpies, free energies and activity coefficients recovering much of the originally lost neighbor effects. By a novel analytic correction for concentration dependent interactions, the resulting activity coefficients remain exactly Gibbs-Duhem consistent. The theory is demonstrated on the example of a lattice Monte Carlo fluid of dimerizing pseudomolecules. In this showcase the strong deviations of the lattice Monte Carlo fluid from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC. PMID:26963690

  3. Fractality in persistence decay and domain growth during ferromagnetic ordering: Dependence upon initial correlation.

    PubMed

    Chakraborty, Saikat; Das, Subir K

    2016-03-01

    The dynamics of ordering in the Ising model, following quench to zero temperature, has been studied via Glauber spin-flip Monte Carlo simulations in space dimensions d=2 and 3. One of the primary objectives has been to understand phenomena associated with the persistent spins, viz., time decay in the number of unaffected spins, growth of the corresponding pattern, and its fractal dimensionality for varying correlation length in the initial configurations, prepared at different temperatures, at and above the critical value. It is observed that the fractal dimensionality and the exponent describing the power-law decay of persistence probability are strongly dependent upon the relative values of nonequilibrium domain size and the initial equilibrium correlation length. Via appropriate scaling analyses, these quantities have been estimated for quenches from infinite and critical temperatures. The above-mentioned dependence is observed to be less pronounced in the higher dimension. In addition to these findings for the local persistence, we present results for the global persistence as well. Furthermore, important observations on the standard domain growth problem are reported. For the latter, a controversy in d=3, related to the value of the exponent for the power-law growth of the average domain size with time, has been resolved. PMID:27078324

  4. Fluctuation/correlation effects in symmetric diblock copolymers: on the order-disorder transition.

    PubMed

    Zong, Jing; Wang, Qiang

    2013-09-28

    Using fast off-lattice Monte Carlo simulations with experimentally accessible fluctuations, we reported the first systematic study unambiguously quantifying the shift of the order-disorder transition (ODT) χ* of symmetric diblock copolymers from the mean-field prediction χ(MF)*. Our simulations are performed in a canonical ensemble with variable box lengths to eliminate the restriction of periodic boundary conditions on the lamellar period, and give the most accurate data of χ* and bulk lamellar period reported to date. Exactly the same model system (Hamiltonian) is used in both our simulations and mean-field theory; the ODT shift is therefore due to the fluctuations/correlations neglected by the latter. While χ*/χ(MF)*-1∝N(-k) is found with N denoting the invariant degree of polymerization, k decreases around the N-value corresponding to the face-centered cubic close packing of polymer segments as hard spheres, indicating the short-range correlation effects. PMID:24089804

  5. Spin-orbit correlated magnetic order in honeycomb α-RuCl3

    NASA Astrophysics Data System (ADS)

    Venkataraman, Vijay Shankar; Kim, Heung-Sik; Kee, Hae-Young

    2015-03-01

    There has been a lot of recent interest in the combined effects of spin-orbit coupling (SOC) and electronic correlations in transition metal compounds. RuCl3 with layered honeycomb structure was proposed as a candidate material, where SOC boosts the electronic interaction, leading to an insulating phase. However, the role of SOC is not clear in materials with 4d-orbitals, since SOC strength is weaker than 5d-orbital materials. Here we study electronic band structures of honeycomb RuCl3 using ab-initio and tight binding methods, and estimate its SOC strength. We find that SOC in RuCl3 is not strong enough to justify an effective jeff = 1 / 2 single band unlike in the iridates. However, when electronic interactions are introduced, a magnetic order develops, and upper- and lower-Hubbard bands are characterized by jeff = 1 / 2 and 3 / 2 , respectively. Within a mean field theory with multi-orbital bands, we find that a zig-zag magnetic order is a ground state. Experimental implications are also discussed.

  6. Spin state ordering of strongly correlating LaCoO3 induced at ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Matsuo, Akira; Kindo, Koichi; Sato, Keisuke

    2016-06-01

    Magnetization measurements of LaCoO3 have been carried out up to 133 T, generated with a destructive pulse magnet at a wide temperature range from 2 to 120 K. A novel magnetic transition was found at B >100 T and T >T*=32 ±5 K, which is characterized by its transition field increasing with increasing temperature. At T orders of the spin states and possibly other degrees of freedom such as orbitals. An inherent strong correlation of spin states among cobalt sites should have triggered the emergence of the ordered phases in LaCoO3 at high magnetic fields.

  7. Magnetic reversal of an artificial square ice: dipolar correlation and charge ordering

    NASA Astrophysics Data System (ADS)

    Morgan, Jason; Stein, Aaron; Langridge, Sean; Marrows, Christopher

    2012-02-01

    Artificial spin ices are lithographically patterned arrays of single domain nanomagnets [1-4]. The elongated elements form a 2D system of interlinked vertices at which Ising-like dipole moments meet with incompatible interactions. They are directly analogous to 3D bulk spin ice materials [5]. We report on the magnetic reversal of an athermal artificial square ice pattern subject to a sequence of magnetic fields applied slightly off the diagonal symmetry axis, investigated via magnetic force microscopy of the remanent states that result [1]. From an initial diagonally polarised state, sublattice independent reversal is observed via bulk-nucleated incrementally-pinned flipped moment chains along parallel channels of magnetic elements, as evident from analysis of vertex populations and dipolar correlation functions. Weak dipolar interactions between adjacent chains favour antialignment and give rise to weak charge ordering of ``monopole'' vertices during reversal. [4pt] [1] J. P. Morgan, A. Stein, S. Langridge & C.H. Marrows, New Journal of Physics (2011), 13, 105002.[0pt] [2] R. F. Wang et al., Nature (2006), 439, 303-306.[0pt] [3] E. Mengotti et al., Nature Physics (2011), 7, 68-74.[0pt] [4] J. P. Morgan et al., Nature Physics (2011), 7, 75-79.[0pt] [5] M. J. Harris et al., PRL (1997), 79, 2554-255

  8. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order.

    PubMed

    Wang, Xiao; Broch, Katharina; Scholz, Reinhard; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2014-04-01

    Cylindrical vector beams, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin films, allowing us to correlate Raman spectroscopy with intermolecular interactions depending on the particular pentacene polymorph. Polarization-dependent Raman spectra of the C-H bending vibrations are resolved layer by layer within a thin film of ∼20 nm thickness. The variation of the Raman peak positions indicates changes in the molecular orientation and in the local environment at different heights of the pentacene film. With the assistance of a theoretical model based on harmonic oscillator and perturbation theory, our method reveals the local structural order and the polymorph at different locations within the same pentacene thin film, depending mainly on its thickness. In good agreement with the crystallographic structures reported in the literature, our observations demonstrate that the first few monolayers grown in a structure are closer to the thin-film phase, but for larger film thicknesses, the morphology evolves toward the crystal-bulk phase with a larger tilting angle of the pentacene molecules against the substrate normal. PMID:26274447

  9. Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter

    SciTech Connect

    Choi, Wonshik; Lee, Moonjoo; Lee, Ye-Ryoung; Park, Changsoon; Lee, Jai-Hyung; An, Kyungwon; Fang-Yen, C.; Dasari, R. R.; Feld, M. S.

    2005-08-15

    A novel high-throughput second-order correlation measurement system is developed that records and makes use of all the arrival times of photons detected at both start and stop detectors. This system is suitable, particularly for a light source having a high photon flux and a long coherence time, since it is more efficient than conventional methods by an amount equal to the product of the count rate and the correlation time of the light source. We have used this system in carefully investigating the dead time effects of detectors and photon counters on the second-order correlation function in the two-detector configuration. For a nonstationary light source, a distortion of the original signal was observed at high photon flux. A systematic way of calibrating the second-order correlation function has been devised by introducing the concept of an effective dead time of the entire measurement system.

  10. Normalization of the Matter Power Spectrum via Higher Order Angular Correlations of Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Brunner, Robert J.; Myers, Adam D.

    2008-08-01

    We present a novel technique with which to measure σ8. It relies on measuring the dependence of the second-order bias of a density field on σ8, using two separate techniques. Each technique employs area-averaged angular correlation functions (bar omegaN), one relying on the shape of bar omega2, the other relying on the amplitude of s3 (s3 = bar omega3/bar omega22). We confirm the validity of this method by testing it on a mock catalog drawn from Millennium Simulation data and finding a value of σ8 - σtrue8 = - 0.002 +/- 0.062. We create a catalog of photometrically selected LRGs from SDSS DR5 and separate it into three distinct data sets by photometric redshift, with median redshifts of 0.47, 0.53, and 0.61. Measurements of c2 and σ8 are made for each data set, with the assumption of a flat geometry and WMAP3 best-fit priors on Ωm, h, and Γ. We find, with increasing redshift, that c2 = 0.09 +/- 0.04, 0.09 +/- 0.05, and 0.09 +/- 0.03, and σ8 = 0.78 +/- 0.08, 0.80 +/- 0.09, and 0.80 +/- 0.09. We combine these three consistent σ8 measurements to produce σ8 = 0.79 +/- 0.05. Allowing the parameters Ωm, h, and Γ to vary within their WMAP3 1 σ error, we find that the best-fit value of σ8 does not change by more than 8%, and we are thus confident that our measurement is accurate to within 10%. We anticipate that future surveys, such as Pan-STARRS, DES, and LSST, will be able to employ this method in order to measure σ8 to great precision, and this will serve as an important check, complementarily, on the values determined via more established methods.

  11. Correlation of early orientational ordering of engineered λ 6-85 structure with kinetics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Larios, Edgar; Pitera, Jed W.; Swope, William C.; Gruebele, Martin

    2006-03-01

    Experimental and computational Φ-value analysis of two-state helical proteins has shown that definite interactions among helix-forming segments build up in the transition state ensemble, but this type of analysis is not applicable to downhill folders. Here, we ask whether orientational ordering of helix-forming segments occurs early on during folding of a downhill λ 6-85 mutant, and how much it correlates with the thermodynamics and kinetics of various λ 6-85 mutants that do have folding barriers. From a grand total of 5 μs of implicit solvent replica-exchange molecular dynamics, we conclude that under folding conditions segments 1 and 4 form more helical structure and orient correctly relative to the native structure more often than do segments 2 and 3. Helices 1 and 2 retain the most residual structure and orientation at high temperatures. This is further supported by experimental data showing that perturbations in helices 1 and 4 of this well-designed folder affect folding kinetics and stability more sensitively than elsewhere in the protein, and that the helix 1-2 only bundle retains a cooperative melting transition and helical CD spectrum. The correct orientational propensity of helices 1 and 4 at low temperature is in agreement with the work by Takada, Portman and Wolynes proposing initial structure formation during folding in helices 1 and 4 of the wild-type λ 6-85 protein, a two-state folder. Thus, the absence of a large barrier in the downhill mutant does not fundamentally alter the steps the wild-type protein takes to fold.

  12. Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules.

    PubMed

    Adler, Thomas B; Werner, Hans-Joachim; Manby, Frederick R

    2009-02-01

    A local explicitly correlated LMP2-F12 method is described that can be applied to large molecules. The steep scaling of computer time with molecular size is reduced by the use of local approximations, the scaling with respect to the basis set size per atom is improved by density fitting, and the slow convergence of the correlation energy with orbital basis size is much accelerated by the introduction of terms into the wave function that explicitly depend on the interelectronic distance. The local approximations lead to almost linear scaling of the computational effort with molecular size without much affecting the accuracy. At the same time, the domain error of conventional LMP2 is removed in LMP2-F12. LMP2-F12 calculations on molecules of chemical interest involving up to 80 atoms, 200 correlated electrons, and 2600 contracted Gaussian-type orbitals, as well as several reactions of large biochemical molecules are reported. PMID:19206957

  13. Grafting of higher-order correlations of real financial markets into herding models

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghyun; Lim, Gyuchang; Kim, Sooyong; Kim, Kyungsik

    2009-08-01

    In this work, we graft the volatility clustering observed in empirical financial time series into the Equiluz and Zimmermann (EZ) model, which was introduced to reproduce the herding behaviors of a financial time series. The original EZ model failed to reproduce the empirically observed power-law exponents of real financial data. The EZ model ordinarily produces a more fat-tailed distribution compared to real data, and a long-range correlation of absolute returns that underlie the volatility clustering. As it is not appropriate to capture the empirically observed correlations in a modified EZ model, we apply a sorting method to incorporate the nonlinear correlation structure of a real financial time series into the generated returns. By doing so, we observe that the slow convergence of distribution of returns is well established for returns generated from the EZ model and its modified version. It is also found that the modified EZ model leads to a less fat-tailed distribution.

  14. The Second Order Approximation to Sample Influence Curve in Canonical Correlation Analysis.

    ERIC Educational Resources Information Center

    Fung, Wing K.; Gu, Hong

    1998-01-01

    A second order approximation to the sample influence curve (SIC) has been derived in the literature. This paper presents a more accurate second order approximation, which is exact for the SIC of the squared multiple correction coefficient. An example is presented. (SLD)

  15. “Pure chaotic” orbits of one-dimensional maps have third-order correlation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Ichimura, Atsushi

    1984-04-01

    The triple-time-correlation function for the logistic map and the tent map, both for the uppermost values of their parameters, are calculated analytically and orbits of these systems are shown to be different from a pseudo-random-number sequence generated on a computer. Violation of the time-reversal invariance by these orbits is also discussed.

  16. Nonlocal Coulomb Correlations in Metals Close to a Charge Order Insulator Transition

    NASA Astrophysics Data System (ADS)

    Merino, Jaime

    2007-07-01

    The charge ordering transition induced by the nearest-neighbor Coulomb repulsion V in the 1/4-filled extended Hubbard model is investigated using cellular dynamical mean-field theory. We find a transition to a strongly renormalized charge ordered Fermi liquid at VCO and a metal-to-insulator transition at VMI>VCO. Short range antiferromagnetism occurs concomitantly with the CO transition. Approaching the charge ordered insulator, V≲VMI, the Fermi surface deforms and the scattering rate of electrons develops momentum dependence on the Fermi surface.

  17. Two-dimensional magnetic correlations and partial long-range order in geometrically frustrated Sr2YRuO6.

    PubMed

    Granado, E; Lynn, J W; Jardim, R F; Torikachvili, M S

    2013-01-01

    Neutron diffraction on the double perovskite Sr(2)YRuO(6) with a quasi-fcc lattice of Ru moments reveals planar magnetic correlations that condense into a partial long-range ordered state with coupled alternate antiferromagnetic (AFM) YRuO(4) square layers coexisting with the short-range correlations below T(N1) = 32 K. A second transition to a fully ordered AFM state below T(N2) = 24 K is observed. The reduced dimensionality of the spin correlations is arguably due to a cancellation of the magnetic coupling between consecutive AFM square layers in fcc antiferromagnets, which is the simplest three-dimensional frustrated magnet model system. PMID:23383833

  18. Combined topological and Landau order from strong correlations in Chern bands

    NASA Astrophysics Data System (ADS)

    Daghofer, Maria; Kourtis, Stefanos

    2014-03-01

    In recent years, topologically nontrivial and nearly dispersionless bands have attracted attention as hosts for states analogous to fractional quantum-Hall states, but without a magnetic field. Indeed, such fractional Chern insulators were found and connections to fractional quantum-Hall states in Landau levels were established. We discuss here aspects where fractional Chern insulators differ from Landau levels. In particular, we present a class of states where both topological order and symmetry breaking arise spontaneously: the states show both fractional Hall conductivity and charge order. This coexistence of topological and conventional Landau order relies on the geometric frustration of the underlying lattice and consequently goes qualitatively beyond physics found in continuous Landau levels with their weak lattice. Supported by the Emmy-Noether program of the Deutsche Forschungsgemeinschaft (DFG).

  19. Symmetry and correlations underlying hidden order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Butch, Nicholas P.; Manley, Michael E.; Jeffries, Jason R.; Janoschek, Marc; Huang, Kevin; Maple, M. Brian; Said, Ayman H.; Leu, Bogdan M.; Lynn, Jeffrey W.

    2015-01-01

    We experimentally investigate the symmetry in the hidden order (HO) phase of intermetallic URu2Si2 by mapping the lattice and magnetic excitations via inelastic neutron and x-ray scattering measurements in the HO and high-temperature paramagnetic phases. At all temperatures, the excitations respect the zone edges of the body-centered tetragonal paramagnetic phase, showing no signs of reduced spatial symmetry, even in the HO phase. The magnetic excitations originate from transitions between hybridized bands and track the Fermi surface, whose features are corroborated by the phonon measurements. Due to a large hybridization energy scale, a full uranium moment persists in the HO phase, consistent with a lack of observed crystal-field-split states. Our results are inconsistent with local order-parameter models and the behavior of typical density waves. We suggest that an order parameter that does not break spatial symmetry would naturally explain these characteristics.

  20. On the structure of Si(100) surface: importance of higher order correlations for buckled dimer.

    PubMed

    Back, Seoin; Schmidt, Johan A; Ji, Hyunjun; Heo, Jiyoung; Shao, Yihan; Jung, Yousung

    2013-05-28

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003)]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface. PMID:23742502

  1. On the structure of Si(100) surface: Importance of higher order correlations for buckled dimer

    NASA Astrophysics Data System (ADS)

    Back, Seoin; Schmidt, Johan A.; Ji, Hyunjun; Heo, Jiyoung; Shao, Yihan; Jung, Yousung

    2013-05-01

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003), 10.1063/1.1620994]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface.

  2. Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-01

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.

  3. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.

    PubMed

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-01

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy. PMID:23215368

  4. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    SciTech Connect

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo; Vitev, Ivan

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.

  5. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Azaria, P.; Konik, R. M.; Lecheminant, P.; Pálmai, T.; Takács, G.; Tsvelik, A. M.

    2016-08-01

    In this paper we study a (1 +1 )-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ , is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ =0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phases with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).

  6. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure.

    PubMed

    Aranda-Anzaldo, Armando

    2012-03-01

    Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316

  7. Sparse low-order interaction network underlies a highly correlated and learnable neural population code

    PubMed Central

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2011-01-01

    Information is carried in the brain by the joint activity patterns of large groups of neurons. Understanding the structure and function of population neural codes is challenging because of the exponential number of possible activity patterns and dependencies among neurons. We report here that for groups of ~100 retinal neurons responding to natural stimuli, pairwise-based models, which were highly accurate for small networks, are no longer sufficient. We show that because of the sparse nature of the neural code, the higher-order interactions can be easily learned using a novel model and that a very sparse low-order interaction network underlies the code of large populations of neurons. Additionally, we show that the interaction network is organized in a hierarchical and modular manner, which hints at scalability. Our results suggest that learnability may be a key feature of the neural code. PMID:21602497

  8. Ordered Patterns of Cell Shape and Orientational Correlation during Spontaneous Cell Migration

    PubMed Central

    Iwaya, Suguru; Sano, Masaki

    2008-01-01

    Background In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. Methodology We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion) and starved one (elongated cell shape and fast motion). We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin) and cell movement by statistical dynamic analyses. Conclusions/Significance We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K) and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli. PMID:19011688

  9. Symmetry and correlations underlying hidden order in URu2Si2

    DOE PAGESBeta

    Butch, Nicholas P.; Manley, Michael E.; Jeffries, Jason R.; Janoschek, Marc; Huang, Kevin; Maple, M. Brian; Said, Ayman H.; Leu, Bogdan M.; Lynn, Jeffrey W.

    2015-01-26

    In this paper, we experimentally investigate the symmetry in the hidden order (HO) phase of intermetallic URu2Si2 by mapping the lattice and magnetic excitations via inelastic neutron and x-ray scattering measurements in the HO and high-temperature paramagnetic phases. At all temperatures, the excitations respect the zone edges of the body-centered tetragonal paramagnetic phase, showing no signs of reduced spatial symmetry, even in the HO phase. The magnetic excitations originate from transitions between hybridized bands and track the Fermi surface, whose features are corroborated by the phonon measurements. Due to a large hybridization energy scale, a full uranium moment persists inmore » the HO phase, consistent with a lack of observed crystal-field-split states. Our results are inconsistent with local order-parameter models and the behavior of typical density waves. Finally, we suggest that an order parameter that does not break spatial symmetry would naturally explain these characteristics.« less

  10. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  11. State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data

    PubMed Central

    Shimazaki, Hideaki; Amari, Shun-ichi; Brown, Emery N.; Grün, Sonja

    2012-01-01

    Precise spike coordination between the spiking activities of multiple neurons is suggested as an indication of coordinated network activity in active cell assemblies. Spike correlation analysis aims to identify such cooperative network activity by detecting excess spike synchrony in simultaneously recorded multiple neural spike sequences. Cooperative activity is expected to organize dynamically during behavior and cognition; therefore currently available analysis techniques must be extended to enable the estimation of multiple time-varying spike interactions between neurons simultaneously. In particular, new methods must take advantage of the simultaneous observations of multiple neurons by addressing their higher-order dependencies, which cannot be revealed by pairwise analyses alone. In this paper, we develop a method for estimating time-varying spike interactions by means of a state-space analysis. Discretized parallel spike sequences are modeled as multi-variate binary processes using a log-linear model that provides a well-defined measure of higher-order spike correlation in an information geometry framework. We construct a recursive Bayesian filter/smoother for the extraction of spike interaction parameters. This method can simultaneously estimate the dynamic pairwise spike interactions of multiple single neurons, thereby extending the Ising/spin-glass model analysis of multiple neural spike train data to a nonstationary analysis. Furthermore, the method can estimate dynamic higher-order spike interactions. To validate the inclusion of the higher-order terms in the model, we construct an approximation method to assess the goodness-of-fit to spike data. In addition, we formulate a test method for the presence of higher-order spike correlation even in nonstationary spike data, e.g., data from awake behaving animals. The utility of the proposed methods is tested using simulated spike data with known underlying correlation dynamics. Finally, we apply the methods

  12. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.

    PubMed

    Shimazaki, Hideaki; Amari, Shun-Ichi; Brown, Emery N; Grün, Sonja

    2012-01-01

    Precise spike coordination between the spiking activities of multiple neurons is suggested as an indication of coordinated network activity in active cell assemblies. Spike correlation analysis aims to identify such cooperative network activity by detecting excess spike synchrony in simultaneously recorded multiple neural spike sequences. Cooperative activity is expected to organize dynamically during behavior and cognition; therefore currently available analysis techniques must be extended to enable the estimation of multiple time-varying spike interactions between neurons simultaneously. In particular, new methods must take advantage of the simultaneous observations of multiple neurons by addressing their higher-order dependencies, which cannot be revealed by pairwise analyses alone. In this paper, we develop a method for estimating time-varying spike interactions by means of a state-space analysis. Discretized parallel spike sequences are modeled as multi-variate binary processes using a log-linear model that provides a well-defined measure of higher-order spike correlation in an information geometry framework. We construct a recursive Bayesian filter/smoother for the extraction of spike interaction parameters. This method can simultaneously estimate the dynamic pairwise spike interactions of multiple single neurons, thereby extending the Ising/spin-glass model analysis of multiple neural spike train data to a nonstationary analysis. Furthermore, the method can estimate dynamic higher-order spike interactions. To validate the inclusion of the higher-order terms in the model, we construct an approximation method to assess the goodness-of-fit to spike data. In addition, we formulate a test method for the presence of higher-order spike correlation even in nonstationary spike data, e.g., data from awake behaving animals. The utility of the proposed methods is tested using simulated spike data with known underlying correlation dynamics. Finally, we apply the methods

  13. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass.

    PubMed

    Olsen, Aaron M

    2015-11-01

    Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low-quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds. PMID:26640679

  14. Dissociating the neural correlates of tactile temporal order and simultaneity judgements

    PubMed Central

    Miyazaki, Makoto; Kadota, Hiroshi; Matsuzaki, Kozue S.; Takeuchi, Shigeki; Sekiguchi, Hirofumi; Aoyama, Takuo; Kochiyama, Takanori

    2016-01-01

    Perceiving temporal relationships between sensory events is a key process for recognising dynamic environments. Temporal order judgement (TOJ) and simultaneity judgement (SJ) are used for probing this perceptual process. TOJ and SJ exhibit identical psychometric parameters. However, there is accumulating psychophysical evidence that distinguishes TOJ from SJ. Some studies have proposed that the perceptual processes for SJ (e.g., detecting successive/simultaneity) are also included in TOJ, whereas TOJ requires more processes (e.g., determination of the temporal order). Other studies have proposed two independent processes for TOJ and SJ. To identify differences in the neural activity associated with TOJ versus SJ, we performed functional magnetic resonance imaging of participants during TOJ and SJ with identical tactile stimuli. TOJ-specific activity was observed in multiple regions (e.g., left ventral and bilateral dorsal premotor cortices and left posterior parietal cortex) that overlap the general temporal prediction network for perception and motor systems. SJ-specific activation was observed only in the posterior insular cortex. Our results suggest that TOJ requires more processes than SJ and that both TOJ and SJ implement specific process components. The neural differences between TOJ and SJ thus combine features described in previous psychophysical hypotheses that proposed different mechanisms. PMID:27064734

  15. Dissociating the neural correlates of tactile temporal order and simultaneity judgements.

    PubMed

    Miyazaki, Makoto; Kadota, Hiroshi; Matsuzaki, Kozue S; Takeuchi, Shigeki; Sekiguchi, Hirofumi; Aoyama, Takuo; Kochiyama, Takanori

    2016-01-01

    Perceiving temporal relationships between sensory events is a key process for recognising dynamic environments. Temporal order judgement (TOJ) and simultaneity judgement (SJ) are used for probing this perceptual process. TOJ and SJ exhibit identical psychometric parameters. However, there is accumulating psychophysical evidence that distinguishes TOJ from SJ. Some studies have proposed that the perceptual processes for SJ (e.g., detecting successive/simultaneity) are also included in TOJ, whereas TOJ requires more processes (e.g., determination of the temporal order). Other studies have proposed two independent processes for TOJ and SJ. To identify differences in the neural activity associated with TOJ versus SJ, we performed functional magnetic resonance imaging of participants during TOJ and SJ with identical tactile stimuli. TOJ-specific activity was observed in multiple regions (e.g., left ventral and bilateral dorsal premotor cortices and left posterior parietal cortex) that overlap the general temporal prediction network for perception and motor systems. SJ-specific activation was observed only in the posterior insular cortex. Our results suggest that TOJ requires more processes than SJ and that both TOJ and SJ implement specific process components. The neural differences between TOJ and SJ thus combine features described in previous psychophysical hypotheses that proposed different mechanisms. PMID:27064734

  16. Local order and orientational correlations in liquid and crystalline phases of carbon tetrabromide from neutron powder diffraction measurements

    NASA Astrophysics Data System (ADS)

    Temleitner, L.; Pusztai, L.

