Science.gov

Sample records for 2-10 kev luminosities

  1. Revisiting the relationship between 6 μm and 2-10 keV continuum luminosities of AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Rovilos, E.; Hernán-Caballero, A.; Barcons, X.; Blain, A.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.

    2015-05-01

    We have determined the relation between the AGN luminosities at rest-frame 6 μm associated with the dusty torus emission and at 2-10 keV energies using a complete, X-ray-flux-limited sample of 232 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The objects have intrinsic X-ray luminosities between 1042 and 1046 erg s-1 and redshifts from 0.05 to 2.8. The rest-frame 6 μm luminosities were computed using data from the Wide-field Infrared Survey Explorer and are based on a spectral energy distribution decomposition into AGN and galaxy emission. The best-fitting relationship for the full sample is consistent with being linear, L6 μm ∝ L_{2-10 keV}^{0.99± 0.03}, with intrinsic scatter, Δ log L6 μm ˜ 0.35 dex. The L_{6 μ m}/L_{2-10 keV} luminosity ratio is largely independent of the line-of-sight X-ray absorption. Assuming a constant X-ray bolometric correction, the fraction of AGN bolometric luminosity reprocessed in the mid-IR decreases weakly, if at all, with the AGN luminosity, a finding at odds with simple receding torus models. Type 2 AGN have redder mid-IR continua at rest-frame wavelengths <12 μm and are overall ˜1.3-2 times fainter at 6 μm than type 1 AGN at a given X-ray luminosity. Regardless of whether type 1 and type 2 AGN have the same or different nuclear dusty toroidal structures, our results imply that the AGN emission at rest-frame 6 μm is not isotropic due to self-absorption in the dusty torus, as predicted by AGN torus models. Thus, AGN surveys at rest-frame ˜6 μm are subject to modest dust obscuration biases.

  2. VizieR Online Data Catalog: 2-10keV luminosity function of AGN (Ranalli+, 2016)

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-02-01

    The XMM-LSS, XMM-CDFS, and XMM-COSMOS are three surveys with complementary properties in terms of luminosity and redshift coverage. We used these three surveys to derive Bayesian estimates of the unabsorbed luminosity function (LF) of AGN in the 2-10keV band. The LF estimates are presented as a set of samples from the posterior probability distribution of the LF parameters. The LF is parameterised as a double power-law, with either the luminosity and density evolution (LADE) model, or the luminosity-dependent density evolution (LDDE) model. The double power-law is described by Eq.(10) in the paper. The LADE and LDDE models are described by Eqs.(11-14) and Eqs.(15-17), respectively. A Fortran 2008 implementation of these models can be found in file src2/lumf_funcs.f90 of the LFTools package, in the classes doublepowerlaw, ladevol, and lddevol (see the paper). (8 data files).

  3. The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys

    NASA Astrophysics Data System (ADS)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-05-01

    The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions

  4. New constraints on the 2-10 keV X-ray luminosity function from the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Marchesi, Stefano; Civano, Francesca M.; Elvis, Martin; Urry, C. Megan; Comastri, Andrea; Chandra Cosmos Legacy Team

    2015-01-01

    In this talk, we present new results on number counts and luminosity function in the 0.5-2 and 2-10 keV bands, obtained in the Chandra COSMOS Legacy Survey. The COSMOS field is the largest (2 deg2) field with a complete coverage at any wavelength, and the Chandra COSMOS-Legacy survey uniformly covers the 1.7 deg2 COSMOS/HST field to ~160 ksec depth, with a total of 2.8 Ms exposure time. This triples the area of the earlier deep C-COSMOS survey (limiting flux ~3e-16 ergs/cm2/s in the 0.5-2 keV band), and together these two projects cover a total area of 2.2 deg2, yielding a sample of ~4100 X-ray sources, ~2300 of which have been detected in the new observations. We describe how the survey improves our knowledge in the galaxy-super massive black hole co-evolution.

  5. The 5-10 keV AGN luminosity function at 0.01 < z < 4.0

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.

    2016-03-01

    The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three

  6. Decline of the 2-10 keV Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Liburd, Jamar; Corcoran, Michael F.; Hamaguchi, Kenji; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; Owocki, Stan

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using processed data from the X-ray Telescope on Swift reveals a peak flux on July 16, 2014 of 0.046 photons s(exp -1) cm(exp -2) (3.37+/-0.15×10(exp -10) ergs s(exp -1) cm(exp -2). This flux is similar to the previous maximum flux seen by the XRT, 3.53+/-0.13×10(exp -10) ergs s(exp -1) cm(exp -2) (0.049 photons s(exp -1) cm(exp -2), ATEL #6298). Since this peak on July 16, the most recent Swift XRT quicklook data show a drop in flux. On July 20, 2014 the XRT flux as seen in the quicklook data was 0.011 photons s(exp -1) cm(exp -2) (8.3+/-0.5×10(exp -11) ergs s(exp -1) cm(exp -2)). This most likely indicates that the 2-10 keV flux is in its declining phase as Eta Car approaches its deep X-ray minimum stage (Hamaguchi et al., 2014, ApJ, 784, 125) associated with periastron passage of the 2024-day binary orbit. The column density derived from analysis of the July 20 XRT quicklook data is 7.2×10(exp 22) cm(exp -2). This is consistent with the column density seen near the same orbital phase in 2003 (7.7×10(exp 22) cm(exp -2), Hamaguchi et al., 2007, ApJ, 663, 522). Eta Car's deep X-ray minimum phase is expected to begin on July 30, 2014. Weekly Swift/XRT observations of Eta Car in the 2-10 keV band are planned throughout the X-ray minimum.

  7. The XMM-Newton slew survey in the 2-10 keV band

    NASA Astrophysics Data System (ADS)

    Warwick, R. S.; Saxton, R. D.; Read, A. M.

    2012-12-01

    Context. The on-going XMM-Newton Slew Survey (XSS) provides coverage of a significant fraction of the sky in a broad X-ray bandpass. Although shallow by contemporary standards, in the "classical" 2-10 keV band of X-ray astronomy, the XSS provides significantly better sensitivity than any currently available all-sky survey. Aims: We investigate the source content of the XSS, focussing on detections in the hard 2-10 keV band down to a very low threshold (≥ 4 counts net of background). At the faint end, the survey reaches a flux sensitivity of roughly 3 × 10-12 erg cm-2 s-1 (2-10 keV). Methods: Our starting point was a sample of 487 sources detected in the XSS (up to and including release XMMSL1d2) at high galactic latitude in the hard band. Through cross-correlation with published source catalogues from surveys spanning the electromagnetic spectrum from radio through to gamma-rays, we find that 45% of the sources have likely identifications with normal/active galaxies. A further 18% are associated with other classes of X-ray object (nearby coronally active stars, accreting binaries, clusters of galaxies), leaving 37% of the XSS sources with no current identification. We go on to define an XSS extragalactic sample comprised of 219 galaxies and active galaxies selected in the XSS hard band. We investigate the properties of this extragalactic sample including its X-ray log N - log S distribution. Results: We find that in the low-count limit, the XSS is, as expected, strongly affected by Eddington bias. There is also a very strong bias in the XSS against the detection of extended sources, most notably clusters of galaxies. A significant fraction of the detections at and around the low-count limit may be spurious. Nevertheless, it is possible to use the XSS to extract a reasonably robust sample of extragalactic sources, excluding galaxy clusters. The differential log N - log S relation of these extragalactic sources matches very well to the HEAO-1 A2 all-sky survey

  8. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  9. VizieR Online Data Catalog: XMM-Newton Slew Survey in 2-10keV (Warwick+, 2012)

    NASA Astrophysics Data System (ADS)

    Warwick, R. S.; Saxton, R. D.; Read, A. M.

    2012-10-01

    Details of the sources which comprise the hard-band selected XSS extragalactic sample are given in the Table. The table provides the following information for each source: the XSS name; whether the source was also detected in the XSS soft band (1=yes, 0=no); the XSS hard band (2-10keV) flux and error on the flux (in units of 10-11ergs/cm2/s) ; the RA and Dec of the proposed counterpart; the name of the counterpart; the type of the counterpart; the redshift (if known). (1 data file).

  10. Spectral reflectance change and luminescence of selected salts during 2-10 KeV proton bombardment - Implications for Io

    NASA Technical Reports Server (NTRS)

    Nelson, R. M.; Nash, D. B.

    1979-01-01

    Radiation damage and luminescence caused by magnetospheric charged particles have been suggested by several investigators as mechanisms that are capable of explaining some of the peculiar spectral/albedo features of Io. In the present paper, this possibility is pursued by measuring the UV-visual spectral reflectance and luminescent efficiency of several proposed Io surface constituents during 2 to 10 keV proton irradiation at room and low temperatures. The luminescence efficiencies of pure samples, studied in the laboratory, suggest that charged-particle induced luminescence from Io's surface might be observable by spacecraft such as Voyager when viewing Io's dark side.

  11. The NuSTAR Extragalactic Survey: First Direct Measurements of the ≳10 KeV X-Ray Luminosity Function for Active Galactic Nuclei at z>0.1

    NASA Astrophysics Data System (ADS)

    Aird, J.; Alexander, D. M.; Ballantyne, D. R.; Civano, F.; Del-Moro, A.; Hickox, R. C.; Lansbury, G. B.; Mullaney, J. R.; Bauer, F. E.; Brandt, W. N.; Comastri, A.; Fabian, A. C.; Gandhi, P.; Harrison, F. A.; Luo, B.; Stern, D.; Treister, E.; Zappacosta, L.; Ajello, M.; Assef, R.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Elvis, M.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Koss, M.; LaMassa, S. M.; Madsen, K. K.; Puccetti, S.; Saez, C.; Urry, C. M.; Wik, D. R.; Zhang, W.

    2015-12-01

    We present the first direct measurements of the rest-frame 10-40 keV X-ray luminosity function (XLF) of active galactic nuclei (AGNs) based on a sample of 94 sources at 0.1 < z < 3, selected at 8-24 keV energies from sources in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic survey program. Our results are consistent with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However, different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give significantly different predictions for the total number of sources in our sample, leading to small, systematic differences in our binned estimates of the XLF. Adopting a model with a lower intrinsic fraction of Compton-thick sources and a larger population of sources with column densities {N}{{H}}˜ {10}23-24 cm-2 or a model with stronger Compton reflection component (with a relative normalization of R ˜ 2 at all luminosities) can bring extrapolations of the XLF from 2-10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the NuSTAR sources is required to break this degeneracy between the distribution of absorbing column densities and the strength of the Compton reflection component and thus refine our measurements of the XLF. Furthermore, the models that successfully describe the high-redshift population seen by NuSTAR tend to over-predict previous, high-energy measurements of the local XLF, indicating that there is evolution of the AGN population that is not fully captured by the current models.

  12. 5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models

    NASA Astrophysics Data System (ADS)

    Seitenzahl, I. R.; Summa, A.; Krauß, F.; Sim, S. A.; Diehl, R.; Elsässer, D.; Fink, M.; Hillebrandt, W.; Kromer, M.; Maeda, K.; Mannheim, K.; Pakmor, R.; Röpke, F. K.; Ruiter, A. J.; Wilms, J.

    2015-02-01

    We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed

  13. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Warwick, R.

    2014-07-01

    We make a new determination of the hard-band (2-10 keV) X-ray luminosity function (XLF) of relative low-luminosity Galactic X-ray sources based on a source sample derived from the XMM Slew Survey (XSS). The source population is comprised of coronally-active late-type stars and binaries with hard-band X-ray luminosities in the range 10^{28-32} erg s^{-1} and cataclysmic variables (magnetic and non-magnetic) with X-ray luminosities spanning the range 10^{30-34} erg s^{-1}. We use this new estimate of the XLF, to predict the 2-10 keV X-ray source counts on the Galactic Plane at faint fluxes and show that the result is fully consistent with the available observational constraints. Similarly the predicted surface brightness, both in the full 2-10 keV band and in a restricted 6-10 keV bandpass, due to the integrated emission of faint unresolved Galactic sources, is well matched to the observed intensity of the Galactic ridge X-ray emission (GRXE). We find that the coronally-active sources make the dominant contribution to both the faint Galactic X-ray source counts and the GRXE.

  14. Feedback from AGN: The Kinetic/Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Melini, Gabriele; La Franca, Fabio; Fiore, Fabrizio

    2010-05-01

    We have measured the probability distribution function of the ratio RX = log L1.4/LX, where L1.4/LX = ν Lν(1.4 GHz)/LX(2-10 keV), between the 1.4 GHz and the unabsorbed 2-10 keV luminosities and its dependence on LX and z. We have used a complete sample of ~1800 hard X-ray selected AGN, observed in the 1.4 GHz band, cross-correlated in order to exclude FR II-type objects, and thus obtain a contemporaneous measure of the radio and X-ray emission. The distribution P(RX|LX,z) is shown in Figure 1. Convolution of the distribution P(RX|LX,z) with the 2-10 keV X-ray AGN luminosity function from La Franca et al. (2005) and the relations between radio power and kinetic energy from Best et al. (2006) and Willott et al. (1999) allows us to derive the AGN kinetic power and its evolution. As shown in Figure 1, our results are in good agreement with the predictions of the most recent models of galaxy formation and evolution (e.g., Croton et al. 2006), where AGN radio feedback is required to quench the star formation.

  15. Luminosity monitor.

    SciTech Connect

    Underwood, D. G.

    1998-07-16

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10{sup {minus}3} raw asymmetry in an experiment, an error of 10{sup {minus}4} in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, {minus} and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come.

  16. Iron K Line Variability in the Low-Luminosity AGN NGC 4579

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.; Yaqoob, Tahir; Kunieda, Hideyo; Misaki, Kazutami; Serlemitsos, Peter J.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    We present results of new ASCA observations of the low-luminosity AGN (LLAGN) NGC 4579 obtained in 1998 December 18 and 28, and we report on detection of variability of an iron K emission line. The X-ray luminosities in the 2-10 keV band for the two observations are nearly identical, L(sub X) approximately = 2 x 10(exp 4l) ergs/s, but they are approximately 35% larger than that measured in 1995 July by Terashima et al. (1998). An Fe K emission line is detected at 6.39 +/- 0.09 keV (source rest frame) which is lower than the line energy 6.73(sup +0.13, sub -0.12) keV in the 1995 observation. If we fit the Fe lines with a blend of two Gaussians centered at 6.4 keV and 6.73 KeV, the intensity of the 6.7 keV line decreased, while the intensity of the 6.4 keV line increased, within an interval of 3.5 years. This variability rules out thermal plasmas in the host galaxy as the origin of the ionized Fe line in this LLAGN. The detection and variability of the 6.4 keV line suggest that an optically thick standard accretion disk is present and subtends a large solid angle viewed from the nucleus at the Eddington ratio of L(sub Bol)/L(sub Eddington) approximately 2 x 10(exp -3) (Ho 1999). A broad disk-line profile is not clearly seen and the structure of the innermost part of accretion disk remains unclear.

  17. The X-ray luminosity function of active galactic nuclei in the redshift interval z=3-5

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Aird, J.; Buchner, J.; Salvato, M.; Menzel, M.-L.; Brandt, W. N.; McGreer, I. D.; Dwelly, T.; Mountrichas, G.; Koki, C.; Georgantopoulos, I.; Hsu, L.-T.; Merloni, A.; Liu, Z.; Nandra, K.; Ross, N. P.

    2015-10-01

    We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the active galactic nuclei (AGN) X-ray luminosity function in the redshift range z = 3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields also provides a luminosity baseline of three orders of magnitude, LX(2-10 keV) ≈ 1043-1046 erg s- 1 at z > 3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology properly accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z = 3-4 and z = 4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with LX(2-10 keV) < 1045 erg s- 1 drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of ultraviolet (UV)/optical selected quasi-stellar objects at similar redshifts shows broad agreement at bright luminosities, LX(2-10 keV) > 1045 erg s- 1. At fainter luminosities X-ray surveys measure higher AGN space densities. The faint-end slope of UV/optical luminosity functions, however, is steeper than for X-ray selected AGN. This implies that the Type I AGN fraction increases with decreasing luminosity at z > 3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionized at high redshift. Our X-ray luminosity function yields ionizing photon rate densities that are insufficient to keep the Universe ionized at redshift z > 4. A

  18. A complete X-ray sample of the high-latitude /absolute value of b greater than 20 deg/ sky from HEAO 1 A-2 - Log N-log S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1982-01-01

    An all-sky survey of X-ray sources was performed, complete to a limiting sensitivity of 3.1 x 10 to the -11 ergs/sq cm/s in the 2-10 keV band. The complete sample has allowed construction of luminosity functions based on a flux-limited sample for clusters of galaxies and active galactic nuclei. Integration of the best-fit luminosity functions indicates that clusters of galaxies contribute about 4% of the 2-10 keV DXRB, and active galactic nuclei about 20%. It is predicted that many of the objects seen in the deep survey should be local, relatively low luminosity active galactic nuclei and clusters of galaxies.

  19. NUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, D. B.; Schawinski, K.; Stern, D.; Imanishi, M.

    2016-03-01

    We report the detection of a heavily obscured active galactic nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286 identified in a 17.5 ks Nuclear Spectroscopic Telescope Array observation. The source is in an early merging stage and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. NGC 6286 is clearly detected above 10 keV and by including the quasi-simultaneous Swift/XRT and archival XMM-Newton and Chandra data, we find that the source is heavily obscured (NH ≃(0.95-1.32) × 1024 cm-2) with a column density consistent with being Compton-thick (CT, {log}({N}{{H}}/{{cm}}-2)≥slant 24). The AGN in NGC 6286 has a low absorption-corrected luminosity (L2-10 keV ˜ 3-20 × 1041 erg s-1) and contributes ≲1% to the energetics of the system. Because of its low luminosity, previous observations carried out in the soft X-ray band (<10 keV) and in the infrared did not notice the presence of a buried AGN. NGC 6286 has multiwavelength characteristics typical of objects with the same infrared luminosity and in the same merger stage, which might imply that there is a significant population of obscured low-luminosity AGNs in LIRGs that can only be detected by sensitive hard X-ray observations.

  20. Detailed Shape and Evolutionary Behavior of the X-Ray Luminosity Function of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Cappelluti, N.; Civano, F.; Puccetti, S.; Elvis, M.; Brunner, H.; Fotopoulou, S.; Ueda, Y.; Griffiths, R. E.; Koekemoer, A. M.; Akiyama, M.; Comastri, A.; Gilli, R.; Lanzuisi, G.; Merloni, A.; Vignali, C.

    2015-05-01

    We construct the rest-frame 2-10 keV intrinsic X-ray luminosity function (XLF) of active galactic nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field South. We use ˜3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two-power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z ≳0.6. Detailed structures of the AGN downsizing have also been revealed, where the number density curves have two clear breaks at all luminosity classes above log {{L}X}\\gt 43. The two-break structure is suggestive of two-phase AGN evolution, consisting of major merger triggering and secular processes.

  1. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Glidden, Ana; Baloković, Mislav; Stern, Daniel; Lamperti, Isabella; Assef, Roberto; Bauer, Franz; Ballantyne, David; Boggs, Steven E.; Craig, William W.; Farrah, Duncan; Fürst, Felix; Gandhi, Poshak; Gehrels, Neil; Hailey, Charles J.; Harrison, Fiona A.; Markwardt, Craig; Masini, Alberto; Ricci, Claudio; Treister, Ezequiel; Walton, Dominic J.; Zhang, William W.

    2016-06-01

    We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H ≈ (1-2) × 1024 cm-2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}} ≈ 6 × 1042 erg s-1). The observed luminosity of both sources is severely diminished in the 2-10 keV band ({L} 2-10 {keV}{{obs}}\\lt 0.1× {L} 2-10 {keV}{{int}}), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

  2. THE DISK EVAPORATION MODEL FOR THE SPECTRAL FEATURES OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Qiao, Erlin; Liu, B. F.; Panessa, Francesca; Liu, J. Y.

    2013-11-10

    Observations show that the accretion flows in low-luminosity active galactic nuclei probably have a two-component structure with an inner, hot, optically thin, advection-dominated accretion flow (ADAF) and an outer, truncated, cool, optically thick accretion disk. As shown by Taam et al., the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field within the framework of disk evaporation model, i.e., an increase in the magnetic field results in a smaller truncation radius of the accretion disk. In this work, we calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole based on the prediction by Taam et al.. It is found that an increase in the magnetic field from β = 0.8 to β = 0.5 (with magnetic pressure p{sub m} = B {sup 2}/8π = (1 – β)p{sub tot}, p{sub tot} = p{sub gas} + p{sub m}) results in a factor of ∼8.7 increase in the luminosity from the truncated accretion disk. Meanwhile, results of the peak emission of the truncated accretion disk shift toward a a factor of ∼5 higher frequency. We found that the equipartition of gas pressure to magnetic pressure, i.e., β = 0.5, failed to explain the observed anti-correlation between L{sub 2-10{sub keV}}/L{sub Edd} and the bolometric correction κ{sub 2-10{sub keV}} (with κ{sub 2-10{sub keV}} = L{sub bol}/L{sub 2-10{sub keV}}). The emergent spectra for larger values of β = 0.8 or β = 0.95 can explain the observed L{sub 2-10{sub keV}}/L{sub Edd}-κ{sub 2-10{sub keV}} correlation. We argue that in the disk evaporation model, the electrons in the corona are assumed to be heated only by a transfer of energy from the ions to electrons via Coulomb collisions, which is reasonable for accretion with a lower mass accretion rate. Coulomb heating is the dominated heating mechanism for the electrons only if the magnetic field is strongly sub-equipartition, which is roughly consistent with observations.

  3. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  4. The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K.

    2014-12-01

    We present the hard-band (2-10 keV) X-ray luminosity function (HXLF) of 0.5-2 keV band selected active galactic nuclei (AGN) at high redshift. We have assembled a sample of 141 AGN at 3 < z ≲ 5 from X-ray surveys of different size and depth, in order to sample different regions in the LX - z plane. The HXLF is fitted in the range log LX ˜ 43-45 with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of ˜10 from z = 3 to 5. A luminosity-dependent density evolution model, which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity (log LX < 44), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density log NH ≥ 23 to be 0.54 ± 0.05, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous (LX > 1044 erg s-1) obscured AGN fraction from z = 0 to z > 3.

  5. Low extreme-ultraviolet luminosities impinging on protoplanetary disks

    SciTech Connect

    Pascucci, I.; Hendler, N. P.; Ricci, L.; Gorti, U.; Hollenbach, D.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10{sup 42} photons s{sup –1} for all sources without jets and lower than 5 × 10{sup 40} photons s{sup –1} for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  6. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Glidden, Ana; Baloković, Mislav; Stern, Daniel; Lamperti, Isabella; Assef, Roberto; Bauer, Franz; Ballantyne, David; Boggs, Steven E.; Craig, William W.; Farrah, Duncan; Fürst, Felix; Gandhi, Poshak; Gehrels, Neil; Hailey, Charles J.; Harrison, Fiona A.; Markwardt, Craig; Masini, Alberto; Ricci, Claudio; Treister, Ezequiel; Walton, Dominic J.; Zhang, William W.

    2016-06-01

    We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H ≈ (1–2) × 1024 cm‑2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}} ≈ 6 × 1042 erg s‑1). The observed luminosity of both sources is severely diminished in the 2–10 keV band ({L} 2-10 {keV}{{obs}}\\lt 0.1× {L} 2-10 {keV}{{int}}), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

  7. A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang

    2016-08-01

    The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, i.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the fundamental plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black-hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when L_X⪆ 1.5 × 10^{42} erg s^{-1}. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.

  8. Tools for Computing the AGN Feedback: Radio-loudness Distribution and the Kinetic Luminosity Function

    NASA Astrophysics Data System (ADS)

    La Franca, F.; Melini, G.; Fiore, F.

    2010-07-01

    We studied the active galactic nucleus (AGN) radio emission from a compilation of hard X-ray-selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGNs with 2-10 keV de-absorbed luminosities higher than 1042 erg s-1 cm-2 were used. For a sub-sample of about fifty z <~ 0.1 AGNs, it was possible to reach ~80% of radio detections and therefore, for the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity RX = log(L 1.4/LX ), where L 1.4/LX = νL ν(1.4 GHz)/LX (2-10 keV). The probability distribution function of RX was functionally fitted as dependent on the X-ray luminosity and redshift, P(RX |LX , z). It roughly spans over six decades (-7< RX <-1) and does not show any sign of bi-modality. The result is that the probability of finding large values of the RX ratio increases with decreasing X-ray luminosities and (possibly) with increasing redshift. No statistically significant difference was found between the radio properties of the X-ray absorbed (N H>1022 cm-2) and un-absorbed AGNs. Measurement of the probability distribution function of RX allowed us to compute the kinetic luminosity function and the kinetic energy density which, at variance with that assumed in many galaxy evolution models, is observed to decrease by about a factor of 5 at redshift below 0.5. About half of the kinetic energy density results in being produced by the more radio quiet (RX <-4) AGNs. In agreement with previous estimates, the AGN efficiency epsilonkin in converting the accreted mass energy into kinetic power (L_K=ɛ_kin\\dot{m} c^2) is, on average, epsilonkin ~= 5 × 10-3. The data suggest a possible increase of epsilonkin at low redshifts.

  9. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  10. Channel electron multiplier efficiency for protons of 0.2-10 keV.

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Mcgarity, J. O.

    1971-01-01

    The initial results of absolute proton efficiency measurements made in an auroral particle study by sounding rockets are given. The measurements were made at several counting rates from 1000 to 40,000 counts/sec on rocket-borne equipment. The results agree with those of Egidi et al. (1969) in the high energy range and show a disagreement at low energies.

  11. Challenges in Finding AGNs in the Low Luminosity Regime

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  12. An X-ray luminosity analysis for FRIs and FRIIs

    NASA Astrophysics Data System (ADS)

    Zhang, Chunling; Fan, Junhui

    2009-09-01

    Radio galaxies are divided into two groups according to their luminosities at 178 MHz, namely Fanaroff-Riley type Is (FRIs) and Fanaroff-Riley type IIs (FRIIs) with FRIs showing lower radio luminosities than FRIIs. In this paper, the X-ray data are compiled for 183 radio galaxies (61 FRIs and 122 FRIIs), from the available literature, for the analysis of the X-ray properties. The 1 keV X-ray luminosities are calculated and discussed for the two groups, and an averaged X-ray luminosity of log L {X/1 keV} = 41.30±2.51 erg·s-1·keV-1 is found for FRIs, which is lower than that for FRIIs, log L {X/1 keV} = 43.39±3.06 erg·s-1·keV-1. A Kolmogorov-Smirnov (K-S) test indicates that the probability for the X-ray luminosity distributions of the two groups to be from the same parent distribution is 1.44×10-10. We also discuss the origin and the mechanism of the X-ray emission for FRIs and FRIIs.

