Science.gov

Sample records for 1st-4th order correlation

  1. Quantum correlations with no causal order

    PubMed Central

    Oreshkov, Ognyan; Costa, Fabio; Brukner, Časlav

    2012-01-01

    The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? Here, we address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations that does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition. PMID:23033068

  2. Ghost imaging with thermal light by third-order correlation

    SciTech Connect

    Bai Yanfeng; Han Shensheng

    2007-10-15

    Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.

  3. High-order correlation of chaotic bosons and fermions

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Chao

    2016-08-01

    We theoretically study the high-order correlation functions of chaotic bosons and fermions. Based on the different parity of the Stirling number, the products of the first-order correlation functions are well classified and employed to represent the high-order correlation function. The correlation of bosons conduces a bunching effect, which will be enhanced as order N increases. Different from bosons, the anticommutation relation of fermions leads to the parity of the Stirling number, which thereby results in a mixture of bunching and antibunching behaviors in high-order correlation. By further investigating third-order ghost diffraction and ghost imaging, the differences between the high-order correlations of bosons and fermions are discussed in detail. A larger N will dramatically improve the ghost image quality for bosons, but a good strategy should be carefully chosen for the fermionic ghost imaging process due to its complex correlation components.

  4. Higher order correlation beams in atmosphere under strong turbulence conditions.

    PubMed

    Avetisyan, H; Monken, C H

    2016-02-01

    Higher order correlation beams, that is, two-photon beams obtained from the process of spontaneous parametric down-conversion pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can be used to encode information in many modes, opening the possibility of quantum communication with large alphabets. In this paper we calculate, analytically, the fourth-order correlation function for the Hermite-Gauss and Laguerre-Gauss coherent and partially coherent correlation beams propagating through a strong turbulent medium. We show that fourth-order correlation functions for correlation beams have, under certain conditions, expressions similar to those of intensities of classical beams and are degraded by turbulence in a similar way as the classical beams. Our results can be useful in establishing limits for the use of two-photon beams in quantum communications with larger alphabets under atmospheric turbulence.

  5. Irreducible many-body correlations in topologically ordered systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zeng, Bei; Zhou, D. L.

    2016-02-01

    Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation (IMC), the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits IMCs which become reducible when the holes are removed. The appearance of these IMCs then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in external magnetic fields, and show that the topological phase transition is signaled by the IMCs.

  6. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2012-01-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  7. Polarization-correlation diagnostics and differentiation of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.

    2011-09-01

    The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  8. Weak value amplification via second-order correlated technique

    NASA Astrophysics Data System (ADS)

    Ting, Cui; Jing-Zheng, Huang; Xiang, Liu; Gui-Hua, Zeng

    2016-02-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05), the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).

  9. Machine learning using a higher order correlation network

    SciTech Connect

    Lee, Y.C.; Doolen, G.; Chen, H.H.; Sun, G.Z.; Maxwell, T.; Lee, H.Y.

    1986-01-01

    A high-order correlation tensor formalism for neural networks is described. The model can simulate auto associative, heteroassociative, as well as multiassociative memory. For the autoassociative model, simulation results show a drastic increase in the memory capacity and speed over that of the standard Hopfield-like correlation matrix methods. The possibility of using multiassociative memory for a learning universal inference network is also discussed. 9 refs., 5 figs.

  10. Higher-order photon correlations in pulsed photonic crystal nanolasers

    SciTech Connect

    Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.

    2011-12-15

    We report on the higher-order photon correlations of a high-{beta} nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g{sup (n)}(0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.

  11. Investigation of higher order correlations in swirling pipe flows

    NASA Astrophysics Data System (ADS)

    Acrivlellis, M.; Jungbluth, H.; Cantrak, S.

    1982-04-01

    Statistical quantities of swirling pipe flows generated by radial guide vanes were studied by a triple hot-wire probe and digital data reduction at two cross-sections of the pipe, one directly behind the swirl generator and the other some distance downstream from the vanes. The influence of swirl intensity on the axial pipe flow was investigated with the measured second and third order correlations as well as the third and fourth order central moments. The probability-density distribution shows the significance of the turbulence transfer mechanism in the complicated process of swirling flows.

  12. Existence of high-order correlations in cortical activity

    NASA Astrophysics Data System (ADS)

    Benucci, Andrea; Verschure, Paul F.; König, Peter

    2003-10-01

    Neurons collect signals originating from a large number of other cells. The variability of this integrated population activity at the millisecond time scale is a critical constraint on the degree of signal integration and processing performed by single neurons. Optical imaging, EEG, and fMRI studies have indicated that cortical activity shows a high degree of variability at a time scale of hundreds of ms. However, currently no experimental methods are available to directly assess the variability in the activity of populations of neurons at a time scale closer to that of the characteristic time constants of neurons, i.e., around 10 ms. Here we integrate pertinent experimental data in one rigorous mathematical framework to demonstrate that (1) the high temporal variability in the spiking activity of individual neurons, (2) the second-order correlation properties of the spiking activity of cortical neurons, and (3) the correlations of the subthreshold dynamics, all impose high amplitude, fast variability in the population activity of cortical neurons. This implies that higher order correlations, a necessary condition for temporal coding models, must be a central feature of cortical dynamics.

  13. Frustration and chiral orderings in correlated electron systems.

    PubMed

    Batista, Cristian D; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

  14. Frustration and chiral orderings in correlated electron systems.

    PubMed

    Batista, Cristian D; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect. PMID:27376461

  15. Frustration and chiral orderings in correlated electron systems

    NASA Astrophysics Data System (ADS)

    Batista, Cristian D.; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson’s proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

  16. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  17. Order and correlation contributions to the entropy of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-01

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  18. Correlation between crystalline order and vitrification in colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Tamborini, Elisa; Royall, C. Patrick; Cicuta, Pietro

    2015-05-01

    We investigate experimentally the relationship between local structure and dynamical arrest in a quasi-2d colloidal model system which approximates hard discs. We introduce polydispersity to the system to suppress crystallisation. Upon compression, the increase in structural relaxation time is accompanied by the emergence of local hexagonal symmetry. Examining the dynamical heterogeneity of the system, we identify three types of motion: ‘zero-dimensional’ corresponding to β-relaxation, ‘one-dimensional’ or stringlike motion and ‘2D’ motion. The dynamic heterogeneity is correlated with the local order, that is to say locally hexagonal regions are more likely to be dynamically slow. However, we find that lengthscales corresponding to dynamic heterogeneity and local structure do not appear to scale together approaching the glass transition.

  19. Correlation between crystalline order and vitrification in colloidal monolayers.

    PubMed

    Tamborini, Elisa; Royall, C Patrick; Cicuta, Pietro

    2015-05-20

    We investigate experimentally the relationship between local structure and dynamical arrest in a quasi-2d colloidal model system which approximates hard discs. We introduce polydispersity to the system to suppress crystallisation. Upon compression, the increase in structural relaxation time is accompanied by the emergence of local hexagonal symmetry. Examining the dynamical heterogeneity of the system, we identify three types of motion: 'zero-dimensional' corresponding to β-relaxation, 'one-dimensional' or stringlike motion and '2D' motion. The dynamic heterogeneity is correlated with the local order, that is to say locally hexagonal regions are more likely to be dynamically slow. However, we find that lengthscales corresponding to dynamic heterogeneity and local structure do not appear to scale together approaching the glass transition. PMID:25923174

  20. Image Segmentation Using Higher-Order Correlation Clustering.

    PubMed

    Kim, Sungwoong; Yoo, Chang D; Nowozin, Sebastian; Kohli, Pushmeet

    2014-09-01

    In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework. Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured loss function. Experimental results on various data sets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework. PMID:26352230

  1. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  2. Probing non local order parameters in highly correlated Bose insulators

    NASA Astrophysics Data System (ADS)

    Altman, Ehud

    2008-03-01

    Ground states of integer spin chains are known since the late 80's to sustain highly non local order described by infinite string operators of the spins. Such states defy the usual Landau theory description and can be considered simple prototypes of topological order. Recently we showed that spinless Bose insulators with nearest neighbor or longer range repulsion in one dimension can exhibit similar string order in terms of the boson density [1]. The tunability of cold atomic systems would allow much more flexibility in probing the non local order than spin systems do. For example the bosons can be tuned across a quantum phase transition between the exotic insulator, which we term Haldane insulator, and the usual Mott insulator. Investigating how the transition responds to external perturbations lends direct access to properties of the string order parameter. I will demonstrate this with several new results obtained from a field theoretic description of the phases and confirmed by numerical calculations using DMRG. Particularly revealing of the unusual character of the string order is the prediction that any external perturbation, which breaks the lattice inversion symmetry, would eliminate the distinction between the Haldane and Mott phases and allow a fully gapped adiabatic connection between them. This is remarkable given that neither phase involves spontaneous breaking of lattice inversion symmetry. We also predict that inter-chain tunneling destroys the direct phase transition between the two insulators by establishing an intermediate superfluid phase. Finally I will discuss how the new phases and phase transitions may be realized and probed in actual experiments with ultra cold atoms or polar molecules. [1] E. G. Dalla Torre, E. Berg and E. Altman, Phys. Rev. Lett. 97, 260401 (2006)

  3. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    SciTech Connect

    Liu Yingchuan; Kuang Leman

    2011-05-15

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  4. Correlates of viral richness in bats (order Chiroptera).

    PubMed

    Turmelle, Amy S; Olival, Kevin J

    2009-12-01

    Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.

  5. Role of intensity fluctuations in third-order correlation double-slit interference of thermal light.

    PubMed

    Chen, Xi-Hao; Chen, Wen; Meng, Shao-Ying; Wu, Wei; Wu, Ling-An; Zhai, Guang-Jie

    2013-07-01

    A third-order double-slit interference experiment with a pseudothermal light source in the high-intensity limit has been performed by actually recording the intensities in three optical paths. It is shown that not only can the visibility be dramatically enhanced compared to the second-order case as previously theoretically predicted and shown experimentally, but also that the higher visibility is a consequence of the contribution of third-order correlation interaction terms, which is equal to the sum of all contributions from second-order correlation. It is interesting that, when the two reference detectors are scanned in opposite directions, negative values for the third-order correlation term of the intensity fluctuations may appear. The phenomenon can be completely explained by the theory of classical statistical optics and is the first concrete demonstration of the influence of the third-order correlation terms.

  6. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  7. Quantum correlations in quenched disordered spin models: Enhanced order from disorder by thermal fluctuations.

    PubMed

    Sadhukhan, Debasis; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-03-01

    We investigate the behavior of quantum correlations of paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models. We show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well as in the thermodynamic limit. Moreover, we find that the order-from-disorder can become more pronounced in the presence of temperature by suitable tuning of the system parameters. The effects are found for entanglement measures as well as for information-theoretic quantum correlation ones, although the former show them more prominently. We also observe that the equivalence between the quenched averages and their self-averaged cousins--for classical and quantum correlations--is related to the quantum critical point in the corresponding ordered system. PMID:27078300

  8. Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron P.; Kingdom, Frederick A. A.; Baker, Curtis L.

    2005-10-01

    Spatial filters that mimic receptive fields of visual cortex neurons provide an efficient representation of achromatic image structure, but the extension of this idea to chromatic information is at an early stage. Relatively few studies have looked at the statistical relationships between the modeled responses to natural scenes of the luminance (LUM), red-green (RG), and blue-yellow (BY) postreceptoral channels of the primate visual system. Here we consider the correlations among these channel responses in terms of pixel, first-order, and second-order information. First-order linear filtering was implemented by convolving the cosine-windowed images with oriented Gabor functions, whose gains were scaled to give equal amplitude response across spatial frequency to random fractal images. Second-order filtering was implemented via a filter-rectify-filter cascade, with Gabor functions for both first- and second-stage filters. Both signed and unsigned filter responses were obtained across a range of filter parameters (spatial frequency, 2-64 cycles/image orientation, 0-135°). The filter responses to the LUM channel images were larger than those for either RG or BY channel images. Cross correlations between the first-order channel responses and between the first- and second-order channel responses were measured. Results showed that the unsigned correlations between first-order channel responses were higher than expected on the basis of previous studies and that first-order channel responses were highly correlated with LUM, but not with RG or BY, second-order responses. These findings imply that course-scale color information correlates well with course-scale changes of fine-scale texture.

  9. Third-order optical intensity correlation measurements of pseudo-thermal light

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Hao; Wu, Wei; Meng, Shao-Ying; Li, Ming-Fei

    2014-09-01

    Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging.

  10. Non-local bias contribution to third-order galaxy correlations

    NASA Astrophysics Data System (ADS)

    Bel, J.; Hoffmann, K.; Gaztañaga, E.

    2015-10-01

    We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.

  11. Quantum correlations in quenched disordered spin models: Enhanced order from disorder by thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Debasis; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal

    2016-03-01

    We investigate the behavior of quantum correlations of paradigmatic quenched disordered quantum spin models, viz., the X Y spin glass and random-field X Y models. We show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well as in the thermodynamic limit. Moreover, we find that the order-from-disorder can become more pronounced in the presence of temperature by suitable tuning of the system parameters. The effects are found for entanglement measures as well as for information-theoretic quantum correlation ones, although the former show them more prominently. We also observe that the equivalence between the quenched averages and their self-averaged cousins—for classical and quantum correlations—is related to the quantum critical point in the corresponding ordered system.

  12. A new method to infer higher-order spike correlations from membrane potentials.

    PubMed

    Reimer, Imke C G; Staude, Benjamin; Boucsein, Clemens; Rotter, Stefan

    2013-10-01

    What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1-2):327-350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.

  13. Measuring the growth of matter fluctuations with third-order galaxy correlations

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.; Crocce, M.; Fosalba, P.; Castander, F. J.

    2015-02-01

    Measurements of the linear growth factor D at different redshifts z are key to distinguish among cosmological models. One can estimate the derivative dD(z)/dln (1 + z) from redshift space measurements of the 3D anisotropic galaxy two-point correlation ξ(z), but the degeneracy of its transverse (or projected) component with galaxy bias b, i.e. ξ⊥(z) ∝ D2(z)b2(z), introduces large errors in the growth measurement. Here, we present a comparison between two methods which breaks this degeneracy by combining second- and third-order statistics. One uses the shape of the reduced three-point correlation and the other a combination of third-order one- and two-point cumulants. These methods use the fact that, for Gaussian initial conditions and scales larger than 20 h-1 Mpc, the reduced third-order matter correlations are independent of redshift (and therefore of the growth factor), while the third-order galaxy correlations depend on b. We use matter and halo catalogues from the MICE-GC simulation to test how well we can recover b(z) and therefore D(z) with these methods in 3D real space. We also present a new approach, which enables us to measure D directly from the redshift evolution of the second- and third-order galaxy correlations without the need of modelling matter correlations. For haloes with masses lower than 1014 h-1 M⊙, we find 10 per cent deviations between the different estimates of D, which are comparable to current observational errors. At higher masses, we find larger differences that can probably be attributed to the breakdown of the bias model and non-Poissonian shot noise.

  14. Hidden topological order and its correlation with glass-forming ability in metallic glasses.

    PubMed

    Wu, Z W; Li, M Z; Wang, W H; Liu, K X

    2015-01-01

    Unlike the well-defined long-range periodic order that characterizes crystals, so far the inherent atomic packing mode in glassy solids remains mysterious. Based on molecular dynamics simulations, here we find medium-range atomic packing orders in metallic glasses, which are hidden in the diffraction data in terms of structure factors or pair correlation functions. The analysis of the hidden orders in various metallic glasses indicates that the glassy and crystalline solids share a nontrivial structural homology in short-to-medium range, and the hidden orders are formulated by inheriting partial crystalline orders during glass formation. As the number of chemical components increases, more hidden orders are often developed in a metallic glass and entangled topologically. We use this phenomenon to explain the geometric frustration in glass formation and the glass-forming ability of metallic alloys.

  15. Hidden topological order and its correlation with glass-forming ability in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Li, M. Z.; Wang, W. H.; Liu, K. X.

    2015-01-01

    Unlike the well-defined long-range periodic order that characterizes crystals, so far the inherent atomic packing mode in glassy solids remains mysterious. Based on molecular dynamics simulations, here we find medium-range atomic packing orders in metallic glasses, which are hidden in the diffraction data in terms of structure factors or pair correlation functions. The analysis of the hidden orders in various metallic glasses indicates that the glassy and crystalline solids share a nontrivial structural homology in short-to-medium range, and the hidden orders are formulated by inheriting partial crystalline orders during glass formation. As the number of chemical components increases, more hidden orders are often developed in a metallic glass and entangled topologically. We use this phenomenon to explain the geometric frustration in glass formation and the glass-forming ability of metallic alloys.

  16. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    ERIC Educational Resources Information Center

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  17. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy.

    PubMed Central

    Palmer, A G; Thompson, N L

    1987-01-01

    The use of high order autocorrelation in fluorescence correlation spectroscopy for investigating aggregation in a sample that contains fluorescent molecules is described. Theoretical expressions for the fluorescence fluctuation autocorrelation functions defined by gm,n(tau) = [(delta fm(t + tau)delta fm(t] - (delta Fm(t] (delta Fn(t

  18. A Frank mixture copula family for modeling higher-order correlations of neural spike counts

    NASA Astrophysics Data System (ADS)

    Onken, Arno; Obermayer, Klaus

    2009-12-01

    In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all pairwise and higher-order correlations. In contrast to the Farlie-Gumbel-Morgenstern copula family that shares this property, the Frank mixture copula can model strong correlations. We apply spike count models based on the Frank mixture copula to data generated by a network of leaky integrate-and-fire neurons and compare the goodness of fit to distributions based on the Farlie-Gumbel-Morgenstern family. Finally, we evaluate the importance of using proper single neuron spike count distributions on the Shannon information. We find notable deviations in the entropy that increase with decreasing firing rates. Moreover, we find that the Frank mixture family increases the log likelihood of the fit significantly compared to the Farlie-Gumbel-Morgenstern family. This shows that the Frank mixture copula is a useful tool to assess the importance of higher-order correlations in spike count codes.

  19. Extension of local-type inequality for the higher order correlation functions

    SciTech Connect

    Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  20. Detection of Failure of Machine by Using the Higher Order Correlation Information between Sound and Vibration

    NASA Astrophysics Data System (ADS)

    Ikuta, Akira; Orimoto, Hisako; Ogawa, Hitoshi

    In this study, a stochastic detection method of failure of machines based on the changing information of not only a linear correlation but also the higher order nonlinear correlation is proposed in a form suitable for on-line signal processing in time domain by using a personal computer, especially in order to find minutely the mutual relationship between sound and vibration emitted from rotational machines. More specifically, a conditional probability hierarchically reflecting various types of correlation information is theoretically derived by introducing an expression on the multi-dimensional probability distribution in orthogonal expansion series form. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.

  1. Multi-omics approach for estimating metabolic networks using low-order partial correlations.

    PubMed

    Kayano, Mitsunori; Imoto, Seiya; Yamaguchi, Rui; Miyano, Satoru

    2013-08-01

    Two typical purposes of metabolome analysis are to estimate metabolic pathways and to understand the regulatory systems underlying the metabolism. A powerful source of information for these analyses is a set of multi-omics data for RNA, proteins, and metabolites. However, integrated methods that analyze multi-omics data simultaneously and unravel the systems behind metabolisms have not been well established. We developed a statistical method based on low-order partial correlations with a robust correlation coefficient for estimating metabolic networks from metabolome, proteome, and transcriptome data. Our method is defined by the maximum of low-order, particularly first-order, partial correlations (MF-PCor) in order to assign a correct edge with the highest correlation and to detect the factors that strongly affect the correlation coefficient. First, through numerical experiments with real and synthetic data, we showed that the use of protein and transcript data of enzymes improved the accuracy of the estimated metabolic networks in MF-PCor. In these experiments, the effectiveness of the proposed method was also demonstrated by comparison with a correlation network (Cor) and a Gaussian graphical model (GGM). Our theoretical investigation confirmed that the performance of MF-PCor could be superior to that of the competing methods. In addition, in the real data analysis, we investigated the role of metabolites, enzymes, and enzyme genes that were identified as important factors in the network established by MF-PCor. We then found that some of them corresponded to specific reactions between metabolites mediated by catalytic enzymes that were difficult to be identified by analysis based on metabolite data alone.

  2. Hidden String Order in a Hole Superconductor with Extended Correlated Hopping

    NASA Astrophysics Data System (ADS)

    Chhajlany, Ravindra W.; Grzybowski, Przemysław R.; Stasińska, Julia; Lewenstein, Maciej; Dutta, Omjyoti

    2016-06-01

    Ultracold fermions in one-dimensional, spin-dependent nonoverlapping optical lattices are described by a nonstandard Hubbard model with next-nearest-neighbor correlated hopping. In the limit of a kinetically constraining value of the correlated hopping equal to the normal hopping, we map the invariant subspaces of the Hamiltonian exactly to free spinless fermion chains of varying lengths. As a result, the system exactly manifests spin-charge separation and we obtain the system properties for arbitrary filling: ground state collective order characterized by a spin gap, which can be ascribed to an unconventional critical hole superconductor associated with finite long range nonlocal string order. We study the system numerically away from the integrable point and show the persistence of both long range string order and spin gap for appropriate parameters as well as a transition to a ferromagnetic state.

  3. Hidden String Order in a Hole Superconductor with Extended Correlated Hopping.

    PubMed

    Chhajlany, Ravindra W; Grzybowski, Przemysław R; Stasińska, Julia; Lewenstein, Maciej; Dutta, Omjyoti

    2016-06-01

    Ultracold fermions in one-dimensional, spin-dependent nonoverlapping optical lattices are described by a nonstandard Hubbard model with next-nearest-neighbor correlated hopping. In the limit of a kinetically constraining value of the correlated hopping equal to the normal hopping, we map the invariant subspaces of the Hamiltonian exactly to free spinless fermion chains of varying lengths. As a result, the system exactly manifests spin-charge separation and we obtain the system properties for arbitrary filling: ground state collective order characterized by a spin gap, which can be ascribed to an unconventional critical hole superconductor associated with finite long range nonlocal string order. We study the system numerically away from the integrable point and show the persistence of both long range string order and spin gap for appropriate parameters as well as a transition to a ferromagnetic state.

  4. Charge-correlation effects in calculations of atomic short-range order in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pinski, F. J.; Staunton, J. B.; Johnson, D. D.

    1998-06-01

    The ``local'' chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only ``band-energy'' contributions.

  5. Higher-order Einstein-Podolsky-Rosen correlations and inseparability conditions for continuous variables

    NASA Astrophysics Data System (ADS)

    Shchukin, E.; van Loock, P.

    2016-03-01

    We derive two types of sets of higher-order conditions for bipartite entanglement in terms of continuous variables. One corresponds to an extension of the well-known Duan inequalities from second to higher moments describing a kind of higher-order Einstein-Podolsky-Rosen (EPR) correlations. Only the second type, however, expressed by powers of the mode operators leads to tight conditions with a hierarchical structure. We start with a minimization problem for the single-partite case and, using the results obtained, establish relevant inequalities for higher-order moments satisfied by all bipartite separable states. We give an explicit example of a non-Gaussian state that exhibits fourth-order but no second-order EPR correlations. Similarly, a certain fourth-order condition cannot be violated by any Gaussian state and we present non-Gaussian states whose entanglement is detected by that condition. Violations of all our conditions are provided, so they can all be used as entanglement tests.

  6. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  7. Kohn–Sham exchange-correlation potentials from second-order reduced density matrices

    SciTech Connect

    Cuevas-Saavedra, Rogelio; Staroverov, Viktor N.; Ayers, Paul W.

    2015-12-28

    We describe a practical algorithm for constructing the Kohn–Sham exchange-correlation potential corresponding to a given second-order reduced density matrix. Unlike conventional Kohn–Sham inversion methods in which such potentials are extracted from ground-state electron densities, the proposed technique delivers unambiguous results in finite basis sets. The approach can also be used to separate approximately the exchange and correlation potentials for a many-electron system for which the reduced density matrix is known. The algorithm is implemented for configuration-interaction wave functions and its performance is illustrated with numerical examples.

  8. Second order and fluctuating hydrodynamic theory of two-particle transverse momentum correlations in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Pokharel, Rajendra K.

    Relativistic heavy ion collision experiments show clear evidence of creation of a very short-lived phase of nuclear matter consisting of color-deconfined quarks and gluons. This matter is known as the quark-gluon plasma (QGP). Fluctuation and correlation measurements of the detected particles have played a very important role in revealing the properties of QGP. In particular, these measurements have shown that the QGP behaves like a nearly perfect liquid. Relativistic hydrodynamics has been successfully used to study how the QGP evolves before the system hadronizes and ultimately produces the final state particles. Transport properties like shear viscosity constitute an important part in such studies. This work is focused on developing a second order hydrodynamic theory for the evolution of two-particle transverse momentum correlations. We use general temperature dependent transport and relaxation coefficients as well as the latest information on equations of state and use both first and second order relativistic viscous hydrodynamics to compute experimentally measurable observables. We will show that our computations using the second order viscous hydrodynamics are in good agreement with experimental data. We also highlight some features that distinguish the second order viscous hydrodynamic evolution of QGP from the first order.

  9. Modified two-dimensional correlation spectra for streamlined determination of sequential order of intensity variations

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2016-11-01

    Modified forms of two-dimensional (2D) correlation spectra, i.e., sign-adjusted asynchronous spectrum and merged correlation spectrum, are discussed. They are developed for the streamlined determination of the sequential order of spectral intensity variations using only one 2D map by combining the pertinent information of synchronous and asynchronous spectra. Development of small side lobe artifacts near the peripheral of a cross peak is sometimes noted, especially for highly overlapped bands which are changing intensities in the opposite directions. The merit of the ease of interpretation afforded by the modification of correlation spectra probably outweighs the introduction minor artifacts, but some care certainly is required to avoid misinterpretation. Modified spectrum provides additional characteristic signature to the butterfly pattern cluster of cross peaks for the unambiguous identification of the presence of a band with position shift.

  10. Phase conjugation, isotropic and anisotropic higher order diffraction generation, and image correlation using photorefractive barium titanate

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan

    2005-04-01

    Using barium titanate as the photorefractive material, we demonstrate phase conjugation, beam coupling, higher diffraction order generation. At small incident angles less than 0.015 radian, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) are generated simultaneously. At bigger incident angles approximately more than 0.2094 radian, only codirectional anisotropic-self diffraction (CODAS) are generated. On going imaging correlation is also showing.

  11. Seeing the unseen: Second-order correlation learning in 7- to 11-month-olds.

    PubMed

    Yermolayeva, Yevdokiya; Rakison, David H

    2016-07-01

    We present four experiments with the object-examining procedure that investigated 7-, 9-, and 11-month-olds' ability to associate two object features that were never presented simultaneously. In each experiment, infants were familiarized with a number of 3D objects that incorporated different correlations among the features of those objects and the body of the objects (e.g., Part A and Body 1, and Part B and Body 1). Infants were then tested with objects with a novel body that either possessed both of the parts that were independently correlated with one body during familiarization (e.g., Part A and B on Body 3) or that were attached to two different bodies during familiarization. The experiments demonstrate that infants as young as 7months of age are capable of this kind of second-order correlation learning. Furthermore, by at least 11months of age infants develop a representation for the object that incorporates both of the features they experienced during training. We suggest that the ability to learn second-order correlations represents a powerful but as yet largely unexplored process for generalization in the first years of life.

  12. Seeing the unseen: Second-order correlation learning in 7- to 11-month-olds.

    PubMed

    Yermolayeva, Yevdokiya; Rakison, David H

    2016-07-01

    We present four experiments with the object-examining procedure that investigated 7-, 9-, and 11-month-olds' ability to associate two object features that were never presented simultaneously. In each experiment, infants were familiarized with a number of 3D objects that incorporated different correlations among the features of those objects and the body of the objects (e.g., Part A and Body 1, and Part B and Body 1). Infants were then tested with objects with a novel body that either possessed both of the parts that were independently correlated with one body during familiarization (e.g., Part A and B on Body 3) or that were attached to two different bodies during familiarization. The experiments demonstrate that infants as young as 7months of age are capable of this kind of second-order correlation learning. Furthermore, by at least 11months of age infants develop a representation for the object that incorporates both of the features they experienced during training. We suggest that the ability to learn second-order correlations represents a powerful but as yet largely unexplored process for generalization in the first years of life. PMID:27038738

  13. Interplay between electron correlations and quantum orders in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Witczak-Kremp, William

    We discuss the appearance of quantum orders in the Hubbard model for interacting electrons, at half-filling. Such phases do not have local order parameters and need to be characterized by the quantum mechanical properties of their ground state. On one hand, we study the Mott transition from a metal to a spin liquid insulator in two dimensions, of potential relevance to some layered organic compounds. The correlation-driven transition occurs at fixed filling and involves fractionalization of the electron: upon entering the insulator, a Fermi surface of neutral spinons coupled to an internal gauge field emerges. We focus on the transport properties near the quantum critical point and find that the emergent gauge uctuations play a key role in determining the universal scaling. Second, motivated by a class of three-dimensional transition metal oxides, the pyrochlore iridates, we study the interplay of non-trivial band topology and correlations. Building on the strong spin orbit coupling in these compounds, we construct a general microscopic Hubbard model and determine its mean-field phase diagram, which contains topological insulators, Weyl semimetals, axion insulators and various antiferromagnets. We also discuss the effects many-body correlations on theses phases. We close by examining a fractionalized topological insulator that combines the two main themes of the thesis: fractionalization and non-trivial band topology. Specifically, we study how the twodimensional protected surface states of a topological Mott insulator interact with a threedimensional emergent gauge field. Various correlation effects on observables are identified.

  14. Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta

    SciTech Connect

    Giovannini, Massimo

    2011-01-15

    The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical properties of the initial quantum state. The strongly bunched curvature phonons are not only super-Poissonian but also superchaotic. Testable inequalities are derived in the limit of large-angular scales and can be physically interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum mechanical results are compared and contrasted with different situations including the one where intensity correlations are the result of a classical stochastic process. The survival of second-order correlations (not necessarily related to the purity of the initial quantum state) is addressed by defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density matrix and turns out to be associated with finite volume effects which are expected to vanish in the thermodynamic limit.

  15. Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2011-01-01

    The quantum theory of optical coherence is applied to the scrutiny of the statistical properties of the relic inflaton quanta. After adapting the description of the quantized scalar and tensor modes of the geometry to the analysis of intensity correlations, the normalized degrees of first-order and second-order coherence are computed in the concordance paradigm and are shown to encode faithfully the statistical properties of the initial quantum state. The strongly bunched curvature phonons are not only super-Poissonian but also superchaotic. Testable inequalities are derived in the limit of large-angular scales and can be physically interpreted in the light of the tenets of Hanbury Brown-Twiss interferometry. The quantum mechanical results are compared and contrasted with different situations including the one where intensity correlations are the result of a classical stochastic process. The survival of second-order correlations (not necessarily related to the purity of the initial quantum state) is addressed by defining a generalized ensemble where super-Poissonian statistics is an intrinsic property of the density matrix and turns out to be associated with finite volume effects which are expected to vanish in the thermodynamic limit.

  16. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGES

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  17. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    SciTech Connect

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclear data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.

  18. Correlation-driven charge order at the interface between a Mott and a band insulator.

    PubMed

    Pentcheva, Rossitza; Pickett, Warren E

    2007-07-01

    To study digital Mott insulator LaTiO3 and band insulator SrTiO3 interfaces, we apply correlated band theory within the local density approximation including a Hubbard U to (n, m) multilayers, 1ordering, and Ti3+ dxy-orbital ordering, with antiferromagnetic exchange coupling between the spins in the interface layer. Lattice relaxations lead to conducting behavior by shifting (slightly but importantly) the lower Hubbard band, but the charge and orbital order is robust against relaxation. PMID:17678179

  19. Precision Measurements of Higher-Order Angular Galaxy. Correlations Using 10 Million SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Brunner, R. J.; Myers, A. D.

    2006-06-01

    We present estimates of the galaxy, N-point, area-averaged angular correlation functions, ωN(θ),; for N = 2,...,7 from the third data release (DR3) of the Sloan Digital Sky Survey. Our sample was constructed from galaxies with r magnitude between 18 and 21, and is currently the largest study of galaxy higher-order correlations. The calculated angular correlation functions are used to measure the projected, sN, and real space, SN, hierarchical amplitudes. Our measurements of the real space amplitudes are remarkably precise over the physical scales 0.2-10 h-1 Mpc, and are consistent with Gaussian primordial density fluctuations. Our measurements also suggest that higher-order galaxy bias is non-negligible. By defining b1 = 1, we find that c2 = -0.26 ± 0.10 and c3 = 1.0 ± 0.9. This is the first reported measurement of a marginally significant third-order bias, and it hints at the importance of even higher-order bias terms. We find early-type galaxies exhibit significantly different clustering than late-types at both small and large scales. At large scales (r > 1 h-1 Mpc), we find the SN for late-type galaxies are lower than for early-types, implying a difference between the higher-order bias of the respective samples. We find b1,early = 1.38 ± 0.10, c2,early = 0.29 ± 0.12, b1,late = 0.81 ± 0.03, and c2,late = -0.68 ± 0.09. This supports recent measurements of the higher-order correlations of infrared-selected galaxies, which found a positive c2, presumably due to the dominance of early-type galaxies in the 2MASS sample (Frith et al. 2005). We have extended our analysis to photometrically-selected quasars in the SDSS DR3, and are planning to leverage future SDSS data releases to make even tighter constraints on primordial non-Gaussianity and non-linear bias components. We acknowledge support from NASA grants NAG5-12578 and NAG5-12580, Microsoft Research, and the NSF PACI Project.