    2010-04-01

    The liquid, plastic crystalline and ordered crystalline phases of CBr4 were studied using neutron-powder diffraction. The measured total scattering differential cross sections were modeled by reverse Monte Carlo simulation techniques ( RMC++ and RMCPOW). Following successful simulations, the single-crystal-diffraction pattern of the plastic phase as well as partial radial distribution functions and orientational correlations for all the three phases have been calculated from the atomic coordinates (particle configurations). The single-crystal pattern, calculated from a configuration that had been obtained from modeling the powder pattern, shows identical behavior to the recent single-crystal data of Folmer [Phys. Rev. B 77, 144205 (2008)]. The BrBr partial radial-distribution functions of the liquid and plastic crystalline phases are almost the same while CC correlations clearly display long-range ordering in the latter phase. Orientational correlations also suggest strong similarities between liquid and plastic crystalline phases whereas the monoclinic phase behaves very differently. Orientations of the molecules are distinct in the ordered phase whereas in the plastic crystal their distribution seems to be isotropic.

  17. Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots

    PubMed Central

    Zhang, Kai; Du, Kai; Liu, Hao; Zhang, X.-G.; Lan, Fanli; Lin, Hanxuan; Wei, Wengang; Zhu, Yinyan; Kou, Yunfang; Shao, Jian; Niu, Jiebin; Wang, Wenbin; Wu, Ruqian; Yin, Lifeng; Plummer, E. W.; Shen, Jian

    2015-01-01

    The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field. PMID:26195791

  18. Approximated optimum condition of second order response surface model with correlated observations

    NASA Astrophysics Data System (ADS)

    Somayasa, Wayan

    2016-06-01

    In the present paper we establish an inference procedure for the eigenvalues of the model matrix of the second-order response surface model (RSM). In contrast to the classical treatment where the sample are assumed to be independently distributed, in this work we do not need such distributional simplification. The confidence region for the unknown vector of the eigenvalues is derived by means of delta method. The finite sample behavior of the convergence result is discussed by Monte Carlo Simulation. We get the approximated distribution of the pivotal quantity of the population eigenvalues as a chi-square distribution model. Next we attempt to apply the method to a real data provided by a mining industry. The data represents the percentage of cobalt (Co) observed over the exploration region.

  19. First order phase transformations: scaling relations for grain self-correlation functions

    SciTech Connect

    Axe, J.D.; Shapiro, S.M.; Yamada, Y.; Hamaya, N.

    1985-06-01

    At high pressure many alkali halides transform from the NaCl (B1) structure to the CsCl (B2) structure. We have recently studied this transformation in polycrystalline RbI, which transforms at a critical pressure, P/sub c/ = 3.5 kbar. By observing the time development of the neutron diffraction pattern after sudden increase of hydrostatic pressure from P

    P/sub c/ we directly deduced X(t), the fraction of the sample converted from metastable to stable phase, as a function of time. We showed that X(t) taken at different P could be approximately scaled onto a universal growth curve by introducing an adjustable characteristic time tau(P) for each curve. The success of the Kolmogorov in fitting X(t) suggests that comparisons of model predictions with other experimental observables be made on the system. For example, by a trivial (in principle) extension of the neutron diffraction techniques described above, one might determine the broadening of the powder diffraction peaks due to finite grain size as a function of time throughout growth. This particle size broadening is related by Fourier transformation to the grain autocorrelation function, G/sub s/(r,t), which measures the ensemble average of the overlap of grains with themselves upon translation of the grain pattern by an amount r. We present some results of a study of the scaling properties of G/sub s/(r,t) for the Kolmogorov model for d=1 and d=2. Although the model is highly idealized, it is perhaps the simplest conceivable one which obeys correlation function scaling in early stages of growth and undergoes nontrivial saturation due to volume fraction effects in the late stages. 4 refs., 6 figs.

  20. Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects

    SciTech Connect

    Schmidt, J. A.; Olsen, J. M. H.

    2014-11-14

    The photodissociation of carbonyl sulfide (OCS) was investigated theoretically in a series of studies by Schmidt and co-workers. Initial studies [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 136, 131101 (2012); J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] found photodissociation in the first UV-band to occur mainly by excitation of the 2{sup 1}A{sup ′} (A) excited state. However, in a later study [G. C. McBane, J. A. Schmidt, M. S. Johnson, and R. Schinke, J. Chem. Phys. 138, 094314 (2013)] it was found that a significant fraction of photodissociation must occur by excitation of 1{sup 1}A{sup ″} (B) excited state to explain the product angular distribution. The branching between excitation of the A and B excited states is determined by the magnitude of the transition dipole moment vectors in the Franck-Condon region. This study examines the sensitivity of these quantities to changes in the employed electronic structure methodology. This study benchmarks the methodology employed in previous studies against highly correlated electronic structure methods (CC3 and MRAQCC) and provide evidence in support of the picture of the OCS photodissociation process presented in [G. C. McBane, J. A. Schmidt, M. S. Johnson, and R. Schinke, J. Chem. Phys. 138, 094314 (2013)] showing that excitation of A and B electronic states both contribute significantly to the first UV absorption band of OCS. In addition, this study presents evidence in support of the assertion that the A state potential energy surface employed in previous studies underestimates the energy at highly bent geometries (γ ∼ 70°) leading to overestimated rotational energy in the product CO.

  1. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    SciTech Connect

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  2. Influence of baryons on the spatial distribution of matter: higher order correlation functions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Jun; Pan, Jun

    2012-12-01

    Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter. A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis, including one N-body pure dark matter run, one with only adiabatic gas and one with dissipative processes. Variances and higher order cumulants Sn of dark matter and gas are estimated. It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc. In comparison with the pure dark matter run, adiabatic processes alone strengthen the variance of dark matter by ~ 10% at a scale of 0.1 h-1 Mpc, while the Sn parameters of dark matter only mildly deviate by a few percent. The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter, but renders significantly different Sn parameters describing the dark matter, bringing about a more than 10% enhancement to S3 at 0.1 h-1 Mpc and z = 0 and being even larger at a higher redshift. Distribution patterns of gas in two hydrodynamical simulations are quite different. Variance of gas at z = 0 decreases by ~ 30% in the adiabatic simulation but by ~ 60% in the nonadiabatic simulation at 0.1 h-1 Mpc. The attenuation is weaker at larger scales but is still obvious at ~ 10 h-1 Mpc. Sn parameters of gas are biased upward at scales < ~ 4 h-1 Mpc, and dissipative processes show an ~ 84% promotion at z = 0 to S3 at 0.1 h-1 Mpc in contrast with the ~ 7% change in the adiabatic run. The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.

  3. Polarization mapping temporal changes of the eye optical anisotropy laser images necrotic changes in the diagnosis of biological tissues

    NASA Astrophysics Data System (ADS)

    Popovych, D. T.; Boychuk, T. M.

    2013-09-01

    The optical model of polycrystalline networks of vitreous body histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of histological sections of vitreous body and temporal dynamics of optical anisotropy of this biological object. The diagnostic criteria of death coming prescription are determined.

  4. Detection of symmetry-protected topological order in AKLT states by exact evaluation of the strange correlator

    NASA Astrophysics Data System (ADS)

    Wierschem, K.; Beach, K. S. D.

    2016-06-01

    The strange correlator [Phys. Rev. Lett. 112, 247202 (2014), 10.1103/PhysRevLett.112.247202] has been proposed as a measure of symmetry protected topological order in one- and two-dimensional systems. It takes the form of a spin-spin correlation function, computed as a mixed overlap between the state of interest and a trivial local product state. We demonstrate that it can be computed exactly (asymptotically, in the Monte Carlo sense) for various Affleck-Kennedy-Lieb-Tasaki states by direct evaluation of the wave function within the valence bond loop gas framework. We present results for lattices with chain, square, honeycomb, cube, diamond, and hyperhoneycomb geometries. In each case, the spin quantum number S is varied such that 2 S (the number of valence bonds emerging from each site) achieves various integer multiples of the lattice coordination number. We introduce the concept of strange correlator loop winding number and point to its utility in testing for the presence of symmetry protected topological order.

  5. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former

    NASA Astrophysics Data System (ADS)

    Hima Nagamanasa, K.; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2015-05-01

    The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives devised to explain the process, random first-order theory (RFOT; refs , ) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal’ glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions. Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

  6. Systematic Analysis of Compositional Order of Proteins Reveals New Characteristics of Biological Functions and a Universal Correlate of Macroevolution

    PubMed Central

    Persi, Erez; Horn, David

    2013-01-01

    We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces. PMID:24278003

  7. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime

    SciTech Connect

    Zhou Yu; Simon, Jason; Liu Jianbin; Shih, Yanhua

    2010-04-15

    In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon is the result of three-photon interference. By making use of this property, we measured the three-photon thermal light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal light ghost image.

  8. Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Butler, Mark C.; Emsley, Lyndon

    2010-12-01

    The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to Vert σ Vert ^2, the norm-squared of the density matrix.

  9. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    SciTech Connect

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  10. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    NASA Astrophysics Data System (ADS)

    Shang, Yu; Yu, Guoqiang

    2014-09-01

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αDB). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αDB in the brain layer with a step decrement of 10% while maintaining αDB values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  11. Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies.

    PubMed

    Feng, Yu; Tran, Karen; Bale, Shridhar; Kumar, Shailendra; Guenaga, Javier; Wilson, Richard; de Val, Natalia; Arendt, Heather; DeStefano, Joanne; Ward, Andrew B; Wyatt, Richard T

    2016-08-01

    In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were "stress-tested" at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. PMID:27487086

  12. Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies

    PubMed Central

    Bale, Shridhar; Kumar, Shailendra; Guenaga, Javier; Wilson, Richard; de Val, Natalia; Arendt, Heather; DeStefano, Joanne; Ward, Andrew B.; Wyatt, Richard T.

    2016-01-01

    In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. PMID:27487086

  13. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method

    SciTech Connect

    Grabowski, Ireneusz Śmiga, Szymon; Buksztel, Adam; Fabiano, Eduardo; Teale, Andrew M.; Sala, Fabio Della

    2014-07-14

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn–Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite–spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  14. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context.

    PubMed

    Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-28

    We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules. PMID:27250284

  15. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence.

    PubMed

    Wang, Jing; Zhu, Shijun; Wang, Haiyan; Cai, Yangjian; Li, Zhenhua

    2016-05-30

    Recently, we introduced a new class of radially polarized cosine-Gaussian correlated Schell-model (CGCSM) beams of rectangular symmetry based on the partially coherent electromagnetic theory [Opt. Express23, 33099 (2015)]. In this paper, we extend the work to study the second-order statistics such as the average intensity, the spectral degree of coherence, the spectral degree of polarization and the state of polarization in anisotropic turbulence based on an extended von Karman power spectrum with a non-Kolmogorov power law α and an effective anisotropic parameter. Analytical formulas for the cross-spectral density matrix elements of a radially polarized CGCSM beam in anisotropic turbulence are derived. It is found that the second-order statistics are greatly affected by the source correlation function, and the change in the turbulent statistics induces relatively small effect. The significant effect of anisotropic turbulence on the beam parameters mainly appears nearα=3.1, and decreases with the increase of the anisotropic parameter. Furthermore, the polarization state exhibits self-splitting property and each beamlet evolves into a radially polarized structure in the far field. Our work enriches the classical coherence theory and may be important for free-space optical communications. PMID:27410089

  16. A multifunctional automated system of 2D laser polarimetry of biological tissues

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.

    2014-09-01

    Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.

  17. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  18. Occurrence of magnetoelectric effect correlated to the Dy order in Dy2NiMnO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Masud, Md G.; Dey, K.; Ghosh, A.; Majumdar, S.; Giri, S.

    2015-08-01

    Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy2NiMnO6. The crystal structure of the compound adopts monoclinic P21/n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a- a- b+ order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.

  19. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation

    PubMed Central

    Finley, Anna J.; Tang, David; Schmeichel, Brandon J.

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration. PMID:26402334

  20. Assessing texture measures with respect to their sensitivity to scale-dependent higher order correlations in medical images using surrogates

    NASA Astrophysics Data System (ADS)

    Räth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Bauer, Jan

    2010-03-01

    The quantitative characterization of images showing tissue probes being visualized by e.g. CT or MR is of great interest in many fields of medical image analysis. A proper quantification of the information content in such images can be realized by calculating well-suited texture measures, which are able to capture the main characteristics of the image structures under study. Using test images showing the complex trabecular structure of the inner bone of a healthy and osteoporotic patient we propose and apply a novel statistical framework, with which one can systematically assess the sensitivity of texture measures to scale-dependent higher order correlations (HOCs). To this end, so-called surrogate images are generated, in which the linear properties are exactly preserved, while parts of the higher order correlations (if present) are wiped out in a scale dependent manner. This is achieved by dedicated Fourier phase shuffling techniques. We compare three commonly used classes of texture measures, namely spherical Mexican hat wavelets (SMHW), Minkowski functionals (MF) and scaling indices (SIM). While the SMHW were sensitive to HOCs on small scales (Significance S=19-23), the MF and SIM could detect the HOCs very well for the larger scales (S = 39 (MF) and S = 29 (SIM)). Thus the three classes of texture measures are complimentary with respect to their ability to detect scaledependent HOCs. The MF and SIM are, however, slightly preferable, because they are more sensitive to HOCs on length scales, which the important structural elements, i.e. the trabeculae, are considered to have.

  1. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    NASA Astrophysics Data System (ADS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-06-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  2. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    SciTech Connect

    Phillips, Jordan J. Zgid, Dominika

    2014-06-28

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H{sub 32} finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  3. Subband higher-order statistics and cross-correlation for heartbeat type recognition based on two-lead electrocardiogram.

    PubMed

    Yu, Sung-Nien; Liu, Fan-Tsen

    2014-01-01

    Regular electrocardiogram beat classification system usually based on single lead ECG signal. This study designated to add a second lead of ECG signal to the system and apply higher-order statistics and inter-lead cross-correlation features to study the influence of the second lead to the recognition rates and noise-tolerance of the classifier. Discrete wavelet transformation is employed to decompose the ECG signals into different subband components and higher order statistics is recruited to characterize the ECG signals as an attempt to elevate the accuracy and noise-resistibility of heartbeat discrimination. A feed-forward back-propagation neural network (FFBNN) is employed as classifier. When compared with the system that uses only one lead, the second lead raises the recognition rate from 97.74% to 98.25%. We also study the ability of the two-lead system in resisting different levels of white Gaussian noise. More than 97.8% accuracy can be retained with the two-lead system even when the SNR decreases to 10 dB. PMID:25569892

  4. Charge and Spin Ordering in Insulator Na0.5CoO2: Effects of Correlation and Symmetry

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Woo; Pickett, Warren

    2006-03-01

    The discovery by Takada and coworkers of superconductivity in Na0.3CoO21.3 H2O near 5K has led to extensive studies of the rich variation of properties in the NaxCoO2 system (0.2 <=x <=1), which has a triangular lattice of Co sites and a layered structure. In addition, specifically at x=0.5, the system has been observed to undergo a charge disproportionation (2Co^3.5+ -> Co^3++Co^4+) and metal-insulator transition at 50 K, while the rest of the phase diagram is metallic. We will present results of studies of charge disproportionation and charge- and spin-ordering in insulating in Na0.5CoO2, applying ab initio band theory including correlations due to intra-atomic repulsion. Various ordering patterns (zigzag and two striped) for four-Co supercells are analyzed before focusing on the observed ``out-of-phase stripe'' pattern of antiferromagnetic Co^4+ spins along charge-ordered stripes. This pattern relieves frustration and shows distinct analogies with the cuprate layers: a bipartite lattice of antialigned spins, with axes at 90^o angles. Substantial distinctions with cuprates are also discussed, including the tiny gap of a new variant of ``charge transfer'' type within the Co 3d system. [References] [1] K. Takada et al., Nature 422, 53 (2003). [2] M. L. Foo et al., Phys. Rev. Lett. 92,247001 (2004). [3] K.-W. Lee, J. Kunes, P. Novak, and W. E. Pickett, Phys. Rev. Lett. 94, 026403 (2005). [4] K.-W. Lee and W. E. Pickett, cond-mat/0510555.

  5. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  6. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    SciTech Connect

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-28

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al{sub 86}Ni{sub 14-a}Y{sub a} (a = 2∼9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al{sub 86}Ni{sub 9}Y(La){sub 5} alloys present good GFA due to the combination of the two structural factors.

  7. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerenes and their Correlation with Three Geometric Parameters: Group Order, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, Craig E.; Cardelino, Beatriz H.; Frazier, Donald O.; Niles, Julian; Wang, Xian-Qiang

    1997-01-01

    Calculations were performed on the valence contribution to the static molecular third-order polarizabilities (gamma) of thirty carbon-cage fullerenes (C60, C70, five isomers of C78, and twenty-three isomers of C84). The molecular structures were obtained from B3LYP/STO-3G calculations. The values of the tensor elements and an associated numerical uncertainty were obtained using the finite-field approach and polynomial expansions of orders four to eighteen of polarization versus static electric field data. The latter information was obtained from semiempirical calculations using the AM1 hamiltonian.

  8. Strong correlations between vacancy and magnetic ordering in superconducting K0.8Fe2 -ySe2

    NASA Astrophysics Data System (ADS)

    Yang, J.; Duan, C.; Huang, Q.; Brown, C.; Neuefeind, J.; Louca, Despina

    2016-07-01

    The coexistence of magnetic and nonmagnetic phases in the superconducting potassium iron selenide, KxFe2 -ySe2 , has been intensely debated. With superconductivity proposed to appear in a stoichiometric, nonmagnetic phase with I4/mmm crystal symmetry, the proposed nonsuperconducting phase is magnetic and has a lower symmetry, I4/m. The latter consists of Fe vacancies that go through a disordered-to-ordered transition in which the partially filled Fe sites create a supercell upon ordering. We show, using neutron scattering on the optimally doped composition, K0.8Fe2 -ySe2 , that the absence of magnetism does not signal the presence of superconductivity. Moreover, the degree of vacancy order is coupled to the strength of the magnetic order. Superconductivity coincides with the presence of the magnetic order parameter, albeit the latter is significantly weaker than previously reported, contradicting the current understanding of this ˜30 K superconductor.

  9. Application of the correlation constrained multivariate curve resolution alternating least-squares method for analyte quantitation in the presence of unexpected interferences using first-order instrumental data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà

    2010-03-01

    Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy. PMID:20174722

  10. Political attitudes in adolescence and emerging adulthood: Developmental changes in mean level, polarization, rank-order stability, and correlates.

    PubMed

    Rekker, Roderik; Keijsers, Loes; Branje, Susan; Meeus, Wim

    2015-06-01

    This three-wave cohort-sequential longitudinal study (N = 1302) examined the development of two core political attitudes, economic egalitarianism and ethnocentrism, among Dutch youths between age 12 and 31. Longitudinal regression analyses revealed a curvilinear mean level development for both attitudes, reflecting an increased disagreement with economic redistribution and multiculturalism around late adolescence. Furthermore, attitudes became decreasingly polarized (i.e., less extreme) and increasingly stable with age. Finally, several effects of attitudes' correlates gradually changed: The effect of educational level on ethnocentrism increased with age, whereas the effect of gender diminished. Regional effects on ethnocentrism developed as youths resided in a new area. No age-related change was found in the effect of parental SES. Overall, these findings support the idea that attitudes mature during the formative phase of adolescence and that this process slows down during emerging adulthood. Furthermore, these results support developmental explanations for the association between attitudes and their correlates. PMID:25880889

  11. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.

    PubMed

    Green, Anthony J; Space, Brian

    2015-07-23

    Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features. PMID:25415752

  12. Correlation between Dynamic Heterogeneity and Medium-Range Order in Two-Dimensional Glass-Forming Liquids

    SciTech Connect

    Kawasaki, Takeshi; Araki, Takeaki; Tanaka, Hajime

    2007-11-23

    A glassy state of matter results if crystallization is avoided upon cooling or increasing density. However, the physical factors controlling the ease of vitrification and nature of the glass transition remain elusive. Using numerical simulations of polydisperse hard disks, we find a direct relation between medium-range crystalline ordering and the slow dynamics which characterizes the glass transition. This suggests an intriguing scenario that the strength of frustration controls both the ease of vitrification and nature of the glass transition. Vitrification may be a process of hidden crystalline ordering under frustration, at least in our system.

  13. The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser In Situ Keratomileusis

    PubMed Central

    Wu, Wenjing; Wang, Yan

    2015-01-01

    Background. To investigate the correlation between corneal biomechanics and the surgically induced corneal high-order aberrations (HOAs) after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). Methods. A total of 150 right myopic eyes that underwent SMILE or FS-LASIK surgery were included in this retrospective study, 75 eyes in each group. The corneal hysteresis (CH) and the corneal resistance factor (CRF) with the corneal HOAs of the anterior, posterior, and total cornea were assessed preoperatively and three months postoperatively. Multivariate linear regression was applied to determine the correlations. Results. The preoperative CRF was significantly correlated with the induced 3rd–6th-order HOAs and spherical aberration of the anterior surface and the total cornea after SMILE and FS-LASIK surgeries (P < 0.05), postoperatively. The CRF was significantly correlated with the induced vertical coma of the anterior and posterior surfaces and the total cornea after SMILE surgery (P < 0.05). There was a significant correlation between the CRF and the induced posterior corneal horizontal coma after FS-LASIK surgery (P = 0.013). Conclusions. The corneal biomechanics affect the surgically induced corneal HOAs after SMILE and FS-LASIK surgery, which may be meaningful for screening the patients preoperatively and optimizing the visual qualities postoperatively. PMID:26483975

  14. Higher Order Factor Structure of a Self-Control Test: Evidence from Confirmatory Factor Analysis with Polychoric Correlations.

    ERIC Educational Resources Information Center

    Flora, David B.; Finkel, Eli J.; Foshee, Vangie A.

    2003-01-01

    Studied the higher order factor structure of a self-control test developed by H. Grasmick and others (1993). Results for 1,966 eighth and ninth graders show that the self-control test may provide more valid measurement of the constructs it was designed to measure than previous research suggested. (SLD)

  15. Neural Correlates of Temporal-Order Judgments versus Those of Spatial-Location: Deactivation of Hippocampus May Facilitate Spatial Performance

    ERIC Educational Resources Information Center

    Rekkas, P. V.; Westerveld, M.; Skudlarski, P.; Zumer, J.; Pugh, K.; Spencer, D. D.; Constable, R. T.

    2005-01-01

    The retrieval of temporal-order versus spatial-location information was investigated using fMRI. The primary finding in the hippocampus proper, seen in region of interest analyses, was an increase in BOLD signal intensity for temporal retrieval, and a decrease in signal intensity for spatial retrieval, relative to baseline. The negative BOLD…

  16. Symmetry and correlations underlying hidden order in URu2Si2

    SciTech Connect

    Butch, Nicholas P.; Manley, Michael E.; Jeffries, Jason R.; Janoschek, Marc; Huang, Kevin; Maple, M. Brian; Said, Ayman H.; Leu, Bogdan M.; Lynn, Jeffrey W.

    2015-01-26

    In this paper, we experimentally investigate the symmetry in the hidden order (HO) phase of intermetallic URu2Si2 by mapping the lattice and magnetic excitations via inelastic neutron and x-ray scattering measurements in the HO and high-temperature paramagnetic phases. At all temperatures, the excitations respect the zone edges of the body-centered tetragonal paramagnetic phase, showing no signs of reduced spatial symmetry, even in the HO phase. The magnetic excitations originate from transitions between hybridized bands and track the Fermi surface, whose features are corroborated by the phonon measurements. Due to a large hybridization energy scale, a full uranium moment persists in the HO phase, consistent with a lack of observed crystal-field-split states. Our results are inconsistent with local order-parameter models and the behavior of typical density waves. Finally, we suggest that an order parameter that does not break spatial symmetry would naturally explain these characteristics.

  17. Effect of antiferromagnetic spin correlations on lattice distortion and charge ordering in Pr0.5Ca1.5MnO4

    PubMed Central

    Chi, Songxue; Ye, F.; Dai, Pengcheng; Fernandez-Baca, J. A.; Huang, Q.; Lynn, J. W.; Plummer, E. W.; Mathieu, R.; Kaneko, Y.; Tokura, Y.

    2007-01-01

    We use neutron scattering to study the lattice and magnetic structure of the layered half-doped manganite Pr0.5Ca1.5MnO4. On cooling from high temperature, the system first becomes charge-and orbital-ordered (CO/OO) near TCO = 300 K and then develops checkerboard-like antiferromagnetic (AF) order below TN = 130 K. At temperatures above TN but below TCO (TNcorrelations suppresses the CO/OO-induced orthorhombic strain, contrasting with other half-doped manganites, where AF order has no observable effect on the lattice distortion. These results suggest that a strong spin-lattice coupling and the competition between AF exchange and CO/OO ordering ultimately determines the low-temperature properties of the system. PMID:17578911

  18. Effect of antiferromagnetic spin correlations on lattice distortion and charge ordering in Pr0.5Ca1.5MnO4

    SciTech Connect

    Chi, Songxue; Ye, Feng; Dai, Pengcheng; Fernandez-Baca, Jaime A; Huang, Q.; Lynn, J. W.; Plummer, E Ward; Mathieu, R.; Kaneko, Y.; Tokura, Y.

