Science.gov

Sample records for 1x1 km grid

  1. Estimating worldwide solar radiation resources on a 40km grid

    SciTech Connect

    Maxwell, E.L.; George, R.L.; Brady, E.H.

    1996-11-01

    During 1995, the National Renewable Energy Laboratory (NREL), initiated the Data Grid Task under the auspices of DOE`s Resource Assessment Program. A data grid is a framework of uniformly spaced locations (grid points) for which data are available. Estimates of monthly averages of direct normal, diffuse horizontal, and global horizontal daily-total solar radiation energy (kWh/m{sup 2}) are being made for each point on a grid covering the US, Mexico, the Caribbean, and southern Canada. The grid points are separated by approximately 40 km. Using interpolation methods, the digital data grid can be used to estimate solar resources at any location. The most encouraging result to date has been the location of sources providing worldwide data for most of the input parameters required for modeling daily total solar radiation. This is a multiyear task expected to continue through the rest of this century.

  2. Magnetic Anomalies of the Fennoscandian Shield on a 2km resolution grid

    NASA Astrophysics Data System (ADS)

    Korhonen, Juha V.; Aaro, Sven; Reidar Skilbrei, Jan; All, Tarmo

    2010-05-01

    Joint magnetic anomaly grid of the Fennoscandian Shield was released 2002, smoothed and used as data for the WDMAM2007. In comparison with MF5 this grid showed superior characteristics to other sets. The data will be released as a 2 km resolution grid for the WDMAM2011 with eventual updates of anomaly levels.

  3. Global 4 km resolution monthly gridded Gross Primary Productivity (GPP) data set derived from FLUXNET2015

    SciTech Connect

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Collier, Nathan

    2016-08-01

    This data set contain global gridded surfaces of Gross Primary Productivity (GPP) at 2 arc minute (approximately 4 km) spatial resolution monthly for the period of 2000-2014 derived from FLUXNET2015 (released July 12, 2016) observations using a representativeness based upscaling approach.

  4. Procedure for locating 10 km UTM grid on Alabama County general highway maps

    NASA Technical Reports Server (NTRS)

    Paludan, C. T. N.

    1975-01-01

    Each county highway map has a geographic grid of degrees and tens of minutes in both longitude and latitude in the margins and within the map as intersection crosses. These will be used to locate the universal transverse mercator (UTM) grid at 10 km intervals. Since the maps used may have stretched or shrunk in height and/or width, interpolation should be done between the 10 min intersections when possible. A table of UTM coordinates of 10 min intersections is required and included. In Alabama, all eastings are referred to a false easting of 500,000 m at 87 deg W longitude (central meridian, CM).

  5. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids

  6. Enabling Grid Computing resources within the KM3NeT computing model

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  7. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  8. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    SciTech Connect

    Thornton, Peter E; Thornton, Michele M; Mayer, Benjamin W; Wilhelmi, Nate; Wei, Yaxing; Devarakonda, Ranjeet; Cook, Robert B

    2014-01-01

    More information: http://daymet.ornl.gov Presenter: Ranjeet Devarakonda Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. The prior product (Version 1) only covered from 1980-2008. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the conterminous United States, Mexico, and Southern Canada as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool [2] and THREDDS (Thematic Real-time Environmental Data Services) Data Server [3]. The Single Pixel Data Extraction Tool allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. Daily data from the nearest 1 km x 1 km Daymet grid cell are extracted from the database and formatted as a table with one column for each Daymet variable and one row for each day. All daily data for selected years are returned as a single (long) table, formatted for display in the browser window. At the top of this table is a link to the same data in a simple comma-separated text format, suitable for import into a

  9. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2.

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.

    2014-12-01

    Daymet: Daily Surface Weather Data and Climatological Summaries provides gridded estimates of daily weather parameters for North America, including daily continuous surfaces of minimum and maximum temperature, precipitation occurrence and amount, humidity, shortwave radiation, snow water equivalent, and day length. The current data product (Version 2) covers the period January 1, 1980 to December 31, 2013 [1]. Data are available on a daily time step at a 1-km x 1-km spatial resolution in Lambert Conformal Conic projection with a spatial extent that covers the North America as meteorological station density allows. Daymet data can be downloaded from 1) the ORNL Distributed Active Archive Center (DAAC) search and order tools (http://daac.ornl.gov/cgi-bin/cart/add2cart.pl?add=1219) or directly from the DAAC FTP site (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1219) and 2) the Single Pixel Tool (http://daymet.ornl.gov/singlepixel.html) and THREDDS (Thematic Real-time Environmental Data Services) Data Server (TDS) (http://daymet.ornl.gov/thredds_mosaics.html). The Single Pixel Data Extraction Tool [2] allows users to enter a single geographic point by latitude and longitude in decimal degrees. A routine is executed that translates the (lon, lat) coordinates into projected Daymet (x,y) coordinates. These coordinates are used to access the Daymet database of daily-interpolated surface weather variables. The Single Pixel Data Extraction Tool also provides the option to download multiple coordinates programmatically. The ORNL DAAC's TDS provides customized visualization and access to Daymet time series of North American mosaics. Users can subset and download Daymet data via a variety of community standards, including OPeNDAP, NetCDF Subset service, and Open Geospatial Consortium (OGC) Web Map/Coverage Service. References: [1] Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., & Cook, R. (2012). "Daymet: Daily surface weather on a 1

  10. Maintenance Production Management (2R1X1)

    DTIC Science & Technology

    2007-11-02

    Occupational Survey Report Burke Burright Occupational Analyst 2R1X1 MAINTENANCE PRODUCTION MANAGEMENT MARCH 2001 Air Force Occupational Measurement...34DD MON YYYY") Title and Subtitle Occupational Survey Report 2R1X1 Maintenance Production Management Contract or Grant Number Program Element...AFSC AWARDING COURSE § Maintenance Production Management Apprentice (J3ABR2R1X1-003) § 6 Weeks, 1 day § 12 Semester Hours for CCAF § Sheppard AFB, TX

  11. Maintenance Production Management AFSC 2R1X1

    DTIC Science & Technology

    2001-05-01

    UNITED STATES AIR FORCE MAINTENANCE PRODUCTION MANAGEMENT AFSC 2R1X1 OSSN 2435 MAY 2001 OCCUPATIONAL ANALYSIS PROGRAM AIR FORCE OCCUPATIONAL...United States Air Force Occupational Survey Report Maintenance Production Management AFSC 2R1X1-OSSN 2435 Contract or Grant Number Program Element...INTENTIONALLY LEFT BLANK vii PREFACE This report presents the results of an Air Force Occupational Survey of the Maintenance Production Management career ladder

  12. MISR 17.6 KM Gridded Cloud Motion Vectors: Overview and Assessment

    NASA Technical Reports Server (NTRS)

    Mueller, Kevin; Garay, Michael; Moroney, Catherine; Jovanovic, Veljko

    2012-01-01

    The MISR (Multi-angle Imaging SpectroRadiometer) instrument on the Terra satellite has been retrieving cloud motion vectors (CMVs) globally and almost continuously since early in 2000. In February 2012 the new MISR Level 2 Cloud product was publicly released, providing cloud motion vectors at 17.6 km resolution with improved accuracy and roughly threefold increased coverage relative to the 70.4 km resolution vectors of the current MISR Level 2 Stereo product (which remains available). MISR retrieves both horizontal cloud motion and height from the apparent displacement due to parallax and movement of cloud features across three visible channel (670nm) camera views over a span of 200 seconds. The retrieval has comparable accuracy to operational atmospheric motion vectors from other current sensors, but holds the additional advantage of global coverage and finer precision height retrieval that is insensitive to radiometric calibration. The MISR mission is expected to continue operation for many more years, possibly until 2019, and Level 2 Cloud has the possibility of being produced with a sensing-to-availability lag of 5 hours. This report compares MISR CMV with collocated motion vectors from arctic rawinsonde sites, and from the GOES and MODISTerra instruments. CMV at heights below 3 km exhibit the smallest differences, as small as 3.3 m/s for MISR and GOES. Clouds above 3 km exhibit larger differences, as large as 8.9 m/s for MISR and MODIS. Typical differences are on the order of 6 m/s.

  13. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  14. Transmission of 112(4×28)-Gb/s PAM-4 Signal over 48.6-km SSMF within only 50-GHz Grid

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Hu, Rong

    2016-12-01

    In this paper, a transmission of 112(4×28)-Gb/s PAM-4 signal is experimentally demonstrated within only 50-GHz grid, achieving an optical spectral efficiency (SE) of 2.24 b/s/Hz. For the intensity modulation and direct detection (IM/DD) based PAM-4 transmission, it is the first time to the best of our knowledge that 112-Gb/s PAM-4 signal has been transmitted over 48.6-km standard single mode fiber (SSMF), which is compatible with 50-GHz standard gridding. By employing digital pre-equalization, duobinary encoding/decoding and 7-level based training sequence aided least-mean square (TS-LMS) algorithm, each lane of the 28-Gb/s PAM-4 signal occupies less than 11-GHz optical spectral (3-dB bandwidth), resulting in negligible inter-channel interference for the 4-lane 112-Gb/s PAM-4 signals within 50-GHz grid. The proposed method is bandwidth and computationally efficient, which is thought feasible in the low-cost short reach optical networks.

  15. AntarcticCRUST-08: New crustal model of Antarctica region based on seismic data - next step for building global crustal model with resolution of 1 x 1 degree

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.

    2009-04-01

    Different tectonic units cover the Antarctic territory: platform, orogen and depression structures. This structural variability is reflected both in thickness and physical properties of the crust. Previous crustal model (CRUST 2.0. Bassin et al. 2000 [1]) have 2x2 degree resolution and don't meet present-day requirements. A lot of new seismic data and regional compilations became available during last several years. We used data of deep seismic reflection, refraction and receiver functions studies as well as existing regional models (e.g. for Maud Land region, Hoffmann et al., 2003 [2]) from published papers and integrate them in a new model at a uniform grid with resolution of 1x1 degree. A new digital 3D model for the crust of Western and Eastern Antarctica and surroundings have been built. The existing data were verified and crosschecked. We present a suite of crustal models within the main tectonic units: West Antarctica rift system (WARS), the Transantarctic Mountains (TAMs), and East Antarctica (EA). As the first result, we demonstrate a new Moho map for the region. The new map demonstrates the large differences with previous models. It turns out that many regions are more heterogeneous than it was demonstrated by the previous compilations. The crustal model comprises 3 layers of crystalline crust. For each of the three basic layers the thickness and the P-wave seismic velocity (Vp) are displayed. The West Antarctic rift system is one of the largest zones of continental extension on the Earth. The seismic data show a thin extended continental crust. Crustal thickness of WARS is variable from 21 km in the Bentley subglacial trench, to 32 km in the southern flank of the Marie Byrd Land. Transantarctic Mountains: 4000 km long, peaks 4 km above Sea Level, 200-300 km wide. TAMs are characterized by the rather strong variations of the Moho depth (28-40 km). Further inland, beneath the TAM, the estimated Moho depths range from 30-33 km (30 km from the coast) to 36

  16. Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs.

    PubMed

    Yu, Jianjun; Zhang, Junwen; Dong, Ze; Jia, Zhensheng; Chien, Hung-Chang; Cai, Yi; Xiao, Xin; Li, Xinying

    2013-07-01

    We experimentally demonstrate a highly filtering-tolerant multi-modulus equalization (MMEQ) process for very aggressively spectrum-shaped 9-ary quadrature-amplitude-modulation (9-QAM)-like polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal to achieve 400-Gb/s wavelength-division-multiplexing (WDM) channels on the 100-GHz grid for ultra-long-haul reach and high tolerance of the filter narrowing effect caused by reconfigurable optical add-drop multiplexers (ROADMs). We successfully transmitted 8 channels 480-Gb/s super-Nyquist (channel occupancy much less than signal baud rate) WDM signals at 100-GHz grid over 25 × 200 km conventional single-mode fiber-28 (SMF-28) with post Raman amplification and 25 ROADMs at a net spectral efficiency (SE) of 4b/s/Hz, after excluding the 20% soft-decision forward-error-correction (FEC) overhead. The system performance is significantly enhanced by the MMEQ based on 9-QAM-like constellations compared to the conventional 4 point QPSK constellation. A record transmission distance over conventional SMF-28 with a large number of ROADMs is firstly reported on the 400-Gb/s channels at 100-GHz grid.

  17. Spatial decorrelation stretch of annual (2003-2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona, and Utah.

    PubMed

    Ch Miliaresis, George

    2016-06-01

    A method is presented for elevation (H) and spatial position (X, Y) decorrelation stretch of annual precipitation summaries on a 1-km grid for SW USA for the period 2003 to 2014. Multiple linear regression analysis of the first and second principal component (PC) quantifies the variance in the multi-temporal precipitation imagery that is explained by X, Y, and elevation (h). The multi-temporal dataset is reconstructed from the PC1 and PC2 residual images and the later PCs by taking into account the variance that is not related to X, Y, and h. Clustering of the reconstructed precipitation dataset allowed the definition of positive (for example, in Sierra Nevada, Salt Lake City) and negative (for example, in San Joaquin Valley, Nevada, Colorado Plateau) precipitation anomalies. The temporal and spatial patterns defined from the spatially standardized multi-temporal precipitation imagery provide a tool of comparison for regions in different geographic environments according to the deviation from the precipitation amount that they are expected to receive as function of X, Y, and h. Such a standardization allows the definition of less or more sensitive to climatic change regions and gives an insight in the spatial impact of atmospheric circulation that causes the annual precipitation.

  18. Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10 km grid-scale resolution

    NASA Astrophysics Data System (ADS)

    Sasai, Takahiro; Obikawa, Hiroki; Murakami, Kazutaka; Kato, Soushi; Matsunaga, Tsuneo; Nemani, Ramakrishna R.

    2016-06-01

    The terrestrial carbon cycle in Asia is highly uncertain, and it affects our understanding of global warming. One of the important issues is the need for an enhancement of spatial resolution, since local regions in Asia are heterogeneous with regard to meteorology, land form, and land cover type, which greatly impacts the detailed spatial patterns in its ecosystem. Thus, an important goal of this study is to reasonably reproduce the heterogeneous biogeochemical patterns in Asia by enhancing the spatial resolution of the ecosystem model biosphere model integrating eco-physiological and mechanistic approaches using satellite data (BEAMS). We estimated net ecosystem production (NEP) over eastern Asia and examined the spatial differences in the factors controlling NEP by using a 10 km grid-scale approach over two different decades (2001-2010 and 2091-2100). The present and future meteorological inputs were derived from satellite observations and the downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) data set, respectively. The results showed that the present NEP in whole eastern Asia was carbon source (-214.9 TgC yr-1) and in future scenarios, the greatest positive (76.4 TgC yr-1) and least negative (-95.9 TgC yr-1) NEPs were estimated from the Representative Concentration Pathways (RCP) 6.0 and RCP8.5 scenarios, respectively. Calculated annual NEP in RCP8.5 was mostly positive in the southern part of East Asia and Southeast Asia and negative in northern and central parts of East Asia. Under the RCP scenario with higher greenhouse gases emission (RCP8.5), deciduous needleleaf and mixed forests distributed in the middle and high latitudes served as carbon source. In contrast, evergreen broadleaf forests distributed in low latitudes served as carbon sink. The sensitivity study demonstrated that the spatial tendency of NEP was largely influenced by atmospheric CO2 and temperature.

  19. Language Learning Actions in Two 1x1 Secondary Schools in Catalonia: The Case of Online Language Resources

    ERIC Educational Resources Information Center

    Calvo, Boris Vázquez; Cassany, Daniel

    2016-01-01

    This paper identifies and describes current attitudes towards classroom digitization and digital language learning practices under the umbrella of EduCAT 1x1, the One-Laptop-Per-Child (OLPC or 1x1) initiative in place in Catalonia. We thoroughly analyze practices worked out by six language teachers and twelve Compulsory Secondary Education (CSE)…

  20. Temporal disaggregation of daily meteorological grid data

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Skaugen, T.

    2012-04-01

    For operational flood forecasting, the Norwegian Water Resources and Energy Administration (NVE) applies the conceptual HBV rainfall-runoff model for 117 catchments. The hydrological models are calibrated and run using an extensive meteorological grid data set providing daily temperature and precipitation data back to 1957 for entire Norway at 1x1 km grid resolution (seNorge grids). The daily temporal resolution is dictated by the resolution of historical meteorological data. However, since meteorological forecasts and runoff observations are also available at a much finer than a daily time-resolution (e.g. 6 hourly), and many hydrological extreme events happens at a temporal scale of less than daily, it is important to try to establish a historical dataset of meteorological input at a finer corresponding temporal resolution. We present a simple approach for the temporal disaggregation of the daily meteorological seNorge grids into 6-hour values by consulting a HIRLAM hindcast grid data series with an hourly time resolution and a 10x10 km grid resolution. The temporal patterns of the hindcast series are used to disaggregate the daily interpolated observations from the seNorge grids. In this way, we produce a historical grid dataset from 1958-2010 with 6-hourly temperature and precipitation for entire Norway on a 1x1 km grid resolution. For validation and to see if additional information is gained, the disaggregated data is compared with observed values from selected meteorological stations. In addition, the disaggregated data is evaluated against daily data, simply split into four fractions. The validation results indicate that additional information is indeed gained and point out the benefit of disaggregated data compared to daily data split into four. With regard to temperature, the disaggregated values show very low deviations (MAE, RMSE), and are highly correlated with observed values. Regarding precipitation, the disaggregated data shows cumulative

  1. Atomic displacement free interfaces and atomic registry in SiO{sub 2}/(1x1) Si(100)

    SciTech Connect

    Shaw, Justin M.; Herbots, N.; Hurst, Q. B.; Bradley, D.; Culbertson, R. J.; Atluri, V.; Queeney, K. T.

    2006-11-15

    We use ion beam analysis to probe the structure and interface of ultrathin thermal oxide films grown on (1x1) Si(100) surfaces prepared using the Herbots-Atluri [U.S. patent No. 6,613,677 (Sept. 2, 2003)] wet chemical clean. We discover that these oxide layers are structurally registered with the substrate lattice with no interfacial structural disorder. Registry of Si atoms is most pronounced along <111> directions relative to the Si substrate, consistent with a {beta}-cristobalite epitaxial phase. This structurally registered phase transitions to an amorphous structure approximately 2 nm from the interface.

  2. Molecular recognition of 6'-N-5-hexynoate kanamycin A and RNA 1x1 internal loops containing CA mismatches.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2011-02-15

    In our previous study to identify the RNA internal loops that bind an aminoglycoside derivative, we determined that 6'-N-5-hexynoate kanamycin A prefers to bind 1x1 nucleotide internal loops containing C·A mismatches. In this present study, the molecular recognition between a variety of RNAs that are mutated around the C·A loop and the ligand was investigated. Studies show that both loop nucleotides and loop closing pairs affect binding affinity. Most interestingly, it was shown that there is a correlation between the thermodynamic stability of the C·A internal loops and ligand affinity. Specifically, C·A loops that had relatively high or low stability bound the ligand most weakly whereas loops with intermediate stability bound the ligand most tightly. In contrast, there is no correlation between the likelihood that a loop forms a C-A(+) pair at lower pH and ligand affinity. It was also found that a 1x1 nucleotide C·A loop that bound to the ligand with the highest affinity is identical to the consensus site in RNAs that are edited by adenosine deaminases acting on RNA type 2 (ADAR2). These studies provide a detailed investigation of factors affecting small molecule recognition of internal loops containing C·A mismatches, which are present in a variety of RNAs that cause disease.

  3. Study on spectroscopic parameters and molecular constants of HC1(X1Σ+) molecule by using multireference configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Niu; Shi, De-Heng; Zhang, Jin-Ping; Zhu, Zun-Lüe; Sun, Jin-Feng

    2010-05-01

    Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HC1(X1Σ+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell-Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, D0, ωeχe, αe and Be). Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants D0, De, Re, ωe, ωeχe, αe and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 nm, 2993.33 cm-1, 52.6273 cm-1, 0.2981 cm-1 and 10.5841 cm-1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrödinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg-Klein-Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.

  4. Mass transport during step motion on the silicon(111) (1x1) surface studied by low energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Angbo

    Atomic steps are common defects at surfaces that can play an important role in many physical phenomena. Step morphology will be affected, or even dictated, by the kinetic processes that mediate growth and its inverse, sublimation. At the same time, competing coarsening processes will occur that depend crucially upon the step line tension through the Gibbs-Thomson relation. A proper description of step morphological phenomena therefore requires accurate knowledge of step line tension, as well as step kinetic parameters. The complex interplay between step kinetic and coarsening effects was investigated on the Si(111) (1x1) surface by examining step motion during island decay using low energy electron microscopy. These investigations provide quantitative information on the step line tension, kinetic length and step permeability. It is shown that the line tension decreases linearly with increasing temperature between 1145 K and 1233 K with a temperature coefficient of .0.14 meV/A K. The kinetic length is determined to be 75a at 1163K, where a is the lattice constant. This locates step motion firmly in the diffusion-limited regime. Steps are also determined to be impermeable in the context of diffusion limited step kinetics. We also find that the role of desorption in island decay increases dramatically in the temperature range (1145--1380 K) that island decay is studied. Consequently, we generalize the current model of island decay to take account of desorption. Evaluation of the island decay time with this model referenced to the temperature-dependent line tension accurately determines activation energies that are central to mass transport and sublimation. Similar investigations of vacancy island decay were also carried out. Surprisingly, island decay and vacancy island decay behavior cannot be explained consistently using any form of model that treats mass transport exclusively in terms of the diffusion of adatoms that are generated at steps. An adatom-vacancy decay

  5. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    PubMed Central

    Cardoso, Adauto Lima; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2015-01-01

    Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes. PMID:26273225

  6. Transition between the 1 x 1 and ({radical}3 x 2{radical}3)R30{degree} surface structures of GaN in the vapor-phase environment

    SciTech Connect

    Munkholm, A.; Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Auciello, O.; Fini, P.; Speck, J. S.; DenBaars, S. P.

    2000-01-12

    Out-of-plane structures of the GaN(0001) surface in the metal-organic chemical vapor deposition (MOCVD) environment have been determined using in situ grazing-incidence X-ray scattering. The authors measured 11{bar 2}{ell} crystal truncation rod intensities at a variety of temperatures and ammonia partial pressures on both sides of the 1 x 1 to ({radical}3 x 2{radical}3)R30{degree} surface phase transition. The out-of-plane structure of the ({radical}3 x 2{radical}3)R30{degree} phase appears to be nearly independent of temperature below the transition, while the structure of the 1 x 1 phase changes increase rapidly as the phase transition is approached from above. A model for the structure of the 1 x 1 phase with a partially-occupied top Ga layer agrees well with the data. The observed temperature dependence is consistent with a simple model of the equilibrium between the vapor phase and the surface coverage of Ga and N. In addition, the authors present results on the kinetics of reconstruction domain coarsening following a quench into the ({radical}3 x 2{radical}3)R30{degree} phase field.

  7. 40Km Into Lebanon,

    DTIC Science & Technology

    1987-07-01

    answer to the difficulties in Palestine, London organized a study of the problem under Lord Peel , a for- mer Secretary of State for India, who in 1937...issued the report of the Commission bearing his name. As Peel saw it, the only solution was to partition Palestine between the two communities. The...minority suggestions. The majority 22 40Km into Lebanon report recommended partition with an economic union, much as Peel had proposed in 1937. A

  8. Equil: A Global Grid System

    NASA Astrophysics Data System (ADS)

    Hahn, Sebastian; Reimer, Christioph; Paulik, Christoph; Wagner, Wolfgang

    2016-08-01

    Geophysical parameters derived from space-borne Earth Observation Systems are either assigned to discrete points on a fixed Earth grid (e.g. regular lon/lat grid) or located on orbital point nodes with a customized arrangement, often in-line with the instrument's measurement geometry. The driving factors of the choice and structure of a spatial reference system (i.e. the grid) are typically spatial resolution, instrument geometry, measurement technique or application.In this study we propose a global grid system, the so- called Equil grid, and demonstrate its realization and structure. An exemplary Equil grid with a base sampling distance of 12.5 km is compared against two other grids commonly used in the domain of remote sensing of soil moisture. The simple nearly-equidistant grid design makes it interesting for a wide range of other geophysical parameters as well.

  9. Medium-energy ion-scattering study of the structure of clean TiO{sub 2}(110)-(1x1)

    SciTech Connect

    Parkinson, G. S.; Munoz-Marquez, M. A.; Quinn, P. D.; Gladys, M. J.; Tanner, R. E.; Woodruff, D. P.; Bailey, P.; Noakes, T. C. Q.

    2006-06-15

    100 keV H{sup +} medium-energy ion scattering has been applied to investigate the surface relaxations of the clean rutile TiO{sub 2}(110)-(1x1) surface structure. A set of blocking curves in four different incident directions show clear differences between the surface and bulk attributable to surface relaxation. Optimized values of the surface relaxation parameters to give the best fit to the surface structure are generally in quite good agreement with a recent experimental determination of this structure using quantitative low-energy electron diffraction. In particular, both solutions favor an outward relaxation of the bridging O atoms on the surface rather than the strong inward displacement favored by the only previous experimental structure determination based on surface x-ray diffraction.

  10. Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1 x 1) and - (1 x 2): simultaneous imaging of surface structures and electronic states.

    PubMed

    Ashino, M; Sugawara, Y; Morita, S; Ishikawa, M

    2001-05-07

    We present simultaneous imaging of TiO2(110)-(1 x 1) and - (1 x 2) using noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM). The surface topography was imaged under NC-AFM feedback, while the surface electronic states were imaged by STM. The image contrasts of NC-AFM and STM were antiphase in (1 x 1) and in phase in (1 x 2). The uppermost oxygen and Ti atoms underneath were, respectively, imaged by NC-AFM and STM. The NC-AFM image contrast was close to the true surface topography in (1 x 2), but reduced in (1 x 1).

  11. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  12. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    SciTech Connect

    Paggel, J.J.; Hasselblatt, M.; Horn, K.

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted in terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.

  13. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  14. KM3NeT

    SciTech Connect

    Jong, M. de; Collaboration: KM3NeT Collaboration

    2015-07-15

    KM3NeT is a large research infrastructure, that will consist of a network of deep-sea neutrino telescopes in the Mediterranean Sea. The main objective of KM3NeT is the discovery and subsequent observation of high-energy neutrino sources in the Universe. A further physics perspective is the measurement of the mass hierarchy of neutrinos. A corresponding study, ORCA, is ongoing within KM3NeT. A cost effective technology for (very) large water Cherenkov detectors has been developed based on a new generation of low price 3-inch photo-multiplier tubes. Following the successful deployment and operation of two prototypes, the construction of the KM3NeT research infrastructure has started. The prospects of the different phases of the implementation of KM3NeT are summarised.

  15. Overture: The grid classes

    SciTech Connect

    Brislawn, K.; Brown, D.; Chesshire, G.; Henshaw, W.

    1997-01-01

    Overture is a library containing classes for grids, overlapping grid generation and the discretization and solution of PDEs on overlapping grids. This document describes the Overture grid classes, including classes for single grids and classes for collections of grids.

  16. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  17. Grids = Structure.

    ERIC Educational Resources Information Center

    Barrington, Linda; Carter, Jacky

    2003-01-01

    Proposes that narrow columns provide a flexible system of organization for designers. Notes that grids serve the content on the pages, help to develop a layout that will clearly direct the reader to information; and prevent visual monotony. Concludes when grid layouts are used, school publications look as good as professional ones. (PM)

  18. Knob manager (KM) operators guide

    SciTech Connect

    1993-10-08

    KM, Knob Manager, is a tool which enables the user to use the SUNDIALS knob box to adjust the settings of the control system. The followings are some features of KM: dynamic knob assignments with the user friendly interface; user-defined gain for individual knob; graphical displays for operating range and status of each process variable is assigned; backup and restore one or multiple process variable; save current settings to a file and recall the settings from that file in future.

  19. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  20. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  1. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  2. Datums, Ellipsoids, Grids, and Grid Reference Systems

    DTIC Science & Technology

    1992-01-01

    Tunisie Grid, Sud Algerie Grid, Sud Maroc Grid, and Sud Tunisie Grid. 4-1.1.8 The...REFERENCES ON THE SUD ALGERIE AND SUD TUNISIE GRIDS 6-8.5.2 When oil reference boxes cannot be accommodated in the margin, the excess is shown in expanses...GIVING REFERENCES ON THE SUD ALGERIE AND SUD TUNISIE GRIDS 6-21 DMA TM 8358.1 I CHAPTER 7 GRIDS ON MAPS AT 1:250,000 AND 1:500,000 SCALE 7.1 GENERAL.

  3. File Specification for the 7-km GEOS-5 Nature Run, Ganymed Release Non-Hydrostatic 7-km Global Mesoscale Simulation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Putman, William; Nattala, J.

    2014-01-01

    This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional

  4. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  5. Towards a 1km resolution global flood risk model

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Neal, Jeff; Sampson, Chris; Smith, Andy

    2014-05-01

    Recent advances in computationally efficient numerical algorithms and new High Performance Computing architectures now make high (1-2km) resolution global hydrodynamic models a realistic proposition. However in many areas of the world the data sets and tools necessary to undertake such modelling do not currently exist. In particular, five major problems need to be resolved: (1) the best globally available terrain data (SRTM) was generated from X-band interferometric radar data which does not penetrate vegetation canopies and which has significant problems in determining ground elevations in urban areas; (2) a global river bathymetry data set does not currently exist; (3) most river channels globally are less than the smallest currently resolvable grid scale (1km) and therefore require a sub-grid treatment; (4) a means to estimate the magnitude of the T year flood at any point along the global river network does not currently exist; and (5) a large proportion of flood losses are generated by off-floodplain surface water flows which are not well represented in current hydrodynamic modelling systems. In this paper we propose solutions to each of these five issues as part of a concerted effort to develop a 1km (or better) resolution global flood hazard model. We describe the new numerical algorithms, computer architectures and computational resources used, and demonstrate solutions to the five previously intractable problems identified above. We conduct a validation study of the modelling against satellite imagery of major flooding on the Mississippi-Missouri confluence plain in the central USA before outlining a proof-of-concept regional study for SE Asia as a step towards a global scale model. For SE Asia we simulate flood hazard for ten different flood return periods over the entire Thailand, Cambodia, Vietnam, Malaysia and Laos region at 1km resolution and show that the modelling produces coherent, consistent and sensible simulations of extent and water depth.