  13. RXTE Observations of Positive Correlations between the Cyclotron Line Parameters and Luminosity in GX 304-1

    NASA Astrophysics Data System (ADS)

    Rothschild, Richard E.; Kühnel, Matthias; Britton Hemphill, Paul; Markowitz, Alex; Pottschmidt, Katja; Wilms, Joern; Staubert, Rüdiger; Klochkov, Dmitry; Postnov, Konstantin; Goronostaev, Mikhail

    2016-04-01

    The Rossi X-ray Timing Explorer observed four outbursts of the accreting X-ray binary transient source GX 304-1 in 2010 and 2011. During the 2010-2011 observations, the HEXTE cluster A viewing direction was fixed aligned with the PCA field of view and HEXTE cluster B was fixed viewing a background region 1.5 degrees off of the source direction. The cluster A background was successfully estimated from cluster B events, and this made possible the measurement of the ~55 keV cyclotron line and an accurate measurement of the continuum. The cyclotron line energy spans 50 to 60 keV throughout each outburst, implying magnetic fields ranging from 4-5 teraGauss as the scattering region reacts to the varying mass accretion rate. We present results of a detailed 3-100 keV spectral analysis of 69 separate observations, and report a greater than 7 sigma measurement of a positive correlation between cyclotron line parameters (energy, width, and depth) and luminosity, as well as other spectral parameters' correlations with luminosity. The three cyclotron line parameters’ correlations with luminosity show a flattening of the relationships with increasing luminosity, and have been fitted by quasi-spherical accretion and disk accretion models. The width and depth correlation exponents follow directly from the energy correlation exponent with only the assumption that the accretion column is in the subcritical (Coulomb-braking) regime and the energy changes in proportion to the characteristic stopping length of protons. Correlations of all spectral parameters with primary 2-10 keV power law flux reveal the mass accretion rate to be the primary driver of the spectral shape. A large enhancement in the line of sight column density lasting about three days is seen just before periastron in one outburst and a smaller enhancement of similar duration at the same orbital phase is seen in a second outburst, suggesting the presence of a dense structure in the stellar wind.

  14. The clustering amplitude of X-ray-selected AGN at z ˜ 0.8: evidence for a negative dependence on accretion luminosity

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.

    2016-04-01

    The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.

  15. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  16. Luminosity enhancements at SLAC

    SciTech Connect

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point.

  17. Luminosity measurements at hadron colliders

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2008-04-01

    In this paper we discuss luminosity measurements at Tevatron and HERA as well as plans for luminosity measurements at LHC. We discuss luminosity measurements using the luminosity detectors of the experiments as well as measurements by the machine. We address uncertainties of the measurements, challenges and lessons learned.

  18. The MICE luminosity monitor

    NASA Astrophysics Data System (ADS)

    Dobbs, A.; Forrest, D.; Soler, F. J. P.

    2013-02-01

    The MICE experiment will provide the first measurement of ionisation cooling, a technique suitable for reducing the transverse emittance of a tertiary muon beam in a future neutrino factory accelerator facility. MICE is presently in the final stages of commissioning its beam line. The MICE luminosity monitor has proved an invaluable tool throughout this process, providing independent measurements of particle rate from the MICE target, normalisation for beam line detectors and verification of simulation codes.

  19. High-luminosity considerations

    SciTech Connect

    Platner, E.D.

    1982-01-01

    There appears to be some controversy over how high a luminosity one can use before a variety of detector limitations impose a practical limit. Factors leading to flux limitations for a variety of detector types are discussed, and practical considerations to extending those limits are reviewed. Also, a method of reducing the effects of pileup inherent in calorimeter use at L = 10/sup 33//cm/sup 2//sec is given.

  20. Does the obscured AGN fraction really depend on luminosity?

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Churazov, E.; Krivonos, R.

    2015-12-01

    We use a sample of 151 local non-blazar active galactic nuclei (AGN) selected from the INTEGRAL all-sky hard X-ray survey to investigate if the observed declining trend of the fraction of obscured (i.e. showing X-ray absorption) AGN with increasing luminosity is mostly an intrinsic or selection effect. Using a torus-obscuration model, we demonstrate that in addition to negative bias, due to absorption in the torus, in finding obscured AGN in hard X-ray flux-limited surveys, there is also positive bias in finding unobscured AGN, due to Compton reflection in the torus. These biases can be even stronger taking into account plausible intrinsic collimation of hard X-ray emission along the axis of the obscuring torus. Given the AGN luminosity function, which steepens at high luminosities, these observational biases lead to a decreasing observed fraction of obscured AGN with increasing luminosity even if this fraction has no intrinsic luminosity dependence. We find that if the central hard X-ray source in AGN is isotropic, the intrinsic (i.e. corrected for biases) obscured AGN fraction still shows a declining trend with luminosity, although the intrinsic obscured fraction is significantly larger than the observed one: the actual fraction is larger than ˜85 per cent at L ≲ 1042.5 erg s-1 (17-60 keV), and decreases to ≲60 per cent at L ≳ 1044 erg s-1. In terms of the half-opening angle θ of an obscuring torus, this implies that θ ≲ 30° in lower luminosity AGN, and θ ≳ 45° in higher luminosity ones. If, however, the emission from the central supermassive black hole is collimated as dL/dΩ ∝ cos α, the intrinsic dependence of the obscured AGN fraction is consistent with a luminosity-independent torus half-opening angle θ ˜ 30°.

  1. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  2. Four luminosity indicators for gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Schaefer, B.

    Recently, two luminosity indicators involving gamma-ray data alone have been discovered. The first is the spectral lag, which is roughly the time between peaks in the light curve as viewed with ~30 and ~200 keV photons, such that high luminosity events have short lags and low luminosities are indicated by lags as long as 1 second or more. The second luminosity indicator is the variability, which is a quantitative measure of how 'spiky' the burst light curve is, with spiky bursts having high luminosity while smooth bursts have low luminosity. These two indicators were originally proposed with either 6 or 7 bursts with redshifts. The validity of both indicators is proven by the existence of a lag/variability relation exactly as predicted for a sample of 112 BATSE bursts as well as by 3 additional bursts which also fall onto the claimed relations. Now, two new luminosity indicators have been identified. The third is the minimum risetime for pulses in a burst light curve, where fast rises indicate high luminosities and slow rises are for low luminosity events. The fourth indicator is the number of distinct peaks in the burst light curve, although this only sets a limit where the luminosity must be greater than roughly 1050 erg/s times the square of the number of peaks (for more than one peak). This talk will also present simple and general explanations for all four luminosity indicators. The lag/luminosity relation is a simple and forced result from the empirical Liang-Kargatis relation which simply implies that radiative cooling is dominating. The fastest rise in a light curve is related to the bulk Lorentz factor (Gamma) simply due to the geometrical rise time for a region subtending an angle of 1/Gamma (given that the minimal radius for which the optical depth of the jet material is of order unity is empirically a near constant). The luminosity of the burst is also a power law of Gamma, which scales as Gamma^N for 3luminosity

  3. STS atmospheric luminosities

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1984-01-01

    During the STS-8 space shuttle mission special photographic and TV operations were carried out to record the properties of the spacecraft induced luminosities. One of these luminous phenomena is the quiescent vehicle glow which was photographed during the STS-8 mission with an image intensified photographic camera, with and without an objective grating. During the latter part of the mission the altitude of the shuttle was relatively low (120 n.m. = 222 km) and unprecedentedly high intensity of the glow was observed. The crew reported that the glow was easily visible to the naked eye. The proper orientation of the shuttle with respect to the velocity vector and the objective grating permitted the exposure of good objective spectrum of the glow in the visible region. From the results it is clear that the spectrum appears to be a continuum as observed by the image intensifier objective grating camera. Qualitative examination of the data shows that there is very tail little glow ion the wavelength range of 4300 to about 5000 angstroms. Above 5000 angstroms the glow becomes stronger towards the red and then it falls off towards higher wavelength and of the spectrum presumably because of the responsivity of the device.

  4. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  5. A complete X-ray sample of the high latitude sky from HEAO-1 A-2: log N lo S and luminosity functions

    NASA Technical Reports Server (NTRS)

    Piccinotti, G.; Mushotzky, R. F.; Boldt, E. A.; Holt, S. S.; Marshall, F. E.; Serlemitsos, P. J.; Shafer, R. A.

    1981-01-01

    An experiment was performed in which a complete X-ray survey of the 8.2 steradians of the sky at galactic latitudes where the absolute value of b is 20 deg down to a limiting sensitivity of 3.1 x ten to the minus 11th power ergs/sq cm sec in the 2-10 keV band. Of the 85 detected sources 17 were identified with galactic objects, 61 were identified with extragalactic objects, and 7 remain unidentified. The log N - log S relation for the non-galactic objects is well fit by the Euclidean relationship. The X-ray spectra of these objects were used to construct log N - log S in physical units. The complete sample of identified sources was used to construct X-ray luminosity functions, using the absolute maximum likelihood method, for clusters galaxies and active galactic nuclei.

  6. Luminosity class of neutron reflectometers

    NASA Astrophysics Data System (ADS)

    Pleshanov, N. K.

    2016-10-01

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  7. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  8. The luminosity function of galactic X-ray sources - A cutoff and a 'standard candle'

    NASA Technical Reports Server (NTRS)

    Margon, B.; Ostriker, J. P.

    1973-01-01

    Analysis of the 2- to 10-kev luminosity distribution of 36 X-ray sources in the Local Group having known or estimated distances, showing that there exists a luminosity cutoff of approximately 10 to the 37.7th ergs/sec in agreement with the theoretical (Eddington) limit for the luminosity of an approximately 1 solar mass star. Furthermore, among the complete sample of high-luminosity sources, there appears to be a statistically significant group of X-ray 'standard candles' at (within less than 0.8 mag) the critical luminosity. This finding (which is in agreement with the self-consistent mass flow accretion models) presents the possibility that X-ray sources may be used as extragalactic distance indicators in the next generation of X-ray astronomy experiments.

  9. Luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Bajan, K.; Biernacka, M.; Flin, P.; Godłowski, W.; Panko, E.; Popiela, J.

    2016-10-01

    We constructed and studied the luminosity function of 6188 galaxyclusters. This was performed by counting brightness of galaxiesbelonging to clusters in the PF catalogue, taking galaxy data fromMRSS. Our result shows that the investigated structures arecharacterized by a luminosity function different from that ofoptical galaxies and radiogalaxies (Machalski & Godłowski2000). The implications of this result for theoriesof galaxy formation are briefly discussed.

  10. A UNIFORM CORRELATION BETWEEN SYNCHROTRON LUMINOSITY AND DOPPLER FACTOR IN GAMMA-RAY BURSTS AND BLAZARS: A HINT OF SIMILAR INTRINSIC LUMINOSITIES?

    SciTech Connect

    Wu Qingwen; Zou Yuanchuan; Wang Dingxiong; Cao Xinwu; Chen Liang E-mail: zouyc@hust.edu.cn E-mail: cxw@shao.ac.cn

    2011-10-10

    We compile 23 gamma-ray bursts (GRBs) and 21 blazars with estimated Doppler factors, and the Doppler factors of GRBs are estimated from their Lorentz factors by assuming their jet viewing angles {theta} {yields} 0{sup 0}. Using the conventional assumption that the prompt emission of GRBs is dominated by the synchrotron radiation, we calculate the synchrotron luminosity of GRBs from their total isotropic energy and burst duration. Intriguingly, we discover a uniform correlation between the synchrotron luminosity and Doppler factor, L{sub syn}{proportional_to}D{sup 3.1}, for GRBs and blazars, which suggests that they may share some similar jet physics. One possible reason is that GRBs and blazars have, more or less, similar intrinsic synchrotron luminosities and both of them are strongly enhanced by the beaming effect. After Doppler and redshift correction, we find that the intrinsic peak energy of the GRBs ranges from 0.1 to 3 keV with a typical value of 1 keV. We further correct the beaming effect for the observed luminosity of GRBs and find that a positive correlation exists between the intrinsic synchrotron luminosity and peak energy for GRBs, which is similar to that of blazars. Our results suggest that both the intrinsic positive correlation and the beaming effect may be responsible for the observed tight correlation between the isotropic energy and the peak energy in GRBs (the so-called Amati relation).

  11. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  12. Evolutionary variations of solar luminosity

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1981-01-01

    Theoretical arguments for a 30% increase in the solar luminosity over the past 4.7 billion years are reviewed. A scaling argument shows that this increase can be predicted without detailed numerical calculations. The magnitude of the increase is independent of nuclear reaction rates, as long as conversion of hydrogen to helium provides the basic energy source of the Sun. The effect of the solar luminosity increase on the terrestrial climate is briefly considered. It appears unlikely that an enhanced greenhouse effect, due to reduced gases (NH3, CH4), can account for the long-term paleoclimatic trends.

  13. UPGRADING RHIC FOR HIGHER LUMINOSITY.

    SciTech Connect

    MACKAY,W.; BEN-ZVI,I.; BRENNAN,J.M.; HARRISON,M.; KEWISCH,J.; PEGGS,S.; ROSER,T.; TRBOJEVIC,D.; PARKHOMCHUK,V.

    2001-06-18

    While RHIC has only just started running for its heavy ion physics program, in the first run last summer, we achieved 10% of the design luminosity. In this paper we discuss plans for increasing the luminosity by a factor of 35 beyond the nominal design. A factor of 4 should be straightforward by doubling the number of bunches per ring and squeezing the {beta}* from 2 to 1 m at selected interaction points. An additional factor of 8 to 10 could be possible by using electron cooling to counteract intrabeam scattering and reduce emittances of the beams.

  14. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    SciTech Connect

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Koss, M.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Luo, B.; Brightman, M.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Madejski, G.; and others

    2014-08-20

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N {sub H} = (6-10) × 10{sup 24} cm{sup –2}, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10{sup 42} erg s{sup –1}. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L{sub X} versus L {sub IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  15. The white dwarf luminosity function

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  16. Luminosities for Final Flash Stars

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth; Joyce, Richard; Lebzelter, Thomas

    2010-08-01

    A brief yet common evolutionary process is a post-AGB final episode of helium shell burning. This occurs after a low mass star has ejected a planetary nebula and has started on the white dwarf track. Seven stars are now classified with varying degrees of certainty as one of these ``final flash'' objects. Two of these have actually been observed to eject a shell of gas first as a pseudo-photosphere and then as a thick dust envelope. The dust envelopes are expanding at ~100 km s^-1. We propose AO imaging of the circumstellar shells to measure changes from images recorded a decade or more ago. From these changes we will determine geometric parallaxes and hence luminosities. The luminosity will be compared to stellar evolution models. In an additional challenge to models we will calibrate the He I emission line flux and through this the mass loss rate from the fast stellar wind.

  17. Solar response to luminosity variations

    NASA Astrophysics Data System (ADS)

    Arendt, S.

    1990-08-01

    The connection between solar luminosity and magnetic fields is now well-established. Magnetic fields under the guise of sunspots and faculae enhance or suppress heat transfer through the solar surface, leading to changes in the total solar luminosity. This raises the question of the effect that such surface heat transfer perturbations have on the internal structure of the sun. The problem has been considered previously by Foukal and Spruit. Here, researchers generalize the calculation of Spruit, removing the assumption of a constant heat diffusivity coefficient by treating the full mixing length heat transfer expression. Further, they treat the surface conditions in a simpler manner, and show that the previous conclusions of Foukal and Spruit are unaffected by these modifications. The model shows that following the application of a step function emissivity change: a fraction 1 - D0 of the luminosity change relaxes away after approx. 50 days. This corresponds to the thermal diffusion time across the convection zone, adjusting to a value in correspondence with the surface change. In other words, the whole convection zone feels the perturbation on this timescale. The remaining fraction relaxes away on a timescale of 10 to the 5th power years, corresponding to the convective layer radiating away enough energy so that it can adjust to its new adiabat. These are the same results arrived at by Spruit and Foukal. For variations of sigma on timescales of 10 to 200 years, then, the only important relaxation is the 50 day one. If the amplitude of this relaxation is small, the luminosity follows the sigma variation.

  18. Solar Response to Luminosity Variations

    NASA Technical Reports Server (NTRS)

    Arendt, S.

    1990-01-01

    The connection between solar luminosity and magnetic fields is now well-established. Magnetic fields under the guise of sunspots and faculae enhance or suppress heat transfer through the solar surface, leading to changes in the total solar luminosity. This raises the question of the effect that such surface heat transfer perturbations have on the internal structure of the sun. The problem has been considered previously by Foukal and Spruit. Here, researchers generalize the calculation of Spruit, removing the assumption of a constant heat diffusivity coefficient by treating the full mixing length heat transfer expression. Further, they treat the surface conditions in a simpler manner, and show that the previous conclusions of Foukal and Spruit are unaffected by these modifications. The model shows that following the application of a step function emissivity change: a fraction 1 - D(sub 0) of the luminosity change relaxes away after approx. 50 days. This corresponds to the thermal diffusion time across the convection zone, adjusting to a value in correspondence with the surface change. In other words, the whole convection zone feels the perturbation on this timescale. The remaining fraction relaxes away on a timescale of 10 to the 5th power years, corresponding to the convective layer radiating away enough energy so that it can adjust to its new adiabat. These are the same results arrived at by Spruit and Foukal. For variations of sigma on timescales of 10 to 200 years, then, the only important relaxation is the 50 day one. If the amplitude of this relaxation is small, the luminosity follows the sigma variation.

  19. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  20. GENIE Production Release 2.10.0

    SciTech Connect

    Alam, M.; Andreopoulos, C.; Athar, M.; Bodek, A.; Christy, E.; Coopersmith, B.; Dennis, S.; Dytman, S.; Gallagher, H.; Geary, N.; Golan, T.; Hatcher, R.; Hoshina, K.; Liu, J.; Mahn, K.; Marshall, C.; Morrison, J.; Nirkko, M.; Nowak, J.; Perdue, G. N.; Yarba, J.

    2015-12-25

    GENIE is a neutrino Monte Carlo event generator that simulates the primary interaction of a neutrino with a nuclear target, along with the subsequent propagation of the reaction products through the nuclear medium. It additionally contains libraries for fully-featured detector geometries and for managing various types of neutrino flux. This note details recent updates to GENIE, in particular, changes introduced into the newest production release, version 2.10.0.

  1. NuSTAR AND CHANDRA INSIGHT INTO THE NATURE OF THE 3-40 keV NUCLEAR EMISSION IN NGC 253

    SciTech Connect

    Lehmer, B. D.; Wik, D. R.; Hornschemeier, A. E.; Ptak, A.; Leyder, J.-C.; Venters, T.; Zhang, W. W.; Antoniou, V.; Argo, M. K.; Bechtol, K.; Boggs, S.; Craig, W. W.; Krivonos, R.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.; Zezas, A.

    2013-07-10

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 keV intensity of the inner {approx}20 arcsec ({approx}400 pc) nuclear region, as measured by NuSTAR, varied by a factor of {approx}2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L{sub 2-10{sub keV}} {approx} few Multiplication-Sign 10{sup 39} erg s{sup -1}) point source located {approx}1 arcsec from the dynamical center of the galaxy (within the 3{sigma} positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies {approx}>3 keV. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (N{sub H} Almost-Equal-To 1.6 Multiplication-Sign 10{sup 23} cm{sup -2}) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center ({theta} Almost-Equal-To 0.4 arcsec); however, this source was offset from the 2012 source position by Almost-Equal-To 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is >>99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 keV) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX

  2. VizieR Online Data Catalog: AGNs from RXTE 3-20keV All-Sky Survey (Sazonov+, 2004)

    NASA Astrophysics Data System (ADS)

    Sazonov, S. Yu.; Revnivtsev, M. G.

    2004-05-01

    Catalog of 95 identified AGNs serendipitously detected at |b|>10deg during the RXTE slew survey (XSS, ) is presented. Most of these AGNs belong to the local population (z<0.1). For each source the following information is provided: AGN class, count rate in two energy bands 3-8keV and 8-20keV, observed and intrinsic (absorption-corrected) luminosity in the 3-20keV band, intrinsic absorption column density. Also a catalog of 35 AGN candidates, composed of unidentified XSS sources is presented. (2 data files).

  3. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, J. Y.; Mineshige, S. E-mail: bfliu@nao.cas.cn

    2012-08-01

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.

  4. Sprite Luminosity and Radio Noise

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Evans, A.; Mezentsev, A.; van der Velde, O.; Soula, S.

    2013-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into streamer tips (McHarg et al., 2010) with diameters 50-100 m at 60-80 km height (Kanmae et al., 2012). The sprite luminosity coincides in time and space with extremely low frequency electromagnetic radiation <3 kHz in excellent agreement with theory (Cummer and Fullekrug, 2001). This theory is based on current flowing in the body of sprites at 70-80 km height associated with large streamer densities (Pasko et al., 1998). A more detailed study shows specifically that the exponential growth and splitting of streamers at 70-80 km height results in an electron multiplication associated with the acceleration of electrons to a few eV. The accelerated electrons radiate a small amount of electromagnetic energy and the incoherent superposition of many streamers causes the observed electromagnetic radiation (Qin et al., 2012). It has been predicted that this newly recognized physical mechanism might also result in low frequency ( 30-300 kHz) electromagnetic radiation emanating from sprite streamers near 40 km height in the stratosphere, albeit with very small magnetic fields 10^{-17}-10^{-12} T from a single streamer (Qin et al., 2012). The presence of this predicted radiation was promptly confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). Specifically, it was found that the sprite luminosity coincides with sudden enhancements of the radio noise. These initial observations are extended here with a more detailed analysis to study the spatial coherence of the radio noise recorded with a novel network of sensitive radio receivers deployed during field work in the summer 2013. This network of radio receivers is used to study the relationship between the radio noise and the sprite luminosity observed with video cameras. The sprite luminosity is inferred from video recordings by use of sophisticated image

  5. Unidentified IRAS sources: Ultrahigh luminosity galaxies

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Schneider, D. P.; Danielson, G. E.; Beichman, C. A.; Lonsdale, C. J.; Neugebauer, G.; Soifer, B. T.

    1985-01-01

    Optical imaging and spectroscopy measurements were obtained for six of the high galactic latitude infrared sources reported by Houck, et al. (1984) from the IRAS survey to have no obvious optical counterparts on the POSS prints. All are identified with visually faint galaxies that have total luminosities in the range 5 x 10 to the 11th power stellar luminosity to 5 x 10 to the 12th power stellar luminosity. This luminosity emerges virtually entirely in the infrared. The origin of the luminosity, which is one to two orders of magnitude greater than that of normal galaxies, is not known at this time.

  6. Electron Flux Models at GEO: 30 keV - 600 keV

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Ganushkina, N. Y.

    2015-12-01

    Forecast models are developed for the electron fluxes measured by the Magnetospheric Electron Detector (MagED) onboard the Geostationary Operational Environmental Satellite (GOES) 13. The models employ solar wind and geomagnetic indices as inputs to produce a forecast of the electron flux at Geostationary Earth Orbit (GEO) for five energy ranges from 30 keV - 600 keV. All of these models will be implemented in real time to forecast the electron fluxes on the PROGRESS project website (https://ssg.group.shef.ac.uk/progress2/html/index.phtml).

  7. SPECTRAL LAGS AND THE LAG-LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS

    SciTech Connect

    Ukwatta, T. N.; Dhuga, K. S.; Eskandarian, A.; Maximon, L. C.; Parke, W. C.; Stamatikos, M.; Sakamoto, T.; Barthelmy, S. D.; Gehrels, N.; Norris, J. P.

    2010-03-10

    Spectral lag, the time difference between the arrival of high-energy and low-energy photons, is a common feature in gamma-ray bursts (GRBs). Norris et al. reported a correlation between the spectral lag and the isotropic peak luminosity of GRBs based on a limited sample. More recently, a number of authors have provided further support for this correlation using arbitrary energy bands of various instruments. In this paper, we report on a systematic extraction of spectral lags based on the largest Swift sample to date of 31 GRBs with measured redshifts. We extracted the spectral lags for all combinations of the standard Swift hard X-ray energy bands: 15-25 keV, 25-50 keV, 50-100 keV, and 100-200 keV and plotted the time dilation corrected lag as a function of isotropic peak luminosity. The mean value of the correlation coefficient for various channel combinations is -0.68 with a chance probability of {approx}0.7 x 10{sup -3}. In addition, the mean value of the power-law index is 1.4 +- 0.3. Hence, our study lends support to the existence of a lag-luminosity correlation, albeit with large scatter.

  8. THE RELATIONSHIP BETWEEN X-RAY LUMINOSITY AND MAJOR FLARE LAUNCHING IN GRS 1915+105

    SciTech Connect

    Punsly, Brian; Rodriguez, Jerome E-mail: brian.punsly@comdev-usa.com

    2013-02-20

    We perform the most detailed analysis to date of the X-ray state of the Galactic black hole candidate GRS 1915+105 just prior to (0-4 hr) and during the brief (1-7 hr) ejection of major (superluminal) radio flares. A very strong model independent correlation is found between the 1.2 keV-12 keV X-ray flux 0-4 hr before flare ejections with the peak optically thin 2.3 GHz emission of the flares. This suggests a direct physical connection between the energy in the ejection and the luminosity of the accretion flow preceding the ejection. In order to quantify this concept, we develop techniques to estimate the intrinsic (unabsorbed) X-ray luminosity, L {sub intrinsic}, from RXTE All Sky Monitor data and to implement known methods to estimate the time-averaged power required to launch the radio emitting plasmoids, Q (sometimes called jet power). We find that the distribution of intrinsic luminosity from 1.2 keV-50 keV, L {sub intrinsic} (1.2-50), is systematically elevated just before ejections compared to arbitrary times when there are no major ejections. The estimated Q is strongly correlated with L {sub intrinsic} (1.2-50) 0-4 hr before the ejection, the increase in L {sub intrinsic} (1.2-50) in the hours preceding the ejection and the time-averaged L {sub intrinsic} (1.2-50) during the flare rise. Furthermore, the total time-averaged power during the ejection (Q + the time average of L {sub intrinsic} (1.2-50) during ejection) is strongly correlated with L {sub intrinsic} (1.2-50) just before launch with near equality if the distance to the source is Almost-Equal-To 10.5 kpc.

  9. Observations on the luminosity lifetimes, emittance growth rates and intra-beam scattering at the Tevatron

    SciTech Connect

    Paul L.G. Lebrun et al.

    2003-05-22

    A record luminosity of 4.2 10{sup 31}has been reached at the Fermilab p-{bar p} collider. The lifetime of this luminosity at the beginning of the store is about 10 hours. This lifetime can be explained by the measured loss of anti-protons and protons due to collisions and emittance growths. We report on transverse emittance growth rates based on our Synchrotron Light Monitor. Longitudinal emittance growth rate measurements are based on the TeV Sampled Bunch Display data. It is shown that Intra Beam Scattering is a significant source of emittance growth rates. We comment on other possible factors for these observed emittance growth rates. Finally, we comment on future luminosity lifetimes, as we hope to further increase our peak luminosity.

  10. Do Low Luminosity Stars Matter?

    NASA Astrophysics Data System (ADS)

    Ruiz, María Teresa

    2010-11-01

    Historically, low luminosity stars have attracted very little attention, in part because they are difficult to see except with large telescopes, however, by neglecting to study them we are leaving out the vast majority of stars in the Universe. Low mass stars evolve very slowly, it takes them trillions of years to burn their hydrogen, after which, they just turn into a He white dwarf, without ever going through the red giant phase. This lack of observable evolution partly explains the lack of interest in them. The search for the “missing mass” in the galactic plane turned things around and during the 60s and 70s the search for large M/L objects placed M-dwarfs and cool WDs among objects of astrophysical interest. New fields of astronomical research, like BDs and exoplanets appeared as spin-offs from efforts to find the “missing mass”. The search for halo white dwarfs, believed to be responsible for the observed microlensing events, is pursued by several groups. The progress in these last few years has been tremendous, here I present highlights some of the great successes in the field and point to some of the still unsolved issues.