    2007-01-01

    We use neutron scattering to study the lattice and magnetic structure of the layered half-doped manganite Pr0.5Ca1.5MnO4. On cooling from high temperature, the system first becomes chargeand orbital-ordered (CO/OO) near TCO = 300 K and then develops checkerboard-like antiferromagnetic (AF) order below TN = 130 K. At temperatures above TN but below TCO (TNcorrelations suppresses the CO/OOinduced orthorhombic strain, contrasting with other half-doped manganites, where AF order has no observable effect on the lattice distortion. These results suggest that a strong spin-lattice coupling and the competition between AF exchange and CO/OO ordering ultimately determines the low-temperature properties of the system.

  19. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  20. Mutual-probability prediction and higher-order correlation effects among acoustic, light and electromagnetic waves in a video display terminal environment

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuo; Ogawa, Hitoshi; Ikuta, Akira

    2005-08-01

    A probabilistic signal processing method, with which is possible to get some methodological suggestion to the measurement method of correlative and/or accumulative effects in the compound environment of sound, light and electromagnetic (EM) waves is discussed. In order to extract various types of latent interrelation characteristics among wave environmental factors leaked from an actually operating video display terminal (VDT), an extended regression system model, hierarchically reflecting not only linear correlation information but also nonlinear correlation information, is first introduced, especially from a viewpoint of 'relationism-first'. Then, through estimating each regression parameter of this model, some original evaluation methods for predicting a whole probability distribution form, from one another, are proposed. Finally, the effectiveness of the methods is experimentally confirmed, by applying them to the actual observed data leaked by a VDT with some television games. To cite this article: M. Ohta et al., C. R. Mecanique 333 (2005).

  1. The Transiently Ordered Regions in Intrinsically Disordered ExsE Are Correlated with Structural Elements Involved in Chaperone Binding

    PubMed Central

    Zheng, Zhida; Ma, Dejian; Yahr, Timothy L.; Chen, Lingling

    2016-01-01

    Many Gram-negative bacteria utilize a type III secretion system (T3SS) to deliver protein effectors to target host cells. Transcriptional control of T3SS gene expression is generally coupled to secretion through the release of a regulatory protein. T3SS gene expression in Pseudomonas aeruginosa is regulated by extracellular secretion of ExsE. ExsE is a small 81 residue protein that appears to lack a stable structural core as indicated by previous studies. In this study, we employed various NMR methods to characterize the structure of ExsE alone and when bound to its secretion chaperone ExsC. We found that ExsE is largely unfolded throughout the polypeptide chain, belonging to a class of proteins that are intrinsically disordered. The unfolded, extended conformation of ExsE may expedite efficient secretion through the narrow path of the T3SS secretion channel to activate gene expression in a timely manner. We also found that the structurally flexible ExsE samples through conformations with localized structurally ordered regions. Importantly, these transiently ordered elements are related to the secondary structures involved in binding ExsC based on a prior crystal structure of the ExsCExsE complex. These findings support the notion that preexisting structured elements facilitate binding of intrinsically disordered proteins to their targets. PMID:22138394

  2. Neural correlates of the empathic perceptual processing of realistic social interaction scenarios displayed from a first-order perspective.

    PubMed

    Fehr, T; Achtziger, A; Roth, G; Strüber, D

    2014-10-01

    The neural processing of impulsive behavior is a central topic in various clinical and non-clinical contexts. To investigate neural and behavioral correlates of the empathic processing of complex social scenarios, especially considering ecological validity of the experimental procedure, we developed and investigated a video stimulus inventory. It includes realistic neutral, social-positive, and reactive-aggressive action scenarios. Short video-clips showing these social scenarios from a first-person perspective triggering different emotional states were presented to a non-clinical sample of 20 young adult male participants during fMRI measurements. Both affective interaction conditions (social-positive and reactive-aggressive) were contrasted against a neutral baseline condition and against each other. Behavioral evaluation data largely confirmed the validity of the emotion-inducing stimulus material. Reactive-aggressive and social-positive interaction scenarios produced widely overlapping fMRI activation patterns in hetero-modal association cortices, but also in subcortical regions, such as the peri-aqueductal gray. Reactive-aggressive compared to social-positive scenarios yielded a more anterior distribution of activations in pre-motor and inferior frontal brain regions associated to motor-preparation and inhibitory control processing as well as in the insula associated to pain- and/or aversion-processing. We argue that there are both principally common neural networks recruited for the processing of reactive-aggressive and social-positive scenarios, but also exclusive network parts in particular involved depending on individual socialization. PMID:24814646

  3. Orbital-optimized opposite-spin scaled second order correlation: An economical method to improve the description of open-shell molecules

    SciTech Connect

    Lochan, Rohini C.; Head-Gordon, Martin

    2007-01-01

    Coupled cluster methods based on Brueckner orbitals are well-known to resolve the problems of symmetry-breaking and spin-contamination that are often associated with Hartree-Fock orbitals. However their computational cost is large enough to prevent application to large molecules. Here they present a simple approximation where the orbitals are optimized with the mean-field energy plus a correlation energy taken as the opposite-spin component of the second order many-body correlation energy, scaled by an empirically chosen parameter (recommended as 1.2 for general applications). This optimized 2nd order opposite spin (abbreviated as O2) method requires fourth order computation on each orbital iteration. O2 is shown to yield predictions of structure and frequencies for closed shell molecules that are very similar to scaled second order Moller-Plesset methods. However it yields substantial improvements for open shell molecules, where problems with spin-contamination and symmetry breaking are shown to be greatly reduced.

  4. Subcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite

    PubMed Central

    Zuccala, Elizabeth S.; Gout, Alexander M.; Dekiwadia, Chaitali; Marapana, Danushka S.; Angrisano, Fiona; Turnbull, Lynne; Riglar, David T.; Rogers, Kelly L.; Whitchurch, Cynthia B.; Ralph, Stuart A.; Speed, Terence P.; Baum, Jake

    2012-01-01

    Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. PMID:23049965

  5. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while

  6. Comparing the sensitivity of wavelets, Minkowski functionals, and scaling indices to higher order correlations in MR images of the trabecular bone using surrogates

    NASA Astrophysics Data System (ADS)

    Räth, Christoph; Bauer, Jan; Müller, Dirk; Sidorenko, Irina; Link, Thomas M.; Monetti, Roberto

    2009-02-01

    The quantitative characterization of tissue probes as visualized by CT or MR is of great interest in many fields of medical image analysis. A proper quantification of the information content in such images can be realized by calculating well-suited texture measures, which are able to capture the main characteristics of the image structures under study. Using test images showing the complex trabecular structure of the inner bone of a healthy and osteoporotic patient we propose and apply a novel statistical framework, with which one can systematically assess the sensitivity of the chosen texture measures to higher order correlations (HOCs), i.e. correlations not being captured by linear methods like the power spectrum. To this end, so-called surrogate images are generated, in which the linear properties are preserved, while parts or all higher order correlations are wiped out. This is achieved by dedicated Fourier phase shuffling techniques. We compare three commonly used classes of texture measures, namely spherical Mexican hat wavelets (SMHW), Minkowski functionals (MF) and scaling indices (SIM). While the SMHW yield only very poor sensitivity to HOCs in both cases, the MF and SIM could detect the HOCs very well with significance up to S = 320σ (MF) and S = 150σ (SIM). The relative performance of the MF and SIM differed significantly for the healthy and osteoporotic bone. Thus, MF and SIM are preferable for a proper quantification of the bone structure. They depict complementary aspects of it and thus should both be used for characterising the trabecular bone.

  7. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    SciTech Connect

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.

  8. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    DOE PAGESBeta

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for themore » transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less

  9. Understanding Fluctuation/Correlation Effects on the Order-Disorder Transition of Symmetric Diblock Copolymers with a Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Wang, Qiang

    2013-03-01

    How fluctuations change the order-disorder transition (ODT) of symmetric diblock copolymers (DBC) is a classic yet unsolved problem in polymer physics.[1] Taking a model system of discrete Gaussian chains interacting with soft, finite-range repulsions as commonly used in dissipative-particle dynamics simulations we formulate a density-functional theory (DFT) based on the polymer integral equation theories,[2] which includes the system fluctuations and correlations neglected by the mean-field theory (i.e., the widely applied self-consistent field theory) and can be reduced to the latter under the mean-spherical approximation. We then unambiguously reveal the fluctuation/correlation effects on the ODT of symmetric DBC by direct comparisons among the mean-field theory, DFT, and fast off-lattice Monte Carlo simulations,[3] all using exactly the same model system (Hamiltonian) and thus without any parameter-fitting.

  10. A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations

    PubMed Central

    Gjorgjieva, Julijana; Clopath, Claudia; Audet, Juliette; Pfister, Jean-Pascal

    2011-01-01

    Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock–Cooper–Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsynaptic neuron, and thereby offers a possible explanation for experience-dependent cortical plasticity such as orientation selectivity. However, the BCM framework is rate-based and a significant amount of recent work has shown that synaptic plasticity also depends on the precise timing of presynaptic and postsynaptic spikes. Here we consider a triplet model of spike-timing–dependent plasticity (STDP) that depends on the interactions of three precisely timed spikes. Triplet STDP has been shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes, has failed to capture. In the case of rate-based patterns, we show a tight correspondence between the triplet STDP rule and the BCM rule. We analytically demonstrate the selectivity property of the triplet STDP rule for orthogonal inputs and perform numerical simulations for nonorthogonal inputs. Moreover, in contrast to BCM, we show that triplet STDP can also induce selectivity for input patterns consisting of higher-order spatiotemporal correlations, which exist in natural stimuli and have been measured in the brain. We show that this sensitivity to higher-order correlations can be used to develop direction and speed selectivity. PMID:22080608

  11. First-order exchange and self-energy corrections to static density correlation function of a spin-polarized two-dimensional quantum electron fluid

    SciTech Connect

    Arora, Priya; Moudgil, R. K.; Bhukal, Nisha

    2015-05-15

    Static density-density correlation function has been calculated for a spin-polarized two-dimensional quantum electron fluid by including the first-order exchange and self-energy corrections to the random-phase approximation (RPA). This is achieved by determining these corrections to the RPA linear density-density response function, obtained by solving the equation of motion for the single-particle Green’s function. Resulting infinite hierarchy of equations (involving higher-order Green’s functions) is truncated by factorizing the two-particle Green’s function as a product of the single-particle Green’s function and one-particle distribution function. Numerical results of correlation function are compared directly against the quantum Monte Carlo simulation data due to Tanatar and Ceperley for different coupling parameter (r{sub s}) values. We find almost exact agreement for r{sub s}=1, with a noticeable improvement over the RPA. Its quality, however, deteriorates with increasing r{sub s}, but correction to RPA is quite significant.

  12. Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis

    NASA Astrophysics Data System (ADS)

    Kovalev, A.; Filippov, A.; Gorb, S. N.

    2016-03-01

    In contrast to the majority of inorganic or artificial materials, there is no ideal long-range ordering of structures on the surface in biological systems. Local symmetry of the ordering on biological surfaces is also often broken. In the present paper, the particular symmetry violation was analyzed for dimple-like nano-pattern on the belly scales of the skin of the pythonid snake Morelia viridis using correlation analysis and statistics of the distances between individual nanostructures. The results of the analysis performed on M. viridis were compared with a well-studied nano-nipple pattern on the eye of the sphingid moth Manduca sexta, used as a reference. The analysis revealed non-random, but very specific symmetry violation. In the case of the moth eye, the nano-nipple arrangement forms a set of domains, while in the case of the snake skin, the nano-dimples arrangement resembles an ordering of particles (molecules) in amorphous (glass) state. The function of the nano-dimples arrangement may be to provide both friction and strength isotropy of the skin. A simple model is suggested, which provides the results almost perfectly coinciding with the experimental ones. Possible mechanisms of the appearance of the above nano-formations are discussed.

  13. Occurrence of magnetoelectric effect correlated to the Dy order in Dy{sub 2}NiMnO{sub 6} double perovskite

    SciTech Connect

    Masud, Md G.; Dey, K.; Ghosh, A.; Majumdar, S.; Giri, S.

    2015-08-14

    Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy{sub 2}NiMnO{sub 6}. The crystal structure of the compound adopts monoclinic P2{sub 1}/n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a{sup −} a{sup −} b{sup +} order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.

  14. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  15. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Pavošević, Fabijan; Pinski, Peter; Riplinger, Christoph; Neese, Frank; Valeev, Edward F.

    2016-04-01

    We present a formulation of the explicitly correlated second-order Møller-Plesset (MP2-F12) energy in which all nontrivial post-mean-field steps are formulated with linear computational complexity in system size. The two key ideas are the use of pair-natural orbitals for compact representation of wave function amplitudes and the use of domain approximation to impose the block sparsity. This development utilizes the concepts for sparse representation of tensors described in the context of the domain based local pair-natural orbital-MP2 (DLPNO-MP2) method by us recently [Pinski et al., J. Chem. Phys. 143, 034108 (2015)]. Novel developments reported here include the use of domains not only for the projected atomic orbitals, but also for the complementary auxiliary basis set (CABS) used to approximate the three- and four-electron integrals of the F12 theory, and a simplification of the standard B intermediate of the F12 theory that avoids computation of four-index two-electron integrals that involve two CABS indices. For quasi-1-dimensional systems (n-alkanes), the O (" separators="N ) DLPNO-MP2-F12 method becomes less expensive than the conventional O (" separators="N5 ) MP2-F12 for n between 10 and 15, for double- and triple-zeta basis sets; for the largest alkane, C200H402, in def2-TZVP basis, the observed computational complexity is N˜1.6, largely due to the cubic cost of computing the mean-field operators. The method reproduces the canonical MP2-F12 energy with high precision: 99.9% of the canonical correlation energy is recovered with the default truncation parameters. Although its cost is significantly higher than that of DLPNO-MP2 method, the cost increase is compensated by the great reduction of the basis set error due to explicit correlation.

  16. Oxygen ordering in the high-Tc superconductor HgBa2CaCu2O6+δ as revealed by perturbed angular correlation

    NASA Astrophysics Data System (ADS)

    Mendonça, T. M.; Correia, J. G.; Haas, H.; Odier, P.; Tavares, P. B.; da Silva, M. R.; Lopes, A. M. L.; Pereira, A. M.; Gonçalves, J. N.; Amaral, J. S.; Darie, C.; Araujo, J. P.

    2011-09-01

    Lattice sites and collective ordering of oxygen atoms in HgBa2CaCu2O6+δ were studied using the perturbed angular correlation (PAC) technique at ISOLDE/CERN. The electric field gradients (EFG) at 199mHg nuclei have been measured as functions of oxygen doping on the Hg planes, above and below Tc. In comparison with the results obtained for oxygen and fluorine doping in Hg-1201, the analysis shows a different oxygen ordering exhibited by Hg-1212. Moreover, for all studied cases, the experimental results show that at a local scale there is non uniform oxygen distribution. A series of ab initio EFG calculations allowed to infer that at low concentrations, regions without oxygen coexist with regions where O2δ dumbbell molecules are located at the center of the Hg mesh. On the other side, at high concentrations, O2δ dumbbell molecules coexist with single Oδ atoms occupying the center of the Hg mesh. The present results suggest that oxygen sits on the Hg planes in the form of a molecule and not as a single atom.

  17. Correlation between dynamic slowing down and local icosahedral ordering in undercooled liquid Al{sub 80}Ni{sub 20} alloy

    SciTech Connect

    Jakse, N.; Pasturel, A.

    2015-08-28

    We use ab initio molecular dynamics simulations to study the correlation between the local ordering and the dynamic properties of liquid Al{sub 80}Ni{sub 20} alloy upon cooling. Our results evidence a huge increase of local icosahedral ordering (ISRO) in the undercooled regime which is more developed around Ni than Al atoms. We show that ISRO has a strong impact on self-diffusion coefficients of both species and is at the origin of their crossover from Arrhenius to non-Arrhenius behavior around a crossover temperature T{sub X} = 1000 K, located in the undercooled region. We also clearly identify that this temperature corresponds to the development of dynamic heterogeneities and to the breakdown of the Stokes-Einstein relation. At temperatures below this crossover, we find that the behavior of the diffusion and relaxation dynamics is mostly incompatible with predictions of the mode-coupling theory. Finally, an analysis of the van Hove function indicates that the crossover temperature T{sub X} marks the onset of a change in the diffusion mechanism from a normal flow to an activated process with hopping. From these results, the glass-forming ability of the alloy is discussed.

  18. Optical system for study of temporal dynamics of a change in the complex degree of polarization in liquor laser images

    NASA Astrophysics Data System (ADS)

    Popovitch, D. T.

    2012-10-01

    This paper presents a description of the principles defining period of death by polarimetric study temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  19. The study of temporal dynamics of a change in the degree of polarizing laser radiation scattered by liquor layers for determining the prescription of death coming

    NASA Astrophysics Data System (ADS)

    Bachunskyi, V. T.; Pavlukovych, O. V.; Hadniuk, S. V.

    2012-01-01

    This paper was provide a description of the principles defining prescription death by polarimetric study the temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  20. The study of temporal dynamics of a change in the degree of polarizing laser radiation scattered by liquor layers for determining the prescription of death coming

    NASA Astrophysics Data System (ADS)

    Bachunskyi, V. T.; Pavlukovych, O. V.; Hadniuk, S. V.

    2011-09-01

    This paper was provide a description of the principles defining prescription death by polarimetric study the temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  1. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2012-01-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  2. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2011-09-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  3. Correction for the detector-dead-time effect on the second-order correlation of stationary sub-Poissonian light in a two-detector configuration

    NASA Astrophysics Data System (ADS)

    Ann, Byoung-moo; Song, Younghoon; Kim, Junki; Yang, Daeho; An, Kyungwon

    2015-08-01

    Exact measurement of the second-order correlation function g(2 )(t ) of a light source is essential when investigating the photon statistics and the light generation process of the source. For a stationary single-mode light source, the Mandel Q factor is directly related to g(2 )(0 ) . For a large mean photon number in the mode, the deviation of g(2 )(0 ) from unity is so small that even a tiny error in measuring g(2 )(0 ) would result in an inaccurate Mandel Q . In this work, we address the detector-dead-time effect on g(2 )(0 ) of stationary sub-Poissonian light. It is then found that detector dead time can induce a serious error in g(2 )(0 ) and thus in Mandel Q in those cases even in a two-detector configuration. Utilizing the cavity-QED microlaser, a well-established sub-Poissonian light source, we measured g(2 )(0 ) with two different types of photodetectors with different dead times. We also introduced prolonged dead time by intentionally deleting the photodetection events following a preceding one within a specified time interval. We found that the observed Q of the cavity-QED microlaser was underestimated by 19% with respect to the dead-time-free Q when its mean photon number was about 600. We derived an analytic formula which well explains the behavior of the g(2 )(0 ) as a function of the dead time.

  4. Fourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Kushnerick, L. Y.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.

    2013-09-01

    The optical model of polycrystalline networks of histological sections of rectum wall is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented. They characterize the coordinate polarization distributions of Fourier transforms of laser images of blood plasma and oncological changes. The diagnostic criteria of rectum cancer are determined.

  5. SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI

    SciTech Connect

    Li, G; Tyagi, N; Deasy, J; Wei, J; Hunt, M

    2015-06-15

    Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated from reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lung volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for

  6. Evolution of three-dimensional correlations during the photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4

    NASA Astrophysics Data System (ADS)

    Tobey, R. I.; Wall, S.; Först, M.; Bromberger, H.; Khanna, V.; Turner, J. J.; Schlotter, W.; Trigo, M.; Krupin, O.; Lee, W. S.; Chuang, Y.-D.; Moore, R.; Cavalieri, A. L.; Wilkins, S. B.; Zheng, H.; Mitchell, J. F.; Dhesi, S. S.; Cavalleri, A.; Hill, J. P.

    2012-08-01

    Using time-resolved resonant soft x-ray diffraction, we measure the evolution of the full three-dimensional scattering volume of the antiferromagnetic superlattice reflection in the single-layer manganite La0.5Sr1.5MnO4on femtosecond time scales following photoexcitation. We find that the in-plane correlations are unchanged as a metastable state is entered, however there are subtle changes in the c-axis correlations. We observe a transient shift of the scattering ellipsoid along (00L) at very short times, and at longer time scales the short-range c-axis correlations are more robust than they are in equilibrium. Such results are not obtainable with any other techniques and hint at previously unresolved processes in the dynamics of photomelting in strongly correlated systems.

  7. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  8. Measuring 3D magnetic correlations during the photo-induced melting of electronic order in La0.5Sr1.5MnO4

    NASA Astrophysics Data System (ADS)

    Tobey, R. I.; Wall, S.; Först, M.; Bromberger, H.; Khanna, V.; Turner, J. J.; Schlotter, W.; Trigo, M.; Krupin, O.; Lee, W. S.; Chuang, Y. D.; Moore, R.; Cavalieri, A. L.; Wilkins, S. B.; Zeng, H.; Mitchell, J. F.; Dhesi, S. S.; Cavalleri, A.; Hill, J. P.

    2013-03-01

    Time-resolved x-ray diffraction measures the dynamics of antiferromagnetic correlations by reconstructing the reciprocal-space scattering volume for the magnetic Bragg peak. Modifications in the scattering line shape along the three principal reciprocal lattice directions are measured.

  9. Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique: cm-order spatial resolution and dynamic strain measurement

    NASA Astrophysics Data System (ADS)

    Hotate, Kazuo; Ong, Sean S.

    2002-09-01

    This paper describes a novel correlation-based technique for fiber optic distributed strain sensors using Brillouin scattering. Conventional Brillouin-based sensors utilize a pulsed-pump similar to that of OTDR and are capable of distributed strain sensing over large distances, but suffer an inherent spatial resolution limit of around 1m. In addition, unlike FBG-based strain sensors which are competent of measuring dynamic strain, the pulse-based Brillouin sensors have large measurement times of several minutes, making them inadequate for dynamic strain measurements. On the other hand, using the correlation-based continuous-wave technique, we have achieved static distributed strain measurements of up to 1cm spatial resolution, and dynamic strain measurements of up to 8.8Hz from a 5cm strained section.

  10. Superadditive correlation.

    PubMed

    Giraud, B G; Heumann, J M; Lapedes, A S

    1999-05-01

    The fact that correlation does not imply causation is well known. Correlation between variables at two sites does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be induced by chaining of correlation between a set of intervening, directly interacting sites. Such "noncausal correlation" is well understood in statistical physics: an example is long-range order in spin systems, where spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It is less well recognized that such long-range "noncausal" correlations can in fact be stronger than the magnitude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correlation (SAC). We demonstrate this counterintuitive phenomenon by explicit examples in (i) a model spin system and (ii) a model continuous variable system, where both models are such that two variables have multiple intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We also explain the effect using a definition of the collective mode describing the intervening spin variables. Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivariate probability distributions, which introduce parameters based on successive orders of correlation. PMID:11969452

  11. Separating the uncorrelated noise from the correlated detector noise of flat panel systems in order to quantify flat panel noise easily

    NASA Astrophysics Data System (ADS)

    Hoeschen, Christoph; Tischenko, Oleg; Renger, Bernhard; Jungnickel, Kerstin

    2005-04-01

    One big advantage in terms of image quality of modern flat panel detector systems compared to CR systems beside the better DQE of these systems is the possibility to correct for inhomogeneities of the X-ray beam and the detector (flat field correction) as well as for bad pixels. However, the used correction methods are taking a lot of time or do not cover all possible combinations of radiation quality and exposure used for patient imaging. A method is presented to achieve these correction images very easily by using a proposed method for comparing two images. This method, which has so far been used for certain noise measurements and in some cases noise reduction, can also be used for separating correlated from uncorrelated noise by correlating in frequency sub-bands the information of two images. In this study it is proven, that the uncorrelated noise image of two expositions is very similar to the correction image gained just before the two exposures. That allows to calibrate a detector quite more often and for much more beam qualities/exposures than before to achieve a better correction and another possibility of constancy testing for flat panel detectors, because the proposed method is so sensitive that it will detect single pixel changes within the detector.

  12. Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation

    PubMed Central

    Ellis, Collin L.; Ma, Zhong-Min; Mann, Surinder K.; Li, Chin-Shang; Wu, Jian; Knight, Thomas H.; Yotter, Tammy; Hayes, Timothy L.; Maniar, Archana H.; Troia-Cancio, Paolo V.; Overman, Heather A; Torok, Natalie J.; Albanese, Anthony; Rutledge, John C.; Miller, Christopher J.; Pollard, Richard B.; Asmuth, David M.