  6. Mixed-Up Sex Chromosomes: Identification of Sex Chromosomes in the X1X1X2X2/X1X2Y System of the Legless Lizards of the Genus Lialis (Squamata: Gekkota: Pygopodidae).

    PubMed

    Rovatsos, Michail; Johnson Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2016-01-01

    Geckos in general show extensive variability in sex determining systems, but only male heterogamety has been demonstrated in the members of their legless family Pygopodidae. In the pioneering study published more than 45 years ago, multiple sex chromosomes of the type X1X1X2X2/X1X2Y were described in Burton's legless lizard (Lialisburtonis) based on conventional cytogenetic techniques. We conducted cytogenetic analyses including comparative genomic hybridization and fluorescence in situ hybridization (FISH) with selected cytogenetic markers in this species and the previously cytogenetically unstudied Papua snake lizard (Lialis jicari) to better understand the nature of these sex chromosomes and their differentiation. Both species possess male heterogamety with an X1X1X2X2/X1X2Y sex chromosome system; however, the Y and one of the X chromosomes are not small chromosomes as previously reported in L. burtonis, but the largest macrochromosomal pair in the karyotype. The Y chromosomes in both species have large heterochromatic blocks with extensive accumulations of GATA and AC microsatellite motifs. FISH with telomeric probe revealed an exclusively terminal position of telomeric sequences in L. jicari (2n = 42 chromosomes in females), but extensive interstitial signals, potentially remnants of chromosomal fusions, in L.burtonis (2n = 34 in females). Our study shows that even largely differentiated and heteromorphic sex chromosomes might be misidentified by conventional cytogenetic analyses and that the application of more sensitive cytogenetic techniques for the identification of sex chromosomes is beneficial even in the classical examples of multiple sex chromosomes.

  7. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  8. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  9. Satellite gravity gradient grids for geophysics.

    PubMed

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-02-11

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  10. Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective.

    PubMed

    Soares, R X; Bertollo, L A C; Cioffi, M B; Costa, G W W F; F Molina, W

    2014-04-03

    Dolphinfishes (Coryphaenidae) are pelagic predators distributed throughout all tropical and subtropical oceans and are very important for commercial, traditional, and sport fishing. This small family contains the Coryphaena hippurus and Coryphaena equiselis species whose chromosomal aspects remain unknown, despite recent advances in cytogenetic data assimilation for Perciformes. In this study, both species were cytogenetically analyzed using different staining techniques (C-, Ag-, and CMA3 banding) and fluorescence in situ hybridization, to detect 18S rDNA and 5S rDNA. C. hippurus females exhibit 2n = 48 chromosomes, with 2m+4sm+42a (NF = 54). In C. equiselis, where both sexes could be analyzed, females displayed 2n = 48 chromosomes (2m+6sm+40a) and males exhibited 2n = 47 chromosomes (3m+6sm+38a) (NF = 56), indicating the presence of X1X1X2X2/X1X2Y multiple sex chromosomes. Sex-chromosome systems are rare in Perciformes, with this study demonstrating the first occurrence in a marine pelagic species. It remains unknown as to whether this system extends to other populations; however, these data are important with respect to evolutionary, phylogenetic, and speciation issues, as well as for elucidating the genesis of this unique sex system.

  11. Parallel grid population

    DOEpatents

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  12. Scientific Grid computing.

    PubMed

    Coveney, Peter V

    2005-08-15

    We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.

  13. Neutral Wind Observations below 200 km altitudes

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Abe, T.; Habu, H.; Kakinami, Y.; Larsen, M. F.; Pfaff, R. F., Jr.; Yamamoto, M.

    2015-12-01

    Neutral Wind Observations below 200 km altitudesS. Watanabe1, T. Abe2, H. Habu2, Y. Kakinami3, M. Larsen4, R. Pfaff5, M. Yamamoto6, M-Y. Yamamoto31Hokkaido University/Hokkaido Information University, 2JAXA/ISAS, 3Kochi University of Technology, 4Clemson University, 5NASA/Goddard Space Flight Center, 6Kyoto University, Neutral wind in the thermosphere is one of the key parameters to understand the ionosphere-thermosphere coupling process. JAXA/ISAS successfully launched sounding rockets from Uchinoura Space Center (USC) on September 2, 2007, January 12, 2012, and July 20, 2013, and NASA launched sounding rockets from Kwajalein on May 7, 2013 and from Wallops on July 4, 2013. The rockets installed Lithium and/or TMA canisters as well as instruments for plasma and electric and magnetic fields. The atomic Lithium gases were released at altitudes between 150 km and 300 km in the evening on September 2, 2007, at altitude of ~100 km in the morning on January 12, 2012, at altitude of ~120km in the midnight on July 20, 2013, at altitude between 150 km and 300 km in the evening on May 7, 2013 and at altitude of ~150 km in the noon on July 4, 2013. The Lithium atoms were scattering sunlight by resonance scattering with wavelength of 670nm. However, the Lithium atoms scattered moon light on July 20, 2013. The moon light scattering is the first time to use for thermospheric wind measurement in the midnight. The Lithium clouds/trails and TMA trails showed clearly the neutral wind shears and atmospheric waves at ~150 km altitude in the lower thermosphere for all local time.

  14. News from KM3NeT

    SciTech Connect

    Katz, Ulrich F.; Collaboration: KM3NeT Collaboration

    2014-11-18

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a multi-cubic-kilometre neutrino telescope and nodes for Earth and Sea sciences. In this report we shortly summarise the genesis of the KM3NeT project and present key elements of its technical design. The physics objectives of the KM3NeT neutrino telescope and some selected sensitivity estimates are discussed. Finally, some first results from prototype operations and the next steps towards implementation – in particular the first construction phase in 2014/15 – are described.

  15. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae).

    PubMed

    Ferreira, Milena; Garcia, Caroline; Matoso, Daniele Aparecida; de Jesus, Isac Silva; Feldberg, Eliana

    2016-10-01

    We analyzed one Bunocephalus coracoideus population from the Negro River basin using cytogenetic techniques. The results showed a diploid number of 42 chromosomes in both sexes, with the karyotypic formula 4m + 14sm + 24a and fundamental number (FN) = 60 for females and the formula 5m + 14sm + 23a and FN = 61 for males, constituting an X1X1X2X2/X1Y1X2Y2 multiple sex chromosome system. The constitutive heterochromatin is distributed in the pericentromeric regions of most of the chromosomes, except for the sex chromosomes, of which the X1, X2, and Y1 chromosomes were euchromatic and the Y2 chromosome was partially heterochromatic. 18S rDNA mapping confirmed the presence of nucleolar organizer regions on the short arms of the fifth chromosomal pair for both sexes. The 5S rDNA is present in the terminal regions of the short arms on the 2nd, 10th, and 12th pairs and on the X2 chromosome of both sexes; however, we observed variations in the presence of these ribosomal cistrons on the Y1 chromosome, on which the cistrons are pericentromeric, and on the Y2 chromosome, on which these cistrons are present in the terminal portions of the short and long arms. Telomeric sequences are located in the terminal regions of all of the chromosomes, particularly conspicuous blocks on the 10th and 12th pairs and internal telomeric sequences in the centromeric regions of the 1st, 6th, and 9th pairs for both sexes. This work describes an new sex chromosomes system for the Siluriformes and increases our genetic knowledge of the Aspredinidae family.

  16. Status of KM3NeT

    NASA Astrophysics Data System (ADS)

    Riccobene, G.

    2016-07-01

    The recent observation of cosmic neutrinos by IceCube has pushed the quest towards the identification of cosmic sources of high-energy particles. The KM3NeT Collaboration is now ready to launch the massive construction of detection units to be installed in deep sea to build a km-cubic size neutrino telescope. The main elements of the detector, the status of the project and the expected perfomances are briefly reported.

  17. Dynamic Power Grid Simulation

    SciTech Connect

    Top, Philip; Woodward, Carol; Smith, Steve; Banks, Lawrence; Kelley, Brian

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  18. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  19. ITIL and Grid services at GridKa

    NASA Astrophysics Data System (ADS)

    Marten, H.; Koenig, T.

    2010-04-01

    The Steinbuch Centre for Computing (SCC) is a new organizational unit of the Karlsruhe Institute of Technology (KIT). Founded in February 2008 as a merger of the previous Institute for Scientific Computing of Forschungszentrum Karlsruhe and the Computing Centre of the Technical University Karlsruhe, SCC provides a broad spectrum of IT services for 8.000 employees and 18.000 students and carries out research and development in key areas of information technology under the same roof. SCC is also known to host the German WLCG [1] Tier-1 centre GridKa. In order to accompany the merging of the two existing computing centres located at a distance of about 10 km and to provide common first class services for science, SCC has selected the IT service management according to the industrial quasi-standard "IT Infrastructure Library (ITIL)" [3] as a strategic element. The paper discusses the implementation of a few ITIL key components from the perspective of a Scientific Computing Centre using examples of Grid services at GridKa.

  20. Parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Loehner, Rainald; Camberos, Jose; Merriam, Marshal

    1991-01-01

    A parallel unstructured grid generation algorithm is presented and implemented on the Hypercube. Different processor hierarchies are discussed, and the appropraite hierarchies for mesh generation and mesh smoothing are selected. A domain-splitting algorithm for unstructured grids which tries to minimize the surface-to-volume ratio of each subdomain is described. This splitting algorithm is employed both for grid generation and grid smoothing. Results obtained on the Hypercube demonstrate the effectiveness of the algorithms developed.

  1. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  2. AstroGrid-PL

    NASA Astrophysics Data System (ADS)

    Stachowski, Greg; Kundera, Tomasz; Ciecielag, Paweł; AstroGridPL Team

    2016-06-01

    We summarise the achievements AstroGrid-PL project, which aims to provide an infrastructure grid computing, distributed storage and Virtual Observatory services to the Polish astronomical community. It was developed from 2011-2015 as a domain grid component within the large PLGrid Plus project for scientific computing in Poland.

  3. GridKit

    SciTech Connect

    Peles, Slaven

    2016-11-06

    GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.

  4. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  5. Reliability of differing densities of sample grids used for the monitoring of forest condition in Europe.

    PubMed

    Köhl, M; Innes, J L; Kaufmann, E

    1994-02-01

    Concern about the possible deterioration of forest health led to the establishment in the 1980s of inventories of forest condition throughout Europe. International standardisation of the programmes was sought and a number of recommendations were made concerning sampling and assessment procedures. One of the most important rulings was that the assessment should be made on a systematic grid, the minimum density of which was 16×16 km. However, many countries adopted denser sampling grids, with 4×4 km being used in several countries and 1×1 km being used in the Netherlands. With five or more years of monitoring completed, there is a growing belief that a rapid and irreversible decline in forest health is not occurring. Consequently, some countries/regions are seeking to reduce their annual investment in forest health monitoring.The precision of national/regional estimates of forest health can be directly related to the sample size. As the sample size decreases, so also does the precision of the estimates. This is illustrated using data collected in Switzerland in 1992 and using grid densities of 4×4 km, 8×8 km, 12×12 km and 16×16 km. The value of the data is dependent on the sample size and the degree to which it is broken down (by region or species). The loss of precision associated with most subdivisions at the 8×8 km grid level remains acceptable, but a sharp deterioration in the precision occurs at the 12×12 km and 16×16 km grid levels. This has considerable implications for the interpretation of the inventories from those countries using a 16×16 km grid. In Switzerland, a reduction from the current 4×4 km grid to an 8×8 km grid (i.e. 75% reduction in sample size) would have relatively little impact on the overall results from the annual inventories of forest health.

  6. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  7. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  8. Which grids are Hamiltonian

    SciTech Connect

    Hedetniemi, S. M.; Hedetniemi, S. T.; Slater, P. J.

    1980-01-01

    A complete grid G/sub m,n/ is a graph having m x n pertices that are connected to form a rectangular lattice in the plane, i.e., all edges of G/sub m,n/ connect vertices along horizontal or vertical lines. A grid is a subgraph of a complete grid. As an illustration, complete grids describe the basic pattern of streets in most cities. This paper examines the existence of Hamiltonian cycles in complete grids and complete grids with one or two vertices removed. It is determined for most values of m,n greater than or equal to 1, which grids G/sub m,n/ - (u) and G/sub m,n/ - (u,v) are Hamiltonian. 12 figures. (RWR)

  9. CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use

    NASA Astrophysics Data System (ADS)

    Keller, V. D. J.; Tanguy, M.; Prosdocimi, I.; Terry, J. A.; Hitt, O.; Cole, S. J.; Fry, M.; Morris, D. G.; Dixon, H.

    2015-01-01

    The Centre for Ecology & Hydrology - Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset was developed to provide reliable 1 km gridded estimates of daily and monthly rainfall for Great Britain (GB) and Northern Ireland (NI) (together with approximately 3500 km2 of catchment in the Republic of Ireland) from 1890 onwards. The dataset was primarily required to support hydrological modelling. The rainfall estimates are derived from the Met Office collated historical weather observations for the UK which include a national database of raingauge observations. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly rainfall grids. To derive the monthly estimates, rainfall totals from monthly and daily (when complete month available) read raingauges were used in order to obtain maximum information from the raingauge network. The daily grids were adjusted so that the monthly grids are fully consistent with the daily grids. The CEH-GEAR dataset was developed according to the guidance provided by the British Standards Institution. The CEH-GEAR dataset contains 1 km grids of daily and monthly rainfall estimates for GB and NI for the period 1890-2012. For each day and month, CEH-GEAR includes a secondary grid of distance to the nearest operational raingauge. This may be used as an indicator of the quality of the estimates. When this distance is greater than 100 km, the estimates are not calculated due to high uncertainty. CEH-GEAR is available free of charge for commercial and non-commercial use subject to licensing terms and conditions. doi:10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e

  10. CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications

    NASA Astrophysics Data System (ADS)

    Keller, V. D. J.; Tanguy, M.; Prosdocimi, I.; Terry, J. A.; Hitt, O.; Cole, S. J.; Fry, M.; Morris, D. G.; Dixon, H.

    2015-06-01

    The Centre for Ecology & Hydrology - Gridded Estimates of Areal Rainfall (CEH-GEAR) data set was developed to provide reliable 1 km gridded estimates of daily and monthly rainfall for Great Britain (GB) and Northern Ireland (NI) (together with approximately 3500 km2 of catchment in the Republic of Ireland) from 1890 onwards. The data set was primarily required to support hydrological modelling. The rainfall estimates are derived from the Met Office collated historical weather observations for the UK which include a national database of rain gauge observations. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall (AAR), was used to generate the daily and monthly rainfall grids. To derive the monthly estimates, rainfall totals from monthly and daily (when complete month available) rain gauges were used in order to obtain maximum information from the rain gauge network. The daily grids were adjusted so that the monthly grids are fully consistent with the daily grids. The CEH-GEAR data set was developed according to the guidance provided by the British Standards Institution. The CEH-GEAR data set contains 1 km grids of daily and monthly rainfall estimates for GB and NI for the period 1890-2012. For each day and month, CEH-GEAR includes a secondary grid of distance to the nearest operational rain gauge. This may be used as an indicator of the quality of the estimates. When this distance is greater than 100 km, the estimates are not calculated due to high uncertainty. CEH-GEAR is available from doi:10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e and is free of charge for commercial and non-commercial use subject to licensing terms and conditions.

  11. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  12. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  13. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  14. Plasma cortisol and testosterone following 19-km and 42-km kayak races.

    PubMed

    Lutoslawska, G; Obminski, Z; Krogulski, A; Sendecki, W

    1991-12-01

    Plasma cortisol and testosterone levels were examined in five, elite, male kayakers before and after 19-km and 42-km kayak races. Both races resulted in significant elevation in plasma cortisol and observed increase is likely to depend on race duration, being much more pronounced after 42-km race compared to 19-km. It should be stressed that observed elevation in cortisol level after 42-km race was higher than reported previously after a marathon run. This finding is in line with reports on hormonal changes in response to arms exercise. Both contests caused a decrease in plasma testosterone level, but the difference between races was not significant. Testosterone/cortisol ratio dropped significantly immediately after the races and the observed decrease was more dominant after the 42-km distance. On the next day, 18 h after the races plasma cortisol, testosterone levels and T/C ratio returned to basal level indicating recuperation from post exercise changes.

  15. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  16. Understanding the Grid

    SciTech Connect

    2016-01-14

    The electric power grid has been rightly celebrated as the single most important engineering feat of the 20th century. The grid powers our homes, offices, hospitals, and schools; and, increasingly, it powers our favorite devices from smartphones to HDTVs. With those and other modern innovations and challenges, our grid will need to evolve. Grid modernization efforts will help the grid make full use of today’s advanced technologies and serve our needs in the 21st century. While the vast majority of upgrades are implemented by private sector energy companies that own and operate the grid, DOE has been investing in technologies that are revolutionizing the way we generate, store and transmit power.

  17. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison

    NASA Astrophysics Data System (ADS)

    He, Qingqing; Zhang, Ming; Huang, Bo; Tong, Xuelian

    2017-03-01

    The recently released Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 introduced a fine scale aerosol optical depth (AOD) distribution, the 3 km product, which is expected to perform well in analyzing aerosols and identifying local air pollution, especially in the severely polluted atmosphere of China. However, few detailed evaluations of regional variations have been conducted. In this paper, we evaluate MODIS 3 km and 10 km AOD products for China against ground-based measurements and compare their performance with respect to spatial and temporal variations. The ground validations indicate that the two products are generally correlated well to ground-based observations. Spatially, the 3 km product slightly outperform the 10 km product in well-developed areas of southern China. Temporally, both products perform worse during spring and summer. Atmospheric clouds and underlying surface are two key factors that influence the accuracy and number of retrievals for both products. The comparison analysis reveals the newly introduced AOD product clearly shows good relationships with the coarse resolution retrievals in spatial and temporal variation but significant differences regarding details. The 3 km AOD product provides better aerosol gradients, more retrievals in bare areas of western China and some spikes of diurnal variation in cloudy days. Seasonal comparisons show the 3 km AOD product is higher than the 10 km product in all seasons, especially during spring and summer. Although the 3 km product for China generally performs slightly worse than the 10 km product, the added information of the MODIS 3 km AOD product shows potential for studying local aerosol characterization, and may facilitate studies of air pollution.

  18. The estimation of 550 km x 550 km mean gravity anomalies. [from free atmosphere gravimetry data

    NASA Technical Reports Server (NTRS)

    Williamson, M. R.; Gaposchkin, E. M.

    1975-01-01

    The calculation of 550 km X 550 km mean gravity anomalies from 1 degree X 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula was used, and estimates for 1452 of the 1654 blocks were obtained.

  19. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  20. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  1. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  2. Unstructured surface grid generation

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1993-01-01

    Viewgraphs on unstructured surface grid generation are presented. Topics covered include: requirements for curves, surfaces, solids, and text; surface approximation; triangulation; advancing; projection; mapping; and parametric curves.

  3. Applying WebMining on KM system

    NASA Astrophysics Data System (ADS)

    Shimazu, Keiko; Ozaki, Tomonobu; Furukawa, Koichi

    KM (Knowledge Management) systems have recently been adopted within the realm of enterprise management. On the other hand, data mining technology is widely acknowledged within Information systems' R&D Divisions. Specially, acquisition of meaningful information from Web usage data has become one of the most exciting eras. In this paper, we employ a Web based KM system and propose a framework for applying Web Usage Mining technology to KM data. As it turns out, task duration varies according to different user operations such as referencing a table-of-contents page, down-loading a target file, and writing to a bulletin board. This in turn makes it possible to easily predict the purpose of the user's task. By taking these observations into account, we segmented access log data manually. These results were compared with results abstained by applying the constant interval method. Next, we obtained a segmentation rule of Web access logs by applying a machine-learning algorithm to manually segmented access logs as training data. Then, the newly obtained segmentation rule was compared with other known methods including the time interval method by evaluating their segmentation results in terms of recall and precision rates and it was shown that our rule attained the best results in both measures. Furthermore, the segmented data were fed to an association rule miner and the obtained association rules were utilized to modify the Web structure.

  4. Km3Net Italy - Seafloor network

    NASA Astrophysics Data System (ADS)

    Papaleo, Riccardo

    2016-04-01

    The KM3NeT European project aims to construct a large volume underwater neutrino telescope in the depths of the Mediterranean Sea. INFN and KM3NeT collaboration, thanks to a dedicated funding of 21.000.000 € (PON 2007-2013), are committed to build and deploy the Phase 1 of the telescope, composed of a network of detection units: 8 towers, equipped with single photomultiplier optical modules, and 24 strings, equipped with multi-photomultipliers optical modules. All the towers and strings are connected to the main electro optical cable by means of a network of junction boxes and electro optical interlink cables. Each junction box is an active node able to provide all the necessary power to the detection units and to guarantee the data transmission between the detector and the on-shore control station. The KM3NeT Italia project foresees the realization and the installation of the first part of the deep sea network, composed of three junction boxes, one for the towers and two for the strings. In July 2015, two junction boxes have been deployed and connected to the new cable termination frame installed during the same sea campaign. The third and last one will be installed in November 2015. The status of the deep sea network is presented together with technical details of the project.

  5. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; Kossin, James P.; Lee, Hai-Tien; Loew, Alexander; Magnusdottir, Gudrun

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  6. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  7. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  8. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  9. New Global Bathymetry and Topography Model Grids

    NASA Astrophysics Data System (ADS)

    Smith, W. H.; Sandwell, D. T.; Marks, K. M.

    2008-12-01

    A new version of the "Smith and Sandwell" global marine topography model is available in two formats. A one-arc-minute Mercator projected grid covering latitudes to +/- 80.738 degrees is available in the "img" file format. Also available is a 30-arc-second version in latitude and longitude coordinates from pole to pole, supplied as tiles covering the same areas as the SRTM30 land topography data set. The new effort follows the Smith and Sandwell recipe, using publicly available and quality controlled single- and multi-beam echo soundings where possible and filling the gaps in the oceans with estimates derived from marine gravity anomalies observed by satellite altimetry. The altimeter data have been reprocessed to reduce the noise level and improve the spatial resolution [see Sandwell and Smith, this meeting]. The echo soundings database has grown enormously with new infusions of data from the U.S. Naval Oceanographic Office (NAVO), the National Geospatial-intelligence Agency (NGA), hydrographic offices around the world volunteering through the International Hydrographic Organization (IHO), and many other agencies and academic sources worldwide. These new data contributions have filled many holes: 50% of ocean grid points are within 8 km of a sounding point, 75% are within 24 km, and 90% are within 57 km. However, in the remote ocean basins some gaps still remain: 5% of the ocean grid points are more than 85 km from the nearest sounding control, and 1% are more than 173 km away. Both versions of the grid include a companion grid of source file numbers, so that control points may be mapped and traced to sources. We have compared the new model to multi-beam data not used in the compilation and find that 50% of differences are less than 25 m, 95% of differences are less than 130 m, but a few large differences remain in areas of poor sounding control and large-amplitude gravity anomalies. Land values in the solution are taken from SRTM30v2, GTOPO30 and ICESAT data

  10. Study of a close-grid geodynamic measurement system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Clogeos (Close-Grid Geodynamic Measurement System) concept, a complete range or range-rate measurement terminal installed in a satellite in a near-polar orbit with a network of relatively simple transponders or retro-reflectors on the ground at intervals of 0.1 to 10 km was reviewed. The distortion of the grid was measured in three dimensions to accuracies of + or - 1 cm with important applications to geodynamics, glaciology, and geodesy. User requirements are considered, and a typical grid, designed for earthquake prediction, was laid out along the San Andreas, Hayward, and Calaceras faults in southern California. The sensitivity of both range and range-rate measurements to small grid motions was determined by a simplified model. Variables in the model are satellite altitude and elevation angle plus grid displacements in latitude, and height.

  11. Optimization Of A Computational Grid

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.

    1993-01-01

    In improved method of generation of computational grid, grid-generation process decoupled from definition of geometry. Not necessary to redefine boundary. Instead, continuous boundaries in physical domain specified, and then grid points in computational domain mapped onto continuous boundaries.

  12. Twisted light transmission over 143 km

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-11-01

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

  13. 45-km horizontal path optical link demonstration

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Wright, Malcolm W.; Sanii, Babak; Page, Norman A.

    2001-06-01

    Observations made during a mountain-top-to-mountain-top horizontal optical link demonstration are described. The optical link spans a range of 46 Km at an average altitude of 2 Km above sea level. A multibeam beacon comprised of eight laser beams emerging from four multimode fiber coupled lasers (780 nm) is launched through a 0.6 m diameter telescope located at the JPL Table Mountain Facility (TMF) in Wrightwood, California. The multibeam beacon is received at Strawberry Peak located in the San Bernardino Mountains of California. The NASA, JPL developed optical communications demonstrator (OCD) receives the beacon, senses the atmospheric turbulence induced motion and using an upgraded fine steering loop actively points a communications laser beam (852 nm, 400 Mbps on-off key modulated, PN7 pseudo random bit sequence) to TMF. The eight-beam beacon allowed a four-fold reduction in normalized irradiance or scintillation index. This in turn was sufficient to eliminate beacon fades sensed by the OCD and enable performance evaluation of the fine steering loop. The residual tracking error was determined to be +/- 1.1 to +/- 1.7 (mu) rad compared to a model prediction of +/- 3.4 (mu) rad. The best link performance observed showed average bit error rates (BER) of 1E-5 over long durations (30 seconds); however, instantaneous BERs of at least 0.8E-6 over durations of 2 ms were observed. The paper also discusses results pertaining to atmospheric effects, link analysis, and overall performance.

  14. Twisted light transmission over 143 km.

    PubMed

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-11-29

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

  15. Grid Data Management and Customer Demands at MeteoSwiss

    NASA Astrophysics Data System (ADS)

    Rigo, G.; Lukasczyk, Ch.

    2010-09-01

    Data grids constitute the required input form for a variety of applications. Therefore, customers increasingly expect climate services to not only provide measured data, but also grids of these with the required configurations on an operational basis. Currently, MeteoSwiss is establishing a production chain for delivering data grids by subscription directly from the data warehouse in order to meet the demand for precipitation data grids by governmental, business and science customers. The MeteoSwiss data warehouse runs on an Oracle database linked with an ArcGIS Standard edition geodatabase. The grids are produced by Unix-based software written in R called GRIDMCH which extracts the station data from the data warehouse and stores the files in the file system. By scripts, the netcdf-v4 files are imported via an FME interface into the database. Currently daily and monthly deliveries of daily precipitation grids are available from MeteoSwiss with a spatial resolution of 2.2km x 2.2km. These daily delivered grids are a preliminary based on 100 measuring sites whilst the grid of the monthly delivery of daily sums is calculated out of about 430 stations. Crucial for the absorption by the customers is the understanding of and the trust into the new grid product. Clearly stating needs which can be covered by grid products, the customers require a certain lead time to develop applications making use of the particular grid. Therefore, early contacts and a continuous attendance as well as flexibility in adjusting the production process to fulfill emerging customer needs are important during the introduction period. Gridding over complex terrain can lead to temporally elevated uncertainties in certain areas depending on the weather situation and coverage of measurements. Therefore, careful instructions on the quality and use and the possibility to communicate the uncertainties of gridded data proofed to be essential especially to the business and science customers who require

  16. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  17. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  18. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  19. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  20. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    Because km-scale shear zones play a first-order role in lithospheric kinematics, accurate conceptual and numerical models of orogenic development require predicting when and where they form. Although a strain-based algorithm in the upper crust for weakening due to faulting appears to succeed (e.g., Koons et al., 2010, doi:10.1029/2009TC002463), a comparable general rule for the viscous crust remains unestablished. Here we consider two aspects of the geological argument for a similar algorithm in the viscous regime, namely (1) whether predicting km-scale shear zone development based on a single parameter (such as strain or shear heating) is reasonable; and (2) whether lithologic variability inherent in most orogenic systems precludes a simple predictive rule. A review of tectonically significant shear zones worldwide and more detailed investigations in the Central Gneiss belt of the Ontario segment of the Grenville Province reveals that most km-scale shear zones occur at lithological boundaries and involve mass transfer, but have fairly little else in common. As examples, the relatively flat-lying Twelve Mile Bay shear zone in the western Central Gneiss belt bounds the Parry Sound domain and is likely the product of both localized anatexis and later retrograde hydration with attendant metamorphism. Moderately dipping shear zones in granitoids of the Grenville Front Tectonic Zone apparently resulted from cooperation among several complementary microstructural processes, such as grain size reduction, enhanced diffusion, and a small degree of metamorphic reaction. Localization into shear zones requires the operation of some spatially restricted processes such as stress concentration, metamorphism/fluid access, textural evolution, and thermal perturbation. All of these could be due in part to strain, but not necessarily linearly related to strain. Stress concentrations, such as those that form at rheological boundaries, may be sufficient to nucleate high strain

  1. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  2. The creation of future daily gridded datasets of precipitation and temperature with a spatial weather generator, Cyprus 2020-2050

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred

    2014-05-01

    High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were

  3. Surface grid generation for multi-block structured grids

    NASA Astrophysics Data System (ADS)

    Spekreijse, S. P.; Boerstoel, J. W.; Kuyvenhoven, J. L.; van der Marel, M. J.