  11. A large scale height galactic component of the diffuse 2-60 keV background

    NASA Technical Reports Server (NTRS)

    Iwan, D.; Marshall, F. E.; Boldt, E. A.; Mushotzky, R.; Shafer, R. A.; Stottlemyer, A.

    1982-01-01

    The diffuse 2-60 keV X-ray background has a galactic component clearly detectable by its strong variation with both galactic latitude and longitude. This galactic component is typically 10 percent of the extragalactic background toward the galactic center, half that strong toward the anticenter, and extrapolated to a few percent of the extragalactic background toward the galactic poles. It is acceptably modeled by a finite radius emission disk with a scale height of several kiloparsecs. The averaged galactic spectrum is best fitted by a thermal spectrum of kT about 9 keV, a spectrum much softer than the about 40 keV spectrum of the extragalactic component. The most likely source of this emission is low luminosity stars with large scale heights such as subdwarfs. Inverse Compton emission from GeV electrons on the microwave background contributes only a fraction of the galactic component unless the local cosmic ray electron spectrum and intensity are atypical.

  12. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  13. A limit to the X-ray luminosity of nearby normal galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Marshall, F. E.; Boldt, E. A.

    1979-01-01

    The hypothesis that normal galaxies are on the average more luminous in the X-ray region than the Milky Way galaxy or M31 and therefore are possible candidates for the low-luminosity sources of the 2 to 60 keV extragalactic diffuse background is tested. Data from the A-2 detectors on the HEAO-1 spacecraft were examined for emission from positions coincident with 76 selected normal galaxies, and upper limits to the average galactic luminosity for various luminosity distributions resulting in the observed count rate distribution were determined. For uniform and exponential galactic luminosity distributions, limits of 2.7 x 10 to the 38th erg/sec and 3.4 x 10 to the 38th erg/sec, respectively, at the 90% confidence level were obtained. It is shown that the Hubble-constant-independent upper limit to galactic emissivity is less than 1% of the diffuse background emissivity, indicating that normal galaxies are not responsible for the diffuse X-ray background and have luminosities comparable to that of the Galaxy.

  14. INFRARED CLASSIFICATION AND LUMINOSITIES FOR DUSTY ACTIVE GALACTIC NUCLEI AND THE MOST LUMINOUS QUASARS

    SciTech Connect

    Weedman, Daniel; Sargsyan, Lusine; Houck, James; Barry, Donald; Lebouteiller, Vianney

    2012-12-20

    Mid-infrared spectroscopic measurements from the Infrared Spectrometer (IRS) on Spitzer are given for 125 hard X-ray active galactic nuclei (AGNs; 14-195 keV) from the Swift Burst Alert Telescope (BAT) sample and for 32 AGNs with black hole masses (BHMs) from reverberation mapping. The 9.7 {mu}m silicate feature in emission or absorption defines an infrared AGN classification describing whether AGNs are observed through dust clouds, indicating that 55% of the BAT AGNs are observed through dust. The mid-infrared dust continuum luminosity is shown to be an excellent indicator of intrinsic AGN luminosity, scaling closely with the hard X-ray luminosity, log {nu}L{sub {nu}}(7.8 {mu}m)/L(X) = -0.31 {+-} 0.35, and independent of classification determined from silicate emission or absorption. Dust luminosity scales closely with BHM, log {nu}L{sub {nu}}(7.8 {mu}m) = (37.2 {+-} 0.5) + 0.87 log BHM for luminosity in erg s{sup -1} and BHM in M{sub Sun }. The 100 most luminous type 1 quasars as measured in {nu}L{sub {nu}}(7.8 {mu}m) are found by comparing Sloan Digital Sky Survey (SDSS) optically discovered quasars with photometry at 22 {mu}m from the Wide-Field Infrared Survey Explorer (WISE), scaled to rest frame 7.8 {mu}m using an empirical template determined from IRS spectra. The most luminous SDSS/WISE quasars have the same maximum infrared luminosities for all 1.5 < z < 5, reaching total infrared luminosity L{sub IR} = 10{sup 14.4} L{sub Sun }. Comparing with dust-obscured galaxies from Spitzer and WISE surveys, we find no evidence of hyperluminous obscured quasars whose maximum infrared luminosities exceed the maximum infrared luminosities of optically discovered quasars. Bolometric luminosities L{sub bol} estimated from rest-frame optical or ultraviolet luminosities are compared to L{sub IR}. For the local AGN, the median log L{sub IR}/L{sub bol} = -0.35, consistent with a covering factor of 45% for the absorbing dust clouds. For the SDSS/WISE quasars, the median log L

  15. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  16. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  17. Origin of the Galactic Disk 6.7 kev Line Emission

    NASA Technical Reports Server (NTRS)

    Churchwell, Ed

    1997-01-01

    The goal of this program was to determine if the extended FeXXV 6.7 kev line emission might possibly be produced and confined by the hot wind-shocked bubbles to accompany UC HII regions. The main result of this study are: (1) FeXXV is detected in the W3 complex, but at a level that could only explain a small fraction of the galactic disk emission if all UC HII regions emit at about the same intensity as the W3 complex; (2) Two X-ray sources are detected in W3. W3-X 1 coincides with the radio image of this region, but W3-X2 has no radio, optical, or infrared counterpart; (3) There is no evidence for variability of W3-X1 during the period of observations (approx, 40,000 sec); (4) The X-ray spectrum of W3-X1 has no emission shortward of 1 kev, it peaks at approx. 2 kev and show significant emission out to approx. 6 kev. No individual lines are resolved. There is currently no generally accepted theory for extended hard X-ray emission in HII regions. Perhaps the most significant discovery of this program has been the detection of extended hard X-rays and the realization that some entirely new processes must be invoked to understand this; and (5)A minimum (chi)(sup 2) fit of the spectrum implies a H absorbing column of N(sub H) approx, equals to 2.1 x 10(exp 22)/ cm, a temperature of the emitting plasma of 7 x 10(exp 7) K, and a luminosity of approx. equal to 10(33)erg/s.

  18. Luminosity determination at HERA-B

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; De Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. AA.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, S.; Somov, A.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Xella-Hansen, S.; Zaitsev, Yu.; Zavertyaev, M.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.

    2007-11-01

    A detailed description of an original method used to measure the luminosity accumulated by the HERA-B experiment for a data sample taken during the 2002-2003 HERA running period is reported. We show that, with this method, a total luminosity measurement can be achieved with a typical precision, including overall systematic uncertainties, at a level of 5% or better. We also report evidence for the detection of δ-rays generated in the target and comment on the possible use of such delta rays to measure luminosity.

  19. Results From the DAFNE High Luminosity Test

    SciTech Connect

    Milardi, C.; Alesini, D.; Biagini, M.E.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, G.; Murtas, F.; Pellegrino, L.; /Frascati /Novosibirsk, IYF /CERN /INFN, Cosenza /INFN, Rome /KEK, Tsukuba /Orsay, LAL /Rome U. /Pisa U. /INFN, Pisa /INFN, Rome3 /SLAC

    2012-04-11

    The DAPHNE collider, based on a new collision scheme including Large Piwinsky angle and Crab-Waist, has been successfully commissioned and is presently delivering luminosity to the SIDDHARTA detector. Large crossing angle and Crab-Waist scheme proved to be effective in: (1) Increasing luminosity, now a factor 2.7 higher than in the past; and (2) controlling transverse beam blow-up due to the beam-beam. Work is in progress to reach the ultimate design luminosity goal 5.0 {center_dot} 10{sup 32} cm{sup -2}s{sup -1}. The new collision scheme is the main design concept for a new project aimed at building a Super-B factory that is expected to achieve a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} and it has been also taken into account to upgrade one of the LHC interaction regions.

  20. Fitting the luminosity decay in the Tevatron

    SciTech Connect

    McCrory, E.; Shiltsev, V.; Slaughter, A.J.; Xiao, A.; /Fermilab

    2005-05-01

    This paper explores how to fit the decay of the luminosity in the Tevatron. The standard assumptions of a fixed-lifetime exponential decay are only appropriate for very short time intervals. A ''1/time'' functional form fits well, and is supported by analytical derivations. A more complex form, assuming a time-varying lifetime-like term, also produces good results. Changes in the luminosity can be factored into two phenomena: The luminosity burn-off rate, and the burn-off rate from non-luminosity effects. This is particularly relevant for the antiprotons in the Tevatron. The luminous and the non-luminous burn rate of the antiprotons are shown for Tevatron stores.

  1. 29 CFR 2.10 - Scope and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Scope and purpose. 2.10 Section 2.10 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.10 Scope and purpose. This subpart defines the scope of audiovisual coverage of departmental administrative...

  2. Study of Swift/Bat Selected Low-luminosity Active Galactic Nuclei Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Terashima, Yuichi; Mushotzky, Richard

    2016-11-01

    We systematically analyze the broadband (0.5–200 keV) X-ray spectra of hard X-ray (>10 keV) selected local low-luminosity active galactic nuclei (LLAGNs) observed with Suzaku and Swift/BAT. The sample consists of 10 LLAGNs detected with Swift/BAT with intrinsic 14–195 keV luminosities smaller than 1042 erg s‑1 available in the Suzaku archive, covering a wide range of the Eddington ratio from 10‑5 to 10‑2. The overall spectra can be reproduced with an absorbed cut-off power law, often accompanied by reflection components from distant cold matter, and/or optically thin thermal emission from the host galaxy. In all of the objects, relativistic reflection components from the innermost disk are not required. Eight objects show a significant narrow iron-Kα emission line. Comparing their observed equivalent widths with the predictions from the Monte-Carlo-based torus model by Ikeda et al. (2009), we constrain the column density in the equatorial plane to be {log} {N}{{H}}{{eq}}\\gt 22.7, or the torus half-opening angle θ oa < 70°. We infer that the Eddington ratio (λ Edd) is a key parameter that determines the torus structure of LLAGNs: the torus becomes large at λ Edd ≳ 2 × 10‑4, whereas at lower accretion rates it is little developed. The luminosity correlation between the hard X-ray and mid-infrared (MIR) bands of the LLAGNs follows the same correlation as for more luminous AGNs. This implies that mechanisms other than AGN-heated dust are responsible for the MIR emission in low Eddington ratio LLAGNs.

  3. Luminosity Optimization Feedback in the SLC

    SciTech Connect

    1999-03-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported.

  4. CONTRIBUTION OF THE ACCRETION DISK, HOT CORONA, AND OBSCURING TORUS TO THE LUMINOSITY OF SEYFERT GALAXIES: INTEGRAL AND SPITZER OBSERVATIONS

    SciTech Connect

    Sazonov, S.; Churazov, E.; Krivonos, R.; Revnivtsev, M.; Sunyaev, R.; Vikhlinin, A.; Hickox, R. C.; Gorjian, V.; Werner, M. W.; Fabian, A. C.; Forman, W. R.

    2012-10-01

    We estimate the relative contributions of the supermassive black hole (SMBH) accretion disk, corona, and obscuring torus to the bolometric luminosity of Seyfert galaxies, using Spitzer mid-infrared (MIR) observations of a complete sample of 68 nearby active galactic nuclei (AGNs) from the INTEGRAL all-sky hard X-ray (HX) survey. This is the first HX-selected (above 15 keV) sample of AGNs with complementary high angular resolution, high signal-to-noise, MIR data. Correcting for the host galaxy contribution, we find a correlation between HX and MIR luminosities: L{sub 15{mu}m}{proportional_to}L{sup 0.74{+-}0.06}{sub HX}. Assuming that the observed MIR emission is radiation from an accretion disk reprocessed in a surrounding dusty torus that subtends a solid angle decreasing with increasing luminosity (as inferred from the declining fraction of obscured AGNs), the intrinsic disk luminosity, L{sub Disk}, is approximately proportional to the luminosity of the corona in the 2-300 keV energy band, L{sub Corona}, with the L{sub Disk}/L{sub Corona} ratio varying by a factor of 2.1 around a mean value of 1.6. This ratio is a factor of {approx}2 smaller than for typical quasars producing the cosmic X-ray background. Therefore, over three orders of magnitude in luminosity, HX radiation carries a large, and roughly comparable, fraction of the bolometric output of AGNs. We estimate the cumulative bolometric luminosity density of local AGNs at {approx}(1-3) Multiplication-Sign 10{sup 40} erg s{sup -1} Mpc{sup -3}. Finally, the Compton temperature ranges between kT{sub c} Almost-Equal-To 2 and Almost-Equal-To 6 keV for nearby AGNs, compared to kT{sub c} Almost-Equal-To 2 keV for typical quasars, confirming that radiative heating of interstellar gas can play an important role in regulating SMBH growth.

  5. Probing the Peculiar Behavior of GRS 1915+105 at Near-Eddington Luminosity

    NASA Astrophysics Data System (ADS)

    Vierdayanti, Kiki; Mineshige, Shin; Ueda, Yoshihiro

    2010-04-01

    To understand the nature of supercritical accretion, we systematically analyzed the RXTE/PCA data of GRS 1915+105 in its quasi-steady states, by choosing data with small variability during 1999-2000. We applied a multicolor disk plus a thermal Comptonization model, and took into consideration accurate interstellar absorption, a reflection component (with an iron-K emission line), and absorption features from the disk wind self-consistently. The total luminosity ranges from ˜0.2LE to slightly above LE. There is a strong correlation between the inner disk temperature and the fraction of the disk component. Most of the Comptonization-dominated (>50% total flux) spectra show Tin ˜ 1 keV with a high electron temperature of >10 keV, which may correspond to the very high state in canonical black hole X-ray binaries (BHBs). In contrast, the disk-dominated spectra have Tin ˜ 2 keV with a low temperature (<10 keV) and optically thick Comptonization, and show two separate branches in the luminosity vs. innermost temperature (L-Tin) diagram. The lower branch clearly follows the L ∝ T4in-track. Furthermore, by applying the extended disk blackbody (or p-free disk) model, we found that 9 out of 12 datasets with disk luminosity above 0.3LE prefer a flatter temperature gradient than that in the standard disk (p < 0.7). We interpret that, in the lower branch, the disk extends down to the innermost stable circular orbit, and the source is most probably in the slim-disk state. A rapidly spinning black hole can explain both the lack of the L ∝ T2in-track and a high value of the spectral hardening factor (˜4) that would be required for a non-rotating black hole. The spectra in the upper branch are consistent with the picture of a truncated disk with low-temperature Comptonization. This state was uniquely observed from GRS 1915+105 among BHBs, which may be present at near-Eddington luminosity.

  6. New synchrotron luminosity distance limit for the 1979 March 5 gamma-ray event

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1986-01-01

    New synchrotron luminosity estimates are provided for the March 5, 1979 gamma-ray event, based on the lack of low-frequency self-absorption cutoff. This leads to distance limits much lower than 55 kpc for a neutron-star emission area even in the most conservative case. The source is likely Galactic. If in addition the thermal self-Compton interpretation is invoked for the hard tail above 300 keV in the burst spectrum, then the source distance lies in the range 0.1-2 kpc for extreme ranges of the neutron-star emission area. This result strongly impacts current observational programs for this source.

  7. Excess astrophysical photons from a 0.1-1 keV cosmic axion background.

    PubMed

    Conlon, Joseph P; Marsh, M C David

    2013-10-11

    Primordial decays of string theory moduli at z~10(12) naturally generate a dark radiation cosmic axion background with 0.1-1 keV energies. This cosmic axion background can be detected through axion-photon conversion in astrophysical magnetic fields to give quasithermal excesses in the extreme ultraviolet and soft x-ray bands. Substantial and observable luminosities may be generated even for axion-photon couplings <10(-11) GeV(-1). We propose that axion-photon conversion may explain the observed excess emission of soft x rays from galaxy clusters, and may also contribute to the diffuse unresolved cosmic x-ray background. We list a number of correlated predictions of the scenario. PMID:24160588

  8. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    SciTech Connect

    Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; Stevenson, M.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.

  9. Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Mushotzy, Richard F.; Winter, Lisa M.; McIntosh, Daniel H.; Tueller, Jack

    2008-01-01

    We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and K band photometry to examine the correlation of hard x-ray emission to Eddington ratio as well as the relationship of the J and K band nuclear luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by the effects of obscuration and thus offers the first large unbiased sample for the examination of correlations between different wavelength bands. We find that the near-IR nuclear J and K band luminosity is related to the BAT (14 - 195 keV) luminosity over a factor of 10(exp 3) in luminosity (L(sub IR) approx.equals L(sub BAT)(sup 1.25) and thus is unlikely to be due to dust. We also find that the Eddington ratio is proportional to the x-ray luminosity. This new result should be a strong constraint on models of the formation of the broad band continuum.

  10. A luminosity model of RHIC gold runs

    SciTech Connect

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  11. The Empirical Mass-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Fang, X.

    2014-08-01

    The recent works devoted to improving empirical Mass-Luminosity Relation (MLR) for main sequence stars are reviewed in this paper. In the mass-luminosity plane, the observational data are subjected to non-negligible errors in both coordinates with different dimensions. In order to obtain more reliable results, a more reasonable weight-assigning scheme is needed. Such a scheme is developed, with which each data point can have its own due contribution. For low mass stars (smaller than ˜1M⊙), three-piecewise continuous improved MLRs in K, J and H bands are obtained respectively. For visual band, improved MLR for stars with mass spanning from 0.12M⊙ to 22.89 M⊙, and improved MMLR (mass-metallicity-luminosity relation) for low mass stars which is based on our K band MLR and available observational metallicity data are provided. Further improvements of MLR would have to come from future observations.

  12. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-01

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch. PMID:17749020

  13. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  14. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-01

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch.

  15. Search for 511 keV emission in satellite galaxies of the Milky Way with INTEGRAL/SPI

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Vincent, Aaron C.; Guglielmetti, Fabrizia; Krause, Martin G. H.; Boehm, Celine

    2016-10-01

    Context. The positron (e+) annihilation γ-ray signal in the Milky Way (MW) shows a puzzling morphology: a very bright bulge and a very low surface-brightness disk. A coherent explanation of the e+ origin, propagation through the Galaxy and subsequent annihilation in the interstellar medium has not yet been found. Tentative explanations involve e+s from radioactivity, X-ray binaries, and dark matter (DM). Aims: Dwarf satellite galaxies (DSGs) are believed to be dominated by DM and hence are promising candidates in the search for 511 keV emission as a result of DM annihilation into e+e--pairs. The goal of this study is to constrain possible 511 keV γ-ray signals from 39 DSGs of the MW and to test the annihilating DM scenario. Methods: We used the spectrometer SPI on INTEGRAL to extract individual spectra for the studied objects in the range 490-530 keV. As the diffuse galactic 511 keV emission dominates the overall signal, we modelled the large-scale morphology of the MW accordingly and included this in a maximum likelihood analysis. Alternatively, a distance-weighted stacked spectrum was determined, representing an average DSG seen in 511 keV. Results: Only Reticulum II (Ret II) shows a 3.1σ signal. Five other sources show tentative 2σ signals. The ratio of mass to 511 keV luminosity, Υ511, shows a marginal trend towards higher values for intrinsically brighter objects in contrast to the mass-to-light ratio, ΥV in the V band, which is generally used to uncover DM in DSGs. Conclusions: All derived 511 keV flux values or upper limits are above the flux level implied by a DM interpretation of the MW bulge signal. The signal detected from Ret II is unlikely to be related to a DM origin alone, otherwise, the MW bulge would be ~100 times brighter in 511 keV than what is seen with SPI. Ret II is exceptional considering the DSG sample and rather points to enhanced recent star formation activity if its origins are similar to processes in the MW. Understanding this

  16. Physics of a 17 keV neutrino.

    NASA Astrophysics Data System (ADS)

    Kayser, B.

    The possible 17 keV neutrino, if real, cannot be νμ but could be essentially ντ. Relic 17 keV neutrinos from the big bang must have disappeared, through a non-Standard-Model decay or annihilation process, before the present epoch. If one assumes that the 17 keV neutrino is not a Dirac neutrino of the conventional kind, then one is led to picture it as a Dirac neutrino of the unconventional Zeldovich-Konopinski-Mahmoud kind. It is then an amalgam of ντ and ν¯μ.

  17. 28 CFR 2.10 - Date service of sentence commences.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Date service of sentence commences. 2.10 Section 2.10 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT... absconded from parole supervision; or (4) Comes within the provisions of paragraph (b) of this section....

  18. 28 CFR 2.10 - Date service of sentence commences.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Date service of sentence commences. 2.10 Section 2.10 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT... absconded from parole supervision; or (4) Comes within the provisions of paragraph (b) of this section....

  19. 28 CFR 2.10 - Date service of sentence commences.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Date service of sentence commences. 2.10 Section 2.10 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT... absconded from parole supervision; or (4) Comes within the provisions of paragraph (b) of this section....

  20. 28 CFR 2.10 - Date service of sentence commences.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Date service of sentence commences. 2.10 Section 2.10 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT... absconded from parole supervision; or (4) Comes within the provisions of paragraph (b) of this section....

  1. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Hydrology. 960.5-2-10 Section 960.5-2-10 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure §...

  2. 46 CFR 2.10-101 - Annual vessel inspection fee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... listed in table 2.10-101 for its vessel category. (2) A vessel certificated for more than one service must pay only the higher of the two applicable fees in table 2.10-101 of this section. (b) The vessel... Inspection, reinspections (annual and periodic inspections), hull (drydock) inspections,...

  3. 46 CFR 2.10-101 - Annual vessel inspection fee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed in table 2.10-101 for its vessel category. (2) A vessel certificated for more than one service must pay only the higher of the two applicable fees in table 2.10-101 of this section. (b) The vessel... Inspection, reinspections (annual and periodic inspections), hull (drydock) inspections,...

  4. 10 CFR 960.5-2-10 - Hydrology.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Hydrology. 960.5-2-10 Section 960.5-2-10 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Ease and Cost of Siting, Construction, Operation, and Closure §...

  5. 21 CFR 2.10 - Examination and investigation samples.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Examination and investigation samples. 2.10 Section 2.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... samples. (a)(1) When any officer or employee of the Department collects a sample of a food, drug,...

  6. 21 CFR 2.10 - Examination and investigation samples.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Examination and investigation samples. 2.10 Section 2.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... samples. (a)(1) When any officer or employee of the Department collects a sample of a food, drug,...

  7. 21 CFR 2.10 - Examination and investigation samples.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Examination and investigation samples. 2.10 Section 2.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... samples. (a)(1) When any officer or employee of the Department collects a sample of a food, drug,...

  8. 28 CFR 2.10 - Date service of sentence commences.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Date service of sentence commences. 2.10 Section 2.10 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT OF PRISONERS, YOUTH OFFENDERS, AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees §...

  9. On the mass-luminosity relation.

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Kondo, Y.

    1972-01-01

    The results of a least-squares study of the mass-luminosity relation for eclipsing and visual binary stars consisting of main sequence components are presented. Two methods are discussed. First, the values of the coefficients A and B in the relation log M = A + BM sub BOL are determined. Then a technique which permits the determination of alpha and beta in the relation M = alpha L beta, when only the sum of the masses, and not the individual masses of each component, is known. The results and a comparison of the two methods are discussed. It is found that the following mass-luminosity relation represents the observational data satisfactorily: log M = 0.504 - 0.103 M sub BOL, -8 less than or equal to M sub BOL less than or equal to +10.5. A discussion of the data and of the possibility that separate mass-luminosity relations may exist for visual and eclipsing binaries is given. The possibility that more than one mass-luminosity relation is required in the range -8 less than or equal to M sub BOL less than or equal to +13 is also discussed.

  10. Recent improvements in luminosity at PEP

    SciTech Connect

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program.

  11. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  12. Tevatron Experimental Issues at High Luminosities

    SciTech Connect

    Kreps, Michal; CDF, for the; collaborations, D0

    2009-12-01

    In this paper we describe the detector components, triggers and analysis techniques for flavor physics at the Tevatron experiments CDF and D0. As Tevatron performs very well and runs at higher luminosities regularly we also touch issues related to it and efforts to improve detectors and triggers for such running.

  13. Summary of symposium: Low luminosity sources

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.

    1987-01-01

    The author summarized certain aspects of the conference. He shares this task with another colleague thereby breaking the task into more manageable proportions. The author covers the low luminosity sources. He begins his review with a summary of some major themes of the conference and ends with a few speculations on possible theoretical mechanisms.

  14. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  15. Beta decay anomalies and the 17-keV conundrum

    SciTech Connect

    Hime, A.

    1993-03-01

    Recent developments in pursuance of the 17-keV neutrino are reviewed. Several different experiments found anomalies in {beta} decay spectra which were consistently interpreted as evidence for a heavy neutrino. On the other hand, recent null results definitively rule out the existence of a 17-keV neutrino, as well as escaping criticisms applicable to earlier experiments. While missing links remain, it seems that any strong evidence for a 17-keV neutrino has vanished. Specifically, the anomalies observed in {sup 35}S and {sup 63}Ni spectra at Oxford can be reinterpreted in terms of electron scattering effects. In addition, the discrepancy amongst internal bremsstrahlung measurements has an instrumental origin, and recent results disfavour a 17-keV neutrino. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

  16. Beta decay anomalies and the 17-keV conundrum

    SciTech Connect

    Hime, A.

    1993-01-01

    Recent developments in pursuance of the 17-keV neutrino are reviewed. Several different experiments found anomalies in [beta] decay spectra which were consistently interpreted as evidence for a heavy neutrino. On the other hand, recent null results definitively rule out the existence of a 17-keV neutrino, as well as escaping criticisms applicable to earlier experiments. While missing links remain, it seems that any strong evidence for a 17-keV neutrino has vanished. Specifically, the anomalies observed in [sup 35]S and [sup 63]Ni spectra at Oxford can be reinterpreted in terms of electron scattering effects. In addition, the discrepancy amongst internal bremsstrahlung measurements has an instrumental origin, and recent results disfavour a 17-keV neutrino. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

  17. The Physical Nature of the Sharp Spectral Feature at 7 keV Detected in 1H0707-495

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    XMM-Newton acquired data on the accepted target, 1H0707-495, on 2002 October 13 during revolution 0521. The observation was successful, with only about 5% data loss due to background flaring. We compared the data from this observation with earlier data taken on this Narrow-Line Seyfert 1 about two years before, performing interpretation studies in the context of the partial-covering model. Our second longer observation once again displays a sharp (< 200 eV) spectral drop above 7 keV. However, in comparison to the first observation, the edge depth and energy have changed significantly. In addition to changes in the edge parameters, the high-energy spectrum appears steeper. The changes in the high-energy spectrum can be adequately explained in terms of a partial-covering absorber out-flowing from the central region. The low-energy spectrum also shows significant long-term spectral variability, including (1) a substantial increase in the disk temperature, (2) detection of an approx. 0.9 keV emission feature, and (3) the presence of ionized absorption that was detected during the ASCA mission. The large increase in disk temperature, and the more modest rise in luminosity, can be understood if we consider a slim-disk model for 1H0707-495. In addition, the higher disk luminosity could be the driving force behind the outflow and the re-appearance of an ionized medium during the second XMM-Newton observation.