    2011-01-01

    Background The relationship between gut microbial community composition at the higher-taxonomic order-level and local and systemic immunologic abnormalities in HIV disease may provide insight into how bacterial translocation impacts HIV disease. Methods Antiretroviral (ART)-naive HIV patients underwent upper endoscopy before and nine months after starting ART. Duodenal tissue was paraffin-embedded for immunohistochemical analysis (IHC) and digested for FACS for T-cell subsets and immune activation (CD38+/HLA-DR+) enumeration. Stool samples were provided from patients and controls for comparison. Metagenomic microbial DNA was extracted from feces for optimized 16S ribosomal RNA gene (rDNA) real-time qPCR assays designed to quantify panbacterial loads and the relative abundances of proinflammatory Enterobacteriales order, and the dominant Bacteroidales and Clostridiales orders. Results Samples from 10 HIV-subjects prior to initiating, and from 6 subjects receiving, ART were available for analysis. There was a trend for a greater proportion of Enterobacteriales in HIV-positive subjects compared to controls (p=0.099). There were significant negative correlations between total bacterial load and duodenal CD4+ and CD8+ T-cell activation levels (r= −0.74, p= 0.004 and r= −0.67, p=0.013, respectively). The proportions of Enterobacteriales and Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. Conclusions These data represent the first report of quantitative molecular and cellular correlations between total/universal and order-level gut bacterial populations and GALT levels of immune activation in HIV-infected subjects. The correlations between lower overall 16S rDNA levels and tissue immune activation suggest that the gut microbiome may contribute to immune activation and influence HIV progression. PMID:21436711

  13. Size correlation of optical and SERS properties for highly ordered Au nanocone arrays with sub-100 nm feature size

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang; Hu, Jing; Chen, Le

    2016-08-01

    Using ultrathin anodic aluminum oxide membranes as evaporation masks, highly ordered Au nanocone arrays with sub-100 nm feature size were fabricated on glass substrates. The size of Au nanocones was adjusted by the easily controllable nanopores’ dimension. Influences of Au nanocone size on the optical property and SERS activity were characterized by extinction and Raman spectra, respectively. For one thing, the spectral position of plasmon resonances was seen to slightly blue-shift with increasing the nanocone size, which coincided well with the result of finite-difference-time-domain simulation. For another, glass substrates patterned by Au nanocone arrays exhibited a high surface enhanced Raman scattering sensitivity to Rhodamine 6G. Compared with the bulk sample, the estimated enhancement factor was boosted from 8 × 106 to 1.79 × 107 as the diameter of Au nanocone increased from 36 to 77 nm. Such highly ordered nanocone arrays with tunable and uniform size have great potential for various optical or spectrographic applications.

  14. Low-energy physics of the t -J model in d =∞ using extremely correlated Fermi liquid theory: Cutoff second-order equations

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram; Perepelitsky, Edward

    2016-07-01

    We present the results for the low-energy properties of the infinite-dimensional t -J model with J =0 , using O (λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈[0 ,1 ] is analogous to the inverse spin parameter 1 /(2 S ) in quantum magnets. The present analytical scheme allows us to approach the physically most interesting regime near the Mott insulating state n ≲1 . It overcomes the limitation to low densities n ≲0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle weight Z , the low ω ,T self-energy, and the resistivity are reported. These are quite close at all densities to the exact numerical results of the U =∞ Hubbard model, obtained using the dynamical mean field theory. The present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite dimensions and a nonvanishing J .

  15. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a

  16. The potency and efficacy of anticholinergics to inhibit haloperidol-induced catalepsy in rats correlates with their rank order of affinities for the muscarinic receptor subtypes.

    PubMed

    Erosa-Rivero, Helena B; Bata-García, José L; Alvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2014-06-01

    Extrapyramidal syndromes (EPS) caused by antipsychotic therapy are currently treated with anticholinergics that lack selectivity for the five muscarinic receptor subtypes. Since these receptors are heterogeneously expressed among the different classes of striatal neurons and their afferents, it can be expected that their simultaneous blockade will cause distinct, sometimes opposed, effects within the striatal circuitry. In order to test the hypothesis that the differential blockade of the muscarinic receptor subtypes would influence their potency and efficacy to prevent EPS, here we tested four anticholinergics with varying order of affinities for the muscarinic receptor subtypes, and compared their dose-response curves to inhibit haloperidol-induced catalepsy in male rats. Drugs were applied into the lateral ventricle 15 min before haloperidol (2 mg/kg, s.c.). Catalepsy was measured in the bar test at 15 min intervals during 5 h. The preferential M1/M4 antagonist pirenzepine (3, 10, 30, 100, and 300 nmol) caused a dose-dependent inhibition of catalepsy intensity: ED50 = 5.6 nmol [95% CI, 3.9-8.1], and latency: ED50 = 5.6 nmol [95% CI, 3.7-8.6]. Pirenzepine had the steepest dose-response curve, producing maximal inhibition (84 ± 5%) at the dose of 10 nmol, while its effect tended to reverse at higher doses (62 ± 11%). The purported M1/M3 antagonist 4-DAMP (30, 100, and 300 nmol) also caused a dose-dependent inhibition of catalepsy intensity: ED50 = 29.5 nmol [95% CI, 7.0 to 123.0], and latency: ED50 = 28.5 nmol [95% CI, 2.2 to 362.0]. However, the curve for 4-DAMP had a less pronounced slope, reaching its maximal effect (63 ± 14%) at the dose of 300 nmol. The M2/M4 antagonist AF-DX 116 (10, 30, and 300 nmol) only caused a partial inhibition of catalepsy (30 ± 11%) at the dose of 30 nmol, but this changed to a non-significant increment (15 ± 10%) at the dose of 100 nmol. The alleged M4 antagonist tropicamide (30, 100, 300, and

  17. Structural modulations in the rare-earth metal digermanides REAl1-xGe2 (RE = Gd-Tm, Lu, Y; 0.8 < x < 0.9). Correlations between long- and short-range vacancy ordering.

    PubMed

    Zhang, Jiliang; Wang, Yingmin; Bobev, Svilen

    2015-02-01

    Rare-earth metal aluminum germanides with the general formula REAl(1-x)Ge(2) (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y) have been synthesized by direct fusion of the corresponding elements. The structures have been studied by single-crystal X-ray diffraction and selected-area electron diffraction (SAED). The average structure represents a randomly "stuffed" variant of the orthorhombic ZrSi(2) structure type, also known as the CeNi(1-x)Si(2) type (Pearson symbol oC16; space group Cmcm). The SAED patterns for selected members of the family suggest the coexistence of commensurate and incommensurate structural modulations. The most prominent model for long-range vacancy ordering is the Tb(4)FeGe(8) type (Pearson symbol mP26; space group P21/n), which is the commensurate 4-fold superstructure of CeNi(1-x)Si(2) (x = (3)/4). Short-range correlations cause additional deviations in the 4-fold superlattice. These results shed more light on the structural complexity as a function of the aluminum vacancies and size of the rare-earth metal. Magnetic susceptibility measurements are presented and discussed. The measured ordering temperatures and calculated ones based on empirical rules and Ruderman-Kittel-Kasuya-Yosida interactions are shown to be in close agreement. PMID:24964140

  18. Order Up

    ERIC Educational Resources Information Center

    Gibeault, Michael

    2005-01-01

    Change orders. The words can turn the stomachs of administrators. Horror stories about change orders create fear and distrust among school officials, designers and builders. Can change orders be avoided? If car manufacturers can produce millions of intricately designed vehicles, why can't the same quality control be achieved on a construction…

  19. Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second-order Møller-Plesset (MP2-R12) calculations on molecules of first row atoms

    NASA Astrophysics Data System (ADS)

    Klopper, Wim; Kutzelnigg, Werner

    1991-02-01

    The MP2-R12 method (Møller-Plesset second-order perturbation theory with terms linear in the interelectronic coordinate r12) in the approximations A and B as outlined in paper I of this series is applied to the ground states of the molecules H2, LiH, HF, H2O, NH3, CH4, Be2, N2, F2, C2H2, and CuH in their experimental equilibrium geometry, and to the van der Waals interaction between two He atoms. In all cases MP2 correlation energies are obtained that are supposed to differ by at most a few percent from the basis set limit. For CH4 the dependence of the energy on the symmetric stretching coordinate is studied, which together with other information leads to a recommended bond length of 1.086 Å for the CH bond length. For He2 and F2 the canonical and localized descriptions are compared. The latter is superior for the K-shell contributions, otherwise there is a little difference. For He2 in the localized representation rather good results for the dispersion interaction are obtained. The potential curve of Be2 is significantly improved in MP2-R12 as compared to conventional MP2. The examples C2H2 and CuH show that the method is not limited to very small systems.

  20. Retrieval of Green's function having coda from the cross-correlation function in a scattering medium illuminated by surrounding noise sources on the basis of the first order Born approximation

    NASA Astrophysics Data System (ADS)

    Sato, Haruo

    2009-10-01

    The peak lag time of the cross-correlation function (CCF) of random noise at two receivers give the wave propagation velocity. This idea has been widely used for the velocity tomography analysis. Recently, there were reports on the temporal change in the coda portion of CCF or autocorrelation function of ambient noise as a measure of the medium property. Here, we propose a simple concrete model for the retrieval of Green's function having a coda tail in a scattering medium without dissipation from the CCF of noise. The scattering medium is mathematically given by a distribution of velocity anomalies represented by delta functions. We suppose that waves are radiated from stationary noise sources, which are randomly distributed on a surrounding spherical shell with a large radius compared with the dimension of the scattering medium. Using the first order Born approximation, we show that the derivative of CCF with respect to lag time gives the antisymmetrized Green's function having a coda tail in the framework of the single scattering approximation.

  1. Order Nidovirales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter, entitled "Order Nidovirales", is for inclusion in the Ninth Report of the International Committee on Taxonomy of Viruses (ICTV), to be published as both a single volume text and online. The chapter details the taxonomy of members of the Nidovirus order, including family Arteriviridae o...

  2. Superconductivity and oxygen ordering correlations in the homologous series of (Cu,Mo)Sr{sub 2}(Ce,Y){sub s}Cu{sub 2}O{sub 5+2s+{delta}}.

    SciTech Connect

    Chmaissem, O.; Grigoraviciute, I.; Yamauchi, H.; Karppinen, M.; Marezio, M.

    2010-01-01

    A detailed study of the structure-property relationship is reported for the first four members of the high-T{sub c} superconducting homologous series of (Cu,Mo)Sr{sub 2}(Ce,Y){sub s}Cu{sub 2}O{sub 5+2s+{delta}} [(Cu,Mo)-12s2]. In this series, the adjacent CuO{sub 2} planes are separated by a single Y-cation layer for s=1 and a fluorite-type (Ce,Y)-[O{sub 2}-(Ce,Y)]{sub s-1} layer block for s {ge} 2. Even though this series may be considered a conventional homologous series from the chemical point of view, we emphasize that the structures are different from those of the Tl-, Hg-, Bi-, etc.,-based series by the fact that the inserted fluorite-type blocks are insulating. We show the formation of the higher s members via intercalation of additional Ce-O{sub 2} layer(s) into the crystal lattices of the lower members of the series. Neutron powder-diffraction data demonstrate that the Ce/Y ratio is not constant at the different (Ce,Y) layers in the fluorite-structured block and that the innermost (Ce,Y) layer(s) are significantly Ce rich compared with the outer ones. Two independent crystallographic sites are identified for the extra oxygen atoms in the basal (Cu{sub 0.75}Mo{sub 0.25})O{sub 1+{delta}} plane with site fractional occupancies that strongly correlate with the properties of the material. A short-range ordered structure is proposed for the (Cu{sub 0.75}Mo{sub 0.25})O{sub 1+{delta}} layers that could explain both the superconducting properties of the materials and the enhanced T{sub c} for the first member of the series.

  3. Surface melting of electronic order.

    SciTech Connect

    Wilkins, S. B.; Liu, X.; Wakabayashi, Y.; Kim, J.-W.; Ryan, P. J.; Mitchell, J. F.; Hill, J. P.

    2011-01-01

    We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. We find that as the bulk ordering temperature is approached from below the thickness of the interface between the electronically ordered and electronically disordered regions at the surface grows, though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order. That is, the electronic ordering at the surface has melted. Above the bulk transition, long-range ordering in the bulk is destroyed but finite-sized isotropic fluctuations persist, with a correlation length roughly equal to that of the low-temperature in-plane surface correlation length.

  4. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging. PMID:27314718

  5. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  6. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √{sNN}=2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2015-09-01

    Correlations between the elliptic or triangular flow coefficients vm (m =2 or 3) and other flow harmonics vn (n =2 to 5) are measured using √{sNN}=2.76 TeV Pb +Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μ b-1 . The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ɛ2 and ɛ3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n =4 and 5 are found to disagree with ɛm-ɛn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3 , as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  7. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εmn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  8. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistentmore » with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εm-εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.« less

  9. Learning an energy-demanding and biomechanically constrained motor skill, racewalking: movement reorganization and contribution of metabolic efficiency and sensory information.

    PubMed

    Majed, L; Heugas, A-M; Chamon, M; Siegler, I A

    2012-12-01

    This study investigated how novices learn an energy demanding and biomechanically constrained task like racewalking. The first aim was to examine if movement reorganizes according to some fundamental strategies, proceeding in different stages (Newell, 1985). The second aim was to investigate the link between movement reorganization, metabolic efficiency and perceived exertion. Seven participants undertook seven racewalking learning sessions on a motorized treadmill, with increased velocity as the experiment progressed, in order to reach a goal performance speed of 10 kmh(-1). Peripheral/central perceived exertion ratings, kinematic and metabolic data were collected during the 1st, 4th, 6th and 7th session. Repeated-measures (Learning Session×Speed) ANOVAs on kinematic data showed a proximal-to-distal directional trend in movement reorganization, with significant practice-related changes in pattern coordination and decreased variability. Early movement reorganization occurred at the 1st session ("coordination stage") and progressed until the 4th session ("control stage") to reach a plateau. In contrast, metabolic efficiency and peripheral perceived exertion continued optimizing until the last session, probably occurring in concurrence with the control stage. Peripheral perceived exertion presented the highest correlation with the global movement reorganization variables suggesting that it could play a key role in guiding movement reorganization in the learning process, improving efficiency as a result. PMID:23131382

  10. Washington Correlator

    NASA Technical Reports Server (NTRS)

    Hall, David M.; Boboltz, David

    2013-01-01

    This report summarizes the activities of the Washington Correlator for 2012. The Washington Correlator provides up to 80 hours of attended processing per week plus up to 40 hours of unattended operation, primarily supporting Earth Orientation and astrometric observations. In 2012, the major programs supported include the IVS-R4, IVS-INT, APSG, and CRF observing sessions.

  11. Hadronic Correlations and Fluctuations

    SciTech Connect

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  12. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  13. Correlative Tomography

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-04-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques.

  14. Correlative tomography.

    PubMed

    Burnett, T L; McDonald, S A; Gholinia, A; Geurts, R; Janus, M; Slater, T; Haigh, S J; Ornek, C; Almuaili, F; Engelberg, D L; Thompson, G E; Withers, P J

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  15. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  16. Structural order in glassy water.

    PubMed

    Giovambattista, Nicolas; Debenedetti, Pablo G; Sciortino, Francesco; Stanley, H Eugene

    2005-06-01

    We investigate structural order in glassy water by performing classical molecular dynamics simulations using the extended simple point charge (SPC/E) model of water. We perform isochoric cooling simulations across the glass transition temperature at different cooling rates and densities. We quantify structural order by orientational and translational order metrics. Upon cooling the liquid into the glassy state, both the orientational order parameter Q and translational order parameter tau increase. At T=0 K, the glasses fall on a line in the Q-tau plane or order map. The position of this line depends only on density and coincides with the location in the order map of the inherent structures (IS) sampled upon cooling. We evaluate the energy of the IS, eIS(T), and find that both order parameters for the IS are proportional to eIS. We also study the structural order during the transformation of low-density amorphous ice (LDA) to high-density amorphous ice (HDA) upon isothermal compression and are able to identify distinct regions in the order map corresponding to these glasses. Comparison of the order parameters for LDA and HDA with those obtained upon isochoric cooling indicates major structural differences between glasses obtained by cooling and glasses obtained by compression. These structural differences are only weakly reflected in the pair correlation function. We also characterize the evolution of structural order upon isobaric annealing, leading at high pressure to very-high density amorphous ice (VHDA). PMID:16089741

  17. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  18. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  19. Localization protected quantum order

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul

    2015-03-01

    Many body localization occurs in isolated quantum systems, usually with strong disorder, and is marked by absence of dissipation, absence of thermal equilibration, and a memory of the initial conditions that survives in local observables for arbitrarily long times. The many body localized regime is a non-equilibrium, strongly disordered, non-self averaging regime that presents a new frontier for quantum statistical mechanics. In this talk, I point out that there exists a vast zoo of correlated many body localized states of matter, which may be classified using familiar notions of spontaneous symmetry breaking and topological order. I will point out that in the many body localized regime, spontaneous symmetry breaking can occur even at high energy densities in one dimensional systems, and topological order can occur even without a bulk gap. I will also discuss the phenomenology of imperfectly isolated many body localized systems, which are weakly coupled to a heat bath. I will conclude with a brief discussion of how these phenomena may best be detected in experiments. Collaborators: David Huse, S.L. Sondhi, Arijeet Pal, Vadim Oganesyan, A.C. Potter, Sarang Gopalakrishnan, S. Johri, R.N. Bhatt.

  20. Two-dimensional Mueller matrix phase tomography of self-similarity birefringence structure of biological tissues

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.

    2012-10-01

    This work presents the possibility of phase tomography of optical-anisotropic multilayered biological structures. The superposition approach of polarization manifestation of optical anisotropy of polycrystalline protein networks is proposed. The optical model of polycrystalline networks of biological tissues protein fibrils is presented. The technique of phase tomography based on determining the coordinate distributions of Mueller-matrix elements of biological tissues is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st- 4th order) parameters are presented. They characterize the coordinate distributions of phase shifts of biological tissue layer of different optical thickness and the degree of muscle dystrophy.

  1. System of multifunctional laser polarimetry of phase and amplitude anisotropy in the diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Dubolazov, O. V.; Olar, O. V.

    2015-11-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  2. Multifunctional polarization tomography of optical anisotropy of biological layers in diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Koval, L. D.; Dubolazov, O. V.; Ushenko, Yu. O.; Savich, V. O.; Sidor, M. I.; Marchuk, Yu. F.

    2015-09-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  3. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  4. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2011-09-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  5. Laser statistical polarimetry optical anisotropy of blood plasma of the patients with hemangioma

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.

    2011-09-01

    Proposed in this work is a novel method of early laser polarimetric diagnostics of vessels pathologies and hemangioma formation. The generalized model of formation processes of polarization inhomogeneous laser images of experimental samples of biological tissues is presented. It was performed the experimental measurements of polarization states of both biological tissues laser images points and the hemangioma liquids. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization azimuth of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.

  6. Laser statistical polarimetry optical anisotropy of blood plasma of the patients with hemangioma

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.

    2012-01-01

    Proposed in this work is a novel method of early laser polarimetric diagnostics of vessels pathologies and hemangioma formation. The generalized model of formation processes of polarization inhomogeneous laser images of experimental samples of biological tissues is presented. It was performed the experimental measurements of polarization states of both biological tissues laser images points and the hemangioma liquids. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization azimuth of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.

  7. Variable Order and Distributed Order Fractional Operators

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2002-01-01

    Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.

  8. Isotropic sequence order learning.

    PubMed

    Porr, Bernd; Wörgötter, Florentin

    2003-04-01

    In this article, we present an isotropic unsupervised algorithm for temporal sequence learning. No special reward signal is used such that all inputs are completely isotropic. All input signals are bandpass filtered before converging onto a linear output neuron. All synaptic weights change according to the correlation of bandpass-filtered inputs with the derivative of the output. We investigate the algorithm in an open- and a closed-loop condition, the latter being defined by embedding the learning system into a behavioral feedback loop. In the open-loop condition, we find that the linear structure of the algorithm allows analytically calculating the shape of the weight change, which is strictly heterosynaptic and follows the shape of the weight change curves found in spike-time-dependent plasticity. Furthermore, we show that synaptic weights stabilize automatically when no more temporal differences exist between the inputs without additional normalizing measures. In the second part of this study, the algorithm is is placed in an environment that leads to closed sensor-motor loop. To this end, a robot is programmed with a prewired retraction reflex reaction in response to collisions. Through isotropic sequence order (ISO) learning, the robot achieves collision avoidance by learning the correlation between his early range-finder signals and the later occurring collision signal. Synaptic weights stabilize at the end of learning as theoretically predicted. Finally, we discuss the relation of ISO learning with other drive reinforcement models and with the commonly used temporal difference learning algorithm. This study is followed up by a mathematical analysis of the closed-loop situation in the companion article in this issue, "ISO Learning Approximates a Solution to the Inverse-Controller Problem in an Unsupervised Behavioral Paradigm" (pp. 865-884). PMID:12689389

  9. Cation Ordering in Layered Nickelates

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, Brittany; Zhou, Hua; Cammarata, Antonio; Hoffman, Jason; Balachandran, Prasanna; Rondinelli, James; Bhattacharya, Anand

    2013-03-01

    The single layer Ruddlesden-Popper nickelates present a model system to understand how the effects of digital dopant cation ordering may affect the properties of 2-dimensional conducting sheets. We investigate the effects of aliovalent A-site cation order on LaSrNiO4 films. Using molecular beam epitaxy, we interleave full layers of SrO and LaO in a series of chemically equivalent films, varying the pattern of SrO and LaO layers relative to the NiO2 layers. Through synchrotron surface x-ray diffraction and Coherant Bragg Rod Analysis (COBRA), we directly investigate the A-site cation order and the resulting atomic displacements for each ordering pattern. We correlate these results with theoretical calculations and transport measurements of the layered nickelate films.

  10. Order-parameter scaling in fluctuation-dominated phase ordering.

    PubMed

    Kapri, Rajeev; Bandyopadhyay, Malay; Barma, Mustansir

    2016-01-01

    In systems exhibiting fluctuation-dominated phase ordering, a single order parameter does not suffice to characterize the order, and it is necessary to monitor a larger set. For hard-core sliding particles on a fluctuating surface and the related coarse-grained depth (CD) models, this set comprises the long-wavelength Fourier components of the density profile, which capture the breakup and remerging of particle-rich regions. We study both static and dynamic scaling laws obeyed by the Fourier modes Q_{mL} and find that the mean value obeys the static scaling law 〈Q_{mL}〉∼L^{-ϕ}f(m/L) with ϕ≃2/3 and ϕ≃3/5 for Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) surface evolution, respectively, and ϕ≃3/4 for the CD model. The full probability distribution P(Q_{mL}) exhibits scaling as well. Further, time-dependent correlation functions such as the steady-state autocorrelation and cross-correlations of order-parameter components are scaling functions of t/L^{z}, where L is the system size and z is the dynamic exponent, with z=2 for EW and z=3/2 for KPZ surface evolution. In addition we find that the CD model shows temporal intermittency, manifested in the dynamical structure functions of the density and the weak divergence of the flatness as the scaled time approaches 0. PMID:26871034

  11. Constructing higher-order hydrodynamics: The third order

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Kaplis, Nikolaos

    2016-03-01

    Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper, we go beyond the presently understood second-order hydrodynamics and discuss the systematization of obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68 in the nonconformal case. As we do not consider any constraints that could potentially arise from the local entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To investigate the physical implications of these new transport coefficients, we obtain the third-order corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we apply our field theoretic results to the N =4 supersymmetric Yang-Mills fluid at infinite 't Hooft coupling and an infinite number of colors to find the values of five new linear combinations of the conformal transport coefficients.

  12. Glassy correlations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Goldbart, Paul; Mao, Xiaoming

    2009-03-01

    We address the physical properties of an isotropic melt or solution of nematogenic polymers that is then cross-linked beyond the vulcanization point. To do this, we construct a replica Landau theory involving a coupled pair of order- parameter fields: one describing vulcanization, the other describing local nematic order. Thermal nematic fluctuations, present at the time of cross-linking, are trapped by cross- linking into the vulcanized network. The resulting glassy nematic fluctuations are analyzed in the Gaussian approximation in two regimes. When the localization length is shorter than the thermal nematic correlation length, the nematic correlations are well captured as glassy correlations. In the opposite regime, fluctuations in the positions of the localized polymers partially wash out the glassy nematic correlations.

  13. Local Realism of Macroscopic Correlations

    NASA Astrophysics Data System (ADS)

    Ramanathan, R.; Paterek, T.; Kay, A.; Kurzyński, P.; Kaszlikowski, D.

    2011-08-01

    We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.

  14. Order Theoretical Semantic Recommendation

    SciTech Connect

    Joslyn, Cliff A.; Hogan, Emilie A.; Paulson, Patrick R.; Peterson, Elena S.; Stephan, Eric G.; Thomas, Dennis G.

    2013-07-23

    Mathematical concepts of order and ordering relations play multiple roles in semantic technologies. Discrete totally ordered data characterize both input streams and top-k rank-ordered recommendations and query output, while temporal attributes establish numerical total orders, either over time points or in the more complex case of startend temporal intervals. But also of note are the fully partially ordered data, including both lattices and non-lattices, which actually dominate the semantic strcuture of ontological systems. Scalar semantic similarities over partially-ordered semantic data are traditionally used to return rank-ordered recommendations, but these require complementation with true metrics available over partially ordered sets. In this paper we report on our work in the foundations of partial order measurement in ontologies, with application to top-k semantic recommendation in workflows.

  15. Variable angle correlation spectroscopy

    SciTech Connect

    Lee, Y K

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  16. Minimal Orderings Revisited

    SciTech Connect

    Peyton, B.W.

    1999-07-01

    When minimum orderings proved too difficult to deal with, Rose, Tarjan, and Leuker instead studied minimal orderings and how to compute them (Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5:266-283, 1976). This paper introduces an algorithm that is capable of computing much better minimal orderings much more efficiently than the algorithm in Rose et al. The new insight is a way to use certain structures and concepts from modern sparse Cholesky solvers to re-express one of the basic results in Rose et al. The new algorithm begins with any initial ordering and then refines it until a minimal ordering is obtained. it is simple to obtain high-quality low-cost minimal orderings by using fill-reducing heuristic orderings as initial orderings for the algorithm. We examine several such initial orderings in some detail.

  17. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  18. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  19. First-order inflation

    SciTech Connect

    Kolb, E.W. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-09-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result in inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models. 58 refs., 3 figs.