    A new grid generation technique for the computation of a structured grid on a generally curved surface in 3D is discussed. The starting assumption is that the parameterization of the surface exists, i.e. a smooth geometrical shape function exists which maps the parametric space (the unit square) one-to-one on the surface. The grid generation system computes a grid on the surface with as boundary conditions the following data specified along the four edges of the surface: (1) the position of the boundary grid points, (2) the grid line slopes at the boundary grid points, (3) the first grid cell lengths at the boundary grid points. The fourth-order elliptic biharmonic equations are used to compute the two families of grid lines in the parametric space. After that, each grid point in the parametric space is found as the intersection point between two individual grid lines, one from each family. The grid points on the surface are finally found by mapping the grid points in the parametric space on the surface via the geometrical shape function. Results are shown for an O-type 2D Euler grid, a C-type 2D Navier-Stokes grid and on some curved surfaces in 3D space.

  4. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  5. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  6. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  7. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  8. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  9. High-resolution polar climate parameters derived from 1-km AVHRR data

    SciTech Connect

    Hutchinson, T.A.; Scambos, T.A.

    1997-11-01

    This paper describes the development of a time-series of composites of albedo, surface temperature, and sea ice motion. The composites will be generated from high-resolution (Local Area Coverage and High Resolution Picture Transmission) Advanced Very High Resolution Radiometer (AVHRR). Composites of albedo and surface (skin) temperature will be derived from AVHRR data within three hours of two selected local times (0400 and 1400 for the northern hemisphere, and 0200 and 1600 for the southern hemisphere) for each day. These products will be gridded at 1.25 km cell size in an equal-area projection compatible with recent gridded products from Special Sensor Microwave/Imager data and planned products from the TIROS Operational Verticle Sounder and other AVHRR data sets. Sea ice motion will be calculated once per day by comparing clear-sky image data of sea ice over a three-day period, and reported on a 1.25 km grid. A brief discussion of a reconnaissance survey of the output geophysical parameters for the Northern Hemisphere between August and October 1993 is also presented. 9 refs., 5 figs., 2 tabs.

  10. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  11. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  12. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  13. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  14. Grid generation strategies for turbomachinery configurations

    NASA Technical Reports Server (NTRS)

    Lee, K. D.; Henderson, T. L.

    1991-01-01

    Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples.

  15. 45 Km Horizontal Path Optical Link Experiment

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Ceniceros, J.; Novak, M.; Jeganathan, M.; Portillo, A.; Erickson, D.; Depew, J.; Sanii, B.; Lesh, J. R.

    2000-01-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. ne NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 run beacon and the OCD sending back a 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 km above sea level, covers a range of 46.8 km and provides an atmospheric channel equivalent to approx. 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance (sigma(sup 2, sub I)) for the 4-beam beacon, compared to each individual beam, at SP, was from approx. 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The sigma(sup2, sub I) measured at TMF approx. 0.43 +/- 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approx. 162 +/- 6 microns at the TMF Coude and approx. 64 +/- 3 microns on the OCD compare to the predicted size range of 52 - 172 microns and 57 - 93 microns, respectively. This is consistent with 4 - 5 arcsec of atmospheric "seeing". The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approx. 3.3 micro rad compared to approx. 1.7 micro rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the OCD tracking sensor. The best bit error rates observed while

  16. Arc Length Based Grid Distribution For Surface and Volume Grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  17. Teleportation of entanglement over 143 km.

    PubMed

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

  18. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  19. Extreme precipitation events in southestearn France in a high-resolution regional climate model : comparison of a 12 km and a 50 km hindcast with ALADIN-Climate

    NASA Astrophysics Data System (ADS)

    Colin, Jeanne; Déqué, Michel; Sanchez Gomez, Emilia; Somot, Samuel

    2010-05-01

    We present a comparison of the modelling of intense precipitations over France in two regional climate simulations performed with the Limited Area Model (LAM) ALADIN-Climate, run at a 12 km and a 50 km resolution. In both experiments, the model is forced by the ERA40 re-analysis over the 1958-2000 period. We focus on the representation of the highest precipitation extremes occuring in southeastern France in Autumn. These events involve small-scale processes than can be explicitly resolved only with 2-1 km resolution non-hydrostatic models. However, previous studies have shown that regional climate models are able to simulate heavy rainfalls in this area, although the amounts of rain are much smaller than the ones that are actually observed. Here, we further explore the ability of ALADIN-Climate in reproducing these specific events and the possible added-value of a higher resolution regarding this matter. Indeed, driving the LAM with ERA40 allows the LAM to stick to the real chronology and therefore enables us to analyze its results not only from a statistical point of view but also through day-to-day diagnosis. First, we assess the performances of the model at the 12 km and 50 km resolutions by comparing the simulated daily precipitations with observations over the south east part of France. To do so, we use the high-resolution gridded SAFRAN analysis which provides series of hourly fields over the french territory at a 8 km resolution, from 1958 to 2008. We consider the differences in the upper quantiles of precipitations between the model and the data, as well as the time correlations of heavy rainfalls and the spatial rain patterns for given extreme events. Then we compare the performances of ALADIN-Climate in both simulations to the ones obtained with a statistical downscaling method we apply to the last twenty years of the ERA40 period. This method is based on a weather regime approach and uses the analog methodology (Boé and Terray, 2007) to reconstruct

  20. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  1. Can Clouds replace Grids? Will Clouds replace Grids?

    NASA Astrophysics Data System (ADS)

    Shiers, J. D.

    2010-04-01

    The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.

  2. Peregrine 100-km Sounding Rocket Project

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory

    2012-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University, and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of this technology to a small launch system. The approach is to design, build, and fly a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked off in October of 2006 and has seen considerable progress in the subsequent 18 months. This research group began studying liquifying hybrid rocket fuel technology more than a decade ago. The overall goal of the research was to gain a better understanding of the fundamental physics of the liquid layer entrainment process responsible for the large increase in regression rate observed in these fuels, and to demonstrate the effect of increased regression rate on hybrid rocket motor performance. At the time of this reporting, more than 400 motor tests were conducted with a variety of oxidizers (N2O, GOx, LOx) at ever increasing scales with thrust levels from 5 to over 15,000 pounds (22 N to over 66 kN) in order to move this technology from the laboratory to practical applications. The Peregrine program is the natural next step in this development. A number of small sounding rockets with diameters of 3, 4, and 6 in. (7.6, 10.2, and 15.2 cm) have been flown, but Peregrine at a diameter of 15 in. (38.1 cm) and 14,000-lb (62.3-kN) thrust is by far the largest system ever attempted and will be one of the largest hybrids ever flown. Successful Peregrine flights will set the stage for a wide range of applications of this technology.

  3. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  4. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  5. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  6. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  7. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  8. KM3NeT: towards a km 3-scale neutrino telescope in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Distefano, C.; KM3NeT Consortium

    2009-05-01

    The observation of high energy neutrinos ( ≳1 TeV) from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. Theoretical predictions indicate that km 3-scale detectors are needed to detect astrophysical neutrino fluxes. That is the reason why the three Mediterranean experiments, ANTARES, NEMO and NESTOR are working together on preparing KM3NeT, a large deep-sea neutrino telescope in the Mediterranean Sea which will survey a large part of the Galactic disc, including the Galactic Centre. It will complement the IceCube telescope currently under construction at the South Pole. Furthermore, the improved optical properties of sea water, compared to Antarctic ice, will allow for a better angular resolution and hence a better background rejection. The construction of this detector will require the solution of technological problems common to many deep submarine installations, and will help paving the way for other deep-sea research facilities. In this paper the major activities and the status of KM3NeT are presented.

  9. KM3NeT: towards a km3-scale neutrino telescope in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Km3NeT Consortium; Distefano, C.; KM3NeT Consortium

    2009-05-01

    The observation of high energy neutrinos (≳1 TeV) from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. Theoretical predictions indicate that km3-scale detectors are needed to detect astrophysical neutrino fluxes. That is the reason why the three Mediterranean experiments, ANTARES, NEMO and NESTOR are working together on preparing KM3NeT, a large deep-sea neutrino telescope in the Mediterranean Sea which will survey a large part of the Galactic disc, including the Galactic Centre. It will complement the IceCube telescope currently under construction at the South Pole. Furthermore, the improved optical properties of sea water, compared to Antarctic ice, will allow for a better angular resolution and hence a better background rejection. The construction of this detector will require the solution of technological problems common to many deep submarine installations, and will help paving the way for other deep-sea research facilities. In this paper the major activities and the status of KM3NeT are presented.

  10. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  11. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  12. Characterizing the 410 km discontinuity low-velocity layer beneath the LA RISTRA array in the North American Southwest

    NASA Astrophysics Data System (ADS)

    Jasbinsek, John J.; Dueker, Ken G.; Hansen, Steven M.

    2010-03-01

    Receiver functions recorded by the 54-station 920 km long Program for Array Seismic Studies of the Continental Lithosphere-Incorporated Research Institutions for Seismology Colorado Plateau/Rio Grande Rift Seismic Transect Experiment (LA RISTRA) line array display a pervasive negative polarity P to S conversion (Pds) arrival preceding the positive polarity 410 km discontinuity arrival. These arrivals are modeled as a low-velocity layer atop the 410 km discontinuity (410-LVL) and are inverted for a velocity profile via a grid search using a five-parameter linear gradient velocity model. Model parameter likelihood and correlations are assessed via calculation of one- and two-dimensional marginal posterior probability distributions. The maximum likelihood model parameter values found are top velocity gradient thickness of 0.0 km with a 4.6% (-0.22 km/s) shear velocity reduction, a 19.8 km constant velocity layer, and bottom gradient thickness of 25.0 km with a 3.5% (+0.17 km/s) shear velocity increase. The estimated mean thickness of the 410-LVL is 32.3 km. The top gradient of the 410-LVL is sharp within vertical resolution limits of P to S conversion (<10 km), and the diffuse 410 km velocity gradient is consistent with hydration of the olivine-wadsleyite phase transformation. The 410-LVL is interpreted as a melt layer created by the Transition Zone Water Filter model. Two secondary observations are found: (1) the 410-LVL is absent from the SE end of the array and (2) an intermittent negative polarity P525s arrival is observed. We speculate that upper mantle shear velocity anomalies above the 410 km discontinuity may manifest Rayleigh-Taylor instabilities nucleated from the 410-LVL melt layer that are being shed upward on time scales of tens of millions of years.

  13. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  14. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  15. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  16. A New Data Product: Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2015-12-01

    Gridded uncertainty maps of fossil fuel carbon dioxide (FFCO2) emissions are a new data product that is currently in the process of being completed and published. This work is based on the relatively new assessment of the uncertainty associated with the mass of FFCO2 emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616). The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year

  17. Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions: A New Data Product

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2014-12-01

    With the publication of a new assessment of the uncertainty associated with the mass of fossil fuel carbon dioxide (FFCO2) emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616), it is now possible to extend that work with a gridded map of fossil fuel emission uncertainties. The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, for the first time, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year 1950 to 2010. The start

  18. Grid-based Meteorological and Crisis Applications

    NASA Astrophysics Data System (ADS)

    Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin

    2010-05-01

    We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog

  19. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  20. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  1. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  2. Grids of Agricultural Pesticide Use in the Conterminous United States, 1992

    USGS Publications Warehouse

    Nakagaki, Naomi

    2007-01-01

    This spatial dataset consists of 199 1-kilometer (km) resolution grids depicting estimated agricultural use of 199 pesticides in 1992 for the conterminous United States. Each grid cell value in the national grids of this dataset is the estimated total kilograms (kg) of a pesticide applied to row crops, small grain crops and fallow land,pasture and hay crops, and orchard and vineyard crops within the 1- by 1-km area. Nonagricultural uses of pesticides are not included in this dataset. Of the 199 pesticides represented in the grids, 92 are herbicides, 58 are insecticides, and 32 are fungicides. The remaining 17 grids are composed of the category "other pesticides", which consists of fumigants, growth regulators, and defoliants. Although this data set is referenced to 1992, it generally represents a composite of estimated pesticide use during the early 1990s.

  3. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  4. Photofabricated Wire-Grid Polarizers

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.

    1992-01-01

    Freestanding metallic grids for use as polarizers for electromagnetic radiation at millimeter and submillimeter wavelengths made by simple modification of designs of freestanding square- and nearly-square cell metallic grids, according to proposal. Cross wires provide mechanical support, but distance between cross wires made greater than one wavelength so cross wires have little effect on polarizing characteristics of grid. Possible to fabricate grids commercially for frequencies up to several terahertz.

  5. Applications of algebraic grid generation

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Smith, Robert E.

    1990-01-01

    Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.

  6. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  7. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  8. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  9. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution.

    PubMed

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-12-08

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the 'bioclim' framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the 'r.stream.watersheds' and 'r.stream.variables' add-ons for the GRASS GIS software.

  10. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  11. A Programmable Calculator Activity, x = 1/x + 1.

    ERIC Educational Resources Information Center

    Snover, Stephen L.; Spikell, Mark A.

    An activity for secondary schools is presented and discussed which may be explored with a programmable calculator. The activity is non-standard and could not be easily explored without the use of a programmable calculator. Related activities are also discussed. Flow charts and programs for different programmable calculators are presented. (MP)

  12. Dental Laboratory Career Ladder (AFSC 4Y1X1)

    DTIC Science & Technology

    1994-08-01

    analysis identified one job cluster and seven jobs: Base Dental Lab cluster, Orthodontic Appliance Fabricator job, Fixed Restoration Fabricator job, Crown...reline and repair, removable partial denture construction, crown and fixed partial denture construction, fabrication of orthodontic appliances, and...CLUSTER (STG26, N=271) II. ORTHODONTIC APPLIANCE FABRICATOR JOB (STG40, N=7) III. FIXED RESTORATION FABRICATOR JOB (STG75, N=25) IV. CROWN FABRICATOR

  13. An Evaluation of Publicly Available Global Bathymetry Grids

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H. F.

    2006-03-01

    We evaluate the strengths and weaknesses of six publicly available global bathymetry grids: DBDB2 (Digital Bathymetric Data Base; an ongoing project of the Naval Research Laboratory), ETOPO2 (Earth Topography; National Geophysical Data Center, 2001, ETOPO2 Global 2’ Elevations [CD-ROM]. Boulder, Colorado, USA: U.S. Department of Commerce, National Oceanic and Atmospheric Administration), GEBCO (General Bathymetric Charts of the Oceans; British Oceanographic Data Centre, 2003, Centenary Edition of the GEBCO Digital Atlas [CD-ROM] Published on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization Liverpool, UK), GINA (Geographic Information Network of Alaska; Lindquist et al., 2004), Smith and Sandwell (1997), and S2004 (Smith, unpublished). The Smith and Sandwell grid, derived from satellite altimetry and ship data combined, provides high resolution mapping of the seafloor, even in remote regions. DBDB2, ETOPO2, GINA, and S2004 merge additional datasets with the Smith and Sandwell grid; but moving from a pixel to grid registration attenuates short wavelengths (<20 km) in the ETOPO2 and DBDB2 solutions. Short wavelengths in the GINA grid are also attenuated, but the cause is not known. ETOPO2 anomalies are offset to the northeast, due to a misregistration in both latitude and longitude. The GEBCO grid is interpolated from 500 m contours that were digitized from paper charts at 1:10 million scale, so it is artificially smooth; yet new efforts have captured additional information from shallow water contours on navigational charts. The S2004 grid merges the Smith and Sandwell grid with GEBCO over shallow depths and polar regions, and so is intended to capture the best of both products. Our evaluation makes the choice of which bathymetry grid to use a more informed one.

  14. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  15. Shuttle computational grid generation

    NASA Technical Reports Server (NTRS)

    Ing, Chang

    1987-01-01

    The well known Karman-Trefftz conformal transformation, consisting of repeated applications of the same basic formula, were found to be quite successful to body, wing, and wing-body cross sections. This grid generation technique is extended to cross sections of more complex forms, and also more automatic. Computer programs were written for the selection of hinge points on cross section with angular shapes, the Karman-Trefftz tranformation of arbitrary shapes, and the special transform of hinge point on the imaginary axis. A feasibility study is performed for the future application of conformal mapping grid generation to complex three dimensional configurations. Examples such as Orbiter vehicle section and a few others were used.

  16. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  17. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  18. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  19. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  20. Constructing the ASCI computational grid

    SciTech Connect

    BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

    2000-06-01

    The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

  1. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  2. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  3. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  4. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  5. An Assessment of New Satellite Data Products for the Development of a Long-Term Global Solar Resource at 10-100 km

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Minnis, Patrick; Perez, Richard; Sengupta, Manajit; Knapp, Kenneth; Mikovitz, J. Colleen; Schlemmer, James; Scarino, Benjamin; Zhang, Taiping; Cox, Stephen J.

    2016-01-01

    A project representing an effort to reprocess the NASA based solar resource data sets is reviewed. The effort represented a collaboration between NASA, NOAA, NREL and the SUNY-Albany and aimed to deliver a 10 km resolution, 3-hourly data set spanning from 1983 through near-present. Part of the project was to transition project capability to NREL for annual processing to extend data set. Due to delays in the key input project called ISCCP, we evaluate only Beta versions of this data set and also introduce the potential use of another NASA Langley based cloud data set for the CERES project. The CERES project uses these cloud properties to compute global top-of-atmosphere and surface fluxes at the 1x1 degree resolution. Here, we also briefly discuss these data sets in potential usage for solar resource benchmarking.

  6. An Assessment of New Satellite Data Products for the Development of a Long-Term Global Solar Resource at 10-100 km

    SciTech Connect

    Stackhouse Jr., Paul W.; Minnis, Patrick; Perez, Richard; Sengupta, Manajit; Knapp, Kenneth; Mikovitz, J. Colleen; Schlemmer, James; Scarino, Benjamin; Zhang, Taiping; Cox, Stephen J.

    2016-07-01

    A project representing an effort to reprocess the NASA based solar resource data sets is reviewed. The effort represented a collaboration between NASA, NOAA, NREL and the SUNY-Albany and aimed to deliver a 10 km resolution, 3-hourly data set spanning from 1983 through near-present. Part of the project was to transition project capability to NREL for annual processing to extend data set. Due to delays in the key input project called ISCCP, we evaluate only Beta versions of this data set and also introduce the potential use of another NASA Langley based cloud data set for the CERES project. The CERES project uses these cloud properties to compute global top-of-atmosphere and surface fluxes at the 1x1 degree resolution. Here, we also briefly discuss these data sets in potential usage for solar resource benchmarking.

  7. Microphysical Model of the Venus clouds between 40km and 80km

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin

    2013-10-01

    I am continuing to adapt the Community Aerosol and Radiation Model for Atmospheres (CARMA) to successfully simulate the multi-layered clouds of Venus. The present version of the one-dimensional model now includes a simple parameterization of the photochemicial production of sulfuric acid around altitudes of 62km, and its thermochemical destruction below cloud base. Photochemical production in the model is limited by the availability of water vapor and insolation. Upper cloud particles are introduced into the model via binary homogeneous nucleation, while the lower and middle cloud particles are created via activation of involatile cloud condensation nuclei. Growth by condensation and coagulation and coalescence are also treated. Mass loadings and particle sizes compare favorably with the in situ observations by the Pioneer Venus Large Probe Particle Size Spectrometer, and mixing ratios of volatiles compare favorably with remotely sensed observations of water vapor and sulfuric acid vapor. This work was supported by the NASA Planetary Atmospheres Program, grant number NNX11AD79G.

  8. Grid crusher apparatus and method

    SciTech Connect

    McDaniels, J.D. Jr.

    1994-01-11

    A grid crusher apparatus and method are provided for a nuclear fuel rod consolidation system. Spacer grids are crushed within a basket which is then placed in a storage canister. The grid crusher apparatus has a ram assembly and a basket driving mechanism. The ram assembly has a sleeve ram and a central ram. The sleeve ram surrounds the central ram which is longitudinally movable within the sleeve ram. The central ram protrudes from the sleeve ram at a ram contact end and is retractable upon application of a preselected force to the central ram so that the central ram is flush with the sleeve ram at the ram contact end. The basket driving mechanism is configured to move the basket containing a spacer grid towards the ram contact end so that the spacer grid is crushed within the basket. The spacer grid is crushed by the combination of successive forces from the central ram and the sleeve ram, respectively. Essentially, the central portion of the spacer grid is crushed first, and then the remaining outer portion of the spacer grid is crushed to complete the crushing action of the spacer grid. The foregoing process is repeated for other spacer grids until the basket reaches a predetermined allowable capacity, and then the basket is stored in a storage canister. 11 figs.

  9. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  10. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  11. Experience in grid optimization

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Soni, B. K.; Mcclure, M. D.

    1987-01-01

    Two optimization methods for solving a variational problem in grid generation are described and evaluated. The smoothness, cell volumes, and orthogonality of the variational integrals are examined. The Jacobi-Newton iterative method is compared to the Fletcher-Reeves conjugate gradient method. It is observed that a combination of the Jacobi-Newton iteration and the direct solution of the variational problem produces an algorithm which is easy to program and requires less storage and computer time/iteration than the conjugate gradient method.

  12. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  13. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  14. Interpolated Sounding and Gridded Sounding Value-Added Products

    SciTech Connect

    M. P. Jensen; Toto, T.

    2016-03-01

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25 and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.

  15. Empower your Smart Grid Transformation

    DTIC Science & Technology

    2016-06-13

    TWITTER: #seiwebinar © 2011 Carnegie Mellon University Empower your Smart Grid Transformation David White SGMM Project Manager 10 March 2011 Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Empower your Smart Grid Transformation 5a. CONTRACT NUMBER...and a core development team member for the SEI Smart Grid Maturity Model (SGMM), a business tool to assist utilities with planning and tracking

  16. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  17. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  18. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  19. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  20. 7 CFR 29.1035 - Mixed color (KM).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mixed color (KM). 29.1035 Section 29.1035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1035 Mixed color (KM). Distinctly different colors of the type mingled together....

  1. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  2. Exploring KM Features of High-Performance Companies

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Wen

    2007-12-01

    For reacting to an increasingly rival business environment, many companies emphasize the importance of knowledge management (KM). It is a favorable way to explore and learn KM features of high-performance companies. However, finding out the critical KM features of high-performance companies is a qualitative analysis problem. To handle this kind of problem, the rough set approach is suitable because it is based on data-mining techniques to discover knowledge without rigorous statistical assumptions. Thus, this paper explored KM features of high-performance companies by using the rough set approach. The results show that high-performance companies stress the importance on both tacit and explicit knowledge, and consider that incentives and evaluations are the essentials to implementing KM.

  3. SoilGrids250m: Global gridded soil information based on machine learning.

    PubMed

    Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods

  4. SoilGrids250m: Global gridded soil information based on machine learning

    PubMed Central

    Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of

  5. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  6. Grids of agricultural pesticide use in the conterminous United States, 1997

    USGS Publications Warehouse

    Nakagaki, Naomi

    2007-01-01

    This spatial dataset consists of 219 1-kilometer (km) resolution grids depicting estimated agricultural use of 219 pesticides in 1997 for the conterminous United States. Each grid cell value in the national grids of this dataset is the estimated total kilograms (kg) of a pesticide applied to row crops, small grain crops and fallow land, pasture and hay crops, and orchard and vineyard crops within the 1- by 1-km area. Nonagricultural uses of pesticides are not included in this dataset. Of the 219 pesticidesrepresented in the grids, 96 are herbicides, 65 are insecticides, and 37 are fungicides. The remaining 21 compounds are composed of the category "other pesticides", which consist of fumigants, growth regulators, and defoliants. Although this dataset is referenced to 1997, it generally represents a composite of estimated pesticide use during the mid to late 1990s.

  7. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  8. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include

  9. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  10. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  11. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  12. Some Observations on Grid Convergence

    NASA Technical Reports Server (NTRS)

    Salas, manuel D.

    2006-01-01

    It is claimed that current practices in grid convergence studies, particularly in the field of external aerodynamics, are flawed. The necessary conditions to properly establish grid convergence are presented. A theoretical model and a numerical example are used to demonstrate these ideas.

  13. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  14. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  15. Globally Gridded Satellite observations for climate studies

    USGS Publications Warehouse

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  16. Evaluating KM Journal Content: An Assessment of Trends (2000-2005)

    DTIC Science & Technology

    2006-03-01

    Creating a KM Systems Thinking Framework...........................................................17 What is a KM-specific Journal...loop Learning ................................................................... 27 Figure 6. Combining KM Frameworks into a KM Systems Thinking Framework...30 Figure 7. KM Systems Thinking Framework .................................................................. 31 Figure 8. Content

  17. High energy neutrino detection with KM3NeT

    NASA Astrophysics Data System (ADS)

    Migliozzi, Pasquale; KM3NeT Collaboration

    2016-05-01

    The KM3NeT Collaboration has started the construction of a next generation high-energy neutrino telescope in the Mediterranean Sea: the largest and most sensitive neutrino research infrastructure. The full KM3NeT detector will be a several cubic kilometres distributed, networked infrastructure. In Italy, off the coast of Capo Passero, and in France, off the coast of Toulon. Thanks to its location in the Northern hemisphere and to its large instrumented volume, KM3NeT will be the optimal instrument to search for neutrinos from the Southern sky and in particular from the Galactic plane, thus making it complementary to IceCube. In this work the technologically innovative component of the detector, the status of construction and the first results from prototypes of the KM3NeT detector will be described as well as its capability to discover neutrino sources are reported.

  18. Akeno 20 km (2) air shower array (Akeno Branch)

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Ohoka, H.; Matsubara, Y.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.

    1985-01-01

    As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied.

  19. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE PAGES

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  20. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; Wiersema, David J.; Chow, Fotini K.

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developed and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.

  1. How does music aid 5 km of running?

    PubMed

    Bigliassi, Marcelo; León-Domínguez, Umberto; Buzzachera, Cosme F; Barreto-Silva, Vinícius; Altimari, Leandro R

    2015-02-01

    This research investigated the effects of music and its time of application on a 5-km run. Fifteen well-trained male long-distance runners (24.87 ± 2.47 years; 78.87 ± 10.57 kg; 178 ± 07 cm) participated in this study. Five randomized experimental conditions during a 5-km run on an official track were tested (PM: motivational songs, applied before 5 km of running; SM: slow motivational songs, applied during 5 km of running; FM: fast and motivational songs, applied during 5 km of running; CS: calm songs, applied after 5 km of running; CO: control condition). Psychophysiological assessments were performed before (functional near-infrared spectroscopy, heart rate variability [HRV], valence, and arousal), during (performance time, heart rate, and rate of perceived exertion [RPE]), and after (mood, RPE, and HRV) tests. The chosen songs were considered pleasurable and capable of activating. Furthermore, they activated the 3 assessed prefrontal cortex (PFC) areas (medial, right dorsolateral, and left dorsolateral) similarly, generating positive emotional consequences by autonomous system analysis. The first 800 m was accomplished faster for SM and FM compared with other conditions (p ≤ 0.05); moreover, there was a high probability of improving running performance when music was applied (SM: 89%; FM: 85%; PM: 39%). Finally, music was capable of accelerating vagal tonus after 5 km of running with CS (p ≤ 0.05). In conclusion, music was able to activate the PFC area, minimize perceptions, improve performance, and accelerate recovery during 5 km of running.

  2. Sensing and Measurement Architecture for Grid Modernization

    SciTech Connect

    Taft, Jeffrey D.; De Martini, Paul

    2016-02-01

    This paper addresses architecture for grid sensor networks, with primary emphasis on distribution grids. It describes a forward-looking view of sensor network architecture for advanced distribution grids, and discusses key regulatory, financial, and planning issues.

  3. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  4. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  5. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  6. High energy collimating fine grids

    NASA Astrophysics Data System (ADS)

    Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele

    1995-02-01

    The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.

  7. High energy collimating fine grids

    NASA Technical Reports Server (NTRS)

    Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele

    1995-01-01

    The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.

  8. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  9. GridOPTICS Software System

    SciTech Connect

    Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.

  10. Numerical Weather Prediction Over Caucasus Region With Nested Grid Models

    NASA Astrophysics Data System (ADS)

    Davitashvili, Dr.; Kutaladze, Dr.; Kvatadze, Dr.

    2010-09-01

    Global atmosphere models, which describe the weather processes, give the general character of the weather but can't catch the smaller scale processes, especially local weather for the territories with compound topography. Small-scale processes such as convection often dominate the local weather, which cannot be explicitly represented in models with grid size more then 10 km. A much finer grid is required to properly simulate frontal structures and represent cumulus convection. Georgia lies to the south of the Major Caucasian Ridge and the Lesser Caucasus mountains occupy the southern part of Georgia. About 85 percent of the total land area occupies complex mountain ranges.Therefore for the territory of Georgia it is necessary to use atmosphere models with a very high resolution nested grid system taking into account main orographic features of the area. We have elaborated and configured Whether Research Forecast - Advanced Researcher Weather (WRF-ARW) model for Caucasus region considering geographical-landscape character, topography height, land use, soil type and temperature in deep layers, vegetation monthly distribution, albedo and others. Porting of WRF-ARW application to the grid was a good opportunity for running model on larger number of CPUs and storing large amount of data on the grid storage elements. On the grid WRF was compiled for both Open MP and MPI (Shared + Distributed memory) environment and WPS was compiled for serial environment using PGI (v7.1.6, MPI- version 1.2.7) on the platform Linux-x86. In searching of optimal execution time for time saving different model directory structures and storage schema was used. Simulations were performed using a set of 2 domains with horizontal grid-point resolutions of 15 and 5 km, both defined as those currently being used for operational forecasts The coarser domain is a grid of 94x102 points which covers the South Caucasus region, while the nested inner domain has a grid size of 70x70 points mainly

  11. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  12. Detection of the structure near the 410 km and 660 km discontinuities in Japan subduction zone from the waveform triplication

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhou, Y.