  18. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  19. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    NASA Technical Reports Server (NTRS)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  20. XMM-Newton observations of high-luminosity radio-quiet quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Reeves, J. N.; O'Brien, P. T.; Turner, M. J. L.; Worrall, D. M.

    2004-09-01

    XMM-Newton observations of five high-luminosity radio-quiet quasi-stellar objects (QSOs; Q 0144-3938, UM 269, PG 1634+706, SBS 0909+532 and PG 1247+267) are presented. Spectral energy distributions were calculated from the XMM-Newton European Photon Imaging Camera (EPIC) and Optical Monitor (OM) data, with bolometric luminosities estimated in the range from 7 × 1045 to 2 × 1048 erg s-1 for the sample, peaking in the ultraviolet. At least four of the QSOs show a similar soft excess, which can be well modelled by either one or two blackbody components, in addition to the hard X-ray power law. The temperatures of these blackbodies (~100-500 eV) are too high to be direct thermal emission from the accretion disc, so Comptonization is suggested. Two populations of Comptonizing electrons, with different temperatures, are needed to model the broad-band spectrum. The hotter of these produces what is seen as the hard X-ray power law, while the cooler (~0.25-0.5 keV) population models the spectral curvature at low energies. Only one of the QSOs shows evidence for an absorption component, while three of the five show neutral iron emission. Of these, PG 1247+267 seems to have a broad line (with an equivalent width of ~250 eV), with a strong, associated reflection component (R~ 2), measured out to 30 keV in the rest frame of the QSO. Finally, it is concluded that the X-ray continuum shape of active galactic nuclei remains essentially constant over a wide range of black hole mass and luminosity.

  1. Spectra and Luminosities of X-Ray Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Morgan, Windsor Anthony, Jr.

    1995-01-01

    I present results of the analysis of 112 X-ray -selected and fully optically-identified quasars in four sky fields in the southern hemisphere, detected by the Rosat Position Sensitive Proportional Counters. These fields were originally studied (Boyle et al. 1990) for the ultraviolet-excess properties of objects in the fields. This is one of the largest sets of fully-identified Rosat-observed quasars. The quasars were optically identified during observing runs with the AUTOFIB multi-fiber spectrograph on the Anglo-Australian Telescope in Australia. I determine the quasars' power-law spectral index alphaE with three different methods: spectral "stacking", hardness ratios, and direct fitting, and discuss the differences between each of these methods. Both spectral stacking and the hardness ratio methods are used because several of the quasars were too dim to reliably calculate spectral indices individually. The spectral stacking method, which involves co-adding quasar spectra energy bins (after first binning the quasars themselves in redshift bins) shows that a definite change in quasar spectral index with redshift, which I have attributed to thermal bremsstrahlung emission (Morgan et al. 1992). The hardness ratio method, taken from a suggestion by Zamorani et al. (1988), uses the hardness ratios, using energy bins of 0.15-0.8 keV and 0.8-2.0 keV, and the known galactic column density N_{H } to determine the quasar power-law spectral index. I find that the hardness-ratio method yields spectral indices which do not change appreciably with redshift. I derive monochromatic X-ray and optical luminosities L_{rm x} and L opt, by using the spectral indices I found and the optical observations of the quasars. I discuss the relationship between L_{x } and Lopt, examine the optical-X-ray spectral slope alpha ox and the related L x/L_{opt } ratio and their relationship to the redshift. I finally present a model which could explain the observations.

  2. a New Luminosity Function for Galaxies as Given by the Mass-Luminosity Relationship

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2008-04-01

    The search for a luminosity function for galaxies both alternative or companion to a Schechter function is a key problem in the reduction of data from catalogs of galaxies. Two luminosity functions for galaxies can be built starting from two distributions of mass as given by the fragmentation. A first overall distribution function is the Kiang function, which represents a useful description of the area and volume distribution of the Poisson Voronoi diagrams. The second distribution, which covers the case of low-mass galaxies, is the truncated Pareto distribution: in this model we have a natural bound due to the minimum mass/luminosity observed and an upper bound (function of the considered environment) represented by the boundary with the observed mass/luminosity overall behavior. The mass distribution is then converted into a luminosity distribution through a standard mass-luminosity relationship. The mathematical rules to convert the probability density function are used and the two new functions are normalized to the total number of galaxies per unit volume. The test of the two new luminosity functions for galaxies that cover different ranges in magnitude was made on the Sloan Digital Sky Survey (SDSS) in five different bands; the results are comparable to those of the Schechter function. A new parameter, which indicates the stellar content, is derived. The joint distribution in redshift and flux, the mean redshift and the number density connected with the first luminosity function for galaxies are obtained by analogy with the Schechter function. A new formula, which allows us to express the mass as a function of the absolute magnitude, is derived.

  3. CALIBRATION OF [O IV] 26 {mu}m AS A MEASURE OF INTRINSIC ACTIVE GALACTIC NUCLEUS LUMINOSITY

    SciTech Connect

    Rigby, J. R.; Diamond-Stanic, A. M.; Aniano, G.

    2009-08-01

    We compare [O IV] 25.89 {mu}m emission line luminosities with very hard (10-200 keV) X-rays from Swift, INTEGRAL, and BeppoSAX for a complete sample of 89 Seyferts from the Revised Shapley-Ames sample. Using Seyfert 1s, we calibrate [O IV] as a measure of active galactic nucleus (AGN) intrinsic luminosity, for particular use in high-obscuration environments. With this calibration, we measure the average decrement in 14-195 keV X-ray to [O IV] luminosity ratio for Seyfert 2s compared to type 1s. We find a decrement of 3.1 {+-} 0.8 for Seyfert 2s, and a decrement of 5.0 {+-} 2.7 for known Compton-thick Seyfert 2s. These decrements imply column densities of approximately log N{sub H} = 24.6 cm{sup -2} and 24.7 cm{sup -2}, respectively. Thus, we infer that the average Seyfert 2 is more highly obscured and intrinsically more luminous than would be inferred even from the very hard X-rays. We demonstrate two applications of the hard X-ray to [O IV] ratio. For the extremely obscured NGC 1068, we measure a column density of log N{sub H} = 25.3-25.4 cm{sup -2}. Finally, by comparing [O IV] luminosities to total infrared luminosities for 12 bright ultraluminous infrared galaxies, we find that four have substantial AGN contributions.

  4. The Mid-infrared Luminosity Evolution and Luminosity Function of Quasars with WISE and SDSS

    NASA Astrophysics Data System (ADS)

    Singal, J.; George, J.; Gerber, A.

    2016-11-01

    We determine the 22 μm luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below ∼ {10}31 erg s‑1 Hz‑1, which has been reported previously at 15 μm for AGN classified as both type 1 and type 2. We calculate the integrated total emission from quasars at 22 μm and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.

  5. THE EMISSION OF CYGNUS X-1: OBSERVATIONS WITH INTEGRAL SPI FROM 20 keV TO 2 MeV

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Malzac, J.

    2012-01-01

    We report on Cyg X-1 observations performed by the SPI telescope on board the INTEGRAL mission and distributed over more than 6 years. We investigate the variability of the intensity and spectral shape of this peculiar source in the hard X-ray domain, and more particularly up to the MeV region. We first study the total averaged spectrum which presents the best signal-to-noise ratio (4 Ms of data). Then, we refine our results by building mean spectra by periods and gathering those of similar hardness. Several spectral shapes are observed with important changes in the curvature between 20 and 200 keV, even at the same luminosity level. In all cases, the emission decreases sharply above 700 keV, with flux values above 1 MeV (or upper limits) well below the recently reported polarized flux, while compatible with the MeV emission detected some years ago by the Compton Gamma-ray Observatory/COMPTEL. Finally, we take advantage of the spectroscopic capability of the instrument to seek for spectral features in the 500 keV region with negative results for any significant annihilation emission on 2 ks and day timescales, as well as in the total data set.

  6. Luminosity limitations for Electron-Ion Collider

    SciTech Connect

    Valeri Lebedev

    2000-09-01

    The major limitations on reaching the maximum luminosity for an electron ion collider are discussed in application to the ring-ring and linac-ring colliders. It is shown that with intensive electron cooling the luminosity of 10{sup 33} cm{sup -2} s{sup -1} is feasible for both schemes for the center-of-mass collider energy above approximately 15 GeV. Each scheme has its own pros and cons. The ring-ring collider is better supported by the current accelerator technology while the linac-ring collider suggests unique features for spin manipulations of the electron beam. The article addresses a general approach to a choice of collider scheme and parameters leaving details for other conference publications dedicated to particular aspects of the ring-ring and linac-ring colliders.

  7. Mass-Luminosity Relationship of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Stanek, Rebecca; Evrard, August

    2004-04-01

    Deriving cosmological parameters from counts of galaxy clusters requires a clear understanding of the relationship between cluster observables and their underlying mass. While previous work has assumed pure power-law forms for these relationships, we explore here a power-law model with log-normal scatter and apply it to describing the REFLEX X-ray cluster luminosity function within a ΛCDM universe. We assume a space density calibrated from Hubble Volume simulations (the ``Jenkins mass function'' dn(M)/d ln M) and compute a luminosity function dn(L)/d ln L by assuming a conditional probability p(M|L) described by a Gaussian of fixed log-normal width ΔM and mean relation L = L_15 M^p. Because of the flux-limited nature of the REFLEX catalog, the space density of clusters at different luminosities is effectively sampling the mass function at different redshifts. We explore different corrections for this effect, and derive maximum-likelihood estimates for the three model parameters, L_15, p and Δ_M. The most likely model requires large scatter ΔM ˜ 1, but the allowed region in parameter space is fairly broad. We discuss the role that independent observables such as gas temperature and lensing mass will have in helping to break the model degeneracy.

  8. EVOLUTION OF THE Halpha LUMINOSITY FUNCTION

    SciTech Connect

    Westra, Eduard; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian

    2010-01-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a window on the star formation history over the last 4 Gyr. SHELS is a spectroscopically complete survey for R{sub tot} < 20.3 over 4 square{sup 0}. We use the 10k spectra to select a sample of pure star-forming galaxies based on their Halpha emission line. We use the spectroscopy to determine extinction corrections for individual galaxies and to remove active galaxies in order to reduce systematic uncertainties. We use the large volume of SHELS with the depth of a narrowband survey for Halpha galaxies at z approx 0.24 to make a combined determination of the Halpha luminosity function at z approx 0.24. The large area covered by SHELS yields a survey volume big enough to determine the bright end of the Halpha luminosity function from redshift 0.100 to 0.377 for an assumed fixed faint-end slope alpha = -1.20. The bright end evolves: the characteristic luminosity L* increases by 0.84 dex over this redshift range. Similarly, the star formation density increases by 0.11 dex. The fraction of galaxies with a close neighbor increases by a factor of 2-5 for L{sub Ha}lpha approx> L* in each of the redshift bins. We conclude that triggered star formation is an important influence for star-forming galaxies with Halpha emission.

  9. Seeded quantum FEL at 478 keV

    SciTech Connect

    Guenther, M. M.; Jentschel, M.; Thirolf, P. G.; Seggebrock, T.; Habs, D.

    2012-07-09

    We present for the first time the concept of a seeded {gamma} quantum Free-Electron-Laser (QFEL) at 478 keV, which has very different properties compared to a classical. The basic concept is to produce a highly brilliant {gamma} beam via SASE. To produce highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of such a {gamma} beam are novel refractive {gamma}-lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. The energy of the {gamma} beam is 478 keV, corresponding to a wavelength in the sub-Angstrom regime (1/38 A). To realize a coherent {gamma} beam at 478 keV, it is necessary to use a quantum FEL design. At such high radiation energies a classical description of the {gamma}-FEL becomes wrong.

  10. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  11. Statistical Properties of Local AGNs Inferred from the RXTE 3-20 keV All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Sazonov, S. Yu.

    We have recently ([1]) performed an all-sky survey in the 3-20 keV band from the data accumulated during satellite slews in 1996-2002 - the RXTE slew survey (XSS). For 90% of the sky at |b|>10° , a flux limit for source detection of 2.5×10-11 erg/s/sq.cm(3-20 keV) or lower was achieved, while a combined area of 7000 sq.deg was sampled to record flux levels (for such very large-area surveys) below 10-11 erg/s/sq.cm. A catalog contains 294 X-ray sources. 236 of these sources were identified with a single known astronomical object. Of particular interest are 100 identified active galactic nuclei (AGNs) and 35 unidentified sources. The hard spectra of the latter suggest that many of them will probably also prove AGNs when follow-up observations are performed. Most of the detected AGNs belong to the local population (z<0.1). In addition, the hard X-ray band of the XSS (3-20 keV) as compared to most previous X-ray surveys, performed at photon energies below 10 keV, has made possible the detection of a substantial number of X-ray absorbed AGNs (mostly Seyfert 2 galaxies). These properties make the XSS sample of AGNs a valuable one for the study of the local population of AGNs. We carried out a thorough statistical analysis of the above sample in order to investigate several key properties of the local population of AGNs, in particular their distribution in intrinsic absorption column density (NH) and X-ray luminosity function ([2]). Knowledge of these characteristics provides important constraints for AGN unification models and synthesis of the cosmic X-ray background, and is further needed to understand the details of the accretion-driven growth of supermassive black holes in the nuclei of galaxies.

  12. NLC Luminosity as a Function of Beam Parameters

    SciTech Connect

    Nosochkov, Yuri

    2002-06-06

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  13. The X-ray Luminosity Function for Poor Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Ledlow, M.; Loken, C.; Klypin, A.; Voges, W.; White, R. A.; Bryan, G.; Norman, M.

    1995-12-01

    We will present the first X-ray Luminosity Function for poor clusters of galaxies. Using a percolation algorithm, White et al. (1996) has compiled a catalog of 600 optically selected groups composed of Zwicky galaxies. This catalog includes MKW and AWM groups (with cD galaxies), many Hickson compact groups, as well as many more loose condensations. We selected a complete,volume-limited subsample of these poor clusters which have at least 4 Zwicky galaxies, b>30deg , a surface density enhancement of ~50, and z <= 0.03. We then cross-correlated this sample with the ROSAT all-sky X-ray survey. About 50% of this sample of 50 clusters was detected with 0.5-2.0 keV X-ray luminosities >4 x 10(41) h75(-2) ergs/sec. These are the X-ray brightest groups in the northern sky. From this sample, we constructed an X-ray Luminosity Function. We find that this poor cluster luminosity function matches well with that derived for Abell clusters by Briel & Henry (1993). It appears that these groups are low mass extensions of rich clusters. We have also derived a mass function for these groups assuming that the X-ray emission is in hydrostatic equilibrium within the clusters. We will compare this mass function with those expected from different cosmological models with different values of Omega . This research was funded by NSF grant AST93-17596 and NASA grant NAGW-3152.

  14. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-08-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec{sup -2}. Light profiles were initially fitted with a Sersic's R {sup 1/n} model, but we found that 205 ({approx}48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n {approx} 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ({approx}0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M{sub R} = -23.8 {+-} 0.6 mag for single profile BCGs and M{sub R} = -24.0 {+-} 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 {+-} 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a{sub single} = 3.29 {+-} 0.06 and a{sub double} = 2.79 {+-} 0.08. Also, the logarithmic slope of the metric luminosity {alpha} is higher in double profile BCGs ({alpha}{sub double} = 0.65 {+-} 0.12) than in single profile BCGs ({alpha}{sub single} = 0.59 {+-} 0.14). The mean isophote outer ellipticity (calculated at {mu} {approx} 24 mag arcsec{sup -2}) is higher in double profile BCGs (e{sub double} = 0.30 {+-} 0.10) than in single profile BCGs (e{sub single} = 0.26 {+-} 0.11). Similarly

  15. Deriving Kinetic Luminosity Functions from the Low-Frequency Radio Luminosity Functions of FRII Sources

    NASA Astrophysics Data System (ADS)

    Kapinska, Anna D.; Uttley, P.; Kaiser, C. R.

    2010-03-01

    FRII radio galaxies are relatively simple systems which can be used to determine the influence of jets on their environments. Even simple analytical models of FRII evolution can link the observed lobe luminosities and sizes to fundamental properties such as jet power and density of the ambient medium; these are crucial for understanding AGN feedback. However, due to strong flux selection effects interpreting FRII samples is not straightforward. To overcome this problem we construct Monte Carlo simulations to create artificial samples of radio galaxies. We explore jet power and external density distributions by using them as the simulation input parameters. Further, we compute radio luminosity functions (RLF) and fit them to the observed low-frequency radio data that cover redshifts up to z 2, which gives us the most plausible distributions of FRIIs' fundamental properties. Moreover, based on these RLFs, we obtain the kinetic luminosity functions of these powerful sources.

  16. Nova outburst luminosities, postnova magnitude behaviour, and long term evolution of nova shell luminosities

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.

    2002-11-01

    A luminosity calibration of galactic novae indicates that all novae at brightness maximum radiate over-Eddington, and that speed- and light curve classes are intimately related. In later stages, the Balmer and [O III] line fluxes decline in similar ways for novae of all speed classes, except in slow ones where Balmer emission diminishes faster, and [O III] persists for decades. The brightness of the central source declines during the first century after outburst; decline rates for novae with orbital periods above 0.2 days are in good agreement with theoretical predictions, but there are indications that the luminosity will remain constant afterwards. Postnovae with shorter periods appear to decline more rapidly, and they often erupt from low-luminosity stages.

  17. Pin-Hole Luminosity Monitor with Feedback

    NASA Astrophysics Data System (ADS)

    Norem, James H.; Spencer, James E.

    Previously, the generalized luminosity { L} was defined and calculated for all incident channels based on an NLC e+e- design. Alternatives were then considered to improve the differing beam-beam effects in the e-e-, eγ and γγ channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamstrahlung that needs to be disposed of and whose flux depended on { L}. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important - especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our "pin-hole" camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  18. An improved method of constructing binned luminosity functions

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.

    2000-01-01

    We show that binned differential luminosity functions constructed using the 1/Va method have a significant systematic error for objects close to the flux limit(s) of their parent sample. This is particularly noticeable when luminosity functions are produced for a number of different redshift ranges as is common in the study of AGN or galaxy evolution. We present a simple method of constructing a binned luminosity function which overcomes this problem and has a number of other advantages over the traditional 1/Va method. We also describe a practical method for comparing binned and model luminosity functions, by calculating the expectation values of the binned luminosity function from the model. Binned luminosity functions produced by the two methods are compared for simulated data and for the Large Bright QSO Survey (LBQS). It is shown that the 1/Va method produces a very misleading picture of evolution in the LBQS. The binned luminosity function of the LBQS is then compared with a model two-power-law luminosity function undergoing pure luminosity evolution from Boyle et al. The comparison is made using a model luminosity function averaged over each redshift shell, and using the expectation values for the binned luminosity function calculated from the model. The luminosity function averaged in each redshift shell gives a misleading impression that the model over predicts the number of QSOs at low luminosity even for 1.0< z<1.5, when model and data are consistent. The expectation values show that there are significant differences between model and data: the model overpredicts the number of low luminosity sources at both low and high redshift. The luminosity function does not appear to steepen relative to the model as redshift increases.

  19. CLOC: Cluster Luminosity Order-Statistic Code

    NASA Astrophysics Data System (ADS)

    Da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael

    2016-02-01

    CLOC computes cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.

  20. 36 CFR 2.10 - Camping and food storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Camping and food storage. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.10 Camping and food storage. (a) The superintendent may... revocation of the permit. (d) Food storage. The superintendent may designate all or a portion of a park...

  1. 36 CFR 2.10 - Camping and food storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Camping and food storage. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.10 Camping and food storage. (a) The superintendent may... revocation of the permit. (d) Food storage. The superintendent may designate all or a portion of a park...

  2. 36 CFR 2.10 - Camping and food storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Camping and food storage. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.10 Camping and food storage. (a) The superintendent may... revocation of the permit. (d) Food storage. The superintendent may designate all or a portion of a park...

  3. 36 CFR 2.10 - Camping and food storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Camping and food storage. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.10 Camping and food storage. (a) The superintendent may... revocation of the permit. (d) Food storage. The superintendent may designate all or a portion of a park...

  4. 36 CFR 2.10 - Camping and food storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Camping and food storage. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.10 Camping and food storage. (a) The superintendent may... revocation of the permit. (d) Food storage. The superintendent may designate all or a portion of a park...

  5. Oxygen-rich Mira variables: Near-infrared luminosity calibrations. Populations and period-luminosity relations

    NASA Technical Reports Server (NTRS)

    Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.

    1997-01-01

    Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.

  6. LUMINOSITY INCREASES IN GOLD-GOLD OPERATION IN RHIC.

    SciTech Connect

    FISCHER,W.AHERNS,L.BAI,M.ET AL.

    2004-07-05

    After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand higher luminosity to study heavy ion collisions in detail. In gold-gold, operation, RHIC delivers now twice the design luminosity. During the last gold-gold operating period (Run-4) the machine delivered 15 times more luminosity than during the previous gold-gold operating period (Run-2), two years ago. We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.

  7. KevJumba and the Adolescence of YouTube

    ERIC Educational Resources Information Center

    Saul, Roger

    2010-01-01

    This article considers the significance of YouTube as a pedagogical space from which young people can play participatory roles as theorists in their own constructions as popular cultural subjects. Drawing upon the public profile of "KevJumba," a teenager who makes videos of himself on YouTube, the article suggests that representational practices…

  8. Thermodynamics and luminosities of rainbow black holes

    SciTech Connect

    Mu, Benrong; Wang, Peng; Yang, Haitang E-mail: pengw@scu.edu.cn

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  9. Thermodynamics and luminosities of rainbow black holes

    NASA Astrophysics Data System (ADS)

    Mu, Benrong; Wang, Peng; Yang, Haitang

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1-η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n >= 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  10. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.

  11. HEXIT-SAT: a mission concept for x-ray grazing incidence telescopes from 0.5 to 70 keV

    NASA Astrophysics Data System (ADS)

    Fiore, Fabrizio; Perola, Giuseppe C.; Pareschi, Giovanni; Citterio, Oberto; Anselmi, Alberto; Comastri, Andrea

    2004-10-01

    While the energy density of the Cosmic X-ray Background (CXB) provides a statistical estimate of the super massive black hole (SMBH) growth and mass density in the Universe, the lack, so far, of focusing instrument in the 20-60 keV (where the CXB energy density peaks), frustrates our effort to obtain a comprehensive picture of the SMBH evolutionary properties. HEXIT-SAT (High Energy X-ray Imaging Telescope SATellite) is a mission concept capable of exploring the hard X-ray sky with focusing/imaging instrumentation, to obtain an unbiased census of accreting SMBH up to the redshifts where galaxy formation peaks, and on extremely wide luminosity ranges. This will represent a leap forward comparable to that achieved in the soft X-rays by the Einstein Observatory in the late 70'. In addition to accreting SMBH, and very much like the Einstein Observatory, this mission would also have the capabilities of investigating almost any type of the celestial X-ray sources. HEXIT-SAT is based on high throughput (>400 cm2 @ 30 keV; >1200 cm2 @ 1 keV), high quality (15 arcsec Half Power Diameter) multi-layer optics, coupled with focal plane detectors with high efficiency in the full 0.5-70keV range. Building on the BeppoSAX experience, a low-Earth, equatorial orbit, will assure a low and stable particle background, and thus an extremely good sensitivity for faint hard X-ray sources. At the flux limits of 1/10 microCrab (10-30 keV) and 1/3 microCrab (20-40 keV) (reachable in one Msec observation) we should detect ~100 and ~40 sources in the 15 arcmin FWHM Field of View respectively, thus resolving >80% and ~65% of the CXB where its energy density peaks.

  12. Operation of the Run IIB D0 Luminosity System and Determination of the Run IIB Luminosity Constant

    SciTech Connect

    Prewitt, Michelle Victoria; /Rice U.

    2010-04-01

    The luminosity system is an integral part of the D0 detector that must be properly maintained to provide accurate luminosity measurements for physics analysis. After the addition of a readout layer to the silicon vertex detector in 2006, it was necessary to re-calculate the effective inelastic cross section to which the luminosity monitor is sensitive. The preliminary analysis showed that the luminosity constant did not change with the addition of the extra layer of silicon. A full study of the revised luminosity constant including a complete analysis of systematic uncertainties has been completed. The luminosity constant was determined to be {sigma}{sub eff} = 48.3 {+-} 1.9 {+-} 0.6 mb, which reduces the D0 contribution to the luminosity measurement uncertainty by almost 3%.

  13. Luminosity Correlations for Gamma-Ray Bursts and Implications for Their Prompt and Afterglow Emission Mechanisms

    NASA Astrophysics Data System (ADS)

    Sultana, J.; Kazanas, D.; Fukumura, K.

    2012-10-01

    We present the relation between the (z- and k-corrected) spectral lags, τ, for the standard Swift energy bands 50-100 keV and 100-200 keV and the peak isotropic luminosity, L iso (a relation reported first by Norris et al.), for a subset of 12 long Swift gamma-ray bursts (GRBs) taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, LX , of the shallow (or constant) flux portion of the typical X-Ray Telescope GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T brk. We also present the LX -T brk relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation (ρ = -0.65 for the L iso-τ and ρ = -0.88 for the LX -T brk relation) and have surprisingly similar best-fit power-law indices (-1.19 ± 0.17 for L iso-τ and -1.10 ± 0.03 for LX -T brk). Even more surprisingly, we noted that although τ and T brk represent different GRB time variables, it appears that the first relation (L iso-τ) extrapolates into the second one for timescales τ ~= T brk. This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  14. THE ORIGIN OF THE 6.4 keV LINE EMISSION AND H{sub 2} IONIZATION IN THE DIFFUSE MOLECULAR GAS OF THE GALACTIC CENTER REGION

    SciTech Connect

    Dogiel, V. A.; Chernyshov, D. O.; Tatischeff, V.; Terrier, R.

    2013-07-10

    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H{sub 2} ionization in the diffuse molecular gas of the Galactic center (GC) region. We show that Fe atoms and H{sub 2} molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A* lasted at least several hundred years and released a mean 2-100 keV luminosity {approx}> 10{sup 38} erg s{sup -1}. The H{sub 2} molecules of the diffuse gas cannot be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.

  15. Galaxy luminosity functions in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Bettoni, D.; Poggianti, B. M.; Fasano, G.; Varela, J.; D'Onofrio, M.; Vulcani, B.; Cava, A.; Fritz, J.; Couch, W. J.; Moles, M.; Kjærgaard, P.