  20. Binocular Combination of Second-Order Stimuli

    PubMed Central

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  1. Binocular combination of second-order stimuli.

    PubMed

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  2. Largescale QSO - Galaxy Correlations Revisited

    NASA Astrophysics Data System (ADS)

    Bartelmann, M.; Schneider, P.

    1993-04-01

    Fugmann (1990) claimed indications for correlations between Lick galaxies and high-redshift, radio-loud background sources. We re- analyze these correlations using an improved statistical method based on Spearman's rank-order test, which we have introduced recently (Bartelmann & Schneider 1993). To our surprise, we are not able to reproduce Fugmann's results, but we detect a significant correlation between moderate-redshift sources from the 1-Jansky catalog and Lick galaxies, which increases when we apply an optical flux limit to the source sample. We interpret these empirical results in terms of an amplification bias caused by gravitational light deflection by dark matter; in particular, we argue that the observed large-scale QSO-galaxy correlations can provide a proof for the association of luminous matter (galaxies) with dark matter.

  3. Multiple ordering in magnetite.

    NASA Technical Reports Server (NTRS)

    Cullen, J. R.; Callen, E. R.

    1973-01-01

    Results of a self-consistent band calculation of the ground-state energy and charge orderings based on a tight-binding scheme in magnetite are presented. They show that below a critical (about 2.2) value of the ratio of interatomic Coulomb energy to bandwidth the lowest energy state has no order. Between this critical value and 2.5, the preferred state is multiply ordered.

  4. After order 636

    SciTech Connect

    Katz, M.G.

    1995-02-01

    Through its Order 636, the Federal Energy Regulatory Commission (FERC) completed a restructuring of the natural gas industry. The order severed the last links in the chain linking gas producers to pipeline companies to local gas distribution companies (LDCs) to customers. Before Order 636 took effect, many predicted electric power generation, particularly by cogenerators and independent power producers (IPPs), would be a major growth area for natural gas. In fact, what Order 636 has shown is, that timing is everything, and that it`s difficult to sort out the effect of one agent of change when many others are at work.

  5. Order, Disorder and Confinement

    SciTech Connect

    D'Elia, M.; Di Giacomo, A.; Pica, C.

    2006-01-12

    Studying the order of the chiral transition for Nf = 2 is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.

  6. Bioregions and World Order.

    ERIC Educational Resources Information Center

    Breakthrough, 1985

    1985-01-01

    What bioregions can do to contribute to world order and security is discussed in this newsletter. A bioregion is defined as an identifiable geographical area of interacting life-systems that is relatively self-sustaining in the ever-renewing processes of nature. Articles included are: "Bioregionalism and World Order" (Gerald Mische); "Bioregions:…

  7. ASDC Order Tools

    Atmospheric Science Data Center

    2012-04-17

    ... users to search our data holdings without logging in to the system. The user, however, must log in before ordering the data. ... Reverb, developed by Earth Science Data and Information System (ESDIS), gives the user community an improved search and order ...

  8. Verb Position and the Order of Adverbials in German.

    ERIC Educational Resources Information Center

    Dean, O. C., Jr.

    Recent work in word-order typology has demonstrated that the dominant order of verbs and objects (or complements) correlates well with the general ordering tendencies of languages. The work on German reported in this paper suggests, however, that certain traits, such as the order of adverbials, are influenced not only by general ordering…

  9. Ordered macromolecular structures in ferrofluid mixtures

    SciTech Connect

    Hayter, J.B.; Pynn, R.; Charles, S.; Skjeltorp, A.T.; Trewhella, J.; Stubbs, G.; Timmins, P.

    1989-04-03

    We have observed ordering of dilute dispersions of spherical and cylindrical macromolecules in magnetized ferrofluids. The order results from structural correlations between macromolecular and ferrofluid particles rather than from macroscopic magnetostatic effects. We have aligned elongated macromolecules by this technique and have obtained anisotropic neutron-diffraction patterns, which reflect the internal structure of the macromolecules. The method provides a tool for orienting suspended macromolecular assemblies which are not amenable to conventional alignment techniques.

  10. Second order Standard Model

    NASA Astrophysics Data System (ADS)

    Espin, Johnny; Krasnov, Kirill

    2015-06-01

    It is known, though not commonly, that one can describe fermions using a second order in derivatives Lagrangian instead of the first order Dirac one. In this description the propagator is scalar, and the complexity is shifted to the vertex, which contains a derivative operator. In this paper we rewrite the Lagrangian of the fermionic sector of the Standard Model in such second order form. The new Lagrangian is extremely compact, and is obtained from the usual first order Lagrangian by integrating out all primed (or dotted) 2-component spinors. It thus contains just half of the 2-component spinors that appear in the usual Lagrangian, which suggests a new perspective on unification. We sketch a natural in this framework SU (2) × SU (4) ⊂ SO (9) unified theory.

  11. Court Ordered Desegregation

    ERIC Educational Resources Information Center

    Reber, Sarah J.

    2005-01-01

    The effect of the court ordered desegregation plans, on trends in segregation and white flight, are estimated. The effect of availability of school districts and other factors on the white flight across districts is also mentioned.

  12. 'Good palliative care' orders.

    PubMed

    Maddocks, I

    1993-01-01

    A Select Committee of the Parliament of South Australia, considering revisions to legislation governing care of the dying, did not support allowing doctors to assist suicide. They recommended that no liability attach to the provision of reasonable palliative care which happens to shorten life. The Committee affirmed the suggestion that positive open orders to provide 'good palliative care' should replace 'do not resuscitate' orders. PMID:7506978

  13. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  14. Correlation, Cost Risk, and Geometry

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate

  15. Topology in Ordered Phases

    NASA Astrophysics Data System (ADS)

    Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke

    2006-08-01

    .]. Nanofibers of hydrogen storage alloy / I. Saita ... [et al.]. Synthesis of stable icosahedral quasicrystals in Zn-Sc based alloys and their magnetic properties / S. Kashimoto and T. Ishimasa. One-armed spiral wave excited by eam pressure in accretion disks in Be/X-Ray binaries / K. Hayasaki and A. T. Okazaki -- IV. Topological defects and excitations. Topological excitations in the ground state of charge density wave systems / P. Monceau. Soliton transport in nanoscale charge-density-wave systems / K. Inagaki, T. Toshima and S. Tanda. Topological defects in triplet superconductors UPt3, Sr[symbol]RuO[symbol], etc. / K. Maki ... [et al.]. Microscopic structure of vortices in type II superconductors / K. Machida ... [et al.]. Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors / J. Mesot. Energy dissipation at nano-scale topological defects of high-Tc superconductors: microwave study / A. Maeda. Pressure induced topological phase transition in the heavy Fermion compound CeAl[symbol] / H. Miyagawa ... [et al.]. Explanation for the unusual orientation of LSCO square vortex lattice in terms of nodal superconductivity / M. Oda. Local electronic states in Bi[symbol]Sr[symbol]CaCu[symbol]O[symbol] / A. Hashimoto ... [et al.] -- V. Topology in quantum phenomena. Topological vortex formation in a Bose-Einstein condensate of alkali-metal atoms / M. Nakahara. Quantum phase transition of [symbol]He confined in nano-porous media / K. Shirahama, K. Yamamoto and Y. Shibayama. A new mean-field theory for Bose-Einstein condensates / T. Kita. Spin current in topological cristals / Y. Asano. Antiferromagnetic defects in non-magnetic hidden order of the heavy-electron system URu[symbol]Si[symbol] / H. Amitsuka, K. Tenya and M. Yokoyama. Magnetic-field dependences of thermodynamic quantities in the vortex state of Type-II superconductors / K. Watanabe, T. Kita and M. Arai. Three-magnon-mediated nuclear spin relaxation in quantum ferrimagnets of topological

  16. Correlated Electrons in Reduced Dimensions

    SciTech Connect

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  17. Arguments from Developmental Order.

    PubMed

    Stöckle-Schobel, Richard

    2016-01-01

    In this article, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind - getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged 'philosophy of development.' PMID:27242648

  18. Birth Order and Psychopathology

    PubMed Central

    Risal, Ajay; Tharoor, Hema

    2012-01-01

    Context: Ordinal position the child holds within the sibling ranking of a family is related to intellectual functioning, personality, behavior, and development of psychopathology. Aim: To study the association between birth order and development of psychopathology in patients attending psychiatry services in a teaching hospital. Settings and Design: Hospital-based cross-sectional study. Materials and Methods: Retrospective file review of three groups of patients was carried out. Patient-related variables like age of onset, birth order, family type, and family history of mental illness were compared with psychiatry diagnosis (ICD-10) generated. Statistical Analysis: SPSS 13; descriptive statistics and one-way analysis of variance (ANOVA) were used. Results: Mean age of onset of mental illness among the adult general psychiatry patients (group I, n = 527) was found to be 33.01 ± 15.073, while it was 11.68 ± 4.764 among the child cases (group II, n = 47) and 26.74 ± 7.529 among substance abuse cases (group III, n = 110). Among group I patients, commonest diagnosis was depression followed by anxiety and somatoform disorders irrespective of birth order. Dissociative disorders were most prevalent in the first born child (36.7%) among group II patients. Among group III patients, alcohol dependence was maximum diagnosis in all birth orders. Conclusions: Depression and alcohol dependence was the commonest diagnosis in adult group irrespective of birth order. PMID:24479023

  19. Arguments from Developmental Order

    PubMed Central

    Stöckle-Schobel, Richard

    2016-01-01

    In this article1, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind – getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged ‘philosophy of development.’ PMID:27242648

  20. Higher order turbulence closure models

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der

    1988-01-01

    Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.

  1. Concomitant Ordering and Symmetry Lowering

    ERIC Educational Resources Information Center

    Boo, William O. J.; Mattern, Daniell L.

    2008-01-01

    Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…

  2. Separation of dynamic and nondynamic correlation.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Matito, Eduard

    2016-08-24

    The account of electron correlation and its efficient separation into dynamic and nondynamic parts plays a key role in the development of computational methods. In this paper we suggest a physically-sound matrix formulation to split electron correlation into dynamic and nondynamic parts using the two-particle cumulant matrix and a measure of the deviation from idempotency of the first-order density matrix. These matrices are applied to a two-electron model, giving rise to a simplified electron correlation index that (i) depends only on natural orbitals and their occupancies, (ii) can be straightforwardly decomposed into orbital contributions and (iii) splits into dynamic and nondynamic correlation parts that (iv) admit a local version. These expressions are shown to account for dynamic and nondynamic correlation in a variety of systems containing different electron correlation regimes, thus providing the first separation of dynamic and nondynamic correlation using solely natural orbital occupancies. PMID:27523386

  3. Land and World Order.

    ERIC Educational Resources Information Center

    Mische, Patricia, Ed.; And Others

    1982-01-01

    The papers in this publication discuss the land and how what happens to the land affects us. The publication is one in a series of monographs that examine the linkages between local and global concerns and explore alternative world futures. Examples of topics discussed in the papers follow. The paper "Land and World Order" examines implications of…

  4. The Order Pseudonocardiales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Order Pseudonocardiales is made of up a single family Pseudonocardiaceae which forms a distinct cluster between the Frankineae and Streptomycineae when members of the taxa are subjected to 16S rRNA gene phylogenetic analysis. The family contains 26 genera including Pseudonocardia, Actinoalloteic...

  5. Memory for Serial Order.

    ERIC Educational Resources Information Center

    Lewandowsky, Stephan; Murdock, Bennet B., Jr.

    1989-01-01

    An extension to Murdock's Theory of Distributed Associative Memory, based on associative chaining between items, is presented. The extended theory is applied to several serial order phenomena, including serial list learning, delayed recall effects, partial report effects, and buildup and release from proactive interference. (TJH)

  6. The Birth Order Puzzle.

    ERIC Educational Resources Information Center

    Zajonc, R. B.; And Others

    1979-01-01

    Discusses the controversy of the relationship between birth order and intellectual performance through a detailed evaluation of the confluence model which assumes that the rate of intellectual growth is a function of the intellectual environment within the family and associated with the special circumstances of last children. (CM)

  7. Birth Order Debate Resolved?

    ERIC Educational Resources Information Center

    Zajonc, R. B.

    2001-01-01

    Critiques Rodgers et al.'s June 2000 research on the relation between birth order and intelligence, which suggests that it is a methodological illusion. Explains how the intellectual environment and the teaching function (whereby older children tutor younger ones) contribute to the growth of intellectual maturity, the first negatively and the…

  8. Order Lepidoptera Linnaeus, 1758.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on two recent molecular analyses, augmented by the discovery of several published or unpublished novel morphological synapomorphies, a new classification is proposed for the order Lepidoptera. The new classification is more consistent with our growing knowledge of the phylogeny of the group an...

  9. Education and World Order

    ERIC Educational Resources Information Center

    Jones, Phillip W.

    2007-01-01

    The impact on educational analysis of mainstream international relations (IR) theories is yet to realize its full potential. The problem of education in relation to the construction of world order is considered in relation to core developments in IR theory since the Second World War. In particular, the global architecture of education is seen as a…

  10. Redundant correlation effect on personalized recommendation

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  11. Codes with special correlation.

    NASA Technical Reports Server (NTRS)

    Baumert, L. D.

    1964-01-01

    Uniform binary codes with special correlation including transorthogonality and simplex code, Hadamard matrices and difference sets uniform binary codes with special correlation including transorthogonality and simplex code, Hadamard matrices and difference sets

  12. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  13. Quantum correlations in a clusterlike system

    SciTech Connect

    Chen Yixin; Li Shengwen; Yin Zhi

    2010-11-15

    We discuss a clusterlike one-dimensional system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system and is well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord, and mutual information. We study the different divergence behaviors of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in topological order systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.

  14. IAA Correlator Center

    NASA Technical Reports Server (NTRS)

    Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir

    2013-01-01

    The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.

  15. Correlation in business networks

    NASA Astrophysics Data System (ADS)

    Souma, Wataru; Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Iyetomi, Hiroshi; Kaizoji, Taisei

    2006-10-01

    This paper considers business networks. Through empirical study, we show that business networks display characteristics of small-world networks and scale-free networks. In this paper, we characterize firms as sales and bankruptcy probabilities. A correlation between sales and a correlation between bankruptcy probabilities in business networks are also considered. The results reveal that the correlation between sales depends strongly on the type of network, whereas the correlation between bankruptcy probabilities does so only weakly.

  16. Parallel auto-correlative statistics with VTK.

    SciTech Connect

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  17. What Is Strong Correlation?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2009-01-01

    Interpretation of correlation is often based on rules of thumb in which some boundary values are given to help decide whether correlation is non-important, weak, strong or very strong. This article shows that such rules of thumb may do more harm than good, and instead of supporting interpretation of correlation--which is their aim--they teach a…

  18. Reverse Correlation in Neurophysiology

    ERIC Educational Resources Information Center

    Ringach, Dario; Shapley, Robert

    2004-01-01

    This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in…

  19. Constrained Canonical Correlation.

    ERIC Educational Resources Information Center

    DeSarbo, Wayne S.; And Others

    1982-01-01

    A variety of problems associated with the interpretation of traditional canonical correlation are discussed. A response surface approach is developed which allows for investigation of changes in the coefficients while maintaining an optimum canonical correlation value. Also, a discrete or constrained canonical correlation method is presented. (JKS)

  20. VLBI Correlators in Kashima

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Takefuji, Kazuhiro

    2013-01-01

    Kashima Space Technology Center (KSTC) is making use of two kinds of software correlators, the multi-channel K5/VSSP software correlator and the fast wide-band correlator 'GICO3,' for geodetic and R&D VLBI experiments. Overview of the activity and future plans are described in this paper.

  1. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  2. Audiotactile temporal order judgments.

    PubMed

    Zampini, Massimiliano; Brown, Timothy; Shore, David I; Maravita, Angelo; Röder, Brigitte; Spence, Charles

    2005-03-01

    We report a series of three experiments in which participants made unspeeded 'Which modality came first?' temporal order judgments (TOJs) to pairs of auditory and tactile stimuli presented at varying stimulus onset asynchronies (SOAs) using the method of constant stimuli. The stimuli were presented from either the same or different locations in order to explore the potential effect of redundant spatial information on audiotactile temporal perception. In Experiment 1, the auditory and tactile stimuli had to be separated by nearly 80 ms for inexperienced participants to be able to judge their temporal order accurately (i.e., for the just noticeable difference (JND) to be achieved), no matter whether the stimuli were presented from the same or different spatial positions. More experienced psychophysical observers (Experiment 2) also failed to show any effect of relative spatial position on audiotactile TOJ performance, despite having much lower JNDs (40 ms) overall. A similar pattern of results was found in Experiment 3 when silent electrocutaneous stimulation was used rather than vibrotactile stimulation. Thus, relative spatial position seems to be a less important factor in determining performance for audiotactile TOJ than for other modality pairings (e.g., audiovisual and visuotactile). PMID:15698825

  3. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  4. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  5. Correlations in Werner States

    NASA Astrophysics Data System (ADS)

    Luo, Shun-Long; Li, Nan

    2008-02-01

    Werner states are paradigmatic examples of quantum states and play an innovative role in quantum information theory. In investigating the correlating capability of Werner states, we find the curious phenomenon that quantum correlations, as quantified by the entanglement of formation, may exceed the total correlations, as measured by the quantum mutual information. Consequently, though the entanglement of formation is so widely used in quantifying entanglement, it cannot be interpreted as a consistent measure of quantum correlations per se if we accept the folklore that total correlations are measured (or rather upper bounded) by the quantum mutual information.

  6. Complementarity and Correlations

    NASA Astrophysics Data System (ADS)

    Maccone, Lorenzo; Bruß, Dagmar; Macchiavello, Chiara

    2015-04-01

    We provide an interpretation of entanglement based on classical correlations between measurement outcomes of complementary properties: States that have correlations beyond a certain threshold are entangled. The reverse is not true, however. We also show that, surprisingly, all separable nonclassical states exhibit smaller correlations for complementary observables than some strictly classical states. We use mutual information as a measure of classical correlations, but we conjecture that the first result holds also for other measures (e.g., the Pearson correlation coefficient or the sum of conditional probabilities).

  7. Complementarity and correlations.

    PubMed

    Maccone, Lorenzo; Bruß, Dagmar; Macchiavello, Chiara

    2015-04-01

    We provide an interpretation of entanglement based on classical correlations between measurement outcomes of complementary properties: States that have correlations beyond a certain threshold are entangled. The reverse is not true, however. We also show that, surprisingly, all separable nonclassical states exhibit smaller correlations for complementary observables than some strictly classical states. We use mutual information as a measure of classical correlations, but we conjecture that the first result holds also for other measures (e.g., the Pearson correlation coefficient or the sum of conditional probabilities). PMID:25884117

  8. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  9. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at sNN=2.76 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.

    2015-09-01

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. Thevm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εm-εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  10. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  11. Order From disorder in Frustrated Spin Systems

    NASA Astrophysics Data System (ADS)

    Coleman, Piers

    This talk will review the phemomenon of ''Order from disorder'': the mechanism by which fluctuations remove a degeneracy within a frustrated spin system. An important consequence of order-from-disorder, is the ability of frustrated Heisenberg spin systems to overcome the Mermin-Wagner theorem, developing new forms of discrete order, even when the spins themselves remain disordered with a finite correlation length. The most well-known example, is the two-dimensional frustrated J1 -J2 Heisenberg model, which undergoes a finite temperature Ising phase transition into a stripy or ''nematic'' state, even though the spins do not order until absolute zero. Nematic ordering of this kind is believed to occur in the iron-based superconductors, such as BaFe2 As2 . More recently, it has been possible to theoretically study the triangular-honeycomb versions of the J1 -J2 model, called a windmill model, in which order-from disorder drives the development of six-state clock order. Remarkably, in this case, order-from-disorder leads to an intermediate power-law spin phase, despite the underlying Heisenerg spins. This research was supported by DOE Basic Energy Sciences Grant DE-FG02-99ER45790.

  12. Correlations in cosmic density fields

    NASA Technical Reports Server (NTRS)

    Bromley, B. C.

    1994-01-01

    A method is proposed to place constraints on the functional form of the high-order correlation functions zeta(sub n) that arise in cosmic density fields at large scales. This technique is based on a mass-in-cell statistic and a difference of mass in partitions of a cell. The relationship between these measures is sensitive to the formal structure of the zeta(sub n) as well as their amplitudes. This relationship is quantified in several theoretical models of structure, based on the hierarchical clustering paradigm. The results lead to a test for specific types of hierarchical clustering that is sensitive to correlations of all orders. The method is applied to examples of simulated large-scaled structure dominated by cold dark matter. In the preliminary study, the hierarchical paradigm appears to be a realistic approximation over a broad range of the scales. Furthermore, there is evidence that graphs of low-order vertices are dominant. On the basis of simulated data a phenomological model is specified that gives a good representation of clustering from linear scales to the strongly clustered regime (zeta(sub 2) approximately 500).

  13. Computerized Physician Order Entry

    PubMed Central

    Khanna, Raman; Yen, Tony

    2014-01-01

    Computerized physician order entry (CPOE) has been promoted as an important component of patient safety, quality improvement, and modernization of medical practice. In practice, however, CPOE affects health care delivery in complex ways, with benefits as well as risks. Every implementation of CPOE is associated with both generally recognized and unique local factors that can facilitate or confound its rollout, and neurohospitalists will often be at the forefront of such rollouts. In this article, we review the literature on CPOE, beginning with definitions and proceeding to comparisons to the standard of care. We then proceed to discuss clinical decision support systems, negative aspects of CPOE, and cultural context of CPOE implementation. Before concluding, we follow the experiences of a Chief Medical Information Officer and neurohospitalist who rolled out a CPOE system at his own health care organization and managed the resulting workflow changes and setbacks. PMID:24381708

  14. Birth order and myopia

    PubMed Central

    Guggenheim, Jeremy A.; McMahon, George; Northstone, Kate; Mandel, Yossi; Kaiserman, Igor; Stone, Richard A.; Lin, Xiaoyu; Saw, Seang Mei; Forward, Hannah; Mackey, David A.; Yazar, Seyhan; Young, Terri L.; Williams, Cathy

    2013-01-01

    Purpose An association between birth order and reduced unaided vision (a surrogate for myopia) has been observed previously. We examined the association between birth order and myopia directly in 4 subject groups. Methods Subject groups were participants in 1) the Avon Longitudinal Study of Parents and Children (ALSPAC; UK; age 15 years; N=4,401), 2) the Singapore Cohort Study of Risk Factors for Myopia (SCORM; Singapore; age 13 years; N=1,959), 3) the Raine Eye Health Study (REHS; Australia; age 20 years; N=1,344), and 4) Israeli Defense Force recruitment candidates (IDFC; Israel; age 16-22 years; N=888,277). Main outcome: Odds ratio (OR) for myopia in first born versus non-first born individuals after adjusting for potential risk factors. Results The prevalence of myopia was numerically higher in first-born versus non-first-born individuals in all study groups, but the strength of evidence varied widely. The adjusted ORs (95% CI) were: ALSPAC, 1.31 (1.05-1.64); SCORM, 1.25 (0.89-1.77); REHS, 1.18 (0.90-1.55); IDFC, 1.04 (1.03-1.06). In the large IDFC sample, the effect size was greater (a) for the first born versus fourth or higher born comparison than for the first born versus second/third born comparison (P<0.001) and (b) with increasing myopia severity (P<0.001). Conclusions Across all studies, the increased risk of myopia in first born individuals was low (OR <1.3). Indeed, only the studies with >4000 participants provided strong statistical support for the association. The available evidence suggested the relationship was independent of established risk factors such as time outdoors/reading, and thus may arise through a different causal mechanism. PMID:24168726

  15. Order without design.

    PubMed

    Kurakin, Alexei

    2010-01-01

    Experimental reality in molecular and cell biology, as revealed by advanced research technologies and methods, is manifestly inconsistent with the design perspective on the cell, thus creating an apparent paradox: where do order and reproducibility in living systems come from if not from design? I suggest that the very idea of biological design (whether evolutionary or intelligent) is a misconception rooted in the time-honored and thus understandably precious error of interpreting living systems/organizations in terms of classical mechanics and equilibrium thermodynamics. This error, introduced by the founders and perpetuated due to institutionalization of science, is responsible for the majority of inconsistencies, contradictions, and absurdities plaguing modern sciences, including one of the most startling paradoxes - although almost everyone agrees that any living organization is an open nonequilibrium system of continuous energy/matter flow, almost everyone interprets and models living systems/organizations in terms of classical mechanics, equilibrium thermodynamics, and engineering, i.e., in terms and concepts that are fundamentally incompatible with the physics of life. The reinterpretation of biomolecules, cells, organisms, ecosystems, and societies in terms of open nonequilibrium organizations of energy/matter flow suggests that, in the domain of life, order and reproducibility do not come from design. Instead, they are natural and inevitable outcomes of self-organizing activities of evolutionary successful, and thus persistent, organizations co-evolving on multiple spatiotemporal scales as biomolecules, cells, organisms, ecosystems, and societies. The process of self-organization on all scales is driven by economic competition, obeys empirical laws of nonequilibrium thermodynamics, and is facilitated and, thus, accelerated by memories of living experience persisting in the form of evolutionary successful living organizations and their constituents. PMID

  16. Order without design

    PubMed Central

    2010-01-01

    Experimental reality in molecular and cell biology, as revealed by advanced research technologies and methods, is manifestly inconsistent with the design perspective on the cell, thus creating an apparent paradox: where do order and reproducibility in living systems come from if not from design? I suggest that the very idea of biological design (whether evolutionary or intelligent) is a misconception rooted in the time-honored and thus understandably precious error of interpreting living systems/organizations in terms of classical mechanics and equilibrium thermodynamics. This error, introduced by the founders and perpetuated due to institutionalization of science, is responsible for the majority of inconsistencies, contradictions, and absurdities plaguing modern sciences, including one of the most startling paradoxes - although almost everyone agrees that any living organization is an open nonequilibrium system of continuous energy/matter flow, almost everyone interprets and models living systems/organizations in terms of classical mechanics, equilibrium thermodynamics, and engineering, i.e., in terms and concepts that are fundamentally incompatible with the physics of life. The reinterpretation of biomolecules, cells, organisms, ecosystems, and societies in terms of open nonequilibrium organizations of energy/matter flow suggests that, in the domain of life, order and reproducibility do not come from design. Instead, they are natural and inevitable outcomes of self-organizing activities of evolutionary successful, and thus persistent, organizations co-evolving on multiple spatiotemporal scales as biomolecules, cells, organisms, ecosystems, and societies. The process of self-organization on all scales is driven by economic competition, obeys empirical laws of nonequilibrium thermodynamics, and is facilitated and, thus, accelerated by memories of living experience persisting in the form of evolutionary successful living organizations and their constituents. PMID

  17. 40 CFR 305.27 - Accelerated order, order to dismiss.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Accelerated order, order to dismiss... Prehearing Procedures § 305.27 Accelerated order, order to dismiss. (a) General. The Presiding Officer, upon motion of any party or sua sponte, may at any time render an accelerated order in favor of the...