    2015-12-01

    Slab subduction plays an important role in the mantle material circulation [Stern, 2002], and can also affect the feature of the 410 km and 660 km seismic discontinuities (410 and 660) [Lebedev et al., 2002]. Japan subduction zone is a natural laboratory for studying the mantle composition and velocity structure associated with the deep subduction of the Pacific plate. In this study, triplicated waveforms of an intermediate-depth earthquake at the Hokkaido of Japan (2011/10/21, 08:02:37.62, 142.5315°E, 43.8729°N, Mb6.0, relocated depth: 188 km) are retrieved from the dense Chinese Digital Seismic Network (CDSN). P and S waveforms are filtered with the band of 0.05-1.0 Hz and 0.02-0.5 Hz, respectively, and then integrated into the displacement data. The relative traveltime and synthetic waveform fitting is applied to mapping the deep structure. The best fitting models are obtained through the trial and error tests. We find a 15 km uplift of the 410 and a 25 km depression of the 660, indicating the cold environment caused by the subduction slab; both the 410 and 660 show the sharp discontinuity, but a smaller velocity contrast than the IASP91 model [Kennett and Engdahl, 1991]. Atop the 410 and 660, there are high-velocity layers associated with the subduction (or stagnant) slab. We also find a low-velocity anomaly with the thickness of ~65 km below the 660, which may relate to the slab dehydration or the hot upwelling at the top of the lower mantle. The seismic velocity ratio (VP/VS) shows a lower zone at the depth of ~210-395 km, showing the consistency with the low Poisson's ratio signature of the oceanic plate; a higher zone at the depth of ~560-685 km, implying the hydrous mantle transition zone.

  13. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  14. Running medical image analysis on GridFactory desktop grid.

    PubMed

    Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders

    2009-01-01

    At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory.

  15. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  16. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  17. Grid flexibility and patching techniques

    NASA Technical Reports Server (NTRS)

    Keith, T. G.; Smith, L. W.; Yung, C. N.; Barthelson, S. H.; Dewitt, K. J.

    1984-01-01

    The numerical determination of combustor flowfields is of great value to the combustor designer. An a priori knowledge of the flow behavior can speed the combustor design process and reduce the number of experimental test rigs required to arrive at an optimal design. Even 2-D steady incompressible isothermal flow predictions are of use; many codes of this kind are available, each employing different techniques to surmount the difficulties arising from the nonlinearity of the governing equations and from typically irregular combustor geometries. Mapping techniques (algebraic and elliptic PDE), and adaptive grid methods (both multi-grid and grid embedding) as applied to axisymmetric combustors are discussed.

  18. Grid technologies empowering drug discovery.

    PubMed

    Chien, Andrew; Foster, Ian; Goddette, Dean

    2002-10-15

    Grid technologies enable flexible coupling and sharing of computers, instruments and storage. Grids can provide technical solutions to the volume of data and computational demands associated with drug discovery by delivering larger computing capability (flexible resource sharing), providing coordinated access to large data resources and enabling novel online exploration (coupling computing, data and instruments online). Here, we illustrate this potential by describing two applications: the use of desktop PC grid technologies for virtual screening, and distributed X-ray structure reconstruction and online visualization.

  19. On the sensitivity of convective system structure and propagation in convection-allowing runs to horizontal grid spacings

    NASA Astrophysics Data System (ADS)

    Gallus, William; Lawson, John; Squitieri, Brian

    2016-04-01

    Mesoscale convective systems (MCSs), particularly those with bowing lines of convection that often are associated with damaging wind, are often poorly simulated in numerical weather prediction models. Although the use of convection-allowing grid spacings results in simulated structures, propagation, and evolution that usually resemble those observed much better than what happens when convection is parameterized, numerous problems remain that typically keep skill scores low for precipitation verification. Among these problems are the failure of models to produce bowing structures within convective systems, and displacement errors in positioning of the simulated convection. We will show results that suggest that both the amount of bowing in severe bow echo convective systems and the propagation speed of convective systems in general is very sensitive to changes in horizontal grid spacing when the typically used 3 or 4 km is refined down to around 1 km. Results will focus on both an 11 member Weather Research and Forecasting model ensemble making use of the Stochastic Kinetic Energy Backscatter scheme that was run using both a single 3 km horizontal grid, and with a 1 km refined nest embedded within it for two bow echo events, and on a much larger set of general MCS cases simulated with single deterministic runs of the NMMB (Nonhydrostatic Mesoscale Model on the B-grid) using both 4 and 1.33 km grid spacing. In the bow echo events, the use of a two-way nested 1 km grid significantly increases the propagation speed of the system and results in much more organized bow structures that better resemble observations. However, the increased speed results in too rapid propagation of the system compared to observations, making the 1 km ensemble less skillful than the 3 km ensemble. In addition, ensemble spread was generally less in the 1 km ensemble than in the 3 km ensemble. The increased organization and propagation of the bow echoes appears to be due to a much stronger rear

  20. Gravity Waves Near 300 km Over the Polar Caps

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  1. The KM3NeT Digital Optical Module

    NASA Astrophysics Data System (ADS)

    Vivolo, Daniele

    2016-04-01

    KM3NeT is a European deep-sea multidisciplinary research infrastructure in the Mediterranean Sea. It will host a km3-scale neutrino telescope and dedicated instruments for long-term and continuous measurements for Earth and Sea sciences. The KM3NeT neutrino telescope is a 3-dimensional array of Digital Optical Modules, suspended in the sea by means of vertical string structures, called Detection Units, supported by two pre-stretched Dyneema ropes, anchored to the seabed and kept taut with a system of buoys. The Digital Optical Module represents the active part of the neutrino telescope. It is composed by a 17-inch, 14 mm thick borosilicate glass (Vitrovex) spheric vessel housing 31 photomultiplier tubes with 3-inch photocathode diameter and the associated front-end and readout electronics. The technical solution adopted for the KM3NeT optical modules is characterized by an innovative design, considering that existing neutrino telescopes, Baikal, IceCube and ANTARES, all use large photomultipliers, typically with a diameter of 8″ or 10″. It offers several advantages: higher sensitive surface (1260 cm2), weaker sensitivity to Earth's magnetic field, better distinction between single-photon and multi-photon events (photon counting) and directional information with an almost isotropic field of view. In this contribution the design and the performance of the KM3NeT Digital Optical Modules are discussed, with a particular focus on enabling technologies and integration procedure.

  2. Reliability of 5-km Running Performance in a Competitive Environment

    ERIC Educational Resources Information Center

    Hurst, Philip; Board, Lisa

    2017-01-01

    The aim of this study was to examine the reliability of a 5-km time-trial during a competitive outdoor running event. Fifteen endurance runners (age = 29.5 ± 4.3 years, height = 1.75 ± 0.08 m, body mass = 71.0 ± 7.1 kg, 5-km lifetime personal best = 19:13 ± 1:13 minutes) completed two competitive 5-km time-trials over 2 weeks. No systematic…

  3. Assistive Awareness in Smart Grids

    NASA Astrophysics Data System (ADS)

    Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite

    The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions

  4. Modal Analysis for Grid Operation

    SciTech Connect

    2011-03-03

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signal stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.

  5. Revised Extended Grid Library

    SciTech Connect

    Martz, Roger L.

    2016-07-15

    The Revised Eolus Grid Library (REGL) is a mesh-tracking library that was developed for use with the MCNP6TM computer code so that (radiation) particles can track on an unstructured mesh. The unstructured mesh is a finite element representation of any geometric solid model created with a state-of-the-art CAE/CAD tool. The mesh-tracking library is written using modern Fortran and programming standards; the library is Fortran 2003 compliant. The library was created with a defined application programmer interface (API) so that it could easily integrate with other particle tracking/transport codes. The library does not handle parallel processing via the message passing interface (mpi), but has been used successfully where the host code handles the mpi calls. The library is thread-safe and supports the OpenMP paradigm. As a library, all features are available through the API and overall a tight coupling between it and the host code is required. Features of the library are summarized with the following list: • can accommodate first and second order 4, 5, and 6-sided polyhedra • any combination of element types may appear in a single geometry model • parts may not contain tetrahedra mixed with other element types • pentahedra and hexahedra can be together in the same part • robust handling of overlaps and gaps • tracks element-to-element to produce path length results at the element level • finds element numbers for a given mesh location • finds intersection points on element faces for the particle tracks • produce a data file for post processing results analysis • reads Abaqus .inp input (ASCII) files to obtain information for the global mesh-model • supports parallel input processing via mpi • support parallel particle transport by both mpi and OpenMP

  6. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  7. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2016-07-12

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  8. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2016-07-12

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  9. Parallel Power Grid Simulation Toolkit

    SciTech Connect

    Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  10. Simulation of CO2 release at 800 km altitude

    NASA Astrophysics Data System (ADS)

    Setayesh, A.

    1993-08-01

    The SOCRATES contamination-interaction code has been used to simulate the reactions of 0 + CO2 yields CO2(v) + O, O + CO2 - CO(v) + O2, and CO2 + H - CO + OH(v) at an altitude of 800 km in both ram and wake directions of the spacecraft. These simulations show that the radiation from these reactions can be measurable for the parameters which have been used in these calculations. The investigation carries out the simulations as much as 30 km from the spacecraft. The radiative intensity of CO(v) and OH(v) show the highest and lowest, respectively.

  11. Digital optical module electronics of KM3NeT

    NASA Astrophysics Data System (ADS)

    Real, D.; Calvo, D.

    2016-11-01

    The KM3NeT neutrino telescope is being built on the Mediterranean sea and, once completed, it will be composed by tens of thousands of glass spheres (nodes) including each 31 of small photocathode (3"). The readout and data acquisition system of KM3NeT has to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each node at the level of 1 ns. It is described in the present article all the electronics developed for achieving this goal.

  12. Cascade sensitivity studies for KM3NeT

    NASA Astrophysics Data System (ADS)

    Fusco, Luigi Antonio

    2016-07-01

    KM3NeT is a future research infrastructure in the deep seas of the Mediterranean housing a large scale neutrino telescope. The first phase of construction of the telescope has started. Next step is an intermediate phase realising a detector volume of about one-third of the final detector volume. We report on calculations of the sensitivity of the KM3NeT detector to showering neutrino events, the strategy to optimise the detector to a cosmic neutrino flux analogous to the one reported by the IceCube Collaboration and the results of this strategy applied to the intermediate phase detector.

  13. Neutral winds above 200Km at high latitudes

    NASA Technical Reports Server (NTRS)

    Meriwether, J. W.; Heppner, J. P.; Stolarik, J. D.; Wescott, E. M.

    1972-01-01

    Motion from multiple chemical releases between 200 and 300 km from 15 rockets launched from 4 high latitude locations are analyzed. The observations in the evening and midnight hours at magnetic altitudes or = 65 deg suggest that in these regions ion drag is the dominant force in driving neutral winds between 200 and 300 km. This conclusion is based on both the agreement between ion and neutral drift directions, and the fact that there are distinct changes in the wind associated with (a) the reversal in east-west ion drift at the Harang discontinuity, and (b) the transition from auroral belt, sunward ion drift and polar cap, anti-solar ion drift.

  14. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  15. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  16. Running economy during a simulated 60-km trial.

    PubMed

    Schena, Federico; Pellegrini, Barbara; Tarperi, Cantor; Calabria, Elisa; Salvagno, Gian Luca; Capelli, Carlo

    2014-07-01

    The effect of a prolonged running trial on the energy cost of running (C(r)) during a 60-km ultramarathon simulation at the pace of a 100-km competition was investigated in 13 men (40.8 ± 5.6 y, 70.7 ± 5.5 kg, 177.5 ± 4.5 cm) and 5 women (40.4 ± 2.3 y, 53.7 ± 4.4 kg, 162.4 ± 4.8 cm) who participated in a 60-km trial consisting of 3 consecutive 20-km laps. Oxygen uptake (VO(2)) at steady state was determined at constant speed before the test and at the end of each lap; stride length (SL) and frequency and contact time were measured at the same time points; serum creatine kinase (S-CPK) was measured before and at the end of the test. C(r) in J · kg(-1) · m(-1), as calculated from VO(2ss) and respiratory-exchange ratio, did not increase with distance. SL significantly decreased with distance. The net increase in S-CPK was linearly related with the percentage increase of C(r) observed during the trial. It is concluded that, in spite of increased S-CPK, this effort was not able to elicit any peripheral or central fatigue or biomechanical adaptation leading to any modification of C(r).

  17. Gravity wave vertical energy flux at 95 km

    NASA Technical Reports Server (NTRS)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  18. Body Composition Measurements of 161-km Ultramarathon Participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  19. Models of earth's atmosphere (90 to 2500 km)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This monograph replaces a monograph on the upper atmosphere which was a computerized version of Jacchia's model. The current model has a range from 90 to 2500 km. In addition to the computerized model, a quick-look prediction method is given that may be used to estimate the density for any time and spatial location without using a computer.

  20. Estimation of terrestrial carbon fluxes with 1km by 1km spatial-resolution using satellite- driven model

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nasahara, K.; Ito, A.; Saigusa, N.; Hirata, R.; Takagi, K.; Oikawa, T.

    2008-12-01

    Terrestrial carbon cycle is strongly affected by some local natural phenomena and human-induced activities, which bring change to the carbon exchanges via vegetation and soil microbe activities. In order to accurately understand a realistic spatial pattern in carbon exchanges including such an effect of local-scale events, we need to calculate carbon fluxes and storages with as detailed spatial resolution as possible. In response to this, we attempt to estimate terrestrial carbon fluxes with 1km by 1km spatial resolution using satellite-driven model. Study area of the model estimation is the Further East Asia region, which lies at 30-50 north latitude and 125-150 east longitude. The model is the Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data (BEAMS) [Sasai et al., 2005, 2007]. Being aim at simulating terrestrial carbon exchanges under more realistic land surface condition, we applied as many as possible of satellite-observation products such as the standard MODIS, TRMM, and SRTM high-level land products as model inputs. In the model validation, we compared between model estimations and eddy covariance measurements at four flux sites. As a result, a correlation coefficient of the terrestrial carbon fluxes between estimations and measurements were high values, leading up that the model estimations are virtually reasonable. In model analysis, BEAMS was operated with 1km by 1km spatial resolution from 2001 to 2006. Spatial distributions in the annual mean NPP and NEP showed that high values were distributed over the hilly and plateau regions, and they were gradually decreasing towards the urban and high mountain areas, meaning that we could reflect an impact of the local-scale events in the carbon flux estimations. In future, we would extend study area to the East Asia region, and the carbon exchange map with 1km by 1km spatial- resolution is distributed on the website.

  1. Algebraic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1991-01-01

    An efficient computer program called GRID2D/3D has been developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation. The distribution of grid points within the spatial domain is controlled by stretching functions and grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional Hermite interpolation.

  2. Ion beamlet vectoring by grid translation

    NASA Technical Reports Server (NTRS)

    Homa, J. M.; Wilbur, P. J.

    1982-01-01

    Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.

  3. An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution

    NASA Astrophysics Data System (ADS)

    Sun, Xuguang; Xue, Ming; Brotzge, Jerald; McPherson, Renee A.; Hu, Xiao-Ming; Yang, Xiu-Qun

    2016-12-01

    A significant challenge with dynamical downscaling of climate simulations is the ability to accurately represent convection and precipitation. The use of convection-permitting resolutions avoids cumulus parameterization, which is known to be a large source of uncertainty. A regional climate model (RCM) based on the Weather Research and Forecasting model is configured with a 4 km grid spacing and applied to the U.S. Great Plains, a region characterized by many forms of weather and climate extremes. The 4 km RCM is evaluated by running it in a hindcast mode over the central U.S. region for a 10 year period, forced at the boundary by the 32 km North America Regional Reanalysis. The model is also run at a 25 km grid spacing, but with cumulus parameterization turned on for comparison. The 4 km run more successfully reproduces certain observed features of the Great Plains May-through-August precipitation. In particular, the magnitude of extreme precipitation and the diurnal cycle of precipitation over the Great Plains are better simulated. The 4 km run more realistically simulates the low-level jet and related atmospheric circulations that transport and redistribute moisture from Gulf of Mexico. The convection-permitting RCM may therefore produce better dynamical downscaling of future climate when nested within global model climate projections, especially for extreme precipitation magnitudes. The 4 km and 25 km simulations do share similar precipitation biases, including low biases over the central Great Plains and high biases over the Rockies. These biases appear linked to circulation biases in the simulations, but determining of the exact causes will require extensive, separate studies.

  4. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    SciTech Connect

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  5. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    SciTech Connect

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  6. Absorption Oscillator Strengths for the c4‧1Σu+(3, 4, 6)-X1Σg+(v‧‧), b‧1Σu+(10, 13, 20)-X1Σg+(v‧‧), and c5‧1Σu+(1)-X1Σg+(v‧‧) Progressions in N2

    NASA Astrophysics Data System (ADS)

    Lavín, C.; Velasco, A. M.

    2016-01-01

    Absorption oscillator strengths, calculated with the molecular quantum defect orbital method, for the c4'1 Σu+(3)-X1Σg+ (v'' = 0-12), c4'1Σu+(4) -X1Σg+(v'' = 0-12), c4'1Σu+(6) -X1Σg+(v'' = 0-12), b'1Σu+(10) -X1Σg+(v'' = 0-12), b'1Σu+(13) -X1Σg+(v'' = 0-12), b'1Σu+(20) -X1Σg+(v'' = 0-12), and c5'1Σu+(1) -X1Σg+(v'' = 0-12) bands of molecular nitrogen are reported. The Rydberg-valence interaction between states of 1Σu+ symmetry has been treated through an interaction matrix that includes vibrational coupling. Due to the homogeneous interaction, the intensity distribution of the bands within each progression deviates from the Franck-Condon predictions. The present results for vibronic transitions from the X1Σg+(0) ground state agree rather well with reported high-resolution measurements. As far as we know, f-values for bands originating from v″ > 0 vibrational levels of the electronic ground state are reported here for the first time. These data may be useful in the interpretation of the extreme ultraviolet spectra from Earth’s and Titan's atmospheres, in which several bands of the c4'(3), c4', and c4'(6) progressions have been identified.

  7. A Detailed Examination of the GPM Core Satellite Gridded Text Product

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, Owen A.; Kummerow, C.; Huffman, George; Olson, William S.; Kwiatowski, John M.

    2015-01-01

    The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid.

  8. A nested-grid mesoscale numerical weather prediction model modified for Space Shuttle operational requirements

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1983-01-01

    A nested-grid mesoscale atmospheric simulation system (MASS) is tested over Florida for the case of intense seabreeze-induced convection. The goal of this modeling system is to provide real-time aviation weather support which is designed to fit local terminal operations such as those supporting NASA's STS. Results from a 58 km and a 14.5 km nested-grid simulation show that this version of the MASS is capable of simulating many of the basic characteristics of convective complexes during periods of relatively weak synoptic scale flow regimes. However, it is noted that extensive development work is required with nested-grid cumulus and planetary boundary layer parameterization schemes before many of the meso-beta scale features such as thunderstorm downdraft-produced bubble high pressure centers can be accurately simulated. After these schemes are properly tuned, MASS can be utilized to initialize microscale modeling systems.

  9. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect

    Rahman, Saifur

    2014-08-31

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects

  10. Power grid reliability and security

    SciTech Connect

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2015-01-31

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  11. Investigation of fiber dispersion impairment in 400GbE discrete multi-tone system for reach enhancement up to 40 km

    NASA Astrophysics Data System (ADS)

    Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Chen, Hao; Yan, Weizhen; Tao, Zhenning; Rasmussen, Jens C.

    2015-01-01

    Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit system performance is fiber dispersion, which is strongly influenced by the chirp characteristics of transmitters. We investigated the fiber dispersion impairment in a 400GbE (4 × 116.1-Gb/s) DMT system on LAN-WDM grid for reach enhancement up to 40 km through experiments and numerical simulations.

  12. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution

    NASA Astrophysics Data System (ADS)

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-12-01

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the ‘bioclim’ framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the ‘r.stream.watersheds’ and ‘r.stream.variables’ add-ons for the GRASS GIS software.

  13. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution

    PubMed Central

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-01-01

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the ‘bioclim’ framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the ‘r.stream.watersheds’ and ‘r.stream.variables’ add-ons for the GRASS GIS software. PMID:26647296

  14. Fact Sheet for KM200 Front-end Electronics

    SciTech Connect

    Ianakiev, Kiril Dimitrov; Iliev, Metodi; Swinhoe, Martyn Thomas

    2015-07-08

    The KM200 device is a versatile, configurable front-end electronics boards that can be used as a functional replacement for Canberra’s JAB-01 boards based on the Amptek A-111 hybrid chip, which continues to be the preferred choice of electronics for large number of the boards in junction boxes of multiplicity counters that process the signal from an array of 3He detectors. Unlike the A-111 chip’s fixed time constants and sensitivity range, the shaping time and sensitivity of the new KM200 can be optimized for demanding applications such as spent fuel, and thus could improve the safeguards measurements of existing systems where the A-111 or PDT electronics does not perform well.

  15. KM3NeT-ARCA project status and plan

    NASA Astrophysics Data System (ADS)

    Coniglione, R.

    2016-04-01

    The KM3NeT Collaboration aims at building a research infrastructure in the depths of the Mediterranean Sea hosting a cubic kilometre neutrino telescope. The KM3NeT/ARCA detector is the ideal instrument to look for high-energy neutrino sources thanks to the latitude of the detector and to the optical characteristics of the sea water. The detector latitude allows for a wide coverage of the observable sky including the region of the Galactic centre and the optical sea water properties allow for the measure of the neutrino direction with excellent angular resolution also for cascade events. The technologically innovative components of the detector and the status of construction will be presented as well as the capability it offers to discover neutrinos.

  16. Remote (250 km) Fiber Bragg Grating Multiplexing System

    PubMed Central

    Fernandez-Vallejo, Montserrat; Rota-Rodrigo, Sergio; Lopez-Amo, Manuel

    2011-01-01

    We propose and demonstrate two ultra-long range fiber Bragg grating (FBG) sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system. PMID:22164101

  17. The Moon: why anomalously numerous evenly covering surface, about 100 km across craters are well resolved gravimetrically

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2012-09-01

    The NASA's GRAIL mission will produce an unprecedented detail gravity map of the lunar subsurface as measurements will include some depths of the satellite. One could say that this map will principally repeat the gravity pattern acquired earlier (Fig. 2, 3; [1]) which shows surface densely "peppered" by even-sized "craters" (rings) about 100 km in diameter. The wave planetology admits that many of them reflect features of impact origin but a bulk is due to an intersection of standing waves produced by elliptical orbits of the body (around Earth and Sun (Fig.1 gives a graphic representation of such waves). These waves of standing character and four directions (ortho- and diagonal) arise in any cosmic body due to its movement with changing accelerations in keplerian orbit. An interference of these waves brings about rising (+), falling (-), and neutral (0) tectonic blocks regular combination of which makes chains and grids of "round" (polygonal) features (Fig. 1). The lunar community should realize that one of bases of the Moon's geology - crater size -frequency curve is of a complex nature. Impacts surely contribute to this curve but a significant part of it is due to ring structures of non-impact origin (Fig. 4). Ring structures of this kind are produced by an interference of standing inertia-gravity waves of 4 directions warping any rotating celestial body moving in an elliptical orbit [2, 3]. Many ring structures observed on solid and gaseous planetary spheres are of such profound nature. They form regular grids of shoulder-to-shoulder even ring structures (Fig. 1) (the best example from the past - Triton's cantaloup surface, from the present- outgassing crater's chains at the Hartley comet core). Their sizes depend on orbiting frequencies: the higher frequency- the smaller "rings", and vice versa. Satellites having two orbiting frequencies in the Solar system are particularly "peppered" with rings as a low frequency modulates a high one producing along with the

  18. Cascade sensitivity studies for KM3NeT

    NASA Astrophysics Data System (ADS)

    Fusco, L. A.; KM3NeT Collaboration

    2016-01-01

    KM3NeT is a future neutrino observatory to be built in the Mediterranean Sea. Its main astrophysical goal it to search for cosmic sources of neutrinos. The status of searches for diffuse fluxes of cosmic neutrinos in the cascade channel are reported in this contribution. A signal analogous to that observed by the IceCube collaboration will be observed with a 5 σ significance within one year of operation of the detector.

  19. The KM3NeT neutrino telescope

    NASA Astrophysics Data System (ADS)

    Coniglione, R.; KM3NeT Collaboration

    2015-08-01

    The construction phase of an underwater high energy neutrino telescope in the Mediterranean Sea, named KM3NeT, has started. The neutrino telescope that will consist of several blocks of instrumented structures will have a size of the order of a cubic-kilometer. In this work the main elements of the detector, the status of the project and the expected performance will be briefly reported.

  20. Towards Mapping the Ocean Surface Topography at 1 km Resolution

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriquez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  1. Organizations, Paradigms, and People: The Challenge of KM Interventions

    NASA Technical Reports Server (NTRS)

    Bailey, Teresa; Burton, Yvette

    1999-01-01

    This paper presents viewgraphs on Knowledge Management (KM) and how these interventions are put into practice by organizations and society. The topics include: 1) The Multiple Paradigm Tool; 2) Four Paradigms: tool for the Analyzing Organizations; 3) Assumptions About the Nature of Social Science; 4) Assumptions About the Nature of Society; 5) Schools of Sociological and Organizational Theory; 6) Meaning and Metaphors in the Four Paradigms; and 7) Possibilities and Conclusions.

  2. Hypervelocity launch capabilities to over 10 km/s

    SciTech Connect

    Chhabildas, L.C.

    1991-01-01

    Very high pressure and acceleration is necessary to launch flier plates to hypervelocities. In addition, the high pressure loading must be uniform, structured, and shockless, i.e., time-dependent to prevent the flier plate from either fracturing or melting. In this paper, a novel technique is described which allows the use of megabar level loading pressures, and 10{sup 9} g acceleration to launch intact flier plates to velocities of 12.2 km/s. 32 refs., 2 figs.

  3. Saqqar: A 34 km diameter impact structure in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Afifi, Abdulkader M.; Stewart, Simon A.; Poelchau, Michael H.; Cook, Douglas J.; Neville, Allen S.

    2015-11-01

    Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. ), with an apparent diameter of 34 km, centered at 29°35'N, 38°42'E. The structure is formed in Cambrian-Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2-D reflection seismic profiles and six drilled wells. First-order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring-like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {101¯3}, and less frequently along {101¯1} and {101¯4}. Planar fractures (PFs) predominantly occur along (0001) and {101¯1}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1-2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.

  4. 75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Energy Regulatory Commission Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010. 1. The Energy Independence and Security Act of... interoperability of smart grid devices and systems, including protocols and model standards for...

  5. TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1994-01-01

    A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.

  6. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  7. Grids: The Top Ten Questions

    DOE PAGES

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  8. Anisotropic grid adaptation in LES

    NASA Astrophysics Data System (ADS)

    Toosi, Siavash; Larsson, Johan

    2016-11-01

    The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.

  9. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  10. Quality Assessment of GEBCO_08, Smith and Sandwell and SRTM30_Plus Grids in the Arctic

    NASA Astrophysics Data System (ADS)

    Abramova, A.; Monahan, D.; Mayer, L. A.; Lippmann, T. C.; Calder, B. R.

    2012-12-01

    standard deviation of differences with MBES grids exceeding 25% of the water depth. The main reasons for the low accuracy of the S&S and SRTM30_Plus grids on the shelf include the scarcity of source data in the region and, in general, the poor performance of gravity prediction in shallow areas and at high latitudes. In terms of internal consistency, all three grids have artifacts present in the bathymetry, but artifacts in the S&S and SRTM30_Plus grids are more pronounced when visualized. A quantitative assessment of consistency performed for the grids revealed that artifacts in the S&S grid can be as deep (or shallow) as 140% of the water depth on the shelf. These artifacts create wavelengths in the bathymetry shorter than 12.5 km (in areas of no MBES source data) that are not represented by satellite-derived gravity with a stated spatial resolution of 20 - 160 km. Similar performance of interpolation was observed for the S&S and GEBCO_08 grids due to the interpolation algorithm used for construction of both grids, namely a continuous curvature spline in tension.

  11. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  12. Grid for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  13. Scientific Computing on the Grid

    SciTech Connect

    Allen, Gabrielle; Seidel, Edward; Shalf, John

    2001-12-12

    Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.

  14. DARHT Radiographic Grid Scale Correction

    SciTech Connect

    Warthen, Barry J.

    2015-02-13

    Recently it became apparent that the radiographic grid which has been used to calibrate the dimensional scale of DARHT radiographs was not centered at the location where the objects have been centered. This offset produced an error of 0.188% in the dimensional scaling of the radiographic images processed using the assumption that the grid and objects had the same center. This paper will show the derivation of the scaling correction, explain how new radiographs are being processed to account for the difference in location, and provide the details of how to correct radiographic image processed with the erroneous scale factor.

  15. GENI: Grid Hardware and Software

    SciTech Connect

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  16. IGB grid: User's manual (A turbomachinery grid generation code)

    NASA Technical Reports Server (NTRS)

    Beach, T. A.; Hoffman, G.

    1992-01-01

    A grid generation code called IGB is presented for use in computational investigations of turbomachinery flowfields. It contains a combination of algebraic and elliptic techniques coded for use on an interactive graphics workstation. The instructions for use and a test case are included.

  17. WRF4G: enabling ensemble operational weather forecasting on the GRID

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Fernández-Quiruelas, V.; Cofino, As; Fita, L.; Gutierrez, Jm

    2009-09-01

    The GRID provides transparent access to geographically distributed computational and storage resources. Several applications areas as high energy physics or bio-applications have been proven to benefit from this computational paradigm. Applications from the Earth Science community are starting to take advantage of this technology (see e.g. www.eu-degree.eu). The port of already existing Earth Science applications and, in particular, a numerical atmospheric model to the GRID poses a challenge in terms of the CPU and storage requirements. These applications are organized around communities known as virtual organizations (VO). The limited area models require a large amount of input data to build the boundary conditions. Currently the heterogenous GRID infrastructure is subject to common failures and intermittent availability of resources the numerical weather models are not prepared for. For those reasons, in this contribution we present a new execution framework providing a software wrapper for a numerical prediction model. A wrapper for the WRF Modeling System has been developed to enable limited area model simulations on the GRID. This WRF for the GRID wrapper (WRF4G) is "gridifying" a complex workflow application as the WRF System. The WRF4G framework has been adapted for the middleware developed in the leading european project on GRID computing known as EGEE (http://eu-egee.org/), also used in other GRID european projects (EELA2, ...) and National GRID Initiatives (NGI) like the Spanish NGI (ES-NGI). This GRID environment provides a High Productive Computing allowing to run multiple independent jobs with no high demanding on CPU and memory resources. As an application of the WRF4G framework we present a multi-physics ensemble experiment of precipitation forecast over Spain, which is run daily at a 10km resolution by the Santander Meteorology Group (www.meteo.unican.es). Two parameterizations of the ensemble are run in the local cluster, whereas 15 additional

  18. MrGrid: A Portable Grid Based Molecular Replacement Pipeline

    PubMed Central

    Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.