  20. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks

    PubMed Central

    Jovanović, Stojan

    2016-01-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. PMID:27271768

  1. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  2. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    NASA Astrophysics Data System (ADS)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the

  3. Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers.

    PubMed

    Alparone, Andrea

    2013-08-01

    Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β(μ)) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree-Fock, Møller-Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning's correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β(μ) (9H)/β(μ) (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β(μ) values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.

  4. Effects of high-order correlations on personalized recommendations for bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng

    2010-02-01

    In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.

  5. Fission Multiplicity Detection with Temporal Gamma-Neutron Discrimination from Higher-Order Time Correlation Statistics

    SciTech Connect

    Oberer, R.B.

    2002-11-12

    The current practice of nondestructive assay (NDA) of fissile materials using neutrons is dominated by the {sup 3}He detector. This has been the case since the mid 1980s when Fission Multiplicity Detection (FMD) was replaced with thermal well counters and neutron multiplicity counting (NMC). The thermal well counters detect neutrons by neutron capture in the {sup 3}He detector subsequent to moderation. The process of detection requires from 30 to 60 {micro}s. As will be explained in Section 3.3 the rate of detecting correlated neutrons (signal) from the same fission are independent of this time but the rate of accidental correlations (noise) are proportional to this time. The well counters are at a distinct disadvantage when there is a large source of uncorrelated neutrons present from ({alpha}, n) reactions for example. Plastic scintillating detectors, as were used in FMD, require only about 20 ns to detect neutrons from fission. One thousandth as many accidental coincidences are therefore accumulated. The major problem with the use of fast-plastic scintillation detectors, however, is that both neutrons and gamma rays are detected. The pulses from the two are indistinguishable in these detectors. For this thesis, a new technique was developed to use higher-order time correlation statistics to distinguish combinations of neutron and gamma ray detections in fast-plastic scintillation detectors. A system of analysis to describe these correlations was developed based on simple physical principles. Other sources of correlations from non-fission events are identified and integrated into the analysis developed for fission events. A number of ratios and metric are identified to determine physical properties of the source from the correlations. It is possible to determine both the quantity being measured and detection efficiency from these ratios from a single measurement without a separate calibration. To account for detector dead-time, an alternative analytical technique

  6. Relative ordering of square-norm distance correlations in open quantum systems

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Song, Xue-Ke; Ye, Liu

    2014-10-01

    We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local decoherence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geometric discord (GD) and its modified geometric discord (MGD), as the measures of the square-norm distance correlations. Moreover, an explicit comparison between them is made in detail. The results show that there is no distinct dominant relative ordering between them. Furthermore, we obtain that the GD just gradually deceases to zero, while MGD initially has a large freezing interval, and then suddenly changes in evolution. The longer the freezing interval, the less the MGD is. Interestingly, it is shown that the dynamic behaviors of the two geometric discords under the three noisy environments for the Werner-type initial states are the same.

  7. Next-to-leading order perturbative QCD corrections to baryon correlators in matter

    SciTech Connect

    Groote, S.; Koerner, J. G.; Pivovarov, A. A.

    2008-08-01

    We compute the next-to-leading order (NLO) perturbative QCD corrections to the correlators of nucleon interpolating currents in relativistic nuclear matter. The main new result is the calculation of the O({alpha}{sub s}) perturbative corrections to the coefficient functions of the vector quark condensate in matter. This condensate appears in matter due to the violation of Lorentz invariance. The NLO perturbative QCD corrections turn out to be large which implies that the NLO corrections must be included in a sum rule analysis of the properties of both bound nucleons and relativistic nuclear matter.

  8. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  9. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating.

    PubMed

    Dasbiswas, K; Majkut, S; Discher, D E; Safran, Samuel A

    2015-01-19

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  10. Exploiting multi-lead electrocardiogram correlations using robust third-order tensor decomposition.

    PubMed

    Padhy, Sibasankar; Dandapat, Samarendra

    2015-10-01

    In this Letter, a robust third-order tensor decomposition of multi-lead electrocardiogram (MECG) comprising of 12-leads is proposed to reduce the dimension of the storage data. An order-3 tensor structure is employed to represent the MECG data by rearranging the MECG information in three dimensions. The three-dimensions of the formed tensor represent the number of leads, beats and samples of some fixed ECG duration. Dimension reduction of such an arrangement exploits correlations present among the successive beats (intra-beat and inter-beat) and across the leads (inter-lead). The higher-order singular value decomposition is used to decompose the tensor data. In addition, multiscale analysis has been added for effective care of ECG information. It grossly segments the ECG characteristic waves (P-wave, QRS-complex, ST-segment and T-wave etc.) into different sub-bands. In the meantime, it separates high-frequency noise components into lower-order sub-bands which helps in removing noise from the original data. For evaluation purposes, we have used the publicly available PTB diagnostic database. The proposed method outperforms the existing algorithms where compression ratio is under 10 for MECG data. Results show that the original MECG data volume can be reduced by more than 45 times with acceptable diagnostic distortion level. PMID:26609416

  11. Orientational ordering in hard rectangles: The role of three-body correlations.

    PubMed

    Martínez-Ratón, Yuri; Velasco, Enrique; Mederos, Luis

    2006-07-01

    We investigate the effect of three-body correlations on the phase behavior of hard rectangle two-dimensional fluids. The third virial coefficient B3 is incorporated via an equation of state that recovers scaled particle theory for parallel hard rectangles. This coefficient, a functional of the orientational distribution function, is calculated by Monte Carlo integration, using an accurate parametrized distribution function, for various particle aspect ratios in the range of 1-25. A bifurcation analysis of the free energy calculated from the obtained equation of state is applied to find the isotropic (I)-uniaxial nematic (N(u)) and isotropic-tetratic nematic (N(t)) spinodals and to study the order of these phase transitions. We find that the relative stability of the N(t) phase with respect to the isotropic phase is enhanced by the introduction of B3. Finally, we have calculated the complete phase diagram using a variational procedure and compared the results with those obtained from scaled particle theory and with Monte Carlo simulations carried out for hard rectangles with various aspect ratios. The predictions of our proposed equation of state as regards the transition densities between the isotropic and orientationally ordered phases for small aspect ratios are in fair agreement with simulations. Also, the critical aspect ratio below which the N(t) phase becomes stable is predicted to increase due to three-body correlations, although the corresponding value is underestimated with respect to simulation. PMID:16863310

  12. Cascade Error Projection with Low Bit Weight Quantization for High Order Correlation Data

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher

    1998-01-01

    In this paper, we reinvestigate the solution for chaotic time series prediction problem using neural network approach. The nature of this problem is such that the data sequences are never repeated, but they are rather in chaotic region. However, these data sequences are correlated between past, present, and future data in high order. We use Cascade Error Projection (CEP) learning algorithm to capture the high order correlation between past and present data to predict a future data using limited weight quantization constraints. This will help to predict a future information that will provide us better estimation in time for intelligent control system. In our earlier work, it has been shown that CEP can sufficiently learn 5-8 bit parity problem with 4- or more bits, and color segmentation problem with 7- or more bits of weight quantization. In this paper, we demonstrate that chaotic time series can be learned and generalized well with as low as 4-bit weight quantization using round-off and truncation techniques. The results show that generalization feature will suffer less as more bit weight quantization is available and error surfaces with the round-off technique are more symmetric around zero than error surfaces with the truncation technique. This study suggests that CEP is an implementable learning technique for hardware consideration.

  13. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  14. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems.

    PubMed

    Murg, V; Verstraete, F; Schneider, R; Nagy, P R; Legeza, Ö

    2015-03-10

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.

  15. Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions

    NASA Astrophysics Data System (ADS)

    Jukić, Damir; Denić-Jukić, Vesna

    2015-11-01

    Time series of rainfall and karst-spring discharge are influenced by various space-time-variant processes involved in the transfer of water in hydrological cycle. The effects of these processes can be exhibited in auto-correlation and cross-correlation functions. Consequently, ambiguities with respect to the effects encoded in the correlation functions exist. To solve this problem, a new statistical method for investigating relationships between rainfall and karst-spring discharge is proposed. The method is based on the determination and analysis of higher-order partial correlation functions and their spectral representations. The study area is the catchment of the Jadro Spring in Croatia. The analyzed daily time series are the air temperature, relative humidity, spring discharge, and rainfall at seven rain-gauges over a period of 19 years, from 1995 to 2013. The application results show that the effects of spatial and temporal variations of hydrological time series and the space-time-variant behaviours of the karst system can be separated from the correlation functions. Specifically, the effect of evapotranspiration can be separated to obtain the forms of correlation functions that represent the hydrogeological characteristics of the karst system. Using the proposed method, it is also possible to separate the effects of the process of groundwater recharge that occurs in neighbouring parts of a catchment to identify the specific contribution of each part of the catchment to the karst-spring discharge. The main quantitative results obtained for the Jadro Spring show that the quick-flow duration is 14 days, the intermediate-flow duration is 80 days, and the pure base flow starts after 80 days. The base flow consists of an inter-catchment groundwater flow. The system memory of the spring is 80 days. The presented results indicate the far-reaching applicability of the proposed method in the analyses of relationships between rainfall and karst-spring discharge; e

  16. Evidence of an odd-parity hidden order in a spin-orbit coupled correlated iridate

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Torchinsky, D. H.; Chu, H.; Ivanov, V.; Lifshitz, R.; Flint, R.; Qi, T.; Cao, G.; Hsieh, D.

    2016-01-01

    A rare combination of strong spin-orbit coupling and electron-electron correlations makes the iridate Mott insulator Sr2IrO4 a promising host for novel electronic phases of matter. The resemblance of its crystallographic, magnetic and electronic structures to La2CuO4, as well as the emergence on doping of a pseudogap region and a low-temperature d-wave gap, has particularly strengthened analogies to cuprate high-Tc superconductors. However, unlike the cuprate phase diagram, which features a plethora of broken symmetry phases in a pseudogap region that includes charge density wave, stripe, nematic and possibly intra-unit-cell loop-current orders, no broken symmetry phases proximate to the parent antiferromagnetic Mott insulating phase in Sr2IrO4 have been observed so far, making the comparison of iridate to cuprate phenomenology incomplete. Using optical second-harmonic generation, we report evidence of a hidden non-dipolar magnetic order in Sr2IrO4 that breaks both the spatial inversion and rotational symmetries of the underlying tetragonal lattice. Four distinct domain types corresponding to discrete 90°-rotated orientations of a pseudovector order parameter are identified using nonlinear optical microscopy, which is expected from an electronic phase that possesses the symmetries of a magneto-electric loop-current order. The onset temperature of this phase is monotonically suppressed with bulk hole doping, albeit much more weakly than the Néel temperature, revealing an extended region of the phase diagram with purely hidden order. Driving this hidden phase to its quantum critical point may be a path to realizing superconductivity in Sr2IrO4.

  17. Correlation between Photovoltaic Performance and Interchain Ordering Induced Delocalization of Electronics States in Conjugated Polymer Blends.

    PubMed

    Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh

    2016-08-10

    In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells. PMID:27415029

  18. Correlations with projectile-like fragments and emission order of light charged particles

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Bonasera, A.; Galanopoulos, S.; Hagel, K.; May, L. W.; McIntosh, A. B.; Stein, B. C.; Souliotis, G. A.; Tripathi, R.; Wuenschel, S.; Yennello, S. J.

    2012-10-01

    Correlations of midrapidity light charged particles (LCPs) and intermediate mass fragments (IMFs) with projectile-like fragments (PLFs) have been examined from the 35 MeV/u 70Zn+70Zn, 64Zn+64Zn, and 64Ni+64Ni reaction systems. A new method was developed to examine the flow of the particles with respect to the PLF. The invariant PLF-scaled flow allowed for the dynamics of the midrapidity Z=1-4 particles to be studied. Strong differences in the PLF-scaled flow were observed between the different isotopes. In particular, the most n-rich LCPs exhibited a negative PLF-scaled flow in comparison to the other LCPs. A classical molecular dynamics model and a three-body Coulomb trajectory simulation were both used to show that the PLF-scaled flow observable could be connected to the average order of emission of the LCPs. The experimental results suggest that the midrapidity region is preferentially populated with neutron-rich LCPs and Z=3-4 IMFs at a relatively early stage in the collision. The deuteron and 3He particles are emitted later followed, lastly, by protons and alphas. The average order of emission of the midrapidity LCPs was extracted from the constrained molecular dynamics simulations and showed good agreement with the emission order suggested by the experimental PLF-scaled flow results.

  19. Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Ren, Xinguo; Rinke, Patrick; Scuseria, Gustavo E.; Scheffler, Matthias

    2013-07-01

    We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as ``renormalization'' of the second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrödinger perturbation theory based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE) contribution was treated approximately, has already been benchmarked for molecular atomization energies and chemical reaction barrier heights and shows a well-balanced performance [J. Paier , New J. Phys.1367-263010.1088/1367-2630/14/4/043002 14, 043002 (2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers, and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an overall satisfactory performance across different electronic situations, and is a promising step towards a generally applicable electronic-structure approach.

  20. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    DOE PAGES

    Hogan, Tom; Yamani, Z.; Walkup, D.; Chen, Xiang; Dally, Rebecca; Ward, Thomas Zac; Dean, M. P. M.; Hill, John P.; Islam, Z.; Madhavan, Vidya; et al

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr1-xLax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortion develops and suggests a competingmore » instability with the parent spin-orbit Mott state.« less

  1. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    SciTech Connect

    Hogan, Tom; Yamani, Z.; Walkup, D.; Chen, Xiang; Dally, Rebecca; Ward, Thomas Zac; Dean, M. P. M.; Hill, John P.; Islam, Z.; Madhavan, Vidya; Wilson, Stephen D.

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr1-xLax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state.

  2. First-Order Melting of a Weak Spin-Orbit Mott Insulator into a Correlated Metal.

    PubMed

    Hogan, Tom; Yamani, Z; Walkup, D; Chen, Xiang; Dally, Rebecca; Ward, Thomas Z; Dean, M P M; Hill, John; Islam, Z; Madhavan, Vidya; Wilson, Stephen D

    2015-06-26

    The electronic phase diagram of the weak spin-orbit Mott insulator (Sr(1-x)La(x))(3)Ir(2)O(7) is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. As the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state.

  3. Communication: Stochastic evaluation of explicitly correlated second-order many-body perturbation energy

    SciTech Connect

    Willow, Soohaeng Yoo; Zhang, Jinmei; Valeev, Edward F.; Hirata, So

    2014-01-21

    A stochastic algorithm is proposed that can compute the basis-set-incompleteness correction to the second-order many-body perturbation (MP2) energy of a polyatomic molecule. It evaluates the sum of two-, three-, and four-electron integrals over an explicit function of electron-electron distances by a Monte Carlo (MC) integration at an operation cost per MC step increasing only quadratically with size. The method can reproduce the corrections to the MP2/cc-pVTZ energies of H{sub 2}O, CH{sub 4}, and C{sub 6}H{sub 6} within a few mE{sub h} after several million MC steps. It circumvents the resolution-of-the-identity approximation to the nonfactorable three-electron integrals usually necessary in the conventional explicitly correlated (R12 or F12) methods.

  4. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  5. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.

  6. Doping-dependent charge order correlations in electron-doped cuprates

    PubMed Central

    da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea

    2016-01-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  7. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.

    PubMed

    Hollman, David S; Wilke, Jeremiah J; Schaefer, Henry F

    2013-02-14

    The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)]. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N(5)) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.

  8. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    PubMed

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

  9. COSMO-RSC: Second-Order Quasi-Chemical Theory Recovering Local Surface Correlation Effects.

    PubMed

    Klamt, A

    2016-03-31

    The conductor-like screening model for realistic solvation (COSMO-RS) was introduced 20 years ago and meanwhile has become an important tool for the prediction of fluid phase equilibrium properties. Starting from quantum chemical information about the surface polarity of solutes and solvents, it solves the statistical thermodynamics of molecules in liquid phases by the very efficient approximation of independently pairwise interacting surfaces, which meanwhile was shown to be equivalent to Guggenheim's quasi-chemical theory. One of the basic limitations of COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, i.e., of local correlations of surface types on the molecular surface. In this paper we present the completely novel concept of using the first-order COSMO-RS contact probabilities for the construction of local surface correlation functions. These are fed as an entropic correction for the pair interactions into a second COSMO-RS self-consistency loop, which yields new contact probabilities, enthalpies, free energies and activity coefficients recovering much of the originally lost neighbor effects. By a novel analytic correction for concentration dependent interactions, the resulting activity coefficients remain exactly Gibbs-Duhem consistent. The theory is demonstrated on the example of a lattice Monte Carlo fluid of dimerizing pseudomolecules. In this showcase the strong deviations of the lattice Monte Carlo fluid from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC.

  10. COSMO-RSC: Second-Order Quasi-Chemical Theory Recovering Local Surface Correlation Effects.

    PubMed

    Klamt, A

    2016-03-31

    The conductor-like screening model for realistic solvation (COSMO-RS) was introduced 20 years ago and meanwhile has become an important tool for the prediction of fluid phase equilibrium properties. Starting from quantum chemical information about the surface polarity of solutes and solvents, it solves the statistical thermodynamics of molecules in liquid phases by the very efficient approximation of independently pairwise interacting surfaces, which meanwhile was shown to be equivalent to Guggenheim's quasi-chemical theory. One of the basic limitations of COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, i.e., of local correlations of surface types on the molecular surface. In this paper we present the completely novel concept of using the first-order COSMO-RS contact probabilities for the construction of local surface correlation functions. These are fed as an entropic correction for the pair interactions into a second COSMO-RS self-consistency loop, which yields new contact probabilities, enthalpies, free energies and activity coefficients recovering much of the originally lost neighbor effects. By a novel analytic correction for concentration dependent interactions, the resulting activity coefficients remain exactly Gibbs-Duhem consistent. The theory is demonstrated on the example of a lattice Monte Carlo fluid of dimerizing pseudomolecules. In this showcase the strong deviations of the lattice Monte Carlo fluid from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC. PMID:26963690

  11. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    PubMed

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  12. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.

    PubMed

    Bandyopadhyay, Dibyendu; Mohan, S; Ghosh, S K; Choudhury, Niharendu

    2013-07-25

    We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it. On the basis of this view, the origin of the appearance of a non-tetrahedral peak at a higher temperature in the distribution of tetrahedral order parameters has been explained. It is found that a neighbor that is hydrogen-bonded to the central molecule is tetrahedrally coordinated even at higher temperatures. The non-tetrahedral peak at a higher temperature arises due to the strained orientation of the neighbors that are non-hydrogen-bonded to the central molecule. With the new definition of the solvation shell, liquid water can be viewed as an instantaneously changing random hydrogen-bonded network consisting of differently coordinated hydrogen-bonded molecules with their distinct solvation shells. The variation of the composition of these hydrogen-bonded molecules against temperature accounts for the density anomaly without introducing the concept of large-scale structural polyamorphism in water.

  13. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order.

    PubMed

    Wang, Xiao; Broch, Katharina; Scholz, Reinhard; Schreiber, Frank; Meixner, Alfred J; Zhang, Dai

    2014-04-01

    Cylindrical vector beams, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin films, allowing us to correlate Raman spectroscopy with intermolecular interactions depending on the particular pentacene polymorph. Polarization-dependent Raman spectra of the C-H bending vibrations are resolved layer by layer within a thin film of ∼20 nm thickness. The variation of the Raman peak positions indicates changes in the molecular orientation and in the local environment at different heights of the pentacene film. With the assistance of a theoretical model based on harmonic oscillator and perturbation theory, our method reveals the local structural order and the polymorph at different locations within the same pentacene thin film, depending mainly on its thickness. In good agreement with the crystallographic structures reported in the literature, our observations demonstrate that the first few monolayers grown in a structure are closer to the thin-film phase, but for larger film thicknesses, the morphology evolves toward the crystal-bulk phase with a larger tilting angle of the pentacene molecules against the substrate normal.

  14. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function

    NASA Astrophysics Data System (ADS)

    Atkinson, Steven; Stillinger, Frank H.; Torquato, Salvatore

    2016-09-01

    The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c (r ) , rather than the total correlation function h (r ) , diverges. We expand on the notion that c (r ) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the n th derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c (r ) with regards to singularities it inherits from h (r ) . These relations provide a concrete means of identifying features that must be expressed in c (r ) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c (r )∝-1 /r as r →0 that accompanies the formation of the delta function at c (D ) that indicates the formation of contacts in all cases, and show

  15. Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter

    SciTech Connect

    Choi, Wonshik; Lee, Moonjoo; Lee, Ye-Ryoung; Park, Changsoon; Lee, Jai-Hyung; An, Kyungwon; Fang-Yen, C.; Dasari, R. R.; Feld, M. S.

    2005-08-15

    A novel high-throughput second-order correlation measurement system is developed that records and makes use of all the arrival times of photons detected at both start and stop detectors. This system is suitable, particularly for a light source having a high photon flux and a long coherence time, since it is more efficient than conventional methods by an amount equal to the product of the count rate and the correlation time of the light source. We have used this system in carefully investigating the dead time effects of detectors and photon counters on the second-order correlation function in the two-detector configuration. For a nonstationary light source, a distortion of the original signal was observed at high photon flux. A systematic way of calibrating the second-order correlation function has been devised by introducing the concept of an effective dead time of the entire measurement system.

  16. Normalization of the Matter Power Spectrum via Higher Order Angular Correlations of Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Brunner, Robert J.; Myers, Adam D.

    2008-08-01

    We present a novel technique with which to measure σ8. It relies on measuring the dependence of the second-order bias of a density field on σ8, using two separate techniques. Each technique employs area-averaged angular correlation functions (bar omegaN), one relying on the shape of bar omega2, the other relying on the amplitude of s3 (s3 = bar omega3/bar omega22). We confirm the validity of this method by testing it on a mock catalog drawn from Millennium Simulation data and finding a value of σ8 - σtrue8 = - 0.002 +/- 0.062. We create a catalog of photometrically selected LRGs from SDSS DR5 and separate it into three distinct data sets by photometric redshift, with median redshifts of 0.47, 0.53, and 0.61. Measurements of c2 and σ8 are made for each data set, with the assumption of a flat geometry and WMAP3 best-fit priors on Ωm, h, and Γ. We find, with increasing redshift, that c2 = 0.09 +/- 0.04, 0.09 +/- 0.05, and 0.09 +/- 0.03, and σ8 = 0.78 +/- 0.08, 0.80 +/- 0.09, and 0.80 +/- 0.09. We combine these three consistent σ8 measurements to produce σ8 = 0.79 +/- 0.05. Allowing the parameters Ωm, h, and Γ to vary within their WMAP3 1 σ error, we find that the best-fit value of σ8 does not change by more than 8%, and we are thus confident that our measurement is accurate to within 10%. We anticipate that future surveys, such as Pan-STARRS, DES, and LSST, will be able to employ this method in order to measure σ8 to great precision, and this will serve as an important check, complementarily, on the values determined via more established methods.

  17. Correlation of early orientational ordering of engineered λ 6-85 structure with kinetics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Larios, Edgar; Pitera, Jed W.; Swope, William C.; Gruebele, Martin

    2006-03-01

    Experimental and computational Φ-value analysis of two-state helical proteins has shown that definite interactions among helix-forming segments build up in the transition state ensemble, but this type of analysis is not applicable to downhill folders. Here, we ask whether orientational ordering of helix-forming segments occurs early on during folding of a downhill λ 6-85 mutant, and how much it correlates with the thermodynamics and kinetics of various λ 6-85 mutants that do have folding barriers. From a grand total of 5 μs of implicit solvent replica-exchange molecular dynamics, we conclude that under folding conditions segments 1 and 4 form more helical structure and orient correctly relative to the native structure more often than do segments 2 and 3. Helices 1 and 2 retain the most residual structure and orientation at high temperatures. This is further supported by experimental data showing that perturbations in helices 1 and 4 of this well-designed folder affect folding kinetics and stability more sensitively than elsewhere in the protein, and that the helix 1-2 only bundle retains a cooperative melting transition and helical CD spectrum. The correct orientational propensity of helices 1 and 4 at low temperature is in agreement with the work by Takada, Portman and Wolynes proposing initial structure formation during folding in helices 1 and 4 of the wild-type λ 6-85 protein, a two-state folder. Thus, the absence of a large barrier in the downhill mutant does not fundamentally alter the steps the wild-type protein takes to fold.

  18. Effect of interacting second- and third-order stimulus-dependent correlations on population-coding asymmetries

    NASA Astrophysics Data System (ADS)

    Montangie, Lisandro; Montani, Fernando

    2016-10-01

    Spike correlations among neurons are widely encountered in the brain. Although models accounting for pairwise interactions have proved able to capture some of the most important features of population activity at the level of the retina, the evidence shows that pairwise neuronal correlation analysis does not resolve cooperative population dynamics by itself. By means of a series expansion for short time scales of the mutual information conveyed by a population of neurons, the information transmission can be broken down into firing rate and correlational components. In a proposed extension of this framework, we investigate the information components considering both second- and higher-order correlations. We show that the existence of a mixed stimulus-dependent correlation term defines a new scenario for the interplay between pairwise and higher-than-pairwise interactions in noise and signal correlations that would lead either to redundancy or synergy in the information-theoretic sense.

  19. The Second Order Approximation to Sample Influence Curve in Canonical Correlation Analysis.

    ERIC Educational Resources Information Center

    Fung, Wing K.; Gu, Hong

    1998-01-01

    A second order approximation to the sample influence curve (SIC) has been derived in the literature. This paper presents a more accurate second order approximation, which is exact for the SIC of the squared multiple correction coefficient. An example is presented. (SLD)

  20. Noniterative local second order Møller-Plesset theory: Convergence with local correlation space

    NASA Astrophysics Data System (ADS)

    Maslen, P. E.; Head-Gordon, M.

    1998-11-01

    We extend our noniterative local correlation method [P. E. Maslen and M. Head-Gordon, Chem. Phys. Lett., 283, 102 (1998)] by defining a hierarchy of local spaces, ranging from small to large. The accuracy of the local method is then examined as a function of the size of the local space. A medium size local space recovers 98% of the MP2 correlation energy, and reproduces fine details of the potential energy surface such as rotational barriers with an RMS error of 0.2 kcal/mol and a maximum error of 0.4 kcal/mol. A large local space recovers 99.5% of the correlation energy and yields rotational barriers with a RMS error of 0.05 kcal/mol and a maximum error of 0.1 kcal/mol, at significantly increased computational cost.

  1. Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues

    SciTech Connect

    Jiang Huaidong; Liu Xiangyang; Lim, Chwee T.; Hsu, Chin Y.

    2005-04-18

    Biominerals in the hard tissues of many organisms exhibit superior mechanical properties due to their unique hierarchical nanostructures. In this article, we show the microstructure of human tooth enamel examined by position-resolved small-angle x-ray scattering and electron microscopy. It is found that the degree of ordering of the biominerals varies strikingly within the dental sample. Combined with nanoindentation, our results show that both the hardness and the elastic modulus increase predominantly with the ordering of the biomineral crystallites. This can be attributed to the fact that the ordered structure helps sustain a more complex mechanical stress.

  2. “Pure chaotic” orbits of one-dimensional maps have third-order correlation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Ichimura, Atsushi

    1984-04-01

    The triple-time-correlation function for the logistic map and the tent map, both for the uppermost values of their parameters, are calculated analytically and orbits of these systems are shown to be different from a pseudo-random-number sequence generated on a computer. Violation of the time-reversal invariance by these orbits is also discussed.

  3. Image correlation using isotropic and anisotropic higher-order generation and mutually pumped phase conjugation in photorefractive barium titanate

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan; Banerjee, Partha P.; Polejaev, Vladimir; Sun, Ching-Cherng

    2003-10-01

    Using two beam coupling geometry, high order copropagating and contrapropagating isotropic and copropagating anisotropic self-diffraction are demonstrated using photorefractive cerium doped barium titanate. At small incident angles, typically less than 0.015 radians, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) orders are generated simultaneously. At larger incident angles, typically approximately more than 0.2094 radians, only codirectional anisotropic-self diffraction (CODAS) orders are generated. Ongoing work on image auto/cross correlation results are also shown.

  4. On the structure of Si(100) surface: importance of higher order correlations for buckled dimer.

    PubMed

    Back, Seoin; Schmidt, Johan A; Ji, Hyunjun; Heo, Jiyoung; Shao, Yihan; Jung, Yousung

    2013-05-28

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003)]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface.

  5. Charge ordering, charge fluctuations and lattice effects in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Goto, Terutaka; Lüthi, Bruno

    2003-02-01

    Charge fluctuation and charge-ordering phenomena in compounds based on the 3d electrons of transition-metal ions and 4f electrons of rare-earth ions are reviewed with particular emphasis on the mutual coupling of charge and lattice degrees of freedom. For the description of charge ordering in inhomogeneously mixed-valence compounds of localized 3d or 4f-electron systems, we employ Landau's phenomenological theory for second-order phase transitions. By use of the group-theoretical method, the charge fluctuation mode corresponding to the active representation for the second-order transition is determined. The localization of 3d and 4f electrons makes the valence for the specific ions an integer number of charge units e in the ordered phases at low temperatures. The elastic soft mode observed by the ultrasonic method is often a useful indication for the charge fluctuation mode that is frozen below the charge-ordering point TC. The transverse c44 mode exhibiting a considerable softening in the rare-earth compound Yb4As3 couples to the Γ5 triplet of the charge fluctuation mode, giving rise to a linear chain of magnetic Yb3+ ions along [111] below TC = 292 K. Magnetite Fe3O4 and the substitution system Fe3-xZnxO4 exhibit softening of the c44 mode that couples to the charge fluctuation mode, which freezes below the Verwey transition temperature TV = 124 K. The soft c66 mode of the transition-metal compound NaV2O5 gives evidence for a zigzag structure of V4+ ions in the a-b plane below TC = 34 K and is the precursor for the orthorhombic-monoclinic phase transition. The charge glass compounds of Sm3X4 (X = Se or Te) show ultrasonic dispersion due to thermal hopping of 4f electrons between Sm2+ and Sm3+ ions. The ln T decrease in elastic constants of Sm3X4 is described in terms of a two-level system of the 4f-electron tunnelling in the random potential. The characteristic ultrasonic dispersion for the copper oxide compound Sr12Ca2Cu24O41 is also presented. The elastic

  6. On the structure of Si(100) surface: Importance of higher order correlations for buckled dimer

    NASA Astrophysics Data System (ADS)

    Back, Seoin; Schmidt, Johan A.; Ji, Hyunjun; Heo, Jiyoung; Shao, Yihan; Jung, Yousung

    2013-05-01

    We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003), 10.1063/1.1620994]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface.

  7. Ultrahigh‐Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electron‐Correlated Oxides

    PubMed Central

    Lang, Xing‐You; Liu, Bo‐Tian; Shi, Xiang‐Mei; Li, Ying‐Qi; Wen, Zi

    2016-01-01

    Nanostructured transition‐metal oxides can store high‐density energy in fast surface redox reactions, but their poor conductivity causes remarkable reductions in the energy storage of most pseudocapacitors at high power delivery (fast charge/discharge rates). Here it is shown that electron‐correlated oxide hybrid electrodes made of nanocrystalline vanadium sesquioxide and manganese dioxide with 3D and bicontinuous nanoporous architecture (NP V2O3/MnO2) have enhanced conductivity because of metallization of electron‐correlated V2O3 skeleton via insulator‐to‐metal transition. The conductive V2O3 skeleton at ambient temperature enables fast electron and ion transports in the entire electrode and facilitates charge transfer at abundant V2O3/MnO2 interface. These merits significantly improve the pseudocapacitive behavior and rate capability of the constituent MnO2. Symmetric pseudocapacitors assembled with binder‐free NP V2O3/MnO2 electrodes deliver ultrahigh electrical powers (up to ≈422 W cm23) while maintaining the high volumetric energy of thin‐film lithium battery with excellent stability. PMID:27812465

  8. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    SciTech Connect

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo; Vitev, Ivan

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.

  9. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure.

    PubMed

    Aranda-Anzaldo, Armando

    2012-03-01

    Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316

  10. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Azaria, P.; Konik, R. M.; Lecheminant, P.; Pálmai, T.; Takács, G.; Tsvelik, A. M.

    2016-08-01

    In this paper we study a (1 +1 )-dimensional version of the famous Nambu-Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ , is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ =0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phases with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).

  11. Symmetry and correlations underlying hidden order in URu2Si2

    DOE PAGES

    Butch, Nicholas P.; Manley, Michael E.; Jeffries, Jason R.; Janoschek, Marc; Huang, Kevin; Maple, M. Brian; Said, Ayman H.; Leu, Bogdan M.; Lynn, Jeffrey W.

    2015-01-26

    In this paper, we experimentally investigate the symmetry in the hidden order (HO) phase of intermetallic URu2Si2 by mapping the lattice and magnetic excitations via inelastic neutron and x-ray scattering measurements in the HO and high-temperature paramagnetic phases. At all temperatures, the excitations respect the zone edges of the body-centered tetragonal paramagnetic phase, showing no signs of reduced spatial symmetry, even in the HO phase. The magnetic excitations originate from transitions between hybridized bands and track the Fermi surface, whose features are corroborated by the phonon measurements. Due to a large hybridization energy scale, a full uranium moment persists inmore » the HO phase, consistent with a lack of observed crystal-field-split states. Our results are inconsistent with local order-parameter models and the behavior of typical density waves. Finally, we suggest that an order parameter that does not break spatial symmetry would naturally explain these characteristics.« less

  12. Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method.