    2015-09-01

    Aims: Using V band photometry of the WINGS survey, we derive galaxy luminosity functions (LF) in nearby clusters. This sample is complete down to MV = -15.15, and it is homogeneous, thus facilitating the study of an unbiased sample of clusters with different characteristics. Methods: We constructed the photometric LF for 72 out of the original 76 WINGS clusters, excluding only those without a velocity dispersion estimate. For each cluster we obtained the LF for galaxies in a region of radius = 0.5 × r200, and fitted them with single and double Schechter's functions. We also derive the composite LF for the entire sample, and those pertaining to different morphological classes. Finally, we derive the spectroscopic cumulative LF for 2009 galaxies that are cluster members. Results: The double Schechter fit parameters are correlated neither with the cluster velocity dispersion nor with the X-ray luminosity. Our median values of the Schechter's fit slope are, on average, in agreement with measurements of nearby clusters, but are less steep that those derived from large surveys, such as the SDSS. Early-type galaxies out number late-types at all magnitudes, but both early and late types contribute equally to the faint end of the LF. Finally, the spectroscopic LF is in excellent agreement with the one derived for A2199, A85 and Virgo, and with the photometric LF at the bright magnitudes (where both are available). Conclusions: There is a large spread in the LF of different clusters, however, this spread is not caused by correlation of the LF shape with cluster characteristics such as X-ray luminosity or velocity dispersions. The faint end is flatter than previously derived (αf = -1.7), which is at odds with that predicted from numerical simulations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. Progs. ID 67.A-0030, 68.A-0139, and 69.A-0119.Table 1 and full Fig. 1 (Fig. A.1) are available in

  16. Spectroscopy from 2 to 200 keV

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Chanan, G. A.; Novick, R.; Maccallum, C. J.; Leventhal, M.

    1981-01-01

    The astrophysical processes responsible for line and continuum emission in the spectra range 2 keV to 200 keV are examined from the viewpoint of designing a spectrometer which would operate in this regime. Phenomena considered include fluorescent line radiation in X-ray binaries, magnetically shifted iron lines and cyclotron emission from neutron star surfaces, line emission from cosmically abundant elements in thermal plasmas, and nuclear deexcitation lines in fresh nucleosynthetically produced matter. An instrument consisting of a approximately 10 sq cm array of planar germanium detectors surrounded by a large sodium-iodide anticoincidence shield is described and projected background rates and sensitivities are considered. A sample observing program for a two-day shuttle-based mission is included as an example of the wide range of scientific questions which could be addressed by such an instrument.

  17. Statistical properties of local active galactic nuclei inferred from the RXTE 3-20 keV all-sky survey

    NASA Astrophysics Data System (ADS)

    Sazonov, S. Yu.; Revnivtsev, M. G.

    2004-08-01

    We compiled a sample of 95 AGNs serendipitously detected in the 3-20 keV band at Galactic latitude |b|>10o during the RXTE slew survey (XSS, Revnivtsev et al. 2004), and utilize it to study the statistical properties of the local population of AGNs, including the X-ray luminosity function and absorption distribution. We find that among low X-ray luminosity (L3-20< 1043.5 erg s-1) AGNs, the ratio of absorbed (characterized by intrinsic absorption in the range 1022 cm-2luminosity AGNs. The summed X-ray output of AGNs with L3-20>1041 erg s-1 estimated here is smaller than the earlier estimated total X-ray volume emissivity in the local Universe, suggesting that a comparable X-ray flux may be produced together by lower luminosity AGNs, non-active galaxies and clusters of galaxies. Finally, we present a sample of 35 AGN candidates, composed of unidentified XSS sources. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/469

  18. OT1_rmushotz_1: Determining the Bolometric Luminosity of AGN

    NASA Astrophysics Data System (ADS)

    Mushotzky, R.

    2010-07-01

    Determining the bolometric luminosities of AGN is key to understanding their evolution. Uncertainties in the total radiation from AGN translate into uncertainties in their lifetimes, Eddington ratios, mass accretion rates, the form of their radiation, and the predicted black hole spin. However, we still have major problems in measuring this critical quantity. AGN and their host galaxies emit a large fraction of their light in the MIR to FIR, but the origin of this radiation and the connection to the AGN are not well understood. It is not clear whether this radiation is associated with the AGN or with star formation in the galaxy. We propose to use Herschel's unique capabilities to establish the properties of the Swift-BAT all sky sample of local AGN selected at 15-195 keV. We will measure the MIR to FIR (65-500 microns) properties of a complete low-redshift sample (309 objects at z<0.05). The Swift-BAT survey is the least biased all sky survey for AGN with respect to host galaxy properties and obscuration in the line-of-sight, and thus it is superior to optical, IR, or radio surveys for understanding the the nuclear component of the MIR to FIR radiation from active galaxies. The low redshift of our sample, the uniformity of selection, and the large amount of parallel data which have already been obtained (Spitzer, optical, and X-ray spectra, and optical and UV imaging) will allow the most precise determination of the physical origin (AGN versus star formation) of the light. The low redshifts allow the best possible angular resolution for spatially separating star-formation and nuclear components, while only requiring short Herschel exposures. The Herschel BAT survey will provide a comprehensive database for determining the bolometric light of AGN and will be an invaluable reference sample for analyzing higher redshift AGN. It will be a powerful resource for many years to come. We will make it available in a comprehensive and accessible form as rapidly as possible.

  19. Evolution of the luminosity function of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1985-01-01

    A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).

  20. NuSTAR discovery of a luminosity dependent cyclotron line energy in Vela X-1

    SciTech Connect

    Fürst, Felix; Grefenstette, Brian W.; Harrison, Fiona; Madsen, Kristin K.; Walton, Dominic J.; Pottschmidt, Katja; Wilms, Jörn; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Bachetti, Matteo; Christensen, Finn E.; Hailey, Charles J.; Miller, Jon M.; Stern, Daniel; Zhang, William

    2014-01-10

    We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of L {sub x} ∼ 3 × 10{sup 36} erg s{sup –1}. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.

  1. A Compton-thick Wind in the High Luminosity Quasar, PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Behar, E.; Miller, L.; Turner, T. J.; Braito, V.; Fabian, A. C.; Kaspi, S.; Mushotzky, R.; Ward, M.

    2009-01-01

    PDS 456 is a nearby (z=0.184), luminous (L(sub bol) approximately equal to 10(exp 47) ergs(exp -1) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest-frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (0.26-0.31c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (N(sub H) greater than 10(exp 24)cm(exp -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4(pi) steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.

  2. Study of torus structure of low-luminosity active galactic nuclei with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, T.

    2015-09-01

    We investigate the nature of the torus structure of eight low-luminosity active galactic nuclei (LLAGNs; NGC 1566, NGC 2655, NGC 3718, NGC 3998, NGC 4138, NGC 4941, NGC 5273 and NGC 5643) based on the broad band X-ray spectra (0.5-200 keV) obtained with Suzaku and Swift/BAT. Their X-ray luminosities are smaller than 1e 42 erg/s, while the Eddington ratios span a range from 1e-4 to 1e-2. No significant iron- Kalpha line is detected in the spectra of two LLAGNs with the lowest Eddington ratios (<3e-4) in our sample (NGC 3718 and NGC 3998), suggesting that their tori are little developed. The others show the iron-Kalpha equivalent widths larger than 100 eV. For these six LLAGNs, we utilize the Monte-Carlo based simulation code by Ikeda 09 to constrain the torus parameters by assuming a nearly spherical geometry. The torus solid- angles in three sources (NGC 2655, NGC 4138, and NGC 4941) are constrained to be Omega/2pi > 0.34, and the rest are found to have torus column-densities of logNrmH > 22.7. These results suggest that there are two types of LLAGNs, (1) those where the torus is very small and little mass accretion takes place, and (2) those where the torus is moderately developed and a sufficient amount of gas is supplied to the black hole.

  3. Burst Statistics Using the Lag-Luminosity Relationship

    NASA Technical Reports Server (NTRS)

    Band, D. L.; Norris, J. P.; Bonnell, J. T.

    2003-01-01

    Using the lag-luminosity relation and various BATSE catalogs we create a large catalog of burst redshifts, peak luminosities and emitted energies. These catalogs permit us to evaluate the lag-luminosity relation, and to study the burst energy distribution. We find that this distribution can be described as a power law with an index of alpha = 1.76 +/- 0.05 (95% confidence), close to the alpha = 2 predicted by the original quasi-universal jet model.

  4. Luminosity function of low-mass X-ray binaries in the globular cluster system of NGC 1399

    NASA Astrophysics Data System (ADS)

    D'Ago, G.; Paolillo, M.; Fabbiano, G.; Puzia, T. H.; Maccarone, T. J.; Kundu, A.; Goudfrooij, P.; Zepf, S. E.

    2014-07-01

    Aims: We present a study of the faint end of the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the Globular Cluster (GC) system of the cD galaxy NGC 1399. Methods: We performed a stacking experiment on 618 X-ray undetected GCs, in order to verify the presence of faint LMXBs and to constrain the faint-end slope of the GC-LMXBs XLF below the individual detection threshold of 8 × 1037 erg s-1 in the 0.5 - 8 keV band. Results: We obtain a significant X-ray detection for the whole GC sample, as well as for the red and blue GC subpopulations, corresponding to an average luminosity per GC ⟨ LX ⟩ GC of (3.6 ± 1.0) × 1036 erg s-1, (6.9 ± 2.1) × 1036 erg s-1, and (1.7 ± 0.9) × 1036 erg s-1, respectively, for all GCs, red GCs, and blue GCs. If LMXBs in red and blue GCs have the same average intrinsic luminosity, we derive a red/blue ratio ≃3 of GCs hosting LMXBs (2.5 ± 1.0 or 4.1 ± 2.5 depending on the surveyed region); alternatively, assuming the fractions observed for brighter sources, we measure an average X-ray luminosity of LX = (4.3 ± 1.3) × 1037 erg s-1 and LX = (3.4 ± 1.7) × 1037 erg s-1 per red and blue GC-LMXBs, respectively. In the assumption that the XLF follows a power-law distribution, we find that a low-luminosity break is required at LX ≤ 8 × 1037 erg s-1 both in the whole, as well as in the color-selected (red and blue) subsamples. Given the bright-end slopes measured above the X-ray completeness limit, this result is significant at >3σ level. Our best estimates for the faint-end slope are βL = -1.39/-1.38/-1.36 for all/red/blue GC-LMXBs. We also find evidence that the luminosity function becomes steeper at luminosities LX ≳ 3 × 1039 erg s-1, as observed in old ellipticals. Conclusions: If most GCs host a single X-ray binary, we conclude that in NGC 1399 the XLF flattens at low luminosities as observed in other nearer galaxies, and we discuss some consequences of this flattening on LMXBs formation scenarios.

  5. Extended structure and fate of the nucleus in Henize 2-10

    SciTech Connect

    Nguyen, Dieu D.; Seth, Anil C.; Den Brok, Mark; Reines, Amy E.; Sand, David; McLeod, Brian E-mail: aseth@astro.utah.edu E-mail: areines@nrao.edu E-mail: bmcleod@cfa.harvard.edu

    2014-10-10

    We investigate the structure and nuclear region of the black hole (BH) hosting galaxy Henize 2-10. Surface brightness profiles are analyzed using Magellan/Megacam g- and r-band images. Excluding the central starburst, we find a best-fit two-component Sérsic profile with n {sub in} ∼ 0.6, r {sub eff,} {sub in} ∼ 260 pc and n {sub out} ∼ 1.8, r ∼ 1 kpc. Integrating out to our outermost data point (100'' ∼ 4.3 kpc), we calculate M{sub g} = –19.2 and M{sub r} = –19.8. The corresponding enclosed stellar mass is M {sub *} ∼ (10 ± 3) × 10{sup 9} M {sub ☉}, ∼3 × larger than previous estimates. Apart from the central ≲500 pc, with blue colors and an irregular morphology, the galaxy appears to be an early-type system. The outer color is quite red, (g – r){sub 0} = 0.75, suggesting a dominant old population. We study the nuclear region of the galaxy using archival Gemini/NIFS K-band adaptive optics spectroscopy and Hubble Space Telescope imaging. We place an upper limit on the BH mass of ∼10{sup 7} M {sub ☉} from the NIFS data, consistent with that from the M {sub BH}-radio-X-ray fundamental plane. No coronal lines are seen, but a Brγ source is located at the position of the BH with a luminosity consistent with the X-ray emission. The starburst at the center of Henize 2-10 has led to the formation of several super star clusters, which are within ∼100 pc of the BH. We examine the fate of the nucleus by estimating the dynamical masses and dynamical friction timescales of the clusters. The most massive clusters (∼10{sup 6} M {sub ☉}) have τ{sub dyn} ≲ 200 Myr, and thus Henize 2-10 may represent a rare snapshot of nuclear star cluster formation around a preexisting massive BH.

  6. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  7. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a data set of 165 low redshift, z < 0.06, publicly available Type Ia supernovae (SNe Ia). We produce maximum light magnitude (MB and MV) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean MB and MV of SNe Ia are -18.58 ± 0.07 and -18.72 ± 0.05 mag, respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of MB and MV of SNe Ia are -19.10 ± 0.06 and -19.10 ± 0.05 mag, respectively. After correction for host galaxy extinction, `normal' SNe Ia (Δm15(B) < 1.6 mag) fill a larger parameter space in the width-luminosity relation than previously suggested, and there is evidence for luminous SNe Ia with large Δm15(B). We find a bimodal distribution in Δm15(B), with a pronounced lack of transitional events at Δm15(B) = 1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean MB = -19.20 ± 0.05 mag, while SNe Ia from passive galaxies have a mean MB = -18.57 ± 0.24 mag. Even excluding fast declining SNe, `normal' (MB < -18 mag) SNe Ia from S-F and passive galaxies are distinct. In the V band, there is a difference of 0.4 ± 0.13 mag between the median (MV) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with (˜15 ± 10) per cent of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  8. Constraining the Warm Dark Matter Particle Mass through Ultra-deep UV Luminosity Functions at z=2

    NASA Astrophysics Data System (ADS)

    Menci, N.; Sanchez, N. G.; Castellano, M.; Grazian, A.

    2016-02-01

    We compute the mass function of galactic dark matter halos for different values of the warm dark matter (WDM) particle mass mX and compare it with the number density of ultra-faint galaxies derived from the deepest UV luminosity function available so far at redshift z ≈ 2. The magnitude limit MUV = -13 reached by such observations allows us to probe the WDM mass functions down to scales close to or smaller than the half-mass mode mass scale ˜109 M⊙. This allowed for an efficient discrimination among predictions for different mX which turn out to be in practice independent of the star formation efficiency η adopted to associate the observed UV luminosities of galaxies to the corresponding dark matter halo masses. Adopting a conservative approach to take into account the existing theoretical uncertainties in the galaxy halo mass function, we obtain a robust limit mX ≥ 1.8 keV for the mass of thermal relic WDM particles when comparing with the measured abundance of the faintest galaxies, while mX ≥ 1.5 keV is obtained when we compare with the Schechter fit to the observed luminosity function. The corresponding lower limit for sterile neutrinos depends on the modeling of the production mechanism; for instance msterile ≳ 4 keV holds for the Shi-Fuller mechanism. We discuss the impact of observational uncertainties on the above bound on mX. In the cold dark matter (CDM) limit {m}X\\gg 1 {{keV}} we recover the generic CDM result that very inefficient star formation efficiency is required to match the observed galaxy abundances. As a baseline for comparison with forthcoming observational results from the Hubble Space Telescope Frontier Field project, we provide predictions for the number density of faint galaxies with MUV = -13 for different values of the WDM particle mass and of the star formation efficiency η, which are valid up to z ≈ 4.

  9. Higher luminosities via alternative incident channels

    SciTech Connect

    Spencer, J.E.

    1985-04-01

    We show that PEP provides some unique opportunities for one and two photon physics with real photons as well as for QCD studies with internal targets. Photon beams would avoid the major limitation on the luminosity of present machines and could provide PEP an ideal b-physics factory producing the full range of J/sub c//sup PC/ and J/sub b//sup PC/ states that may not be observable otherwise as well as allow a whole new class of ''missing-mass'' experiments. These latter particles are the pseudo-Goldstone bosons and their supersymmetric counterparts. These and related possibilities like a single-pass, ''free electron laser'' facility or even synchrotron radiation beam lines all favor a mini-maxi configuration for the low-beta insertions in PEP. This allows more diverse experiments without excluding any ongoing experimental programs. Such possibilities have interesting implications for a number of proposed facilities including the SSC. Some systematic machine physics studies over a range of energies are suggested. 24 refs., 6 figs.

  10. CPLOAS_2 V2.10 verification report.

    SciTech Connect

    Groth, Katrina M.

    2014-07-01

    A series of test cases designed to verify the correct implementation of several features of the CPLOAS_2 program are documented. CPLOAS_2 is used to calculate the probability of loss of assured safety (PLOAS) for a weak link (WL)/strong link (SL) system. CPLOAS_2 takes physical properties (e.g., temperature, pressure, etc.) of a WL/SL system and uses these properties and definitions of link failure properties in probabilistic calculations to determine PLOAS. The features being tested include (i) six aleatory distribution forms, (ii) five numerical procedures for the determination of PLOAS (i.e., one quadrature procedure, two simple random sampling procedures, and two importance sampling procedures), and (iii) time and environmental margin calculations. All tests were performed with CPLOAS_2 version 2.10.

  11. Microdosimetry of a 25 keV electron microbeam.

    PubMed

    Wilson, W E; Lynch, D J; Wei, K; Braby, L A

    2001-01-01

    Electron microbeam experiments are planned or under way to explore in part the question regarding whether the bystander effect is a general phenomenon or is restricted to high-LET radiation. Since low-LET radiations scatter more readily compared to high-LET radiations, identifying bystander cells and assessing the potential dose that they may receive will be crucial to the interpretation of radiobiological results. This paper reports on initial calculations of the basic information needed for a stochastic model of the penetration of energetic electrons in tissue-like matter; the model will be used to predict doses delivered to adjacent regions in which bystander cells may reside. Results are presented of calculations of the stochastics of energy deposition by 25 keV electrons slowing down in a homogeneous water medium. Energy deposition distributions were scored for 1-micrometer spheres located at various penetration and radial distances up to 10 micrometer from the point of origin. The energy of 25 keV was selected because experiments are planned for that energy. At 25 keV there is a high probability that the entire electron track will be contained within a typical mammalian cell. Individual tracks are scored because of their primacy; data for higher doses can be obtained by convoluting single-track distributions. The event frequency decreases approximately exponentially after the first micrometer to 1% at about 8 micrometer of penetration. Radially, the 1% contour extends to 3.5 micrometer at a penetration of 5.5 micrometer. The frequency-mean energy deposited decreases from 1.5 to 1 keV/micrometer at a penetration of 3.5 micrometer, then increases back to about 1.5 at a penetration of 6.5 micrometer. The mean energy increases to about 3 keV/micrometer at a radial distance of 8.5 micrometer.

  12. Astrophysics and cosmology confront the 17-keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  13. Astrophysics and cosmology confront the 17 keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  14. 511 keV photons from superconducting cosmic strings.

    PubMed

    Ferrer, Francesc; Vachaspati, Tanmay

    2005-12-31

    We show that a tangle of light superconducting strings in the Milky Way could be the source of the observed 511 keV emission from electron-positron annihilation in the Galactic bulge. The scenario predicts a flux that is in agreement with observations if the strings are at the approximately 1 TeV scale, making the particle physics within reach of planned accelerator experiments. The emission is directly proportional to the galactic magnetic field, and future observations should be able to differentiate the superconducting string scenario from other proposals. PMID:16486335

  15. Luminosity with Intracloud-Type Initial Breakdown Pulses and Terrestrial Gamma-ray Flash Candidates

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas; Karunarathne, Sumedhe; Orville, Richard

    2016-04-01

    High-speed video data for three hybrid lightning flashes show luminosity increases at visible wavelengths that are time-correlated with large, intracloud (IC) type initial breakdown (IB) pulses in electric field change (E-change) data. In one case, a diffuse luminosity increase is visible for 280-300 us, apparently centered near 9 km altitude. At the same time, locations of VHF sources and E-change pulses indicate breakdown activity occurring at altitudes of 9.2-10.2 km altitude, and the initial leader was developing rapidly upward. The second case has a diffuse luminosity increase at the time of three large IC-type IB pulses, while the initial leader is advancing upward from about 7 km altitude. In the third example, a series of luminosity bursts are visible at the times of several large-amplitude IC-type IB pulses, although the center of the activity is apparently above the video frame. In all three hybrid flashes, the luminous IC-type IB pulses are relatively complicated and large in E-change amplitude, and most have distinct electrostatic offset at horizontal distances of 20-25 km from a sensor. Such large amplitude IB pulses have been associated with the production of terrestrial gamma ray flashes (TGFs) in prior work [Marshall et al., 2013, doi:10.1002/jgrd.50866]. No satellite or ground-based TGF observations were available for these events, hence it is not known if these TGF candidates produced gammas or other high energy radiation. This presentation describes the video and E-change observations during the intracloud and cloud-to-ground initial breakdown periods of these flashes and implications for TGF production.

  16. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  17. Assessing the contribution of centaur impacts to ice giant luminosities

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.

    2016-01-01

    Voyager 2 observations revealed that Neptune's internal luminosity is an order of magnitude higher than that of Uranus. If the two planets have similar interior structures and cooling histories, Neptune's luminosity can only be explained by invoking some energy source beyond gravitational contraction. This paper investigates whether centaur impacts could provide the energy necessary to produce Neptune's luminosity. The major findings are (1) that impacts on both Uranus and Neptune are too infrequent to provide luminosities of order Neptune's observed value, even for optimistic impact-rate estimates and (2) that Uranus and Neptune rarely have significantly different impact-generated luminosities at any given time. Uranus and Neptune most likely have structural differences that force them to cool and contract at different rates.

  18. The D0 experiment's integrated luminosity for Tevatron Run IIa

    SciTech Connect

    Andeen, T.; Casey, B.C.K.; DeVaughan, K.; Enari, Y.; Gallas, E.; Krop, D.; Partridge, R.; Schellman, H.; Snow, G.R.; Yacoob, S.; Yoo, H.D.; /Brown U. /Fermilab /Indiana U. /Northwestern U. /Nebraska U.

    2007-04-01

    An essential ingredient in all cross section measurements is the luminosity used to normalize the data sample. In this note, we present the final assessment of the integrated luminosity recorded by the D0 experiment during Tevatron Run IIa. The luminosity measurement is derived from hit rates from the products of inelastic proton-antiproton collisions registered in two arrays of scintillation counters called the luminosity monitor (LM) detectors. Measured LM rates are converted to absolute luminosity using a normalization procedure that is based on previously measured inelastic cross sections and the geometric acceptance and efficiency of the LM detectors for registering inelastic events. During Run IIa, the LM detector performance was improved by a sequence of upgrades to the electronic readout system and other factors summarized in this note. The effects of these changes on the reported luminosity were tracked carefully during the run. Due to the changes, we partition the run into periods for which different conversions from measured LM rates to absolute luminosity apply. The primary upgrade to the readout system late in Run IIa facilitated a reevaluation of the overall normalization of the luminosity measurement for the full data sample. In this note, we first review the luminosity measurement technique employed by D0. We then summarize the changes to the LM system during Run IIa and the corresponding normalization adjustments. The effect of the adjustments is to increase D0's assessment of its recorded integrated luminosity compared to what was initially reported during Run IIa. The overall increase is 13.4% for data collected between April 20, 2002 (the beginning of Run IIa data used for physics analysis) and February 22, 2006 (the end of Run IIa).

  19. The luminosities of the coldest brown dwarfs

    SciTech Connect

    Tinney, C. G.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Cushing, Mike; Morley, Caroline V.; Wright, Edward L.

    2014-11-20

    In recent years, brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500 K and masses in the range of 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own solar system (at around 130 K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures in the range of 1500-1000 K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T-dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric color. The latest atmospheric models show good agreement with the majority of these Y-dwarf absolute magnitudes. This is also the case for WISE0855-0714, the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds—while others have dense clouds, making them prime targets for future variability observations to study cloud dynamics.

  20. Width of the 3841-keV level in 17O

    NASA Astrophysics Data System (ADS)

    Moreh, R.; Beck, O.; Kneissl, U.; Margraf, J.; Maser, H.; Pitz, H. H.; Herzberg, R.-D.; Pietralla, N.; Zilges, A.

    1994-10-01

    The width of 3841-keV level in 17O was precisely measured in nuclear resonance fluorescence experiments performed at the Stuttgart Dynamitron facility. The result of Γ(3841 keV)=(92+/-6) meV is compared with upper limits quoted in the literature. Possible particle-hole configurations of the 3841-keV level are discussed.

  1. Fossil group origins. III. The relation between optical and X-ray luminosities

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Aguerri, J. A. L.; De Grandi, S.; D'Onghia, E.; Barrena, R.; Boschin, W.; Méndez-Abreu, J.; Sánchez-Janssen, R.; Zarattini, S.; Biviano, A.; Castro-Rodriguez, N.; Corsini, E. M.; del Burgo, C.; Iglesias-Páramo, J.; Vilchez, J. M.

    2014-05-01

    Aims: This study is part of the Fossil group origins (FOGO) project which aims to carry out a systematic and multiwavelength study of a large sample of fossil systems. Here we focus on the relation between the optical luminosity (Lopt) and X-ray luminosity (LX). Methods: Out of a total sample of 28 candidate fossil systems, we consider a sample of 12 systems whose fossil classification has been confirmed by a companion study. They are compared with the complementary sample of 16 systems whose fossil nature has not been confirmed and with a subsample of 102 galaxy systems from the RASS-SDSS galaxy cluster survey. Fossil and normal systems span the same redshift range 0 keV band is computed using data from the ROSAT All Sky Survey to be comparable to the estimates of the comparison sample. For each fossil and normal system we homogeneously compute Lopt in the r-band within the characteristic cluster radius, using data from the Sloan Digital Sky Survey Data Release 7. Results: We sample the LX-Lopt relation over two orders of magnitude in LX. Our analysis shows that fossil systems are not statistically distinguishable from the normal systems through the 2D Kolmogorov-Smirnov test nor the fit of the LX-Lopt relation. Thus, the optical luminosity of the galaxy system does strongly correlate with the X-ray luminosity of the hot gas component, independently of whether the system is fossil or not. We discuss our results in comparison with previous literature. Conclusions: We conclude that our results are consistent with the classical merging scenario of the brightest galaxy formed via merger/cannibalism of other group galaxies with conservation of the optical light. We find no evidence for a peculiar state of the hot intracluster medium. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  2. The width of the gamma-ray burst luminosity function

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Wijers, Ralph A. M. J.

    1995-01-01

    We examine the width of the gamma-ray burst (GRB) luminosity function through the distribution of GRB peak count rates, C(sub peak), as detected by Burst and Transient Source Experiment (BATSE) (1993). In the context of Galactic corona spatial distribution models, we attempt to place constaints on the characteristic width of the luminosity function by comparing the observed intensity distribution with those produced by a range of density and luminosity functions. We find that the intrinsic width of the luminosity function cannot be very well restricted. However, the distribution of intrinsic luminosities of detected bursts can be limited: we find that most observed bursts have luminosities that are in a range of one to two decades, but a significant population of undetected less luminous bursts cannot be excluded. These findings demonstrate that the assumption that GRB are standard candles is sufficient but not necessary to explain the observed intensity distribution. We show that the main reason for the relatively poor constraints is the fact that the bright-end part of the GRB flux distribution is not yet sampled by BATSE, and better sampling in the future may lead to significantly stronger constraints on the width of the luminosity function.