    2010-01-01

    Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612

  19. Tuned grid generation with ICEM CFD

    NASA Technical Reports Server (NTRS)

    Wulf, Armin; Akdag, Vedat

    1995-01-01

    ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.

  20. Analysis of sex differences in open-water ultra-distance swimming performances in the FINA World Cup races in 5 km, 10 km and 25 km from 2000 to 2012

    PubMed Central

    2014-01-01

    Background The present study investigated the changes in swimming speeds and sex differences for elite male and female swimmers competing in 5 km, 10 km and 25 km open-water FINA World Cup races held between 2000 and 2012. Methods The changes in swimming speeds and sex differences across years were analysed using linear, non-linear, and multi-level regression analyses for the annual fastest and the annual ten fastest competitors. Results For the annual fastest, swimming speed remained stable for men and women in 5 km (5.50 ± 0.21 and 5.08 ± 0.19 km/h, respectively), in 10 km (5.38 ± 0.21 and 5.05 ± 0.26 km/h, respectively) and in 25 km (5.03 ± 0.32 and 4.58 ± 0.27 km/h, respectively). In the annual ten fastest, swimming speed remained constant in 5 km in women (5.02 ± 0.19 km/h) but decreased significantly and linearly in men from 5.42 ± 0.03 km/h to 5.39 ± 0.02 km/h. In 10 km, swimming speed increased significantly and linearly in women from 4.75 ± 0.01 km/h to 5.74 ± 0.01 km/h but remained stable in men at 5.36 ± 0.21 km/h. In 25 km, swimming speed decreased significantly and linearly in women from 4.60 ± 0.06 km/h to 4.44 ± 0.08 km/h but remained unchanged at 4.93 ± 0.34 km/h in men. For the annual fastest, the sex difference in swimming speed remained unchanged in 5 km (7.6 ± 3.0%), 10 km (6.1 ± 2.5%) and 25 km (9.0 ± 3.7%). For the annual ten fastest, the sex difference remained stable in 5 km at 7.6 ± 0.6%, decreased significantly and linearly in 10 km from 7.7 ± 0.7% to 1.2 ± 0.3% and increased significantly and linearly from 4.7 ± 1.4% to 9.6 ± 1.5% in 25 km. Conclusions To summarize, elite female open-water ultra-distance swimmers improved in 10 km but impaired in 25 km leading to a linear decrease in sex difference in 10 km and a linear increase in sex difference in 25 km. The linear changes in sex differences

  1. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  2. Grid Logging: Best Practices Guide

    SciTech Connect

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  3. Grid-coordinate generation program

    USGS Publications Warehouse

    Cosner, Oliver J.; Horwich, Esther

    1974-01-01

    This program description of the grid-coordinate generation program is written for computer users who are familiar with digital aquifer models. The program computes the coordinates for a variable grid -used in the 'Pinder Model' (a finite-difference aquifer simulator), for input to the CalComp GPCP (general purpose contouring program). The program adjusts the y-value by a user-supplied constant in order to transpose the origin of the model grid from the upper left-hand corner to the lower left-hand corner of the grid. The user has the options of, (1.) choosing the boundaries of the plot; (2.) adjusting the z-values (altitudes) by a constant; (3.) deleting superfluous z-values and (4.) subtracting the simulated surfaces from each other to obtain the decline. Output of this program includes the fixed format CNTL data cards and the other data cards required for input to GPCP. The output from GPCP then is used to produce a potentiometric map or a decline map by means of the CalComp plotter.

  4. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  5. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  6. Development of km23-Based Diagnostics and Therapeutics

    DTIC Science & Technology

    2005-05-01

    Attisano, L., Wieser, R., Ventura , F., and Massagu6, J. (1994) Nature 370, 341-347 28. Biggs, J. R., Kraft, A. S. (1999) J. Biol. Chem. 274, 36987-36994...Macias- Silva et al; 1996). Since blockade of km23 could reduce both the levels of phosphorylated Smad2 and the nuclear expression of Smad2, it was of...in TGF-P signaling. Front BioscL. 8, 1280-1303. Macias- Silva , M., Abdollah, S., Hoodless, P. A., Pirone, R., and Attisano, L., Wrana, J. L. (1996

  7. The relational database system of KM3NeT

    NASA Astrophysics Data System (ADS)

    Albert, Arnauld; Bozza, Cristiano

    2016-04-01

    The KM3NeT Collaboration is building a new generation of neutrino telescopes in the Mediterranean Sea. For these telescopes, a relational database is designed and implemented for several purposes, such as the centralised management of accounts, the storage of all documentation about components and the status of the detector and information about slow control and calibration data. It also contains information useful during the construction and the data acquisition phases. Highlights in the database schema, storage and management are discussed along with design choices that have impact on performances. In most cases, the database is not accessed directly by applications, but via a custom designed Web application server.

  8. An evaluation of the global 1-km AVHRR land dataset

    USGS Publications Warehouse

    Teillet, P.M.; El Saleous, N.; Hansen, M.C.; Eidenshink, Jeffery C.; Justice, C.O.; Townshend, J.R.G.

    2000-01-01

    This paper summarizes the steps taken in the generation of the global 1-km AVHRR land dataset, and it documents an evaluation of the data product with respect to the original specifications and its usefulness in research and applications to date. The evaluation addresses data characterization, processing, compositing and handling issues. Examples of the main scientific outputs are presented and options for improved processing are outlined and prioritized. The dataset has made a significant contribution, and a strong recommendation is made for its reprocessing and continuation to produce a long-term record for global change research.

  9. EVLA/NMA: Within and Beyond the 21-km Radius

    NASA Astrophysics Data System (ADS)

    Durand, Steve; Romney, Jonathan D.

    NRAO's Expanded Very Large Array (EVLA) project is being implemented in two phases. Each involves extremely wide- bandwidth data transmission over optical fibers, but the two phases necessarily involve quite different approaches to the required fiber infrastructure, which make for an interesting contrast. Phase 1, formally called the "Ultrasensitive Array", involves replacing almost all of the existing electronics, leaving only the mechanical and track infrastructure of the VLA. The data transmission system being implemented for Phase 1 uses dedicated optical fibers, currently being buried at the VLA site. Twelve standard single-mode fibers will run from each of 72 antenna pads to the central building. One of these fibers will support the wideband data transmission system, using a dense wavelength division multiplexing technique to carry a bandwidth of 96 Gbps (120 Gbps formatted) per antenna. Fibers from the 27 active antenna pads will carry a total bandwidth of 2.6 Tbps. The longest of these fibers will extend the full 21- km length of each arm. Phase 2 will add the "New Mexico Array". Eight new stations will be built, and the electronics of the VLBA Pie Town and Los Alamos stations will be upgraded, to create a medium-resolution array, with sensitivity even higher than Phase 1. All ten NMA stations will lie within the State of New Mexico. The new antennas will range as far as 265 km from the VLA site, and will be located so as to facilitate access to existing fiber trunks installed, primarily, by rural telephone companies. These trunks include numerous unused fibers which, it is anticipated, can be leased economically. The longest fiber run from the VLA is 480 km. The same 96-Gbps total bandwidth per station will be supported, with the same underlying sub-band structure. Signals from up to three NMA stations will be multiplexed onto a single fiber in the existing trunks. This will limit the total length of fiber which must be leased or acquired to about 1240 km.

  10. 157km BOTDA with pulse coding and image processing

    NASA Astrophysics Data System (ADS)

    Qian, Xianyang; Wang, Zinan; Wang, Song; Xue, Naitian; Sun, Wei; Zhang, Li; Zhang, Bin; Rao, Yunjiang

    2016-05-01

    A repeater-less Brillouin optical time-domain analyzer (BOTDA) with 157.68km sensing range is demonstrated, using the combination of random fiber laser Raman pumping and low-noise laser-diode-Raman pumping. With optical pulse coding (OPC) and Non Local Means (NLM) image processing, temperature sensing with +/-0.70°C uncertainty and 8m spatial resolution is experimentally demonstrated. The image processing approach has been proved to be compatible with OPC, and it further increases the figure-of-merit (FoM) of the system by 57%.

  11. First thoughts on KM3NeT on-shore data storage and distribution facilities

    NASA Astrophysics Data System (ADS)

    Stavrianakou, M.

    2009-04-01

    The KM3NeT project studies the design of an underwater neutrino telescope combined with a multidisciplinary underwater observatory in the Mediterranean. Data from the telescope will arrive on shore where they will be processed in real time at a data filter farm and subsequently stored and backed up at a central computing centre located on site. From there we propose a system whereby the data are distributed to participating institutes equipped with large computing centres for further processing, duplication and distribution to smaller centres. The data taking site hosts the central data management services, including the database servers, bookkeeping systems and file catalogue services, the data access and file transfer systems, data quality monitoring systems and transaction monitoring daemons and is equipped with fast network connection to all large computing sites. Data and service challenges in the course of the preparatory phase must be anticipated in order to test the hardware and software components in terms of robustness and performance, scalability as well as modularity and replaceability, given the rapid evolution of the market both in terms of CPU performance and storage capacity. The role of the GRID would also have to be evaluated and the appropriate implementation selected on time for an eventual test in the context of a data challenge before the start of data taking.

  12. Spaceflight Operations Services Grid (SOSG)

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Thigpen, William W.

    2004-01-01

    In an effort to adapt existing space flight operations services to new emerging Grid technologies we are developing a Grid-based prototype space flight operations Grid. This prototype is based on the operational services being provided to the International Space Station's Payload operations located at the Marshall Space Flight Center, Alabama. The prototype services will be Grid or Web enabled and provided to four user communities through portal technology. Users will have the opportunity to assess the value and feasibility of Grid technologies to their specific areas or disciplines. In this presentation descriptions of the prototype development, User-based services, Grid-based services and status of the project will be presented. Expected benefits, findings and observations (if any) to date will also be discussed. The focus of the presentation will be on the project in general, status to date and future plans. The End-use services to be included in the prototype are voice, video, telemetry, commanding, collaboration tools and visualization among others. Security is addressed throughout the project and is being designed into the Grid technologies and standards development. The project is divided into three phases. Phase One establishes the baseline User-based services required for space flight operations listed above. Phase Two involves applying Gridlweb technologies to the User-based services and development of portals for access by users. Phase Three will allow NASA and end users to evaluate the services and determine the future of the technology as applied to space flight operational services. Although, Phase One, which includes the development of the quasi-operational User-based services of the prototype, development will be completed by March 2004, the application of Grid technologies to these services will have just begun. We will provide status of the Grid technologies to the individual User-based services. This effort will result in an extensible

  13. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  14. KM3NeT/ORCA status and plans

    NASA Astrophysics Data System (ADS)

    Samtleben, Dorothea F. E.

    2016-04-01

    Neutrinos created in interactions of cosmic rays with the atmosphere can serve as a powerful tool to unveil the neutrino mass hierarchy (NMH). At low energies, around a few GeV, matter effects from the transition through the Earth are expected to imprint a distinct but also subtle signature on the oscillation pattern, specific to the ordering of the neutrino masses. KM3NeT/ORCA (Oscillations Research with Cosmics in the Abyss), a densely instrumented building block of the upcoming KM3NeT neutrino telescope, will be designated to measuring this signature in the Mediterranean Sea. Using detailed simulations the sensitivity towards this signature has been evaluated. The multi-PMT detectors allow in the water for an accurate reconstruction of GeV neutrino event signatures and distinction of neutrino flavours. For the determination of the mass hierarchy a median significance of 2-6σ has been estimated for three years of data taking, depending on the actual hierarchy and the oscillation parameters. At the same time the values of several oscillation parameters like θ23 will be determined to unprecedented precision.

  15. CO2 LIDAR measurements over a 20-km slant path

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Fox, Marsha J.; Gonglewski, John D.; Dowling, James A.; Highland, Ronald G.; Shilko, Michael L.

    1997-01-01

    The Air Force Phillips Laboratory conducted a series of measurements in February, May and August 1995 at the Air Force Maui Optical Station (AMOS) facility on Maui, Hawaii, to determine system requirements for an airborne long path CO(subscript 2) DIAL system. The lidar incorporates a cavity-matched mode-locked 3-J laser with the 60 cm diameter AMOS Beam Director Telescope. The one-way beam propagation path length was 21.3 km, originating at the AMOS facility on Haleakala at an altitude of 3.050 km ASL, and terminating at a target site near sea level. Both heterodyne and direct detection techniques are compared with respect to radiometric performance and signal statistics. Minimum detectable absorption levels for DIAL systems using both detection techniques and a variety of targets are estimated from long- range measurements with controlled absorbers. The signal correlation as a function of interpulse temporal separation was determined for long-range direct detection measurements. Radiometric models including system optical characteristics, beam propagation considerations, target reflectivity characteristics,a nd atmospheric effects have been developed and validated experimentally. A new receiver system is currently being fabricated and the laser transmitter is being upgraded for pulse-to-pulse wavelength agility, prior to incorporation into a C-135E airborne platform for future flight experiments.

  16. Sentiment of Search: KM and IT for User Expectations

    NASA Technical Reports Server (NTRS)

    Berndt, Sarah Ann; Meza, David

    2014-01-01

    User perceived value is the number one indicator of a successful implementation of KM and IT collaborations. The system known as "Search" requires more strategy and workflow that a mere data dump or ungoverned infrastructure can provide. Monitoring of user sentiment can be a driver for providing objective measures of success and justifying changes to the user interface. The dynamic nature of information technology makes traditional usability metrics difficult to identify, yet easy to argue against. There is little disagreement, however, on the criticality of adapting to user needs and expectations. The Systems Usability Scale (SUS), developed by John Brook in 1986 has become an industry standard for usability engineering. The first phase of a modified SUS, polls the sentiment of representative users of the JSC Search system. This information can be used to correlate user determined value with types of information sought and how the system is (or is not) meeting expectations. Sentiment analysis by way of the SUS assists an organization in identification and prioritization of the KM and IT variables impacting user perceived value. A secondary, user group focused analysis is the topic of additional work that demonstrates the impact of specific changes dictated by user sentiment.

  17. Quantum crytography over 14km of installed optical fiber

    SciTech Connect

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Simmons, C.

    1995-09-01

    We have made the first demonstration that low error rate quantum cryptography over long distances (14km) of installed optical fiber in a real-world environment, subject to uncontrolled temperature and mechanical influences, representing an important new step towards incorporation of quantum cryptography into existing information security systems. We also point out that the high visibility single-photon interference in our experiment allows us to infer a test of the superposition principle of quantum mechanics: a photon reaching the detector has traveled over 14km of optical fiber in a wavepacket comprising a coherent superposition of two components that are spatially separated by about 2m. In principle, there are decoherence processes (or even possible modifications of quantum mechanics) that could cause the photon`s wavefunction to collapse into one component or the other during propagation, leading to a reduction in visibility. However, our results are consistent with no such loss of quantum coherence during the 67-{mu}s propagation time.

  18. Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros

    NASA Technical Reports Server (NTRS)

    Thomas, P. C.; Robinson, M. S.

    2005-01-01

    Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.

  19. Best Practices In Overset Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.

  20. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  1. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  2. Visual analytics for power grid contingency analysis.

    PubMed

    Pak Chung Wong; Zhenyu Huang; Yousu Chen; Mackey, Patrick; Shuangshuang Jin

    2014-01-01

    Contingency analysis employs different measures to model scenarios, analyze them, and then derive the best response to any threats. A proposed visual-analytics pipeline for power grid management can transform approximately 100 million contingency scenarios to a manageable size and form. Grid operators can examine individual scenarios and devise preventive or mitigation strategies in a timely manner. Power grid engineers have applied the pipeline to a Western Electricity Coordinating Council power grid model.

  3. Integrating PEVs with Renewables and the Grid

    SciTech Connect

    Meintz, Andrew; Markel, Tony; Jun, Myungsoo; Zhang, Jiucai

    2016-06-29

    This presentation is an overview of NREL's Electric Vehicle Grid Integration (EVGI) efforts toward integrating Plug-in Electric Vehicles (PEVs) with renewable energy and the grid. Efforts include managed charging, local power quality, emergency backup power, and bi-directional power flow. Discussion of future vehicle-related activities under the Grid Modernization Initiative by the Multi-Lab EV Smart Grid Working Group.

  4. The State of NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.

  5. Smart Grid Status and Metrics Report

    SciTech Connect

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  6. Power grid complex network evolutions for the smart grid

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2014-02-01

    The shift towards an energy grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the electricity distribution infrastructure. Today the grid is a hierarchical one delivering energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and low voltage levels that will support local energy trading among prosumers. We investigate how different network topologies and growth models facilitate a more efficient and reliable network, and how they can facilitate the emergence of a decentralized electricity market. We show how connectivity plays an important role in improving the properties of reliability and path-cost reduction. Our results indicate that a specific type of evolution balances best the ratio between increased connectivity and costs to achieve the network growth.

  7. Stable boundary conditions for Cartesian grid calculations

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Leveque, R. J.

    1990-01-01

    The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated.

  8. 75 FR 55306 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Smart Grid... provide an update on NIST's Smart Grid program. The agenda may change to accommodate Committee...

  9. 76 FR 46279 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: Department of Commerce, National Institute of Standards and Technology ACTION: Notice of open meeting. SUMMARY: The Smart Grid... should be sent to Office of the National Coordinator for Smart Grid Interoperability, National...

  10. 77 FR 38768 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Smart Grid... the Smart Grid Interoperability Panel transition plan, review the status of the research...

  11. 76 FR 12711 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Smart Grid... will be posted on the Smart Grid Web site at http://www.nist.gov/smartgrid . DATES: The SGAC will...

  12. Surface grid generation in a parameter space

    NASA Astrophysics Data System (ADS)

    Samareh-Abolhassani, Jamshid; Stewart, John E.

    1994-07-01

    A robust and efficient technique is discussed for surface-grid generation on a general curvilinear surface. This technique is based on a nonuniform parameter space and allows for the generation of surface grids on highly skewed and nonuniform spaced background surface-grids. This method has been successfully integrated into the GRIDGEN software system.

  13. Surface Grid Generation in a Parameter Space

    NASA Astrophysics Data System (ADS)

    Samareh-Abolhassani, Jamshid; Stewart, John E.

    1994-07-01

    A robust and efficient technique is discussed for surface-grid generation on a general curvilinear surface. This technique is based on a non-uniform parameter space and allows for the generation of surface grids on highly skewed and nonuniform spaced background surface-grids. This method has been successfully integrated into the GRIDGEN software system.

  14. Surface grid generation in a parameter space

    SciTech Connect

    Samareh-Abolhassani, J.; Stewart, J.E. )

    1994-07-01

    A robust and efficient technique is discussed for surface-grid generation on a general curvilinear surface. This technique is based on a nonuniform parameter space and allows for the generation of surface grids on highly skewed and nonuniform spaced background surface-grids. This method has been successfully integrated into the GRIDGEN software system. 8 refs., 6 figs.

  15. Surface grid generation in a parameter space

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid; Stewart, John E.

    1994-01-01

    A robust and efficient technique is discussed for surface-grid generation on a general curvilinear surface. This technique is based on a nonuniform parameter space and allows for the generation of surface grids on highly skewed and nonuniform spaced background surface-grids. This method has been successfully integrated into the GRIDGEN software system.

  16. Multiprocessor computer overset grid method and apparatus

    DOEpatents

    Barnette, Daniel W.; Ober, Curtis C.

    2003-01-01

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  17. A 700 km long crustal transect across northern Morocco

    NASA Astrophysics Data System (ADS)

    Carbonell, Ramon; Gallart, Josep; Díaz, Jordi; Gil, Alba; Harnafi, Mimoun; Ouraini, Fadila; Ayarza, Puy; Teixell, Antonio; Arboleya, Maria Luisa; Palomeras, Imma; Levander, Alan

    2013-04-01

    Two controlled-source wide angle seismic reflection experiments have been acquired recently (2010 and 2011) in northern Africa across Morocco. A lithospheric scale transect can be constructed by joining both data sets. Hence, an approximately 700 km-long seismic velocity cross section can be derived. From south-to-north the transect goes from the Sahara Platform, south of Merzouga, to Tanger in the north. The first experiment, SIMA, aimed to constrain the crustal structure across the Atlas Mountains. The Rif, the orogenic belt located just south of the coast of Alboran Sea, was the target of the second experiment, RIFSIS. In both cases 900 recording instruments (TEXANS) from the IRIS-PASSCAL instrument center were used to record the acoustic energy generated by explosion shots. In both experiments the shots consisted of 1 TM of explosives fired in ~30 m deep boreholes. Although the data quality varies from shot to shot, key seismic phases as Pg, PmP, Pn, and a few intra-crustal arrivals have been identified to constrain the velocity-depth structure along the whole transect. Forward modelling of the seismic reflection/refraction phases reveals a crust consisting of 3 layers in average. The Moho topography shows from south to north a relatively moderate crustal root beneath the High Atlas, which can reach 40-42 km depth. The crust is thicker beneath the Rif where the Moho is imaged as an asymmetric feature that locally defines a crustal root reaching depths of 50 km and suggesting a crustal imbrication. P wave velocities are rather low in the crust and upper mantle. First arrivals/reflections tomography supports the forward modelling results. Low fold wide-angle stacks obtained by using hyperbolic move-out reveals the geometry of the Moho along the entire transect. Beneath the Atlas, the moderate crustal root inferred is not isostatically consistent with the high surface elevations, hence supporting the idea of a 'mantle plume' as main contributor to the Atlas

  18. The Effect of Water on the 410-km Discontinuity

    NASA Astrophysics Data System (ADS)

    Smyth, J. R.; Frost, D. J.

    2001-12-01

    The H content of the Earth is one of the most poorly constrained compositional variables for the planet. The nominally anhydrous olivine and spinelloid phases thought to compose the bulk of the upper mantle and transition zone may contain many times the amount of H and O that reside in the hydrosphere. The discontinuity at 410 kilometers corresponds to the olivine-wadsleyite transition with an increase in both density and S-wave velocity of about five percent. Previous experiments and calculations in the anhydrous peridotite system indicate an olivine-wadsleyite two-phase interval that is from 10 to 18 km in width. Calculations indicate that the two-phase region would be significantly broader in a hydrous system. We have conducted a series of synthesis experiments in the multi-anvil press on hydrous and anhydrous peridotite compositions and characterized the products by electron microprobe and single-crystal X-ray diffraction. Six experiments were conducted in a hydrous peridotite system, and three in an anhydrous system. The results of our synthesis experiments are consistent with the prediction of Wood (1995) that the presence of H2O extends the stability of wadsleyite to 0.6 to 1.0 GPa lower pressure and would broaden the two-phase loop to as much as 30 km. In the hydrous runs containing both olivine and wadsleyite, there appears a sharp boundary between regions of olivine and regions of wadsleyite. The texture of the run thus does not appear to be a simple chemical equilibrium, but rather a diffusion-controlled boundary. Hydrogen is known to diffuse very rapidly in these materials, raising the possibility that diffusion of H might control the texture and may affect the sharpness of the boundary in the natural system. Hydrous wadsleyite is about five percent denser than anhydrous olivine. In a hypothetical two-phase region consisting of olivine and wadsleyite plus lesser amounts of garnet and clinopyroxene extending over a depth 20 km in a hydrous system

  19. Gridded rainfall estimation for distributed modeling in western mountainous areas

    NASA Astrophysics Data System (ADS)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall

  20. A scheme for coupling land surface processes using mutliple non-uniform grid scales

    NASA Astrophysics Data System (ADS)

    Miller, N. L.; Bastidas, L. A.; Yatheendradas, Y.; Jin, J.; Sorooshian, S.

    2003-04-01

    Land surface processes respond differently at a range of scales, depending on the sensitivity and the available information for characterizing the parameter space. A multi-scale procedure for coupling a Land Surface Model (LSM) with atmospheric and subsurface processes has been developed. The Non-uniform Grid Scheme (NGS) utilizes hierarchical sub-grids with a high degree of characterization, that are nested within grid-matched coarser grids preserving spatial location. Conservation of mass and momentum is maintained across the grids and aggregated fluxes are computed for the larger scale, which will bi-directionally coupled to a fine-scale regional atmospheric model. Initial studies have shown a shift in the latent and sensible heating rates as the degree of land surface heterogeneity is increased. The Non-uniform Grid Scheme was setup for the NCEP Noah LSM over the San Pedro River Basin in Arizona as a sensitivity study. An analysis using the Noah LSM, in offline fashion, driven with outputs from the NCAR Mesoscale Model (MM5) is presented. Initially, uniform grids with 1, 4, and 9 km resolution are used throughout the domain. This is followed by a multiple resolution grid structure defined by the degree of land surface and sub-surface characteristics of the San Pedro Basin. The influence of the parameter values is also assessed using the default values for semi-arid conditions (uniform for the entire domain) as a benchmark. Grid-dependent non-uniform parameterization is based on a multi-criteria approach using the MOCOM-UA optimization algorithm. Parameter values derived from remote sensing, and values obtained from a combination of remote sensing and parameter optimization techniques are also presented.

  1. The ion population between 1300 km and 230000 km in the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Altwegg, K.; Balsiger, H.; Geiss, J.; Goldstein, R.; Ip, W. -H.; Meier, A.; Neugebauer, M.; Rosenbauer, H.; Shelley, E.

    1993-01-01

    During the encounter of the spacecraft Giotto with Comet Halley the two sensors of the ion mass spectrometer (IMS), high energy range spectrometer (HERS) and high intensity spectrometer (HIS), measured the mass and the three-dimensional velocity distributions of cometary ions. HIS looked mainly at the cold, slow part of the distribution close to the nucleus, HERS at the more energetic pick-up ions further out. After a thorough recalibration of the HIS flight spare unit and an extensive data analysis we present here continuous ion density-, composition-, velocity-, and temperature profiles for the water group ion (mass range 16-19 amu/e) along Giotto's inbound trajectory from 230,000 to 1300 km from the comet nucleus. The two sensors are in very good agreement in the region where their measurements overlap thus giving an excellent data base for the discussion of theoretical comet models. The most prominent feature where models and observations disagree is the so called pile up region between 8000 and 15,000 km from the nucleus.

  2. Forming blocks speed production of strain gage grids

    NASA Technical Reports Server (NTRS)

    Bonn, J. L.; Gardner, D. E.

    1965-01-01

    A tool is designed which facilitates the forming of wire grids used in manufacturing strain gage grids. Flattening the grid wire by a cold working process produces a stabilized grid which can be readily handled for storage or shipment.

  3. Transport System for Delivery Tourists At Altitude 140 km

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    The author offers a new method and installation for flight in space. This method uses the centrifugal force of a rotating circular cable that provides a means for the launch of a payload into outer space, to keep the fixed space stations at high altitudes (up to 200 km). The method may also be useful for landing to space bodies, for launching of the space ships (crafts), and for moving and accelerating other artificial apparatuses. The offered installation may be used as a propulsion system for space ships and/or probes. This system uses the material of any space body (i.e. stones) for acceleration and change of the space vehicle trajectory. The suggested system may be also used as a high capacity energy accumulator.

  4. Calibration methods and tools for KM3NeT

    NASA Astrophysics Data System (ADS)

    Kulikovskiy, Vladimir

    2016-04-01

    The KM3NeT detectors, ARCA and ORCA, composed of several thousands digital optical modules, are in the process of their realization in the Mediterranean Sea. Each optical module contains 31 3-inch photomultipliers. Readout of the optical modules and other detector components is synchronized at the level of sub-nanoseconds. The position of the module is measured by acoustic piezo detectors inside the module and external acoustic emitters installed on the bottom of the sea. The orientation of the module is obtained with an internal attitude and heading reference system chip. Detector calibration, i.e. timing, positioning and sea-water properties, is overviewed in this talk and discussed in detail in this conference. Results of the procedure applied to the first detector unit ready for installation in the deep sea will be shown.

  5. Measurement-Device-Independent Quantum Key Distribution over 200 km

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei

    2014-11-01

    Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.

  6. Fatal truck-bicycle accident involving dragging for 45 km.

    PubMed

    Klintschar, M; Darok, M; Roll, P

    2003-08-01

    Vehicle-bicycle accidents with subsequent dragging of the rider over long distances are extremely rare. The case reported here is that of a 16-year-old mentally retarded bike rider who was run over by a truck whose driver failed to notice the accident. The legs of the victim became trapped by the rear axle of the trailer and the body was dragged over 45 km before being discovered under the parked truck. The autopsy revealed that the boy had died from the initial impact and not from the dragging injuries which had caused extensive mutilation. The reports of the technical expert and the forensic pathologist led the prosecutor to drop the case against the truck driver for manslaughter.

  7. Wintertime density perturbations near 50 km in relation to latitude

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.

    1977-01-01

    Standard and reference atmospheres which depict the horizontal distribution of air density in the stratosphere and mesosphere are not realistic in that they do not provide information on the large departures from standard that may occur during a given month, nor on the time- and space-scales of atmospheric perturbations responsible for these departures. In the present paper, it is shown how this information can be obtained from a special analysis of satellite radiance measurements. Plots of the mean zonal radiance, obtained with the VTPR instrument, and the corresponding 50-km density show not only the expected strong poleward gradient of density, but also a strong density surge from late December to early January, affecting all latitudes.