    PubMed

    Jung, Yousung; Lochan, Rohini C; Dutoi, Anthony D; Head-Gordon, Martin

    2004-11-22

    A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Møller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite-spin second order energy (SOS-MP2), where MP2 is Møller-Plesset theory, yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the fifth order computational steps associated with MP2 theory, even without exploiting any spatial locality. A fourth order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

  13. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  14. Dissociating the neural correlates of tactile temporal order and simultaneity judgements

    PubMed Central

    Miyazaki, Makoto; Kadota, Hiroshi; Matsuzaki, Kozue S.; Takeuchi, Shigeki; Sekiguchi, Hirofumi; Aoyama, Takuo; Kochiyama, Takanori

    2016-01-01

    Perceiving temporal relationships between sensory events is a key process for recognising dynamic environments. Temporal order judgement (TOJ) and simultaneity judgement (SJ) are used for probing this perceptual process. TOJ and SJ exhibit identical psychometric parameters. However, there is accumulating psychophysical evidence that distinguishes TOJ from SJ. Some studies have proposed that the perceptual processes for SJ (e.g., detecting successive/simultaneity) are also included in TOJ, whereas TOJ requires more processes (e.g., determination of the temporal order). Other studies have proposed two independent processes for TOJ and SJ. To identify differences in the neural activity associated with TOJ versus SJ, we performed functional magnetic resonance imaging of participants during TOJ and SJ with identical tactile stimuli. TOJ-specific activity was observed in multiple regions (e.g., left ventral and bilateral dorsal premotor cortices and left posterior parietal cortex) that overlap the general temporal prediction network for perception and motor systems. SJ-specific activation was observed only in the posterior insular cortex. Our results suggest that TOJ requires more processes than SJ and that both TOJ and SJ implement specific process components. The neural differences between TOJ and SJ thus combine features described in previous psychophysical hypotheses that proposed different mechanisms. PMID:27064734

  15. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass.

    PubMed

    Olsen, Aaron M

    2015-11-01

    Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low-quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds.

  16. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass.

    PubMed

    Olsen, Aaron M

    2015-11-01

    Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low-quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds. PMID:26640679

  17. Approximated optimum condition of second order response surface model with correlated observations

    NASA Astrophysics Data System (ADS)

    Somayasa, Wayan

    2016-06-01

    In the present paper we establish an inference procedure for the eigenvalues of the model matrix of the second-order response surface model (RSM). In contrast to the classical treatment where the sample are assumed to be independently distributed, in this work we do not need such distributional simplification. The confidence region for the unknown vector of the eigenvalues is derived by means of delta method. The finite sample behavior of the convergence result is discussed by Monte Carlo Simulation. We get the approximated distribution of the pivotal quantity of the population eigenvalues as a chi-square distribution model. Next we attempt to apply the method to a real data provided by a mining industry. The data represents the percentage of cobalt (Co) observed over the exploration region.

  18. Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots

    PubMed Central

    Zhang, Kai; Du, Kai; Liu, Hao; Zhang, X.-G.; Lan, Fanli; Lin, Hanxuan; Wei, Wengang; Zhu, Yinyan; Kou, Yunfang; Shao, Jian; Niu, Jiebin; Wang, Wenbin; Wu, Ruqian; Yin, Lifeng; Plummer, E. W.; Shen, Jian

    2015-01-01

    The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field. PMID:26195791

  19. First order phase transformations: scaling relations for grain self-correlation functions

    SciTech Connect

    Axe, J.D.; Shapiro, S.M.; Yamada, Y.; Hamaya, N.

    1985-06-01

    At high pressure many alkali halides transform from the NaCl (B1) structure to the CsCl (B2) structure. We have recently studied this transformation in polycrystalline RbI, which transforms at a critical pressure, P/sub c/ = 3.5 kbar. By observing the time development of the neutron diffraction pattern after sudden increase of hydrostatic pressure from P

    P/sub c/ we directly deduced X(t), the fraction of the sample converted from metastable to stable phase, as a function of time. We showed that X(t) taken at different P could be approximately scaled onto a universal growth curve by introducing an adjustable characteristic time tau(P) for each curve. The success of the Kolmogorov in fitting X(t) suggests that comparisons of model predictions with other experimental observables be made on the system. For example, by a trivial (in principle) extension of the neutron diffraction techniques described above, one might determine the broadening of the powder diffraction peaks due to finite grain size as a function of time throughout growth. This particle size broadening is related by Fourier transformation to the grain autocorrelation function, G/sub s/(r,t), which measures the ensemble average of the overlap of grains with themselves upon translation of the grain pattern by an amount r. We present some results of a study of the scaling properties of G/sub s/(r,t) for the Kolmogorov model for d=1 and d=2. Although the model is highly idealized, it is perhaps the simplest conceivable one which obeys correlation function scaling in early stages of growth and undergoes nontrivial saturation due to volume fraction effects in the late stages. 4 refs., 6 figs.

  20. Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects

    SciTech Connect

    Schmidt, J. A.; Olsen, J. M. H.

    2014-11-14

    The photodissociation of carbonyl sulfide (OCS) was investigated theoretically in a series of studies by Schmidt and co-workers. Initial studies [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 136, 131101 (2012); J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] found photodissociation in the first UV-band to occur mainly by excitation of the 2{sup 1}A{sup ′} (A) excited state. However, in a later study [G. C. McBane, J. A. Schmidt, M. S. Johnson, and R. Schinke, J. Chem. Phys. 138, 094314 (2013)] it was found that a significant fraction of photodissociation must occur by excitation of 1{sup 1}A{sup ″} (B) excited state to explain the product angular distribution. The branching between excitation of the A and B excited states is determined by the magnitude of the transition dipole moment vectors in the Franck-Condon region. This study examines the sensitivity of these quantities to changes in the employed electronic structure methodology. This study benchmarks the methodology employed in previous studies against highly correlated electronic structure methods (CC3 and MRAQCC) and provide evidence in support of the picture of the OCS photodissociation process presented in [G. C. McBane, J. A. Schmidt, M. S. Johnson, and R. Schinke, J. Chem. Phys. 138, 094314 (2013)] showing that excitation of A and B electronic states both contribute significantly to the first UV absorption band of OCS. In addition, this study presents evidence in support of the assertion that the A state potential energy surface employed in previous studies underestimates the energy at highly bent geometries (γ ∼ 70°) leading to overestimated rotational energy in the product CO.

  1. Velocity correlation functions, Fickian and higher order diffusion coefficients for ions in electrostatic fields via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Koutselos, Andreas D.

    1996-06-01

    The dynamic and transport properties of swarms of ions in a uniform electrostatic field are studied by using a molecular dynamics method. For a representative system, K+ in Ar, using a universal interaction model potential, second and third order ion-velocity correlation functions are determined at various field strengths. From them, Fickian diffusion coefficients parallel and perpendicular to the field, as well as higher order diffusion coefficients, Qzzz, are obtained within estimated overall accuracy 5% and 7%, respectively. Comparisons of the Fickian diffusion coefficients against results of the moment solution of Boltzmann kinetic equation and a Monte Carlo simulation method using the same interaction potential as well as against experimental data, reveal consistency among all calculation procedures and in addition agreement with drift tube measurements. These comparisons provide new tests for the accuracy of the employed interaction potential. The method has been applied for up to third order velocity correlations and diffusion coefficients but it is extendible to higher order dynamic and transport properties.

  2. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    SciTech Connect

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  3. Influence of baryons on the spatial distribution of matter: higher order correlation functions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Jun; Pan, Jun

    2012-12-01

    Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter. A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis, including one N-body pure dark matter run, one with only adiabatic gas and one with dissipative processes. Variances and higher order cumulants Sn of dark matter and gas are estimated. It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc. In comparison with the pure dark matter run, adiabatic processes alone strengthen the variance of dark matter by ~ 10% at a scale of 0.1 h-1 Mpc, while the Sn parameters of dark matter only mildly deviate by a few percent. The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter, but renders significantly different Sn parameters describing the dark matter, bringing about a more than 10% enhancement to S3 at 0.1 h-1 Mpc and z = 0 and being even larger at a higher redshift. Distribution patterns of gas in two hydrodynamical simulations are quite different. Variance of gas at z = 0 decreases by ~ 30% in the adiabatic simulation but by ~ 60% in the nonadiabatic simulation at 0.1 h-1 Mpc. The attenuation is weaker at larger scales but is still obvious at ~ 10 h-1 Mpc. Sn parameters of gas are biased upward at scales < ~ 4 h-1 Mpc, and dissipative processes show an ~ 84% promotion at z = 0 to S3 at 0.1 h-1 Mpc in contrast with the ~ 7% change in the adiabatic run. The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.

  4. Detection of symmetry-protected topological order in AKLT states by exact evaluation of the strange correlator

    NASA Astrophysics Data System (ADS)

    Wierschem, K.; Beach, K. S. D.

    2016-06-01

    The strange correlator [Phys. Rev. Lett. 112, 247202 (2014), 10.1103/PhysRevLett.112.247202] has been proposed as a measure of symmetry protected topological order in one- and two-dimensional systems. It takes the form of a spin-spin correlation function, computed as a mixed overlap between the state of interest and a trivial local product state. We demonstrate that it can be computed exactly (asymptotically, in the Monte Carlo sense) for various Affleck-Kennedy-Lieb-Tasaki states by direct evaluation of the wave function within the valence bond loop gas framework. We present results for lattices with chain, square, honeycomb, cube, diamond, and hyperhoneycomb geometries. In each case, the spin quantum number S is varied such that 2 S (the number of valence bonds emerging from each site) achieves various integer multiples of the lattice coordination number. We introduce the concept of strange correlator loop winding number and point to its utility in testing for the presence of symmetry protected topological order.

  5. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.

    PubMed

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.

  6. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former

    NASA Astrophysics Data System (ADS)

    Hima Nagamanasa, K.; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2015-05-01

    The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives devised to explain the process, random first-order theory (RFOT; refs , ) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal’ glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions. Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

  7. Systematic Analysis of Compositional Order of Proteins Reveals New Characteristics of Biological Functions and a Universal Correlate of Macroevolution

    PubMed Central

    Persi, Erez; Horn, David

    2013-01-01

    We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces. PMID:24278003

  8. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime

    SciTech Connect

    Zhou Yu; Simon, Jason; Liu Jianbin; Shih, Yanhua

    2010-04-15

    In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon is the result of three-photon interference. By making use of this property, we measured the three-photon thermal light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal light ghost image.

  9. Disentangling the effects of clustering and multi-exciton emission in second-order photon correlation experiments.

    PubMed

    Mangum, Benjamin D; Ghosh, Yagnaseni; Hollingsworth, Jennifer A; Htoon, Han

    2013-03-25

    In single particle spectroscopy, the degree of observed fluorescence anti-bunching in a second-order cross correlation experiment is indicative of its bi-exciton quantum yield and whether or not a particle is well isolated. Advances in quantum dot synthesis have produced single particles with bi-exciton quantum yields approaching unity. Consequently, this creates uncertainty as to whether a particle has a high bi-exciton quantum yield or if it exists as a cluster. We report on a time-gated anti-bunching technique capable of determining the relative contributions of both multi-exciton emission and clustering effects. In this way, we can now unambiguously determine if a particle is single. Additionally, this time-gated anti-bunching approach provides an accurate way for the determination of bi-exciton lifetime with minimal contribution from higher order multi-exciton states.

  10. Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Butler, Mark C.; Emsley, Lyndon

    2010-12-01

    The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to Vert σ Vert ^2, the norm-squared of the density matrix.

  11. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    SciTech Connect

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  12. Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies

    PubMed Central

    Bale, Shridhar; Kumar, Shailendra; Guenaga, Javier; Wilson, Richard; de Val, Natalia; Arendt, Heather; DeStefano, Joanne; Ward, Andrew B.; Wyatt, Richard T.

    2016-01-01

    In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. PMID:27487086

  13. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context.

    PubMed

    Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-28

    We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules. PMID:27250284

  14. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence.

    PubMed

    Wang, Jing; Zhu, Shijun; Wang, Haiyan; Cai, Yangjian; Li, Zhenhua

    2016-05-30

    Recently, we introduced a new class of radially polarized cosine-Gaussian correlated Schell-model (CGCSM) beams of rectangular symmetry based on the partially coherent electromagnetic theory [Opt. Express23, 33099 (2015)]. In this paper, we extend the work to study the second-order statistics such as the average intensity, the spectral degree of coherence, the spectral degree of polarization and the state of polarization in anisotropic turbulence based on an extended von Karman power spectrum with a non-Kolmogorov power law α and an effective anisotropic parameter. Analytical formulas for the cross-spectral density matrix elements of a radially polarized CGCSM beam in anisotropic turbulence are derived. It is found that the second-order statistics are greatly affected by the source correlation function, and the change in the turbulent statistics induces relatively small effect. The significant effect of anisotropic turbulence on the beam parameters mainly appears nearα=3.1, and decreases with the increase of the anisotropic parameter. Furthermore, the polarization state exhibits self-splitting property and each beamlet evolves into a radially polarized structure in the far field. Our work enriches the classical coherence theory and may be important for free-space optical communications. PMID:27410089

  15. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context

    NASA Astrophysics Data System (ADS)

    Wang, Yang Min; Hättig, Christof; Reine, Simen; Valeev, Edward; Kjærgaard, Thomas; Kristensen, Kasper

    2016-05-01

    We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. The new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules.

  16. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method

    SciTech Connect

    Grabowski, Ireneusz Śmiga, Szymon; Buksztel, Adam; Fabiano, Eduardo; Teale, Andrew M.; Sala, Fabio Della

    2014-07-14

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn–Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite–spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  17. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  18. Occurrence of magnetoelectric effect correlated to the Dy order in Dy2NiMnO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Masud, Md G.; Dey, K.; Ghosh, A.; Majumdar, S.; Giri, S.

    2015-08-01

    Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy2NiMnO6. The crystal structure of the compound adopts monoclinic P21/n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a- a- b+ order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.

  19. A multifunctional automated system of 2D laser polarimetry of biological tissues

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.

    2014-09-01

    Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.

  20. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation

    PubMed Central

    Finley, Anna J.; Tang, David; Schmeichel, Brandon J.

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration. PMID:26402334

  1. Scalar field correlator in de Sitter space at next-to-leading order in a 1 /N expansion

    NASA Astrophysics Data System (ADS)

    Gautier, F.; Serreau, J.

    2015-11-01

    We study the dynamics of light quantum scalar fields in de Sitter space on superhorizon scales. We compute the self-energy of an O (N ) symmetric theory at next-to-leading order in a 1 /N expansion in the regime of superhorizon momenta, and we obtain an exact analytical solution of the corresponding Dyson-Schwinger equations for the two-point correlator. This amounts to resumming the infinite series of nonlocal self-energy insertions, which typically generate spurious infrared and/or secular divergences. The potentially large de Sitter logarithms resum into well-behaved power laws from which we extract the field strength and mass renormalization. The nonperturbative 1 /N expansion allows us to discuss the case of vanishing and negative tree-level square mass, which both correspond to strongly coupled effective theories in the infrared.

  2. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    SciTech Connect

    Phillips, Jordan J. Zgid, Dominika

    2014-06-28

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H{sub 32} finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  3. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    NASA Astrophysics Data System (ADS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-06-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism.

  4. Insolation Effects on Lunar Hydrogen: Correlated observations of LEND and Second Order Insolation Effects Derived from LOLA Modeling

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Mazarico, E.; Droege, G.; Lunar Reconnaissance Orbiter (LRO) LEND Team; LOLA Team

    2011-12-01

    The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H). This postulate was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, we have recently reported two results that have challenged the PSR hypothesis. 1) that higher lunar H distributions are only weakly correlated to the PSR condition. 2) We suggest a relationship between higher H in the context of pole-facing slopes relative to equator facing slopes. Correlated observations by the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) and the Lunar Orbiting Laser Altimeter (LOLA) have been performed indicating pole-facing slopes have 0.01 to 0.02 cps lower epithermal count rates than their equivalent equator-facing slopes. These bulk observations were hypothesis tested and indicate a significant and consistent relationship between topographically modulated insolation effects derived from specialized transformations of LOLA digital elevation models (DEM)'s and LEND maps for latitudes > 60 deg latitude. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. We also compare results to second order modeling results derived from long-term LOLA numerical modeling of insolation conditions on the Moon. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies

  5. Pair correlations, short-range order, and dispersive excitations in the quasi-kagome quantum magnet volborthite

    NASA Astrophysics Data System (ADS)

    Nilsen, G. J.; Coomer, F. C.; de Vries, M. A.; Stewart, J. R.; Deen, P. P.; Harrison, A.; Rønnow, H. M.

    2011-11-01

    We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2·2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest-neighbor pair correlations, with short-range order at wave vectors Q1=0.65(3) Å-1 and Q2=1.15(5) Å-1 emerging below 5 K. The excitation spectrum, S(Q,ω), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at ωf=5.0(2) meV. The results allow us to identify the crossover at T*˜1 K in 51V NMR and specific-heat measurements as the buildup of correlations at Q1. We compare our data to theoretical models proposed for volborthite, and also demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as suggested by recent local-density calculations.

  6. Subband higher-order statistics and cross-correlation for heartbeat type recognition based on two-lead electrocardiogram.

    PubMed

    Yu, Sung-Nien; Liu, Fan-Tsen

    2014-01-01

    Regular electrocardiogram beat classification system usually based on single lead ECG signal. This study designated to add a second lead of ECG signal to the system and apply higher-order statistics and inter-lead cross-correlation features to study the influence of the second lead to the recognition rates and noise-tolerance of the classifier. Discrete wavelet transformation is employed to decompose the ECG signals into different subband components and higher order statistics is recruited to characterize the ECG signals as an attempt to elevate the accuracy and noise-resistibility of heartbeat discrimination. A feed-forward back-propagation neural network (FFBNN) is employed as classifier. When compared with the system that uses only one lead, the second lead raises the recognition rate from 97.74% to 98.25%. We also study the ability of the two-lead system in resisting different levels of white Gaussian noise. More than 97.8% accuracy can be retained with the two-lead system even when the SNR decreases to 10 dB. PMID:25569892

  7. Electron Correlation Theory and Experimental Measurements of the Third-Order Nonlinear Optical Properties of Conjugated Linear Chains.

    NASA Astrophysics Data System (ADS)

    Heflin, James Randolph, Jr.

    1990-01-01

    Comprehensive theoretical and experimental studies of the magnitude, sign, dispersion, and length dependence of the third order molecular susceptibility gamma _{ijkl}(-omega_4 ;omega_1, omega_2, omega_3 ) demonstrate that the microscopic origin of the nonresonant third order nonlinear optical properties of conjugated linear chains is determined by the effects of electron correlation due to electron-electron repulsion. Multiple -excited configuration interaction calculations of gamma_{ijkl}(-omega _4;omega_1, omega_2, omega _3) for the archetypal class of quasi-one dimensional conjugated structures known as polyenes reveal for the first time the principal role of strongly correlated, energetically high-lying, two photon ^1 A_{rm g} virtual states in the largest of the two dominant, competing virtual excitation processes that determine gamma _{ijkl}(-omega_4 ;omega_1,omega _2,omega_3). It is also found in studies of the effects of conformation on gamma_{ijkl}( -omega_4;omega _1,omega_2, omega_3) that the origin of the third order optical properties remains basically the same for the all-trans and cis-transoid polyenes, and the results for the two conformations are unified by a common power law dependence of the dominant tensor component gamma_{xxxx}(- omega_4;omega_1 ,omega_2,omega _3) on the physical end-to-end length L of the chain with an exponent of 3.5. Calculations for a noncentrosymmetric conjugated chain demonstrate that virtual excitation processes involving diagonal transition moments that are forbidden in centrosymmetric structures lead to a more than an order of magnitude enhancement in gamma_{xxxx}(-omega _4;omega_1, omega_2,omega _3) compared to the analog centrosymmetric structure. Experimental measurements of the dispersion in the isotropically averaged dc-induced second harmonic susceptibility and third harmonic susceptibility in two important polyene structures confirm the

  8. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  9. Charge and Spin Ordering in Insulator Na0.5CoO2: Effects of Correlation and Symmetry

    NASA Astrophysics Data System (ADS)

    Lee, Kwan-Woo; Pickett, Warren

    2006-03-01

    The discovery by Takada and coworkers of superconductivity in Na0.3CoO21.3 H2O near 5K has led to extensive studies of the rich variation of properties in the NaxCoO2 system (0.2 <=x <=1), which has a triangular lattice of Co sites and a layered structure. In addition, specifically at x=0.5, the system has been observed to undergo a charge disproportionation (2Co^3.5+ -> Co^3++Co^4+) and metal-insulator transition at 50 K, while the rest of the phase diagram is metallic. We will present results of studies of charge disproportionation and charge- and spin-ordering in insulating in Na0.5CoO2, applying ab initio band theory including correlations due to intra-atomic repulsion. Various ordering patterns (zigzag and two striped) for four-Co supercells are analyzed before focusing on the observed ``out-of-phase stripe'' pattern of antiferromagnetic Co^4+ spins along charge-ordered stripes. This pattern relieves frustration and shows distinct analogies with the cuprate layers: a bipartite lattice of antialigned spins, with axes at 90^o angles. Substantial distinctions with cuprates are also discussed, including the tiny gap of a new variant of ``charge transfer'' type within the Co 3d system. [References] [1] K. Takada et al., Nature 422, 53 (2003). [2] M. L. Foo et al., Phys. Rev. Lett. 92,247001 (2004). [3] K.-W. Lee, J. Kunes, P. Novak, and W. E. Pickett, Phys. Rev. Lett. 94, 026403 (2005). [4] K.-W. Lee and W. E. Pickett, cond-mat/0510555.

  10. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Shang, Yu; Li, Ting; Chen, Lei; Lin, Yu; Toborek, Michal; Yu, Guoqiang

    2014-05-01

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αDB) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αDB. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αDB (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: -5.3% to -18.0%) for different tissue models. Although adding random noises to DCS data resulted in αDB variations, the mean values of errors in extracting αDB were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αDB using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  11. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    SciTech Connect

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-28

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al{sub 86}Ni{sub 14-a}Y{sub a} (a = 2∼9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al{sub 86}Ni{sub 9}Y(La){sub 5} alloys present good GFA due to the combination of the two structural factors.

  12. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-01

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al86Ni14-aYa (a = 2˜9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al86Ni9Y(La)5 alloys present good GFA due to the combination of the two structural factors.

  13. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerenes and their Correlation with Three Geometric Parameters: Group Order, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, Craig E.; Cardelino, Beatriz H.; Frazier, Donald O.; Niles, Julian; Wang, Xian-Qiang

    1997-01-01

    Calculations were performed on the valence contribution to the static molecular third-order polarizabilities (gamma) of thirty carbon-cage fullerenes (C60, C70, five isomers of C78, and twenty-three isomers of C84). The molecular structures were obtained from B3LYP/STO-3G calculations. The values of the tensor elements and an associated numerical uncertainty were obtained using the finite-field approach and polynomial expansions of orders four to eighteen of polarization versus static electric field data. The latter information was obtained from semiempirical calculations using the AM1 hamiltonian.

  14. Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Ganguly, M.; Rout, S. K.; Sinha, T. P.

    2015-04-01

    Rare earth lanthanum (La) doped barium zirconate titanate, Ba1 - x La2 x/3Zr0.3Ti0.7O3 (BLZT) ceramics, with x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 were prepared using solid state reaction route. Structural characterizations of the materials were done by using X-ray diffraction and Raman spectroscopy. The Rietveld refinement technique employed to investigate the details of the crystal structure revealed a single phase cubic perovskite structure for all the compositions, belonging to the space group Pm-3m. Raman spectroscopy was used to probe the order-disorder correlation in local symmetry and it was verified that the presence of disorder in cubic structure is increased due to La3+ ion substitution at A-site. In addition, the signature of relaxor behavior and diffuse types of phase transition can be detected by monitoring the relative intensity of Raman features. Room temperature photo-electronic properties were investigated by using ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Heterovalent doping (La3+) is accompanied by creation of ionic defects to maintain the charge neutrality; as a result the intermediate energy levels are formed within the band gap. These intermediate energy levels play a significant role in electronic band transitions in higher La concentration, x ≥ 0.08; enhancing the self-trapping mechanism leads to slightly decreasing in band gap values and shifting the PL emission spectra towards violet-blue regions. The temperature dependence of the dielectric constant was investigated and relaxor type of phase transition was observed in the material. The degree of relaxor behavior was enhanced with increase in La3+ ion concentration.

  15. Auxiliary basis sets for density fitting second-order Møller-Plesset perturbation theory: correlation consistent basis sets for the 5d elements Hf-Pt.

    PubMed

    Hill, J Grant

    2011-07-28

    Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-PP, cc-pwCVnZ-PP, aug-cc-pVnZ-PP, and aug-cc-pwCVnZ-PP orbital basis sets (used in conjunction with pseudopotentials) for the 5d transition metal elements Hf-Pt have been optimized for use in density fitting second-order Møller-Plesset perturbation theory and other correlated ab initio methods. Calculations of the second-order Møller-Plesset perturbation theory correlation energy, for a test set of small to medium sized molecules, indicate that the density fitting error when utilizing these sets is negligible at three to four orders of magnitude smaller than the orbital basis set incompleteness error.

  16. ATOMIC AND MOLECULAR PHYSICS: High order correlation-polarization potential for vibrational excitation scattering of diatomic molecules by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Sun, Wei-Guo; Zeng, Yang-Yang

    2009-11-01

    This paper introduces a correlation-polarization potential with high order terms for vibrational excitation in electron-molecule scattering. The new polarization potential generalizes the two-term approximation so that it can better reflect the dependence of correlation and polarization effects on the position coordinate of the scattering electron. It applies the new potential on the vibrational excitation scattering from N2 in an energy range which includes the 2Πg shape resonance. The good agreement of theoretical resonant peaks with experiments shows that polarization potentials with high order terms are important and should be included in vibrational excitation scattering.

  17. Strong correlations between vacancy and magnetic ordering in superconducting K0.8Fe2 -ySe2

    NASA Astrophysics Data System (ADS)

    Yang, J.; Duan, C.; Huang, Q.; Brown, C.; Neuefeind, J.; Louca, Despina

    2016-07-01

    The coexistence of magnetic and nonmagnetic phases in the superconducting potassium iron selenide, KxFe2 -ySe2 , has been intensely debated. With superconductivity proposed to appear in a stoichiometric, nonmagnetic phase with I4/mmm crystal symmetry, the proposed nonsuperconducting phase is magnetic and has a lower symmetry, I4/m. The latter consists of Fe vacancies that go through a disordered-to-ordered transition in which the partially filled Fe sites create a supercell upon ordering. We show, using neutron scattering on the optimally doped composition, K0.8Fe2 -ySe2 , that the absence of magnetism does not signal the presence of superconductivity. Moreover, the degree of vacancy order is coupled to the strength of the magnetic order. Superconductivity coincides with the presence of the magnetic order parameter, albeit the latter is significantly weaker than previously reported, contradicting the current understanding of this ˜30 K superconductor.

  18. X-ray photon correlation spectroscopy in systems without long-range order: existence of an intermediate-field regime.

    PubMed

    Ludwig, Karl

    2012-01-01

    Successful X-ray photon correlation spectroscopy studies often require that signals be optimized while minimizing power density in the sample to decrease radiation damage and, at free-electron laser sources, thermal impact. This suggests exploration of scattering outside the Fraunhofer far-field diffraction limit d(2)/λ < R, where d is the incident beam size, λ is the photon wavelength and R is the sample-to-detector distance. Here it is shown that, in an intermediate regime d(2)/λ > R > dξ/λ, where ξ is the structural correlation length in the material, the ensemble averages of the scattered intensity and of the structure factor are equal. Similarly, in the regime d(2)/λ > R > dξ(τ)/λ, where ξ(τ) is a time-dependent dynamics length scale of interest, the ensemble-averaged correlation functions g(1)(τ) and g(2)(τ) of the scattered electric field are also equal to their values in the far-field limit. This broadens the parameter space for X-ray photon correlation spectroscopy experiments, but detectors with smaller pixel size and variable focusing are required to more fully exploit the potential for such studies.

  19. Political attitudes in adolescence and emerging adulthood: Developmental changes in mean level, polarization, rank-order stability, and correlates.

    PubMed

    Rekker, Roderik; Keijsers, Loes; Branje, Susan; Meeus, Wim

    2015-06-01

    This three-wave cohort-sequential longitudinal study (N = 1302) examined the development of two core political attitudes, economic egalitarianism and ethnocentrism, among Dutch youths between age 12 and 31. Longitudinal regression analyses revealed a curvilinear mean level development for both attitudes, reflecting an increased disagreement with economic redistribution and multiculturalism around late adolescence. Furthermore, attitudes became decreasingly polarized (i.e., less extreme) and increasingly stable with age. Finally, several effects of attitudes' correlates gradually changed: The effect of educational level on ethnocentrism increased with age, whereas the effect of gender diminished. Regional effects on ethnocentrism developed as youths resided in a new area. No age-related change was found in the effect of parental SES. Overall, these findings support the idea that attitudes mature during the formative phase of adolescence and that this process slows down during emerging adulthood. Furthermore, these results support developmental explanations for the association between attitudes and their correlates. PMID:25880889

  20. Political attitudes in adolescence and emerging adulthood: Developmental changes in mean level, polarization, rank-order stability, and correlates.

    PubMed

    Rekker, Roderik; Keijsers, Loes; Branje, Susan; Meeus, Wim

    2015-06-01

    This three-wave cohort-sequential longitudinal study (N = 1302) examined the development of two core political attitudes, economic egalitarianism and ethnocentrism, among Dutch youths between age 12 and 31. Longitudinal regression analyses revealed a curvilinear mean level development for both attitudes, reflecting an increased disagreement with economic redistribution and multiculturalism around late adolescence. Furthermore, attitudes became decreasingly polarized (i.e., less extreme) and increasingly stable with age. Finally, several effects of attitudes' correlates gradually changed: The effect of educational level on ethnocentrism increased with age, whereas the effect of gender diminished. Regional effects on ethnocentrism developed as youths resided in a new area. No age-related change was found in the effect of parental SES. Overall, these findings support the idea that attitudes mature during the formative phase of adolescence and that this process slows down during emerging adulthood. Furthermore, these results support developmental explanations for the association between attitudes and their correlates.

  1. Application of the correlation constrained multivariate curve resolution alternating least-squares method for analyte quantitation in the presence of unexpected interferences using first-order instrumental data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà

    2010-03-01

    Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy. PMID:20174722

  2. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.

    PubMed

    Green, Anthony J; Space, Brian

    2015-07-23

    Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features.

  3. Neural Correlates of Temporal-Order Judgments versus Those of Spatial-Location: Deactivation of Hippocampus May Facilitate Spatial Performance

    ERIC Educational Resources Information Center

    Rekkas, P. V.; Westerveld, M.; Skudlarski, P.; Zumer, J.; Pugh, K.; Spencer, D. D.; Constable, R. T.

    2005-01-01

    The retrieval of temporal-order versus spatial-location information was investigated using fMRI. The primary finding in the hippocampus proper, seen in region of interest analyses, was an increase in BOLD signal intensity for temporal retrieval, and a decrease in signal intensity for spatial retrieval, relative to baseline. The negative BOLD…

  4. Correlation Effects on Charge Order and Zero-Gap State in the Organic Conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiro; Ogata, Masao

    2016-10-01

    The effects of electron correlation in the quasi-two-dimensional organic conductor \\alpha-(BEDT-TTF)2I3 are investigated theoretically by using an extended Hubbard model with on-site and nearest-neighbor Coulomb interactions. A variational Monte Carlo method is applied to study its ground-state properties. We show that there appears a nonmagnetic horizontal-stripe charge order in which nearest-neighbor correlation functions indicate a tendency toward a spin-singlet formation on the bonds with large transfer integrals along the charge-rich stripe. Under uniaxial pressure, a first-order transition from the nonmagnetic charge order to a zero-gap state occurs. Our results on a spin correlation length in the charge-ordered state suggest that a spin gap is almost unaffected by the uniaxial pressure in spite of the suppression of the charge disproportionation. The relevance of these contrasting behaviors in spin and charge degrees of freedom to recent experimental observations is discussed.

  5. Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3.

    PubMed

    Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T

    2007-07-20

    The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

  6. Symmetry and correlations underlying hidden order in URu2Si2

    SciTech Connect

    Butch, Nicholas P.; Manley, Michael E.; Jeffries, Jason R.; Janoschek, Marc; Huang, Kevin; Maple, M. Brian; Said, Ayman H.; Leu, Bogdan M.; Lynn, Jeffrey W.

    2015-01-26

    In this paper, we experimentally investigate the symmetry in the hidden order (HO) phase of intermetallic URu2Si2 by mapping the lattice and magnetic excitations via inelastic neutron and x-ray scattering measurements in the HO and high-temperature paramagnetic phases. At all temperatures, the excitations respect the zone edges of the body-centered tetragonal paramagnetic phase, showing no signs of reduced spatial symmetry, even in the HO phase. The magnetic excitations originate from transitions between hybridized bands and track the Fermi surface, whose features are corroborated by the phonon measurements. Due to a large hybridization energy scale, a full uranium moment persists in the HO phase, consistent with a lack of observed crystal-field-split states. Our results are inconsistent with local order-parameter models and the behavior of typical density waves. Finally, we suggest that an order parameter that does not break spatial symmetry would naturally explain these characteristics.