  18. Correlations in avalanche critical points.

    PubMed

    Cerruti, Benedetta; Vives, Eduard

    2009-07-01

    Avalanche dynamics and related power-law statistics are ubiquitous in nature, arising in phenomena such as earthquakes, forest fires, and solar flares. Very interestingly, an analogous behavior is associated with many condensed-matter systems, such as ferromagnets and martensites. Bearing it in mind, we study the prototypical random-field Ising model at T=0. We find a finite correlation between waiting intervals and the previous avalanche size. This correlation is not found in other models for avalanches but it is experimentally found in earthquakes and in forest fires. Our study suggests that this effect occurs in critical points that are at the end of a first-order discontinuity separating two regimes: one with high activity from another with low activity. PMID:19658651

  19. 48 CFR 53.216-1 - Delivery orders and orders under basic ordering agreements (OF 347).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under basic ordering agreements (OF 347). 53.216-1 Section 53.216-1 Federal Acquisition Regulations... Delivery orders and orders under basic ordering agreements (OF 347). OF 347, Order for Supplies or Services. OF 347, prescribed in 53.213(f), (or an approved agency form) may be used to place orders...

  20. Almost quantum correlations.

    PubMed

    Navascués, Miguel; Guryanova, Yelena; Hoban, Matty J; Acín, Antonio

    2015-01-01

    Quantum theory is not only successfully tested in laboratories every day but also constitutes a robust theoretical framework: small variations usually lead to implausible consequences, such as faster-than-light communication. It has even been argued that quantum theory may be special among possible theories. Here we report that, at the level of correlations among different systems, quantum theory is not so special. We define a set of correlations, dubbed 'almost quantum', and prove that it strictly contains the set of quantum correlations but satisfies all-but-one of the proposed principles to capture quantum correlations. We present numerical evidence that the remaining principle is satisfied too. PMID:25697645

  1. Local available quantum correlations

    NASA Astrophysics Data System (ADS)

    Mundarain, Douglas F.; de Guevara, María L. Ladrón

    2015-12-01

    In this work, local available quantum correlations are studied. They are defined in terms of mutual information of bipartite local measurements done over an optimal local basis complementary to the local basis which defines the respective classical correlations. For two qubits, it is always possible to choose the basis of classical correlations as the set of eigenvectors of σ _z (the third Pauli matrix) and complementary bases become the sets of eigenvectors of the observables orthogonal to σ _z. It is shown that all states with zero local available quantum correlations are separable but not necessarily strictly classical; this fact puts this kind of correlations in the middle between discord and entanglement. Since in many cases it may suffice to know whether a given state has quantum correlations, the structure of the states with zero local available quantum correlations is presented. It is also shown that there is a close connection between local available quantum correlations and the protocol of entanglement activation developed by Piani et al. (Phys Rev Lett 106:220403, 2011). If a state satisfies the sufficient condition for the entanglement swapping associated with this protocol, this state has nonzero local available quantum correlations.

  2. Electron correlation energies in atoms

    NASA Astrophysics Data System (ADS)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  3. Preselected Sub-Poissonian Correlations

    NASA Technical Reports Server (NTRS)

    Pavicic, Mladen

    1996-01-01

    The simplest possible photon-number-squeezed states containing only two photons and exhibiting sub-poissonian statistics with the Fano factor approaching 0.5 have been used for a proposal of a loophole-free Bell experiment requiring only 67 percent of detection efficiency. The states are obtained by the fourth order interference first of two downconverted photons at an asymmetrical beam splitter and thereupon of two photons from two independent singlets at an asymmetrical beam splitter. In the latter set-up, the other two photons which nowhere interacted and whose paths never crossed appear entangled in a singlet-like correlated state.

  4. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  5. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  6. 14 CFR 13.20 - Orders of compliance, cease and desist orders, orders of denial, and other orders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Orders of compliance, cease and desist orders, orders of denial, and other orders. 13.20 Section 13.20 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.20 Orders...

  7. Dynamics of electricity market correlations

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Escarela-Perez, R.; Espinosa-Perez, G.; Urrea, R.

    2009-06-01

    Electricity market participants rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. However, forecasting is hampered by the non-linear and stochastic nature of price time series. Diverse modeling strategies, from neural networks to traditional transfer functions, have been explored. These approaches are based on the assumption that price series contain correlations that can be exploited for model-based prediction purposes. While many works have been devoted to the demand and price modeling, a limited number of reports on the nature and dynamics of electricity market correlations are available. This paper uses detrended fluctuation analysis to study correlations in the demand and price time series and takes the Australian market as a case study. The results show the existence of correlations in both demand and prices over three orders of magnitude in time ranging from hours to months. However, the Hurst exponent is not constant over time, and its time evolution was computed over a subsample moving window of 250 observations. The computations, also made for two Canadian markets, show that the correlations present important fluctuations over a seasonal one-year cycle. Interestingly, non-linearities (measured in terms of a multifractality index) and reduced price predictability are found for the June-July periods, while the converse behavior is displayed during the December-January period. In terms of forecasting models, our results suggest that non-linear recursive models should be considered for accurate day-ahead price estimation. On the other hand, linear models seem to suffice for demand forecasting purposes.

  8. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  9. Magnetic correlations in a classic Mott system

    SciTech Connect

    Bao, W.; Broholm, C.; Aeppli, G.; Carter, S.A.; Dai, D.; Frost, C.D.; Honig, J.M.; Metcalf, P.

    1997-07-01

    The metal-insulator transition in V{sub 2}O{sub 3} causes a fundamental change in its magnetism. While the antiferromagnetic insulator (AFI) is a Heisenberg localized spin system, the antiferromagnetism in the strongly correlated metal is determined by a Fermi surface instability. Paramagnetic fluctuations in the metal and insulator represent similar spatial spin correlations, but are unrelated to the long range order in the AFI. The phase transition to the AFI induces an abrupt switching of magnetic correlations to a different magnetic wave vector. The AFI transition, therefore, is not a conventional spin order-disorder transition. Instead it is accounted for by an ordering in the occupation of the two degenerate d-orbitals at the Fermi level.

  10. Specific RNA binding to ordered phospholipid bilayers

    PubMed Central

    Janas, Tadeusz; Janas, Teresa; Yarus, Michael

    2006-01-01

    We have studied RNA binding to vesicles bounded by ordered and disordered phospholipid membranes. A positive correlation exists between bilayer order and RNA affinity. In particular, structure-dependent RNA binding appears for rafted (liquid-ordered) domains in sphingomyelin-cholesterol-1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. Binding to more highly ordered gel phase membranes is stronger, but much less RNA structure-dependent. All modes of RNA-membrane association seem to be electrostatic and headgroup directed. Fluorometry on 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes indicates that bound RNA broadens the gel-fluid melting transition, and reduces lipid headgroup order, as detected via fluorometric measurement of intramembrane electric fields. RNA preference for rafted lipid was visualized and confirmed using multiple fluorophores that allow fluorescence and fluorescence resonance energy transfer microscopy on RNA molecules closely associated with ordered lipid patches within giant vesicles. Accordingly, both RNA structure and membrane order could modulate biological RNA–membrane interactions. PMID:16641318

  11. Coulomb correlations and optical gap in polyacetylene

    SciTech Connect

    Baeriswyl, D.; Maki, K.

    1986-01-01

    A model including both electron-phonon coupling (as in the SSH Hamiltonian) and electron-electron interactions (on-site term U, nearest-neighbor term V) is treated within the variational scheme of Gutswiller. It is shown that for weak electron-phonon coupling the primary effect is a bond-order wave induced by electronic correlation, whereas the lattice dimerization is a secondary effect. Correspondingly the optical gap is mainly due to electronic correlation.

  12. Pentagon-pentagon correlations in water

    SciTech Connect

    Speedy, R.J.; Mezei, M.

    1985-01-03

    Computer simulation studies on the concentration of pentagonal rings of hydrogen-bonded water molecules (pentagons) and the spatial correlation of pentagons in liquid water are detailed. The pentagon-pentagon correlation function g/sub 55/(r) has a peak at r similarly ordered 3.2 A. The results support the idea that the anomalies of water may be related to the self-replicating propensity of pentagons in the random network. 24 references, 8 figures, 1 table.

  13. Correlates of Academic Procrastination.

    ERIC Educational Resources Information Center

    Milgram, Norman A.; And Others

    1993-01-01

    Investigated concurrent correlates of academic procrastination in Israeli college preparatory students (n=113). Procrastination in one course of study was found to be moderately correlated with procrastination in another but not to procrastination in routine tasks of daily living. Procrastination was weakly related to emotional upset about it and…

  14. ALMA correlator computer systems

    NASA Astrophysics Data System (ADS)

    Pisano, Jim; Amestica, Rodrigo; Perez, Jesus

    2004-09-01

    We present a design for the computer systems which control, configure, and monitor the Atacama Large Millimeter Array (ALMA) correlator and process its output. Two distinct computer systems implement this functionality: a rack- mounted PC controls and monitors the correlator, and a cluster of 17 PCs process the correlator output into raw spectral results. The correlator computer systems interface to other ALMA computers via gigabit Ethernet networks utilizing CORBA and raw socket connections. ALMA Common Software provides the software infrastructure for this distributed computer environment. The control computer interfaces to the correlator via multiple CAN busses and the data processing computer cluster interfaces to the correlator via sixteen dedicated high speed data ports. An independent array-wide hardware timing bus connects to the computer systems and the correlator hardware ensuring synchronous behavior and imposing hard deadlines on the control and data processor computers. An aggregate correlator output of 1 gigabyte per second with 16 millisecond periods and computational data rates of approximately 1 billion floating point operations per second define other hard deadlines for the data processing computer cluster.

  15. Exploring intertwined orders in cuprate superconductors

    DOE PAGESBeta

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with themore » uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.« less

  16. Exploring intertwined orders in cuprate superconductors

    SciTech Connect

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  17. Harmonic electron correlation operator.

    PubMed

    Rassolov, Vitaly A

    2011-07-21

    An appealing way to model electron correlation within the single determinant wave function formalism is through the expectation value of a linear two-electron operator. For practical reasons, it is desirable for such an operator to be universal, i.e., not depend on the positions and types of nuclei in a molecule. We show how a perturbation theory applied to a hookium atom provides for a particular form of a correlation operator, hence called the harmonic correlation operator. The correlation operator approach is compared and contrasted to the traditional ways to describe electron correlation. To investigate the two-electron approximation of this operator, we apply it to many-electron hookium systems. To investigate the harmonic approximation, we apply it to the small atomic systems. Directions of future research are also discussed. PMID:21786991

  18. Strongly-correlated heterostructures

    SciTech Connect

    Okamoto, Satoshi

    2012-01-01

    Electronic phase behavior in correlated-electron systems is a fundamental problem of condensed matter physics. The change in the phase behavior near surfaces and interfaces, i.e., {\\em electronic reconstruction}, is therefore the fundamental issue of the correlated-electron surface or interface science. In addition to basic science, understanding of such a phase behavior is of crucial importance for potential devices exploiting the novel properties of the correlated systems. In this article, we present a general overview of the field, and then discuss the recent theoretical progress mainly focusing on the correlation effects. We illustrate the general concept of {\\em electronic reconstruction} by studying model heterostructures consisting of strongly-correlated systems. Future directions for research are also discussed.

  19. LOCAL ANISOTROPY, HIGHER ORDER STATISTICS, AND TURBULENCE SPECTRA

    SciTech Connect

    Matthaeus, W. H.; Wan, M.; Osman, K. T.; Servidio, S.; Carbone, V.; Dmitruk, P.; Oughton, S.

    2012-05-10

    Correlation anisotropy emerges dynamically in magnetohydrodynamics (MHD), producing stronger gradients across the large-scale mean magnetic field than along it. This occurs both globally and locally, and has significant implications in space and astrophysical plasmas, including particle scattering and transport, and theories of turbulence. Properties of local correlation anisotropy are further documented here by showing through numerical experiments that the effect is intensified in more localized estimates of the mean field. The mathematical formulation of this property shows that local anisotropy mixes second-order with higher order correlations. Sensitivity of local statistical estimates to higher order correlations can be understood in connection with the stochastic coordinate system inherent in such formulations. We demonstrate this in specific cases, and illustrate the connection to higher order statistics by showing the sensitivity of local anisotropy to phase randomization, after which the global measure of anisotropy is recovered at all scales of averaging. This establishes that anisotropy of the local structure function is not a measure of anisotropy of the energy spectrum. Evidently, the local enhancement of correlation anisotropy is of substantial fundamental interest and must be understood in terms of higher order correlations, specifically fourth-order and above.

  20. Do-not-resuscitate order

    MedlinePlus

    ... order; DNR; DNR order; Advance care directive - DNR; Health care agent - DNR; Health care proxy - DNR; End-of-life - DNR; Living ... medical order written by a doctor. It instructs health care providers not to do cardiopulmonary resuscitation (CPR) ...

  1. Phase coherence induced by correlated disorder

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; O'Keeffe, Kevin P.; Strogatz, Steven H.

    2016-02-01

    We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.

  2. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.

  3. 49 CFR 453.3 - Detention orders and other orders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Detention orders and other orders. 453.3 Section 453.3 Transportation Other Regulations Relating to Transportation (Continued) COAST GUARD, DEPARTMENT OF HOMELAND SECURITY SAFETY APPROVAL OF CARGO CONTAINERS CONTROL AND ENFORCEMENT § 453.3 Detention orders and other orders. (a) The terms of...

  4. 49 CFR 453.3 - Detention orders and other orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Detention orders and other orders. 453.3 Section 453.3 Transportation Other Regulations Relating to Transportation (Continued) COAST GUARD, DEPARTMENT OF HOMELAND SECURITY SAFETY APPROVAL OF CARGO CONTAINERS CONTROL AND ENFORCEMENT § 453.3 Detention orders and other orders. (a) The terms of...

  5. 48 CFR 53.216-1 - Delivery orders and orders under basic ordering agreements (OF 347).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Delivery orders and orders under basic ordering agreements (OF 347). 53.216-1 Section 53.216-1 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS Prescription of Forms 53.216-1 Delivery orders and orders under...

  6. Correlation reflectometry at TEXTOR

    SciTech Connect

    Kraemer-Flecken, A.; Soldatov, S.; Vowinkel, B.; Mueller, P.

    2010-11-15

    In high temperature fusion plasmas the transport of energy and particles is commonly believed to be driven by turbulence. Turbulence quantities as correlation length and decorrelation time are important for the confinement properties of a plasma. Besides other diagnostics, correlation reflectometry has proven to be a suitable tool for the measurement of turbulence properties. At the medium sized Toroidal EXperiment for Technical Oriented Research (TEXTOR) the existing correlation reflectometry has been recently upgraded. A new reflectometer based on a microwave synthesizer has been developed and installed for the investigation of turbulence properties in a fusion plasma. Together with the existing reflectometer the measurement of radial correlation length and decorrelation time becomes available. Both reflectometers are computer controlled and allow to program individual frequency sequences and the duration of each frequency step. With the existing poloidal antenna array at {theta}=0 deg. and on top of the vacuum vessel, the system allows the measurement of radial correlation and poloidal correlations at the same time. First experiments have been performed and the results on the radial correlation length of density fluctuations in a fusion plasma are presented.

  7. Structural order and disorder in Precambrian kerogens

    SciTech Connect

    Buseck, P.R.; Bo-Jun, H.; Miner, B.

    1988-01-01

    High-resolution transmission electron microscopy (HRTEM) has been used to examine the structures of a wide range of Precambrian kerogens from rocks with ages between 0.9 and 3.8 billion years. The authors find recognizable structural ordering in samples that show little or no evidence of crystallinity by powder X-ray diffraction measurements. A wide range in degree of ordering is evident in the HRTEM images. A rough correlation exists between the ordering displayed in the HRTEM images and both the sample ages and their H/C ratios. Many kerogen samples are structurally heterogeneous, possibly reflecting a variety of precursors, and source regions. The observed structural heterogeneities probably extend to other parameters; when isotopic and X-ray measurements can be made on the same scale as HRTEM images, similar scatter presumably will also be evident.

  8. Haystack Observatory VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan

    2013-01-01

    This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.

  9. Entropic Nonsignaling Correlations

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Budroni, Costantino

    2016-06-01

    We introduce the concept of entropic nonsignaling correlations, i.e., entropies arising from probabilistic theories that are compatible with the fact that we cannot transmit information instantaneously. We characterize and show the relevance of these entropic correlations in a variety of different scenarios, ranging from typical Bell experiments to more refined descriptions such as bilocality and information causality. In particular, we apply the framework to derive the first entropic inequality testing genuine tripartite nonlocality in quantum systems of arbitrary dimension and also prove the first known monogamy relation for entropic Bell inequalities. Further, within the context of complex Bell networks, we show that entropic nonlocal correlations can be activated.

  10. Statistics of atmospheric correlations.

    PubMed

    Santhanam, M S; Patra, P K

    2001-07-01

    For a large class of quantum systems, the statistical properties of their spectrum show remarkable agreement with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider. In this work, we show that the random matrix approach can be beneficially applied to a completely different classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmospheric parameters that characterize the state of atmosphere. We show that the spectrum of atmospheric correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric empirical correlation matrices that have physical significance are marked by deviations from the eigenvector distribution. PMID:11461326

  11. Correlated Temporal and Spectral Variability

    NASA Technical Reports Server (NTRS)

    Swank, Jean H.

    2007-01-01

    The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the Xray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and review briefly what they tell us about the physical states of the systems.

  12. Symmetry of charge order in cuprates

    NASA Astrophysics Data System (ADS)

    Comin, R.; Sutarto, R.; He, F.; da Silva Neto, E. H.; Chauviere, L.; Fraño, A.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Yoshida, Y.; Eisaki, H.; Achkar, A. J.; Hawthorn, D. G.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2015-08-01

    Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-Tc superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr2-xLaxCuO6+δ (Bi2201) and YBa2Cu3O6+y (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.

  13. Symmetry of charge order in cuprates.

    PubMed

    Comin, R; Sutarto, R; He, F; da Silva Neto, E H; Chauviere, L; Fraño, A; Liang, R; Hardy, W N; Bonn, D A; Yoshida, Y; Eisaki, H; Achkar, A J; Hawthorn, D G; Keimer, B; Sawatzky, G A; Damascelli, A

    2015-08-01

    Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity. PMID:26006005

  14. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  15. Tsukuba VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Kurihara, Shinobu; Nozawa, Kentaro

    2013-01-01

    The K5/VSSP software correlator (Figure 1), located in Tsukuba, Japan, is operated by the Geospatial Information Authority of Japan (GSI). It is fully dedicated to processing the geodetic VLBI sessions of the International VLBI Service for Geodesy and Astrometry. All of the weekend IVS Intensives (INT2) and the Japanese domestic VLBI observations organized by GSI were processed at the Tsukuba VLBI Correlator.

  16. Correlations and droplet growth

    NASA Technical Reports Server (NTRS)

    Marder, M.

    1985-01-01

    Consideration is given to the time development of a system in which small spheres of a stable phase grow out of a supersaturated melt. The spheres then grow and shrink in a manner similar to Ostwald ripening. The growth process of pairs of particles in an effective background accounts for can be used to explain the long time correlations which develop in the system. The correlations broaden the distribution of particles sizes, even for relatively dilute systems.

  17. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  18. Order sets utilization in a clinical order entry system.

    PubMed

    Cowden, Daniel; Barbacioru, Catalin; Kahwash, Eiad; Saltz, Joel

    2003-01-01

    An order set is a predefined template that has been utilized in the standard care of hospitals for many years. While in the past, it took the form of pen and paper, today, it is, indeed, electronic. Within order sets are distinct ordering patterns that may yield fruitful results for clinicians and informaticians, alike. Protocols like there electronic counterpart, order sets, provide an 'indication' identifying the clinical scenario of the patient's condition when the ordering event occurred. This 'indication' is rarely captured by individual orders, and provides difficult challenges to developers of information systems. While mandating an 'indication' be entered for every medication or lab order makes the job much more tasking on the physician provider, it is appealing to researchers and accountants. We have attempted to bypasses that consideration by identifying ordering patterns that predict diagnostic related codes (DRGs) and diagnostic codes which would greatly facilitate the information gathering process and still provide a flexible and user friendly physician interface. PMID:14728324

  19. Protective orders: questions and conundrums.

    PubMed

    Logan, T K; Shannon, Lisa; Walker, Robert; Faragher, Teri Marie

    2006-07-01

    Current media portrayal of protective orders is often negative, focusing on weaknesses in how protective orders are obtained and enforced. This review of research findings on protective orders examines issues and suggests areas in need of future research to clarify and improve public policy. More specifically, this review has five main objectives: (a) to provide background information about partner violence and the need for protective orders; (b) to describe what protective orders are, how many women obtain them, and the advantages and disadvantages of obtaining protective orders; (c) to examine characteristics of women who seek protective orders; (d) to explore research on whether protective orders actually increase women's safety; and (e) to highlight opportunities and gaps in the practice and research literature regarding the use of protective orders for women with violent partners or ex-partners. PMID:16785286

  20. Higher-Order Mentalising and Executive Functioning

    PubMed Central

    2015-01-01

    Higher-order mentalising is the ability to represent the beliefs and desires of other people at multiple, iterated levels – a capacity that sets humans apart from other species. However, there has not yet been a systematic attempt to determine what cognitive processes underlie this ability. Here we present three correlational studies assessing the extent to which performance on higher-order mentalising tasks relates to emotion recognition, self-reported empathy and self-inhibition. In Study 1a and 1b, examining emotion recognition and empathy, a relationship was identified between individual differences in the ability to mentalise and an emotion recognition task (the Reading the Mind in the Eyes task), but no correlation was found with the Empathy Quotient, a self-report scale of empathy. Study 2 investigated whether a relationship exists between individual mentalising abilities and four different forms of self-inhibition: motor inhibition, executive inhibition, automatic imitation and temporal discounting. Results demonstrate that only temporal discounting performance relates to mentalising ability; suggesting that cognitive skills relevant to representation of the minds of others’ are not influenced by the ability to perform more basic inhibition. Higher-order mentalising appears to rely on the cognitive architecture that serves both low-level social cognition (emotion recognition), and complex forms of inhibition. PMID:26543298

  1. Domain growth and ordering kinetics in dense quark matter

    SciTech Connect

    Singh, A.; Puri, S.; Mishra, H.

    2012-06-15

    The kinetics of chiral transitions in quark matter is studied in a two-flavor Nambu-Jona-Lasinio model. We focus on the phase-ordering dynamics subsequent to a temperature quench from the massless quark phase to the massive quark phase. We study the dynamics by considering a phenomenological model (Ginzburg-Landau free-energy functional). The morphology of the ordering system is characterized by the scaling of the order-parameter correlation function.

  2. Correlations and Fluctuations: Status and Perspectives

    SciTech Connect

    Koch, Volker; Koch, Volker

    2008-04-15

    We will provide an overview of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. Observables, which have been discussed in the literature will be briefly reviewed and put in context with experiment and information from Lattice QCD. Special attention will be given to the QCD critical point and the first order co-existence region.

  3. DO MODEL UNCERTAINTY WITH CORRELATED INPUTS

    EPA Science Inventory

    The effect of correlation among the input parameters and variables on the output uncertainty of the Streeter-Phelps water quality model is examined. hree uncertainty analysis techniques are used: sensitivity analysis, first-order error analysis, and Monte Carlo simulation. odifie...

  4. Vorticity, defects and correlations in active turbulence

    PubMed Central

    Thampi, Sumesh P.; Golestanian, Ramin; Yeomans, Julia M.