  8. Mapping PetaSHA Applications to TeraGrid Architectures

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    accomplishments using the optimized code include the M7.8 ShakeOut rupture scenario, as part of the southern San Andreas Fault evaluation SoSAFE. The ShakeOut simulation domain is the same as used for the SCEC TeraShake simulations (600 km by 300 km by 80 km). However, the higher resolution of 100 m with frequency content up to 1 Hz required 14.4 billion grid points, eight times more than the TeraShake scenarios. The simulation used 2000 TACC Dell linux Lonestar processors and took 56 hours to compute 240 seconds of wave propagation. The pre-processing input partition, as well as post-processing analysis has been performed on the SDSC IBM Datastar p655 and p690. In addition, as part of the SCEC DynaShake computational platform, the SGSN capability was used to model dynamic rupture propagation for the ShakeOut scenario that match the proposed surface slip and size of the event. Mapping applications to different architectures require coordination of many areas of expertise in hardware and application level, an outstanding challenge faced on the current petascale computing effort. We believe our techniques as well as distributed data management through data grids have provided a practical example of how to effectively use multiple compute resources, and our results will benefit other geoscience disciplines as well.

  9. Grid cells analysis of urban growth using remote sensing and population census data

    NASA Astrophysics Data System (ADS)

    Bagan, H.; Yamagata, Y.

    2012-12-01

    Urban growth and sprawl have drastically altered the ecosystems and ecosystem services. Urban areas are an increasingly important component of the global environment, yet they remain one of the most challenging areas for conducting research. Remote sensing based information is one of the most important resources to support urban planning and administration in megacities. It is possible to provide the up-to-date information regarding the extent, growth, and physical characteristics of urban land. Remote sensing provides spatially consistent image information that covers broad areas with both high spatial resolution and high temporal frequency. Therefore, remote sensing is an important tool for providing information on urban land-cover characteristics and their changes over time at various spatial and temporal scales. Urban land-use and land-cover changes are linked to socio-economic activities. Urbanization includes both the physical growth of a city and the movement of people to urban areas. As a consequence, it is essential to combine remote sensing derived parameters with socio-economic parameter to analyze the spatial-temporal changes and interaction of both factors. The aim of the research was to use1-km2 grid cells to investigate the spatial and temporal dynamics of urban growth in the world mega cities. The research was conducted in the 50 global cities using Landsat ETM/TM remote sensing imagery from 1985 - 2011, and time series population census data (1-km2 resolution gridded population census data of Japan and 2.5 arc-minute resolutions Gridded Population of the World). First, maximum likelihood classification (MLC) method were used to produce land cover maps by using Landsat images. Then intersect the land cover maps with 1-km2 grid cell maps to represents the proportion of each land cover category within each 1-km2 grid cell. Finally, we combined the proportional land cover maps with gridded population census data on 1-km2 resolution grid cells to

  10. Towards a new high resolution gridded daily precipitation dataset over Europe

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Naveau, Philippe

    2016-04-01

    The availability of high resolution daily gridded observational datasets is essential in many applications and to properly evaluate regional climate models. As the horizontal resolution of such models has significantly increased in recent modelling exercises (e.g., Euro-Cordex), while the one of the available observational datasets has remained constant (approx. 25km), new approaches are needed to develop gridded dataset of daily precipitation. Here, we discuss a statistical conceptual framework to combine data from neighbouring stations and model outputs. Our approach is based on recent statistical models for precipitation distributions, meshed with a data assimilation scheme. Our study focuses on the European region.

  11. Vehicle to Grid Demonstration Project

    SciTech Connect

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  12. High-resolution grids of hourly meteorological variables for Germany

    NASA Astrophysics Data System (ADS)

    Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A.

    2016-12-01

    We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.

  13. Towards Modernizing the Electrical Grid

    DTIC Science & Technology

    2011-05-01

    Towards Modernizing the Electrical Grid The Real- Time Middleware Experts Gabriela F. Ciocarlie, PhD Report Documentation Page Form ApprovedOMB No...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Real- Time Innovations

  14. Spacer grid assembly and locking mechanism

    DOEpatents

    Snyder, Jr., Harold J.; Veca, Anthony R.; Donck, Harry A.

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  15. A portal for visualizing grid usage.

    SciTech Connect

    von Laszewski, G.; DiCarlo, J.; Allcock, B.; Mathematics and Computer Science; Univ. of Chicago

    2007-08-25

    We introduce a framework for measuring the use of Grid services and exposing simple summary data to an authorized set of Grid users through a JSR168-enabled portal. The sensor framework has been integrated into the Globus Toolkit and allows Grid administrators to have access to a mechanism helping with report and usage statistics. Although the original focus was the reporting of actions in relationship to GridFTP services, the usage service has been expanded to report also on the use of other Grid services.

  16. Spatially fractionated radiotherapy (GRID) using helical tomotherapy.

    PubMed

    Zhang, Xin; Penagaricano, Jose; Yan, Yulong; Liang, Xiaoying; Morrill, Steven; Griffin, Robert J; Corry, Peter; Ratanatharathorn, Vaneerat

    2016-01-08

    Spatially fractionated radiotherapy (GRID) was designed to treat large tumors while sparing skin, and it is usually delivered with a linear accelerator using a commercially available block or multileaf collimator (LINAC-GRID). For deep-seated (skin to tumor distance (> 8 cm)) tumors, it is always a challenge to achieve adequate tumor dose coverage. A novel method to perform GRID treatment using helical tomotherapy (HT-GRID) was developed at our institution. Our approach allows treating patients by generating a patient-specific virtual GRID block (software-generated) and using IMRT technique to optimize the treatment plan. Here, we report our initial clinical experience using HT-GRID, and dosimetric comparison results between HT-GRID and LINAC-GRID. This study evaluates 10 previously treated patients who had deep-seated bulky tumors with complex geometries. Five of these patients were treated with HT-GRID and replanned with LINAC-GRID for comparison. Similarly, five other patients were treated with LINAC-GRID and replanned with HT-GRID for comparison. The prescription was set such that the maximum dose to the GTV is 20 Gy in a single fraction. Dosimetric parameters compared included: mean GTV dose (DGTV mean), GTV dose inhomogeneity (valley-to-peak dose ratio (VPR)), normal tissue doses (DNmean), and other organs-at-risk (OARs) doses. In addition, equivalent uniform doses (EUD) for both GTV and normal tissue were evaluated. In summary, HT-GRID technique is patient-specific, and allows adjustment of the GRID pattern to match different tumor sizes and shapes when they are deep-seated and cannot be adequately treated with LINAC-GRID. HT-GRID delivers a higher DGTV mean, EUD, and VPR compared to LINAC-GRID. HT-GRID delivers a higher DNmean and lower EUD for normal tissue compared to LINAC-GRID. HT-GRID plans also have more options for tumors with complex anatomical relationships between the GTV and the avoidance OARs (abutment or close proximity).

  17. Building the International Lattice Data Grid

    SciTech Connect

    Mark G. Beckett, Paul Coddington, Bálint Joó, Chris M. Maynard, Dirk Pleiter, Osamu Tatebe, Tomoteru Yoshie

    2011-06-01

    We present the International Lattice Data Grid (ILDG), a loosely federated grid-of-grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file-format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the two years of production.

  18. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  19. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  20. The CMS integration grid testbed

    SciTech Connect

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  1. Smart Grid Interoperability Maturity Model

    SciTech Connect

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  2. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  3. Telemedical applications and grid technology

    NASA Astrophysics Data System (ADS)

    Graschew, Georgi; Roelofs, Theo A.; Rakowsky, Stefan; Schlag, Peter M.; Kaiser, Silvan; Albayrak, Sahin

    2005-11-01

    Due to the experience in the exploitation of previous European telemedicine projects an open Euro-Mediterranean consortium proposes the Virtual Euro-Mediterranean Hospital (VEMH) initiative. The provision of the same advanced technologies to the European and Mediterranean Countries should contribute to their better dialogue for integration. VEMH aims to facilitate the interconnection of various services through real integration which must take into account the social, human and cultural dimensions. VEMH will provide a platform consisting of a satellite and terrestrial link for the application of medical e-learning, real-time telemedicine and medical assistance. The methodologies for the VEMH are medical-needs-driven instead of technology-driven. They supply new management tools for virtual medical communities and allow management of clinical outcomes for implementation of evidence-based medicine. Due to the distributed character of the VEMH Grid technology becomes inevitable for successful deployment of the services. Existing Grid Engines provide basic computing power needed by today's medical analysis tasks but lack other capabilities needed for communication and knowledge sharing services envisioned. When it comes to heterogeneous systems to be shared by different institutions especially the high level system management areas are still unsupported. Therefore a Metagrid Engine is needed that provides a superset of functionalities across different Grid Engines and manages strong privacy and Quality of Service constraints at this comprehensive level.

  4. Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yoshida, Ryuji; Yamaura, Tsuyoshi; Yashiro, Hisashi; Tomita, Hirofumi

    2016-12-01

    The success of sub-kilometer global atmospheric simulation opens the door for resolving deep convections, which are fundamental elements of cloudy disturbances that drive global circulation. A previous study found that the essential change in the simulated convection properties occurred at a grid spacing of about 2 km as a global mean. In grid-refinement experiments, we conducted further comprehensive analysis of the global-mean state and the characteristics of deep convection, to clarify the difference of the essential change by location and environment. We found that the essential change in convection properties was different in the location and environment for each cloudy disturbance. The convections over the tropics show larger resolution dependence than convections over mid-latitudes, whereas no significant difference was found in convections over land or ocean. Furthermore, convections over cloudy disturbances [(i.e., Madden-Julian oscillation (MJO), tropical cyclones (TCs)] show essential change of convection properties at about 1 km grid spacing, suggesting resolution dependence. As a result, convections not categorized as cloudy disturbances make a large contribution to the global-mean convection properties. This implies that convections in disturbances are largely affected organization processes and hence have more horizontal resolution dependence. In contrast, other categorized convections that are not involved in major cloudy disturbances show the essential change at about 2 km grid spacing. This affects the latitude difference of the resolution dependence of convection properties and hence the zonal-mean outgoing longwave radiation (OLR). Despite the diversity of convection properties, most convections are resolved at less than 1 km grid spacing. In the future, longer integration of global atmosphere, to 0.87 km grid spacing, will stimulate significant discussion about the interaction between the convections and cloudy disturbances.

  5. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  6. GridMol: a grid application for molecular modeling and visualization

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Shen, Bin; Lu, Zhonghua; Jin, Zhong; Chi, Xuebin

    2008-02-01

    In this paper we present GridMol, an extensible tool for building a high performance computational chemistry platform in the grid environment. GridMol provides computational chemists one-stop service for molecular modeling, scientific computing and molecular information visualization. GridMol is not only a visualization and modeling tool but also simplifies control of remote Grid software that can access high performance computing resources. GridMol has been successfully integrated into China National Grid, the most powerful Chinese Grid Computing platform. In Section "Grid computing" of this paper, a computing example is given to show the availability and efficiency of GridMol. GridMol is coded using Java and Java3D for portability and cross-platform compatibility (Windows, Linux, MacOS X and UNIX). GridMol can run not only as a stand-alone application, but also as an applet through web browsers. In this paper, we will present the techniques for molecular visualization, molecular modeling and grid computing. GridMol is available free of charge under the GNU Public License (GPL) from our website: http://www.sccas.cn/ syh/GridMol/index.html.

  7. Interactive solution-adaptive grid generation procedure

    NASA Technical Reports Server (NTRS)

    Henderson, Todd L.; Choo, Yung K.; Lee, Ki D.

    1992-01-01

    TURBO-AD is an interactive solution adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution adaptive grid generation technique into a single interactive package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on the unit square in the parametric domain, and the new adapted grid is then mapped back to the physical domain. The grid adaption is achieved by adapting the control points to a numerical solution in the parametric domain using control sources obtained from the flow properties. Then a new modified grid is generated from the adapted control net. This process is efficient because the number of control points is much less than the number of grid points and the generation of the grid is an efficient algebraic process. TURBO-AD provides the user with both local and global controls.

  8. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  9. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  10. Getting a Grip on Grid Generation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    GridPro is an automatic, object-oriented, multi-block grid generator that provides ease of use, high quality, rapid production, and parametric design. When paired with a 3-D graphic user interface called az- Manager, GridPro presents users with an extremely efficient, interactive capability to build topology, edit surfaces, set computational fluid dynamics (CFD) boundary conditions, and view multi-block grids. The origins of the GridPro technology date back to a 1989 SBIR contract with NASA's Glenn Research Center, in which Glenn was seeking a multi-block grid generation program that would run automatically upon identifying a pattern of grid blocks supplied by a user. The technology is currently used in many engineering fields, including aerospace, turbo- machinery, automotive, and chemical industries.

  11. Evaluation of the 7-km GEOS-5 Nature Run

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Putman, William M.; Pawson, Steven; Draper, Clara; Molod, Andrea; Norris, Peter M.; Ott, Lesley; Prive, Nikki; Reale, Oreste; Achuthavarier, Deepthi; Bosilovich, Michael; Buchard, Virginie; Chao, Winston; Coy, Lawrence; Cullather, Richard; da Silva, Arlindo; Darmenov, Anton; Koster, Randal; McCarty, Will; Schubert, Siegfried

    2015-01-01

    This report documents an evaluation by the Global Modeling and Assimilation Office (GMAO) of a two-year 7-km-resolution non-hydrostatic global mesoscale simulation produced with the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model. The simulation was produced as a Nature Run for conducting observing system simulation experiments (OSSEs). Generation of the GEOS-5 Nature Run (G5NR) was motivated in part by the desire of the OSSE community for an improved high-resolution sequel to an existing Nature Run produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which has served the community for several years. The intended use of the G5NR in this context is for generating simulated observations to test proposed observing system designs regarding new instruments and their deployments. Because NASA's interest in OSSEs extends beyond traditional weather forecasting applications, the G5NR includes, in addition to standard meteorological components, a suite of aerosol types and several trace gas concentrations, with emissions downscaled to 10 km using ancillary information such as power plant location, population density and night-light information. The evaluation exercise described here involved more than twenty-five GMAO scientists investigating various aspects of the G5NR performance, including time mean temperature and wind fields, energy spectra, precipitation and the hydrological cycle, the representation of waves, tropical cyclones and midlatitude storms, land and ocean surface characteristics, the representation and forcing effects of clouds and radiation, dynamics of the stratosphere and mesosphere, and the representation of aerosols and trace gases. Comparisons are made with observational data sets when possible, as well as with reanalyses and other long model simulations. The evaluation is broad in scope, as it is meant to assess the overall realism of basic aspects of the G5NR deemed relevant to the conduct of OSSEs

  12. Future Changes in Rainfall Extremes Associated with El Nino Projected by a Global 20-km Mesh Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Kitoh, A.; Endo, H.

    2015-12-01

    El Nino/Southern Oscillation (ENSO) will still be the most dominant year-to-year variations of the future tropical climate system. A global high-resolution atmospheric general circulation model with grid size about 20 km is used to project future changes in rainfall extremes associated with El Nino at the end of the 21st century. Four different spatial patterns in sea surface temperature (SST) changes are used as future boundary conditions based on the CMIP5 RCP8.5 scenario. Rainfall extremes such as the maximum 5-day precipitation total (Rx5d) over the western Pacific are positively correlated to the Nino3.4 SST anomalies. It is found that Rx5d regressed to the Nino3.4 SST will increase two times in the future compared to the present value. This implies drastic increase of risk of heavy-rainfall induced disasters under by global warming over the western Pacific countries.

  13. Tropical cyclone activity in nested regional and global grid-refined simulations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Done, James M.; Fowler, Laura D.; Bruyère, Cindy L.

    2016-07-01

    The capacity of two different grid refinement methods—two-way limited area nesting and variable-mesh refinement—to capture Northwest Pacific Tropical Cyclone (TC) activity is compared in a suite of single-year continuous simulations. Simulations are conducted with and without regional grid refinement from approximately 100-20 km grid spacing over the Northwest Pacific. The capacity to capture smooth transitions between the two resolutions varies by grid refinement method. Nesting shows adverse influence of the nest boundary, with the boundary evident in seasonal average cloud patterns and precipitation, and contortions of the seasonal mean mid-latitude jet. Variable-mesh, on the other hand, reduces many of these effects and produced smoother cloud patterns and mid-latitude jet structure. Both refinement methods lead to increased TC frequency in the region of refinement compared to simulations without grid refinement, although nesting adversely affects TC tracks through the contorted mid-latitude jet. The variable-mesh approach leads to enhanced TC activity over the Southern Indian and Southwest Pacific basins, compared to a uniform mesh simulation. Nesting, on the other hand, does not appear to influence basins outside the region of grid refinement. This study provides evidence that variable mesh may bring benefits to seasonal TC simulation over traditional nesting, and demonstrates capacity of variable mesh refinement for regional climate simulation.

  14. 45-km horizontal-path optical link experiment

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Ceniceros, Juan M.; Novak, Matthew J.; Jeganathan, Muthu; Portillo, Angel; Erickson, David M.; de Pew, Jon; Sanii, B.; Lesh, James R.

    1999-04-01

    Mountain-top to mountain-top optical link experiments have been initiated at JPL, in order to perform a systems level evaluation of optical communications. Progress made so far is reported. The NASA, JPL developed optical communications demonstrator (OCD) is used to transmit a laser signal from Strawberry Peak (SP), located in the San Bernadino mountains of California. This laser beam is received by a 0.6 m aperture telescope at JPL's Table Mountain Facility (TMF), located in Wrightwood, California. The optical link is bi-directional with the TMF telescope transmitting a continuous 4-wave (cw) 780 nm beacon and the OCD sending back an 840 nm, 100 - 500 Mbps pseudo noise (PN) modulated, laser beam. The optical link path is at an average altitude of 2 Km above sea level, covers a range of 46.8 Km and provides an atmospheric channel equivalent to approximately 4 air masses. Average received power measured at either end fall well within the uncertainties predicted by link analysis. The reduction in normalized intensity variance ((sigma) I2) for the 4- beam beacon, compared to each individual beam, at SP, was from approximately 0.68 to 0.22. With some allowance for intra-beam mis-alignment, this is consistent with incoherent averaging. The (sigma) I2 measured at TMF approximately 0.43 plus or minus 0.22 exceeded the expected aperture averaged value of less than 0.1, probably because of beam wander. The focused spot sizes of approximately 162 plus or minus 6 micrometer at the TMF Coude and approximately 64 plus or minus 3 micrometer on the OCD compare to the predicted size range of 52 - 172 micrometer and 57 - 93 micrometer, respectively. This is consistent with 4 - 5 arcsec of atmospheric 'seeing.' The preliminary evaluation of OCD's fine tracking indicates that the uncompensated tracking error is approximately 3.3 (mu) rad compared to approximately 1.7 (mu) rad observed in the laboratory. Fine tracking performance was intermittent, primarily due to beacon fades on the

  15. Discovering New Global Climate Patterns: Curating a 21-Year High Temporal (Hourly) and Spatial (40km) Resolution Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    Hou, C. Y.; Dattore, R.; Peng, G. S.

    2014-12-01

    The National Center for Atmospheric Research's Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40km Reanalysis dataset is a dynamically downscaled dataset with high temporal and spatial resolution. The dataset contains three-dimensional hourly analyses in netCDF format for the global atmospheric state from 1985 to 2005 on a 40km horizontal grid (0.4°grid increment) with 28 vertical levels, providing good representation of local forcing and diurnal variation of processes in the planetary boundary layer. This project aimed to make the dataset publicly available, accessible, and usable in order to provide a unique resource to allow and promote studies of new climate characteristics. When the curation project started, it had been five years since the data files were generated. Also, although the Principal Investigator (PI) had generated a user document at the end of the project in 2009, the document had not been maintained. Furthermore, the PI had moved to a new institution, and the remaining team members were reassigned to other projects. These factors made data curation in the areas of verifying data quality, harvest metadata descriptions, documenting provenance information especially challenging. As a result, the project's curation process found that: Data curator's skill and knowledge helped make decisions, such as file format and structure and workflow documentation, that had significant, positive impact on the ease of the dataset's management and long term preservation. Use of data curation tools, such as the Data Curation Profiles Toolkit's guidelines, revealed important information for promoting the data's usability and enhancing preservation planning. Involving data curators during each stage of the data curation life cycle instead of at the end could improve the curation process' efficiency. Overall, the project showed that proper resources invested in the curation process would give datasets the best chance to fulfill their potential to

  16. ASIC design in the KM3NeT detector

    NASA Astrophysics Data System (ADS)

    Gajanana, D.; Gromov, V.; Timmer, P.

    2013-02-01

    In the KM3NeT project [1], Cherenkov light from the muon interactions with transparent matter around the detector, is used to detect neutrinos. Photo multiplier tubes (PMT) used as photon sensor, are housed in a glass sphere (aka Optical Module) to detect single photons from the Cherenkov light. The PMT needs high operational voltage ( ~ 1.5 kV) and is generated by a Cockroft-Walton (CW) multiplier circuit. The electronics required to control the PMT's and collect the signals is integrated in two ASIC's namely: 1) a front-end mixed signal ASIC (PROMiS) for the readout of the PMT and 2) an analog ASIC (CoCo) to generate pulses for charging the CW circuit and to control the feedback of the CW circuit. In this article, we discuss the two integrated circuits and test results of the complete setup. PROMiS amplifies the input charge, converts it to a pulse width and delivers the information via LVDS signals. These LVDS signals carry accurate information on the Time of arrival ( < 2 ns) and Time over Threshold. A PROM block provides unique identification to the chip. The chip communicates with the control electronics via an I2C bus. This unique combination of the ASIC's results in a very cost and power efficient PMT base design.

  17. Stratospheric microbiology at 20 km over the Pacific Ocean

    USGS Publications Warehouse

    Smith, David J.; Griffin, Dale W.; Schuerger, Andrew C.

    2010-01-01

    An aerobiology sampling flight at 20 km was conducted on 28 April 2008 over the Pacific Ocean (36.5° N, 118–149° W), a period of time that coincided with the movement of Asian dust across the ocean. The aim of this study was to confirm the presence of viable bacteria and fungi within a transoceanic, atmospheric bridge and to improve the resolution of flight hardware processing techniques. Isolates of the microbial strains recovered were analyzed with ribosomal ribonucleic acid (rRNA) sequencing to identify bacterial species Bacillus sp., Bacillus subtilis, Bacillus endophyticus, and the fungal genus Penicillium. Satellite imagery and ground-based radiosonde observations were used to measure dust movement and characterize the high-altitude environment at the time of collection. Considering the atmospheric residency time (7–10 days), the extreme temperature regime of the environment (-75°C), and the absence of a mechanism that could sustain particulates at high altitude, it is unlikely that our samples indicate a permanent, stratospheric ecosystem. However, the presence of viable fungi and bacteria in transoceanic stratosphere remains relevant to understanding the distribution and extent of microbial life on Earth.

  18. A 233 km Tunnel for Lepton and Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T.

    2012-07-01

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of $e^+e^-$, $p \\bar{p}$, and $\\mu^+ \\mu^-$ collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV $e^+e^-$ colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV $e^+ e^-$ collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV $p \\bar{p}$ collider uses the high intensity Fermilab $\\bar{p}$ source, exploits high cross sections for $p \\bar{p}$ production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  19. KM3NeT Digital Optical Module electronics

    NASA Astrophysics Data System (ADS)

    Real, Diego

    2016-04-01

    The KM3NeT collaboration is currently building of a neutrino telescope with a volume of several cubic kilometres at the bottom of the Mediterranean Sea. The telescope consists of a matrix of Digital Optical Modules that will detect the Cherenkov light originated by the interaction of the neutrinos in the proximity of the detector. This contribution describes the main components of the read-out electronics of the Digital Optical Module: the Power Board, which delivers all the power supply required by the Digital Optical Molule electronics; the Central Logic Board, the main core of the read-out system, hosting 31 Time to Digital Converters with 1 ns resolution and the White Rabbit protocol embedded in the Central Logic Board Field Programmable Gate Array; the Octopus boards, that transfer the Low Voltage Digital Signals from the PMT bases to the Central Logic Board and finally the PMT bases, in charge of converting the analogue signal produced in the 31 3" PMTs into a Low Voltage Digital Signal.

  20. A 233 km tunnel for lepton and hadron colliders

    SciTech Connect

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T.

    2012-12-21

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  1. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  2. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    features such as fens, bogs, and small water bodies. Field observations and comparisons with Landsat Thematic Mapper (TM) suggest a minimum effective resolution of these land cover classes in the range of three to four kilometers, in part, because of the daily to monthly compositing process. In general, potential accuracy limitations are mitigated by the use of conservative parameterization rules such as aggregation of predominant land cover classes within minimum horizontal grid cell sizes of ten kilometers. The AFM-12 one-kilometer AVHRR seasonal land cover classification data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements

    USGS Publications Warehouse

    Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.R.B; Gaina, C.; Golynsky, S.; Kucks, R.; Lu, Hai; Milligan, P.; Mogren, S.; Muller, R.D.; Olesen, O.; Pilkington, M.; Saltus, R.; Schreckenberger, B.; Thebault, E.; Tontini, F.C.

    2009-01-01

    A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from satellite, ship, and airborne magnetic measurements. EMAG2 is a significant update of our previous candidate grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2 arc min, and the altitude has been reduced from 5 km to 4 km above the geoid. Additional grid and track line data have been included, both over land and the oceans. Wherever available, the original shipborne and airborne data were used instead of precompiled oceanic magnetic grids. Interpolation between sparse track lines in the oceans was improved by directional gridding and extrapolation, based on an oceanic crustal age model. The longest wavelengths (>330 km) were replaced with the latest CHAMP satellite magnetic field model MF6. EMAG2 is available at http://geomag.org/models/EMAG2 and for permanent archive at http://earthref.org/ cgi-bin/er.cgi?s=erda.cgi?n=970. ?? 2009 by the American Geophysical Union.

  4. Kinematics of the New Zealand plate boundary: Relative motion by GPS across networks of 1000 km and 50 km spacing

    NASA Technical Reports Server (NTRS)

    Meertens, Charles M.; Rocken, Christian; Perin, Barbara; Walcott, Richard

    1993-01-01

    The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the

  5. SCIENTIFIC UNCERTAINTIES IN ATMOSPHERIC MERCURY MODELS III: BOUNDARY AND INITIAL CONDITIONS, MODEL GRID RESOLUTION, AND HG(II) REDUCTION MECHANISMS

    EPA Science Inventory

    In this study we investigate the CMAQ model response in terms of simulated mercury concentration and deposition to boundary/initial conditions (BC/IC), model grid resolution (12- versus 36-km), and two alternative Hg(II) reduction mechanisms. The model response to the change of g...

  6. Preglacial to glacial sediment thickness grids for the Southern Pacific Margin of West Antarctica

    NASA Astrophysics Data System (ADS)

    Lindeque, Ansa; Gohl, Karsten; Wobbe, Florian; Uenzelmann-Neben, Gabriele

    2016-10-01

    Circum-Antarctic sediment thickness grids provide constraints for basin evolution and paleotopographic reconstructions, which are important for paleo-ice sheet formation histories. By compiling old and new seismic data, we identify sequences representing preglacial, transitional, and full glacial deposition processes along the Pacific margin of West Antarctica. The preglacial sediment grid depicts 1.3-4.0 km thick depocenters, relatively evenly distributed along the margin. The depocenters change markedly in the transitional phase at, or after, the Eocene/Oligocene boundary when the first major ice sheets reached the shelf. Full glacial sequences, starting in the middle Miocene, indicate new depocenter formation North of the Amundsen Sea Embayment and localized eastward shifts in the Bellingshausen Sea and Antarctic Peninsula basins. Using present-day drainage paths and source areas on the continent, our calculations indicate that an estimated observed total sedimentary volume of ˜10 × 106 km3 was eroded from West Antarctica since the separation of New Zealand in the Late Cretaceous. Of this, 4.9 × 106 km3 predates the onset of glaciation and need to be considered for a 34 Ma paleotopography reconstruction. Whereas 5.1 × 106 km3 postdates the onset of glaciation, of which 2.5 × 106 km3 were deposited in post mid-Miocene full glacial conditions.

  7. A high resolution (1 km) groundwater model for Indonesia

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; Verkaik, Jarno; de Graaf, Inge; van Beek, Rens; Erkens, Gilles; Bierkens, Marc

    2015-04-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). We adopted the approaches of Sutanudjaja et al. (2011, 2014a) and de Graaf et al. (2014) in order to make a MODFLOW (Harbaugh et al., 2000) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological maps (e.g. Dürr et al., 2005; Gleeson et al., 2011; Hartmann & Moorsdorf, 2012; Gleeson et al., 2014). We forced the groundwater model with the recent output of global hydrological model PCR-GLOBWB version 2.0 (Sutanudjaja et al., 2014b; van Beek et al., 2011), specifically the long term average of groundwater recharge and average surface water levels derived from channel discharge. Simulation results were promising. The MODFLOW model converged with realistic aquifer properties (i.e. transmissivities) and produced reasonable groundwater head spatial distribution reflecting the positions of major groundwater bodies and surface water bodies in the country. In Vienna, we aim to show and demonstrate these

  8. Insightful Workflow For Grid Computing

    SciTech Connect

    Dr. Charles Earl

    2008-10-09

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  9. Bootstrapping to a Semantic Grid

    SciTech Connect

    Schwidder, Jens; Talbott, Tara; Myers, James D.

    2005-02-28

    The Scientific Annotation Middleware (SAM) is a set of components and services that enable researchers, applications, problem solving environments (PSE) and software agents to create metadata and annotations about data objects and document the semantic relationships between them. Developed starting in 2001, SAM allows applications to encode metadata within files or to manage metadata at the level of individual relationships as desired. SAM then provides mechanisms to expose metadata and relation¬ships encoded either way as WebDAV properties. In this paper, we report on work to further map this metadata into RDF and discuss the role of middleware such as SAM in bridging between traditional and semantic grid applications.

  10. Information in environmental data grids.

    PubMed

    Lawrence, B N; Lowry, R; Miller, P; Snaith, H; Woolf, A

    2009-03-13

    Providing homogeneous access ('services') to heterogeneous environmental data distributed across heterogeneous computing systems on a wide area network requires a robust information paradigm that can mediate between differing storage and information formats. While there are a number of ISO standards that provide some guidance on how to do this, the information landscape within domains is not well described. In this paper, we present an information taxonomy and two information components, which have been built for a specific application. These two components, one to aid data understanding and the other to aid data manipulation, are both deployed in the UK NERC DataGrid as described elsewhere.