  3. GALACTIC ULTRACOMPACT X-RAY BINARIES: EMPIRICAL LUMINOSITIES

    SciTech Connect

    Cartwright, T. F.; Engel, M. C.; Heinke, C. O.; Sivakoff, G. R.; Berger, J. J.; Gladstone, J. C.; Ivanova, N.

    2013-05-10

    Ultracompact X-ray binaries (UCXBs) are thought to have relatively simple binary evolution post-contact, leading to clear predictions of their luminosity function. We test these predictions by studying the long-term behavior of known UCXBs in our Galaxy, principally using data from the MAXI All-Sky Survey and the Galactic bulge scans with RXTE's Proportional Counter Array instrument. Strong luminosity variations are common (and well documented) among persistent UCXBs, which requires an explanation other than the disk instability mechanism. We measure the luminosity function of known UCXBs in the Milky Way, which extends to lower luminosities than some proposed theoretical luminosity functions of UCXBs. The difference between field and globular cluster (GC) X-ray luminosity functions in other galaxies cannot be explained by an increased fraction of UCXBs in GCs. Instead, our measured luminosity function suggests that UCXBs only make up a small fraction of the X-ray binaries above a few Multiplication-Sign 10{sup 36} erg s{sup -1} in both old field populations and GCs.

  4. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL{sub ν}(7.8 μm) ≳ 10{sup 47} erg s{sup –1}; luminosity functions show one quasar Gpc{sup –3} having νL{sub ν}(7.8 μm) > 10{sup 46.6} erg s{sup –1} for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  5. Seeking the Epoch of Maximum Luminosity for Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-08-01

    Infrared luminosities νL ν(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z >~ 3 with maximum luminosity νL ν(7.8 μm) >~ 1047 erg s-1 luminosity functions show one quasar Gpc-3 having νL ν(7.8 μm) > 1046.6 erg s-1 for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν(0.25 μm), have the largest values of the ratio νL ν(0.25 μm)/νL ν(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define "obscured" quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ~ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ~ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  6. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  7. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    SciTech Connect

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  8. COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS

    SciTech Connect

    Frankowski, Adam; Soker, Noam E-mail: soker@physics.technion.ac.i

    2009-10-01

    We compare the observed symbiotic nebulae (SyN) luminosity function (SyNLF) in the [O III] lambda5007 A line to the planetary nebulae (PN) luminosity function (PNLF) and find that the intrinsic SyNLF (ISyNLF) of galactic SyNs has-within its uncertainty of 0.5-0.8 mag-very similar cutoff luminosity and general shape to those of the PNLF. The [O III]/(Halpha+[N II]) line ratios of SyNs and PNs are shown to be also related. Possible implications of these results for the universality of the PNLF are briefly outlined.

  9. Test Results of the Luminosity Monitors for the LHC

    SciTech Connect

    Beche, J.F.; Byrd, J. M.; Doolittle, L.; Manfredi, P. F.; Matis, H. S.; Monroy, M.; Ratti, A.; Stezelberger, T.; Stiller, J.; Turner, W.; Yaver, H.; Drees, A.; Bravin, E.

    2009-05-04

    The Luminosity Monitor for the LHC has been built at LBNL and will be operational in the LHC during the upcoming run. The device, a gas ionization chamber, is installed in the high luminosity regions (those dedicated to the ATLAS and CMS experiments) and capable to resolve bunch-by-bunch luminosity as well as survive extreme levels of radiation. During the experimental R&D phase of its design, a prototype of this detector has been tested extensively at the ALS, in RHIC as well as in the SPS. Results of these experiments are presented here.

  10. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; /SLAC

    2005-06-15

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to partially cancel the luminosity loss both analytically and with direct simulation.

  11. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  12. XMM-Newton observations of the Galactic Centre Region - I. The distribution of low-luminosity X-ray sources

    NASA Astrophysics Data System (ADS)

    Heard, V.; Warwick, R. S.

    2013-02-01

    We exploit XMM-Newton archival data in a study of the extended X-ray emission emanating from Galactic Centre (GC) region. XMM-Newton EPIC-pn and EPIC-MOS observations, with a total exposure time approaching 0.5 and 1 Ms, respectively, were used to create mosaicked images of a 100 pc × 100 pc region centred on Sgr A* in four bands covering the 2-10 keV energy range. We have also constructed a set of narrow-band images corresponding to the neutral iron fluorescence line (Fe i Kα) at 6.4 keV and the K-shell lines at 6.7 and 6.9 keV from helium-like (Fe xxv Kα) and hydrogenic (Fe xxvi Lyα) iron ions. We use a combination of spatial and spectral information to decompose the GC X-ray emission into three distinct components. These comprise: first the emission from hard X-ray emitting unresolved point sources; secondly the reflected continuum and fluorescent line emission from dense molecular material and, thirdly, the soft diffuse emission from thermal plasma in the temperature range kT ≈ 0.8-1.5 keV. We show that the unresolved-source component accounts for the bulk of the 6.7- and 6.9-keV line emission and also makes a major contribution to both the 6.4-keV line emission and the 7.2-10 keV continuum flux. We fit the observed X-ray surface-brightness distribution with an empirical 2D model, which we then compare with a prediction based on an NIR-derived 3D mass model for the old stellar population in the GC. The X-ray surface brightness falls-off more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the 2-10 keV X-ray emissivity increases from ≈ 5 × 1027 erg s- 1 M- 1⊙ at 20 arcmin up to almost twice this value at 2 arcmin. Alternatively, some refinement of the mass model may be required, although it is unclear whether this applies to the Nuclear Stellar Cluster, the Nuclear Stellar Disc or a combination of both components. The unresolved hard X-ray emitting source population, on the basis of spectral

  13. A Mixture Evolution Scenario of the AGN Radio Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng; Zhou, Ming; Mao, Jirong

    2016-03-01

    We propose a mixture evolution scenario to model the evolution of the radio luminosity function (RLF) of steep-spectrum AGNs (active galactic nuclei), based on a Bayesian method. In this scenario, the shape of the RLF is determined by both the density and luminosity evolution. Our models indicate that the density evolution is positive until a redshift of ∼ 0.9, at which point it becomes negative, while the luminosity evolution is positive to a higher redshift (z∼ 5 for model B and z∼ 3.5 for model C), where it becomes negative. Our mixture evolution model works well, and the modeled RLFs are in good agreement with previous determinations. The mixture evolution scenario can naturally explain the luminosity-dependent evolution of the RLFs.

  14. The new H1 luminosity system for HERA II

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Boudry, V.; Fomenko, A.; Gogitidze, N.; Levonian, S.; Moreau, F.; Sheviakov, I.; Smirnov, P.; Soloviev, Yu.; Specka, A.; Usik, A.

    2002-11-01

    At HERA, luminosity is determined on-line and bunch by bunch by measuring the bremsstrahlung spectrum from e-p collisions. The H1 collaboration has built a completely new luminosity system in order to sustain the harsh running conditions after the four-fold luminosity increase. Namely, the higher synchrotron radiation doses and the increased event pile-up have governed the design of the two major components, a radiation-resistant quartz-fiber electro-magnetic calorimeter, and a fast readout electronics with on-line energy histogramming at a rate of 500 kHz. An overview of the different components of the new luminosity system is given, and the commissioning status is reported.

  15. Unified treatment of the luminosity distance in cosmology

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio

    2016-09-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern & Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  16. The Kinematics of the Lag-Luminosity Relationship

    SciTech Connect

    Salmonson, J D

    2004-03-17

    Herein I review the argument that kinematics, i.e. relativistic motions of the emitting source in gamma-ray bursts (GRBs), are the cause of the lag-luminosity relationship observed in bursts with known redshifts.

  17. the D0 Luminosity Monitor operations and performance

    SciTech Connect

    Prewitt, Michelle; /Rice U.

    2011-09-01

    The D0 Luminosity Monitor (LM) plays a crucial role in D0 physics analyses by providing the normalization for many cross section measurements. The detector consists of two sets of 24 scintillator wedges read out with photomultiplier tubes. The detector is located in the forward regions surrounding the beam pipe, covering a pseudo-rapidity range of 2.7 < |{eta}| < 4.4. The LM is sensitive to a large fraction of the total inelastic cross section and measures the luminosity by counting the number of empty proton-antiproton bunch crossings, using Poisson statistics to extract the instantaneous luminosity. The techniques used to convert the measurements made by the LM into the assessed luminosity will be discussed, as well as the performance and operational details of the detector.

  18. Luminosity monitor for the venus detector at TRISTAN

    NASA Astrophysics Data System (ADS)

    Saito, Hitoshi; Chiba, Masami; Fukui, Toru; Hirose, Tachishige; Shirakura, Hatsuo; Watanabe, Takashi; Takasaki, Fumihiko

    1988-07-01

    We constructed a luminosity monitor of the lead-scintillator sandwich type for the VENUS detector at the e+e- collider TRISTAN. Photomultiplier tubes with transmissive mesh dynodes could be operated fairly well in a high magnetic field and hence the readout optics system was considerably simplified. We present the performance of the luminosity monitor for e+e- collisions at √s = 50 and 52 GeV.

  19. Period-Luminosity-Colour distribution and classification of Galactic oxygen-rich LPVs. I. Luminosity calibrations

    NASA Astrophysics Data System (ADS)

    Barthès, D.; Luri, X.; Alvarez, R.; Mennessier, M. O.

    1999-11-01

    The absolute K magnitudes and kinematic parameters of about 350 oxygen-rich Long-Period Variable stars are calibrated, by means of an up-to-date maximum-likelihood method, using Hipparcos parallaxes and proper motions together with radial velocities and, as additional data, periods and V-K colour indices. Four groups, differing by their kinematics and mean magnitudes, are found. For each of them, we also obtain the distributions of magnitude, period and de-reddened colour of the base population, as well as de-biased period-luminosity-colour relations and their two-dimensional projections. The SRa semiregulars do not seem to constitute a separate class of LPVs. The SRb appear to belong to two populations of different ages. In a PL diagram, they constitute two evolutionary sequences towards the Mira stage. The Miras of the disk appear to pulsate on a lower-order mode. The slopes of their de-biased PL and PC relations are found to be very different from the ones of the Oxygen Miras of the LMC. This suggests that a significant number of so-called Miras of the LMC are misclassified. This also suggests that the Miras of the LMC do not constitute a homogeneous group, but include a significant proportion of metal-deficient stars, suggesting a relatively smooth star formation history. As a consequence, one may not trivially transpose the LMC period-luminosity relation from one galaxy to the other Based on data from the Hipparcos astrometry satellite. Appendix B is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  20. LUMINOSITY CORRELATIONS FOR GAMMA-RAY BURSTS AND IMPLICATIONS FOR THEIR PROMPT AND AFTERGLOW EMISSION MECHANISMS

    SciTech Connect

    Sultana, J.; Kazanas, D.; Fukumura, K.

    2012-10-10

    We present the relation between the (z- and k-corrected) spectral lags, {tau}, for the standard Swift energy bands 50-100 keV and 100-200 keV and the peak isotropic luminosity, L{sub iso} (a relation reported first by Norris et al.), for a subset of 12 long Swift gamma-ray bursts (GRBs) taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, L{sub X} , of the shallow (or constant) flux portion of the typical X-Ray Telescope GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T{sub brk}. We also present the L{sub X} -T{sub brk} relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation ({rho} = -0.65 for the L{sub iso}-{tau} and {rho} = -0.88 for the L{sub X} -T{sub brk} relation) and have surprisingly similar best-fit power-law indices (-1.19 {+-} 0.17 for L{sub iso}-{tau} and -1.10 {+-} 0.03 for L{sub X} -T{sub brk}). Even more surprisingly, we noted that although {tau} and T{sub brk} represent different GRB time variables, it appears that the first relation (L{sub iso}-{tau}) extrapolates into the second one for timescales {tau} {approx_equal} T{sub brk}. This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  1. Activity from the Be/X-ray binary system V0332+53 during its intermediate-luminosity outburst in 2008

    NASA Astrophysics Data System (ADS)

    Caballero-García, M. D.; Camero-Arranz, A.; Özbey Arabacı, M.; Zurita, C.; Suso, J.; Gutiérrez-Soto, J.; Beklen, E.; Kiaeerad, F.; Garrido, R.; Hudec, R.

    2016-05-01

    Aims: We present a study of the Be/X-ray binary system V 0332+53 with the main goal of characterizing its behaviour mainly during the intermediate-luminosity X-ray event in 2008. In addition, we aim to contribute to the understanding of the behaviour of the donor companion by including optical data from our dedicated campaign starting in 2006. Methods: V 0332+53 was observed by RXTE and Swift during the decay of the intermediate-luminosity X-ray outburst of 2008, and with Suzaku before the rising of the third normal outburst of the 2010 series. In addition, we present recent data from the Spanish ground-based astronomical observatories of El Teide (Tenerife), Roque de los Muchachos (La Palma), and Sierra Nevada (Granada), and since 2006 from the Turkish TÜBİTAK National Observatory (Antalya). We have performed temporal analyses to investigate the transient behaviour of this system during several outbursts. Results: Our optical study revealed that continuous mass ejection episodes from the Be star have been taking place since 2006 and another is currently ongoing. The broad-band 1-60 keV X-ray spectrum of the neutron star during the decay of the 2008 outburst was well fitted with standard phenomenological models that were enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K-alpha fluorescence line at 6.4 keV. For the first time in V 0332+53 we tentatively see an increase in the cyclotron line energy with increasing flux (although further and more sensitive observations are needed to confirm this). The fast aperiodic variability shows a quasi-periodic oscillation (QPO) at 227 ± 9 mHz only during the lowest luminosities, which might indicate that the inner regions surrounding the magnetosphere are more visible during the lowest flux states.

  2. A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.

    2016-05-01

    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination i = 55°.

  3. Luminosity function and jet structure of Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Pescalli, A.; Ghirlanda, G.; Salafia, O. S.; Ghisellini, G.; Nappo, F.; Salvaterra, R.

    2015-02-01

    The structure of gamma-ray burst (GRB) jets impacts on their prompt and afterglow emission properties. The jet of GRBs could be uniform, with constant energy per unit solid angle within the jet aperture, or it could be structured, namely with energy and velocity that depend on the angular distance from the axis of the jet. We try to get some insight about the still unknown structure of GRBs by studying their luminosity function. We show that low (1046-48 erg s-1) and high (i.e. with L ≥ 1050 erg s-1) luminosity GRBs can be described by a unique luminosity function, which is also consistent with current lower limits in the intermediate luminosity range (1048-50 erg s-1). We derive analytical expressions for the luminosity function of GRBs in uniform and structured jet models and compare them with the data. Uniform jets can reproduce the entire luminosity function with reasonable values of the free parameters. A structured jet can also fit adequately the current data, provided that the energy within the jet is relatively strongly structured, i.e. E ∝ θ-k with k ≥ 4. The classical E ∝ θ-2 structured jet model is excluded by the current data.

  4. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    SciTech Connect

    Ueda, Yoshihiro; Akiyama, Masayuki; Hasinger, Günther; Miyaji, Takamitsu; Watson, Michael G.

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  5. Broadband X-Ray Spectra of Two Low-luminosity Active Galactic Nuclei NGC 1566 and NGC 4941 Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Terashima, Yuichi

    2013-06-01

    We report the first broadband X-ray spectra of the low-luminosity active galactic nuclei (LLAGNs), NGC 1566 (type 1.5) and NGC 4941 (type 2), observed with Suzaku and Swift/BAT covering the 0.5-195 keV band. Both targets have hard X-ray luminosities of ~1041-42 erg s-1 in the 15-55 keV band. The spectra of the nucleus are well reproduced by a sum of partially or fully covered transmitted emission and its reflection from the accretion disk, reprocessed emission from the torus accompanied by a strong narrow iron-Kα line, and a scattered component (for NGC 4941). We do not significantly detect a broad iron-Kα line from the inner accretion disk in both targets, and obtain an upper limit on the corresponding solid angle of Ω/2π < 0.3 in NGC 1566. The reflection strength from the torus is moderate, \\Omega /2\\pi =0.45^{+0.13}_{-0.10} in NGC 1566 and \\Omega /2\\pi =0.64^{+0.69}_{-0.27} in NGC 4941. Comparison of the equivalent width of the narrow iron-Kα line with a model prediction based on a simple torus geometry constrains its half-opening angle to be θoa ~= 60°-70° in NGC 4941. These results agree with the obscured AGN fraction obtained from hard X-ray and mid-infrared selected samples at similar luminosities. Our results support the implication that the averaged covering fraction of AGN tori is peaked at L ~ 1042-43 erg s-1 but decreases toward lower luminosities.

  6. BROADBAND X-RAY SPECTRA OF TWO LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI NGC 1566 AND NGC 4941 OBSERVED WITH SUZAKU

    SciTech Connect

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Terashima, Yuichi

    2013-06-20

    We report the first broadband X-ray spectra of the low-luminosity active galactic nuclei (LLAGNs), NGC 1566 (type 1.5) and NGC 4941 (type 2), observed with Suzaku and Swift/BAT covering the 0.5-195 keV band. Both targets have hard X-ray luminosities of {approx}10{sup 41-42} erg s{sup -1} in the 15-55 keV band. The spectra of the nucleus are well reproduced by a sum of partially or fully covered transmitted emission and its reflection from the accretion disk, reprocessed emission from the torus accompanied by a strong narrow iron-K{alpha} line, and a scattered component (for NGC 4941). We do not significantly detect a broad iron-K{alpha} line from the inner accretion disk in both targets, and obtain an upper limit on the corresponding solid angle of {Omega}/2{pi} < 0.3 in NGC 1566. The reflection strength from the torus is moderate, {Omega}/2{pi}=0.45{sup +0.13}{sub -0.10} in NGC 1566 and {Omega}/2{pi}=0.64{sup +0.69}{sub -0.27} in NGC 4941. Comparison of the equivalent width of the narrow iron-K{alpha} line with a model prediction based on a simple torus geometry constrains its half-opening angle to be {theta}{sub oa} {approx_equal} 60 Degree-Sign -70 Degree-Sign in NGC 4941. These results agree with the obscured AGN fraction obtained from hard X-ray and mid-infrared selected samples at similar luminosities. Our results support the implication that the averaged covering fraction of AGN tori is peaked at L {approx} 10{sup 42-43} erg s{sup -1} but decreases toward lower luminosities.

  7. Internal Absorption and the Luminosity of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Boqi; Heckman, Timothy M.

    1996-02-01

    We investigate the correlation of the optical depth of dust in galactic disks with galaxy luminosity. We examine normal late-type (spiral and irregular) galaxies with measured far-ultraviolet (UV, λ ˜ 2000 Å) fluxes and compile the corresponding fluxes in the far-infrared (FIR, λ ˜ 40-120 μm) as measured by IRA S. The UV-to-FIR flux ratio is found to decrease rapidly with increasing FIR and FIR + UV luminosities. Since both the UV and FIR radiation originate mostly from the young stellar population in late-type galaxies, the UV-to-FIR flux ratio is a measure of the fraction of the light produced by young stars escaping from galaxy disks. Thus, the strong correlations above imply that the dust opacity increases with the luminosity of the young stellar population. We also find that the ratio of the UV-to-FIR flux decreases with increasing galaxy blue luminosity (a tracer of the intermediate-age stellar population) and with galaxy rotation speed (an indicator of galaxy mass). We supplement the UV sample of galaxies with an optically selected sample and find that the blue-to-FIR flux ratio declines with both FIR luminosity and galaxy rotation speed. We also examine a sample of galaxies for which the Hβ/Hα flux ratios can be obtained and find that the Hβ/Hα ratio, which also measures the extinction, decreases with the increasing FIR luminosity. We model the absorption and emission of radiation by dust to normal galactic disks with a simple model of a uniform plane-parallel slab in which the dust that radiates in the IRAS band is heated exclusively by UV light from relatively nearby hot stars. We then find that the relation between the UV-to-FIR flux ratio and the observed luminosities can be explained by the face-on extinction optical depth τ varying with the intrinsic luminosity as a power law in the intrinsic UV luminosity: τ = τ1(L/L1)β. The same scaling law may also account for the various correlations found between the blue-to-FIR flux ratio and

  8. Toward Tight Gamma-Ray Burst Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Qi, Shi; Lu, Tan

    2012-04-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons preventing the extensive application of GRBs in cosmology. Many efforts have been made to seek tight luminosity relations. With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 two-dimensional (2D) correlations and 14 derived three-dimensional (3D) correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of E peak-τRT-L to be evidently tighter (at the 2σ confidence level) than its corresponding 2D correlations, i.e., the E peak-L and τRT-L correlations. In addition, the coefficients before the logarithms of E peak and τRT in the E peak-τRT-L correlation are almost exact opposites of each other. Inputting this situation as a prior reduces the relation to Lvprop(E'peak/τRT')0.842 ± 0.064, where E'peak and τ'RT denote the peak energy and minimum rise time in the GRB rest frame. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time). Our argument about the connection between the luminosity relations of GRBs and the definition of the luminosity provides a clear direction for exploring tighter luminosity relations of GRBs in the future.

  9. TOWARD TIGHT GAMMA-RAY BURST LUMINOSITY RELATIONS

    SciTech Connect

    Qi Shi; Lu Tan E-mail: t.lu@pmo.ac.cn

    2012-04-20

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons preventing the extensive application of GRBs in cosmology. Many efforts have been made to seek tight luminosity relations. With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 two-dimensional (2D) correlations and 14 derived three-dimensional (3D) correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of E{sub peak}-{tau}{sub RT}-L to be evidently tighter (at the 2{sigma} confidence level) than its corresponding 2D correlations, i.e., the E{sub peak}-L and {tau}{sub RT}-L correlations. In addition, the coefficients before the logarithms of E{sub peak} and {tau}{sub RT} in the E{sub peak}-{tau}{sub RT}-L correlation are almost exact opposites of each other. Inputting this situation as a prior reduces the relation to L{proportional_to}(E'{sub peak}/{tau}{sub RT}'){sup 0.842{+-}0.064}, where E'{sub peak} and {tau}'{sub RT} denote the peak energy and minimum rise time in the GRB rest frame. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time). Our argument about the connection between the luminosity relations of GRBs and the definition of the luminosity provides a clear direction for exploring tighter luminosity relations of GRBs in the future.

  10. On the Radio and Optical Luminosity Evolution of Quasars

    SciTech Connect

    Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.

    2011-05-20

    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multivariate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data set truncated due to observational biases. It is found that as expected the population of quasars exhibits strong positive correlation between the radio and optical luminosities and that this correlation deviates from a simple linear relation in a way indicating that more luminous quasars are more radio loud. We also find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio loud (R > 10) and radio quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio quiet and very radio

  11. MAGNITUDE GAP STATISTICS AND THE CONDITIONAL LUMINOSITY FUNCTION

    SciTech Connect

    More, Surhud

    2012-12-20

    In a recent preprint, Hearin et al. (H12) suggest that the halo mass-richness calibration of clusters can be improved by using the difference in the magnitude of the brightest and the second brightest galaxy (magnitude gap) as an additional observable. They claim that their results are at odds with the results from Paranjape and Sheth (PS12) who show that the magnitude distribution of the brightest and second brightest galaxies can be explained based on order statistics of luminosities randomly sampled from the total galaxy luminosity function. We find that a conditional luminosity function (CLF) for galaxies which varies with halo mass, in a manner which is consistent with existing observations, naturally leads to a magnitude gap distribution which changes as a function of halo mass at fixed richness, in qualitative agreement with H12. We show that, in general, the luminosity distribution of the brightest and the second brightest galaxy depends upon whether the luminosities of galaxies are drawn from the CLF or the global luminosity function. However, we also show that the difference between the two cases is small enough to evade detection in the small sample investigated by PS12. This shows that the luminosity distribution is not the appropriate statistic to distinguish between the two cases, given the small sample size. We argue in favor of the CLF (and therefore H12) based upon its consistency with other independent observations, such as the kinematics of satellite galaxies, the abundance and clustering of galaxies, and the galaxy-galaxy lensing signal from the Sloan Digital Sky Survey.

  12. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-04-01

    We consider gamma-ray burst (GRB) jets that are choked by extended material as sources of high-energy cosmic neutrinos. We take into account the jet propagation physics both inside the progenitor star and the surrounding dense medium. Radiation constraints, which are relevant for high-energy neutrino production, are considered as well. Efficient shock acceleration of cosmic rays is possible for sufficiently low-power jets and/or jets buried in a dense, extended wind or outer envelope. Such conditions also favor GRB jets to become stalled, and the necessary conditions for stalling are explicitly derived. Such choked jets may explain transrelativistic supernovae (SNe) and low-luminosity (LL) GRBs, giving a unified picture of GRBs and GRB-SNe. Focusing on this unified scenario for GRBs, we calculate the resulting neutrino spectra from choked jets, including the relevant microphysical processes such as multipion production in p p and p γ interactions, as well as the energy losses of mesons and muons. We obtain diffuse neutrino spectra using the latest results for the luminosity function of LL GRBs. Although uncertainties are large, we confirm that LL GRBs can potentially give a significant contribution to the diffuse neutrino flux. Our results are consistent with the present IceCube data and do not violate the stacking limits on classical high-luminosity GRBs. We find that high-energy neutrino production in choked jets is dominated by p γ interactions. These sources are dark in GeV-TeV gamma rays and do not contribute significantly to the Fermi diffuse gamma-ray background. Assuming stalled jets can launch a quasispherical shock in the dense medium, "precursor" TeV neutrinos emerging prior to the shock breakout gamma-ray emission can be used as smoking-gun evidence for a choked jet model for LL GRBs. Our results strengthen the relevance of wide field-of-view sky monitors with better sensitivities in the 1-100 keV range.

  13. A MULTIVARIATE FIT LUMINOSITY FUNCTION AND WORLD MODEL FOR LONG GAMMA-RAY BURSTS

    SciTech Connect

    Shahmoradi, Amir

    2013-04-01

    It is proposed that the luminosity function, the rest-frame spectral correlations, and distributions of cosmological long-duration (Type-II) gamma-ray bursts (LGRBs) may be very well described as a multivariate log-normal distribution. This result is based on careful selection, analysis, and modeling of LGRBs' temporal and spectral variables in the largest catalog of GRBs available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects. Constraints on the joint rest-frame distribution of the isotropic peak luminosity (L{sub iso}), total isotropic emission (E{sub iso}), the time-integrated spectral peak energy (E{sub p,z}), and duration (T{sub 90,z}) of LGRBs are derived. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by the BATSE detector with E{sub iso} extending down to {approx}10{sup 49} erg and observed spectral peak energies (E{sub p} ) as low as {approx}5 keV. LGRBs with rest-frame duration T{sub 90,z} {approx}< 1 s or observer-frame duration T{sub 90} {approx}< 2 s appear to be rare events ({approx}< 0.1% chance of occurrence). The model predicts a fairly strong but highly significant correlation ({rho} = 0.58 {+-} 0.04) between E{sub iso} and E{sub p,z} of LGRBs. Also predicted are strong correlations of L{sub iso} and E{sub iso} with T{sub 90,z} and moderate correlation between L{sub iso} and E{sub p,z}. The strength and significance of the correlations found encourage the search for underlying mechanisms, though undermine their capabilities as probes of dark energy's equation of state at high redshifts. The presented analysis favors-but does not necessitate-a cosmic rate for BATSE LGRBs tracing metallicity evolution consistent with a cutoff Z/Z{sub Sun} {approx} 0.2-0.5, assuming no luminosity-redshift evolution.