  7. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  8. Mutual-probability prediction and higher-order correlation effects among acoustic, light and electromagnetic waves in a video display terminal environment

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuo; Ogawa, Hitoshi; Ikuta, Akira

    2005-08-01

    A probabilistic signal processing method, with which is possible to get some methodological suggestion to the measurement method of correlative and/or accumulative effects in the compound environment of sound, light and electromagnetic (EM) waves is discussed. In order to extract various types of latent interrelation characteristics among wave environmental factors leaked from an actually operating video display terminal (VDT), an extended regression system model, hierarchically reflecting not only linear correlation information but also nonlinear correlation information, is first introduced, especially from a viewpoint of 'relationism-first'. Then, through estimating each regression parameter of this model, some original evaluation methods for predicting a whole probability distribution form, from one another, are proposed. Finally, the effectiveness of the methods is experimentally confirmed, by applying them to the actual observed data leaked by a VDT with some television games. To cite this article: M. Ohta et al., C. R. Mecanique 333 (2005).

  9. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    PubMed

    Zuccala, Elizabeth S; Gout, Alexander M; Dekiwadia, Chaitali; Marapana, Danushka S; Angrisano, Fiona; Turnbull, Lynne; Riglar, David T; Rogers, Kelly L; Whitchurch, Cynthia B; Ralph, Stuart A; Speed, Terence P; Baum, Jake

    2012-01-01

    Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. PMID:23049965

  10. Subcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite

    PubMed Central

    Zuccala, Elizabeth S.; Gout, Alexander M.; Dekiwadia, Chaitali; Marapana, Danushka S.; Angrisano, Fiona; Turnbull, Lynne; Riglar, David T.; Rogers, Kelly L.; Whitchurch, Cynthia B.; Ralph, Stuart A.; Speed, Terence P.; Baum, Jake

    2012-01-01

    Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. PMID:23049965

  11. Orbital-optimized opposite-spin scaled second order correlation: An economical method to improve the description of open-shell molecules

    SciTech Connect

    Lochan, Rohini C.; Head-Gordon, Martin

    2007-01-01

    Coupled cluster methods based on Brueckner orbitals are well-known to resolve the problems of symmetry-breaking and spin-contamination that are often associated with Hartree-Fock orbitals. However their computational cost is large enough to prevent application to large molecules. Here they present a simple approximation where the orbitals are optimized with the mean-field energy plus a correlation energy taken as the opposite-spin component of the second order many-body correlation energy, scaled by an empirically chosen parameter (recommended as 1.2 for general applications). This optimized 2nd order opposite spin (abbreviated as O2) method requires fourth order computation on each orbital iteration. O2 is shown to yield predictions of structure and frequencies for closed shell molecules that are very similar to scaled second order Moller-Plesset methods. However it yields substantial improvements for open shell molecules, where problems with spin-contamination and symmetry breaking are shown to be greatly reduced.

  12. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while

  13. Correlations among residual multiparticle entropy, local atomic-level pressure, free volume and the phase-ordering rule in several liquids.

    PubMed

    Cao, Qi-Long; Wang, Wei-Lu; Li, Y D; Liu, C S

    2011-01-28

    A modified Wang-Landau density-of-states sampling approach has been performed to calculate the excess entropy of liquid metals, Lennard-Jones (LJ) system and liquid Si under NVT conditions; and it is then the residual multiparticle entropy (S(RMPE)) is obtained by subtraction of the pair correlation entropy. The temperature dependence of S(RMPE) has been investigated along with the temperature dependence of the local atomic-level pressure and the pair correlation functions. Our results suggest that the temperature dependence of the pair correlation entropy is well described by T(-1) scaling while T(-0.4) scaling well describes the relationship between the excess entropy and temperature. For liquid metals and LJ system, the -S(RMPE) versus temperature curves show positive correlations and the -S(RMPE) of liquid Si is shown to have a negative correlation with temperature, the phase-ordering criterion (based on the S(RMPE)) for predicting freezing transition works in liquid metals and LJ but fails in liquid Si. The local atomic-level pressure scaled with the virial pressure (σ(al)/σ(av)) exhibits the much similar temperature dependence as -S(RMPE) for all studied systems, even though simple liquid metals and liquid Si exhibit opposite temperature dependence in both σ(al)/σ(av) and -S(RMPE). The further analysis shows that the competing properties of the two effects due to localization and free volume on the S(RMPE) exist in simple liquid metals and LJ system but disappear in liquid Si, which may be the critical reason of the failure of the phase-ordering criterion in liquid Si. PMID:21280749

  14. Extracting near-surface QL between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece

    NASA Astrophysics Data System (ADS)

    Haendel, A.; Ohrnberger, M.; Krüger, F.

    2016-11-01

    Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We

  15. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    SciTech Connect

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.

  16. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    DOE PAGES

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for themore » transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less

  17. Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Suhai, Sándor

    1994-11-01

    Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up to the complete fourth order of the Mo/ller-Plesset perturbation theory (MP4-PT), and by using different versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization functions up to 6s3p2d1f per H atom. In order to compare the performance of the PT and DFT methods, several physical properties have been computed at all theoretical levels including lattice geometry, cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequilibrium configurations (dissociation). For these latter quantities, both spin-restricted (RHF) and unrestricted (UHF) wave functions have been employed in all orders of PT. The methods described have been used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experiments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison with the MP4 results.

  18. Two-dimensional magnetic correlations and partial long-range order in geometrically frustrated CaOFeS with triangle lattice of Fe ions

    NASA Astrophysics Data System (ADS)

    Jin, S. F.; Huang, Q.; Lin, Z. P.; Li, Z. L.; Wu, X. Z.; Ying, T. P.; Wang, G.; Chen, X. L.

    2015-03-01

    We report the results on the structure, transport, and magnetic properties of a layered oxysulfide CaOFeS with a stacked triangle lattice of Fe ions. The susceptibility data show a broad maximum near 120 K, indicating the existence of two-dimensional (2D) short-range ordering in this compound. Features associated with long-range antiferromagnetic (AFM) phase transition are seen below 40 K. Meanwhile, a very small heat-capacity anomaly is detected around 35 K, and most of the measured magnetic entropy is lost during the 2D ordering process. Both crystal and magnetic structures were studied by neutron powder diffraction at 300, 125, 40, and 6 K. The structure was refined based on space group P 63m c with a =3.759 98 (4 ) and c =11.383 51 (16 ) Å at ambient temperature. Low-temperature diffraction reveals 2D magnetic correlations between Fe moments without showing significant structural distortion. Warren peak shape analysis of the neutron-diffraction data at 2 θ near 18° is employed to characterize the correlation length in the 2D magnetic state with lowering temperature. The geometrically frustrated compound is found to gradually condense into a partial long-range ordered state with AFM coupled Fe layers between 40.6 and 26 K. The resulting partially ordered magnetic structure is a G -type Ising AFM with a propagation vector of k =(1 /2 ,1 /2 ,0 ) and an ordered magnetic moment of 2.59 (3 ) μB/Fe along c at 6 K.

  19. First-order exchange and self-energy corrections to static density correlation function of a spin-polarized two-dimensional quantum electron fluid

    SciTech Connect

    Arora, Priya; Moudgil, R. K.; Bhukal, Nisha

    2015-05-15

    Static density-density correlation function has been calculated for a spin-polarized two-dimensional quantum electron fluid by including the first-order exchange and self-energy corrections to the random-phase approximation (RPA). This is achieved by determining these corrections to the RPA linear density-density response function, obtained by solving the equation of motion for the single-particle Green’s function. Resulting infinite hierarchy of equations (involving higher-order Green’s functions) is truncated by factorizing the two-particle Green’s function as a product of the single-particle Green’s function and one-particle distribution function. Numerical results of correlation function are compared directly against the quantum Monte Carlo simulation data due to Tanatar and Ceperley for different coupling parameter (r{sub s}) values. We find almost exact agreement for r{sub s}=1, with a noticeable improvement over the RPA. Its quality, however, deteriorates with increasing r{sub s}, but correction to RPA is quite significant.

  20. Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study.

    PubMed

    Mohanty, Debasish; Sefat, Athena S; Li, Jianlin; Meisner, Roberta A; Rondinone, Adam J; Payzant, E Andrew; Abraham, Daniel P; Wood, David L; Daniel, Claus

    2013-11-28

    Structure-electrochemical property correlation is presented for lithium-manganese-rich layered-layered nickel manganese cobalt oxide (LMR-NMC) having composition Li1.2Co0.1Mn0.55Ni0.15O2 (TODA HE5050) in order to examine the possible reasons for voltage fade during short-to-mid-term electrochemical cycling. The Li1.2Co0.1Mn0.55Ni0.15O2 based cathodes were cycled at two different upper cutoff voltages (UCV), 4.2 V and 4.8 V, for 1, 10, and 125 cycles; voltage fade was observed after 10 and 125 cycles only when the UCV was 4.8 V. Magnetic susceptibility and selected-area electron diffraction data showed the presence of cation ordering in the pristine material, which remained after 125 cycles when the UCV was 4.2 V. When cycled at 4.8 V, the magnetic susceptibility results showed the suppression of cation ordering after one cycle; the cation ordering diminished upon further cycling and was not observed after 125 cycles. Selected-area electron diffraction data from oxides oriented towards the [0001] zone axis revealed a decrease in the intensity of cation-ordering reflections after one cycle and an introduction of spinel-type reflections after 10 cycles at 4.8 V; after 125 cycles, only the spinel-type reflections and the fundamental O3 layered oxide reflections were observed. A significant decrease in the effective magnetic moment of the compound after one cycle at 4.8 V indicated the presence of lithium and/or oxygen vacancies; analysis showed a reduction of Mn(4+) (high spin/low spin) in the pristine oxide to Mn(3+) (low spin) after one cycle. The effective magnetic moment was higher after 10 and 125 cycles at 4.8 V, suggesting the presence of Mn(3+) in a high spin state, which is believed to originate from distorted spinel (Li2Mn2O4) and/or spinel (LiMn2O4) compounds. The increase in effective magnetic moments was not observed when the oxide was cycled at 4.2 V, indicating the stability of the structure under these conditions. This study shows that structural

  1. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  2. Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis

    NASA Astrophysics Data System (ADS)

    Kovalev, A.; Filippov, A.; Gorb, S. N.

    2016-03-01

    In contrast to the majority of inorganic or artificial materials, there is no ideal long-range ordering of structures on the surface in biological systems. Local symmetry of the ordering on biological surfaces is also often broken. In the present paper, the particular symmetry violation was analyzed for dimple-like nano-pattern on the belly scales of the skin of the pythonid snake Morelia viridis using correlation analysis and statistics of the distances between individual nanostructures. The results of the analysis performed on M. viridis were compared with a well-studied nano-nipple pattern on the eye of the sphingid moth Manduca sexta, used as a reference. The analysis revealed non-random, but very specific symmetry violation. In the case of the moth eye, the nano-nipple arrangement forms a set of domains, while in the case of the snake skin, the nano-dimples arrangement resembles an ordering of particles (molecules) in amorphous (glass) state. The function of the nano-dimples arrangement may be to provide both friction and strength isotropy of the skin. A simple model is suggested, which provides the results almost perfectly coinciding with the experimental ones. Possible mechanisms of the appearance of the above nano-formations are discussed.

  3. Occurrence of magnetoelectric effect correlated to the Dy order in Dy{sub 2}NiMnO{sub 6} double perovskite

    SciTech Connect

    Masud, Md G.; Dey, K.; Ghosh, A.; Majumdar, S.; Giri, S.

    2015-08-14

    Magnetic, dielectric, and ac conductivity as well as room temperature structural and Raman studies are performed on double perovskite Dy{sub 2}NiMnO{sub 6}. The crystal structure of the compound adopts monoclinic P2{sub 1}/n space group, where alternate Mn and Ni distorted octahedral are arranged in anti-phase a{sup −} a{sup −} b{sup +} order in Glazer notation. Magnetization studies show two magnetic transitions around 100 K and 20 K which are related to the ordering of transition and rare earth cations moment, respectively. Temperature dependent dielectric permittivity shows Havriliak-Negami type thermally activated dielectric relaxation. The ac conductivity at different temperature is found to follow Jonscher power law behavior. Time-temperature scaling of the conductivity spectra reveals that the charge transport dynamics is independent of temperature. Intriguingly, an anomaly in the dielectric constant is observed close to the order of Dy moment which indicates intrinsic magnetoelectric coupling. The hybridization between Dy and Ni/Mn is suggested to be correlated with the magnetoelectric coupling.

  4. Correlation between dynamic slowing down and local icosahedral ordering in undercooled liquid Al{sub 80}Ni{sub 20} alloy

    SciTech Connect

    Jakse, N.; Pasturel, A.

    2015-08-28

    We use ab initio molecular dynamics simulations to study the correlation between the local ordering and the dynamic properties of liquid Al{sub 80}Ni{sub 20} alloy upon cooling. Our results evidence a huge increase of local icosahedral ordering (ISRO) in the undercooled regime which is more developed around Ni than Al atoms. We show that ISRO has a strong impact on self-diffusion coefficients of both species and is at the origin of their crossover from Arrhenius to non-Arrhenius behavior around a crossover temperature T{sub X} = 1000 K, located in the undercooled region. We also clearly identify that this temperature corresponds to the development of dynamic heterogeneities and to the breakdown of the Stokes-Einstein relation. At temperatures below this crossover, we find that the behavior of the diffusion and relaxation dynamics is mostly incompatible with predictions of the mode-coupling theory. Finally, an analysis of the van Hove function indicates that the crossover temperature T{sub X} marks the onset of a change in the diffusion mechanism from a normal flow to an activated process with hopping. From these results, the glass-forming ability of the alloy is discussed.

  5. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2012-01-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  6. Method for breast cancer diagnosis by phase spectrophotometry of human blood plasma

    NASA Astrophysics Data System (ADS)

    Mintser, Ozar P.; Oliinychenko, B. P.

    2011-09-01

    The possibility of breast cancer diagnostics by means of phase structure measurements of laser radiation transformed by human blood plasma samples. The theoretical fundamentals of polarization filtration method for direct phase shifts measurements of microscopic images are provided. The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of blood plasma smears and pathological changes in the mammary gland tissue. The diagnostic criteria of breast cancer nascency are determined.

  7. Optical system for study of temporal dynamics of a change in the complex degree of polarization in liquor laser images

    NASA Astrophysics Data System (ADS)

    Popovitch, D. T.

    2012-10-01

    This paper presents a description of the principles defining period of death by polarimetric study temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  8. The study of temporal dynamics of a change in the degree of polarizing laser radiation scattered by liquor layers for determining the prescription of death coming

    NASA Astrophysics Data System (ADS)

    Bachunskyi, V. T.; Pavlukovych, O. V.; Hadniuk, S. V.

    2012-01-01

    This paper was provide a description of the principles defining prescription death by polarimetric study the temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  9. The study of temporal dynamics of a change in the degree of polarizing laser radiation scattered by liquor layers for determining the prescription of death coming

    NASA Astrophysics Data System (ADS)

    Bachunskyi, V. T.; Pavlukovych, O. V.; Hadniuk, S. V.

    2011-09-01

    This paper was provide a description of the principles defining prescription death by polarimetric study the temporal dynamics of changes in optical anisotropy of the cerebrospinal fluid of the human body. The optical model of polycrystalline networks of human body liquor is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order), correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of absolute value and phase of complex degree of mutual polarization in the points of laser images of liquor and temporal dynamics of optical anisotropy of human body liquor. The diagnostic criteria of death coming prescription are determined.

  10. SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI

    SciTech Connect

    Li, G; Tyagi, N; Deasy, J; Wei, J; Hunt, M

    2015-06-15

    Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated from reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lung volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for

  11. Enhancement of band magnetism and features of the magnetically ordered state in the CeB{sub 6} compound with strong electron correlations

    SciTech Connect

    Sluchanko, N. E. Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Ivanov, V. Yu.; Ignatov, M. I.; Kuznetsov, A. V.; Samarin, N. A.; Semeno, A. V.; Shitsevalova, N. Yu.

    2007-02-15

    Precision measurements of transport and magnetic parameters of high-quality CeB{sub 6} single crystals are performed in the temperature range 1.8-300 K. It is shown that their resistivity in the temperature interval 5 K < T < T* {approx} 80 K obeys not a logarithmic law, which is typical of the Kondo mechanism of charge carrier scattering, but the law {rho} {proportional_to} T{sup -1/{eta}} corresponding to the weak localization regime with a critical index 1/{eta} = 0.39 {+-} 0.02. Instead of the Curie-Weiss dependences, the asymptotic form {chi}(T) {proportional_to} T{sup -0.8} is obtained for magnetic susceptibility of CeB{sub 6} in a temperature range of 15-300 K. Analysis of the field dependences of magnetization, magnetoresistance, and the Hall coefficient in the paramagnetic and magnetically ordered phases of CeB{sub 6} and comparison with the results of measurements of Seebeck coefficient, the inelastic neutron scattering coefficient, and EPR spectroscopy lead to the conclusion that the Kondo lattice model and skew scattering model cannot be used for describing the transport and thermodynamic parameters of this compound with strong electron correlations. On the basis of detailed analysis of experimental data, an alternative approach to interpreting the properties of CeB{sub 6} is proposed using (1) the assumption concerning itinerant paramagnetism and substantial renormalization of the density of electron states upon cooling in the vicinity of the Fermi energy, which is associated with the formation of heavy fermions (spin-polaron states) in the metallic CeB{sub 6} matrix in the vicinity of Ce sites; (2) the formation of ferromagnetic nanosize regions from spin polarons at 3.3 K < T < 7 K and a transition to a state with a spin density wave (SDW) at T{sub Q} {approx} 3.3 K; and (3) realization of a complex magnetic phase H-T diagram of CeB{sub 6}, which is associated with an increase in the SDW amplitude and competition between the SDW and

  12. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  13. Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer--Correlation with structure and hydrogen bonding capacity.

    PubMed

    Ekman, Peik; Maula, Terhi; Yamaguchi, Shou; Yamamoto, Tetsuya; Nyholm, Thomas K M; Katsumura, Shigeo; Slotte, J Peter

    2015-10-01

    Ceramides and diacylglycerols are lipids with a large hydrophobic part (acyl chains and long-chain base) whereas their polar function (hydroxyl group) is small. They need colipids with large head groups to coexist in bilayer membranes. In this study, we have determined how saturated and unsaturated ceramides and acyl-chain matched diacylglycerols form ordered domains in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers as a function of bilayer concentration. The formation of ordered domains was determined from lifetime analysis of trans-parinaric acid. Ceramides formed ordered domains with equal average tPA lifetime at lower bilayer concentration when compared to acyl-chain matched diacylglycerols. This was true for both saturated (16:0) and mono-unsaturated (18:1) species. This finding suggested that hydrogen bonding among ceramides contributed to their more efficient ordered phase formation, since diacylglycerols do not form similar hydrogen bonding networks. The role of hydrogen bonding in ordered domain formation was further verified by using palmitoyl ceramide analogs with 2N and 3OH methylated long-chain bases. These analogs do not form hydrogen bonds from the 2NH or the 3OH, respectively. While methylation of the 3OH did not affect ordered phase formation compared to native palmitoyl ceramide, 2NH methylation markedly attenuated ceramide ordered phase formation. We conclude that in addition to acyl chain length, saturation, molecular order, and lack of large head group, also hydrogen bonding involving the 2NH is crucial for efficient formation of ceramide-rich domains in fluid phosphatidylcholine bilayers.

  14. Investigation of molecular order and dynamics in liquid crystals confined in porous media using the dipolar-correlation effect on the stimulated echo.

    PubMed

    Grinberg, F; Kimmich, R; Stapf, S

    1996-01-01

    A new application of the stimulated echo pulse sequence is presented that permits the elucidation of molecular order and dynamics in a time scale between about 100 microseconds and the spin-lattice relaxation time. The technique exploits the influence of dipolar coupling on the quotient of the stimulated and primary echoes produced by the standard three 90 degrees-pulse sequence. Results obtained for a nematic liquid crystal in bulk and confined in porous glass (mean pore diameter 4 nm) are compared. In both cases the echo amplitude quotient oscillates as a function of the pulse spacing. In a bulk nematic crystal these oscillations originate from strong unaveraged dipolar interactions and directly reflect the molecular order in the material. In porous glass a real nematic order is absent. In this case, the oscillations can be attributed to spin exchange between inequivalent protons. Exchange rates are estimated.

  15. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Hill, J Grant

    2013-09-30

    Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit.

  16. Superadditive correlation.

    PubMed

    Giraud, B G; Heumann, J M; Lapedes, A S

    1999-05-01

    The fact that correlation does not imply causation is well known. Correlation between variables at two sites does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be induced by chaining of correlation between a set of intervening, directly interacting sites. Such "noncausal correlation" is well understood in statistical physics: an example is long-range order in spin systems, where spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It is less well recognized that such long-range "noncausal" correlations can in fact be stronger than the magnitude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correlation (SAC). We demonstrate this counterintuitive phenomenon by explicit examples in (i) a model spin system and (ii) a model continuous variable system, where both models are such that two variables have multiple intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We also explain the effect using a definition of the collective mode describing the intervening spin variables. Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivariate probability distributions, which introduce parameters based on successive orders of correlation. PMID:11969452

  17. Size correlation of optical and SERS properties for highly ordered Au nanocone arrays with sub-100 nm feature size

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang; Hu, Jing; Chen, Le

    2016-08-01

    Using ultrathin anodic aluminum oxide membranes as evaporation masks, highly ordered Au nanocone arrays with sub-100 nm feature size were fabricated on glass substrates. The size of Au nanocones was adjusted by the easily controllable nanopores’ dimension. Influences of Au nanocone size on the optical property and SERS activity were characterized by extinction and Raman spectra, respectively. For one thing, the spectral position of plasmon resonances was seen to slightly blue-shift with increasing the nanocone size, which coincided well with the result of finite-difference-time-domain simulation. For another, glass substrates patterned by Au nanocone arrays exhibited a high surface enhanced Raman scattering sensitivity to Rhodamine 6G. Compared with the bulk sample, the estimated enhancement factor was boosted from 8 × 106 to 1.79 × 107 as the diameter of Au nanocone increased from 36 to 77 nm. Such highly ordered nanocone arrays with tunable and uniform size have great potential for various optical or spectrographic applications.

  18. On the (N, Z) dependence of the second-order Møller-Plesset correlation energies for closed-shell atomic systems

    NASA Astrophysics Data System (ADS)

    Słupski, R.; Jankowski, K.; Flores, J. R.

    2016-09-01

    Accurate Møller-Plesset (MP2) correlation energies calculated by means of the variational-perturbation and the finite-element methods are presented for several members of the Cu+ isoelectronic series (N = 28), which represent closed-shell systems containing for the first time the 3d10-electron configuration and, consequently, closed M-shell. Total MP2 energies as well as their inner- and inter-shell components are reported for Cu+, Zn2+, Ge4+, Kr8+, Sr10+, and Cd20+. We found that for these ions the Z-dependence of the total MP2 energies is significantly weaker than for the members of the Ar-like series. The origin of this fact is rationalized by a detailed analysis performed at the levels of the shell- and inter-shell contributions to the MP2 energies. To get, for the first time, more general information about the (N, Z) characteristics of the MP2 energies for closed-shell atomic systems, we compare the Z-dependence of the Cu+-like systems with the MP2 energies calculated for other isoelectronic series. The weak Z-dependence is found for the He-, Ne-, and Cu+-like series, which consist of atoms having perfectly closed-shell K-, KL-, and KLM-electronic structures, respectively. In turn, for the Be-, Mg-, and Ar-series, the Z-dependence is considerably stronger.

  19. On the (N, Z) dependence of the second-order Møller-Plesset correlation energies for closed-shell atomic systems.

    PubMed

    Słupski, R; Jankowski, K; Flores, J R

    2016-09-14

    Accurate Møller-Plesset (MP2) correlation energies calculated by means of the variational-perturbation and the finite-element methods are presented for several members of the Cu(+) isoelectronic series (N = 28), which represent closed-shell systems containing for the first time the 3d(10)-electron configuration and, consequently, closed M-shell. Total MP2 energies as well as their inner- and inter-shell components are reported for Cu(+), Zn(2+), Ge(4+), Kr(8+), Sr(10+), and Cd(20+). We found that for these ions the Z-dependence of the total MP2 energies is significantly weaker than for the members of the Ar-like series. The origin of this fact is rationalized by a detailed analysis performed at the levels of the shell- and inter-shell contributions to the MP2 energies. To get, for the first time, more general information about the (N, Z) characteristics of the MP2 energies for closed-shell atomic systems, we compare the Z-dependence of the Cu(+)-like systems with the MP2 energies calculated for other isoelectronic series. The weak Z-dependence is found for the He-, Ne-, and Cu(+)-like series, which consist of atoms having perfectly closed-shell K-, KL-, and KLM-electronic structures, respectively. In turn, for the Be-, Mg-, and Ar-series, the Z-dependence is considerably stronger. PMID:27634261

  20. Low-energy physics of the t -J model in d =∞ using extremely correlated Fermi liquid theory: Cutoff second-order equations

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram; Perepelitsky, Edward

    2016-07-01

    We present the results for the low-energy properties of the infinite-dimensional t -J model with J =0 , using O (λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈[0 ,1 ] is analogous to the inverse spin parameter 1 /(2 S ) in quantum magnets. The present analytical scheme allows us to approach the physically most interesting regime near the Mott insulating state n ≲1 . It overcomes the limitation to low densities n ≲0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle weight Z , the low ω ,T self-energy, and the resistivity are reported. These are quite close at all densities to the exact numerical results of the U =∞ Hubbard model, obtained using the dynamical mean field theory. The present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite dimensions and a nonvanishing J .

  1. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a

  2. The potency and efficacy of anticholinergics to inhibit haloperidol-induced catalepsy in rats correlates with their rank order of affinities for the muscarinic receptor subtypes.

    PubMed

    Erosa-Rivero, Helena B; Bata-García, José L; Alvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2014-06-01

    Extrapyramidal syndromes (EPS) caused by antipsychotic therapy are currently treated with anticholinergics that lack selectivity for the five muscarinic receptor subtypes. Since these receptors are heterogeneously expressed among the different classes of striatal neurons and their afferents, it can be expected that their simultaneous blockade will cause distinct, sometimes opposed, effects within the striatal circuitry. In order to test the hypothesis that the differential blockade of the muscarinic receptor subtypes would influence their potency and efficacy to prevent EPS, here we tested four anticholinergics with varying order of affinities for the muscarinic receptor subtypes, and compared their dose-response curves to inhibit haloperidol-induced catalepsy in male rats. Drugs were applied into the lateral ventricle 15 min before haloperidol (2 mg/kg, s.c.). Catalepsy was measured in the bar test at 15 min intervals during 5 h. The preferential M1/M4 antagonist pirenzepine (3, 10, 30, 100, and 300 nmol) caused a dose-dependent inhibition of catalepsy intensity: ED50 = 5.6 nmol [95% CI, 3.9-8.1], and latency: ED50 = 5.6 nmol [95% CI, 3.7-8.6]. Pirenzepine had the steepest dose-response curve, producing maximal inhibition (84 ± 5%) at the dose of 10 nmol, while its effect tended to reverse at higher doses (62 ± 11%). The purported M1/M3 antagonist 4-DAMP (30, 100, and 300 nmol) also caused a dose-dependent inhibition of catalepsy intensity: ED50 = 29.5 nmol [95% CI, 7.0 to 123.0], and latency: ED50 = 28.5 nmol [95% CI, 2.2 to 362.0]. However, the curve for 4-DAMP had a less pronounced slope, reaching its maximal effect (63 ± 14%) at the dose of 300 nmol. The M2/M4 antagonist AF-DX 116 (10, 30, and 300 nmol) only caused a partial inhibition of catalepsy (30 ± 11%) at the dose of 30 nmol, but this changed to a non-significant increment (15 ± 10%) at the dose of 100 nmol. The alleged M4 antagonist tropicamide (30, 100, 300, and

  3. Two-nucleon spectral function of the 16O nucleus using the lowest-order constrained variational state-dependent correlation functions of the Reid and Av18 interactions

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Younesizadeh, Y.

    2012-05-01

    In this work, the two-nucleon spectral functions (TNSFs) are defined in terms of the state- and the density-dependent correlation functions in the framework of the lowest-order constrained variational (LOCV) method to calculate the TNSF of the 16O nucleus in the 16O(e,e'NN)14C reaction. The Reid soft-core (Reid68) and the Av18 potentials are used as the internucleon interactions. Since, the short-range correlation effects are imposed on the wave functions for the individual channels (e.g., the 1S0 and 3PJ channels); therefore, the defect wave functions are obtained for various channels such that the high relative momenta (p>4fm-1) are ignored. The resulting TNSFs for the 16O nucleus are compared with those of the dressed random phase approximation (DRPA) calculations of Geurts and the experimental predictions, especially those of Onderwater , (NIKHEF group), where reasonable agreement is found. It is shown that the optimized state-dependent defect wave functions have substantial effects on the TNSF and it is not justified to use the simplified parametrized two-body correlation functions in all of the channels. In agreement with the experimental data of Onderwater , the knockout of a 1S0 pair proton dominates the above reaction cross section. Finally, it is demonstrated that the 0+ and 2+ peaks, which are expected to be observed in the above reaction cross section, are moved to the lower momenta of out-going protons when the state-dependent correlation functions are imposed.

  4. Order Up

    ERIC Educational Resources Information Center

    Gibeault, Michael

    2005-01-01

    Change orders. The words can turn the stomachs of administrators. Horror stories about change orders create fear and distrust among school officials, designers and builders. Can change orders be avoided? If car manufacturers can produce millions of intricately designed vehicles, why can't the same quality control be achieved on a construction…

  5. Evaluation of the Linear and Second-Order NLO Properties of Molecular Crystals within the Local Field Theory: Electron Correlation Effects, Choice of XC Functional, ZPVA Contributions, and Impact of the Geometry in the Case of 2-Methyl-4-nitroaniline.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2014-05-13

    The linear [χ((1))] and second-order nonlinear [χ((2))] optical susceptibilities of the 2-methyl-4-nitroaniline (MNA) crystal are calculated within the local field theory, which consists of first computing the molecular properties, accounting for the dressing effects of the surroundings, and then taking into account the local field effects. Several aspects of these calculations are tackled with the aim of monitoring the convergence of the χ((1)) and χ((2)) predictions with respect to experiment by accounting for the effects of (i) the dressing field within successive approximations, of (ii) the first-order ZPVA corrections, and of (iii) the geometry. With respect to the reference CCSD-based results, besides double hybrid functionals, the most reliable exchange-correlation functionals are LC-BLYP for the static χ((1)) and CAM-B3LYP (and M05-2X, to a lesser extent) for the dynamic χ((1)) but they strongly underestimate χ((2)). Double hybrids perform better for χ((2)) but not necessarily for χ((1)), and, moreover, their performances are much similar to MP2, which is known to slightly overestimate β, with respect to high-level coupled-clusters calculations and, therefore, χ((2)). Other XC functionals with less HF exchange perform poorly with overestimations/underestimations of χ((1))/χ((2)), whereas the HF method leads to underestimations of both. The first-order ZPVA corrections, estimated at the B3LYP level, are usually small but not negligible. Indeed, after ZPVA corrections, the molecular polarizabilities and first hyperpolarizabilities increase by 2% and 5%, respectively, whereas their impact is magnified on the macroscopic responses with enhancements of χ((1)) by up to 5% and of χ((2)) by as much as 10%-12% at λ = 1064 nm. The geometry plays also a key role in view of predicting accurate susceptibilities, particularly for push-pull π-conjugated compounds such as MNA. So, the geometry optimized using periodic boundary conditions is characterized

  6. Superconductivity and oxygen ordering correlations in the homologous series of (Cu,Mo)Sr{sub 2}(Ce,Y){sub s}Cu{sub 2}O{sub 5+2s+{delta}}.

    SciTech Connect

    Chmaissem, O.; Grigoraviciute, I.; Yamauchi, H.; Karppinen, M.; Marezio, M.

    2010-01-01

    A detailed study of the structure-property relationship is reported for the first four members of the high-T{sub c} superconducting homologous series of (Cu,Mo)Sr{sub 2}(Ce,Y){sub s}Cu{sub 2}O{sub 5+2s+{delta}} [(Cu,Mo)-12s2]. In this series, the adjacent CuO{sub 2} planes are separated by a single Y-cation layer for s=1 and a fluorite-type (Ce,Y)-[O{sub 2}-(Ce,Y)]{sub s-1} layer block for s {ge} 2. Even though this series may be considered a conventional homologous series from the chemical point of view, we emphasize that the structures are different from those of the Tl-, Hg-, Bi-, etc.,-based series by the fact that the inserted fluorite-type blocks are insulating. We show the formation of the higher s members via intercalation of additional Ce-O{sub 2} layer(s) into the crystal lattices of the lower members of the series. Neutron powder-diffraction data demonstrate that the Ce/Y ratio is not constant at the different (Ce,Y) layers in the fluorite-structured block and that the innermost (Ce,Y) layer(s) are significantly Ce rich compared with the outer ones. Two independent crystallographic sites are identified for the extra oxygen atoms in the basal (Cu{sub 0.75}Mo{sub 0.25})O{sub 1+{delta}} plane with site fractional occupancies that strongly correlate with the properties of the material. A short-range ordered structure is proposed for the (Cu{sub 0.75}Mo{sub 0.25})O{sub 1+{delta}} layers that could explain both the superconducting properties of the materials and the enhanced T{sub c} for the first member of the series.