    2014-01-01

    We describe a numerical investigation of a continuum model of an active nematic, concentrating on the regime of active turbulence. Results are presented for the effect of three parameters, activity, elastic constant and rotational diffusion constant, on the order parameter and flow fields. Defects and distortions in the director field act as sources of vorticity, and thus vorticity is strongly correlated to the director field. In particular, the characteristic length of decay of vorticity and order parameter correlations is controlled by the defect density. By contrast, the decay of velocity correlations is determined by a balance between activity and dissipation. We highlight the role of microscopic flow generation mechanisms in determining the flow patterns and characteristic scales of active turbulence and contrast the behaviour of extensile and contractile active nematics. PMID:25332382

  5. Nonclassicality of Temporal Correlations.

    PubMed

    Brierley, Stephen; Kosowski, Adrian; Markiewicz, Marcin; Paterek, Tomasz; Przysiężna, Anna

    2015-09-18

    The results of spacelike separated measurements are independent of distant measurement settings, a property one might call two-way no-signaling. In contrast, timelike separated measurements are only one-way no-signaling since the past is independent of the future but not vice versa. For this reason some temporal correlations that are formally identical to nonclassical spatial correlations can still be modeled classically. We propose a new formulation of Bell's theorem for temporal correlations; namely, we define nonclassical temporal correlations as the ones which cannot be simulated by propagating in time the classical information content of a quantum system given by the Holevo bound. We first show that temporal correlations between results of any projective quantum measurements on a qubit can be simulated classically. Then we present a sequence of general measurements on a single m-level quantum system that cannot be explained by propagating in time an m-level classical system and using classical computers with unlimited memory. PMID:26430975

  6. Correlational Neural Networks.

    PubMed

    Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman

    2016-02-01

    Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches. PMID:26654210

  7. Olson Order of Quantum Observables

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    2016-07-01

    M.P. Olson, Proc. Am. Math. Soc. 28, 537-544 (1971) showed that the system of effect operators of the Hilbert space can be ordered by the so-called spectral order such that the system of effect operators is a complete lattice. Using his ideas, we introduce a partial order, called the Olson order, on the set of bounded observables of a complete lattice effect algebra. We show that the set of bounded observables is a Dedekind complete lattice.

  8. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  9. Understanding correlation coefficients in treaty verification

    SciTech Connect

    DeVolpi, A.

    1991-11-01

    When a pair of images are compared on a point-by-point basis, the linear-correlation coefficient is usually used as a measure of similarity or dissimilarity. This paper evaluates the theoretical underpinnings and limitation of the linear-correlation coefficient, as well as other related statistics, particularly for cases where inherent white noise is present. As a result of the limitations in linear-correlation, an additional step has been derived -- local-sum clustering -- in order to improve recognition of small dissimilarities in a pair images. Results show that three-stage procedure, consisting of first establishing congruence of the two images, than using the linear-correlation coefficient as a test of true negatives, and finally qualifying a true positive by using the cluster (local-sum) method. These algorithmic stages would be especially useful in arms control treaty verification.

  10. Visualization of a stock market correlation matrix

    NASA Astrophysics Data System (ADS)

    Rea, Alethea; Rea, William

    2014-04-01

    This paper presents a novel application of Neighbor-Net, a clustering algorithm developed for constructing a phylogenetic network in the field of evolutionary biology, to visualizing a correlation matrix. We apply Neighbor-Net as implemented in the SplitsTree software package to 48 stocks listed on the New Zealand Stock Exchange. We show that by visualizing the correlation matrix using a Neighbor-Net splits graph and its associated circular ordering of the stocks that some of the problems associated with understanding the large number of correlations between the individual stocks can be overcome. We compare the visualization of Neighbor-Net with that provided by hierarchical clustering trees and minimum spanning trees. The use of Neighbor-Net networks, or splits graphs, yields greater insight into how closely individual stocks are related to each other in terms of their correlations and suggests new avenues of research into how to construct small diversified stock portfolios.

  11. Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States.

    PubMed

    Tamma, Vincenzo; Laibacher, Simon

    2015-06-19

    We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100% visibility entanglement correlations even for input photons distinguishable in their frequencies. PMID:26196976

  12. Management of ambiguities in magnetostratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Charreau, J.; Lallier, F.; Antoine, C.; Caumon, G.; Ruiu, J.

    2012-12-01

    Magnetostratigraphy is a powerful tool to provide absolute dating of sediments enabling good and detailed chronostratigraphic correlations. It is based on the correlation of a magnetic polarity column, observed and measured in a given sediment section, to a magnetic polarity reference scale where polarity changes are well dated via other independent methods. However, magnetostratigraphic correlations are loose because only constrained by binary magnetic chrons (i.e normal or reversal) and their thickness, which are both defined from depth variations of the magnetic remanent directions. The thickness of a given magnetic chron is a function of time and sediment accumulation rate, which may not be stationary, leading to ambiguities when performing the correlations. To address these ambiguities, a numerical method based on the Dynamic Time Warping algorithm is proposed. Magnetostratigraphics correlation are computed in order to minimize the local variation of accumulation rate. The main advantage of the proposed method is to automatically provide a set of reasonably likely correlations. This set can then be scrutinized for further analysis and interpretation. However, the likelihood of a correlation should be handled carefully. It depends on the information content of the magnetotratigraphic section itself and remain ultimately valid by ancillary constraint. Nevertheless, the method is shown to present consistent results on difficult synthetic cases simulating abrupt variations of the sedimentation rate, and provides interesting insights on true sections debated by previous authors.

  13. Management of ambiguities in magnetostratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Lallier, Florent; Antoine, Christophe; Charreau, Julien; Caumon, Guillaume; Ruiu, Jeremy

    2013-06-01

    Magnetostratigraphy is a powerful tool to provide absolute dating of sediments enabling robust and detailed chronostratigraphic correlations. It is based on the correlation of a magnetic polarity column, observed and measured in a given sediment section, to a magnetic polarity reference scale where polarity changes are well dated via other independent methods. However, magnetostratigraphic correlations are loose as they are only constrained by binary magnetic chrons (i.e. normal or reversal) and their thickness, which are both defined from depth variations of the magnetic remanent directions. The thickness of a given magnetic polarity zone is a function of time and sediment accumulation rate, which may not be stationary, leading to ambiguities when performing the correlations. To address these ambiguities, a numerical method based on the Dynamic Time Warping algorithm is proposed. Magnetostratigraphic correlations are computed in order to minimise the local variation of the accumulation rate. The main advantage of the proposed method is to automatically provide a set of reasonably likely correlations. This set can then be scrutinised for further analysis and interpretation. However, the likelihood of a correlation should be handled carefully as it depends on the information content of the magnetostratigraphic section itself and remain ultimately valid by ancillary constraint. Nevertheless, the method gives consistent results on difficult synthetic cases that simulate abrupt variations of the sedimentation rate. Insights on true sections debated by previous authors are also given.

  14. The Polyakov loop correlator at NNLO and singlet and octet correlators

    SciTech Connect

    Ghiglieri, Jacopo

    2011-05-23

    We present the complete next-to-next-to-leading-order calculation of the correlation function of two Polyakov loops for temperatures smaller than the inverse distance between the loops and larger than the Coulomb potential. We discuss the relationship of this correlator with the singlet and octet potentials which we obtain in an Effective Field Theory framework based on finite-temperature potential Non-Relativistic QCD, showing that the Polyakov loop correlator can be re-expressed, at the leading order in a multipole expansion, as a sum of singlet and octet contributions. We also revisit the calculation of the expectation value of the Polyakov loop at next-to-next-to-leading order.

  15. Entropy, local order, and the freezing transition in Morse liquids.

    PubMed

    Chakraborty, Somendra Nath; Chakravarty, Charusita

    2007-07-01

    The behavior of the excess entropy of Morse and Lennard-Jones liquids is examined as a function of temperature, density, and the structural order metrics. The dominant pair correlation contribution to the excess entropy is estimated from simulation data for the radial distribution function. The pair correlation entropy (S2) of these simple liquids is shown to have a threshold value of (-3.5+/-0.3)kB at freezing. Moreover, S2 shows a T(-2/5) temperature dependence. The temperature dependence of the pair correlation entropy as well as the behavior at freezing closely correspond to earlier predictions, based on density functional theory, for the excess entropy of repulsive inverse power and Yukawa potentials [Rosenfeld, Phys. Rev. E 62, 7524 (2000)]. The correlation between the pair correlation entropy and the local translational and bond orientational order parameters is examined, and, in the case of the bond orientational order, is shown to be sensitive to the definition of the nearest neighbors. The order map between translational and bond orientational order for Morse liquids and solids shows a very similar pattern to that seen in Lennard-Jones-type systems. PMID:17677432

  16. Correlation method of electrocardiogram analysis

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Timochko, Katerina B.

    2002-02-01

    The electrocardiograph method is the informational source for functional heart state characteristics. The electrocardiogram parameters are the integrated map of many component characteristics of the heart system and depend on disturbance requirements of each device. In the research work the attempt of making the skeleton diagram of perturbation of the heart system is made by the characteristic description of its basic components and connections between them through transition functions, which are written down by the differential equations of the first and second order with the purpose to build-up and analyze electrocardiogram. Noting the vector character of perturbation and the various position of heart in each organism, we offer own coordinate system connected with heart. The comparative analysis of electrocardiogram was conducted with the usage of correlation method.

  17. Sensory Correlations in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.

    2007-01-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…

  18. CORRELATION AND REGRESSION

    EPA Science Inventory

    Webcast entitled Statistical Tools for Making Sense of Data, by the National Nutrient Criteria Support Center, N-STEPS (Nutrients-Scientific Technical Exchange Partnership. The section "Correlation and Regression" provides an overview of these two techniques in the context of nut...

  19. Multivariate Intraclass Correlation.

    ERIC Educational Resources Information Center

    Wiley, David E.; Hawkes, Thomas H.

    This paper is an explication of a statistical model which will permit an interpretable intraclass correlation coefficient that is negative, and a generalized extension of that model to cover a multivariate problem. The methodological problem has its practical roots in an attempt to find a statistic which could indicate the degree of similarity or…

  20. Neuroanatomical Correlates of Intelligence

    ERIC Educational Resources Information Center

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches…

  1. Correlates of School Stress.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    As part of a continuing series of research studies on stress in schools, this study examined the construct validity of peripheral temperature at the fingertips as a measure of school stress. Measurements were made in classes selected at random from 11 volunteer schools in South Carolina. Three types of correlational studies were undertaken: (1)…

  2. Correlates of Adolescent Parenting.

    ERIC Educational Resources Information Center

    Reis, Janet S.; Herz, Elicia J.

    1987-01-01

    Studied correlates of teenage parenting in self-selected sample of 177 teenage parents. Parental race, punitive attitudes toward child rearing, and parental age were statistically significant predictors of total Home Observation for Measurement of the Environment scores. Older, white adolescent mothers with less punitive attitudes toward child…

  3. HIM Correlational Study

    ERIC Educational Resources Information Center

    Powell, Evan R.

    1977-01-01

    This study uses two methods of analysis to examine the degree to which items within the cells of the Hill Interaction Matrix correlate. It is found that the table of specifications does not hold up. But the author recommends caution in interpreting this finding. (Author/BP)

  4. Quantum Fluctuations of a Superconductor Order Parameter.

    PubMed

    Arutyunov, K Yu; Lehtinen, J S

    2016-12-01

    Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed. PMID:27535694

  5. Ordered delinquency: the "effects" of birth order on delinquency.

    PubMed

    Cundiff, Patrick R

    2013-08-01

    Juvenile delinquency has long been associated with birth order in popular culture. While images of the middle child acting out for attention or the rebellious youngest child readily spring to mind, little research has attempted to explain why. Drawing from Adlerian birth order theory and Sulloway's born-to-rebel hypothesis, I examine the relationship between birth order and a variety of delinquent outcomes during adolescence. Following some recent research on birth order and intelligence, I use new methods that allow for the examination of between-individual and within-family differences to better address the potential spurious relationship. My findings suggest that contrary to popular belief, the relationship between birth order and delinquency is spurious. Specifically, I find that birth order effects on delinquency are spurious and largely products of the analytic methods used in previous tests of the relationship. The implications of this finding are discussed. PMID:23719623

  6. Nonsymmetrized correlations in quantum noninvasive measurements.

    PubMed

    Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand; Belzig, Wolfgang

    2013-06-21

    A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction. PMID:23829718

  7. Nonsymmetrized Correlations in Mesoscopic Current Measurements

    NASA Astrophysics Data System (ADS)

    Belzig, Wolfgang; Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand

    2014-03-01

    A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like < I(ω) I(- ω) > , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme [A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys. Rev. Lett. 110, 250404 (2013)]. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction.

  8. Correlation-induced spectral changes

    NASA Astrophysics Data System (ADS)

    Wolf, Emil; James, Daniel F. V.

    1996-06-01

    This paper presents a review of research, both theoretical and experimental, concerning the influence of coherence properties of fluctuating light sources and of correlation properties of scattering media on the spectra of radiated and scattered fields. Much of this research followed a discovery made in 1986, that the spectrum of light may change on propagation, even in free space. More than 100 papers on this topic have been published to date and many of them are reviewed, or at least mentioned, in this article. After an introduction and a summary of some of the main mathematical results relating to second-order coherence theory of statistically stationary optical fields, spectral changes that may take place on superposing fields produced by two partially correlated sources are discussed. Spectral effects in fields produced by two-dimensional secondary sources and by three-dimensional primary sources are then considered. The section which follows describes spectral changes that may arise when polychromatic light is scattered on media whose physical properties vary randomly either in space and/or in time. A review is also presented of recent research, which has revealed that under certain circumstances the changes in the spectrum of light scattered on random media may imitate the Doppler effect, even though the source, the medium and the observer are all at rest with respect to one another. In the final section a brief review is given of a new emerging technique sometimes called spatial-coherence spectroscopy. It is based on the discovery that it is possible, under certain circumstances, to determine field correlations from spectral measurements.

  9. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie; Smith, Randy J.; Warren, John B.; Elliott, Donald

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  10. ASTROCHEMICAL CORRELATIONS IN MOLECULAR CLOUDS

    SciTech Connect

    Gaches, Brandt A. L.; Offner, Stella S. R.; Rosolowsky, Erik W.; Bisbas, Thomas G. E-mail: soffner@astro.umass.edu E-mail: tb@star.ucl.ac.uk

    2015-02-01

    We investigate the spectral correlations between different species used to observe molecular clouds. We use hydrodynamic simulations and a full chemical network to study the abundances of over 150 species in typical Milky Way molecular clouds. We perform synthetic observations in order to produce emission maps of a subset of these tracers. We study the effects of different lines of sight and spatial resolution on the emission distribution and perform a robust quantitative comparison of the species to each other. We use the Spectral Correlation Function (SCF), which quantifies the root mean squared difference between spectra separated by some length scale, to characterize the structure of the simulated cloud in position-position-velocity (PPV) space. We predict the observed SCF for a broad range of observational tracers, and thus identify homologous species. In particular, we show that the pairs C and CO, C{sup +} and CN, and NH{sub 3} and H{sub 2}CS have very similar SCFs. We measure the SCF slope variation as a function of beam size for all species and demonstrate that the beam size has a distinct effect on different species emission. However, for beams of up to 10'', placing the cloud at 1 kpc, the change is not large enough to move the SCF slopes into different regions of parameter space. The results from this study provide observational guidance for choosing the best tracer to probe various cloud length scales.

  11. Dipolar correlations in liquid water

    SciTech Connect

    Zhang, Cui; Galli, Giulia

    2014-08-28

    We present an analysis of the dipolar correlations in water as a function of temperature and density and in the presence of simple ionic solutes, carried out using molecular dynamics simulations and empirical potentials. We show that the dipole-dipole correlation function of the liquid exhibits sizable oscillations over nanodomains of about 1.5 nm radius, with several isosbestic points as a function of temperature; the size of the nanodomains is nearly independent on temperature and density, between 240 and 400 K and 0.9 and 1.3 g/cm{sup 3}, but it is substantially affected by the presence of solvated ions. In the same range of thermodynamic conditions, the decay time (τ) of the system dipole moment varies by a factor of about 30 and 1.5, as a function of temperature and density, respectively. At 300 K, we observed a maximum in τ as a function of density, and a corresponding shallow maximum in the tetrahedral order parameter, in a range where the diffusion coefficient, the pressure and the dielectric constant increase monotonically.

  12. CMB Lensing Cross Correlations

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey

    2014-03-01

    A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.

  13. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  14. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  15. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  16. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  17. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  18. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  19. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  20. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  1. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  2. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  3. Statistical analysis of synovial fluid layers phase maps in the diagnostics of development and differentiation of pathological changes severity

    NASA Astrophysics Data System (ADS)

    Kvasniuk, D. I.; Vasyuk, V. L.

    2011-09-01

    A new method for differential diagnosis of pathological changes of the joints on the basis of synovial fluid was founded. Adduced description scheme and the principles of polarization filtering to determine the coordinate distributions of phase shifts.The optical model of polycrystalline networks of knee joint synovial fluid is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of synovial fluid smears and the change in optical anisotropy of this biological object. The diagnostic criteria of knee joint inflammation processes are determined.

  4. Statistical analysis of synovial fluid layers phase maps in the diagnostics of development and differentiation of pathological changes severity

    NASA Astrophysics Data System (ADS)

    Kvasniuk, D. I.; Vasyuk, V. L.

    2012-01-01

    A new method for differential diagnosis of pathological changes of the joints on the basis of synovial fluid was founded. Adduced description scheme and the principles of polarization filtering to determine the coordinate distributions of phase shifts.The optical model of polycrystalline networks of knee joint synovial fluid is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of synovial fluid smears and the change in optical anisotropy of this biological object. The diagnostic criteria of knee joint inflammation processes are determined.

  5. System of the phase tomography of optically anisotropic polycrystalline films of biological fluids

    NASA Astrophysics Data System (ADS)

    Zabolotna, N. I.; Pavlov, S. V.; Ushenko, A. G.; Karachevtsev, A. O.; Savich, V. O.; Sobko, O. V.; Olar, O. V.

    2014-08-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin and collagen fibrils of uterine neck tissue of different pathological states - precancer (dysplasia) and cancer (adenocarcinoma) are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  6. Multi baseline Grid Software Correlator

    NASA Astrophysics Data System (ADS)

    Moritaka, Kimura; Nakajima, Junichi; Kondo, Tetsuro

    Software VLBI correlation is regarded as a solution for next generation VLBI. With a flexibility of the software correlation programming, appropriate scientific correlations by scientists are possible as well as the post processing. As the first experiment to handle Gbps VLBI data, multi baseline Grid correlator have been developing at CRL. The performance of software correlation adopted multi CPUs, SIMD architectures and Grid computing technology has nearly reached hardware correlator performance.

  7. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  8. Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular tumbling and correlated local dynamics on all time scales

    NASA Astrophysics Data System (ADS)

    Vögeli, Beat

    2010-07-01

    A simple general expression for the NMR cross-correlated relaxation rate under anisotropic molecular tumbling is presented for globular proteins. The derivation includes effects of fast and slow motion of the interaction tensors and correlation between them. Expressions suitable for practical analysis are tailored in dependence of standard order parameters of the individual interactions. It is shown that these order parameters must be sensitive to slow motion (slower than molecular tumbling) for detection of slow correlated motion. Such order parameters are those obtained from residual dipolar couplings but not those obtained from T1, T2, and heteronuclear Nuclear Overhauser Enhancement measurements.

  9. Ordering dynamics in collectively swimming Surf Scoters.

    PubMed

    Lukeman, Ryan

    2014-08-21

    One striking feature of collective motion in animal groups is a high degree of alignment among individuals, generating polarized motion. When order is lost, the dynamic process of reorganization, directly resulting from the individual interaction rules, provides significant information about both the nature of the rules, and how these rules affect the functioning of the collective. By analyzing trajectories of collectively swimming Surf Scoters (Melanitta perspicillata) during transitions between order and disorder, I find that individual speed and polarization are positively correlated in time, such that individuals move more slowly in groups exhibiting lower alignment. A previously validated zone-based model framework is used to specify interactions that permit repolarization while maintaining group cohesion and avoiding collisions. Polarization efficiency is optimized under the constraints of cohesion and collision-avoidance for alignment-dominated propulsion (versus autonomous propulsion), and for repulsion an order of magnitude larger than attraction and alignment. The relative strengths of interactions that optimize polarization also quantitatively recover the speed-polarization dependence observed in the data. Parameters determined here through optimizing polarization efficiency are essentially the same as those determined previously from a different approach: a best-fit model for polarized Surf Scoter movement data. The rules governing these flocks are therefore robust, accounting for behavior across a range of order and structure, and also highly responsive to perturbation. Flexibility and efficient repolarization offers an adaptive explanation for why specific interactions in such animal groups are used. PMID:24675619

  10. 40 CFR 305.27 - Accelerated order, order to dismiss.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Accelerated order, order to dismiss. 305.27 Section 305.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS COMPREHENSIVE ENVIRONMENTAL RESPONSE,...

  11. Counterbalancing for Serial Order Carryover Effects in Experimental Condition Orders

    ERIC Educational Resources Information Center

    Brooks, Joseph L.

    2012-01-01

    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed…

  12. Ordering within Moral Orders to Manage Classroom Trouble

    ERIC Educational Resources Information Center

    Doherty, Catherine; McGregor, Rowena; Shield, Paul

    2016-01-01

    This paper demonstrates how classroom trouble warranting teacher intervention can stem from transgressions in different layers of the complex moral order regulating classroom interactions. The paper builds from Durkheim's treatment of schooling as the institution responsible for the inculcation of a shared moral order, Bernstein's distinction…

  13. Rank order scaling of pictorial depth

    PubMed Central

    van Doorn, Andrea; Koenderink, Jan; Wagemans, Johan

    2011-01-01

    We address the topic of “pictorial depth” in cases of pictures that are unlike photographic renderings. The most basic measure of “depth” is no doubt that of depth order. We establish depth order through the pairwise depth-comparison method, involving all pairs from a set of 49 fiducial points. The pictorial space for this study was evoked by a capriccio (imaginary landscape) by Francesco Guardi (1712–1793). In such a drawing pictorial space is suggested by the artist through a small set of conventional depth cues. As a result typical Western observers tend to agree largely in their visual awareness when looking at such art. We rank depths for locations that are not on a single surface and far apart in pictorial space. We find that observers resolve about 40 distinct depth layers and agree largely in this. From a previous experiment we have metrical data for the same observers. The rank correlations between the results are high. Perhaps surprisingly, we find no correlation between the number of distinct depth layers and the total metrical depth range. Thus, the relation between subjective magnitude and discrimination threshold fails to hold for pictorial depth. PMID:23145256

  14. Order stars and stiff integrators

    NASA Astrophysics Data System (ADS)

    Hairer, Ernst; Wanner, Gerhard

    2000-12-01

    Order stars, introduced in G. Wanner, E. Hairer, S.P. Nørsett (Order stars and stability theorems, BIT 18 (1978) 475-489), have become a fundamental tool for the understanding of order and stability properties of numerical methods for stiff differential equations. This survey retraces their discovery and their principal achievements. We also sketch some later extensions and describe some recent developments.

  15. Generalized Bond Order Parameters to Characterize Transient Crystals

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu; Alder, Berni

    2013-03-01

    Higher order parameters in the hard disk fluid are computed to investigate the number, the life time and size of transient crystal nuclei in the pre-freezing phase. The methodology introduces further neighbor shells bond orientational order parameters and coarse-grains the correlation functions needed for the evaluation of the stress autocorrelation function for the viscosity. We successfully reproduce results by the previous collision method for the pair orientational correlation function, but some two orders of magnitude faster. This speed-up allows calculating the time dependent four body orientational correlation between two different pairs of particles as a function of their separation, needed to characterize the size of the transient crystals. The result is that the slow decay of the stress autocorrelation function near freezing is due to a large number of rather small crystal nuclei lasting long enough to lead to the molasses tail.

  16. Generalized bond order parameters to characterize transient crystals

    NASA Astrophysics Data System (ADS)

    Isobe, M.; Alder, B. J.

    2012-11-01

    Higher order parameters in the hard disk fluid are computed to investigate the number, the lifetime, and size of transient crystal nuclei in the pre-freezing phase. The methodology introduces further neighbor shells bond orientational order parameters and coarse-grains the correlation functions needed for the evaluation of the stress autocorrelation function for the viscosity. We successfully reproduce results by the previous collision method for the pair orientational correlation function, but some two orders of magnitude faster. This speed-up allows calculating the time dependent four body orientational correlation between two different pairs of particles as a function of their separation, needed to characterize the size of the transient crystals. The result is that the slow decay of the stress autocorrelation function near freezing is due to a large number of rather small crystal nuclei lasting long enough to lead to the molasses tail.

  17. Correlators in nontrivial backgrounds

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Stephanou, Michael

    2009-01-15

    Operators in N=4 super Yang-Mills theory with an R-charge of O(N{sup 2}) are dual to backgrounds which are asymtotically AdS{sub 5}xS{sup 5}. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.

  18. Correlations and Ostwald ripening

    NASA Technical Reports Server (NTRS)

    Marder, M.

    1987-01-01

    A previously developed model (Weins and Cahn, 1973) describing the growth of spheres of a second phase in metal alloys (Ostwald coarsening) is slightly modified to make it possible to study the complete time evolution of the system rather than simply the late-stage scaling behavior. Closed equations are obtained which describe the time evolution of two-particle correlations in the system. The development of the correlations is analyzed, and simpler expressions are found and solved numerically. The results are compared with experimental data for different systems (e.g., Ni-Al, Ni-Cr-Al, Co-Ni-Cr-Ti, Cu-Co, and MgO-Fe), alternate methods, and existing theories.

  19. Digital demodulator-correlator

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Martin, W. L.; Zygielbaum, A. I.; Goldstein, R. M.; Hubbard, W. P. (Inventor)

    1978-01-01

    An apparatus for demodulation and correlation of a code modulated 10 MHz signal is presented. The apparatus is comprised of a sample and hold analog-to-digital converter synchronized by a frequency coherent 40 MHz pulse to obtain four evenly spaced samples of each of the signal. Each sample is added or subtracted to or from one of four accumulators to or from the separate sums. The correlation functions are then computed. As a further feature of the invention, multipliers are each multiplied by a squarewave chopper signal having a period that is long relative to the period of the received signal to foreclose contamination of the received signal by leakage from either of the other two terms of the multipliers.

  20. Correlation dimension Wonderland theorems

    NASA Astrophysics Data System (ADS)

    Carvalho, Silas L.; de Oliveira, César R.