  14. Jet and disc luminosities in tidal disruption events

    NASA Astrophysics Data System (ADS)

    Piran, Tsvi; Sądowski, Aleksander; Tchekhovskoy, Alexander

    2015-10-01

    Tidal disruption events (TDEs) explore the whole range of accretion rates and configurations. A challenging question is what the corresponding light curves of these events are. We explore numerically the disc luminosity and the conditions within the inner region of the disc using a fully general relativistic slim disc model. Those conditions determine the magnitude of the magnetic field that engulfs the black hole and this, in turn, determines the Blandford-Znajek jet power. We estimate this power in two different ways and show that they are self-consistent. We find, as expected earlier from analytic arguments , that neither the disc luminosity nor the jet power follows the accretion rate throughout the disruption event. The disc luminosity varies only logarithmically with the accretion rate at super-Eddington luminosities. The jet power follows initially the accretion rate but remains constant after the transition from super- to sub-Eddington. At lower accretion rates at the end of the magnetically arrested disc (MAD) phase, the disc becomes thin and the jet may stop altogether. These new estimates of the jet power and disc luminosity that do not simply follow the mass fallback rate should be taken into account when searching for TDEs and analysing light curves of TDE candidates. Identification of some of the above-mentioned transitions may enable us to estimate better TDE parameters.

  15. Luminosity functions for very low mass stars and brown dwarfs

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  16. The intrinsic quasar luminosity function: Accounting for accretion disk anisotropy

    SciTech Connect

    DiPompeo, M. A.; Myers, A. D.; Brotherton, M. S.; Runnoe, J. C.; Green, R. F.

    2014-05-20

    Quasar luminosity functions are a fundamental probe of the growth and evolution of supermassive black holes. Measuring the intrinsic luminosity function is difficult in practice, due to a multitude of observational and systematic effects. As sample sizes increase and measurement errors drop, characterizing the systematic effects is becoming more important. It is well known that the continuum emission from the accretion disk of quasars is anisotropic—in part due to its disk-like structure—but current luminosity function calculations effectively assume isotropy over the range of unobscured lines of sight. Here, we provide the first steps in characterizing the effect of random quasar orientations and simple models of anisotropy on observed luminosity functions. We find that the effect of orientation is not insignificant and exceeds other potential corrections such as those from gravitational lensing of foreground structures. We argue that current observational constraints may overestimate the intrinsic luminosity function by as much as a factor of ∼2 on the bright end. This has implications for models of quasars and their role in the universe, such as quasars' contribution to cosmological backgrounds.

  17. The galaxy luminosity function and the Local Hole

    NASA Astrophysics Data System (ADS)

    Whitbourn, J. R.; Shanks, T.

    2016-06-01

    In a previous study Whitbourn & Shanks have reported evidence for a local void underdense by ≈15 per cent extending to 150-300 h-1 Mpc around our position in the Southern Galactic Cap (SGC). Assuming a local luminosity function they modelled K- and r-limited number counts and redshift distributions in the 6dFGS/2MASS and SDSS redshift surveys and derived normalized n(z) ratios relative to the standard homogeneous cosmological model. Here we test further these results using maximum likelihood techniques that solve for the galaxy density distributions and the galaxy luminosity function simultaneously. We confirm the results from the previous analysis in terms of the number density distributions, indicating that our detection of the `Local Hole' in the SGC is robust to the assumption of either our previous, or newly estimated, luminosity functions. However, there are discrepancies with previously published K- and r-band luminosity functions. In particular the r-band luminosity function has a steeper faint end slope than the r0.1 results of Blanton et al. but is consistent with the r0.1 results of Montero-Dorta & Prada and Loveday et al.

  18. 1. 4 gigahertz luminosity function and its evolution

    SciTech Connect

    Condon, J. J.

    1989-03-01

    The local luminosity function was determined at v = 1.4 GHz from radio observations of two low-redshift galaxy samples: (1) spiral and irregular galaxies with apparent blue magnitudes and declinations and (2) galaxies of all morphologies with blue angular diameters of 1.0 arcmin or greater in the declination range between -2.5 deg and +82 deg. Separate luminosity functions for the radio source populations powered by 'starbursts' and 'monsters' were obtained from the latter sample. The amount of evolution required for the local luminosity function to account for the faint sources is discussed. The cosmological evolution of extragalactic radio sources appears to be so strong at all observed luminosities that the local luminosity function and counts of all sources between S of roughly 10 micro-Jy and S of roughly 10 Jy at v = 1.4 GHz can be matched with a model in which most sources are confined to a hollow shell with z of roughly 0.8. 36 refs.

  19. The X-ray luminosity temperature relation of a complete sample of low mass galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zou, S.; Maughan, B. J.; Giles, P. A.; Vikhlinin, A.; Pacaud, F.; Burenin, R.; Hornstrup, A.

    2016-08-01

    We present Chandra observations of 23 galaxy groups and low-mass galaxy clusters at 0.03 < z < 0.15 with a median temperature of ˜2 KeV. The sample is a statistically complete flux-limited subset of the 400 deg2 survey. We investigated the scaling relation between X-ray luminosity (L) and temperature (T), taking selection biases fully into account. The logarithmic slope of the bolometric L - T relation was found to be 3.29 ± 0.33, consistent with values typically found for samples of more massive clusters. In combination with other recent studies of the L - T relation we show that there is no evidence for the slope, normalisation, or scatter of the L - T relation of galaxy groups being different than that of massive clusters. The exception to this is that in the special case of the most relaxed systems, the slope of the core-excised L - T relation appears to steepen from the self-similar value found for massive clusters to a steeper slope for the lower mass sample studied here. Thanks to our rigorous treatment of selection biases, these measurements provide a robust reference against which to compare predictions of models of the impact of feedback on the X-ray properties of galaxy groups.

  20. High resolution spectrometer for extended x-ray absorption fine structure measurements in the 6 keV to 15 keV energy range

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Hudson, L. T.; Henins, Albert; Feldman, U.

    2016-11-01

    A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.

  1. A New Population of Compton-thick AGNs Identified Using the Spectral Curvature above 10 keV

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Assef, R.; Baloković, M.; Stern, D.; Gandhi, P.; Lamperti, I.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Berney, S.; Brandt, W. N.; Comastri, A.; Gehrels, N.; Harrison, F. A.; Lansbury, G.; Markwardt, C.; Ricci, C.; Rivers, E.; Schawinski, K.; Trakhtenbrot, B.; Treister, E.; Urry, C. Megan

    2016-07-01

    We present a new metric that uses the spectral curvature (SC) above 10 keV to identify Compton-thick active galactic nuclei (AGNs) in low-quality Swift/Burst Alert Telescope (BAT) X-ray data. Using NuSTAR, we observe nine high SC-selected AGNs. We find that high-sensitivity spectra show that the majority are Compton-thick (78% or 7/9) and the remaining two are nearly Compton-thick (N H ≃ (5-8) × 1023 cm-2 ). We find that the SC BAT and SC NuSTAR measurements are consistent, suggesting that this technique can be applied to future telescopes. We tested the SC method on well-known Compton-thick AGNs and found that it is much more effective than broadband ratios (e.g., 100% using SC versus 20% using 8-24 keV/3-8 keV). Our results suggest that using the >10 keV emission may be the only way to identify this population since only two sources show Compton-thick levels of excess in the Balmer decrement corrected [O iii] to observed X-ray emission ratio ({F}[{{O}{{III}}]}/{F}2{--10 {keV}}{obs}\\gt 1) and WISE colors do not identify most of them as AGNs. Based on this small sample, we find that a higher fraction of these AGNs are in the final merger stage (<10 kpc) than typical BAT AGNs. Additionally, these nine obscured AGNs have, on average, ≈4× higher accretion rates than other BAT-detected AGNs (< {λ }{Edd}> \\=\\0.068+/- 0.023 compared to < {λ }{Edd}> \\=\\0.016+/- 0.004). The robustness of SC at identifying Compton-thick AGNs implies that a higher fraction of nearby AGNs may be Compton-thick (≈22%) and the sum of black hole growth in Compton-thick AGNs (Eddington ratio times population percentage) is nearly as large as mildly obscured and unobscured AGNs.

  2. A New Population of Compton-thick AGNs Identified Using the Spectral Curvature above 10 keV

    NASA Astrophysics Data System (ADS)

    Koss, Michael J.; Assef, R.; Baloković, M.; Stern, D.; Gandhi, P.; Lamperti, I.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Berney, S.; Brandt, W. N.; Comastri, A.; Gehrels, N.; Harrison, F. A.; Lansbury, G.; Markwardt, C.; Ricci, C.; Rivers, E.; Schawinski, K.; Trakhtenbrot, B.; Treister, E.; Urry, C. Megan

    2016-07-01

    We present a new metric that uses the spectral curvature (SC) above 10 keV to identify Compton-thick active galactic nuclei (AGNs) in low-quality Swift/Burst Alert Telescope (BAT) X-ray data. Using NuSTAR, we observe nine high SC-selected AGNs. We find that high-sensitivity spectra show that the majority are Compton-thick (78% or 7/9) and the remaining two are nearly Compton-thick (N H ≃ (5–8) × 1023 cm‑2 ). We find that the SC BAT and SC NuSTAR measurements are consistent, suggesting that this technique can be applied to future telescopes. We tested the SC method on well-known Compton-thick AGNs and found that it is much more effective than broadband ratios (e.g., 100% using SC versus 20% using 8–24 keV/3–8 keV). Our results suggest that using the >10 keV emission may be the only way to identify this population since only two sources show Compton-thick levels of excess in the Balmer decrement corrected [O iii] to observed X-ray emission ratio ({F}[{{O}{{III}}]}/{F}2{--10 {keV}}{obs}\\gt 1) and WISE colors do not identify most of them as AGNs. Based on this small sample, we find that a higher fraction of these AGNs are in the final merger stage (<10 kpc) than typical BAT AGNs. Additionally, these nine obscured AGNs have, on average, ≈4× higher accretion rates than other BAT-detected AGNs (< {λ }{Edd}> \\=\\0.068+/- 0.023 compared to < {λ }{Edd}> \\=\\0.016+/- 0.004). The robustness of SC at identifying Compton-thick AGNs implies that a higher fraction of nearby AGNs may be Compton-thick (≈22%) and the sum of black hole growth in Compton-thick AGNs (Eddington ratio times population percentage) is nearly as large as mildly obscured and unobscured AGNs.

  3. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  4. CLIC Crab Cavity Design Optimisation for Maximum Luminosity

    SciTech Connect

    Dexter, A.C.; Burt, G.; Ambattu, P.K.; Dolgashev, V.; Jones, R.; /Manchester U.

    2012-04-25

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  5. The luminosity of the double-mode Cepheid Y Carinae

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.

    1992-01-01

    IUE spectra of the double-mode Cepheid Y Carinae have been used to determine the spectral type of the binary companion. From the companion spectral type (B9.O V), the absolute magnitude of the Cepheid is found to be -2.94 mag, with an estimated uncertainty of +/-0.3. This luminosity is in good agreement with that from the period-luminosity-color relation of Feast and Walker for the fundamental mode. This agreement, together with the large magnitude difference between the B9.0 V star and the Cepheid, confirm that the Cepheid is a normal classical Cepheid with a mass much larger than that inferred from the ratio of the two periods (beat mass). The two double-mode Cepheids with independently determined luminosities (Y Car and V 367 Sct) both fall on the blue edge of the instability strip.

  6. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  7. Reduction of beta* and increase of luminosity at RHIC

    SciTech Connect

    Pilat,F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-05-04

    The reduction of {beta}* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the {beta}*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze.

  8. LUMINOSITY OPTIMIZATION USING AUTOMATED IR STEERING AT RHIC.

    SciTech Connect

    DREES,A.D'OTTAVIO,T.

    2004-07-05

    The goal of the RHIC 2004 Au-Au run was to maximize the achieved integrated luminosity. One way is to increase beam currents and minimize beam transverse emittances. Another important ingredient is the minimization of time spent on activities postponing the declaration of ''physics conditions'', i.e. stable beam conditions allowing the experimental detectors to take data. Since collision rates are particularly high in the beginning of the store the integrated luminosity benefits considerably from any minute saved early in the store. In the RHIC run 2004 a new IR steering application uses luminosity monitor signals as a feedback for a fully automated steering procedure. This report gives an overview of the used procedure and summarizes the achieved results.

  9. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    SciTech Connect

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-07-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z {approx} 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z {approx} 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z {approx} 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  10. On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Rigliaco, E.; Fairlamb, J. R.; Calvet, N.; Muzerolle, J.; Cunningham, N.; Lumsden, S. L.

    2015-09-01

    Correlations between the accretion luminosity and emission line luminosities (Lacc and Lline) of pre-main-sequence (PMS) stars have been published for many different spectral lines, which are used to estimate accretion rates. Despite the origin of those correlations is unknown, this could be attributed to direct or indirect physical relations between the emission line formation and the accretion mechanism. This work shows that all (near-UV/optical/near-IR) Lacc-Lline correlations are the result of the fact that the accretion luminosity and the stellar luminosity (L*) are correlated, and are not necessarily related with the physical origin of the line. Synthetic and observational data are used to illustrate how the Lacc-Lline correlations depend on the Lacc-L* relationship. We conclude that because PMS stars show the Lacc-L* correlation immediately implies that Lacc also correlates with the luminosity of all emission lines, for which the Lacc-Lline correlations alone do not prove any physical connection with accretion but can only be used with practical purposes to roughly estimate accretion rates. When looking for correlations with possible physical meaning, we suggest that Lacc/L* and Lline/L* should be used instead of Lacc and Lline. Finally, the finding that Lacc has a steeper dependence on L* for T Tauri stars than for intermediate-mass Herbig Ae/Be stars is also discussed. That is explained from the magnetospheric accretion scenario and the different photospheric properties in the near-UV.

  11. The x-ray luminosity-redshift relationship of quasars.

    PubMed

    Segal, I E; Segal, W

    1980-06-01

    Chronometric cosmology provides an excellent fit for the phenomenological x-ray luminosity-redshift relationship for 49 quasars observed by the Einstein satellite. Analysis of the data on the basis of the Friedmann cosmology leads to a correlation of absolute x-ray luminosity with redshift of >0.8, which is increased to approximately 1 in the bright envelope. Although the trend might be ascribed a priori to an observational magnitude bias, it persists after nonparametric, maximum-likelihood removal of this bias.

  12. The quasar luminosity function from a variability-selected sample

    NASA Astrophysics Data System (ADS)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  13. The x-ray luminosity-redshift relationship of quasars

    PubMed Central

    Segal, I. E.; Segal, W.

    1980-01-01

    Chronometric cosmology provides an excellent fit for the phenomenological x-ray luminosity-redshift relationship for 49 quasars observed by the Einstein satellite. Analysis of the data on the basis of the Friedmann cosmology leads to a correlation of absolute x-ray luminosity with redshift of >0.8, which is increased to ∼1 in the bright envelope. Although the trend might be ascribed a priori to an observational magnitude bias, it persists after nonparametric, maximum-likelihood removal of this bias. PMID:16592826

  14. A new universal photon energy-luminosity relationship for GRBs

    SciTech Connect

    Willingale, Dick; O'Brien, Paul; Goad, Mike; Osborne, Julian; Page, Kim; Tanvir, Nial

    2008-05-22

    We define a new characteristic photon energy for the Band function, E{sub wz}, and describe a new way of estimating the peak luminosity of the prompt emission from GRBs, L{sub iso}, which is not dependent on the time binning. We show that E{sub wz} and L{sub iso} are correlated for all bursts, long and short. The new photon energy-luminosity relationship gives us a strong indication that the underlying process responsible for the prompt GRB emission is thermal.

  15. Low Luminosity States of the Black Hole Candidate GX 339-4. 1; ASCA and Simultaneous Radio/RXTE Observations

    NASA Technical Reports Server (NTRS)

    Wilms, Joern; Nowak, Michael A.; Dove, James B.; Fender, Robert P.; DiMatteo, Tiziana

    1998-01-01

    We discuss a series of observations of the black hole candidate GX 339-4 in low luminosity, spectrally hard states. We present spectral analysis of three separate archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data sets and eight separate Rossi X-ray Timing Explorer (RXTE) data sets. Three of the RXTE observations were strictly simultaneous with 843 Mega Hertz and 8.3-9.1 Giga Hertz radio observations. All of these observations have (3-9 keV) flux approximately less than 10(exp-9) ergs s(exp-1) CM(exp -2). The ASCA data show evidence for an approximately 6.4 keV Fe line with equivalent width approximately 40 eV, as well as evidence for a soft excess that is well-modeled by a power law plus a multicolor blackbody spectrum with peak temperature approximately equals 150-200 eV. The RXTE data sets also show evidence of an Fe line with equivalent widths approximately equal to 20-1OO eV. Reflection models show a hardening of the RXTE spectra with decreasing X-ray flux; however, these models do not exhibit evidence of a correlation between the photon index of the incident power law flux and the solid angle subtended by the reflector. 'Sphere+disk' Comptonization models and Advection Dominated Accretion Flow (ADAF) models also provide reasonable descriptions of the RXTE data. The former models yield coronal temperatures in the range 20-50 keV and optical depths of r approximately equal to 3. The model fits to the X-ray data, however, do not simultaneously explain the observed radio properties. The most likely source of the radio flux is synchrotron emission from an extended outflow of extent greater than O(10 (exp7) GM/c2).

  16. An Unlikely Radio Halo in the Low X-Ray Luminosity Galaxy Cluster RXCJ1514.9-1523

    NASA Technical Reports Server (NTRS)

    Marketvitch, M.; ZuHone, J. A.; Lee, D.; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Markevitch, M.; Athreya, R. M.

    2011-01-01

    Aims: We report the discovery of a giant radio halo in the galaxy cluster RXCJ1514,9-1523 at z=0.22 with a relatively low X-ray luminosity, L(sub X) (0.1-2.4kev) approx. 7 x 10(exp 44) ergs/s. Methods: This faint, diffuse radio source is detected with the Giant Meterwave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. Results: The integrated radio spectrum of the halo is quite steep, with a slope alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L(sub X) < 8 x 10(exp 44) ergs/s. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the very rare, new class of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.

  17. 41 CFR 60-2.10 - General purpose and contents of affirmative action programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contents of affirmative action programs. 60-2.10 Section 60-2.10 Public Contracts and Property Management... EMPLOYMENT OPPORTUNITY, DEPARTMENT OF LABOR 2-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.10 General purpose and contents of affirmative action programs. (a) Purpose....

  18. 9 CFR 2.10 - Licensees whose licenses have been suspended or revoked.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Licensees whose licenses have been suspended or revoked. 2.10 Section 2.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.10 Licensees whose...

  19. 9 CFR 2.10 - Licensees whose licenses have been suspended or revoked.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Licensees whose licenses have been suspended or revoked. 2.10 Section 2.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.10 Licensees whose...

  20. 9 CFR 2.10 - Licensees whose licenses have been suspended or revoked.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Licensees whose licenses have been suspended or revoked. 2.10 Section 2.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.10 Licensees whose...

  1. 9 CFR 2.10 - Licensees whose licenses have been suspended or revoked.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Licensees whose licenses have been suspended or revoked. 2.10 Section 2.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.10 Licensees whose...

  2. 9 CFR 2.10 - Licensees whose licenses have been suspended or revoked.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Licensees whose licenses have been suspended or revoked. 2.10 Section 2.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.10 Licensees whose...

  3. Luminosity Variations Along Bunch Trains in PEP-II

    SciTech Connect

    Decker, F.J.; Boyes, M.; Colocho, W.S.; Novokhatski, A.; Sullivan, M.K.; Turner, J.L.; Weathersby, S.P.; Wienands, U.; Yocky, G.; /SLAC

    2007-05-18

    In the spring of 2005 after a long shut-down, the luminosity of the B-Factory PEP-II decreased along the bunch trains by about 25-30%. There were many reasons studied which could have caused this performance degradation, like a bigger phase transient due to an additional RF station in the Low-Energy-Ring (LER), bad initial vacuum, electron cloud, chromaticity, steering, dispersion in cavities, beam optics, etc. The initial specific luminosity of 4.2 sloped down to 3.2 and even 2.8 for a long train (typical: 130 of 144), later in the run with higher currents and shorter trains (65 of 72) the numbers were more like 3.2 down to 2.6. Finally after steering the interaction region for an unrelated reason (overheated BPM buttons) and the consequential lower luminosity for two weeks, the luminosity slope problem was mysteriously gone. Several parameters got changed and there is still some discussion about which one finally fixed the problem. Among others, likely candidates are: the LER betatron function in x at the interaction point got reduced, making the LER x stronger, dispersion reduction in the cavities, and finding and fixing a partially shorted magnet.

  4. The Radio Luminosity Function and Galaxy Evolution of Abell 2256

    NASA Astrophysics Data System (ADS)

    Forootaninia, Zahra

    2015-05-01

    This thesis presents a study of the radio luminosity function and the evolution of galaxies in the Abell 2256 cluster (z=0.058, richness class 2). Using the NED database and VLA deep data with an rms sensitivity of 18 mu Jy.beam--1, we identified 257 optical galaxies as members of A2256, of which 83 are radio galaxies. Since A2256 is undergoing a cluster-cluster merger, it is a good candidate to study the radio activity of galaxies in the cluster. We calculated the Univariate and Bivariate radio luminosity functions for A2256, and compared the results to studies on other clusters. We also used the SDSS parameter fracDev to roughly classify galaxies as spirals and ellipticals, and investigated the distribution and structure of galaxies in the cluster. We found that most of the radio galaxies in A2256 are faint, and are distributed towards the outskirts of the cluster. On the other hand, almost all very bright radio galaxies are ellipticals which are located at the center of the cluster. We also found there is an excess in the number of radio spiral galaxies in A2256 compared to the number of radio ellipticals, counting down to a radio luminosity of log(luminosity)=20.135 W/Hz..

  5. The Gamma-Ray Luminosity Function of Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1998-01-01

    This final report is a study of gamma-ray luminosity function of radio pulsars. The goal is to constrain certain parameters in order to address such diverse issues as the high energy emission mechanism in pulsars and the fraction of the Galaxy's gamma ray emission attributable to these objects.

  6. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1974-01-01

    Attempts to resolve the solar neutrino flux problem have led to suggestions of large scale oscillations in the solar luminosity on a geological time scale. A simple climatological model of Mars indicates that its climate may be much more sensitive to luminosity changes than the earth's because of strong positive feedback mechanisms at work on Mars. Mariner-9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale, solar luminosity variations. However, our climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch. As more becomes known about Mars, it may prove possible to formulate a history of Martian climate. By discovering effects that cannot be due to other mechanisms one may be able to form a chronology of solar luminosity variations to compare with data from the earth.

  7. Cosmological tests with the FSRQ gamma-ray luminosity function

    NASA Astrophysics Data System (ADS)

    Zeng, Houdun; Melia, Fulvio; Zhang, Li

    2016-11-01

    The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Λ cold dark matter (ΛCDM) and Rh = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both ΛCDM and Rh = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour Rh = ct over ΛCDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.

  8. Luminosity Function of Faint Globular Clusters in M87

    SciTech Connect

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph; /Oxford U.

    2006-07-14

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  9. Status and Outlook for the RHIC Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2010-02-01

    As the world highest energy heavy ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been the center for exploring the universe at its infant stage. The operations of RHIC over the past decade has produced many results. A new state of matter, the quark-gluon plasma which is believed to only have existed right after the birth of the universe, was first observed at RHIC during the collisions of Au ions. The experimental data also revealed that this new state of matter behaves like a perfect fluid. In addition to the heavy ion program, RHIC is also capable to accelerate polarized proton beams to high energy, which allows one to explore the spin structure of polarized protons. Both the heavy ion program and spin physics program require high luminosities at RHIC. Various efforts aimed at increasing the RHIC luminosity of heavy ion and polarized proton collisions, such as NEG coating beam pipes to reduce electron clouds, using intrabeam scattering lattice for heavy ion operations as well as longitudinal stochastic cooling. The average store luminosity of Au collisions at a beam energy of 100 GeV/u has reached 1027cm-2s-1. The average store luminosity of RHIC polarized proton collisions at a beam energy of 100 GeV reached 28x1030cm-2s-1 and 55x1030 cm-2s-1 for the polarized proton collisions at a beam energy 250 GeV. Currently, the luminosity is limited by beam-beam effects for polarized proton collisions and intrabeam scattering for heavy ion collisions. Novel techniques are explored and under development to address these issues. The addition of transverse stochastic cooling will minimize the beam size growth due to intrabeam scattering and increase the heavy ion luminosity lifetime. The technique of using 9MHz cavity to accelerate polarized protons minimizes the electron cloud effect, which can cause emittance blowup. It also helps to preserve the longitudinal emittance and yields shorter bunches. The technique of employing an

  10. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    SciTech Connect

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R.; Engelbracht, Charles W.; Van Zee, Liese; Lee, Janice C.; Kennicutt, Robert C. Jr.; Calzetti, Daniela; Dale, Daniel A.; Johnson, Benjamin D. E-mail: skillman@astro.umn.edu E-mail: amarble@nso.edu E-mail: jlee@stsci.edu E-mail: ddale@uwyo.edu

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available, the luminosity of a low luminosity galaxy is

  11. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice

  12. Experimental Determination of the HPGe Spectrometer Efficiency Calibration Curves for Various Sample Geometry for Gamma Energy from 50 keV to 2000 keV

    SciTech Connect

    Saat, Ahmad; Hamzah, Zaini; Yusop, Mohammad Fariz; Zainal, Muhd Amiruddin

    2010-07-07

    Detection efficiency of a gamma-ray spectrometry system is dependent upon among others, energy, sample and detector geometry, volume and density of the samples. In the present study the efficiency calibration curves of newly acquired (August 2008) HPGe gamma-ray spectrometry system was carried out for four sample container geometries, namely Marinelli beaker, disc, cylindrical beaker and vial, normally used for activity determination of gamma-ray from environmental samples. Calibration standards were prepared by using known amount of analytical grade uranium trioxide ore, homogenized in plain flour into the respective containers. The ore produces gamma-rays of energy ranging from 53 keV to 1001 keV. Analytical grade potassium chloride were prepared to determine detection efficiency of 1460 keV gamma-ray emitted by potassium isotope K-40. Plots of detection efficiency against gamma-ray energy for the four sample geometries were found to fit smoothly to a general form of {epsilon} = A{Epsilon}{sup a}+B{Epsilon}{sup b}, where {epsilon} is efficiency, {Epsilon} is energy in keV, A, B, a and b are constants that are dependent on the sample geometries. All calibration curves showed the presence of a ''knee'' at about 180 keV. Comparison between the four geometries showed that the efficiency of Marinelli beaker is higher than cylindrical beaker and vial, while cylindrical disk showed the lowest.