  7. Surface melting of electronic order.

    SciTech Connect

    Wilkins, S. B.; Liu, X.; Wakabayashi, Y.; Kim, J.-W.; Ryan, P. J.; Mitchell, J. F.; Hill, J. P.

    2011-01-01

    We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. We find that as the bulk ordering temperature is approached from below the thickness of the interface between the electronically ordered and electronically disordered regions at the surface grows, though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order. That is, the electronic ordering at the surface has melted. Above the bulk transition, long-range ordering in the bulk is destroyed but finite-sized isotropic fluctuations persist, with a correlation length roughly equal to that of the low-temperature in-plane surface correlation length.

  8. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εmn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  9. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistentmore » with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εm-εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.« less

  10. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging. PMID:27314718

  11. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  12. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  13. RHIC DATA CORRELATION METHODOLOGY.

    SciTech Connect

    MICHNOFF,R.; D'OTTAVIO,T.; HOFF,L.; MACKAY,W.; SATOGATA,T.

    1999-03-29

    A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper.

  14. Structural order in glassy water.

    PubMed

    Giovambattista, Nicolas; Debenedetti, Pablo G; Sciortino, Francesco; Stanley, H Eugene

    2005-06-01

    We investigate structural order in glassy water by performing classical molecular dynamics simulations using the extended simple point charge (SPC/E) model of water. We perform isochoric cooling simulations across the glass transition temperature at different cooling rates and densities. We quantify structural order by orientational and translational order metrics. Upon cooling the liquid into the glassy state, both the orientational order parameter Q and translational order parameter tau increase. At T=0 K, the glasses fall on a line in the Q-tau plane or order map. The position of this line depends only on density and coincides with the location in the order map of the inherent structures (IS) sampled upon cooling. We evaluate the energy of the IS, eIS(T), and find that both order parameters for the IS are proportional to eIS. We also study the structural order during the transformation of low-density amorphous ice (LDA) to high-density amorphous ice (HDA) upon isothermal compression and are able to identify distinct regions in the order map corresponding to these glasses. Comparison of the order parameters for LDA and HDA with those obtained upon isochoric cooling indicates major structural differences between glasses obtained by cooling and glasses obtained by compression. These structural differences are only weakly reflected in the pair correlation function. We also characterize the evolution of structural order upon isobaric annealing, leading at high pressure to very-high density amorphous ice (VHDA). PMID:16089741

  15. Correlational Comparison in English

    ERIC Educational Resources Information Center

    Smith, Elizabeth Allyn

    2011-01-01

    This dissertation proposes a novel analysis of the syntax and semantics of Comparative Correlative sentences in English such as "the bigger they are, the harder they fall or the faster we drive, the sooner we'll get there." The analysis is cast in a framework that distinguishes between argument structure and word order, called…

  16. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  17. Correlative Tomography

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-04-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques.

  18. Localization protected quantum order

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul

    2015-03-01

    Many body localization occurs in isolated quantum systems, usually with strong disorder, and is marked by absence of dissipation, absence of thermal equilibration, and a memory of the initial conditions that survives in local observables for arbitrarily long times. The many body localized regime is a non-equilibrium, strongly disordered, non-self averaging regime that presents a new frontier for quantum statistical mechanics. In this talk, I point out that there exists a vast zoo of correlated many body localized states of matter, which may be classified using familiar notions of spontaneous symmetry breaking and topological order. I will point out that in the many body localized regime, spontaneous symmetry breaking can occur even at high energy densities in one dimensional systems, and topological order can occur even without a bulk gap. I will also discuss the phenomenology of imperfectly isolated many body localized systems, which are weakly coupled to a heat bath. I will conclude with a brief discussion of how these phenomena may best be detected in experiments. Collaborators: David Huse, S.L. Sondhi, Arijeet Pal, Vadim Oganesyan, A.C. Potter, Sarang Gopalakrishnan, S. Johri, R.N. Bhatt.

  19. Variable Order and Distributed Order Fractional Operators

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2002-01-01

    Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.

  20. Higher-order artificial neural networks

    SciTech Connect

    Bengtsson, M.

    1990-12-01

    The report investigates the storage capacity of an artificial neural network where the state of each neuron depends on quadratic correlations of all other neurons, i.e. a third order network. This is in contrast to a standard Hopfield network where the state of each single neuron depends on the state on every other neuron, without any correlations. The storage capacity of a third order network is larger than that for standard Hopfield by one order of N. However, the number of connections is also larger by an order of N. It is shown that the storage capacity per connection is identical for standard Hopfield and for this third order network.

  1. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  2. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  3. Correlative microscopy.

    PubMed

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  4. Laser statistical polarimetry optical anisotropy of blood plasma of the patients with hemangioma

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.

    2011-09-01

    Proposed in this work is a novel method of early laser polarimetric diagnostics of vessels pathologies and hemangioma formation. The generalized model of formation processes of polarization inhomogeneous laser images of experimental samples of biological tissues is presented. It was performed the experimental measurements of polarization states of both biological tissues laser images points and the hemangioma liquids. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization azimuth of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.

  5. Laser statistical polarimetry optical anisotropy of blood plasma of the patients with hemangioma

    NASA Astrophysics Data System (ADS)

    Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.

    2012-01-01

    Proposed in this work is a novel method of early laser polarimetric diagnostics of vessels pathologies and hemangioma formation. The generalized model of formation processes of polarization inhomogeneous laser images of experimental samples of biological tissues is presented. It was performed the experimental measurements of polarization states of both biological tissues laser images points and the hemangioma liquids. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization azimuth of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.

  6. Multifunctional polarization tomography of optical anisotropy of biological layers in diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Koval, L. D.; Dubolazov, O. V.; Ushenko, Yu. O.; Savich, V. O.; Sidor, M. I.; Marchuk, Yu. F.

    2015-09-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  7. System of multifunctional laser polarimetry of phase and amplitude anisotropy in the diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Dubolazov, O. V.; Olar, O. V.

    2015-11-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  8. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations

    NASA Astrophysics Data System (ADS)

    Ungurian, V. P.; Ivashchuk, O. I.; Ushenko, V. O.

    2012-01-01

    This work is aimed at searching the interconnections between the statistic structure of blood plasma microscopic images and manifestations of optical anisotropy of liquid crystal protein network. The model of linear birefringence of albumin and globulin crystals underlies in the ground of this work. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of polarization ellipticity of laser images of blood plasma smears and pathological changes in human organism. The diagnostic criteria of breast cancer nascency and its severity degree differentiation are determined.

  9. Order-parameter scaling in fluctuation-dominated phase ordering.

    PubMed

    Kapri, Rajeev; Bandyopadhyay, Malay; Barma, Mustansir

    2016-01-01

    In systems exhibiting fluctuation-dominated phase ordering, a single order parameter does not suffice to characterize the order, and it is necessary to monitor a larger set. For hard-core sliding particles on a fluctuating surface and the related coarse-grained depth (CD) models, this set comprises the long-wavelength Fourier components of the density profile, which capture the breakup and remerging of particle-rich regions. We study both static and dynamic scaling laws obeyed by the Fourier modes Q_{mL} and find that the mean value obeys the static scaling law 〈Q_{mL}〉∼L^{-ϕ}f(m/L) with ϕ≃2/3 and ϕ≃3/5 for Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) surface evolution, respectively, and ϕ≃3/4 for the CD model. The full probability distribution P(Q_{mL}) exhibits scaling as well. Further, time-dependent correlation functions such as the steady-state autocorrelation and cross-correlations of order-parameter components are scaling functions of t/L^{z}, where L is the system size and z is the dynamic exponent, with z=2 for EW and z=3/2 for KPZ surface evolution. In addition we find that the CD model shows temporal intermittency, manifested in the dynamical structure functions of the density and the weak divergence of the flatness as the scaled time approaches 0. PMID:26871034

  10. Constructing higher-order hydrodynamics: The third order

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Kaplis, Nikolaos

    2016-03-01

    Hydrodynamics can be formulated as the gradient expansion of conserved currents in terms of the fundamental fields describing the near-equilibrium fluid flow. In the relativistic case, the Navier-Stokes equations follow from the conservation of the stress-energy tensor to first order in derivatives. In this paper, we go beyond the presently understood second-order hydrodynamics and discuss the systematization of obtaining the hydrodynamic expansion to an arbitrarily high order. As an example of the algorithm that we present, we fully classify the gradient expansion at third order for neutral fluids in four dimensions, thus finding the most general next-to-leading-order corrections to the relativistic Navier-Stokes equations in curved space-time. In doing so, we list 20 new transport coefficient candidates in the conformal case and 68 in the nonconformal case. As we do not consider any constraints that could potentially arise from the local entropy current analysis, this is the maximal possible set of neutral third-order transport coefficients. To investigate the physical implications of these new transport coefficients, we obtain the third-order corrections to the linear dispersion relations that describe the propagation of diffusion and sound waves in relativistic fluids. We also compute the corrections to the scalar (spin-2) two-point correlation function of the third-order stress-energy tensor. Furthermore, as an example of a nonlinear hydrodynamic flow, we calculate the third-order corrections to the energy density of a boost-invariant Bjorken flow. Finally, we apply our field theoretic results to the N =4 supersymmetric Yang-Mills fluid at infinite 't Hooft coupling and an infinite number of colors to find the values of five new linear combinations of the conformal transport coefficients.

  11. Order Theoretical Semantic Recommendation

    SciTech Connect

    Joslyn, Cliff A.; Hogan, Emilie A.; Paulson, Patrick R.; Peterson, Elena S.; Stephan, Eric G.; Thomas, Dennis G.

    2013-07-23

    Mathematical concepts of order and ordering relations play multiple roles in semantic technologies. Discrete totally ordered data characterize both input streams and top-k rank-ordered recommendations and query output, while temporal attributes establish numerical total orders, either over time points or in the more complex case of startend temporal intervals. But also of note are the fully partially ordered data, including both lattices and non-lattices, which actually dominate the semantic strcuture of ontological systems. Scalar semantic similarities over partially-ordered semantic data are traditionally used to return rank-ordered recommendations, but these require complementation with true metrics available over partially ordered sets. In this paper we report on our work in the foundations of partial order measurement in ontologies, with application to top-k semantic recommendation in workflows.

  12. Glassy correlations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Goldbart, Paul; Mao, Xiaoming

    2009-03-01

    We address the physical properties of an isotropic melt or solution of nematogenic polymers that is then cross-linked beyond the vulcanization point. To do this, we construct a replica Landau theory involving a coupled pair of order- parameter fields: one describing vulcanization, the other describing local nematic order. Thermal nematic fluctuations, present at the time of cross-linking, are trapped by cross- linking into the vulcanized network. The resulting glassy nematic fluctuations are analyzed in the Gaussian approximation in two regimes. When the localization length is shorter than the thermal nematic correlation length, the nematic correlations are well captured as glassy correlations. In the opposite regime, fluctuations in the positions of the localized polymers partially wash out the glassy nematic correlations.

  13. First-order inflation

    SciTech Connect

    Kolb, E.W. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-09-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result in inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models. 58 refs., 3 figs.

  14. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  15. Local Realism of Macroscopic Correlations

    NASA Astrophysics Data System (ADS)

    Ramanathan, R.; Paterek, T.; Kay, A.; Kurzyński, P.; Kaszlikowski, D.

    2011-08-01

    We identify conditions under which correlations resulting from quantum measurements performed on macroscopic systems (systems composed of a number of particles of the order of the Avogadro number) can be described by local realism. We argue that the emergence of local realism at the macroscopic level is caused by an interplay between the monogamous nature of quantum correlations and the fact that macroscopic measurements do not reveal properties of individual particles.

  16. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  17. Variable angle correlation spectroscopy

    SciTech Connect

    Lee, Y K

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  18. Characterizing limit order prices

    NASA Astrophysics Data System (ADS)

    Withanawasam, R. M.; Whigham, P. A.; Crack, Timothy Falcon

    2013-11-01

    A computational model of a limit order book is used to study the effect of different limit order distribution offsets. Reference prices such as same side/contra side best market prices and last traded price are considered in combination with different price offset distributions. We show that when characterizing limit order prices, varying the offset distribution only produces different behavior when the reference price is the contra side best price. Irrespective of the underlying mechanisms used in computing the limit order prices, the shape of the price graph and the behavior of the average order book profile distribution are strikingly similar in all the considered reference prices/offset distributions. This implies that existing averaging methods can cancel variabilities in limit order book shape/attributes and may be misleading.

  19. After order 636

    SciTech Connect

    Katz, M.G.

    1995-02-01

    Through its Order 636, the Federal Energy Regulatory Commission (FERC) completed a restructuring of the natural gas industry. The order severed the last links in the chain linking gas producers to pipeline companies to local gas distribution companies (LDCs) to customers. Before Order 636 took effect, many predicted electric power generation, particularly by cogenerators and independent power producers (IPPs), would be a major growth area for natural gas. In fact, what Order 636 has shown is, that timing is everything, and that it`s difficult to sort out the effect of one agent of change when many others are at work.

  20. Bioregions and World Order.

    ERIC Educational Resources Information Center

    Breakthrough, 1985

    1985-01-01

    What bioregions can do to contribute to world order and security is discussed in this newsletter. A bioregion is defined as an identifiable geographical area of interacting life-systems that is relatively self-sustaining in the ever-renewing processes of nature. Articles included are: "Bioregionalism and World Order" (Gerald Mische); "Bioregions:…

  1. Narcissism and birth order.

    PubMed

    Eyring, W E; Sobelman, S

    1996-04-01

    The purpose of this investigation was to clarify the relationship between birth-order position and the development of narcissism, while refining research and theory. The relationship between birth-order status and narcissism was examined with a sample of 79 undergraduate students (55 women and 24 men). These subjects were placed in one of the four following birth-order categories of firstborn, second-born, last-born, and only children. These categories were chosen given their significance in Adlerian theory. Each subject completed the Narcissistic Personality Inventory and a demographic inventory. Based on psychodynamic theory, it was hypothesized that firstborn children were expected to score highest, but statistical significance was not found for an association between narcissism and birth order. Further research is urged to investigate personality theory as it relates to parenting style and birth order.

  2. Representation of linear orders.

    PubMed

    Taylor, D A; Kim, J O; Sudevan, P

    1984-01-01

    Two binary classification tasks were used to explore the associative structure of linear orders. In Experiment 1, college students classified English letters as targets or nontargets, the targets being consecutive letters of the alphabet. The time to reject nontargets was a decreasing function of the distance from the target set, suggesting response interference mediated by automatic associations from the target to the nontarget letters. The way in which this interference effect depended on the placement of the boundaries between the target and nontarget sets revealed the relative strengths of individual interletter associations. In Experiment 2, students were assigned novel linear orders composed of letterlike symbols and asked to classify pairs of symbols as being adjacent or nonadjacent in the assigned sequence. Reaction time was found to be a joint function of the distance between any pair of symbols and the relative positions of those symbols within the sequence. The effects of both distance and position decreased systematically over 6 days of practice with a particular order, beginning at a level typical of unfamiliar orders and converging on a level characteristic of familiar orders such as letters and digits. These results provide an empirical unification of two previously disparate sets of findings in the literature on linear orders, those concerning familiar and unfamiliar orders, and the systematic transition between the two patterns of results suggests the gradual integration of a new associative structure.

  3. Court Ordered Desegregation

    ERIC Educational Resources Information Center

    Reber, Sarah J.

    2005-01-01

    The effect of the court ordered desegregation plans, on trends in segregation and white flight, are estimated. The effect of availability of school districts and other factors on the white flight across districts is also mentioned.

  4. ASDC Order Tools

    Atmospheric Science Data Center

    2012-04-17

    ... users to search our data holdings without logging in to the system. The user, however, must log in before ordering the data. ... Cavity Radiometer Irradiance Monitor II (ACRIM II) Total Solar Irradiance Data Global Tropospheric Experiment (GTE) data (Selected ...

  5. 'Good palliative care' orders.

    PubMed

    Maddocks, I

    1993-01-01

    A Select Committee of the Parliament of South Australia, considering revisions to legislation governing care of the dying, did not support allowing doctors to assist suicide. They recommended that no liability attach to the provision of reasonable palliative care which happens to shorten life. The Committee affirmed the suggestion that positive open orders to provide 'good palliative care' should replace 'do not resuscitate' orders. PMID:7506978

  6. Ordered macromolecular structures in ferrofluid mixtures

    SciTech Connect

    Hayter, J.B.; Pynn, R.; Charles, S.; Skjeltorp, A.T.; Trewhella, J.; Stubbs, G.; Timmins, P.

    1989-04-03

    We have observed ordering of dilute dispersions of spherical and cylindrical macromolecules in magnetized ferrofluids. The order results from structural correlations between macromolecular and ferrofluid particles rather than from macroscopic magnetostatic effects. We have aligned elongated macromolecules by this technique and have obtained anisotropic neutron-diffraction patterns, which reflect the internal structure of the macromolecules. The method provides a tool for orienting suspended macromolecular assemblies which are not amenable to conventional alignment techniques.

  7. Topology in Ordered Phases

    NASA Astrophysics Data System (ADS)

    Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke

    2006-08-01

    .]. Nanofibers of hydrogen storage alloy / I. Saita ... [et al.]. Synthesis of stable icosahedral quasicrystals in Zn-Sc based alloys and their magnetic properties / S. Kashimoto and T. Ishimasa. One-armed spiral wave excited by eam pressure in accretion disks in Be/X-Ray binaries / K. Hayasaki and A. T. Okazaki -- IV. Topological defects and excitations. Topological excitations in the ground state of charge density wave systems / P. Monceau. Soliton transport in nanoscale charge-density-wave systems / K. Inagaki, T. Toshima and S. Tanda. Topological defects in triplet superconductors UPt3, Sr[symbol]RuO[symbol], etc. / K. Maki ... [et al.]. Microscopic structure of vortices in type II superconductors / K. Machida ... [et al.]. Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors / J. Mesot. Energy dissipation at nano-scale topological defects of high-Tc superconductors: microwave study / A. Maeda. Pressure induced topological phase transition in the heavy Fermion compound CeAl[symbol] / H. Miyagawa ... [et al.]. Explanation for the unusual orientation of LSCO square vortex lattice in terms of nodal superconductivity / M. Oda. Local electronic states in Bi[symbol]Sr[symbol]CaCu[symbol]O[symbol] / A. Hashimoto ... [et al.] -- V. Topology in quantum phenomena. Topological vortex formation in a Bose-Einstein condensate of alkali-metal atoms / M. Nakahara. Quantum phase transition of [symbol]He confined in nano-porous media / K. Shirahama, K. Yamamoto and Y. Shibayama. A new mean-field theory for Bose-Einstein condensates / T. Kita. Spin current in topological cristals / Y. Asano. Antiferromagnetic defects in non-magnetic hidden order of the heavy-electron system URu[symbol]Si[symbol] / H. Amitsuka, K. Tenya and M. Yokoyama. Magnetic-field dependences of thermodynamic quantities in the vortex state of Type-II superconductors / K. Watanabe, T. Kita and M. Arai. Three-magnon-mediated nuclear spin relaxation in quantum ferrimagnets of topological

  8. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  9. Arguments from Developmental Order.

    PubMed

    Stöckle-Schobel, Richard

    2016-01-01

    In this article, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind - getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged 'philosophy of development.'

  10. Arguments from Developmental Order

    PubMed Central

    Stöckle-Schobel, Richard

    2016-01-01

    In this article1, I investigate a special type of argument regarding the role of development in theorizing about psychological processes and cognitive capacities. Among the issues that developmental psychologists study, discovering the ontogenetic trajectory of mechanisms or capacities underpinning our cognitive functions ranks highly. The order in which functions are developed or capacities are acquired is a matter of debate between competing psychological theories, and also philosophical conceptions of the mind – getting the role and the significance of the different steps in this order right could be seen as an important virtue of such theories. Thus, a special kind of strategy in arguments between competing philosophical or psychological theories is using developmental order in arguing for or against a given psychological claim. In this article, I will introduce an analysis of arguments from developmental order, which come in two general types: arguments emphasizing the importance of the early cognitive processes and arguments emphasizing the late cognitive processes. I will discuss their role in one of the central tools for evaluating scientific theories, namely in making inferences to the best explanation. I will argue that appeal to developmental order is, by itself, an insufficient criterion for theory choice and has to be part of an argument based on other core explanatory or empirical virtues. I will end by proposing a more concerted study of philosophical issues concerning (cognitive) development, and I will present some topics that also pertain to a full-fledged ‘philosophy of development.’ PMID:27242648

  11. Birth Order and Psychopathology

    PubMed Central

    Risal, Ajay; Tharoor, Hema

    2012-01-01

    Context: Ordinal position the child holds within the sibling ranking of a family is related to intellectual functioning, personality, behavior, and development of psychopathology. Aim: To study the association between birth order and development of psychopathology in patients attending psychiatry services in a teaching hospital. Settings and Design: Hospital-based cross-sectional study. Materials and Methods: Retrospective file review of three groups of patients was carried out. Patient-related variables like age of onset, birth order, family type, and family history of mental illness were compared with psychiatry diagnosis (ICD-10) generated. Statistical Analysis: SPSS 13; descriptive statistics and one-way analysis of variance (ANOVA) were used. Results: Mean age of onset of mental illness among the adult general psychiatry patients (group I, n = 527) was found to be 33.01 ± 15.073, while it was 11.68 ± 4.764 among the child cases (group II, n = 47) and 26.74 ± 7.529 among substance abuse cases (group III, n = 110). Among group I patients, commonest diagnosis was depression followed by anxiety and somatoform disorders irrespective of birth order. Dissociative disorders were most prevalent in the first born child (36.7%) among group II patients. Among group III patients, alcohol dependence was maximum diagnosis in all birth orders. Conclusions: Depression and alcohol dependence was the commonest diagnosis in adult group irrespective of birth order. PMID:24479023

  12. Correlation in instruments - Cross correlation flowmeters

    NASA Astrophysics Data System (ADS)

    Beck, M. S.

    1981-01-01

    The principles of cross-correlation flowmeters are presented demonstrating methods of identifying dynamic properties of telecommunication, structural, and process systems. The flowmeters are designed for measurements of the transit time of a tagging signal such as turbulence or clumps of particles in the flow between two axially separated sensors; the transit time is measured by a cross-correlator. Cross-correlation flowmeters can reduce large scale integrated circuit costs and will be applied to environmental and industrial measurement problems.

  13. Finite order variational bicomplexes

    NASA Astrophysics Data System (ADS)

    Vitolo, Raffaele

    1999-01-01

    The theory of variational bicomplexes was established at the end of the seventies by several authors [2, 17, 23, 26, 29-32]. The idea is that the operations which take a Lagrangian into its Euler-Lagrange morphism [9, 10, 12, 24] and an Euler-Lagrange morphism into its Helmholtz' conditions of local variationality [1-3, 7, 11, 13, 18, 27] are morphisms of a (long) exact sheaf sequence. This viewpoint overcomes several problems of Lagrangian formulations in mechanics and field theories [21, 28]. To avoid technical difficulties variational bicomplexes were formulated over the space of infinite jets of a fibred manifold. But in this formalism the information relative to the order of the jet where objects are defined is lost.We refer to the recent formulation of variational bicomplexes on finite order jet spaces [13]. Here, a finite order variational sequence is obtained by quotienting the de Rham sequence on a finite order jet space with an intrinsically defined sub-sequence, whose choice is inspired by the calculus of variations. It is important to find an isomorphism of the quotient sequence with a sequence of sheaves of ‘concrete’ sections of some vector bundle. This task has already been faced locally [22, 25] and intrinsically [33] in the case of one independent variable.In this paper, we give an intrinsic isomorphism of the variational sequence (in the general case of n independent variables) with a sequence which is made by sheaves of forms on a jet space of minimal order. This yields new natural solutions to problems like the minimal order Lagrangian corresponding to a locally variational Euler-Lagrange morphism and the search of variationally trivial Lagrangians. Moreover, we give a new intrinsic formulation of Helmholtz' local variationality conditions, proving the existence of a new intrinsic geometric object which, for an Euler-Lagrange morphism, plays a role analogous to that of the momentum of a Lagrangian.

  14. Concomitant Ordering and Symmetry Lowering

    ERIC Educational Resources Information Center

    Boo, William O. J.; Mattern, Daniell L.

    2008-01-01

    Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…

  15. Higher order turbulence closure models

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der

    1988-01-01

    Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.

  16. The Birth Order Puzzle.

    ERIC Educational Resources Information Center

    Zajonc, R. B.; And Others

    1979-01-01

    Discusses the controversy of the relationship between birth order and intellectual performance through a detailed evaluation of the confluence model which assumes that the rate of intellectual growth is a function of the intellectual environment within the family and associated with the special circumstances of last children. (CM)

  17. Word Order in Klamath.

    ERIC Educational Resources Information Center

    Sundberg, Karen

    The word order in Klamath, a Penutian language of southern Oregon, has been described as almost completely "free". The language is examined in terms of the effect of the relative topicality of arguments on their position preceding or following the verb. The database used for this study consisted of seven Klamath texts from Barker (1963): five…

  18. Education and World Order

    ERIC Educational Resources Information Center

    Jones, Phillip W.

    2007-01-01

    The impact on educational analysis of mainstream international relations (IR) theories is yet to realize its full potential. The problem of education in relation to the construction of world order is considered in relation to core developments in IR theory since the Second World War. In particular, the global architecture of education is seen as a…

  19. Land and World Order.

    ERIC Educational Resources Information Center

    Mische, Patricia, Ed.; And Others

    1982-01-01

    The papers in this publication discuss the land and how what happens to the land affects us. The publication is one in a series of monographs that examine the linkages between local and global concerns and explore alternative world futures. Examples of topics discussed in the papers follow. The paper "Land and World Order" examines implications of…

  20. Higher-order Multiples.

    PubMed

    Stone, Joanne; Kohari, Katherine S

    2015-09-01

    Higher-order multiple gestations have increased since the advent of advanced reproductive technologies. These pregnancies present unique risks to both mothers and fetuses. It is imperative that early diagnosis of chronicity be determined and that proper counseling is performed, so patients understand the risks, evaluation, and management needed.

  1. Order, topology and preference

    NASA Technical Reports Server (NTRS)

    Sertel, M. R.

    1971-01-01

    Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.

  2. Correlation, Cost Risk, and Geometry

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate

  3. Correlated Electrons in Reduced Dimensions

    SciTech Connect

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  4. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  5. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-08-08

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  6. Fauna Europaea - Orthopteroid orders.

    PubMed

    Heller, Klaus-Gerhard; Bohn, Horst; Haas, Fabian; Willemse, Fer; de Jong, Yde

    2016-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant European terrestrial and freshwater animals, their geographical distribution at the level of countries and major islands (west of the Urals and excluding the Caucasus region), and some additional information. The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. The "Orthopteroid orders" is one of the 58 Fauna Europaea major taxonomic groups. It contains series of mostly well-known insect orders: Embiodea (webspinners), Dermaptera (earwigs), Phasmatodea (walking sticks), Orthoptera s.s. (grasshoppers, crickets, bush-crickets) and Dictyoptera with the suborders Mantodea (mantids), Blattaria (cockroaches) and Isoptera (termites). For the Orthopteroid orders, data from 35 families containing 1,371 species are included in this paper.

  7. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  8. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  9. Fauna Europaea - Orthopteroid orders.

    PubMed

    Heller, Klaus-Gerhard; Bohn, Horst; Haas, Fabian; Willemse, Fer; de Jong, Yde

    2016-01-01

    Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant European terrestrial and freshwater animals, their geographical distribution at the level of countries and major islands (west of the Urals and excluding the Caucasus region), and some additional information. The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. The "Orthopteroid orders" is one of the 58 Fauna Europaea major taxonomic groups. It contains series of mostly well-known insect orders: Embiodea (webspinners), Dermaptera (earwigs), Phasmatodea (walking sticks), Orthoptera s.s. (grasshoppers, crickets, bush-crickets) and Dictyoptera with the suborders Mantodea (mantids), Blattaria (cockroaches) and Isoptera (termites). For the Orthopteroid orders, data from 35 families containing 1,371 species are included in this paper. PMID:27660531

  10. Separation of dynamic and nondynamic correlation.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Matito, Eduard

    2016-08-24

    The account of electron correlation and its efficient separation into dynamic and nondynamic parts plays a key role in the development of computational methods. In this paper we suggest a physically-sound matrix formulation to split electron correlation into dynamic and nondynamic parts using the two-particle cumulant matrix and a measure of the deviation from idempotency of the first-order density matrix. These matrices are applied to a two-electron model, giving rise to a simplified electron correlation index that (i) depends only on natural orbitals and their occupancies, (ii) can be straightforwardly decomposed into orbital contributions and (iii) splits into dynamic and nondynamic correlation parts that (iv) admit a local version. These expressions are shown to account for dynamic and nondynamic correlation in a variety of systems containing different electron correlation regimes, thus providing the first separation of dynamic and nondynamic correlation using solely natural orbital occupancies. PMID:27523386

  11. Fast robust correlation.

    PubMed

    Fitch, Alistair J; Kadyrov, Alexander; Christmas, William J; Kittler, Josef

    2005-08-01

    A new, fast, statistically robust, exhaustive, translational image-matching technique is presented: fast robust correlation. Existing methods are either slow or non-robust, or rely on optimization. Fast robust correlation works by expressing a robust matching surface as a series of correlations. Speed is obtained by computing correlations in the frequency domain. Computational cost is analyzed and the method is shown to be fast. Speed is comparable to conventional correlation and, for large images, thousands of times faster than direct robust matching. Three experiments demonstrate the advantage of the technique over standard correlation.

  12. Between order and chaos

    NASA Astrophysics Data System (ADS)

    Crutchfield, James P.

    2012-01-01

    What is a pattern? How do we come to recognize patterns never seen before? Quantifying the notion of pattern and formalizing the process of pattern discovery go right to the heart of physical science. Over the past few decades physics' view of nature's lack of structure--its unpredictability--underwent a major renovation with the discovery of deterministic chaos, overthrowing two centuries of Laplace's strict determinism in classical physics. Behind the veil of apparent randomness, though, many processes are highly ordered, following simple rules. Tools adapted from the theories of information and computation have brought physical science to the brink of automatically discovering hidden patterns and quantifying their structural complexity.

  13. Higher order Bezier circles

    NASA Technical Reports Server (NTRS)

    Chou, Jin

    1993-01-01

    Rational Bezier and B-spline representations of circles have been heavily publicized. However, all the literature assumes the rational Bezier segments in the homogeneous space are both planar and (equivalent to) quadratic. This creates the illusion that circles can only be achieved by planar and quadratic curves. Circles that are formed by higher order rational Bezier curves which are nonplanar in the homogeneous space are shown. The problem of whether it is possible to represent a complete circle with one Bezier curve is investigated. In addition, some other interesting properties of cubic Bezier arcs are discussed.

  14. Ordered Binary Trees Constructed Through an Application of Kendall's Tau.

    ERIC Educational Resources Information Center

    Degerman, Richard

    1982-01-01

    A procedure is described for orienting the nodes of a binary tree to maximize the Kendall rank order correlation (tau) between node order and a given external criterion. The procedure is computationally efficient and is based on application of an ordered set of node tests. (Author)

  15. Redundant correlation effect on personalized recommendation

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang

    2014-02-01

    The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.

  16. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  17. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  18. IAA Correlator Center

    NASA Technical Reports Server (NTRS)

    Surkis, Igor; Ken, Voitsekh; Melnikov, Alexey; Mishin, Vladimir; Sokolova, Nadezda; Shantyr, Violet; Zimovsky, Vladimir

    2013-01-01

    The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.

  19. Computerized Physician Order Entry

    PubMed Central

    Khanna, Raman; Yen, Tony

    2014-01-01

    Computerized physician order entry (CPOE) has been promoted as an important component of patient safety, quality improvement, and modernization of medical practice. In practice, however, CPOE affects health care delivery in complex ways, with benefits as well as risks. Every implementation of CPOE is associated with both generally recognized and unique local factors that can facilitate or confound its rollout, and neurohospitalists will often be at the forefront of such rollouts. In this article, we review the literature on CPOE, beginning with definitions and proceeding to comparisons to the standard of care. We then proceed to discuss clinical decision support systems, negative aspects of CPOE, and cultural context of CPOE implementation. Before concluding, we follow the experiences of a Chief Medical Information Officer and neurohospitalist who rolled out a CPOE system at his own health care organization and managed the resulting workflow changes and setbacks. PMID:24381708

  20. Parallel auto-correlative statistics with VTK.

    SciTech Connect

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2013-08-01

    This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.