  11. Grid computing and biomolecular simulation.

    PubMed

    Woods, Christopher J; Ng, Muan Hong; Johnston, Steven; Murdock, Stuart E; Wu, Bing; Tai, Kaihsu; Fangohr, Hans; Jeffreys, Paul; Cox, Simon; Frey, Jeremy G; Sansom, Mark S P; Essex, Jonathan W

    2005-08-15

    Biomolecular computer simulations are now widely used not only in an academic setting to understand the fundamental role of molecular dynamics on biological function, but also in the industrial context to assist in drug design. In this paper, two applications of Grid computing to this area will be outlined. The first, involving the coupling of distributed computing resources to dedicated Beowulf clusters, is targeted at simulating protein conformational change using the Replica Exchange methodology. In the second, the rationale and design of a database of biomolecular simulation trajectories is described. Both applications illustrate the increasingly important role modern computational methods are playing in the life sciences.

  12. Gastrointestinal distress is common during a 161-km ultramarathon.

    PubMed

    Stuempfle, Kristin Jean; Hoffman, Martin Dean

    2015-01-01

    This study examined the incidence, severity, and timing of gastrointestinal (GI) symptoms in finishers and non-finishers of the 161-km Western States Endurance Run. A total of 272 runners (71.0% of starters) completed a post-race questionnaire that assessed the incidence and severity (none = 0, mild = 1, moderate = 2, severe = 3, very severe = 4) of 12 upper (reflux/heartburn, belching, stomach bloating, stomach cramps/pain, nausea, vomiting) and lower (intestinal cramps/pain, flatulence, side ache/stitch, urge to defecate, loose stool/diarrhoea, intestinal bleeding/bloody faeces) GI symptoms experienced during each of four race segments. GI symptoms were experienced by most runners (96.0%). Flatulence (65.9% frequency, mean value 1.0, s = 0.6 severity), belching (61.3% frequency, mean value 1.0, s = 0.6 severity), and nausea (60.3% frequency, mean value 1.0, s = 0.7 severity) were the most common symptoms. Among race finishers, 43.9% reported that GI symptoms affected their race performance, with nausea being the most common symptom (86.0%). Among race non-finishers, 35.6% reported that GI symptoms were a reason for dropping out of the race, with nausea being the most common symptom (90.5%). For both finishers and non-finishers, nausea was greatest during the most challenging and hottest part of the race. GI symptoms are very common during ultramarathon running, and in particular, nausea is the most common complaint for finishers and non-finishers.

  13. Processing techniques for global land 1-km AVHRR data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Steinwand, Daniel R.; Wivell, Charles E.; Hollaren, Douglas M.; Meyer, David

    1993-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in cooperation with several international science organizations has developed techniques for processing daily Advanced Very High Resolution Radiometer (AVHRR) 1-km data of the entire global land surface. These techniques include orbital stitching, geometric rectification, radiometric calibration, and atmospheric correction. An orbital stitching algorithm was developed to combine consecutive observations acquired along an orbit by ground receiving stations into contiguous half-orbital segments. The geometric rectification process uses an AVHRR satellite model that contains modules for forward mapping, forward terrain correction, and inverse mapping with terrain correction. The correction is accomplished by using the hydrologic features coastlines and lakes from the Digital Chart of the World. These features are rasterized into the satellite projection and are matched to the AVHRR imagery using binary edge correlation techniques. The resulting coefficients are related to six attitude correction parameters: roll, roll rate, pitch, pitch rate, yaw, and altitude. The image can then be precision corrected to a variety of map projections and user-selected image frames. Because the AVHRR lacks onboard calibration for the optical wavelengths, a series of time-variant calibration coefficients derived from vicarious calibration methods and are used to model the degradation profile of the instruments. Reducing atmospheric effects on AVHRR data is important. A method has been develop that will remove the effects of molecular scattering and absorption from clear sky observations, using climatological measurements of ozone. Other methods to remove the effects of water vapor and aerosols are being investigated.

  14. Estimation of Land Surface Temperature from 1-km AVHRR data

    NASA Astrophysics Data System (ADS)

    Frey, Corinne

    2016-04-01

    In order to re-process DLRs 1km AVHRR data archive to different geophysical and descriptive parameters of the land surface and the atmosphere, a series of scientific data processors are being developed in the framework of the TIMELINE project. The archive of DLR ranges back to the 80ies. One of the data processors is SurfTemp, which processes L2 LST and emissivity datasets from AVHRR L1b data. The development of the data processor included the selection of statistical procedures suitable for time series processing, including four mono-window and six split window algorithms. For almost all of these algorithms, new constants were generated, which better account for different atmospheric and geometric acquisition situations. The selection of optimal algorithms for SurfTemp is based on a round robin approach, in which the selected mono-window and split window algorithms are tested on the basis of a large number of TOA radiance/LST pairs, which were generated using a radiative transfer model and the SeeBorV5 profile database. The original LSTs are thereby compared to the LSTs derived from the TOA radiances using the mono- and split window algorithms. The algorithm comparison includes measures of precision, as well as the sensitivity of a method to the accuracy of its input data. The results of the round robin are presented, as well as the implementation of selected algorithms into SurfTemp. Further, first cross-validation results between the AVHRR LST and MODIS LST are shown.

  15. Determinants of recovery from a 161-km ultramarathon.

    PubMed

    Hoffman, Martin D; Badowski, Natalie; Chin, Joseph; Stuempfle, Kristin J; Parise, Carol A

    2017-04-01

    The primary study objective was to identify determinants of short-term recovery from a 161-km ultramarathon. Participants completed 400 m runs at maximum speed before the race and on days 3 and 5 post-race, provided a post-race blood sample for plasma creatine kinase (CK) concentration, and provided lower body muscle pain and soreness ratings (soreness, 10-point scale) and overall muscular fatigue scores (fatigue, 100-point scale) pre-race and for 7 days post-race. Among 72 race finishers, soreness and fatigue had statistically returned to pre-race levels by 5 days post-race; and 400 m times at days 3 and 5 remained 26% (P = 0.001) and 12% (P = 0.01) slower compared with pre-race, respectively. CK best modelled soreness, fatigue and per cent change in post-race 400 m time. Runners with the highest CKs had 1.5 points higher (P < 0.001) soreness and 11.2 points higher (P = 0.006) fatigue than runners with the lowest CKs. For the model of 400 m time, a significant interaction of time with CK (P < 0.001) indicates that higher CKs were linked with a slower rate of return to pre-race 400 m time. Since post-race CK was the main modifiable determinant of recovery following the ultramarathon, appropriate training appears to be the optimal approach to enhance ultramarathon recovery.

  16. DSMC Grid Methodologies for Computing Low-Density, Hypersonic Flows About Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Wilmoth, Richard G.; LeBeau, Gerald J.; Carlson, Ann B.

    1996-01-01

    Two different grid methodologies are studied for application to DSMC simulations about reusable launch vehicles. One method uses an unstructured, tetrahedral grid while the other uses a structured, variable-resolution Cartesian grid. The relative merits of each method are discussed in terms of accuracy, computational efficiency, and overall ease of use. Both methods are applied to the computation of a low-density, hypersonic flow about a winged single-stage-to-orbit reusable launch vehicle concept at conditions corresponding to an altitude of 120 km. Both methods are shown to give comparable results for both surface and flowfield quantities as well as for the overall aerodynamic behavior. For the conditions simulated, the flowfield about the vehicle is very rarefied but the DSMC simulations show significant departure from free-molecular predictions for the surface friction and heat transfer as well as certain aerodynamic quantities.

  17. ARPA-E: Advancing the Electric Grid

    SciTech Connect

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  18. Reservoir property grids improve with geostatistics

    SciTech Connect

    Vogt, J. . E and P Technology Dept.)

    1993-09-01

    Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resulting grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.

  19. The entorhinal grid map is discretized.

    PubMed

    Stensola, Hanne; Stensola, Tor; Solstad, Trygve; Frøland, Kristian; Moser, May-Britt; Moser, Edvard I

    2012-12-06

    The medial entorhinal cortex (MEC) is part of the brain's circuit for dynamic representation of self-location. The metric of this representation is provided by grid cells, cells with spatial firing fields that tile environments in a periodic hexagonal pattern. Limited anatomical sampling has obscured whether the grid system operates as a unified system or a conglomerate of independent modules. Here we show with recordings from up to 186 grid cells in individual rats that grid cells cluster into a small number of layer-spanning anatomically overlapping modules with distinct scale, orientation, asymmetry and theta-frequency modulation. These modules can respond independently to changes in the geometry of the environment. The discrete topography of the grid-map, and the apparent autonomy of the modules, differ from the graded topography of maps for continuous variables in several sensory systems, raising the possibility that the modularity of the grid map is a product of local self-organizing network dynamics.

  20. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2016-07-12

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  1. An Introduction to Grid Computing Using EGEE

    NASA Astrophysics Data System (ADS)

    Walsh, John; Coghlan, Brian; Childs, Stephen

    Grid is an evolving and maturing architecture based on several well-established services, including amongst others, distributed computing, role and group management, distributed data management and Public Key Encryption systems Currently the largest scientific grid infrastructure is Enabling Grids e-Science (EGEE), comprised of approximately ˜250 sites, ˜50,000 CPUs and tens of petabytes of storage. Moreover, EGEE covers a large variety of scientific disciplines including Astrophysics. The scope of this work is to provide the keen astrophysicist with an introductory overview of the motivations for using Grid, and of the core production EGEE services and its supporting software and/or middleware (known by the name gLite). We present an overview of the available set of commands, tools and portals as used within these Grid communities. In addition, we present the current scheme for supporting MPI programs on these Grids.

  2. WegenerNet climate station network region Feldbach/Austria: From local measurements to weather and climate data products at 1 km-scale resolution

    NASA Astrophysics Data System (ADS)

    Kabas, T.; Leuprecht, A.; Bichler, C.; Kirchengast, G.

    2010-12-01

    South-eastern Austria is characteristic for experiencing a rich variety of weather and climate patterns. For this reason, the county of Feldbach was selected by the Wegener Center as a focus area for a pioneering observation experiment at very high resolution: The WegenerNet climate station network (in brief WegenerNet) comprises 151 meteorological stations within an area of about 20 km × 15 km (~ 1.4 km × 1.4 km station grid). All stations measure the main parameters temperature, humidity and precipitation with 5 minute sampling. Selected further stations include measurements of wind speed and direction completed by soil parameters as well as air pressure and net radiation. The collected data is integrated in an automatic processing system including data transfer, quality control, product generation, and visualization. Each station is equipped with an internet-attached data logger and the measurements are transferred as binary files via GPRS to the WegenerNet server in 1 hour intervals. The incoming raw data files of measured parameters as well as several operating values of the data logger are stored in a relational database (PostgreSQL). Next, the raw data pass the Quality Control System (QCS) in which the data are checked for its technical and physical plausibility (e.g., sensor specifications, temporal and spatial variability). In consideration of the data quality (quality flag), the Data Product Generator (DPG) results in weather and climate data products on various temporal scales (from 5 min to annual) for single stations and regular grids. Gridded data are derived by vertical scaling and squared inverse distance interpolation (1 km × 1 km and 0.01° × 0.01° grids). Both subsystems (QCS and DPG) are realized by the programming language Python. For application purposes the resulting data products are available via the bi-lingual (dt, en) WegenerNet data portal (www.wegenernet.org). At this time, the main interface is still online in a system in which

  3. Systems Engineering Building Advances Power Grid Research

    SciTech Connect

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2015-08-19

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  4. Spatial data grid based on CDN

    NASA Astrophysics Data System (ADS)

    Hu, XiaoGuang; Zhu, Xinyan; Li, Deren

    2008-12-01

    This paper firstly introduces the spatial data grid and the CDN (Content Delivery Network) technology. And then it depicts the significance of integrating grid with CDN. On this basis, this paper proposes a method of constructing the spatial data grid system by using CDN to support the massive spatial data online service. Finally, the simulation results by OPNET show that the programme do can improve the system performance, and reduce response time in a greater extent.

  5. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect

    Markiewicz, Daniel R

    2008-06-30

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  6. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2016-07-12

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  7. Grid generation on surfaces in 3 dimensions

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1986-01-01

    The development of a surface grid generation algorithm was initiated. The basic adaptive movement technique of mean-value-relaxation was extended from the viewpoint of a single coordinate grid over a surface described by a single scalar function to that of a surface more generally defined by vector functions and covered by a collection of smoothly connected grids. Within the multiconnected assemblage, the application of control was examined in several instances.

  8. Improved Gridded Aerosol Data for India

    SciTech Connect

    Gueymard, C.; Sengupta, M.

    2013-11-01

    Using point data from ground sites in and around India equipped with multiwavelength sunphotometers, as well as gridded data from space measurements or from existing aerosol climatologies, an improved gridded database providing the monthly aerosol optical depth at 550 nm (AOD550) and Angstrom exponent (AE) over India is produced. Data from 83 sunphotometer sites are used here as ground truth tocalibrate, optimally combine, and validate monthly gridded data during the period from 2000 to 2012.

  9. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  10. Flow Battery Solution for Smart Grid Applications

    SciTech Connect

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  11. Grids for Dummies: Featuring Earth Science Data Mining Application

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2002-01-01

    This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.

  12. Elevation-dependency of the representation of precipitation with COSMO-CLM at 3km over the Alps

    NASA Astrophysics Data System (ADS)

    Piazza, Marie; Truhetz, Heimo; Csaki, Andras

    2016-04-01

    Previous studies have shown that convection-permitting simulations accurately reproduce the diurnal cycle of precipitation, especially over mountainous regions in summer. However, a strong dependency to elevation has been shown with COSMO-CLM at 3km. Indeed, the model is unable to reproduce the mid-afternoon peak in low- and flat-lands in the Eastern Alps. Associated processes are investigated in the framework of NHCM-2 (project number P24758-N29), using a set of sensitivity experiments over the greater Alpine region. These experiments are designed to cover a broad range of influences, including orographic forcing and physical parametrizations. Model evaluation is performed with a set of observations-based high-quality datasets at 1km over the Eastern Alps. These datasets are provided by the Austrian Central Department for Meteorology and Geodynamics (ZAMG), and include data from the now-casting system INCA, and newly generated gridded dataset from homogenized high-density network of in situ measurement stations. First results of process-oriented analysis will be presented in the context of model inter-comparison with WRF.

  13. Assimilating Latent Heat Fluxes From Meteorological Geostationary Satellite Data In A Hydrological Model At The Scale of 20000 Km2

    NASA Astrophysics Data System (ADS)

    Roulin, E.

    This paper focuses on the use of evapotranspiration estimated from Meteosat data and from conventional meteorological information in a simple hydrological model at the scale of the river Scheldt and the river Meuse basins in Belgium and France. The radia- tive balance at the ground is computed from infrared and visible counts, radiosound- ing profiles and meteorological information from the synoptic network (Roulin et al., 1996). Latent heat flux is computed using the Monin-Obukhov theory and data of an automatic station. The ratio between latent heat flux and energy balance at the automatic station is used to infer evapotranspiration over the whole area (Gellens- Meulenberghs, 2000). The hydrological model is adapted from a conceptual model onto a grid of cells with 50 km2 area. Seven vegetation covers are represented. Wa- ter from vegetation and two soil buckets is depleted regarding the Penman-Monteith potential evapotranspiration. A simple assimilation scheme of the evapotranspiration from Meteosat is applied for the year 1995. The results are compared with soil mois- ture data gathered during a field campaign in a study area of 2200 km2 by UCL (Auquière et al., 1997).

  14. A Moving Grid Capability for NPARC

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    1998-01-01

    Version 3.1 of the NPARC computational fluid dynamics flow solver introduces a capability to solve unsteady flow on moving multi-block, structured grids with nominally second-order time accuracy. The grid motion is due to segments of the boundary grid that translate and rotate in a rigid-body manner or deform. The grid is regenerated at each time step to accommodate the boundary grid motion. The flow equations and computational models sense the moving grid through the grid velocities, which are computed from a time-difference of the grids at two consecutive time levels. For three-dimensional flow domains, it is assumed that the grid retains a planar character with respect to one coordinate. The application and accuracy of NPARC v3.1 is demonstrated for flow about a flying wedge, rotating flap, a collapsing bump in a duct, and the upstart / restart flow in a variable-geometry inlet. The results compare well with analytic and experimental results.

  15. Workshop on Grid Generation and Related Areas

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers given at the Workshop on Grid Generation and Related Areas is presented. The purpose of this workshop was to assemble engineers and scientists who are currently working on grid generation for computational fluid dynamics (CFD), surface modeling, and related areas. The objectives were to provide an informal forum on grid generation and related topics, to assess user experience, to identify needs, and to help promote synergy among engineers and scientists working in this area. The workshop consisted of four sessions representative of grid generation and surface modeling research and application within NASA LeRC. Each session contained presentations and an open discussion period.

  16. Effects of grids in drift tubes

    SciTech Connect

    Okamura M.; Yamauchi, H.

    2012-05-20

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  17. Ion mobility spectrometer with virtual aperture grid

    SciTech Connect

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  18. Electron Backstreaming Mitigation via a Magnetic Grid

    NASA Technical Reports Server (NTRS)

    Foster, John F.; Roman, Robert F.; Soulas, George C.; Patterson, Michael J.

    2002-01-01

    Electron backstreaming due to accelerator grid hole enlargement has been identified as a failure mechanism that will limit ion thruster service lifetime. Over extended periods of time as accelerator grid apertures enlarge due to erosion, ion thrusters are required to operate at increasingly higher accelerator grid voltages in order to prevent electron backstreaming. These higher voltages give rise to higher grid erosion rates, which in turn accelerates aperture enlargement. Presented here is an approach to mitigate the backflow of electrons into the engine by using a transverse magnetic field.

  19. Best Practices for Unstructured Grid Shock Fitting

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock fitting is outlined and applied to production relevant cases. Results achieved by using the Loci-CHEM Computational Fluid Dynamics solver are provided.

  20. Spaceflight Operations Services Grid (SOSG) Project

    NASA Technical Reports Server (NTRS)

    Bradford, Robert; Lisotta, Anthony

    2004-01-01

    The motivation, goals, and objectives of the Space Operations Services Grid Project (SOSG) are covered in this viewgraph presentation. The goals and objectives of SOSG include: 1) Developing a grid-enabled prototype providing Space-based ground operations end user services through a collaborative effort between NASA, academia, and industry to assess the technical and cost feasibility of implementation of Grid technologies in the Space Operations arena; 2) Provide to space operations organizations and processes, through a single secure portal(s), access to all the information technology (Grid and Web based) services necessary for program/project development, operations and the ultimate creation of new processes, information and knowledge.

  1. Development of a smart DC grid model

    NASA Astrophysics Data System (ADS)

    Dalimunthe, Amty Ma'rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become `smart'. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  2. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  3. Application Note: Power Grid Modeling With Xyce.

    SciTech Connect

    Sholander, Peter E.

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  4. The Grid-idea and its evolution.

    SciTech Connect

    von Laszewski, G.; Mathematics and Computer Science

    2005-01-01

    In this paper we review the essence of the Grid-Idea. Specifically, we explore the changing definition of the Grid and follow its evolution over the past decade. This evolution is motivated by the gradual expansion of management issues that must be addressed to make production Grids a reality and to meet user requirements for increased functionality. Additionally, we focus on the evolutionary path of the Globus Toolkit taken to address the increasing needs of the community. We also discuss the evolutionary inclusion of commodity technologies as illustrated by the Java Commodity Grid Project.

  5. Software for Refining or Coarsening Computational Grids

    NASA Technical Reports Server (NTRS)

    Daines, Russell; Woods, Jody

    2003-01-01

    A computer program performs calculations for refinement or coarsening of computational grids of the type called structured (signifying that they are geometrically regular and/or are specified by relatively simple algebraic expressions). This program is designed to facilitate analysis of the numerical effects of changing structured grids utilized in computational fluid dynamics (CFD) software. Unlike prior grid-refinement and -coarsening programs, this program is not limited to doubling or halving: the user can specify any refinement or coarsening ratio, which can have a noninteger value. In addition to this ratio, the program accepts, as input, a grid file and the associated restart file, which is basically a file containing the most recent iteration of flow-field variables computed on the grid. The program then refines or coarsens the grid as specified, while maintaining the geometry and the stretching characteristics of the original grid. The program can interpolate from the input restart file to create a restart file for the refined or coarsened grid. The program provides a graphical user interface that facilitates the entry of input data for the grid-generation and restart-interpolation routines.

  6. Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids

    NASA Technical Reports Server (NTRS)

    Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.

  7. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  8. 112 Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration.

    PubMed

    Downie, John D; Hurley, Jason; Cartledge, John; Bickham, Scott; Mishra, Snigdharaj

    2011-12-12

    We demonstrate transmission of 112 Gb/s PM-QPSK signals over a system with 200 km span lengths. Amplification is provided by hybrid backward-pumped Raman/EDFA amplifiers and reach lengths up to 6000 km for an 8 channel system and 5400 km for a 32 channel system are shown. As a means of maximizing OSNR, a simple hybrid fiber span configuration is used that combines two ultra-low loss fibers, one having very large effective area.

  9. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    SciTech Connect

    Yinger, Robert; Irwin, Mark

    2015-12-29

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number of energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.

  10. DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2000-01-01

    Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.

  11. Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Zhang, Qiang; Tong, Dan; Chen, Chuchu; Hong, Chaopeng; Li, Meng; Geng, Guannan; Lei, Yu; Huo, Hong; He, Kebin

    2017-01-01

    Gridded emission inventories are essential inputs for chemical transport models and climate models. Spatial proxies are applied to allocate emissions from regional totals to spatially resolved grids when the exact locations of emissions are absent, with additional uncertainties arising due to the spatial mismatch between the locations of emissions and spatial proxies. In this study, we investigate the impact of spatial proxies on the accuracy of gridded emission inventories at different spatial resolutions by comparing gridded emissions developed from different spatial proxies (proxy-based inventory) with a highly spatially disaggregated bottom-up emission inventory developed from the extensive use of locations of emitting facilities (bottom-up inventory) in Hebei Province, China. We find that proxy-based inventories are generally comparable to bottom-up inventories for grid sizes larger than 0.25° because spatial errors are largely diminished at coarse resolutions. However, for gridded emissions with finer resolutions, large positive biases in urban centers and negative biases in suburban and rural regions are identified in proxy-based inventories and are then propagated into significant biases in urban-scale chemical transport modeling. Compared to bottom-up inventories, the use of proxy-based emissions exhibits similar modeling results, with biases varying from 3 to 13 % when predicting surface concentrations of different pollutants at 36 km resolution and an additional 8-73 % at 4 km resolution. The resolution dependence of uncertainties in proxy-based gridded inventories can be explained by the decoupling of emission facility locations from spatial surrogates, especially because industry facilities tend to be located away from urban centers. This distance results in a divergence between emission distributions and the allocation of proxies on smaller grids. The decoupling effects are weakened when the grid size increases to cover both urban and rural regions

  12. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand's Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Mortimer, Nick; Smith, Euan; Turner, Gillian

    2016-03-01

    The widely accepted ˜450 km Cenozoic dextral strike-slip displacement on New Zealand's Alpine Fault is large for continental strike-slip faults, but it is still less than 60% of the Cenozoic relative plate motion between the Australian and Pacific plates through Zealandia, with the remaining motion assumed to be taken up by rotation and displacement on other faults in a zone up to 300 km wide. We show here that the 450 km total displacement across the Alpine Fault is an artifact of assumptions about the geometry of New Zealand's basement terranes in the Eocene, and the actual Cenozoic dextral displacement across the active trace is greater than 665 km, with more than 700 km (and <785 km since 25 Ma) occurring in a narrow zone less than 10 km wide. This way, the Alpine Fault has accommodated almost all (>94%) of the relative plate motion in the last 25 Ma at an average rate in excess of 28 mm/yr. It reverses more than 225 km (and <300 km) of sinistral shear through Zealandia in the Late Cretaceous, when Zealandia lay on the margin of Gondwana, providing a direct constraint on the kinematics of extension between East and West Antarctica at this time.

  13. Power grid simulation applications developed using the GridPACK™ high performance computing framework

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Diao, Ruisheng; Huang, Zhenyu; Perkins, William; Palmer, Bruce

    2016-12-01

    This paper describes the GridPACK™ software framework for developing power grid simulations that can run on high performance computing platforms, with several example applications (dynamic simulation, static contingency analysis, and dynamic contingency analysis) that have been developed using GridPACK.

  14. Grid-Integrated Distributed Solar: Addressing Challenges for Operations and Planning, Greening the Grid

    SciTech Connect

    Coddington, Michael; Miller, Mackay; Katz, Jessica

    2016-03-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document introduces a brief overview of common technical impacts of PV on distribution systems and operations, as well as emerging strategies for successfully addressing some of the priority issues.

  15. Parallel Grid Manipulations in Earth Science Calculations

    NASA Technical Reports Server (NTRS)

    Sawyer, W.; Lucchesi, R.; daSilva, A.; Takacs, L. L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center is moving its data assimilation system to massively parallel computing platforms. This parallel implementation of GEOS DAS will be used in the DAO's normal activities, which include reanalysis of data, and operational support for flight missions. Key components of GEOS DAS, including the gridpoint-based general circulation model and a data analysis system, are currently being parallelized. The parallelization of GEOS DAS is also one of the HPCC Grand Challenge Projects. The GEOS-DAS software employs several distinct grids. Some examples are: an observation grid- an unstructured grid of points at which observed or measured physical quantities from instruments or satellites are associated- a highly-structured latitude-longitude grid of points spanning the earth at given latitude-longitude coordinates at which prognostic quantities are determined, and a computational lat-lon grid in which the pole has been moved to a different location to avoid computational instabilities. Each of these grids has a different structure and number of constituent points. In spite of that, there are numerous interactions between the grids, e.g., values on one grid must be interpolated to another, or, in other cases, grids need to be redistributed on the underlying parallel platform. The DAO has designed a parallel integrated library for grid manipulations (PILGRIM) to support the needed grid interactions with maximum efficiency. It offers a flexible interface to generate new grids, define transformations between grids and apply them. Basic communication is currently MPI, however the interfaces defined here could conceivably be implemented with other message-passing libraries, e.g., Cray SHMEM, or with shared-memory constructs. The library is written in Fortran 90. First performance results indicate that even difficult problems, such as above-mentioned pole rotation- a

  16. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  17. Projection of the change in future extremes over Japan using a cloud-resolving model: (2) Precipitation Extremes and the results of the NHM-1km experiments

    NASA Astrophysics Data System (ADS)

    Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.

    2008-12-01

    In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top

  18. Spaceflight Operations Services Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Mehrotra, Piyush; Lisotta, Anthony

    2004-01-01

    NASA over the years has developed many types of technologies and conducted various types of science resulting in numerous variations of operations, data and applications. For example, operations range from deep space projects managed by JPL, Saturn and Shuttle operations managed from JSC and KSC, ISS science operations managed from MSFC and numerous low earth orbit satellites managed from GSFC that are varied and intrinsically different but require many of the same types of services to fulfill their missions. Also, large data sets (databases) of Shuttle flight data, solar system projects and earth observing data exist which because of their varied and sometimes outdated technologies are not and have not been fully examined for additional information and knowledge. Many of the applications/systems supporting operational services e.g. voice, video, telemetry and commanding, are outdated and obsolete. The vast amounts of data are located in various formats, at various locations and range over many years. The ability to conduct unified space operations, access disparate data sets and to develop systems and services that can provide operational services does not currently exist in any useful form. In addition, adding new services to existing operations is generally expensive and with the current budget constraints not feasible on any broad level of implementation. To understand these services a discussion of each one follows. The Spaceflight User-based Services are those services required to conduct space flight operations. Grid Services are those Grid services that will be used to overcome, through middleware software, some or all the problems that currently exists. In addition, Network Services will be discussed briefly. Network Services are crucial to any type of remedy and are evolving adequately to support any technology currently in development.

  19. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  20. Grid generation: A view from the trenches

    NASA Technical Reports Server (NTRS)

    Ives, David; Miller, Robert; Siddons, William; Vandyke, Kevin

    1995-01-01

    This paper presents 'A view from the trenches' on CFD grid generation from a Pratt & Whitney perspective. We anticipate that other organizations have similar views. We focus on customer expectations and the consequent requirements. We enunciate a vision for grid generation, discuss issues that developers must recognize.

  1. Unstructured Grid Generation Techniques and Software

    NASA Technical Reports Server (NTRS)

    Posenau, Mary-Anne K. (Editor)

    1993-01-01

    The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop.

  2. Uncertainty in gridded CO2 emissions estimates

    NASA Astrophysics Data System (ADS)

    Hogue, Susannah; Marland, Eric; Andres, Robert J.; Marland, Gregg; Woodard, Dawn

    2016-05-01

    We are interested in the spatial distribution of fossil-fuel-related emissions of CO2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from the use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. Uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.

  3. Interactive Hyperbolic Grid Generation for Projectile CFD

    DTIC Science & Technology

    1992-05-01

    J . F . "A Composite Grid Generation Code for General 3D Regions - The EAGLE Code." AIAA Journal, vol. 26, no. 3, p. 271, March 1988. Thompson , J . F ., and...Grid Generation." AGARD FDP Specialists Meeting on "Mesh Generation for Complex Three-Dimensional Configurations." Leon, Norway, May 1989. Thompson

  4. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1995-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  5. A Debugger for Computational Grid Applications

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of a debugger for computational grid applications. Details are given on NAS parallel tools groups (including parallelization support tools, evaluation of various parallelization strategies, and distributed and aggregated computing), debugger dependencies, scalability, initial implementation, the process grid, and information on Globus.

  6. Towards Verification of Unstructured-Grid Solvers

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Diskin, Boris; Rumsey, Christopher L.