    2016-06-01

    Existence of generic sets of self-adjoint operators, related to correlation dimensions of spectral measures, is investigated in separable Hilbert spaces. Typical results say that, given an orthonormal basis, the set of operators whose corresponding spectral measures are both 0-lower and 1-upper correlation dimensional is generic. The proofs rely on details of the relations among Fourier transform of spectral measures and Hausdorff and packing measures on the real line. Then such results are naturally combined with the Wonderland theorem. Applications are to classes of discrete one-dimensional Schrödinger operators and general (bounded) self-adjoint operators as well. Physical consequences include a proof of exotic dynamical behavior of singular continuous spectrum in some settings.

  1. Correlation, coherence and context

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.

    2016-08-01

    The modern theory of coherence is based on correlation functions. A generic example could be written < {{V}\\ast}≤ft({{t}1}\\right)V≤ft({{t}2}\\right)> , denoting an average of products of the values of a signal V(t) at two specified times. Here we infer that t is a degree of freedom that the signal depends on. Typically, physical variables depend on more than one degree of freedom, and recognition of this has prompted attention to some interesting questions for the correlation functions and the several coherences that can be attributed to the same optical field. We examine some of the questions arising from the standpoint of experimental contexts. Degree of polarizability and degree of entanglement (classical non-separability) can serve as starting points for quantitative assignments.

  2. Theory of correlations in stochastic neural networks

    NASA Astrophysics Data System (ADS)

    Ginzburg, Iris; Sompolinsky, Haim

    1994-10-01

    One of the main experimental tools in probing the interactions between neurons has been the measurement of the correlations in their activity. In general, however, the interpretation of the observed correlations is difficult since the correlation between a pair of neurons is influenced not only by the direct interaction between them but also by the dynamic state of the entire network to which they belong. Thus a comparison between the observed correlations and the predictions from specific model networks is needed. In this paper we develop a theory of neuronal correlation functions in large networks comprising several highly connected subpopulations and obeying stochastic dynamic rules. When the networks are in asynchronous states, the cross correlations are relatively weak, i.e., their amplitude relative to that of the autocorrelations is of order of 1/N, N being the size of the interacting populations. Using the weakness of the cross correlations, general equations that express the matrix of cross correlations in terms of the mean neuronal activities and the effective interaction matrix are presented. The effective interactions are the synaptic efficacies multiplied by the gain of the postsynaptic neurons. The time-delayed cross-correlation matrix can be expressed as a sum of exponentially decaying modes that correspond to the (nonorthogonal) eigenvectors of the effective interaction matrix. The theory is extended to networks with random connectivity, such as randomly dilute networks. This allows for a comparison between the contribution from the internal common input and that from the direct interactions to the correlations of monosynaptically coupled pairs. A closely related quantity is the linear response of the neurons to external time-dependent perturbations. We derive the form of the dynamic linear response function of neurons in the above architecture in terms of the eigenmodes of the effective interaction matrix. The behavior of the correlations and the

  3. Higher-order effects in inclusive electron-nucleus scattering.

    SciTech Connect

    Benhar, O.; Fabrocini, A.; Fantoni, S.; Pandharipande, V. R.; Pieper, S. C.; Sick, I.; Physics; INFIN; Univ. of Pisa; SISSA; Univ. of Illinois; SISSA; Univ. Basel

    1995-10-05

    Higher order corrections in the theory of inclusive scattering of high energy electrons by nuclear matter are studied. They involve at least three nucleons, and are due to: (i) the correlations among the spectator nucleons in matter, and (ii) the Pauli blocking of the scattering of the struck nucleon by a spectator nucleon. Their effect on the cross sections is found to be much smaller than those of the two-nucleon correlation hole and of color transparency.

  4. Correlative pediatric imaging

    SciTech Connect

    Garty, I.; Delbeke, D.; Sandler, M.P.

    1989-01-01

    Nuclear medicine, ultrasound, and magnetic resonance imaging (MRI) are considered ideal imaging modalities for pediatric patients. The future is even more promising for pediatric imaging with the development of newer and improved radiopharmaceuticals, instrumentation and diagnostic modalities such as positron emission tomography, labeled monoclonal antibodies, and faster dynamic and contrast enhanced MRI methods. However, correlation of more conventional imaging modalities with nuclear medicine, ultrasound and MRI remain essential for optimal patient care. 43 references.

  5. Symmetry of Magnetically Ordered Quasicrystals

    NASA Astrophysics Data System (ADS)

    Lifshitz, Ron

    1998-03-01

    The notion of magnetic symmetry is reexamined in light of the recent observation of long-range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals, is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.

  6. Orientational order in disordered superconductors

    SciTech Connect

    Toner, J. )

    1991-05-13

    Orientational order in weakly pinned Abrikosov flux lattices is studied, taking into account two heretofore neglected effects: dislocations and orientational couplings to the underlying lattice. Without orientational couplings, arbitrarily weak pinning destroys long-ranged orientational order for all spatial dimensions {ital d}{lt}4. Orientational couplings stabilize long-ranged orientational order. For fields along an axis of {ital fourfold} symmetry, {ital sixfold} (hexatic) orientational order is described by a random-field Ising model, and so does not occur in {ital d}=2 (thin films) but does in {ital d}=3 (bulk).

  7. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  8. Texture classification by local rank correlation

    NASA Technical Reports Server (NTRS)

    Harwood, D.; Subbarao, M.; Davis, L. S.

    1985-01-01

    A new approach to texture classification based on local rank correlation is proposed here. Its performance is compared with Laws' method which uses local convolution with feature masks. In the experiments, texture samples are classified based on their distribution of local statistics, either rank correlations or convolutions. The new method achieves generally optimal classification rates. It appears to be more robust because local order statistics are unaffected by local sample differences due to monotonic shifts of texture gray values and are less sensitive to noise.

  9. Neural correlates of gratitude.

    PubMed

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others. PMID:26483740

  10. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  11. Neural correlates of gratitude

    PubMed Central

    Fox, Glenn R.; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others. PMID:26483740

  12. Energy calibration via correlation

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  13. Correlation Algorithm Library

    2013-08-02

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modelingmore » hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared to experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.« less

  14. Correlation Algorithm Library

    SciTech Connect

    2013-08-02

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modeling hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared to experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.

  15. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  16. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  17. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  18. Broadcasting of quantum correlations: Possibilities and impossibilities

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Sazim, Sk; Chakrabarty, Indranil

    2016-04-01

    In this work, we extensively study the problem of broadcasting of quantum correlations (QCs). This includes broadcasting of quantum entanglement as well as correlations that go beyond the notion of entanglement (QCsbE). It is quite well known from the "no-broadcasting theorem" that perfect broadcasting of QCs is not possible. However, it does not rule out the possibility of partial broadcasting of QCs where we can get lesser correlated states from a given correlated state. In order to have a holistic view of broadcasting, we investigate this problem by starting with a most general representation of two qubit mixed states in terms of the Bloch vectors. As a cloning transformation we have used universal symmetric optimal Buzek-Hillery (BH) cloner both locally and nonlocally. Unlike entanglement, we find that it is impossible to broadcast QCsbE optimally. Lastly, we generalize these results for any symmetric or asymmetric cloning machines as well. This result brings out a fundamental difference between the correlations defined from the perspective of entanglement and the correlations measure which claims to go beyond entanglement.

  19. High-Fidelity Coding with Correlated Neurons

    PubMed Central

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  20. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  1. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  2. Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2

    NASA Astrophysics Data System (ADS)

    Jiang, Qing; Yao, Dao-Xin

    2016-04-01

    The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFe1.5Se2 are investigated. A rhombus-type Fe vacancy order with stripetype antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mott insulator — the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the d xz and d yz orbitals become different simultaneously when U > U c (˜3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.

  3. Birth Order: Reconciling Conflicting Effects.

    ERIC Educational Resources Information Center

    Zajonc, Robert B.; Mullally, Patricia R.

    1997-01-01

    Introduces the confluence model as a theory specifying the process by which the intellectual environment modifies intellectual development. Using this model, explores the contradiction between prediction of secular trends in test scores by trends in aggregate birth order and the lack of prediction of individual test scores by birth order using…

  4. Problem Order Implications for Learning

    ERIC Educational Resources Information Center

    Li, Nan; Cohen, William W.; Koedinger, Kenneth R.

    2013-01-01

    The order of problems presented to students is an important variable that affects learning effectiveness. Previous studies have shown that solving problems in a blocked order, in which all problems of one type are completed before the student is switched to the next problem type, results in less effective performance than does solving the problems…

  5. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  6. Tensions between Liberty and Order.

    ERIC Educational Resources Information Center

    Chemerinsky, Erwin

    2002-01-01

    Explores the issue of balancing liberty and order within the United States. Discusses the role of the Bill of Rights, focusing on the amendments in the document and the later amendments that ensure the liberty of U.S. citizens. Explains how order and liberty are ensured and includes discussion questions. (CMK)

  7. Bootstrapped Deattenuated Correlation: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2014-01-01

    Correlation attenuation due to measurement error and a corresponding correction, the deattenuated correlation, have been known for over a century. Nevertheless, the deattenuated correlation remains underutilized. A few studies in recent years have investigated factors affecting the deattenuated correlation, and a couple of them provide alternative…

  8. The Meaning of Higher-Order Factors in Reflective-Measurement Models

    ERIC Educational Resources Information Center

    Eid, Michael; Koch, Tobias

    2014-01-01

    Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…

  9. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs.

    PubMed

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way. PMID:21929065

  10. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  11. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  12. Light nuclei with improved order-by-order chiral interactions

    NASA Astrophysics Data System (ADS)

    Maris, Pieter; Vary, James

    2015-10-01

    We present recent results for light nuclei obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. We show results for the ground state energies and the low-lying spectrum; in addition we discuss other observables such as magnetic and quadrupole moments. We discuss both the theoretical uncertainties due to the truncation of the chiral expansion, as well as the numerical uncertainties associated with the many-body method. Depending on the value chiral order, additional renormalization using the Similarity Renormalization Group is needed in order to improve numerical convergence of the many-body calculations. Supported by the US DOE grants DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. Computational resources provided by NERSC (supported by US DOE contract DE-AC02-05CH11231).

  13. Collective Behaviour without Collective Order in Wild Swarms of Midges

    PubMed Central

    Attanasi, Alessandro; Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Pohl, Oliver; Rossaro, Bruno; Shen, Edward; Silvestri, Edmondo; Viale, Massimiliano

    2014-01-01

    Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals. We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with models of non-interacting particles. We find that correlation increases sharply with the swarm's density, indicating that the interaction between midges is based on a metric perception mechanism. By means of numerical simulations we demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that correlation, rather than order, is the true hallmark of collective behaviour in biological systems. PMID:25057853

  14. Off-forward quark-quark correlation function

    SciTech Connect

    Casanova, Sabrina

    2006-09-01

    The properties of the nonforward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an Ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the Ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.

  15. Detection of virus in shrimp using digital color correlation

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue; Chavez-Sanchez, Cristina; Bueno-Ibarra, Mario A.

    1999-07-01

    Detection of virus in shrimp tissue using digital color correlation is presented. Phase filters in three channels (red, green and blue) were used in order to detect HPV virus like target. These first results obtained showed that is possible to detect virus in shrimp tissue. More research must be made with color correlation in order to consider natural morphology of the virus, color, scale and rotation and noise in the samples.

  16. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  17. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  18. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  19. Court-ordered obstetrical interventions.

    PubMed

    Kolder, V E; Gallagher, J; Parsons, M T

    1987-05-01

    In a national survey, we investigated the scope and circumstances of court-ordered obstetrical procedures in cases in which the women had refused therapy deemed necessary for the fetus. We also solicited the opinions of leading obstetricians regarding such cases. Court orders have been obtained for cesarean sections in 11 states, for hospital detentions in 2 states, and for intrauterine transfusions in 1 state. Among 21 cases in which court orders were sought, the orders were obtained in 86 percent; in 88 percent of those cases, the orders were received within six hours. Eighty-one percent of the women involved were black, Asian, or Hispanic, 44 percent were unmarried, and 24 percent did not speak English as their primary language. All the women were treated in a teaching-hospital clinic or were receiving public assistance. No important maternal morbidity or mortality was reported. Forty-six percent of the heads of fellowship programs in maternal-fetal medicine thought that women who refused medical advice and thereby endangered the life of the fetus should be detained. Forty-seven percent supported court orders for procedures such as intrauterine transfusions. We conclude from these data that court-ordered obstetrical procedures represent an important and growing problem that evokes sharply divided responses from faculty members in obstetrics. Such procedures are based on dubious legal grounds, and they may have far-reaching implications for obstetrical practice and maternal and infant health. PMID:3574370

  20. 7 CFR 1208.14 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PROCESSED RASPBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Processed Raspberry Promotion, Research, and Information Order Definitions § 1208.14 Order. Order means the Processed Raspberry Promotion, Research, and Information Order....

  1. 7 CFR 1208.14 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PROCESSED RASPBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Processed Raspberry Promotion, Research, and Information Order Definitions § 1208.14 Order. Order means the Processed Raspberry Promotion, Research, and Information Order....

  2. Rotational Alignment Altered by Source Position Correlations

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.

    2010-01-01

    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.

  3. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  4. Motion estimation using the correlation transform.

    PubMed

    Drulea, Marius; Nedevschi, Sergiu

    2013-08-01

    The zero-mean normalized cross-correlation is shown to improve the accuracy of optical flow, but its analytical form is quite complicated for the variational framework. This paper addresses this issue and presents a new direct approach to this matching measure. Our approach uses the correlation transform to define very discriminative descriptors that are precomputed and that have to be matched in the target frame. It is equivalent to the computation of the optical flow for the correlation transforms of the images. The smoothness energy is non-local and uses a robust penalty in order to preserve motion discontinuities. The model is associated with a fast and parallelizable minimization procedure based on the projected-proximal point algorithm. The experiments confirm the strength of this model and implicitly demonstrate the correctness of our solution. The results demonstrate that the involved data term is very robust with respect to changes in illumination, especially where large illumination exists. PMID:23686953

  5. Multiple soft limits of cosmological correlation functions

    SciTech Connect

    Joyce, Austin; Khoury, Justin; Simonović, Marko E-mail: jkhoury@sas.upenn.edu

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.

  6. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  7. Gonihedric (and Fuki-Nuke) order

    NASA Astrophysics Data System (ADS)

    Johnston, D. A.

    2012-10-01

    A 3D Ising model with a purely plaquette, 4-spin interaction displays a planar flip symmetry intermediate between a global and a gauge symmetry and as a consequence has a highly degenerate low temperature phase and no standard magnetic order parameter. This plaquette Hamiltonian is a particular case of a family of 3D gonihedric Ising models defined by Savvidy and Wegner. An anisotropic variant of the purely plaquette gonihedric model, originally discussed as the ‘Fuki-Nuke’ model by Suzuki, is non-trivially equivalent to a stack of 2D Ising models, each of which can magnetize independently at the phase transition point. Consideration of this anisotropic model suggests that a suitable order parameter in the isotropic case may also be constructed using a form of planar magnetization, in which nearest neighbour correlators <σiσj> summed over planes replace a sum over spin values <σi>. We conduct Monte-Carlo simulations to investigate this and related candidate order parameters in a toy model of gonihedric ground states, the Fuki-Nuke model and the isotropic plaquette gonihedric model itself.

  8. Weak pairwise correlations imply strongly correlated network states in a neural population

    PubMed Central

    Schneidman, Elad; Berry, Michael J.; Segev, Ronen; Bialek, William

    2006-01-01

    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons. PMID:16625187

  9. Correlative Measurements Program

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1988-01-01

    The GSFC Correlative Measurements Program at the Wallops Flight Facility was represented on the Satellite/Satellite Intercomparisons Working Group. The Correlative Measurements Program uses the Rocket Ozonesonde (ROCOZ-A) and the Electrochemical Concentration Cell (ECC) balloon borne ozonesonde to measure the vertical profile of ozone amount in the atmosphere. The balloon work is described in a separate report. The ROCOZ-A instrument was used for many years to provide in situ truth data for various satellite ozone measuring systems, such as SBUV on Nimbus-7, SAGE-II, SBUV-II on the NOAA series of polar orbiting satellites, SME, LIMS, etc. The particular data sets of interest to the Ozone Trends Panel Working Group were collected at Natal, Brazil. The major results produced for and used by the Ozone Trends Panel are shown. The ROCOZ-A average ozone density profile is plotted versus altitude on the left. ECC ozonesondes were used for the portion of the profile below 20 km, the lower limit for ROCOZ-A. The difference between SAGE-II and ROCOZ-A average density profiles is shown.

  10. Grayscale Optical Correlator Workbench

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin

    2006-01-01

    Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.

  11. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  12. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  13. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  14. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  15. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  16. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  17. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  18. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  19. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  20. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  1. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  2. Birth Order and Vocational Interest

    ERIC Educational Resources Information Center

    Gandy, Gerald L.

    1973-01-01

    Investigated birth order differences and the vocational interests of 150 male college students, making use of the Strong Vocational Interest Blank. Sibling sex and interaction effects were also investigated. (DP)

  3. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  4. Life from an orderly cosmos

    NASA Astrophysics Data System (ADS)

    Fox, Sidney W.

    1980-12-01

    Recent astrophysical studies suggest a high degree of order in the inanimate universe, stemming from cosmic beginnings. This state is consistent with the nonrandomness observed experimentally in the thermal polymers of amino acids that figure as an early inanimate stage in organic evolution. The various stages in inanimate matter, protocells, and evolved cells and the degree of order that they represent comport with the second law of thermodynamics on a cosmic scale.

  5. Life from an orderly cosmos.

    PubMed

    Fox, S W

    1980-12-01

    Recent astrophysical studies suggest a high degree of order in the inanimate universe, stemming from cosmic beginnings. This state is consistent with the nonrandomness observed experimentally in the thermal polymers of amino acids that figure as an early inanimate stage in organic evolution. The various stages in inanimate matter, protocells, and evolved cells and the degree of order that they represent comport with the second law of thermodynamics on a cosmic scale. PMID:7231562

  6. Complete normal ordering 1: Foundations

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Skliros, Dimitri P.

    2016-08-01

    We introduce a new prescription for quantising scalar field theories (in generic spacetime dimension and background) perturbatively around a true minimum of the full quantum effective action, which is to 'complete normal order' the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all 'cephalopod' Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of 'complete normal ordering' (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative interactions, and by using a point splitting 'trick' we extend this result to theories with derivative interactions, such as those appearing as non-linear σ-models in the world-sheet formulation of string theory. We focus here on theories with trivial vacua, generalising the discussion to non-trivial vacua in a follow-up paper.

  7. Computerized provider order entry systems.

    PubMed

    2001-01-01

    Computerized provider order entry (CPOE) systems are designed to replace a hospital's paper-based ordering system. They allow users to electronically write the full range of orders, maintain an online medication administration record, and review changes made to an order by successive personnel. They also offer safety alerts that are triggered when an unsafe order (such as for a duplicate drug therapy) is entered, as well as clinical decision support to guide caregivers to less expensive alternatives or to choices that better fit established hospital protocols. CPOE systems can, when correctly configured, markedly increase efficiency and improve patient safety and patient care. However, facilities need to recognize that currently available CPOE systems require a tremendous amount of time and effort to be spent in customization before their safety and clinical support features can be effectively implemented. What's more, even after they've been customized, the systems may still allow certain unsafe orders to be entered. Thus, CPOE systems are not currently a quick or easy remedy for medical errors. ECRI's Evaluation of CPOE systems--conducted in collaboration with the Institute for Safe Medication Practices (ISMP)--discusses these and other related issues. It also examines and compares CPOE systems from three suppliers: Eclipsys Corp., IDX Systems Corp., and Siemens Medical Solutions Health Services Corp. Our testing focuses primarily on the systems' interfacing capabilities, patient safeguards, and ease of use. PMID:11696968

  8. Experimental implementation of adiabatic passage between different topological orders.

    PubMed

    Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng

    2014-08-22

    Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080

  9. Influence of orbital nematic order on spin responses in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Su, Yuehua; Zhang, Chao; Li, Tao

    2016-05-01

    Electronic nematicity is ubiquitous in Fe-based superconductors, but what the primary nematic order is and how the various nematic phenomena correlate with each other are still elusive. In this manuscript we study the physical consequence of the orbital nematic order on the spin correlations. We find that the orbital nematic order can drive a significant spin nematicity and can enhance the integrated intensity of the spin fluctuations. Our study shows that the orbital nematic order has strong effect on the spin correlations and it can not be taken as an unimportant secondary effect of the nematic state in Fe-based superconductors.

  10. Digital Image Correlation Engine

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and canmore » be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.« less

  11. Strongly correlated electronic materials

    SciTech Connect

    Bedell, K.; Albers, R.; Balatsky, A.; Bishop, A.; Bonca, J.; Gubernatis, J.; Gulasci, M.; Silver, R.; Trugman, S.

    1996-04-01

    This is the final report of a 3-year project. Novel electronic materials characterized by strong electronic correlations display a number of unexpected, often extraordinary, properties. These are likely to play a major role in purpose-specific high-technology electronic materials of the future developed for electronic, magnetic, and optical applications. This project sought to develop predictive control of the novel properties by formulating, solving and applying many-body models for the underlying microscopic physics. This predictive control required the development of new analytical and numerical many-body techniques and strategies for materials of varying strengths of interactions, dimensionality and geometry. Results are compared with experiment on classes of novel materials, and the robust techniques are used to predict additional properties and motivate key additional experiments.

  12. Flatbands under Correlated Perturbations

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-12-01

    Flatband networks are characterized by the coexistence of dispersive and flatbands. Flatbands (FBs) are generated by compact localized eigenstates (CLSs) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLSs without additional renormalization, yet with surprising consequences: (i) states are expelled from the FB energy EFB, (ii) the localization length of eigenstates vanishes as ξ ˜1 /ln (E -EFB) , (iii) the density of states diverges logarithmically (particle-hole symmetry) and algebraically (no particle-hole symmetry), and (iv) mobility edge curves show algebraic singularities at EFB . Our analytical results are based on perturbative expansions of the CLSs and supported by numerical data in one and two lattice dimensions.

  13. Flatbands under correlated perturbations.

    PubMed

    Bodyfelt, Joshua D; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-12-01

    Flatband networks are characterized by the coexistence of dispersive and flatbands. Flatbands (FBs) are generated by compact localized eigenstates (CLSs) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLSs without additional renormalization, yet with surprising consequences: (i) states are expelled from the FB energy E_{FB}, (ii) the localization length of eigenstates vanishes as ξ∼1/ln(E-E_{FB}), (iii) the density of states diverges logarithmically (particle-hole symmetry) and algebraically (no particle-hole symmetry), and (iv) mobility edge curves show algebraic singularities at E_{FB}. Our analytical results are based on perturbative expansions of the CLSs and supported by numerical data in one and two lattice dimensions. PMID:25526142

  14. Paths correlation matrix.

    PubMed

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930

  15. Correlation monitor materials

    SciTech Connect

    Corwin, W.R.

    1995-10-01

    This task has been established with the explicit purpose of ensuring the continued availability of the pedigreed and extremely well-characterized material now required for inclusion in all additional and future surveillance capsules in commercial light-water reactors. During this reporting period, concrete was poured and pallets storage racks were installed to provide adequate room for the storage of the correlation monitor material being transferred from its location at the Y-12 Plant to its archival storage location at ORNL. The racks came from surplus material storage at ORNL and hence were obtained at no cost to the HSSI Program. Inquiries into cost-effective means of sheltering the blocks of correlation monitor materials from further weather-related deteriorization were initiated. The most likely approach would be to procure a turn-key sheet metal building installed over the storage racks by an outside contractor to minimize costs. Most of the material has now been transferred from Y-12 to the ORNL storage area. It has been repositioned on new storage pallets and placed into the storage racks, An update of the detailed material inventory was initiated to ascertain the revised location of all blocks. Pieces of HSST plate O3 were distributed to participants in the ASTM cross-comparison exercise on subsize specimen testing technology. The use of the HSST O3 will provide for data from the many varieties of tests to be performed to be compared with the standardized data previously developed. The testing techniques will focus on ways to measure transition temperature and fracture toughness.

  16. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  17. Bonding in eight ordered clinopyroxenes isostructural with diopside

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Papike, J.J.

    1968-01-01

    Bond distances and angles in isostructural, ordered clinopyroxenes are compared for eight compositions, based on five new and three published crystal-structure refinements from X-ray diffraction data. Unit-cell parameters and configuration of the silicate chains are directly correlated with cation composition and distribution in the M2 and M1 sites. ?? 1968 Springer-Verlag.

  18. Modeling Ability Differentiation in the Second-Order Factor Model

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J.

    2011-01-01

    In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…

  19. Order-order transitions in ABC triblock nanostructures

    SciTech Connect

    Zhong-Ren Chen; Kornfield, J.A.; Smith, S.; Satkowski, M.

    1996-12-31

    This report discusses a triblock copolymer of isoprene I, styrene S, and a random copolymer of styrene and isoprene. Optical methods are used to examine flow-induced alignment kinetics and final alignment state; nanostructures and global order are also studied.

  20. Using High-Order Methods on Lower-Order Geometries

    NASA Technical Reports Server (NTRS)

    Casper, Jay

    1997-01-01

    The desire to obtain acoustic information from the numerical solution of a nonlinear system of equations is a demanding proposition for a computational algorithm. High-order accuracy is required for the propagation of high-frequency, low-amplitude waves. The accuracy of an algorithm can be compromised by low-order errors that naturally occur in the solution of a particular problem. Such errors arise from two sources: the presence of discontinuities in the flow field or because the geometry on which the problem is defined is not everywhere smooth to the order of the scheme. The performance of high-order accurate essentially non-oscillatory (ENO) schemes on piecewise smooth solutions is well documented. Herein, the performance of these methods on smooth solutions defined on piecewise smooth geometries is investigated. The propagation of sound in a quasi-one-dimensional nozzle is considered as a test case. Some of the issues involved in the extension to two spatial dimensions are discussed.