  1. What Is Strong Correlation?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2009-01-01

    Interpretation of correlation is often based on rules of thumb in which some boundary values are given to help decide whether correlation is non-important, weak, strong or very strong. This article shows that such rules of thumb may do more harm than good, and instead of supporting interpretation of correlation--which is their aim--they teach a…

  2. Order without design.

    PubMed

    Kurakin, Alexei

    2010-04-14

    Experimental reality in molecular and cell biology, as revealed by advanced research technologies and methods, is manifestly inconsistent with the design perspective on the cell, thus creating an apparent paradox: where do order and reproducibility in living systems come from if not from design? I suggest that the very idea of biological design (whether evolutionary or intelligent) is a misconception rooted in the time-honored and thus understandably precious error of interpreting living systems/organizations in terms of classical mechanics and equilibrium thermodynamics. This error, introduced by the founders and perpetuated due to institutionalization of science, is responsible for the majority of inconsistencies, contradictions, and absurdities plaguing modern sciences, including one of the most startling paradoxes - although almost everyone agrees that any living organization is an open nonequilibrium system of continuous energy/matter flow, almost everyone interprets and models living systems/organizations in terms of classical mechanics, equilibrium thermodynamics, and engineering, i.e., in terms and concepts that are fundamentally incompatible with the physics of life. The reinterpretation of biomolecules, cells, organisms, ecosystems, and societies in terms of open nonequilibrium organizations of energy/matter flow suggests that, in the domain of life, order and reproducibility do not come from design. Instead, they are natural and inevitable outcomes of self-organizing activities of evolutionary successful, and thus persistent, organizations co-evolving on multiple spatiotemporal scales as biomolecules, cells, organisms, ecosystems, and societies. The process of self-organization on all scales is driven by economic competition, obeys empirical laws of nonequilibrium thermodynamics, and is facilitated and, thus, accelerated by memories of living experience persisting in the form of evolutionary successful living organizations and their constituents.

  3. Birth order and myopia

    PubMed Central

    Guggenheim, Jeremy A.; McMahon, George; Northstone, Kate; Mandel, Yossi; Kaiserman, Igor; Stone, Richard A.; Lin, Xiaoyu; Saw, Seang Mei; Forward, Hannah; Mackey, David A.; Yazar, Seyhan; Young, Terri L.; Williams, Cathy

    2013-01-01

    Purpose An association between birth order and reduced unaided vision (a surrogate for myopia) has been observed previously. We examined the association between birth order and myopia directly in 4 subject groups. Methods Subject groups were participants in 1) the Avon Longitudinal Study of Parents and Children (ALSPAC; UK; age 15 years; N=4,401), 2) the Singapore Cohort Study of Risk Factors for Myopia (SCORM; Singapore; age 13 years; N=1,959), 3) the Raine Eye Health Study (REHS; Australia; age 20 years; N=1,344), and 4) Israeli Defense Force recruitment candidates (IDFC; Israel; age 16-22 years; N=888,277). Main outcome: Odds ratio (OR) for myopia in first born versus non-first born individuals after adjusting for potential risk factors. Results The prevalence of myopia was numerically higher in first-born versus non-first-born individuals in all study groups, but the strength of evidence varied widely. The adjusted ORs (95% CI) were: ALSPAC, 1.31 (1.05-1.64); SCORM, 1.25 (0.89-1.77); REHS, 1.18 (0.90-1.55); IDFC, 1.04 (1.03-1.06). In the large IDFC sample, the effect size was greater (a) for the first born versus fourth or higher born comparison than for the first born versus second/third born comparison (P<0.001) and (b) with increasing myopia severity (P<0.001). Conclusions Across all studies, the increased risk of myopia in first born individuals was low (OR <1.3). Indeed, only the studies with >4000 participants provided strong statistical support for the association. The available evidence suggested the relationship was independent of established risk factors such as time outdoors/reading, and thus may arise through a different causal mechanism. PMID:24168726

  4. Order From disorder in Frustrated Spin Systems

    NASA Astrophysics Data System (ADS)

    Coleman, Piers

    This talk will review the phemomenon of ''Order from disorder'': the mechanism by which fluctuations remove a degeneracy within a frustrated spin system. An important consequence of order-from-disorder, is the ability of frustrated Heisenberg spin systems to overcome the Mermin-Wagner theorem, developing new forms of discrete order, even when the spins themselves remain disordered with a finite correlation length. The most well-known example, is the two-dimensional frustrated J1 -J2 Heisenberg model, which undergoes a finite temperature Ising phase transition into a stripy or ''nematic'' state, even though the spins do not order until absolute zero. Nematic ordering of this kind is believed to occur in the iron-based superconductors, such as BaFe2 As2 . More recently, it has been possible to theoretically study the triangular-honeycomb versions of the J1 -J2 model, called a windmill model, in which order-from disorder drives the development of six-state clock order. Remarkably, in this case, order-from-disorder leads to an intermediate power-law spin phase, despite the underlying Heisenerg spins. This research was supported by DOE Basic Energy Sciences Grant DE-FG02-99ER45790.

  5. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at sNN=2.76 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-09-01

    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb-1. Thevm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with εm-εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

  6. 48 CFR 53.216-1 - Delivery orders and orders under basic ordering agreements (OF 347).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under basic ordering agreements (OF 347). 53.216-1 Section 53.216-1 Federal Acquisition Regulations... Delivery orders and orders under basic ordering agreements (OF 347). OF 347, Order for Supplies or Services. OF 347, prescribed in 53.213(f), (or an approved agency form) may be used to place orders...

  7. Optical correlator tracking nonlinearity

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.; Johnson, John L.

    1987-01-01

    A limitation observed in the tracking ability of optical correlators is reported. It is shown by calculations that an inherent nonlinearity exists in many optical correlator configurations, with the problem manifesting itself in a mismatch of the input scene with the position of the correlation signal. Results indicate that some care must be given to the selection of components and their configuration in constructing an optical correlator which exhibits true translational invariance. An input test scene is shown along with the correlation spot and cross hairs from a contrast detector; the offset is apparent.

  8. Correlations in Werner States

    NASA Astrophysics Data System (ADS)

    Luo, Shun-Long; Li, Nan

    2008-02-01

    Werner states are paradigmatic examples of quantum states and play an innovative role in quantum information theory. In investigating the correlating capability of Werner states, we find the curious phenomenon that quantum correlations, as quantified by the entanglement of formation, may exceed the total correlations, as measured by the quantum mutual information. Consequently, though the entanglement of formation is so widely used in quantifying entanglement, it cannot be interpreted as a consistent measure of quantum correlations per se if we accept the folklore that total correlations are measured (or rather upper bounded) by the quantum mutual information.

  9. Quantum Fluctuations of a Superconductor Order Parameter

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu; Lehtinen, J. S.

    2016-08-01

    Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|eiφ, the quantum phase slips, broadening the R(T) dependencies, have been observed.

  10. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  11. High-resolution correlation

    NASA Astrophysics Data System (ADS)

    Nelson, D. J.

    2007-09-01

    In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.

  12. Do-not-resuscitate order

    MedlinePlus

    ... order; DNR; DNR order; Advance care directive - DNR; Health care agent - DNR; Health care proxy - DNR; End-of-life - DNR; Living ... medical order written by a doctor. It instructs health care providers not to do cardiopulmonary resuscitation (CPR) ...

  13. Exploring intertwined orders in cuprate superconductors

    DOE PAGES

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with themore » uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.« less

  14. Exploring intertwined orders in cuprate superconductors

    SciTech Connect

    Tranquada, John M.

    2014-11-22

    In this study, the concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x = 0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x = 0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  15. Exploring intertwined orders in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Tranquada, John M.

    2015-03-01

    The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  16. 49 CFR 453.3 - Detention orders and other orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Detention orders and other orders. 453.3 Section 453.3 Transportation Other Regulations Relating to Transportation (Continued) COAST GUARD, DEPARTMENT OF HOMELAND SECURITY SAFETY APPROVAL OF CARGO CONTAINERS CONTROL AND ENFORCEMENT § 453.3 Detention orders and other orders. (a) The terms of...

  17. Electron correlation energies in atoms

    NASA Astrophysics Data System (ADS)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  18. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    NASA Astrophysics Data System (ADS)

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50-100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than a picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.

  19. The crystallography of correlated disorder

    NASA Astrophysics Data System (ADS)

    Keen, David A.; Goodwin, Andrew L.

    2015-05-01

    Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

  20. The crystallography of correlated disorder.

    PubMed

    Keen, David A; Goodwin, Andrew L

    2015-05-21

    Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

  1. Preselected Sub-Poissonian Correlations

    NASA Technical Reports Server (NTRS)

    Pavicic, Mladen

    1996-01-01

    The simplest possible photon-number-squeezed states containing only two photons and exhibiting sub-poissonian statistics with the Fano factor approaching 0.5 have been used for a proposal of a loophole-free Bell experiment requiring only 67 percent of detection efficiency. The states are obtained by the fourth order interference first of two downconverted photons at an asymmetrical beam splitter and thereupon of two photons from two independent singlets at an asymmetrical beam splitter. In the latter set-up, the other two photons which nowhere interacted and whose paths never crossed appear entangled in a singlet-like correlated state.

  2. Structural order and disorder in Precambrian kerogens

    SciTech Connect

    Buseck, P.R.; Bo-Jun, H.; Miner, B.

    1988-01-01

    High-resolution transmission electron microscopy (HRTEM) has been used to examine the structures of a wide range of Precambrian kerogens from rocks with ages between 0.9 and 3.8 billion years. The authors find recognizable structural ordering in samples that show little or no evidence of crystallinity by powder X-ray diffraction measurements. A wide range in degree of ordering is evident in the HRTEM images. A rough correlation exists between the ordering displayed in the HRTEM images and both the sample ages and their H/C ratios. Many kerogen samples are structurally heterogeneous, possibly reflecting a variety of precursors, and source regions. The observed structural heterogeneities probably extend to other parameters; when isotopic and X-ray measurements can be made on the same scale as HRTEM images, similar scatter presumably will also be evident.

  3. Magnetic correlations in a classic Mott system

    SciTech Connect

    Bao, W.; Broholm, C.; Aeppli, G.; Carter, S.A.; Dai, D.; Frost, C.D.; Honig, J.M.; Metcalf, P.

    1997-07-01

    The metal-insulator transition in V{sub 2}O{sub 3} causes a fundamental change in its magnetism. While the antiferromagnetic insulator (AFI) is a Heisenberg localized spin system, the antiferromagnetism in the strongly correlated metal is determined by a Fermi surface instability. Paramagnetic fluctuations in the metal and insulator represent similar spatial spin correlations, but are unrelated to the long range order in the AFI. The phase transition to the AFI induces an abrupt switching of magnetic correlations to a different magnetic wave vector. The AFI transition, therefore, is not a conventional spin order-disorder transition. Instead it is accounted for by an ordering in the occupation of the two degenerate d-orbitals at the Fermi level.

  4. ALMA correlator computer systems

    NASA Astrophysics Data System (ADS)

    Pisano, Jim; Amestica, Rodrigo; Perez, Jesus

    2004-09-01

    We present a design for the computer systems which control, configure, and monitor the Atacama Large Millimeter Array (ALMA) correlator and process its output. Two distinct computer systems implement this functionality: a rack- mounted PC controls and monitors the correlator, and a cluster of 17 PCs process the correlator output into raw spectral results. The correlator computer systems interface to other ALMA computers via gigabit Ethernet networks utilizing CORBA and raw socket connections. ALMA Common Software provides the software infrastructure for this distributed computer environment. The control computer interfaces to the correlator via multiple CAN busses and the data processing computer cluster interfaces to the correlator via sixteen dedicated high speed data ports. An independent array-wide hardware timing bus connects to the computer systems and the correlator hardware ensuring synchronous behavior and imposing hard deadlines on the control and data processor computers. An aggregate correlator output of 1 gigabyte per second with 16 millisecond periods and computational data rates of approximately 1 billion floating point operations per second define other hard deadlines for the data processing computer cluster.

  5. Explorations in Statistics: Correlation

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2010-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This sixth installment of "Explorations in Statistics" explores correlation, a familiar technique that estimates the magnitude of a straight-line relationship between two variables. Correlation is meaningful only when the…

  6. Asymmetric magnon excitation by spontaneous toroidal ordering

    DOE PAGES

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-04-12

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky–Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin–orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb latticemore » gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. Furthermore, the implications regarding candidate materials for asymmetric magnon excitations are presented.« less

  7. Symmetry of charge order in cuprates.

    PubMed

    Comin, R; Sutarto, R; He, F; da Silva Neto, E H; Chauviere, L; Fraño, A; Liang, R; Hardy, W N; Bonn, D A; Yoshida, Y; Eisaki, H; Achkar, A J; Hawthorn, D G; Keimer, B; Sawatzky, G A; Damascelli, A

    2015-08-01

    Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity. PMID:26006005

  8. Rapidity correlation structure in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Gavin, Sean; Moschelli, George; Zin, Christopher

    2016-08-01

    We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τπ that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν =η /s T . We formulate methods for computing these correlations using second-order dissipative hydrodynamics with noise. Current data are consistent with τπ/ν ˜10 , but targeted measurements can improve this precision.

  9. Coulomb correlations and optical gap in polyacetylene

    SciTech Connect

    Baeriswyl, D.; Maki, K.

    1986-01-01

    A model including both electron-phonon coupling (as in the SSH Hamiltonian) and electron-electron interactions (on-site term U, nearest-neighbor term V) is treated within the variational scheme of Gutswiller. It is shown that for weak electron-phonon coupling the primary effect is a bond-order wave induced by electronic correlation, whereas the lattice dimerization is a secondary effect. Correspondingly the optical gap is mainly due to electronic correlation.

  10. Pentagon-pentagon correlations in water

    SciTech Connect

    Speedy, R.J.; Mezei, M.

    1985-01-03

    Computer simulation studies on the concentration of pentagonal rings of hydrogen-bonded water molecules (pentagons) and the spatial correlation of pentagons in liquid water are detailed. The pentagon-pentagon correlation function g/sub 55/(r) has a peak at r similarly ordered 3.2 A. The results support the idea that the anomalies of water may be related to the self-replicating propensity of pentagons in the random network. 24 references, 8 figures, 1 table.

  11. Second-Order Algebraic Theories

    NASA Astrophysics Data System (ADS)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  12. Phase coherence induced by correlated disorder

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; O'Keeffe, Kevin P.; Strogatz, Steven H.

    2016-02-01

    We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.

  13. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.

  14. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  15. Haystack Observatory VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan

    2013-01-01

    This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.

  16. Correlated Temporal and Spectral Variability

    NASA Technical Reports Server (NTRS)

    Swank, Jean H.

    2007-01-01

    The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the Xray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and review briefly what they tell us about the physical states of the systems.

  17. Higher-Order Mentalising and Executive Functioning

    PubMed Central

    2015-01-01

    Higher-order mentalising is the ability to represent the beliefs and desires of other people at multiple, iterated levels – a capacity that sets humans apart from other species. However, there has not yet been a systematic attempt to determine what cognitive processes underlie this ability. Here we present three correlational studies assessing the extent to which performance on higher-order mentalising tasks relates to emotion recognition, self-reported empathy and self-inhibition. In Study 1a and 1b, examining emotion recognition and empathy, a relationship was identified between individual differences in the ability to mentalise and an emotion recognition task (the Reading the Mind in the Eyes task), but no correlation was found with the Empathy Quotient, a self-report scale of empathy. Study 2 investigated whether a relationship exists between individual mentalising abilities and four different forms of self-inhibition: motor inhibition, executive inhibition, automatic imitation and temporal discounting. Results demonstrate that only temporal discounting performance relates to mentalising ability; suggesting that cognitive skills relevant to representation of the minds of others’ are not influenced by the ability to perform more basic inhibition. Higher-order mentalising appears to rely on the cognitive architecture that serves both low-level social cognition (emotion recognition), and complex forms of inhibition. PMID:26543298

  18. Ozone Correlative Measurements Workshop

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E. (Editor)

    1985-01-01

    A study was conducted to determine the necessary parameters for the correlation of data on Earth ozone. Topics considered were: (1) measurement accuracy; (2) equipment considerations (SBUV); and (3) ground based measurements to support satellite data.

  19. Extractable Work from Correlations

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Huber, Marcus; Skrzypczyk, Paul; Brunner, Nicolas; Acín, Antonio

    2015-10-01

    Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work, we study how to use correlations among quantum systems to optimally store work. We analyze this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems that are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems.

  20. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  1. Personality correlates of homophobia.

    PubMed

    Johnson, M E; Brems, C; Alford-Keating, P

    1997-01-01

    This study explored the relationship between homophobia and several personality traits (empathy, religiosity, and coping style) in the context of respondents' gender and age. The sample consisted of 714 college students who responded to the Homophobia Attitude Scale (HAS) and personality trait scales. Results revealed that women endorsed fewer homophobic attitudes, beliefs, and behaviors than men and that age was negatively correlated with homophobia. Empathic concern and perspective taking were significantly correlated with lower overall homophobic attitudes, less affect discomfort in regard to gays, and less likelihood to abridge the human rights of gays. Religiosity was significantly correlated with more biased beliefs about the origins of homophobia, greater affective discomfort around gays, less endorsement of human rights for gays, and greater homophobia. Use of denial and isolation as coping styles were positively related to homophobia and use of turning against style was negatively correlated.

  2. Order parameter for structural heterogeneity in disordered solids.

    PubMed

    Tong, Hua; Xu, Ning

    2014-07-01

    We construct a structural order parameter from the energy equipartition of normal modes of vibration to quantify the structural heterogeneity in disordered solids. The order parameter exhibits strong spatial correlations with low-temperature dynamics and local structural entropy. To characterize the role of particles with the most defective local structures identified by the order parameter, we pin them and measure the system response. It turns out that particles with the largest value of the order parameter are responsible for the quasilocalized low-frequency vibration, instability, softening, and nonaffinity of disordered solids. The order parameter thus crucially links the heterogeneous structure to low-temperature dynamics and mechanical properties of disordered solids.

  3. Olson Order of Quantum Observables

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    2016-07-01

    M.P. Olson, Proc. Am. Math. Soc. 28, 537-544 (1971) showed that the system of effect operators of the Hilbert space can be ordered by the so-called spectral order such that the system of effect operators is a complete lattice. Using his ideas, we introduce a partial order, called the Olson order, on the set of bounded observables of a complete lattice effect algebra. We show that the set of bounded observables is a Dedekind complete lattice.

  4. Tsukuba VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Kurihara, Shinobu; Nozawa, Kentaro

    2013-01-01

    The K5/VSSP software correlator (Figure 1), located in Tsukuba, Japan, is operated by the Geospatial Information Authority of Japan (GSI). It is fully dedicated to processing the geodetic VLBI sessions of the International VLBI Service for Geodesy and Astrometry. All of the weekend IVS Intensives (INT2) and the Japanese domestic VLBI observations organized by GSI were processed at the Tsukuba VLBI Correlator.

  5. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  6. Magnetic order in the pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Disseler, Steven Michael Thomas

    This thesis is concerned with experimentally determining the magnetic and electronic states in a unique class of transition metal oxides known as the pyrochlore iridates, A2Ir2O 7 (A = Y or Rare earth). The extended nature of the 5d Ir orbitals in the iridates places these materials in a regime of intermediate electron correlation and large spin-orbit interaction such that this system may host several novel or topological states of matter which may be perturbed by incorporating different A-species. Additionally, the pyrochlore structure is geometrically frustrated and has been long been studied as a potential host of a number of exotic magnetic phenomenon. However, even after years of intense theoretical and experimental interest many fundamental questions still remain about the nature of the magnetic ground sates in this series which are of vital importance in understanding the roles of various interactions and potential of such novel phenomenon. The primary aim of this thesis is therefore to determine how magnetic order develops on the Ir sublattice in this series, particularly how it is perturbed through variation of the crystalline structure, magnetism of the A-site ions, and presence of mobile charges. This thesis is the first comprehensive experimental study of these effects which has utilized several complementary experimental probes of both bulk and local magnetism in a number of compounds. The techniques presented in this work include magnetotransport, bulk magnetization, elastic neutron scattering, and muon spin relaxation (muSR) measurements. All of the three compounds studied in this work (A = Y, Yb, and Nd) are shown to definitively exhibit long-range magnetic order on the Ir sublattice, which has previously only been inferred based on studies of other compounds. The compounds Y 2Ir2O7 and Yb2Ir2O 7 are correlated insulators at low temperature and are found to have identical configuration of the Ir moments, despite the presence of the large localized

  7. Ordered delinquency: the "effects" of birth order on delinquency.

    PubMed

    Cundiff, Patrick R

    2013-08-01

    Juvenile delinquency has long been associated with birth order in popular culture. While images of the middle child acting out for attention or the rebellious youngest child readily spring to mind, little research has attempted to explain why. Drawing from Adlerian birth order theory and Sulloway's born-to-rebel hypothesis, I examine the relationship between birth order and a variety of delinquent outcomes during adolescence. Following some recent research on birth order and intelligence, I use new methods that allow for the examination of between-individual and within-family differences to better address the potential spurious relationship. My findings suggest that contrary to popular belief, the relationship between birth order and delinquency is spurious. Specifically, I find that birth order effects on delinquency are spurious and largely products of the analytic methods used in previous tests of the relationship. The implications of this finding are discussed.

  8. Quantum Fluctuations of a Superconductor Order Parameter.

    PubMed

    Arutyunov, K Yu; Lehtinen, J S

    2016-12-01

    Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed. PMID:27535694

  9. Quantum Fluctuations of a Superconductor Order Parameter.

    PubMed

    Arutyunov, K Yu; Lehtinen, J S

    2016-12-01

    Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed.

  10. Cross-correlation beamforming

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Gibbons, Steven; Wapenaar, Kees

    2016-10-01

    An areal distribution of sensors can be used for estimating the direction of incoming waves through beamforming. Beamforming may be implemented as a phase-shifting and stacking of data recorded on the different sensors (i.e., conventional beamforming). Alternatively, beamforming can be applied to cross-correlations between the waveforms on the different sensors. We derive a kernel for beamforming cross-correlated data and call it cross-correlation beamforming (CCBF). We point out that CCBF has slightly better resolution and aliasing characteristics than conventional beamforming. When auto-correlations are added to CCBF, the array response functions are the same as for conventional beamforming. We show numerically that CCBF is more resilient to non-coherent noise. Furthermore, we illustrate that with CCBF individual receiver-pairs can be removed to improve mapping to the slowness domain. An additional flexibility of CCBF is that cross-correlations can be time-windowed prior to beamforming, e.g., to remove the directionality of a scattered wavefield. The observations on synthetic data are confirmed with field data from the SPITS array (Svalbard). Both when beamforming an earthquake arrival and when beamforming ambient noise, CCBF focuses more of the energy to a central beam. Overall, the main advantage of CCBF is noise suppression and its flexibility to remove station pairs that deteriorate the signal-related beampower.

  11. Geometrically representing spin correlations

    NASA Astrophysics Data System (ADS)

    White, Ian G.; Mirasola, Anthony; Hollingsworth, Jacob; Mukherjee, Rick; Hazzard, Kaden R. A.

    2016-05-01

    We develop a general method to visualize spin correlations, and we demonstrate its usefulness in ultracold matter from fermions in lattices to trapped ions and ultracold molecules. Correlations are of fundamental interest in many-body physics: they characterize phases in condensed matter and AMO, and are required for quantum sensing and computing. However, it is often difficult to understand even the simplest correlations - for example between two spin-1/2's - directly from the components Cab = - for { a , b } ∈ { x , y , z } . Not only are the nine independent Cab unwieldy, but considering the components also obscures the natural geometric structure. For example, simple spin rotations lead to complex transformations among the nine Cab. We provide a one-to-one map between the spin correlations and certain three-dimensional objects, analogous to the map between single spins and Bloch vectors. This object makes the geometric structure of the correlations manifest. Moreover, much as one can reason geometrically about dynamics using a Bloch vector - e.g. a magnetic field causes it to precess and dephasing causes it to shrink - we show that analogous reasoning holds for our visualization method.

  12. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  13. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  14. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  15. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  16. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  17. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  18. 7 CFR 1221.18 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.18 Order. Order...

  19. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  20. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  1. 7 CFR 1216.16 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.16 Order. Order...

  2. Entropy, local order, and the freezing transition in Morse liquids.

    PubMed

    Chakraborty, Somendra Nath; Chakravarty, Charusita

    2007-07-01

    The behavior of the excess entropy of Morse and Lennard-Jones liquids is examined as a function of temperature, density, and the structural order metrics. The dominant pair correlation contribution to the excess entropy is estimated from simulation data for the radial distribution function. The pair correlation entropy (S2) of these simple liquids is shown to have a threshold value of (-3.5+/-0.3)kB at freezing. Moreover, S2 shows a T(-2/5) temperature dependence. The temperature dependence of the pair correlation entropy as well as the behavior at freezing closely correspond to earlier predictions, based on density functional theory, for the excess entropy of repulsive inverse power and Yukawa potentials [Rosenfeld, Phys. Rev. E 62, 7524 (2000)]. The correlation between the pair correlation entropy and the local translational and bond orientational order parameters is examined, and, in the case of the bond orientational order, is shown to be sensitive to the definition of the nearest neighbors. The order map between translational and bond orientational order for Morse liquids and solids shows a very similar pattern to that seen in Lennard-Jones-type systems. PMID:17677432

  3. Vorticity, defects and correlations in active turbulence

    PubMed Central

    Thampi, Sumesh P.; Golestanian, Ramin; Yeomans, Julia M.

    2014-01-01

    We describe a numerical investigation of a continuum model of an active nematic, concentrating on the regime of active turbulence. Results are presented for the effect of three parameters, activity, elastic constant and rotational diffusion constant, on the order parameter and flow fields. Defects and distortions in the director field act as sources of vorticity, and thus vorticity is strongly correlated to the director field. In particular, the characteristic length of decay of vorticity and order parameter correlations is controlled by the defect density. By contrast, the decay of velocity correlations is determined by a balance between activity and dissipation. We highlight the role of microscopic flow generation mechanisms in determining the flow patterns and characteristic scales of active turbulence and contrast the behaviour of extensile and contractile active nematics. PMID:25332382

  4. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  5. Advanced quantum noise correlations

    NASA Astrophysics Data System (ADS)

    Vogl, Ulrich; Glasser, Ryan T.; Clark, Jeremy B.; Glorieux, Quentin; Li, Tian; Corzo, Neil V.; Lett, Paul D.

    2014-01-01

    We use the quantum correlations of twin beams of light to investigate the fundamental addition of noise when one of the beams propagates through a fast-light medium based on phase-insensitive gain. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin beams followed by a controlled advancement while maintaining the shared quantum correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.

  6. Ordering within Moral Orders to Manage Classroom Trouble

    ERIC Educational Resources Information Center

    Doherty, Catherine; McGregor, Rowena; Shield, Paul

    2016-01-01

    This paper demonstrates how classroom trouble warranting teacher intervention can stem from transgressions in different layers of the complex moral order regulating classroom interactions. The paper builds from Durkheim's treatment of schooling as the institution responsible for the inculcation of a shared moral order, Bernstein's distinction…

  7. Counterbalancing for Serial Order Carryover Effects in Experimental Condition Orders

    ERIC Educational Resources Information Center

    Brooks, Joseph L.

    2012-01-01

    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed…

  8. The VLBA Correlator

    NASA Astrophysics Data System (ADS)

    Romney, J. D.

    1995-05-01

    The VLBA correlator has been operational for somewhat more than a year. Since the beginning of 1995, it has operated at 54% efficiency (i.e., that fraction of scheduled production time leads directly to finished results). After correcting for effects of the playback speedup and the part-time production schedule, this corresponds to a 39% net operational efficiency of the VLBA instrument over the same interval. The current operational system includes most of the capabilities originally planned for the correlator's initial configuration. Two important exceptions could not be included: narrowband (less than 250 kHz bandwidth) spectroscopy, and various forms of sub-arraying. On the other hand, two capabilities not planned until later have been achieved: cross-polarized correlation and an extremely accurate fringe model. Parts of the real-time control software are currently being rewritten. The goals of this effort are both scientific, including support for narrowband and sub-arrayed observations, and technical, providing a more secure basis for development of additional capabilities in future phases. Among the most promising of these later features is a frequency-dependent signal gate, which will enable gated, de-dispersed interferometry of pulsars. The correlator is a 20-station system, capable of processing data rates up to the VLBA's maximicrons of 512 Mbit/s, with spectral resolution up to 2048 points per baseline. Its design is based on an ``FX'' architecture, performing a fast Fourier transform operation on segmented input signal streams, followed by a pointwise cross-multiplication operation and subsequent integration. This approach makes possible a relatively inexpensive, flexible yet simple hardware organization, and in turn a fairly simple structure of the control software. It provides several enhancements of sensitivity relative to a conventional lag correlator. Facilities included in the VLBA array and correlator for dealing with the less favorable aspects

  9. Spin density wave order, topological order, and Fermi surface reconstruction

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Berg, Erez; Chatterjee, Shubhayu; Schattner, Yoni

    2016-09-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order coincides with the reconstruction of the Fermi surfaces into small "pockets." We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  10. Ordering dynamics in collectively swimming Surf Scoters.

    PubMed

    Lukeman, Ryan

    2014-08-21

    One striking feature of collective motion in animal groups is a high degree of alignment among individuals, generating polarized motion. When order is lost, the dynamic process of reorganization, directly resulting from the individual interaction rules, provides significant information about both the nature of the rules, and how these rules affect the functioning of the collective. By analyzing trajectories of collectively swimming Surf Scoters (Melanitta perspicillata) during transitions between order and disorder, I find that individual speed and polarization are positively correlated in time, such that individuals move more slowly in groups exhibiting lower alignment. A previously validated zone-based model framework is used to specify interactions that permit repolarization while maintaining group cohesion and avoiding collisions. Polarization efficiency is optimized under the constraints of cohesion and collision-avoidance for alignment-dominated propulsion (versus autonomous propulsion), and for repulsion an order of magnitude larger than attraction and alignment. The relative strengths of interactions that optimize polarization also quantitatively recover the speed-polarization dependence observed in the data. Parameters determined here through optimizing polarization efficiency are essentially the same as those determined previously from a different approach: a best-fit model for polarized Surf Scoter movement data. The rules governing these flocks are therefore robust, accounting for behavior across a range of order and structure, and also highly responsive to perturbation. Flexibility and efficient repolarization offers an adaptive explanation for why specific interactions in such animal groups are used. PMID:24675619

  11. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  12. Birth order among homosexual men.

    PubMed

    Zucker, Kenneth J; Blanchard, Ray; Siegelman, Marvin

    2003-02-01

    Nicolosi and Byrd in 2002 summarized empirical research on birth order and sexual orientation in men, which research has documented that homosexual men have a later birth order than heterosexual men. They did not, however, note a more refined analysis of an earlier null finding by Siegelman. This 1998 reanalysis by Blanchard, Zucker, Siegelman, Dickey, and Klassen also confirmed the later birth order of homosexual men.

  13. Visualization of a stock market correlation matrix

    NASA Astrophysics Data System (ADS)

    Rea, Alethea; Rea, William

    2014-04-01

    This paper presents a novel application of Neighbor-Net, a clustering algorithm developed for constructing a phylogenetic network in the field of evolutionary biology, to visualizing a correlation matrix. We apply Neighbor-Net as implemented in the SplitsTree software package to 48 stocks listed on the New Zealand Stock Exchange. We show that by visualizing the correlation matrix using a Neighbor-Net splits graph and its associated circular ordering of the stocks that some of the problems associated with understanding the large number of correlations between the individual stocks can be overcome. We compare the visualization of Neighbor-Net with that provided by hierarchical clustering trees and minimum spanning trees. The use of Neighbor-Net networks, or splits graphs, yields greater insight into how closely individual stocks are related to each other in terms of their correlations and suggests new avenues of research into how to construct small diversified stock portfolios.

  14. Long-range order in canary song.

    PubMed

    Markowitz, Jeffrey E; Ivie, Elizabeth; Kligler, Laura; Gardner, Timothy J

    2013-01-01

    Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex behaviors are assembled from more elementary, stereotyped modules.

  15. Long-range Order in Canary Song

    PubMed Central

    Markowitz, Jeffrey E.; Ivie, Elizabeth; Kligler, Laura; Gardner, Timothy J.

    2013-01-01

    Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex behaviors are assembled from more elementary, stereotyped modules. PMID:23658509

  16. Long-range order in canary song.

    PubMed

    Markowitz, Jeffrey E; Ivie, Elizabeth; Kligler, Laura; Gardner, Timothy J

    2013-01-01

    Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex behaviors are assembled from more elementary, stereotyped modules. PMID:23658509

  17. Test ordering by GP trainees

    PubMed Central

    Morgan, Simon; Morgan, Andy; Kerr, Rohan; Tapley, Amanda; Magin, Parker

    2016-01-01

    Abstract Objective To assess the effectiveness of an educational intervention on test-ordering attitudes and intended practice of GP trainees, and any associations between changes in test ordering and trainee characteristics. Design Preworkshop and postworkshop survey of attitudes to test ordering, intended test-ordering practices for 3 clinical scenarios (fatigue, screening, and shoulder pain), and tolerance for uncertainty. Setting Three Australian regional general practice training providers. Participants General practice trainees (N = 167). Intervention A 2-hour workshop session and an online module. Main outcome measures Proportion of trainees who agreed with attitudinal statements before and after the workshop; proportion of trainees who would order tests, mean number of tests ordered, and number of appropriate and inappropriate tests ordered for each scenario before and after the workshop. Results Of 167 trainees, 132 (79.0%) completed both the preworkshop and postworkshop questionnaires. A total of 122 trainees attended the workshop. At baseline, 88.6% thought that tests can harm patients, 84.8% believed overtesting was a problem, 72.0% felt pressured by patients, 52.3% believed that tests would reassure patients, and 50.8% thought that they were less likely to be sued if they ordered tests. There were desirable changes in all attitudes after the workshop. Before the workshop, the mean number of tests that trainees would have ordered was 4.4, 4.8, and 1.5 for the fatigue, screening, and shoulder pain scenarios, respectively. After the workshop there were decreases in the mean number of both appropriate tests (decrease of 0.94) and inappropriate tests (decrease of 0.24) in the fatigue scenario; there was no change in the mean number of appropriate tests and a decrease in inappropriate tests (decrease of 0.76) in the screening scenario; and there was an increase in the proportion of trainees who would appropriately not order tests in the shoulder pain

  18. Correlation method of electrocardiogram analysis

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Timochko, Katerina B.