    2008-01-01

    New methodology for verification of finite-volume computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. Tests are performed within each window and address a combination of problem-, solution-, and discretization/grid-related features affecting discretization error convergence. The windows can be adjusted to isolate particular elements of the computational scheme, such as the interior discretization, the boundary discretization, or singularities. Studies can use traditional grid-refinement computations within a fixed window or downscaling, a recently-introduced technique in which computations are made within windows contracting toward a focal point of interest. Grids within the windows are constrained to be consistently refined, allowing a meaningful assessment of asymptotic error convergence on unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at boundary intersections. Recommendations to enable attainment of design-order discretization errors for large-scale computational simulations are given.

  7. Features of the Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Gawor, J.; Lane, P.; Rehn, N.; Russell, M.; Mathematics and Computer Science

    2002-11-01

    In this paper we report on the features of the Java Commodity Grid Kit (Java CoG Kit). The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus Toolkit protocols, allowing the Java CoG Kit to also communicate with the services distributed as part of the C Globus Toolkit reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise and peer-to-peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus Toolkit software. In this paper we also report on the efforts to develop serverside Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Grid jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  8. 76 FR 70412 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... National Institute of Standards and Technology Smart Grid Advisory Committee AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Smart Grid... agenda may change to accommodate Committee business. The final agenda will be posted on the Smart...

  9. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1993-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  10. Computing Flows Using Chimera and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  11. 21 CFR 892.1910 - Radiographic grid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic grid. 892.1910 Section 892.1910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1910 Radiographic grid. (a) Identification....

  12. 21 CFR 892.1910 - Radiographic grid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiographic grid. 892.1910 Section 892.1910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1910 Radiographic grid. (a) Identification....

  13. 21 CFR 892.1910 - Radiographic grid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic grid. 892.1910 Section 892.1910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1910 Radiographic grid. (a) Identification....

  14. 21 CFR 892.1910 - Radiographic grid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiographic grid. 892.1910 Section 892.1910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1910 Radiographic grid. (a) Identification....

  15. 21 CFR 892.1910 - Radiographic grid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiographic grid. 892.1910 Section 892.1910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1910 Radiographic grid. (a) Identification....

  16. Optimizing SAS tasks for Grid Architectures

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Tapiador, D.; Félix, F.; Gabriel, C.; Arviset, C.; Hoar, J.; Ansari, S.

    2006-07-01

    We present the first prototype of a XMM-Newton pipeline processing task parallelized at a CCD level, which can be run in a GRID system. By using the GridWay application, the processing of the XMM-Newton data is distributed across the Virtual Organization constituted by three different research centres (ESAC, ESTEC, Complutense Madrid University).

  17. Grid Convergence for Turbulent Flows(Invited)

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel

    2015-01-01

    A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.

  18. Grids and clouds in the Czech NGI

    NASA Astrophysics Data System (ADS)

    Kundrát, Jan; Adam, Martin; Adamová, Dagmar; Chudoba, Jiří; Kouba, Tomáš; Lokajíček, Miloš; Mikula, Alexandr; Říkal, Václav; Švec, Jan; Vohnout, Rudolf

    2016-09-01

    There are several infrastructure operators within the Czech Republic NGI (National Grid Initiative) which provide users with access to high-performance computing facilities over a grid and cloud interface. This article focuses on those where the primary author has personal first-hand experience. We cover some operational issues as well as the history of these facilities.

  19. The Administrative Grid: A Leader Style Model.

    ERIC Educational Resources Information Center

    Coleman, Donald G.; Heun, Richard E.

    The Administrative Grid was developed to aid in rapid interpretation of orthogonal data on management style. The grid is a simple device for illustrating Z-score values from any instrument with orthogonality determined and scores normalized. The two dimensions, "people" and "task,"are divided into standard deviations and, by…

  20. Parallel unstructured grid generation for computational aerosciences

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1993-01-01

    The objective of this research project is to develop efficient parallel automatic grid generation procedures for use in computational aerosciences. This effort is focused on a parallel version of the Finite Octree grid generator. Progress made during the first six months is reported.

  1. VGRIDSG: An unstructured surface grid generation program

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.

    1993-01-01

    This report contains an overview of the VGRIDSG unstructured surface grid generation program. The VGRIDSG program was created from the VGRID3D unstructured grid generation program developed by Vigyan, Inc. The purpose of this report is to document the changes from the original VGRID3D program and to describe the capabilities of the new program.

  2. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    NASA Astrophysics Data System (ADS)

    Zuijderduin, Roy; Chevtchenko, Oleg; Smit, Johan; Aanhaanen, Gert; Ross, Rob

    2014-05-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming decades [1]. Novel high temperature superconductor (HTS) AC transmission cables can play a role in strengthening the grid. The advantages as compared to alternatives, are: economic, underground, higher power capacity, lower losses, reduced magnetic field emissions in (existing) OHL, compact: less occupation of land and less permits needed, a possibility to keep 380 kV voltage level in the grid for as long as needed. The main obstacles are: the relatively high price of HTS tapes and insufficient maturity of the HTS cable technology. In the paper we focus on a 34 km long connection in the transmission grid (to be strengthened in three of the four of TenneT scenarios [1]), present the network study results, derive the requirements for corresponding HTS transmission cable system and compare HTS system to the alternatives (OHLs and XLPE cables).

  3. Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations

    NASA Technical Reports Server (NTRS)

    Moon, Young J.; Liou, Meng-Sing

    1989-01-01

    Conservative algorithms for boundary interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.

  4. Percent utilization of VO2 max at 5-km competition velocity does not determine time performance at 5 km among elite distance runners.

    PubMed

    Støa, Eva Maria; Støren, Øyvind; Enoksen, Eystein; Ingjer, Frank

    2010-05-01

    The present study investigated to what extent maximum oxygen uptake (VO2 max) and fractional utilization (%VO2 max) in 5-km competition speed correlate with 5-km performance times among elite long distance runners. Eight elite long distance runners with 5-km performance times of 15.10 minutes ( +/- 32 seconds) were tested for VO2 max during an incremental protocol and for %VO2 max during an 8-minute treadmill test at the velocity representing their 5-km seasonal best performance time. There was no correlation between fractional utilization and 5-km performance. The study showed no significant difference between VO2 max obtained during an incremental VO2 max test and %VO2 max when running for 8 minutes at the runner's individual 5-km competition speed. The 5-km time was related to the runner's VO2 max even in a homogenous high-level performance group. In conclusion, the present study found no relationship between fractional utilization and 5-km performance time. Training aiming to increase %VO2 max may thus be of little or no importance in performance enhancement for competitions lasting up to approximately 20 minutes.

  5. Prediction of Emission from Wire Polarizing Grids

    NASA Technical Reports Server (NTRS)

    Wollack, Edward

    2009-01-01

    A simple inhomogeneous circuit model for a grid comprised of wires with circular cross section is derived and compared to measured observations. The proposed approximations are valid in the limit the geometric parameters for the grid are small compared to the wavelength of the incident radiation. Expressions for the emission, reflection, and transmission are provided. The accuracy of this circuit model is compared against full wave numerical simulations as a function of grid filling fraction. For perpendicular illumination of the grid the expressions used in the literature for zero thickness polarizers are recovered. For parallel illumination the influence of the finite wire thickness has a non-negectable influence on the emission properties of a wire grid polarizer is found.

  6. Towards Verification of Unstructured-Grid Solvers

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Diskin, Boris; Rumsey, Christopher L.

    2008-01-01

    New methodology for verification of computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. The windows can be adjusted to isolate the interior discretization, the boundary discretization, or singularities. A major component of the methodology is the downscaling test, introduced previously for studying the convergence rates of truncation and discretization errors of finite-volume discretization schemes on general unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at intersections of tangency and inflow/outflow boundaries. Recommendations for the use of the methodology in large-scale computational simulations are given.

  7. An Extensible Information Grid for Risk Management

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David G.

    2003-01-01

    This paper describes recent work on developing an extensible information grid for risk management at NASA - a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management - a closed-loop iterative process for explicit risk management, program/project management - a proactive process that includes risk management, and mishap management - a feedback loop for learning from historical risks that escaped other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, schemaless mapping of XML, and secure server-mediated communication using standard protocols.

  8. Defending the Power Grid from Hackers

    SciTech Connect

    Eber, Kevin

    2016-10-01

    A new initiative underway at the National Renewable Energy Laboratory is intended to prevent hackers from gaining control of parts of the nation's power grid, potentially damaging electrical equipment and causing localized power outages. Our nation's power grid is evolving to be more responsive to changing power needs, more able to integrate renewable energy, more efficient, and more reliable. One key element of this evolution is adding communication and control devices to the power grid, closer to the end user, so that utilities have greater situational awareness of the grid and can respond quickly to disturbances. But these new devices and their communications requirements can also open up the power grid to potential cyber attacks.

  9. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  10. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  11. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  12. Smart Grid Status and Metrics Report Appendices

    SciTech Connect

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  13. Unlocking the potential of the smart grid

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.

  14. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  15. Parallel algorithms for dynamically partitioning unstructured grids

    SciTech Connect

    Diniz, P.; Plimpton, S.; Hendrickson, B.; Leland, R.

    1994-10-01

    Grid partitioning is the method of choice for decomposing a wide variety of computational problems into naturally parallel pieces. In problems where computational load on the grid or the grid itself changes as the simulation progresses, the ability to repartition dynamically and in parallel is attractive for achieving higher performance. We describe three algorithms suitable for parallel dynamic load-balancing which attempt to partition unstructured grids so that computational load is balanced and communication is minimized. The execution time of algorithms and the quality of the partitions they generate are compared to results from serial partitioners for two large grids. The integration of the algorithms into a parallel particle simulation is also briefly discussed.

  16. caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.

    SciTech Connect

    Oster, S.; Langella, S.; Hastings, S.; Ervin, D.; Madduri, R.; Phillips, J.; Kurc, T.; Siebenlist, F.; Covitz, P.; Shanbhag, K.; Foster, I.; Saltz, J.; Mathematics and Computer Science; The Ohio State Univ.; National Cancer Inst. Centerfor Bioinformatics; SemanticBits

    2008-03-01

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: Grid>.

  17. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  18. Comparison tomography relocation hypocenter grid search and guided grid search method in Java island

    NASA Astrophysics Data System (ADS)

    Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.

    2016-11-01

    The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions.

  19. The Dependence on Grid Resolution of Numerically Simulated Convective Cloud Systems Using Ice Microphysics

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo; Lang, Stephen E.; Ferrier, Bradley S.

    1999-01-01

    Mesoscale research and forecast models are increasingly being used at horizontal resolutions of 1-8 km to simulate a variety of precipitating systems. When the model is used to simulate convective systems, it is uncertain to what extent the dynamics and microphysics of convective updrafts can be resolved with grids larger than 1 km. In this study, two- and three-dimensional versions of the Goddard Cumulus Ensemble model are used to determine the impact of horizontal grid resolution on the behavior of the simulated storms and on the characteristics of the cloud microphysical fields. It will be shown that as resolution decreases from about 1 km to greater than 3 km, there is a fairly rapid degradation of the storm structure in the form of reduced convective mass fluxes, updraft tilts, and cloud microphysics. A high-resolution simulation of hurricane outer rainbands using the MM5 mesoscale model shows also that there can be a substantial modification of the key microphysical processes that contribute to rainfall as a result of reducing the horizontal resolution.

  20. OVERGRID: A Unified Overset Grid Generation Graphical Interface

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Akien, Edwin W. (Technical Monitor)

    1999-01-01

    This paper presents a unified graphical interface and gridding strategy for performing overset grid generation. The interface called OVERGRID has been specifically designed to follow an efficient overset gridding strategy, and contains general grid manipulation capabilities as well as modules that are specifically suited for overset grids. General grid utilities include functions for grid redistribution, smoothing, concatenation, extraction, extrapolation, projection, and many others. Modules specially tailored for overset grids include a seam curve extractor, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, and a Cartesian box grid generator, Grid visualization is achieved using OpenGL while widgets are constructed with Tcl/Tk. The software is portable between various platforms from UNIX workstations to personal computers.

  1. Three-dimensional grid generation about a submarine

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid Samareh; Smith, Robert E.

    1988-01-01

    A systematic multiple-block grid method has been developed to compute grids about submarines. Several topologies are proposed, and an oscillatory transfinite interpolation is used in the grid construction.

  2. The 3D Euler solutions using automated Cartesian grid generation

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.

  3. Effects of grid geometry on non-equilibrium dissipation in grid turbulence

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Saiki, Teppei; Sakai, Yasuhiko; Ito, Yasumasa; Iwano, Koji

    2017-01-01

    A total of 11 grids in four families, including single- and multi-scale grids, are tested to investigate the development and decay characteristics of grid-generated turbulence. Special attention has been focused on dissipation and non-equilibrium characteristics in the decay region. A wide non-equilibrium region is observed for fractal square grids with three and four iterations. The distributions of the Taylor microscale λ, integral length scale Lu, and dissipation coefficient C ɛ show that a simple combination of large and small grids does not reproduce elongated non-equilibrium regions as realized by the fractal square grid. On the other hand, a new kind of grid, quasi-fractal grids, in which the region of the smaller fractal elements ( N = 2 - 4 ) of the fractal square grid is replaced by regular grids, successfully reproduce a similar flow field and non-equilibrium nature to that seen in the fractal square grid case. This suggests that the combination of large square grid and inhomogeneously arranged smaller grids produces an elongated non-equilibrium region. The dissipation coefficient C ɛ is better collapsed using R e 0 = t 0 U ∞ / ν (where t0 is the thickness of the largest grid bar, U ∞ the inflow velocity, and ν the kinematic viscosity) as a global/inlet Reynolds number rather than R e M = M U ∞ / ν (where M is the mesh size) [P. C. Valente and J. C. Vassilicos, "Universal dissipation scaling for non-equilibrium turbulence," Phys. Rev. Lett. 108, 214503 (2012)].

  4. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  5. Solar thermal energy predictability for the grid (STEP4Grid)

    NASA Astrophysics Data System (ADS)

    Fernández-León, Mercedes; Pacheco, Germán; Bolinaga, Beatriz; Campa, Luis; Lara-Fanego, Vicente; Valenzuela, José M.

    2016-05-01

    There is a growing concern about the importance of the improvement of efficiency, the dispatchability of thermosolar plants and the predictability of the energy production for electrical markets. In the current research, a new developed system denominated STEP4Grid is presented and their products are analyzed. Currently it is on operation in the thermosolar plant of Solúcar in Sanlúcar la Mayor, Seville, Spain. Forecasting Direct Normal Irradiance (DNI) and Forecasting Gross Production (FGP) have been provided by the system. This product generates different time horizon forecasts combining all-sky cameras, satellite and Numerical Weather Prediction Model (NWPM) forecasts. The sensors network installed all over the plant provides continuous meteorological and non-meteorological data, which act as an input for the energy production model. The whole system is viewable by plant operators with the help of a layout system. For the May and June of 2015 database, the FGP based on satellite and Numerical Weather Prediction Models (NWPM) DNI predictions have an rMAE for an hour-ahead horizon of 16 % (May) and 17 % (June) respectively. For all the horizons, the FGP increases their deviations the further it is from the real-time and the profile is similar to the evolution of DNI forecasting rMAE.

  6. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10,130- and 6,078 km terrestrial fiber links.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Zhu, Benyuan; Li, Fan; Chien, Hung-Chang; Jia, Zhensheng; Cai, Yi; Li, Xinying; Xiao, Xin; Fang, Yuan; Wang, Yuanquan

    2015-06-29

    We experimentally demonstrate the coherent transmission system with the highest ETDM-based symbol rate of 128.8-GBaud over record breaking distances. We successfully transmitted single-carrier 515.2-Gb/s PDM-QPSK/9-QAM signals over 10,130km/6,078-km, respectively, over 100km spans of TeraWave SLA + fiber. To the best of our knowledge, it is the highest ETDM-based symbol rate reported so far, and the longest WDM transmission distance with single-carrier 400G signals. For the first time, the 515.2-Gb/s single-carrier PDM-QPSK signals in 200-GHz-grid are successfully transmitted over distance above 10,000km in terrestrial transmission environment. We have also demonstrated the transmission of single carrier 128.8-GBaud filtered QPSK signals in 100-GHz-grid over 6,078-km, which has the line spectral efficiency (SE) of 5.152 (b/s/Hz).

  7. Developing Knowledge Management (KM): Contributions by Organizational Learning and Total Quality Management (TQM)

    ERIC Educational Resources Information Center

    Hung, Richard Yu-Yuan; Lien, Bella Ya-Hui

    2005-01-01

    Knowledge management is an integral business function for many organizations to manage intellectual resources effectively. From a resource-based perspective, organizational learning and TQM are antecedents that are closely related to KM. The purposes of this study were to explain the contents of KM, and explore the relationship between KM-related…

  8. Scalable Real Time Data Management for Smart Grid

    SciTech Connect

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  9. Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Norin, Lars; Olsson, Jonas

    2016-10-01

    Hydrological forecasting systems require accurate initial conditions, particularly for real time precipitation data, which are problematic to retrieve. This is especially difficult for high temporal and spatial resolutions, e.g. sub-daily and less than 10-20 km. Forecasting fast processes such as flash flood are, however, dependent on such high resolution data. Gridded gauge data produces too smooth fields and underestimates small scale phenomena, such as convection, whereas radar composites contain the small scale information, but suffer from inconsistencies between individual radars and have poor long term statistics. Here, we present a method to merge a radar composite with daily resolution gridded gauge data for Sweden for the time period 2009-2014 to produce a one hourly 4 × 4 km2 data set. The method consists of a main step where monthly accumulations of the radar data are scaled by those retrieved from the gridded data for each month. An optional quantile mapping based bias correction step makes sure that the daily intensity distribution agrees with the gridded observations. Finally, the data are dis-aggregated to an hourly time resolution. This results in a data set which has the same long-term spatial properties as the gridded observations, but with the spatial and temporal details of the radar data. Validation of the method is performed with high resolution gauge data, and shows a high quality of the derived product.

  10. Models for the modern power grid

    NASA Astrophysics Data System (ADS)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  11. AMSR-E/Aqua Gridded Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Savoie, M.; Brodzik, M. J.; Knowles, K.

    2006-12-01

    Passive microwave brightness temperature data are a major component in many geophysical models and algorithms. For many researchers, a major difficulty in using these data is transforming the satellite swath data into a model-friendly, gridded format. Two new data sets and improvements to a toolkit at the National Snow and Ice Data Center (NSIDC) will help scientists incorporate these data into their research. We have produced "AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures" from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument aboard NASA's Earth Observing System (EOS) Aqua satellite. This data set will complement and extend NSIDC's existing EASE-grid brightness temperature data sets, with new data beginning June 2002 and continuing throughout the life-cycle of the instrument. Additionally, in order to respond to user demand for quarter-degree data, we are distributing "AMSR-E/Aqua Daily Global Quarter-Degree Gridded Brightness Temperatures" also spanning the AMSR-E time period. Researchers whose needs are not met by the above data sets can create customized grids with our AMSR-E Swath to Grid Toolkit. Recent improvements to the toolkit allow subsetted swath data as input, greatly reducing the initial data volume required to produce customized grids.

  12. Grid generation for a complex aircraft configuration

    NASA Technical Reports Server (NTRS)

    Bruns, Jim

    1992-01-01

    The procedure used to create a grid around the F/A-18 fighter aircraft is presented. This work was done for the NASA High Alpha Technology Program. As part of this program, LeRC is numerically and experimentally investigating the flow in the F/A-18 inlet duct at high angles of attack. A grid was needed which could be used to calculate both the external and internal flow around the F/A-18. The grid had to be compatible with the computational fluid dynamics (CFD) codes PARC3D and CFL3D. The programs used to create this grid were I3GVIRGO and GRIDGEN. A surface definition used to create the grid was obtained from McDonnell Aircraft Company (MCAIR) and was composed of numerous files each containing a point definition of a portion of the aircraft. These files were read into the geometry manipulation program I3GVIRGO, where they were modified and grouped into smaller GRIDGEN database files. Next, the block outlines and boundary conditions were specified in the GRIDBLOCK program. The GRIDGEN2D program was used to create the surface grid on the block faces, and GRIDGEN3D was used to create the full 3-D grid.

  13. Complex Kohn calculations on an overset grid

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Lucchese, Robert; McCurdy, C. William

    2016-05-01

    An implentation of the overset grid method for complex Kohn scattering calculations is presented, along with static exchange calculations of electron-molecule scattering for small molecules including methane. The overset grid method uses multiple numerical grids, for instance Finite Element Method - Discrete Variable Representation (FEM-DVR) grids, expanded radially around multiple centers (corresponding to the individual atoms in each molecule as well as the center-of-mass of the molecule). The use of this flexible grid allows the complex angular dependence of the wavefunctions near the atomic centers to be well-described, but also allows scattering wavefunctions that oscillate rapidly at large distances to be accurately represented. Additionally, due to the use of multiple grids (and also grid shells), the method is easily parallelizable. The method has been implemented in ePolyscat, a multipurpose suite of programs for general molecular scattering calculations. It is interfaced with a number of quantum chemistry programs (including MolPro, Gaussian, GAMESS, and Columbus), from which it can read molecular orbitals and wavefunctions obtained using standard computational chemistry methods. The preliminary static exchange calculations serve as a test of the applicability.

  14. Transonic airfoil calculations using solution-adaptive grids

    NASA Technical Reports Server (NTRS)

    Holst, T. L.; Brown, D.

    1981-01-01

    A new algorithm for generating solution-adaptive grids (SAG) about airfoil configurations embedded in transonic flow is presented. The present SAG approach uses only the airfoil surface solution to recluster grid points on the airfoil surface, i.e., the reclustering problem is one dimension smaller than the flow-field calculation problem. Special controls automatically built into the elliptic grid generation procedure are then used to obtain grids with suitable interior behavior. This concept of redistributing grid points greatly simplifies the idea of solution-adaptive grids. Numerical results indicate significant improvements in accuracy for SAG grids relative to standard grids using the same number of points.

  15. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  16. Underwater acoustic positioning system for the SMO and KM3NeT - Italia projects

    SciTech Connect

    Viola, S.; Barbagallo, G.; Cacopardo, G.; Calí, C.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amato, V.; D'Amico, A.; De Luca, V.; Del Tevere, F.; Distefano, C.; Ferrera, F.; Gmerk, A.; Grasso, R.; Imbesi, M.; Larosa, G.; Lattuada, D.; and others

    2014-11-18

    In the underwater neutrino telescopes, the positions of the Cherenkov light sensors and their movements must be known with an accuracy of few tens of centimetres. In this work, the activities of the SMO and KM3NeT-Italia teams for the development of an acoustic positioning system for KM3NeT-Italia project are presented. The KM3NeT-Italia project foresees the construction, within two years, of 8 towers in the view of the several km{sup 3}-scale neutrino telescope KM3NeT.

  17. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  18. A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research

    PubMed Central

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue

    2012-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  19. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    PubMed

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  20. A grid job monitoring system

    SciTech Connect

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir; /INFN, Pisa /Pisa, Scuola Normale Superiore

    2010-01-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  1. A Grid job monitoring system

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir

    2010-04-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  2. Towards a centralized Grid Speedometer

    SciTech Connect

    Dzhunov, I.; Andreeva, J.; Fajardo, E.; Gutsche, O.; Luyckx, S.; Saiz, P.

    2014-01-01

    Given the distributed nature of the Worldwide LHC Computing Grid and the way CPU resources are pledged and shared around the globe, Virtual Organizations (VOs) face the challenge of monitoring the use of these resources. For CMS and the operation of centralized workflows, the monitoring of how many production jobs are running and pending in the Glidein WMS production pools is very important. The Dashboard Site Status Board (SSB) provides a very flexible framework to collect, aggregate and visualize data. The CMS production monitoring team uses the SSB to define the metrics that have to be monitored and the alarms that have to be raised. During the integration of CMS production monitoring into the SSB, several enhancements to the core functionality of the SSB were required, They were implemented in a generic way, so that other VOs using the SSB can exploit them. Alongside these enhancements, there were a number of changes to the core of the SSB framework. This paper presents the details of the implementation and the advantages for current and future usage of the new features in SSB.

  3. Information Metacatalog for a Grid

    NASA Technical Reports Server (NTRS)

    Kolano, Paul

    2007-01-01

    SWIM is a Software Information Metacatalog that gathers detailed information about the software components and packages installed on a grid resource. Information is currently gathered for Executable and Linking Format (ELF) executables and shared libraries, Java classes, shell scripts, and Perl and Python modules. SWIM is built on top of the POUR framework, which is described in the preceding article. SWIM consists of a set of Perl modules for extracting software information from a system, an XML schema defining the format of data that can be added by users, and a POUR XML configuration file that describes how these elements are used to generate periodic, on-demand, and user-specified information. Periodic software information is derived mainly from the package managers used on each system. SWIM collects information from native package managers in FreeBSD, Solaris, and IRX as well as the RPM, Perl, and Python package managers on multiple platforms. Because not all software is available, or installed in package form, SWIM also crawls the set of relevant paths from the File System Hierarchy Standard that defines the standard file system structure used by all major UNIX distributions. Using these two techniques, the vast majority of software installed on a system can be located. SWIM computes the same information gathered by the periodic routines for specific files on specific hosts, and locates software on a system given only its name and type.

  4. caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909

  5. Gridded snow maps supporting avalanche forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  6. Information Power Grid (IPG) Tutorial 2003

    NASA Technical Reports Server (NTRS)

    Meyers, George

    2003-01-01

    For NASA and the general community today Grid middleware: a) provides tools to access/use data sources (databases, instruments, ...); b) provides tools to access computing (unique and generic); c) Is an enabler of large scale collaboration. Dynamically responding to needs is a key selling point of a grid. Independent resources can be joined as appropriate to solve a problem. Provide tools to enable the building of a frameworks for application. Provide value added service to the NASA user base for utilizing resources on the grid in new and more efficient ways. Provides tools for development of Frameworks.

  7. CODEX sounding rocket wire grid collimator design

    NASA Astrophysics Data System (ADS)

    Shipley, Ann; Zeiger, Ben; Rogers, Thomas

    2011-05-01

    CODEX is a sounding rocket payload designed to operate in the soft x-ray (0.1-1.0 kV) regime. The instrument has a 3.25 degree square field of view that uses a one meter long wire grid collimator to create a beam that converges to a line in the focal plane. Wire grid collimator performance is directly correlated to the geometric accuracy of actual grid features and their relative locations. Utilizing a strategic combination of manufacturing and assembly techniques, this design is engineered for precision within the confines of a typical rocket budget. Expected resilience of the collimator under flight conditions is predicted by mechanical analysis.

  8. Power grid vulnerability: a complex network approach.

    PubMed

    Arianos, S; Bompard, E; Carbone, A; Xue, F

    2009-03-01

    Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.

  9. Power grid vulnerability: A complex network approach

    NASA Astrophysics Data System (ADS)

    Arianos, S.; Bompard, E.; Carbone, A.; Xue, F.

    2009-03-01

    Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.

  10. CFD Process Automation Using Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; George, Michael W. (Technical Monitor)

    1995-01-01

    This talk summarizes three applications of the overset grid method for CFD using some level of automated grid generation, flow solution and post-processing. These applications are 2D high-lift airfoil analysis (INS2D code), turbomachinery applications (ROTOR2/3 codes), and subsonic transport wing/body configurations (OVERFLOW code). These examples provide a forum for discussing the advantages and disadvantages of overset gridding for use in an automated CFD process. The goals and benefits of the automation incorporated in each application will be described, as well as the shortcomings of the approaches.

  11. Cloud feedback studies with a physics grid

    SciTech Connect

    Dipankar, Anurag; Stevens, Bjorn

    2013-02-07

    During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

  12. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1994-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximated body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian Systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems.

  13. Interoperable PKI Data Distribution in Computational Grids

    SciTech Connect

    Pala, Massimiliano; Cholia, Shreyas; Rea, Scott A.; Smith, Sean W.

    2008-07-25

    One of the most successful working examples of virtual organizations, computational grids need authentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures(PKIs) provide sufficient flexibility to allow resource managers to securely grant access to their systems in such distributed environments. However, as PKIs grow and services are added to enhance both security and usability, users and applications must struggle to discover available resources-particularly when the Certification Authority (CA) is alien to the relying party. This article presents how to overcome these limitations of the current grid authentication model by integrating the PKI Resource Query Protocol (PRQP) into the Grid Security Infrastructure (GSI).

  14. Adaptive refinement tools for tetrahedral unstructured grids

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)

    2011-01-01

    An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.

  15. Multiblock grid generation with automatic zoning

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1995-01-01

    An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.

  16. Focal Seizures Induced by Intracranial Electroencephalogram Grids

    PubMed Central

    Brown, Mesha-Gay; Litt, Brian; Davis, Kathryn; Richardson, Andrew G; Lucas, Timothy

    2016-01-01

    Here we present a unique, but important seizure variant directly related to placement of subdural grids. Two distinct epileptogenic zones were identified, one which correlated with the patient’s baseline seizures and a separate zone associated with atypical semiology and localization. Inspection of this zone at surgery revealed cortical deformation from the grid itself. The patient underwent successful surgical resection of the primary epileptogenic zone, but not that of the atypical zone. She remains seizure free at two years following surgery. Recognition of grid-induced seizures is important as they may confound the interpretation of intracranial electroencephalograms (iEEG) and mislead resective surgery. PMID:27896038

  17. Euler calculations for wings using Cartesian grids

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1987-01-01

    A method is presented for the calculation of transonic flows past wings using Cartesian grids. The calculations are based on a finite volume formulation of the Euler equations. Results are presented for a rectangular wing with a flat tip and the ONERA M6 wing. In general, the results are in good agreement with other computations and available experiment. However, Cartesian grids require a greater number of points than body fitted grids in order to resolve the flow properties near the leading edge of a swept wing.

  18. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  19. Multigrid on unstructured grids using an auxiliary set of structured grids

    SciTech Connect

    Douglas, C.C.; Malhotra, S.; Schultz, M.H.

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  20. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    ScienceCinema

    None

    2016-07-12

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.