    2002-02-01

    The electrocardiograph method is the informational source for functional heart state characteristics. The electrocardiogram parameters are the integrated map of many component characteristics of the heart system and depend on disturbance requirements of each device. In the research work the attempt of making the skeleton diagram of perturbation of the heart system is made by the characteristic description of its basic components and connections between them through transition functions, which are written down by the differential equations of the first and second order with the purpose to build-up and analyze electrocardiogram. Noting the vector character of perturbation and the various position of heart in each organism, we offer own coordinate system connected with heart. The comparative analysis of electrocardiogram was conducted with the usage of correlation method.

  19. Aquifer Denitrification: Is it a Zero-Order or First-Order Reaction?

    NASA Astrophysics Data System (ADS)

    Korom, S. F.

    2007-12-01

    Results from a network of 16 in situ mesocosms (ISMs) used to study aquifer denitrification at 5 sites in North Dakota and 4 sites in Minnesota (with 2 more installations planned for Iowa) are considered. At the Elk Valley aquifer (EVA) site in northeastern North Dakota, denitrification rates from six denitrification experiments were all better modeled as zero-order (0.16 +/- 0.05 mg nitrate-N/L/day), as determined by squared values of the linear correlation coefficient. Denitrification experiments at the other sites showed that denitrification was either below detection (< 0.01 mg nitrate-N/L/day) or was better modeled as a first-order reaction (0.00021/day to 0.0020/day), although squared values of the linear correlation coefficients for both rate models were nearly equal for some of the experiments. Not only were denitrification rates at the EVA site highest compared to the other sites in the ISM network, but sediment concentrations of electron donors at the EVA site were also greatest [ferrous iron about 0.3%, inorganic S (as pyrite) about 0.4%, organic C about 0.4%, weight basis]. These observations support the Michaelis- Menten model for reaction rates, which indicates that reaction rates will be zero-order when the substrate (electron donor) is abundant and first-order when the substrate availability is limited.

  20. Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States.

    PubMed

    Tamma, Vincenzo; Laibacher, Simon

    2015-06-19

    We provide a compact full description of multiboson correlation measurements of arbitrary order N in passive linear interferometers with arbitrary input single-photon pure states. This allows us to physically analyze the novel problem of multiboson correlation sampling at the output of random linear interferometers. Our results also describe general multiboson correlation landscapes for an arbitrary number of input single photons and arbitrary interferometers. In particular, we use two different schemes to demonstrate, respectively, arbitrary-order quantum beat interference and 100% visibility entanglement correlations even for input photons distinguishable in their frequencies. PMID:26196976

  1. Correlates of School Stress.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    As part of a continuing series of research studies on stress in schools, this study examined the construct validity of peripheral temperature at the fingertips as a measure of school stress. Measurements were made in classes selected at random from 11 volunteer schools in South Carolina. Three types of correlational studies were undertaken: (1)…

  2. Neuroanatomical Correlates of Intelligence

    ERIC Educational Resources Information Center

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches…

  3. Management of ambiguities in magnetostratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Lallier, Florent; Antoine, Christophe; Charreau, Julien; Caumon, Guillaume; Ruiu, Jeremy

    2013-06-01

    Magnetostratigraphy is a powerful tool to provide absolute dating of sediments enabling robust and detailed chronostratigraphic correlations. It is based on the correlation of a magnetic polarity column, observed and measured in a given sediment section, to a magnetic polarity reference scale where polarity changes are well dated via other independent methods. However, magnetostratigraphic correlations are loose as they are only constrained by binary magnetic chrons (i.e. normal or reversal) and their thickness, which are both defined from depth variations of the magnetic remanent directions. The thickness of a given magnetic polarity zone is a function of time and sediment accumulation rate, which may not be stationary, leading to ambiguities when performing the correlations. To address these ambiguities, a numerical method based on the Dynamic Time Warping algorithm is proposed. Magnetostratigraphic correlations are computed in order to minimise the local variation of the accumulation rate. The main advantage of the proposed method is to automatically provide a set of reasonably likely correlations. This set can then be scrutinised for further analysis and interpretation. However, the likelihood of a correlation should be handled carefully as it depends on the information content of the magnetostratigraphic section itself and remain ultimately valid by ancillary constraint. Nevertheless, the method gives consistent results on difficult synthetic cases that simulate abrupt variations of the sedimentation rate. Insights on true sections debated by previous authors are also given.

  4. Management of ambiguities in magnetostratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Charreau, J.; Lallier, F.; Antoine, C.; Caumon, G.; Ruiu, J.

    2012-12-01

    Magnetostratigraphy is a powerful tool to provide absolute dating of sediments enabling good and detailed chronostratigraphic correlations. It is based on the correlation of a magnetic polarity column, observed and measured in a given sediment section, to a magnetic polarity reference scale where polarity changes are well dated via other independent methods. However, magnetostratigraphic correlations are loose because only constrained by binary magnetic chrons (i.e normal or reversal) and their thickness, which are both defined from depth variations of the magnetic remanent directions. The thickness of a given magnetic chron is a function of time and sediment accumulation rate, which may not be stationary, leading to ambiguities when performing the correlations. To address these ambiguities, a numerical method based on the Dynamic Time Warping algorithm is proposed. Magnetostratigraphics correlation are computed in order to minimize the local variation of accumulation rate. The main advantage of the proposed method is to automatically provide a set of reasonably likely correlations. This set can then be scrutinized for further analysis and interpretation. However, the likelihood of a correlation should be handled carefully. It depends on the information content of the magnetotratigraphic section itself and remain ultimately valid by ancillary constraint. Nevertheless, the method is shown to present consistent results on difficult synthetic cases simulating abrupt variations of the sedimentation rate, and provides interesting insights on true sections debated by previous authors.

  5. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  6. Problem Order Implications for Learning

    ERIC Educational Resources Information Center

    Li, Nan; Cohen, William W.; Koedinger, Kenneth R.

    2013-01-01

    The order of problems presented to students is an important variable that affects learning effectiveness. Previous studies have shown that solving problems in a blocked order, in which all problems of one type are completed before the student is switched to the next problem type, results in less effective performance than does solving the problems…

  7. Tensions between Liberty and Order.

    ERIC Educational Resources Information Center

    Chemerinsky, Erwin

    2002-01-01

    Explores the issue of balancing liberty and order within the United States. Discusses the role of the Bill of Rights, focusing on the amendments in the document and the later amendments that ensure the liberty of U.S. citizens. Explains how order and liberty are ensured and includes discussion questions. (CMK)

  8. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  9. CMB Lensing Cross Correlations

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey

    2014-03-01

    A new generation of experiments designed to conduct high-resolution, low-noise observations of the Cosmic Microwave Background (CMB)--including ACTpol, Planck, POLARBEAR and SPTpol--are producing exquisite measurements of the gravitational lensing of the CMB. Such measurements, covering large fractions of the sky, provide detailed maps of the projected mass distribution extending to the surface of the CMB's last scattering. Concurrently, a large number of deep, wide-area imaging and spectroscopic surveys (e.g., the Dark Energy Survey (DES),WISE all-sky survey, Subaru HyperSuprimeCam Survey, LSST, MS-DESI, BigBoss, etc.) are, or will soon be, providing maps of the distribution of galaxies in the Universe. Correlations of such tracer populations with lensing data allows new probes of where and how galaxies form in the dark matter skeleton of the Universe. Recent correlations of maps of galaxy and quasar densities with lensing convergence maps have produced significant measurements of galaxy bias. The near-term prospect for improvements in such measurements is notable as more precise lensing data from CMB polarization experiments will help to break cosmological and astrophysical parameter degeneracies. Work by the Planck, SPT, and POLARBEAR collaborations has also focused on the correlation of the Cosmic Infrared Background (CIB) with CMB lensing convergence maps. This correlation is particularly strong as the redshifts of the CIB and CMB lensing kernel are well matched. Such correlations probe high-redshift structure, constraining models of star-formation and the characteristic mass scale for halos hosting CIB galaxies and have also been used to demonstrate the first detection of CMB B-mode polarization--an important milestone in CMB observations. Finally, combining galaxy number density, cosmic shear and CMB lensing maps has the potential to provide valuable systematic tests for upcoming cosmological results from large optical surveys such as LSST.

  10. ASTROCHEMICAL CORRELATIONS IN MOLECULAR CLOUDS

    SciTech Connect

    Gaches, Brandt A. L.; Offner, Stella S. R.; Rosolowsky, Erik W.; Bisbas, Thomas G. E-mail: soffner@astro.umass.edu E-mail: tb@star.ucl.ac.uk

    2015-02-01

    We investigate the spectral correlations between different species used to observe molecular clouds. We use hydrodynamic simulations and a full chemical network to study the abundances of over 150 species in typical Milky Way molecular clouds. We perform synthetic observations in order to produce emission maps of a subset of these tracers. We study the effects of different lines of sight and spatial resolution on the emission distribution and perform a robust quantitative comparison of the species to each other. We use the Spectral Correlation Function (SCF), which quantifies the root mean squared difference between spectra separated by some length scale, to characterize the structure of the simulated cloud in position-position-velocity (PPV) space. We predict the observed SCF for a broad range of observational tracers, and thus identify homologous species. In particular, we show that the pairs C and CO, C{sup +} and CN, and NH{sub 3} and H{sub 2}CS have very similar SCFs. We measure the SCF slope variation as a function of beam size for all species and demonstrate that the beam size has a distinct effect on different species emission. However, for beams of up to 10'', placing the cloud at 1 kpc, the change is not large enough to move the SCF slopes into different regions of parameter space. The results from this study provide observational guidance for choosing the best tracer to probe various cloud length scales.

  11. Dipolar correlations in liquid water

    SciTech Connect

    Zhang, Cui; Galli, Giulia

    2014-08-28

    We present an analysis of the dipolar correlations in water as a function of temperature and density and in the presence of simple ionic solutes, carried out using molecular dynamics simulations and empirical potentials. We show that the dipole-dipole correlation function of the liquid exhibits sizable oscillations over nanodomains of about 1.5 nm radius, with several isosbestic points as a function of temperature; the size of the nanodomains is nearly independent on temperature and density, between 240 and 400 K and 0.9 and 1.3 g/cm{sup 3}, but it is substantially affected by the presence of solvated ions. In the same range of thermodynamic conditions, the decay time (τ) of the system dipole moment varies by a factor of about 30 and 1.5, as a function of temperature and density, respectively. At 300 K, we observed a maximum in τ as a function of density, and a corresponding shallow maximum in the tetrahedral order parameter, in a range where the diffusion coefficient, the pressure and the dielectric constant increase monotonically.

  12. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie; Smith, Randy J.; Warren, John B.; Elliott, Donald

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  13. System of the phase tomography of optically anisotropic polycrystalline films of biological fluids

    NASA Astrophysics Data System (ADS)

    Zabolotna, N. I.; Pavlov, S. V.; Ushenko, A. G.; Karachevtsev, A. O.; Savich, V. O.; Sobko, O. V.; Olar, O. V.

    2014-08-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin and collagen fibrils of uterine neck tissue of different pathological states - precancer (dysplasia) and cancer (adenocarcinoma) are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  14. From micro-correlations to macro-correlations

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-11-01

    Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation "micro-correlation", we use an asymptotic analysis to derive the random vector's "macro-correlation" : a score that takes values in the unit interval, and that quantifies the random vector's overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method's wide applicability.

  15. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  16. Ordering of the Heisenberg spin glass in two dimensions

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yonehara, Hitoshi

    2003-10-01

    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbour Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behaviour of the spin and the chirality correlation lengths. In order to observe the true asymptotic behaviour, a fairly large system size L gap 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than the spin correlation length, whereas at lower temperatures below the crossover temperature T×, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T× to be ngrSG = 0.9 ± 0.2 and ngrCG = 2.1 ± 0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behaviour realized below T×.

  17. Correlative weighted stacking for seismic data in the wavelet domain

    USGS Publications Warehouse

    Zhang, S.; Xu, Y.; Xia, J.; ,

    2004-01-01

    Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.

  18. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  19. Nonlocal Order Parameters for the 1D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-01

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point Uc=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity correlators is captured by an effective free spinless fermion model.

  20. 7 CFR 1208.14 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PROCESSED RASPBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Processed Raspberry Promotion, Research, and Information Order Definitions § 1208.14 Order. Order means the Processed Raspberry Promotion, Research, and Information Order....

  1. 7 CFR 1208.14 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PROCESSED RASPBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Processed Raspberry Promotion, Research, and Information Order Definitions § 1208.14 Order. Order means the Processed Raspberry Promotion, Research, and Information Order....

  2. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  3. Correlates of financial satisfaction.

    PubMed

    Hsieh, C M

    2001-01-01

    The objectives of this study are to 1) assess the effects of major correlates of global subjective well-being on financial satisfaction, and 2) use empirical data to present the consequences of violating basic regression assumptions. Analyzing data from the General Social Surveys, 1972-1996 (Davis & Smith, 1996a) this study found that among Americans age forty-five and above, most of the major correlates of global subjective well-being show similar effects on financial satisfaction. The study's findings confirm a nonlinear effect of income on financial satisfaction. Comparing results from different analytical methods, this study also alerts researchers to the importance of taking into account the level of measurements of study variables, which have tended to be overlooked by previous subjective well-being research.

  4. Digital demodulator-correlator

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Martin, W. L.; Zygielbaum, A. I.; Goldstein, R. M.; Hubbard, W. P. (Inventor)

    1978-01-01

    An apparatus for demodulation and correlation of a code modulated 10 MHz signal is presented. The apparatus is comprised of a sample and hold analog-to-digital converter synchronized by a frequency coherent 40 MHz pulse to obtain four evenly spaced samples of each of the signal. Each sample is added or subtracted to or from one of four accumulators to or from the separate sums. The correlation functions are then computed. As a further feature of the invention, multipliers are each multiplied by a squarewave chopper signal having a period that is long relative to the period of the received signal to foreclose contamination of the received signal by leakage from either of the other two terms of the multipliers.

  5. Correlators in nontrivial backgrounds

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Stephanou, Michael

    2009-01-15

    Operators in N=4 super Yang-Mills theory with an R-charge of O(N{sup 2}) are dual to backgrounds which are asymtotically AdS{sub 5}xS{sup 5}. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.

  6. Correlation, coherence and context

    NASA Astrophysics Data System (ADS)

    Eberly, J. H.

    2016-08-01

    The modern theory of coherence is based on correlation functions. A generic example could be written < {{V}\\ast}≤ft({{t}1}\\right)V≤ft({{t}2}\\right)> , denoting an average of products of the values of a signal V(t) at two specified times. Here we infer that t is a degree of freedom that the signal depends on. Typically, physical variables depend on more than one degree of freedom, and recognition of this has prompted attention to some interesting questions for the correlation functions and the several coherences that can be attributed to the same optical field. We examine some of the questions arising from the standpoint of experimental contexts. Degree of polarizability and degree of entanglement (classical non-separability) can serve as starting points for quantitative assignments.

  7. DD correlations in photoproduction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; D'Almagne, B.; David, M.; di Ciaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, T.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.

    1992-03-01

    Kinematic correlations between the charmed D and D mesons produced by a photon beam of mean energy 100 GeV/c have been measured by the NA14/2 experiment at CERN using a sample of almost background-free fully reconstructed DD events. The observed D and DD distributions are compared to the predictions of production models using different parameters for the charm fragmentation function and for the intrinsic transverse momentum of the partons.

  8. The Meaning of Higher-Order Factors in Reflective-Measurement Models

    ERIC Educational Resources Information Center

    Eid, Michael; Koch, Tobias

    2014-01-01

    Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…

  9. Collective Behaviour without Collective Order in Wild Swarms of Midges

    PubMed Central

    Attanasi, Alessandro; Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Pohl, Oliver; Rossaro, Bruno; Shen, Edward; Silvestri, Edmondo; Viale, Massimiliano

    2014-01-01

    Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals. We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with models of non-interacting particles. We find that correlation increases sharply with the swarm's density, indicating that the interaction between midges is based on a metric perception mechanism. By means of numerical simulations we demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that correlation, rather than order, is the true hallmark of collective behaviour in biological systems. PMID:25057853

  10. Onset of negative interspike interval correlations in adapting neurons.

    PubMed

    Urdapilleta, Eugenio

    2011-10-01

    Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical description of conditional responses, we obtain analytically these correlations in an adequate dynamical neuron model resembling adaptation. We derive the serial correlation coefficients for arbitrary lags, under a small adaptation scenario. In this case, the behavior of correlations is universal and depends on the first-order statistical description of an exponentially driven time-inhomogeneous stochastic process.

  11. Neural correlates of gratitude.

    PubMed

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  12. Correlation Algorithm Library

    SciTech Connect

    2013-08-02

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modeling hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared to experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.

  13. Neural correlates of gratitude

    PubMed Central

    Fox, Glenn R.; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others. PMID:26483740

  14. Neural correlates of gratitude.

    PubMed

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others. PMID:26483740

  15. Correlation Algorithm Library

    2013-08-02

    CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modelingmore » hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared to experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.« less

  16. Charge Correlations in Plasma Line Broadening

    SciTech Connect

    Wrighton, Jeffrey M.; Dufty, James W.

    2008-10-22

    The traditional theory of plasma line broadening is re-examined to correct for phenom-enological assumptions regarding charge correlations. Conditions for static ions are assumed, and the ion microfield distribution is introduced without neglecting ion-electron correlations, and with a precise definition for the ion field at the radiator. Radiator and plasma subsystems are defined so as to make a second order calculation of electron broadening valid for the case of high Z radiators. The electron broadening operator is identified in terms of the fluctuation of the electron density at the radiator, averaged over the entire plasma constrained by a given value for the ion microfield.

  17. Nonlocal order in elongated dipolar gases

    NASA Astrophysics Data System (ADS)

    Ruhman, J.; Dalla Torre, E. G.; Huber, S. D.; Altman, E.

    2012-03-01

    Dipolar particles in an elongated trap are expected to undergo a quantum phase transition from a linear to a zigzag structure with decreasing transverse confinement. We derive the low-energy effective theory of the transition showing that in the presence of quantum fluctuations the zigzag phase can be characterized by a long-ranged string order, while the local Ising correlations decay as a power law. This is also confirmed using density matrix renormalization group calculations on a microscopic model. The nonlocal order in the bulk gives rise to zero energy states localized at the interface between the ordered and disordered phases. Such an interface naturally arises when the particles are subject to a weak harmonic confinement along the tube axis. We compute the signature of the edge states in the single-particle tunneling spectra pointing to differences between a system with bosonic versus fermionic particles. Finally we assess the magnitude of the relevant quantum fluctuations in realistic systems of dipolar particles, including ultracold polar molecules as well as alkali atoms weakly dressed by a Rydberg excitation.

  18. Gonihedric (and Fuki-Nuke) order

    NASA Astrophysics Data System (ADS)

    Johnston, D. A.

    2012-10-01

    A 3D Ising model with a purely plaquette, 4-spin interaction displays a planar flip symmetry intermediate between a global and a gauge symmetry and as a consequence has a highly degenerate low temperature phase and no standard magnetic order parameter. This plaquette Hamiltonian is a particular case of a family of 3D gonihedric Ising models defined by Savvidy and Wegner. An anisotropic variant of the purely plaquette gonihedric model, originally discussed as the ‘Fuki-Nuke’ model by Suzuki, is non-trivially equivalent to a stack of 2D Ising models, each of which can magnetize independently at the phase transition point. Consideration of this anisotropic model suggests that a suitable order parameter in the isotropic case may also be constructed using a form of planar magnetization, in which nearest neighbour correlators <σiσj> summed over planes replace a sum over spin values <σi>. We conduct Monte-Carlo simulations to investigate this and related candidate order parameters in a toy model of gonihedric ground states, the Fuki-Nuke model and the isotropic plaquette gonihedric model itself.

  19. Order, Chaos and All That!

    ERIC Educational Resources Information Center

    Glasser, L.

    1989-01-01

    The evolution of ideas about the concept of chaos is surveyed. Discussed are chaos in deterministic, dynamic systems; order in dissipative systems; and thermodynamics and irreversibility. Included are logistic and bifurcation maps to illustrate points made in the discussion. (CW)

  20. Tetrahedral Order in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Brand, Helmut R.

    2016-10-01

    We review the impact of tetrahedral order on the macroscopic dynamics of bent-core liquid crystals. We discuss tetrahedral order comparing with other types of orientational order, like nematic, polar nematic, polar smectic, and active polar order. In particular, we present hydrodynamic equations for phases, where only tetrahedral order exists or tetrahedral order is combined with nematic order. Among the latter, we discriminate between three cases, where the nematic director (a) orients along a fourfold, (b) along a threefold symmetry axis of the tetrahedral structure, or (c) is homogeneously uncorrelated with the tetrahedron. For the optically isotropic T d phase, which only has tetrahedral order, we focus on the coupling of flow with, e.g., temperature gradients and on the specific orientation behavior in external electric fields. For the transition to the nematic phase, electric fields lead to a temperature shift that is linear in the field strength. Electric fields induce nematic order, again linear in the field strength. If strong enough, electric fields can change the tetrahedral structure and symmetry leading to a polar phase. We briefly deal with the T phase that arises when tetrahedral order occurs in a system of chiral molecules. To case (a), defined above, belong (i) the non-polar, achiral, optically uniaxial D2d phase with ambidextrous helicity (due to a linear gradient free energy contribution) and with orientational frustration in external fields, (ii) the non-polar tetragonal S4 phase, (iii) the non-polar, orthorhombic D2 phase that is structurally chiral featuring ambidextrous chirality, (iv) the polar orthorhombic C2v phase, and (v) the polar, structurally chiral, monoclinic C2 phase. Case (b) results in a trigonal C3v phase that behaves like a biaxial polar nematic phase. An example for case (c) is a splay bend phase, where the ground state is inhomogeneous due to a linear gradient free energy contribution. Finally, we discuss some experiments

  1. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  2. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  3. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  4. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  5. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  6. 7 CFR 1218.12 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.12 Order....

  7. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  8. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  9. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  10. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  11. 7 CFR 1206.13 - Order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.13 Order. Order means an...

  12. Complete normal ordering 1: Foundations

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Skliros, Dimitri P.

    2016-08-01

    We introduce a new prescription for quantising scalar field theories (in generic spacetime dimension and background) perturbatively around a true minimum of the full quantum effective action, which is to 'complete normal order' the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all 'cephalopod' Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of 'complete normal ordering' (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative interactions, and by using a point splitting 'trick' we extend this result to theories with derivative interactions, such as those appearing as non-linear σ-models in the world-sheet formulation of string theory. We focus here on theories with trivial vacua, generalising the discussion to non-trivial vacua in a follow-up paper.

  13. High-Fidelity Coding with Correlated Neurons

    PubMed Central

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  14. Broadcasting of quantum correlations: Possibilities and impossibilities

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Sazim, Sk; Chakrabarty, Indranil

    2016-04-01

    In this work, we extensively study the problem of broadcasting of quantum correlations (QCs). This includes broadcasting of quantum entanglement as well as correlations that go beyond the notion of entanglement (QCsbE). It is quite well known from the "no-broadcasting theorem" that perfect broadcasting of QCs is not possible. However, it does not rule out the possibility of partial broadcasting of QCs where we can get lesser correlated states from a given correlated state. In order to have a holistic view of broadcasting, we investigate this problem by starting with a most general representation of two qubit mixed states in terms of the Bloch vectors. As a cloning transformation we have used universal symmetric optimal Buzek-Hillery (BH) cloner both locally and nonlocally. Unlike entanglement, we find that it is impossible to broadcast QCsbE optimally. Lastly, we generalize these results for any symmetric or asymmetric cloning machines as well. This result brings out a fundamental difference between the correlations defined from the perspective of entanglement and the correlations measure which claims to go beyond entanglement.

  15. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  16. Hierarchy of equations of multiple-time correlation functions

    SciTech Connect

    Alonso, Daniel; Vega, Ines de

    2007-05-15

    In this paper we derive the evolution equations for non-Markovian multiple-time correlation functions of an open quantum system without using any approximation. We find that these equations conform an open hierarchy in which N-time correlation functions are dependent on (N+1)-time correlations. This hierarchy of equations is consistently obtained with two different methods: A first one based on Heisenberg equations of system operators, and a second one based on system propagators. The dependency on higher order correlations, and therefore the open hierarchy structure, only disappears in certain particular cases and when some hypothesis or approximations are considered in the equations. In this paper we consider a perturbative approximation and derive the general evolution equation for N-time correlations. This equation turns to depend only on N-time and lower order correlation functions, conforming a closed hierarchy structure that is useful for computational purposes.

  17. Bootstrapped Deattenuated Correlation: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2014-01-01

    Correlation attenuation due to measurement error and a corresponding correction, the deattenuated correlation, have been known for over a century. Nevertheless, the deattenuated correlation remains underutilized. A few studies in recent years have investigated factors affecting the deattenuated correlation, and a couple of them provide alternative…

  18. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  19. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs.

    PubMed

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  20. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  1. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs.

    PubMed

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way. PMID:21929065

  2. A Law of Order: Word Order Change in Classical Aztec

    ERIC Educational Resources Information Center

    Steele, Susan M.

    1976-01-01

    The verb in Classical Aztec is slowly moving from the end of the sentence to the beginning due to the attraction of sentence initial modal particles to the verb. Not only the function but also the position of elements should be examined to account for word-order change. (SCC)

  3. Detection of virus in shrimp using digital color correlation

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue; Chavez-Sanchez, Cristina; Bueno-Ibarra, Mario A.

    1999-07-01

    Detection of virus in shrimp tissue using digital color correlation is presented. Phase filters in three channels (red, green and blue) were used in order to detect HPV virus like target. These first results obtained showed that is possible to detect virus in shrimp tissue. More research must be made with color correlation in order to consider natural morphology of the virus, color, scale and rotation and noise in the samples.

  4. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  5. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  6. Automated Essay Scoring versus Human Scoring: A Correlational Study

    ERIC Educational Resources Information Center

    Wang, Jinhao; Brown, Michelle Stallone

    2008-01-01

    The purpose of the current study was to analyze the relationship between automated essay scoring (AES) and human scoring in order to determine the validity and usefulness of AES for large-scale placement tests. Specifically, a correlational research design was used to examine the correlations between AES performance and human raters' performance.…

  7. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    SciTech Connect

    Bonney, Matthew S.; Brake, Matthew R.W.

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  8. Does retention of order require verbal labelling?

    PubMed

    Waugh, N C; Barr, R A

    1989-01-01

    Older and younger adults attended to lists of either pictures or words presented one at a time. At the end of each list, they attempted to recall the serial position of each member of the list. There was a pronounced effect of primacy. No recency was observed, however, except when the very last item was tested first. The usual pictorial superiority effect was abolished when pictures were drawn from a conceptually homogenous set. It was reinstated when pictures were conceptually distinctive. Number of errors on pictures was highly correlated with the judged similarity of the items in a list. The younger subjects' performance uniformly exceeded that of the older ones; but chronological age failed to interact with any experimental variable. The results imply that pictures need not be verbally labelled in order for their serial positions to be retained.

  9. Ordering states with coherence measures

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Yu, Xiao-Dong; Xu, G. F.; Tong, D. M.

    2016-10-01

    The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.

  10. Ordering states with coherence measures

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Yu, Xiao-Dong; Xu, G. F.; Tong, D. M.

    2016-07-01

    The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.

  11. Rotational Alignment Altered by Source Position Correlations

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.

    2010-01-01

    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.

  12. Multiple soft limits of cosmological correlation functions

    SciTech Connect

    Joyce, Austin; Khoury, Justin; Simonović, Marko E-mail: jkhoury@sas.upenn.edu

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.

  13. Vibrational Echo Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbury, John B.; Steinel, Tobias; Fayer, M. D.

    Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (˜ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ˜ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

  14. CONDITIONAL DISTANCE CORRELATION

    PubMed Central

    Wang, Xueqin; Pan, Wenliang; Hu, Wenhao; Tian, Yuan; Zhang, Heping

    2015-01-01

    Statistical inference on conditional dependence is essential in many fields including genetic association studies and graphical models. The classic measures focus on linear conditional correlations, and are incapable of characterizing non-linear conditional relationship including non-monotonic relationship. To overcome this limitation, we introduces a nonparametric measure of conditional dependence for multivariate random variables with arbitrary dimensions. Our measure possesses the necessary and intuitive properties as a correlation index. Briefly, it is zero almost surely if and only if two multivariate random variables are conditionally independent given a third random variable. More importantly, the sample version of this measure can be expressed elegantly as the root of a V or U-process with random kernels and has desirable theoretical properties. Based on the sample version, we propose a test for conditional independence, which is proven to be more powerful than some recently developed tests through our numerical simulations. The advantage of our test is even greater when the relationship between the multivariate random variables given the third random variable cannot be expressed in a linear or monotonic function of one random variable versus the other. We also show that the sample measure is consistent and weakly convergent, and the test statistic is asymptotically normal. By applying our test in a real data analysis, we are able to identify two conditionally associated gene expressions, which otherwise cannot be revealed. Thus, our measure of conditional dependence is not only an ideal concept, but also has important practical utility. PMID:26877569

  15. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  16. Electrostatic correlations near charged planar surfaces

    PubMed Central

    Deng, Mingge; Em Karniadakis, George

    2014-01-01

    Electrostatic correlation effects near charged planar surfaces immersed in a symmetric electrolytes solution are systematically studied by numerically solving the nonlinear six-dimensional electrostatic self-consistent equations. We compare our numerical results with widely accepted mean-field (MF) theory results, and find that the MF theory remains quantitatively accurate only in weakly charged regimes, whereas in strongly charged regimes, the MF predictions deviate drastically due to the electrostatic correlation effects. We also observe a first-order like phase-transition corresponding to the counterion condensation phenomenon in strongly charged regimes, and compute the phase diagram numerically within a wide parameter range. Finally, we investigate the interactions between two likely-charged planar surfaces, which repulse each other as MF theory predicts in weakly charged regimes. However, our results show that they attract each other above a certain distance in strongly charged regimes due to significant electrostatic correlations. PMID:25194382

  17. Risk attitudes and birth order.

    PubMed

    Krause, Philipp; Heindl, Johannes; Jung, Andreas; Langguth, Berthold; Hajak, Göran; Sand, Philipp G

    2014-07-01

    Risk attitudes play important roles in health behavior and everyday decision making. It is unclear, however, whether these attitudes can be predicted from birth order. We investigated 200 mostly male volunteers from two distinct settings. After correcting for multiple comparisons, for the number of siblings and for confounding by gender, ordinal position predicted perception of health-related risks among participants in extreme sports (p < .01). However, the direction of the effect contradicted Adlerian theory. Except for alcohol consumption, these findings extended to self-reported risk behavior. Together, the data call for a cautious stand on the impact of birth order on risk attitudes.

  18. Order effects in dynamic semantics.

    PubMed

    Graben, Peter Beim

    2014-01-01

    In their target article, Wang and Busemeyer (2013) discuss question order effects in terms of incompatible projectors on a Hilbert space. In a similar vein, Blutner recently presented an orthoalgebraic query language essentially relying on dynamic update semantics. Here, I shall comment on some interesting analogies between the different variants of dynamic semantics and generalized quantum theory to illustrate other kinds of order effects in human cognition, such as belief revision, the resolution of anaphors, and default reasoning that result from the crucial non-commutativity of mental operations upon the belief state of a cognitive agent.

  19. Ordering Multiple Soft Gluon Emissions.

    PubMed

    Ángeles Martínez, René; Forshaw, Jeffrey R; Seymour, Michael H

    2016-05-27

    We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full color structure and both the real and imaginary contributions to the amplitude. PMID:27284651

  20. Birth order effects on autism symptom domains.

    PubMed

    Reichenberg, Abraham; Smith, Christopher; Schmeidler, James; Silverman, Jeremy M

    2007-03-30

    Autism is predominantly genetically determined. Evidence supports familiality of the main sets of behavioral characteristics that define the syndrome of autism; however, possible non-genetic effects have also been suggested. The present study compared levels of autism symptom domains, as measured by the Autism Diagnostic Interview, and useful phrase speech scores between 106 pairs of first- and second-born siblings from multiply affected families. In addition, the intercorrelations between the measures were compared between siblings. The overall mean repetitive behavior total score was significantly higher (worse) in first-born than in second-born siblings. In contrast, first-born siblings had significantly lower (better) useful phrase speech than their younger siblings. Autism social and non-verbal communication scores were significantly correlated in first- and in second-born siblings. However, there was a significant difference in the coefficients between first- and second-born siblings. Performance on the non-verbal communication domain was also significantly and positively correlated with useful phrase speech score in both first- and second-born siblings. It is unclear at this time whether these results are of biologic origin. Nevertheless, the findings suggest that genetic studies in autism using specific levels of familial autism traits as phenotypes should take into account their intercorrelations and birth order effects embedded in the instrument.

  1. Bonding in eight ordered clinopyroxenes isostructural with diopside

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Papike, J.J.

    1968-01-01

    Bond distances and angles in isostructural, ordered clinopyroxenes are compared for eight compositions, based on five new and three published crystal-structure refinements from X-ray diffraction data. Unit-cell parameters and configuration of the silicate chains are directly correlated with cation composition and distribution in the M2 and M1 sites. ?? 1968 Springer-Verlag.

  2. Modeling Ability Differentiation in the Second-Order Factor Model

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J.

    2011-01-01

    In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…

  3. Latent Roots of Random Data Correlation Matrices With Squared Multiple Correlations on the Diagonal: A Monte Carlo Study

    ERIC Educational Resources Information Center

    Montanelli, Richard G.; Humphreys, Lloyd G.

    1976-01-01

    In order to make the parallel analysis criterion for determining the number of factors in factor analysis easy to use, regression equations for predicting the logarithms of the latent roots of random correlation matrices, with squared multiple correlations on the diagonal, are presented. (Author/JKS)

  4. Compressible turbulence transport equations for generalized second order closure

    SciTech Connect

    Cloutman, L D

    1999-05-01

    Progress on the theory of second order closure in turbulence models of various types requires knowledge of the transport equations for various turbulence correlations. This report documents a procedure that provides such equations for a wide variety of turbulence averages for compressible flows of a multicomponent fluid. Generalizing some work by Germano for incompressible flows, we introduce an appropriate extension of his generalized second order correlations and use a generalized mass-weighted averaging procedure to derive transport equations for the correlations. The averaging procedure includes all of the commonly used averages as special cases. The resulting equations provide an internally consistent starting point for future work in developing single-point statistical turbulence transport models for fluid flows. The form invariance of the in-compressible equations also holds for the compressible case, and we discuss some of the closure issues and frequently ignored complications of statistical turbulence models of compressible flows.

  5. Tunneling in strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Maltseva, Marianna

    Tunneling studies of strongly correlated materials provide information about the nature of electronic correlations, which is vital for investigation of emergent materials at the microscopic level. In particular, scanning tunneling spectroscopy/microscopy (STS/STM) studies have made major contributions to understanding cuprate superconductors (66), yet there is a sense that huge STM data arrays contain much more precious information to be extracted and analyzed. One of the most pressing questions in the field is how to improve the data analysis, so as to extract more information from STM data. A dominant trend in STM data analysis has been to interpret the data within a particular microscopic model, while using only basic data analysis tools. To decrease the reliance of the STM data interpretation on particular microscopic models, further advances in data analysis methods are necessary. In Chapter 2 of this Thesis, we discuss how one can extract information about the phase of the order parameter from STM data. We show that symmetrized and anti-symmetrized correlators of local density of states give rise to observable coherence factor effects. In Chapter 3, we apply this framework to analyze the recent scanning tunneling experiments on an underdoped cuprate superconductor Ca2-xNaxCuO2Cl2 by T. Hanaguri et al. (60). In Chapter 4, we propose a model for nodal quasiparticle scattering in a disordered vortex lattice. Recently, scanning tunneling studies of a Kondo lattice material URu2Si2 became possible (117). If it proves possible to apply scanning tunneling spectroscopy to Kondo lattice materials, then remarkable new opportunities in the ongoing investigation may emerge. In Chapter 5, we examine the effect of co-tunneling to develop a theory of tunneling into a Kondo lattice. We find that the interference between the direct tunneling and the co-tunneling channels leads to a novel asymmetric lineshape, which has two peaks and a gap. The presence of the peaks suggests

  6. Weighted order statistic classifiers with large rank-order margin.

    SciTech Connect

    Porter, R. B.; Hush, D. R.; Theiler, J. P.; Gokhale, M.

    2003-01-01

    We describe how Stack Filters and Weighted Order Statistic function classes can be used for classification problems. This leads to a new design criteria for linear classifiers when inputs are binary-valued and weights are positive . We present a rank-based measure of margin that can be directly optimized as a standard linear program and investigate its effect on generalization error with experiment. Our approach can robustly combine large numbers of base hypothesis and easily implement known priors through regularization.

  7. Peacekeeping. Perspectives in World Order.

    ERIC Educational Resources Information Center

    Fraenkel, Jack R., Ed.; And Others

    This pamphlet, intended for senior high classroom use, defines war, peace, and peacekeeping systems; discusses the destructiveness of war; and proposes the case study method for studying world order. The major portion of the booklet explores ways of peacekeeping through analysis of four different models: collective security, collective force,…

  8. Generalized high order compact methods.

    SciTech Connect

    Spotz, William F.; Kominiarczuk, Jakub

    2010-09-01

    The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.

  9. Spatial Processes in Linear Ordering

    ERIC Educational Resources Information Center

    von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud

    2016-01-01

    Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A -- B -- C -- D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial…

  10. Suffix Ordering and Morphological Processing

    ERIC Educational Resources Information Center

    Plag, Ingo; Baayen, Harald

    2009-01-01

    There is a long-standing debate about the principles constraining the combinatorial properties of suffixes. Hay 2002 and Hay & Plag 2004 proposed a model in which suffixes can be ordered along a hierarchy of processing complexity. We show that this model generalizes to a larger set of suffixes, and we provide independent evidence supporting the…

  11. How do people order stimuli?

    PubMed

    Kemp, Simon; Grace, Randolph C

    2014-08-01

    People may find it easier to construct an order after first representing stimuli on a scale or categorizing them, particularly when the number of stimuli to be ordered is large or when some of them must be remembered. Five experiments tested this hypothesis. In two of these experiments (1 and 3), we asked participants to rank line lengths or to rank photographs by artistic value. The participants provided evidence of how they performed these tasks, and this evidence indicated that they often made use of some preliminary representation--either a metric or a categorization. Two further experiments (2 and 4) indicated that people rarely produced rankings when given a choice of assessment measures for either the length of lines or the artistic value of photographs. In Experiment 5, when the number of lines was larger or lines were only visible one at a time, participants were faster at estimating line lengths as a percentage of the card covered than at rank ordering the lengths. Overall, the results indicate that ordering stimuli is not an easy or natural process when the number of stimuli is large or when the stimuli are not all perceptible at once. An implication is that the psychological measures available to individuals are not likely to be purely ordinal when many of the elements being measured must be recalled.

  12. Moral Order and the Humanities.

    ERIC Educational Resources Information Center

    Howard, Thomas

    1980-01-01

    Argues that a society without reverence for myths and history inevitably falls prone to chaos and evil, pointing to abortion, Andy Warhol's celebrity, and Woodstock as evidence of this disintegration of society. Proposes that humanities education expose students to human experience based on some awesome and fixed moral order. (AYC)

  13. PREFACE: Correlated Electrons (Japan)

    NASA Astrophysics Data System (ADS)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states

  14. Symbols of a cosmic order

    NASA Astrophysics Data System (ADS)

    Madjid, F. Hadi; Myers, John M.

    2016-10-01

    The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.

  15. Correlated motions in DNA

    SciTech Connect

    Sundaralingam, M.; Westhof, E.

    1980-10-01

    The furanose ring of nucleic acids plays a key role in detrmining the conformations of nucleic acids because it shares a common bond C3'-C4'(psi') with the sugar-phosphate backbone. This structural feature enables the transmission of conformational changes between the side-chain base and the backbone through conformational correlations between the base and sugar. Thermally-induced local fluctuations of P can be transmitted along the backbone through psi', particularly when the sugar is in the C2'-endo domain. The sugar pucker-dependent flexibility of DNA is further exemplified by studies that have shown that due to steric interactions, absence of the 2'-OH group in deoxyribose tends to increase the conformational flexibility about the internucleotide phosphodiester (..omega.., ..omega..') especially when the sugar assumes the C2'-endo pucker.

  16. Neural correlates of frustration.

    PubMed

    Abler, Birgit; Walter, Henrik; Erk, Susanne

    2005-05-12

    Psychological considerations suggest that the omission of rewards in humans comprises two effects: first, an allocentric effect triggering learning and behavioural changes potentially processed by dopaminergic neurons according to the prediction error theory; second, an egocentric effect representing the individual's emotional reaction, commonly called frustration. We investigated this second effect in the context of omission of monetary reward with functional magnetic resonance imaging. As expected, the contrast omission relative to receipt of reward led to a decrease in ventral striatal activation consistent with prediction error theory. Increased activation for this contrast was found in areas previously related to emotional pain: the right anterior insula and the right ventral prefrontal cortex. We interpreted this as a neural correlate of the egocentric effect.

  17. Digital Image Correlation Engine

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and canmore » be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.« less

  18. Some correlates of trust.

    PubMed

    Frost, T; Stimpson, D V; Maughan, M R

    1978-05-01

    Trust has been variously defined by behavioral scientists and not very thoroughly investigated. In this study trust was defined as an expectancy held by an individual that the behavior of another person or a group would be altruistic and personally beneficial. An attempt was made, using this conceptual definition, to identify some personality and behavioral correlates of trust. Seven interpersonal relations groups with approximately 10 male and female undergraduates per group were studied with use of the Janis and Field self-esteem inventory, Schutz's FIRO-B scale, and the Rotter internal-external scale. It was discovered that a trusted person is one who is highly influential, has an internal locus of control, a low need to control others, high self-esteem, and is open to being influenced by others.

  19. EEG correlates of submovements.

    PubMed

    Dipietro, L; Poizner, H; Krebs, H I

    2011-01-01

    Numerous studies on motor control in humans and primates have suggested that the Central Nervous System (CNS) generates and controls continuous movement via discrete, elementary units of movement or submovements. While most studies are based on analysis of kinematic data, investigations of neural correlates have been lacking. To fill this gap we recorded and analyzed kinematic and high-density electroencephalographic (64-channel EEG) data from three right-handed normal adults during a reaching task that required online movement corrections. Each kinematic submovement was accompanied by stereotyped scalp maps. Furthermore, the peaks of event-related potentials (ERP) recorded at electrode C1 (over contralateral motor cortex) were time-locked to kinematic submovement peaks. These results provide further evidence for the hypothesis that the CNS generates and controls continuous movement via discrete submovements. Applications include design of quantitative outcome metrics for motor disorders of neurological origin such as stroke and Parkinson's disease. PMID:22256056

  20. Quantum random walks with multiphoton interference and high order correlation functions

    NASA Astrophysics Data System (ADS)

    Gard, Bryan; Cross, Robert; Anisimov, Petr; Lee, Hwang; Dowling, Jonathan

    2012-06-01

    We show a simulation of quantum random walks with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and introduce one, two, and threefold coincidence detection schemes. The use of Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these quantum random walks.

  1. Correlation monitor materials

    SciTech Connect

    Corwin, W.R.

    1995-10-01

    This task has been established with the explicit purpose of ensuring the continued availability of the pedigreed and extremely well-characterized material now required for inclusion in all additional and future surveillance capsules in commercial light-water reactors. During this reporting period, concrete was poured and pallets storage racks were installed to provide adequate room for the storage of the correlation monitor material being transferred from its location at the Y-12 Plant to its archival storage location at ORNL. The racks came from surplus material storage at ORNL and hence were obtained at no cost to the HSSI Program. Inquiries into cost-effective means of sheltering the blocks of correlation monitor materials from further weather-related deteriorization were initiated. The most likely approach would be to procure a turn-key sheet metal building installed over the storage racks by an outside contractor to minimize costs. Most of the material has now been transferred from Y-12 to the ORNL storage area. It has been repositioned on new storage pallets and placed into the storage racks, An update of the detailed material inventory was initiated to ascertain the revised location of all blocks. Pieces of HSST plate O3 were distributed to participants in the ASTM cross-comparison exercise on subsize specimen testing technology. The use of the HSST O3 will provide for data from the many varieties of tests to be performed to be compared with the standardized data previously developed. The testing techniques will focus on ways to measure transition temperature and fracture toughness.

  2. Geometrical structures determined by the functional order in nervous nets.

    PubMed

    Koenderink, J J

    1984-01-01

    The functional order of a collection of neural elements may be defined as the order induced through the total of covariances of signals carried by the members of the collection. Thus functional order differs from geometrical order (e.g. somatotopy) in that geometrical order is only available to external observers, whereas functional order is available to the system itself. It has been shown before that the covariances can be used to construct a partially ordered set that explicitely represents the functional order. It is demonstrated that certain constraints, if satisfied, make this set isomorphic with certain geometrical entities such as triangulations. For instance there may exist a set of hyperspheres in a n-dimensional space with overlap relations that are described with the same partially ordered set as that which describes the simultaneous/successive order of signals in a nerve. Thus it is logically possible that the optic nerve carries (functionally) two-dimensional signals, quite apart from anatomical considerations (e.g. the geometrically two-dimensional structure of the retina which exists only to external observers). The dimension of the modality defined by a collection of nervous elements can in principle be obtained from a cross-correlation analysis of multi-unit recordings without any resort to geometrical data such as somatotopic mappings.

  3. General and specific consciousness: a first-order representationalist approach

    PubMed Central

    Mehta, Neil; Mashour, George A.

    2013-01-01

    It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231

  4. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  5. Triplet correlation functions in liquid water

    SciTech Connect

    Dhabal, Debdas; Chakravarty, Charusita; Singh, Murari; Wikfeldt, Kjartan Thor

    2014-11-07

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

  6. Triplet correlation functions in liquid water

    NASA Astrophysics Data System (ADS)

    Dhabal, Debdas; Singh, Murari; Wikfeldt, Kjartan Thor; Chakravarty, Charusita

    2014-11-01

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

  7. Colloquium: Theory of intertwined orders in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Kivelson, Steven A.; Tranquada, John M.

    2015-04-01

    The electronic phase diagrams of many highly correlated systems, and, in particular, the cuprate high temperature superconductors, are complex, with many different phases appearing with similar (sometimes identical) ordering temperatures even as material properties, such as dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as "competing orders." However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative "pair-density wave," the general relation is better thought of in terms of "intertwined orders." Some of the experiments in the cuprates which suggest that essential aspects of the physics are reflected in the intertwining of multiple orders, not just in the nature of each order by itself, are selectively analyzed. Several theoretical ideas concerning the origin and implications of this complexity are also summarized and critiqued.

  8. Complete Hamiltonian analysis of cosmological perturbations at all orders

    NASA Astrophysics Data System (ADS)

    Nandi, Debottam; Shankaranarayanan, S.

    2016-06-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations at all orders. To make the procedure transparent, we consider a simple model and resolve the `gauge-fixing' issues and extend the analysis to scalar field models and show that our approach can be applied to any order of perturbation for any first order derivative fields. In the case of Galilean scalar fields, our procedure can extract constrained relations at all orders in perturbations leading to the fact that there is no extra degrees of freedom due to the presence of higher time derivatives of the field in the Lagrangian. We compare and contrast our approach to the Lagrangian approach (Chen et al. [2006]) for extracting higher order correlations and show that our approach is efficient and robust and can be applied to any model of gravity and matter fields without invoking slow-roll approximation.

  9. Second-Order Footsteps Illusions.

    PubMed

    Kitaoka, Akiyoshi; Anstis, Stuart

    2015-12-01

    In the "footsteps illusion", light and dark squares travel at constant speed across black and white stripes. The squares appear to move faster and slower as their contrast against the stripes varies. We now demonstrate some second-order footsteps illusions, in which all edges are defined by colors or textures-even though luminance-based neural motion detectors are blind to such edges. PMID:27551366

  10. Digital first order hold circuit

    NASA Technical Reports Server (NTRS)

    Chan, Fred N. (Inventor); Wensley, Gerald J. (Inventor)

    1989-01-01

    There is provided a digitally controlled first order hold circuit and waveform synthesizer for digitally controlling the representation of a function over an approximation interval. In accordance with the operation of the invention, the first order hold circuit and waveform generator receives a digital data input signal which contains initial condition data, up/down data, and slope data for the approximation interval. The initial condition data is loaded into an up/down counter which is incremented using counting data at a rate depending on the value of the slope data and in a direction depending on the value of the up-down data. In order to minimize delays arising from data acquistion, two frequency synthesizer circuits are provided such that one frequency synthesizer provides counting data while the other frequency synthesizer receives slope data. During alternating intervals, the other frequency synthesizer circuit provides counting data while the other circuit receives slope data. In addition, long length data input signals covering a plurality of approximation intervals are provided to reduce the demands on a main system central processing unit.

  11. Magnitude correlations in global seismicity

    SciTech Connect

    Sarlis, N. V.

    2011-08-15

    By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

  12. Lagged correlation networks

    NASA Astrophysics Data System (ADS)

    Curme, Chester

    Technological advances have provided scientists with large high-dimensional datasets that describe the behaviors of complex systems: from the statistics of energy levels in complex quantum systems, to the time-dependent transcription of genes, to price fluctuations among assets in a financial market. In this environment, where it may be difficult to infer the joint distribution of the data, network science has flourished as a way to gain insight into the structure and organization of such systems by focusing on pairwise interactions. This work focuses on a particular setting, in which a system is described by multivariate time series data. We consider time-lagged correlations among elements in this system, in such a way that the measured interactions among elements are asymmetric. Finally, we allow these interactions to be characteristically weak, so that statistical uncertainties may be important to consider when inferring the structure of the system. We introduce a methodology for constructing statistically validated networks to describe such a system, extend the methodology to accommodate interactions with a periodic component, and show how consideration of bipartite community structures in these networks can aid in the construction of robust statistical models. An example of such a system is a financial market, in which high frequency returns data may be used to describe contagion, or the spreading of shocks in price among assets. These data provide the experimental testing ground for our methodology. We study NYSE data from both the present day and one decade ago, examine the time scales over which the validated lagged correlation networks exist, and relate differences in the topological properties of the networks to an increasing economic efficiency. We uncover daily periodicities in the validated interactions, and relate our findings to explanations of the Epps Effect, an empirical phenomenon of financial time series. We also study bipartite community

  13. 7 CFR 1214.12 - Order.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  14. 7 CFR 1214.12 - Order.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  15. 7 CFR 1214.12 - Order.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Definitions §...

  16. Strong correlations in gravity and biophysics

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry

    The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and

  17. Optical cross-correlator based on supercontinuum generation

    SciTech Connect

    Filip, Catalin V.; Toth, Csaba; Leemans, Wim P.

    2006-03-20

    A novel cross-correlator that can be used for temporal characterization of femtosecond laser pulses has been developed. The correlation trace is obtained by ''sampling'' the structure of the laser pulse with a single, high-contrast pulse produced through femtosecond white-light generation in a line focus. This correlator has, therefore, fewer ''ghosts'' than a conventional third-order cross-correlator and it can be used with laser pulses that span across a wide wavelength range. Both scanning and single-shot experimental arrangements are described.

  18. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  19. The 512-channel correlator controller

    NASA Technical Reports Server (NTRS)

    Brokl, S. S.

    1976-01-01

    A high-speed correlator for radio and radar observations was developed and a controller was designed so that the correlator could run automatically without computer intervention. The correlator controller assumes the role of bus master and keeps track of data and properly interrupts the computer at the end of the observation.

  20. Liquid-Crystal Optical Correlator

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1989-01-01

    Optical correlator uses commercially-available liquid-crystal television (LCTV) screen as spatial light modulator. Correlations with this device done at video frame rates, making such operations as bar-code recognition possible at reasonable cost. With further development, such correlator useful in automation, robotic vision, and optical image processing.

  1. Analysis of correlation between corneal topographical data and visual performance

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqing; Yu, Lei; Ren, Qiushi

    2007-02-01

    Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.

  2. Ordering events of biochemical evolution.

    PubMed

    Cunchillos, C; Lecointre, G

    2007-05-01

    Metabolic pathways exhibit structures resulting from an evolutionary process. Pathways have been inherited through time with modification, from the earliest periods of life. It is possible to compare the structure of pathways as done in comparative anatomy, i.e. for inferring ancestral pathways or parts of it (ancestral enzymatic functions), using standard phylogenetic reconstruction. Thus a phylogenetic tree of pathways provides a relative ordering of the rise of enzymatic functions. It even becomes possible to order the birth of each complete pathway in time. This particular "DNA-free" conceptual approach to evolutionary biochemistry is reviewed, gathering all the justifications given for it. Then, the method of assigning a given pathway to a time span of biochemical development is revisited. The previous method used an implicit "clock" of metabolic development that is difficult to justify. We develop a new clock-free approach, using functional biochemical arguments. Results of the two methods are not significantly different; our method is just more precise. This suggests that the clock assumed in the first method does not provoke any important artefact in describing the development of biochemical evolution. It is just unnecessary to postulate it. As a result, most of the amino acid metabolic pathways develop forwards, confirming former models of amino acid catabolism evolution, but not those for amino acid anabolism. The order of appearance of sectors of universal cellular metabolism is: (1) amino acid catabolism, (2) amino acid anabolism and closure of the urea cycle, (3) glycolysis and glycogenesis, (4) closure of the pentose-phosphate cycle, (5) closure of the Krebs cycle and fatty acids metabolism, (6) closure of the Calvin cycle.

  3. Glassy correlations and thermal fluctuations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Xing, Xiangjun; Ye, Fangfu; Goldbart, Paul

    2010-03-01

    By means of the vulcanization theory framework we address the properties of nematic elastomers prepared in the isotropic liquid state and subsequently randomly cross-linked beyond the gelation point. We base our analysis on a model replica Landau free energy, in which the vulcanization order parameter is coupled to the order parameter describing the local degree of nematic ordering, retaining fluctuation terms to the Gaussian level. We explore how the cross-linking renormalizes the thermal correlations of the local nematic order, and also results in frozen-in, glassy nematic correlations. We examine these thermal and glassy correlations for two different preparation histories of the system: in the first, the cross-linking is done at temperatures close to the isotropic-nematic transition; in the other, the cross-linking is done at higher temperatures, but the system is subsequently cooled to near this transition temperature.

  4. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  5. Royal Order, 14 July 1987.

    PubMed

    1987-01-01

    This Order is designed to promote equality of opportunity for men and women in the private sector. It provides that equal opportunity plans can be established by employers with the cooperation of worker representatives. These plans should include a description of the plan's objective with respect to equal opportunity; a description of affirmative actions to be taken; and the date of the implementation of the plan and the dates on which intermediary steps in the plan should be attained. The plans should also contain procedures for periodical evaluation.

  6. The Issue of Power in the Identification of "g" with Lower-Order Factors

    ERIC Educational Resources Information Center

    Matzke, Dora; Dolan, Conor V.; Molenaar, Dylan

    2010-01-01

    In higher order factor models, general intelligence (g) is often found to correlate perfectly with lower-order common factors, suggesting that g and some well-defined cognitive ability, such as working memory, may be identical. However, the results of studies that addressed the equivalence of g and lower-order factors are inconsistent. We suggest…

  7. Active temperature and velocity correlations produced by a swimmer suspension

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, C.; Soto, R.

    2013-05-01

    The agitation produced in a fluid by a suspension of microswimmers in the low Reynolds number limit is studied. In this limit, swimmers are modeled as force dipoles all with equal strength. The agitation is characterized by the active temperature defined, as in kinetic theory, as the mean square velocity, and by the equal-time spatial correlations. Considering the phase in which the swimmers are homogeneously and isotropically distributed in the fluid, it is shown that the active temperature and velocity correlations depend on a single scalar correlation function of the dipole-dipole correlation function. By making a simple medium-range order model, in which the dipole-dipole correlation function is characterized by a single correlation length k0-1 it is possible to make quantitative predictions. It is found that the active temperature depends on the system size, scaling as L4-d at large correlation lengths L≪k0-1, while in the opposite limit it saturates in three dimensions and diverges logarithmically with the system size in two dimensions. In three dimensions the velocity correlations decay as 1/r for small correlation lengths, while at large correlation lengths the transverse correlation function becomes negative at maximum separation r˜L/2, an effect that disappears as the system increases in size.

  8. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  9. High-order resting-state functional connectivity network for MCI classification.

    PubMed

    Chen, Xiaobo; Zhang, Han; Gao, Yue; Wee, Chong-Yaw; Li, Gang; Shen, Dinggang

    2016-09-01

    Brain functional connectivity (FC) network, estimated with resting-state functional magnetic resonance imaging (RS-fMRI) technique, has emerged as a promising approach for accurate diagnosis of neurodegenerative diseases. However, the conventional FC network is essentially low-order in the sense that only the correlations among brain regions (in terms of RS-fMRI time series) are taken into account. The features derived from this type of brain network may fail to serve as an effective disease biomarker. To overcome this drawback, we propose extraction of novel high-order FC correlations that characterize how the low-order correlations between different pairs of brain regions interact with each other. Specifically, for each brain region, a sliding window approach is first performed over the entire RS-fMRI time series to generate multiple short overlapping segments. For each segment, a low-order FC network is constructed, measuring the short-term correlation between brain regions. These low-order networks (obtained from all segments) describe the dynamics of short-term FC along the time, thus also forming the correlation time series for every pair of brain regions. To overcome the curse of dimensionality, we further group the correlation time series into a small number of different clusters according to their intrinsic common patterns. Then, the correlation between the respective mean correlation time series of different clusters is calculated to represent the high-order correlation among different pairs of brain regions. Finally, we design a pattern classifier, by combining features of both low-order and high-order FC networks. Experimental results verify the effectiveness of the high-order FC network on disease diagnosis. Hum Brain Mapp 37:3282-3296, 2016. © 2016 Wiley Periodicals, Inc.

  10. Allowing for Correlations between Correlations in Random-Effects Meta-Analysis of Correlation Matrices

    ERIC Educational Resources Information Center

    Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David

    2007-01-01

    Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…

  11. Biocatalytic induction of supramolecular order

    NASA Astrophysics Data System (ADS)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  12. Fauna Europaea – Orthopteroid orders

    PubMed Central

    Bohn, Horst; Haas, Fabian; Willemse, Fer

    2016-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant European terrestrial and freshwater animals, their geographical distribution at the level of countries and major islands (west of the Urals and excluding the Caucasus region), and some additional information. The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. The “Orthopteroid orders“ is one of the 58 Fauna Europaea major taxonomic groups. It contains series of mostly well-known insect orders: Embiodea (webspinners), Dermaptera (earwigs), Phasmatodea (walking sticks), Orthoptera s.s. (grasshoppers, crickets, bush-crickets) and Dictyoptera with the suborders Mantodea (mantids), Blattaria (cockroaches) and Isoptera (termites). For the Orthopteroid orders, data from 35 families containing 1,371 species are included in this paper.

  13. Fauna Europaea – Orthopteroid orders

    PubMed Central

    Bohn, Horst; Haas, Fabian; Willemse, Fer

    2016-01-01

    Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant European terrestrial and freshwater animals, their geographical distribution at the level of countries and major islands (west of the Urals and excluding the Caucasus region), and some additional information. The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. The “Orthopteroid orders“ is one of the 58 Fauna Europaea major taxonomic groups. It contains series of mostly well-known insect orders: Embiodea (webspinners), Dermaptera (earwigs), Phasmatodea (walking sticks), Orthoptera s.s. (grasshoppers, crickets, bush-crickets) and Dictyoptera with the suborders Mantodea (mantids), Blattaria (cockroaches) and Isoptera (termites). For the Orthopteroid orders, data from 35 families containing 1,371 species are included in this paper. PMID:27660531

  14. 10 CFR 820.42 - Final order.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Final order. 820.42 Section 820.42 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Compliance Orders § 820.42 Final order. A Compliance Order is a Final Order that constitutes a DOE Nuclear Safety Requirement that is effective immediately unless the Order specifies a...

  15. Correlation effects in the iron pnictides

    SciTech Connect

    Zhu, Jian-xin; Si, Qimiao; Abrahams, Elihu; Dai, Jianhui

    2009-01-01

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of the charge transport and dynamics, single-electron excitation spectrum, and magnetic ordering and dynamics. We outline the evidence that the parent compounds, while metallic, have electron interactions that are sufficiently strong to produce incipient Mott physics. In other words, in terms of the strength of electron correlations compared to the kinetic energy, the iron pnictides are closer to intermediately-coupled systems lying at the boundary between itinerancy and localization, such as V{sub 2}O{sub 3} a or Se-doped NiS{sub 2} , rather than to simple antiferromagnetic metals like Cr. This level of electronic correlations produces a new small parameter for controlled theoretical analyses, namely the fraction of the single-electron spectral weight that lies in the coherent part. Using this expansion parameter, we construct the effective low-energy Hamiltonian and discuss its implications for the magnetic order and magnetic quantum criticality. Finally, this approach sharpens the notion of magnetic frustration for such a metallic system, and brings about a multi band matrix t-J{sub 1}-J{sub 2} model for the carrier-doped iron pnictides.

  16. Fermionic correlators from integrability

    NASA Astrophysics Data System (ADS)

    Caetano, João; Fleury, Thiago

    2016-09-01

    We study three-point functions of single-trace operators in the {s}{u}(1Big|1) sector of planar {N}=4 SYM borrowing several tools based on Integrability. In the most general configuration of operators in this sector, we have found a determinant expression for the tree-level structure constants. We then compare the predictions of the recently proposed hexagon program against all available data. We have obtained a match once additional sign factors are included when the two hexagon form-factors are assembled together to form the structure constants. In the particular case of one BPS and two non-BPS operators we managed to identify the relevant form-factors with a domain wall partition function of a certain six-vertex model. This partition function can be explicitly evaluated and factorizes at all loops. In addition, we use this result to compute the structure constants and show that at strong coupling in the so-called BMN regime, its leading order contribution has a determinant expression.

  17. Effect of correlation of local fluctuations on exciton coherence

    SciTech Connect

    Chen, Xin; Silbey, Robert J.

    2010-01-01

    Recent experimental studies have shown both oscillations of exciton populations and long lasting coherence in multichromophoric systems such as photosynthetic light harvesting systems and conjugated polymers. It has been suggested that this quantum effect is due to correlations of the fluctuations of site energies among the closely packed chromophores in the protein environment. In addition to these, there is the strong possibility of correlations between site energies and transfer matrix elements. In order to understand the role of such correlations we generalize the Haken–Strobl–Reineker (HSR) model to include the energetic correlations and the site diagonal-off-diagonal correlations in a systematic way. The extended HSR model in the exciton basis is also constructed and allows us to study the dynamics of the exciton populations and coherences. With the extended model, we can provide insight into how these correlations affect the evolution of the populations and coherences of excitons by comparing to the original HSR model with uncorrelated fluctuating environments.

  18. First Order Phase Transition of Plaquette Ordering in SU(4) Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Mishra, Anup; Ma, Michael; Zhang, Fu-Chun

    2002-03-01

    Spin systems with orbital degeneracy may have an ideal limit with SU(4) degeneracy(Phys. Rev. Lett 81,3527 (1998)). Based on MFT and variational calculations, it was proposed that the ground state of the SU(4) system in 2D is a spin and orbital liquid. Finite-sized numerical calculations on square lattice further support this proposition(Eur. Phys. J. B17,367 (2000)). The numerical work also suggests the ground state to be 4-fold degenerate. We propose that the 4-fold degeneracy is due to spontaneous formation of plaquettes with alternating plaquettes of strong and weak correlations. Using fermion MFT on square and triangular lattice, we find at zero temperature that the ground state is a state of disconnected plaquettes. The discrete symmetry of plaquette ordering allows for a finite temperature phase transition from the disordered phase to the ordered phase even in 2D. Within MFT, the transition is found to be first order for both the square and triangular lattice. Nevertheless, there are important differences between the transitions on the two lattices.

  19. Correlation Structures of Correlated Binomial Models and Implied Default Distribution

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Kitsukawa, Kenji; Hisakado, Masato

    2008-11-01

    We show how to analyze and interpret the correlation structures, the conditional expectation values and correlation coefficients of exchangeable Bernoulli random variables. We study implied default distributions for the iTraxx-CJ tranches and some popular probabilistic models, including the Gaussian copula model, Beta binomial distribution model and long-range Ising model. We interpret the differences in their profiles in terms of the correlation structures. The implied default distribution has singular correlation structures, reflecting the credit market implications. We point out two possible origins of the singular behavior.

  20. Multi-mode heterodyned 5th-order infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Leger, Joel D.; Varner, Clyde; Rubtsov, Igor V.

    2016-10-01

    Fifth-order multidimensional infrared spectroscopy with heterodyned detection was carried out in the three-beam dual-frequency configuration. Numerous 5th-order cross peaks were detected for the 4-azidobutyrate-N-hydroxysuccinimide ester compound in solution involving several vibrational modes ranging in frequency from 1045 to 2100 cm-1. Cross peaks involving overtones (2X/Z) and combination bands (XY/Z) among the tags, modes X and Y excited by the first two mid-IR laser pulses, and the reporter, modes Z excited by the third laser pulse, were acquired and the factors affecting the amplitude of 5th-order cross peaks are discussed. The 5th-order cross peaks were detected among modes that are spatially close (a few bonds apart) as well as for modes spatially separated by ca. 12 Å (eight bonds apart). In both cases, the waiting time dependences for the 3rd and 5th order cross peaks were found to be different. In particular, the waiting time at which the cross-peak maximum is reached, the decay time, and the value of a plateau at large waiting times were all differing strongly. The differences are explained by reduced sensitivity of the 5th-order signals to modes coupled weakly to the reporter mode and different relaxation dynamics involving overtone state of the tag. The ability of the 5th-order peaks to single out the modes coupled strongly to the reporter can help identifying specific energy relaxation and transport pathways, which will be useful for understanding energy transport dynamics in molecules. The absorptive 5th-order cross peaks were constructed which report on three-point correlation functions. It is shown that in addition to the triple-frequency correlation functions, a correlation of the frequencies with the mode coupling (anharmonicity) can be naturally measured by the 5th-order spectroscopy. The current limit for detecting 5th-order signals was estimated at the level of 1 × 10-3 in reduced anharmonicity, which is determined by the corresponding two