  13. Constraints on Accretion Disk Physics in Low Luminosity Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Baum, Stefi; Noel-Storr, Jacob; O'Dea, Christopher

    2008-03-01

    It is currently believed that essentially all galaxies harbor a massive black hole in their nuclei. If this is true, then it becomes hard to understand why we do not see the luminosity released by the inevitable accretion of the galaxy ISM onto the black hole in all galaxies. The differences in AGN output between the two classes of narrow-line radio galaxies (FRI and FRII) may hold the vital clue. High radio luminosity FRIIs generally show strong high-excitation narrow lines and are believed to be the obscured counterparts of radio loud quasars. Low radio luminosity FRIs by contrast have weaker, low-ionization lines and low ratios of optical to radio luminosities. A large difference in accretion rate and radiative efficiency between FRI and FRIIs would explain the difference in the optical properties and also provide a new unification between different classes of active galaxies in which the dominant parameter is accretion rate. Spitzer IRAC and MIPS observations already exist for most of a well defined sample of FRIs. However, the previously observed objects are the 'famous' ones, e.g., M87, M84, NGC315, 3C264, 3C31. Thus, the existing datasets are highly selected. Here we propose a very small request to complete the sample. We propose IRAC observations in all 4 bands, and MIPS photometry at 24 and 70 microns of 8, and 7 sources, respectively, for a total request of 1.7 hrs. These observations will complete the sample at very little cost in observing time. The large amount of existing complmentary data at multiple wavebands will greatly enhance the legacy value of the proposed observations. By completing the sample, the proposed IRAC and MIPS observations will produce a well defined and very well studied sample of nearby low luminosity radio galaxies. We will use the completed sample to investigate the properties of the accretion disk radiation, and the circumnuclear obscuring material.

  14. Finding and characterising WHIM structures using the luminosity density method

    NASA Astrophysics Data System (ADS)

    Nevalainen, Jukka; Liivamägi, L. J.; Tempel, E.; Branchini, E.; Roncarelli, M.; Giocoli, C.; Heinämäki, P.; Saar, E.; Bonamente, M.; Einasto, M.; Finoguenov, A.; Kaastra, J.; Lindfors, E.; Nurmi, P.; Ueda, Y.

    2016-10-01

    We have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density N H in Sculptor agree with those obtained via the X-ray analysis. Due to the additional N H estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.

  15. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  16. DISK GALAXIES WITH BROKEN LUMINOSITY PROFILES FROM COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Martinez-Serrano, F. J.; Serna, A.; Domenech-Moral, M.; Dominguez-Tenreiro, R.

    2009-11-10

    We present smoothed particle hydrodynamics cosmological simulations of the formation of three disk galaxies with a detailed treatment of chemical evolution and cooling. The resulting galaxies have properties compatible with observations: relatively high disk-to-total ratios, thin stellar disks, and good agreement with the Tully-Fisher and the luminosity-size relations. They present a break in the luminosity profile at 3.0 +- 0.5 disk scale lengths while showing an exponential mass profile without any apparent breaks, which is in line with recent observational results. Since the stellar mass profile is exponential, only differences in the stellar populations can be the cause of the luminosity break. Although we find a cutoff for the star formation rate (SFR) imposed by a density threshold in our star formation model, it does not coincide with the luminosity break and is located at 4.3 +- 0.4 disk scale lengths, with star formation going on between both radii. The color profiles and the age profiles are 'U-shaped', with the minimum for both profiles located approximately at the break radius. The SFR to stellar mass ratio increases until the break, explaining the coincidence of the break with the minimum of the age profile. Beyond the break, we find a steep decline in the gas density and, consequently, a decline in the SFR and redder colors. We show that most stars (64%-78%) in the outer disk originate in the inner disk and afterward migrate there. Such stellar migrations are likely the main origin of the U-shaped age profile and, therefore, of the luminosity break.

  17. Stacked depth graded multilayer for hard X-rays measured up to 130 keV

    NASA Astrophysics Data System (ADS)

    Jensen, C. P.; Christensen, F. E.; Romaine, S.; Bruni, R.; Zhong, Z.

    2007-09-01

    Depth graded multilayer designs for hard x-ray telescopes in the 10 keV to 70-80 keV energy range have had either W or Pt as the heavy element. These materials have been chosen because of reasonable optical constants, the possibility to grow smooth interfaces with the spacer material, and the stability over time. On the flip side both W and Pt have an absorption edge -- 69.5 keV (W) and 78.4 keV (Pt) -- which is very close to the two 44Ti lines at 67.9 keV and 78.4 keV that are produced in the envelope of a super nova explosion. Other materials have better optical constants and no absorption edges in this energy range, for example Ni 0.93V 0.07, but are not used because of high interface roughness. By using a WC/SiC multilayer for the bottom and a Ni 0.93V 0.07/SiC multilayer for the thicker top layers of a depth graded multilayer we have made a reflector that doesn't have a clear absorption edge. This reflector has been measured at energies between 8 keV and 130 keV. At a graze angle of 0.11 degree there is still nearly the same reflectivity below the W absorption edge as for a traditional W based coating, and above the W absorption edge there is still 48% reflection at 80 keV.

  18. Direct Oxygen Abundances for the Lowest Luminosity LVL Galaxies

    NASA Astrophysics Data System (ADS)

    Berg, Danielle; Skillman, E. D.; Marble, A. R.; van Zee, L.; Engelbracht, C. W.

    2012-01-01

    We present new MMT spectroscopic observations of HII regions in 42 of the lowest luminosity galaxies in the Spitzer Local Volume Legacy (LVL) survey. For 31 of the galaxies in our sample we were able to measure the [OIII] ? auroral line at a strength of 4σ or greater, and thus determine oxygen abundances using the direct method. Direct oxygen abundances were compared to B-band luminosity, 4.5 μm luminosity, and stellar mass to characterize the luminosity-metallicity (L-Z) and mass-metallicity (M-Z) relationships at low-luminosity. We examined a "Combined Select” sample composed of 38 objects, from the present sample and the literature, with direct oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). The B-band and 4.5 μm L-Z relationships were found to be 12+log(O/H) = (6.19±0.07) + (-0.12±0.01)MB and 12+log(O/H) = (5.93±0.11) + (-0.11±0.01)M[4.5] with dispersions of σ = 0.17 and σ = 0.14 respectively. Since the slope of the L-Z relationship doesn't seem to vary from the optical to the near-IR, as has been observed in studies of more luminous galaxies, we propose that less extinction due to dust is created in the lowest luminosity galaxies. We subsequently derived a M-Z relationship of 12+log(O/H) = (5.49±0.23) + (0.31±0.03)log M*, with a dispersion of σ = 0.16. None of the relationships seem to hold an advantage with respect to dispersion, supporting the idea of minimized dust. Additionally, the trend of N/O abundance with respect to B-V color and oxygen abundance was examined. Similar to the conclusions of van Zee & Haynes (2006), we find a positive correlation between N/O ratio and B-V color: log(N/O) = 0.92 (B-V) - 1.83. Furthermore, there are no objects with high N/O ratio below 12+log(O/H)=7.9.

  19. Differential Spectral Synthesis of Low-Luminosity Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Lewis Alexander

    In this thesis, a study of the spectral variations in the integrated light of eight low-luminosity elliptical galaxies is presented. The unique opportunity provided by low-luminosity elliptical galaxies to study integrated spectra at high line definition is the motivation behind the observational approach for this study. A long wavelength baseline is sacrificed in favor of working at high resolution (~2 Å FWHM) with a large variety of narrow absorption features in a smaller wave-length window. A new spectral library has been developed with this approach in mind. The library consists of spectra of 684 stars all observed with the Coudé Feed Telescope and Spectrograph at the Kitt Peak National Observatory, covering the spectral ranges 3820-4500 Å and 4780-5450 Å and at a spectral resolution of ~2 Å FWHM. The coverage of the library is complete for spectral types A-K and luminosity classes I-V, in the range -2.5 <= FeH; <= +0.5, while the O, B, and M stars are near solar. The empirical investigation of the galaxy spectra in reference to the stellar sequences of the spectral library yields several key results. (1) There is a spread in the mean spectral types of the low-luminosity ellliptical galaxies. (2) The galaxies are similar in evolved star content, Fe line strengths, and their evolved star light is dominated by solar type giants. (3) Five of the eight galaxies are shown to contain less than a 5% hot star contribution, which is inconsistent with the prediction of ~10% from the simple model of chemical evolution (Worthey, Dorman, and Jones 1996). (4) From variations in the balance of dwarf and giant light in the galaxy spectra it is claimed that there is a spread in the mean stellar ages of the low-luminosity elliptical galaxies. These results are interpreted in the context of the evolutionary synthesis models of Worthey (1994). The main result from the comparison of the galaxies and models is that the low-luminosity elliptical galaxies show a large spread in

  20. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    NASA Astrophysics Data System (ADS)

    Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on

  1. Appearance of chromosomal aberrations in females heterozygous for deletion MS2-10: Maternal effect

    SciTech Connect

    Artemova, E.V.; Chadov, B.F.

    1995-01-01

    The mutagenic effect of the paracentromeric heterochromatin deletion MS2-10 was studied in direct and reciprocal crosses of laboratory and wild-type lines of Drosophila melanogaster. The effect of deletion MS2-10 depended on the opposite chromosome. This was shown for the combination of autosome MS2-10 with autosome 2 from the Berlin wild line, but when MS2-10 was combined with an autosome 2 from lines Canton S and pr pk cn, the effect was absent. When deletion MS2-10 was inherited from the female parent and the opposite chromosome from the male parent, the effect of the deletion was present, but it was absent in males heterozygous for MS2-10, obtained in reciprocal crosses. In maternal effect, this case of mutagenesis is similar to hybrid dysgenesis. However, the pattern of P-M dysgenesis was shown to differ from the type of mutagenesis described in the present work.

  2. An Astrometric Calibration of the Cepheid Period-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Benedict, George

    2004-07-01

    We propose to measure the parallaxes of 10 Galactic Cepheid variables. When these parallaxes {with 1-sigma precisions of 10% or better} are added to our recent HST FGS parallax determination of delta Cep {Benedict et al 2002}, we anticipate determining the Period-Luminosity relation zero point with a 0.03 mag precision. In addition to permitting the test of assumptions that enter into other Cepheid distance determination techniques, this calibration will reintroduce Galactic Cepheids as a fundamental step in the extragalactic distance scale ladder. A Period-Luminosity relation derived from solar metallicity Cepheids can be applied directly to extragalactic solar metallicity Cepheids, removing the need to bridge with the Large Magellanic Cloud and its associated metallicity complications.

  3. An Astrometric Calibration of the Cepheid Period-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Benedict, George

    2003-07-01

    We propose to measure the parallaxes of 10 Galactic Cepheid variables. When these parallaxes {with 1-sigma precisions of 10% or better} are added to our recent HST FGS parallax determination of delta Cep {Benedict et al 2002}, we anticipate determining the Period-Luminosity relation zero point with a 0.03 mag precision. In addition to permitting the test of assumptions that enter into other Cepheid distance determination techniques, this calibration will reintroduce Galactic Cepheids as a fundamental step in the extragalactic distance scale ladder. A Period-Luminosity relation derived from solar metallicity Cepheids can be applied directly to extragalactic solar metallicity Cepheids, removing the need to bridge with the Large Magellanic Cloud and its associated metallicity complications.

  4. OH megamasers in high-luminosity IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    OH megamaser emission and H I and CO profiles from the distant infrared galaxies IRAS 10173 + 0828, III Zw 035, and Zw 475.056 are reported. The OH isotropic luminosities at 1667 MHz are 463, 534, and 6.6 solar luminosities, respectively. Far-infrared pumping efficiencies of the OH greater than 1 percent are found in IRAS 10173 + 0828 and III Zw 035. These two galaxies show anomalously large 1667/1665 MHz emission line ratios. OH megamasers reside in the nuclei of superluminous far-infrared galaxies that have a high content of molecular gas, high efficiency of star formation, and in some instances, a striking deficiency of atomic hydrogen.

  5. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2016-07-12

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  6. Impact of final-focus ground motion on NLC luminosity

    SciTech Connect

    Irwin, J.; Zimmermann, F.

    1996-06-01

    Vertical displacements of final-focus quadrupoles due to ground motion can cause the two beams of the Next Linear Collider (NLC) to miss each other at the interaction point (IP) and, in addition, will increase the IP spot size, and thus degrade the luminosity, by generating dispersion and skew coupling. The sensitivity of the final-focus optics to plane ground waves is strongly wavelength dependent, which is formally expressed in terms of a lattice-response function. In this paper, the rms beam-beam separation and the rms IP spot-size increase are estimated for the NLC final focus, using the measured ground-motion power spectrum, a realistic orbit-feedback response curve, and the appropriate lattice-response function. The luminosity loss due to ground motion is shown to be insignificant.

  7. Searching for Tight Gamma-Ray Burst Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Qi, Shi; Lu, Tan

    2015-01-01

    With the latest sample of 116 GRBs with measured redshift and spectral parameters, we investigate 6 2D correlations and 14 derived 3D correlations of GRBs to explore the possibility of decreasing the intrinsic scatters of the luminosity relations of GRBs. We find the 3D correlation of Epeak-τRT-L to be evidently tighter than its corresponding 2D correlations, i.e., the Epeak-L and τRT-L correlations. In addition, the coefficients before the logarithms of Epeak and τRT in the Epeak-τRT-L correlation are almost exact opposites of each other. We discuss how our findings can be interpreted/understood in the framework of the definition of the luminosity (energy released in units of time).

  8. Stellar bars and the spatial distribution of infrared luminosity

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology.

  9. SLC-2000: A luminosity upgrade for the SLC

    SciTech Connect

    Breidenbach, M.; Decker, F.J.; Helm, R.

    1996-08-01

    The authors discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnet in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider.

  10. Relativistic Effects on the Observed AGN Luminosity Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Shuang Nan; Zhang, Xiao Ling

    2007-02-01

    Recently, Zhang (2005 ApJ, 618, L79) has proposed a model to account for the well-established effect that the fraction of type-II AGNs is anti-correlated with the observed X-ray luminosity; the model consists of an X-ray emitting accretion disk coaligned to the dusty torus within the standard AGN unification model. In this paper the model is refined by including relativistic effects of the observed X-ray radiation from the vicinity of the supermassive black hole in an AGN. The relativistic corrections improve the combined fitting results of the observed luminosity distribution and the type-II AGN fraction, though the improvement is not significant. The type-II AGN fraction prefers non- or mildly spinning black hole cases, and rules out the extremely spinning case.

  11. Multichannel assault on natural supersymmetry at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael; Tata, Xerxes

    2016-08-01

    Recent clarifications of naturalness in supersymmetry robustly require the presence of four light Higgsinos with mass ˜100 - 300 GeV while gluinos and (top) squarks may lie in the multi-TeV range, possibly out of LHC reach. We project the high-luminosity (300 - 3000 fb-1 ) reach of LHC14 via gluino cascade decays and via same-sign diboson production. We compare these to the reach for neutralino pair production Z˜1Z˜2 followed by Z˜2→Z˜1ℓ+ℓ- decay to soft dileptons which recoil against a hard jet. It appears that 3000 fb-1 is just about enough integrated luminosity to probe naturalness with up to 3% fine-tuning at the 5 σ level, thus either discovering natural supersymmetry or else ruling it out.

  12. Physics of a high-luminosity Tau-Charm Factory

    SciTech Connect

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity ({approximately}10{sup 33}cm{sup {minus}2}s{sup {minus}1}) e{sup +}e{sup {minus}} collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in {tau} and charm physics are emphasized.

  13. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  14. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  15. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  16. LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION

    SciTech Connect

    Nierenberg, A. M.; Treu, T.; Auger, M. W.; Marshall, P. J.; Fassnacht, C. D.; Busha, Michael T.

    2012-06-20

    We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log{sub 10}[M*{sub h}/M{sub Sun }] > 10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology, and satellite luminosity. Exploiting the depth and resolution of the COSMOS Hubble Space Telescope images, we detect satellites up to 8 mag fainter than the host galaxies and as close as 0.3 (1.4) arcsec (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R){proportional_to}R{sup {gamma}{sub p}}, we find {gamma}{sub p} = -1.1 {+-} 0.3. We find no dependency of {gamma}{sub p} on host stellar mass, redshift, morphology, or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, possibly indicating that they reside in more massive halos. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using SubHalo Abundance Matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.

  17. LHC Abort Gap Cleaning Studies During Luminosity Operation

    SciTech Connect

    Gianfelice-Wendt, E.; Bartmann, W.; Boccardi, A.; Bracco, C.; Bravin, E.; Goddard, B.; Hofle, W.; Jacquet, D.; Jeff, A.; Kain, V.; Meddahi, M.; /CERN

    2012-05-11

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  18. An analytic method to compute star cluster luminosity statistics

    NASA Astrophysics Data System (ADS)

    da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael

    2014-03-01

    The luminosity distribution of the brightest star clusters in a population of galaxies encodes critical pieces of information about how clusters form, evolve and disperse, and whether and how these processes depend on the large-scale galactic environment. However, extracting constraints on models from these data is challenging, in part because comparisons between theory and observation have traditionally required computationally intensive Monte Carlo methods to generate mock data that can be compared to observations. We introduce a new method that circumvents this limitation by allowing analytic computation of cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. Our method is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. The method is fast enough to make it feasible for the first time to use Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values. We implement our method in a software package called the Cluster Luminosity Order-Statistic Code, which we have made publicly available.

  19. Designing the ATLAS trigger menu for high luminosities

    NASA Astrophysics Data System (ADS)

    Nakahama, Yu

    2012-12-01

    The LHC has a bunch-crossing rate of 20 MHz whereas the ATLAS detector has an average recording rate of about 400 Hz. To reduce the rate of events but still maintain a high efficiency for selecting interesting events needed by ATLAS physics analyses, a three-level trigger system is used in ATLAS. Events are selected based on the Trigger Menu, the definitions of the physics signatures the experiment triggers on. In the 2012 data taking since April, approximately 700 chains are used online. The menu must reflect not only the physics goals of the collaboration but also take into consideration the LHC luminosity and the strict DAQ limitations. An overview of the design, the validation and the performance of the trigger menu for the 2011 data-taking is given. During 2011, the menu had to evolve as the luminosity increase from below 2×1033 cm-2s-1 to almost 5×1033 cm-2s-1. Re-designing the menu for the up-coming high luminosity of around 1034 cm-2s-1 and large number of collision events that take place per each bunch crossing (pile-up) of around 35 interactions per bunch crossing at √s = 8 TeV is described. Initial performance in the 2012 data-taking is also reported.

  20. Luminosities of Barred and Unbarred S0 Galaxies

    NASA Astrophysics Data System (ADS)

    van den Bergh, Sidney

    2012-07-01

    Lenticular galaxies with MB < -21.5 are almost exclusively unbarred, whereas both barred and unbarred objects occur at fainter luminosity levels. This effect is observed both for objects classified in blue light, and for those that were classified in the infrared. This result suggests that the most luminous (massive) S0 galaxies find it difficult to form bars. As a result, the mean luminosity of unbarred lenticular galaxies in both B and IR light is observed to be ~0.4 mag brighter than that of barred lenticulars. A small contribution to the observed luminosity difference that is found between SA0 and SB0 galaxies may also be due to the fact that there is an asymmetry between the effects of small classification errors on SA0 and SB0 galaxies. An elliptical (E) galaxy might be misclassified as a lenticular (S0) or an S0 as an E. However, an E will never be misclassified as an SB0, nor will an SB0 ever be called an E. This asymmetry is important because E galaxies are typically twice as luminous as S0 galaxies. The present results suggest that the evolution of luminous lenticular galaxies may be closely linked to that of elliptical galaxies, whereas fainter lenticulars might be more closely associated with ram-pressure stripped spiral galaxies. Finally, it is pointed out that fine details of the galaxy formation process might account for some of the differences between the classifications of the same galaxy by individual competent morphologists.

  1. Disc outflows and high-luminosity true type 2 AGN

    NASA Astrophysics Data System (ADS)

    Elitzur, Moshe; Netzer, Hagai

    2016-06-01

    The absence of intrinsic broad-line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such `true type 2 AGN' are inherent to the disc-wind scenario for the broad-line region: broad-line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disc. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad-line emission can disappear at luminosities as high as ˜4 × 1046 erg s-1 and any Eddington ratio, though more detections can be expected at Eddington ratios below ˜1 per cent. Our results are applicable to every disc outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.

  2. Tidal dwarf galaxies and the luminosity-metallicity relation .

    NASA Astrophysics Data System (ADS)

    Sweet, S. M.; Drinkwater, M. J.; Meurer, G.; Bekki, K.; Dopita, M. A.; Kilborn, V.; Nicholls, D.

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M_R˜ -13. We use the \\citet{Dopita2013} metallicity calibrations to calibrate the relation for all of the data in this analysis. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M_R = -16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity. Our hydrodynamical simuations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M_R˜ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation. Further details of this analysis are available in Sweet et al. (2013, ApJ submitted).

  3. Luminosities for two yellow supergiants - Nonvariables and the instability strip

    NASA Technical Reports Server (NTRS)

    Evans, Nancy R.

    1993-01-01

    The luminosities for two yellow supergiants HD 183864 and Psi And = HD 223047 are determined from the IUE spectra of their hot companions. The absolute magnitudes of HD 183864 and HD 223047 are -2.3 and -2.1 mag, respectively, and their companions have spectral types of A0.0 V and B8.8 V. The companion of Psi And is compatible with the orbital motion tentatively detected by speckle interferometric observations. The supergiant luminosities are combined with the Cepheid luminosities determined in the same way, and also the variables and nonvariables from Schmidt's studies of open clusters. As found by Schmidt, the variable and nonvariable supergiants have almost no overlap in the HR diagram. The combined sample defines the locus of the helium burning blue loops of evolutionary tracks. Because no nonvariables are found to the blue of fainter Cepheids, the observed blue edge of the Cepheid region may be partly determined by the blue loops rather than by the region of pulsational instability.

  4. Applying the luminosity function statistics in the fireshell model

    NASA Astrophysics Data System (ADS)

    Rangel Lemos, L. J.; Bianco, C. L.; Ruffini, R.

    2015-12-01

    The luminosity function (LF) statistics applied to the data of BATSE, GBM/Fermi and BAT/Swift is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, and the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. We produced, by LF statistics, predicted distributions of: peak ux N(Fph pk), redshift N(z) and peak luminosity N(Lpk) for the three GRB classes predicted by Fireshell model; we also used three GRB rates. We looked for differences among the distributions, and in fact we found. We performed a comparison between the distributions predicted and observed (with and without redshifts), where we had to build a list with 217 GRBs with known redshifts. Our goal is transform the GRBs in a standard candle, where a alternative is find a correlation between the isotropic luminosity and the Band peak spectral energy (Liso - Epk).

  5. The Luminosity Dependence of the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Patton, D. R.; Atfield, J. E.

    2008-09-01

    We measure the number of companions per galaxy (Nc) as a function of r-band absolute magnitude for both the Sloan Digital Sky Survey and the Croton and coworkers semianalytic catalog applied to the Millennium Run simulation. For close pairs with projected separations of 5-20 h-1 kpc, velocity differences less than 500 km s-1, and luminosity ratios between 1:2 and 2:1, we find good agreement between the observations and simulations, with Nc consistently close to 0.02 over the range -22 < Mr < - 18. For larger pair separations, Nc(Mr) instead becomes increasingly steep toward the faint end, implying that luminosity-dependent clustering plays an important role on small scales. Using the simulations to assess and correct for projection effects, we infer that the real-space Nc(Mr) for close pairs peaks at about M* and declines by at least a factor of 2 as Mr becomes fainter. Conversely, by measuring the number density of close companions, we estimate that at least 90% of all major mergers occur between galaxies which are fainter than L*. Finally, measurements of the luminosity density of close companions indicate that L* galaxies likely dominate in terms of the overall importance of major mergers in the evolution of galaxy populations at low redshift.

  6. Luminosity-Distances of IUE observed Active Galaxies

    NASA Astrophysics Data System (ADS)

    Doddamani, Vijayakumar H.; Vedavathi, P.

    2014-07-01

    Active galaxies are the most luminous objects observed in the Universe and are believed to be powered by mass accretion processes taking place in the vicinity of the central Super massive black hole (M BH >= 108M sun ). However, the details of the power generation mechanisms are not understood well yet. In this paper, we are presenting a comparative study of luminosity-distance estimations for the complete sample of active galaxies observed by IUE satellite by different methods. IUE has made UV spectroscopic observations of nearly 400 active galaxies comprising mostly Seyfert 1 galaxies and quasars. We have chosen all the active galaxies observed by IUE satellite for the study of luminosity-distance with redshift. The luminosity-distances (D L ) have been calculated using the Hubbles law under non-relativistic and relativistic limits with H0 = 73 Km/sec/Mpc and Terrell (1979) also. We have found that all D L estimations are consistent with each other for z <= 1 and diverge for z >= 1. The results of cosmological calulator I and II are found to consistent with each other and higher by several factors over cosmological calculator IV and the predictions of the Hubble's law under relativistic case. We observe a kind bimodal distributions in D L for z <= 3.5.

  7. Quality Factor for the Hadronic Calorimeter in High Luminosity Conditions

    NASA Astrophysics Data System (ADS)

    Seixas, J. M.; ATLAS Tile Calorimeter System

    2015-05-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of ATLAS experiment of the Large Hadron Collider (LHC) and has about 10,000 eletronic channels. An Optimal Filter (OF) has been used to estimate the energy sampled by the calorimeter and applies a Quality Factor (QF) for signal acceptance. An approach using Matched Filter (MF) has also been pursued. In order to cope with the luminosity rising foreseen for LHC operation upgrade, different algorithms have been developed. Currently, the OF measurement for signal acceptance is implemented through a chi-square test. At a low luminosity scenario, such QF measurement has been used as a way to describe how the acquired signal is compatible to the pulse shape pattern. However, at high-luminosity conditions, due to pile up, this QF acceptance is no longer possible when OF is employed, and the QF becomes a measurement to indicate whether the reconstructed signal suffers or not from pile up. Methods are being developed in order to recover the superimposed information, and the QF may be used again as signal acceptance criterion. In this work, a new QF measurement is introduced. It is based on divergence statistics, which measures the similarity of probability density functions.

  8. Luminosity measurement method for the LHC: The detector requirement studies

    NASA Astrophysics Data System (ADS)

    Krasny, M. W.; Chwastowski, J.; Cyz, A.; Słowikowski, K.

    2013-11-01

    In our earlier paper [1] we have proposed a new luminosity measurement method for the LHC collider. It is based on the detection of lepton pairs produced in the peripheral collisions of the LHC beam particles and allows to reach better than 1% accuracy of the theoretical control of the event rate. In order to implement this method a new, specialized luminosity detector must be incorporated within the fiducial volume of one of the existing LHC detectors. In this paper the requirement studies for such a detector are presented. They are driven, almost exclusively, by its capacity to identify, within the level 1 trigger latency of the host detector, the bunch crossings with exclusive, coplanar pairs of opposite charge particles. It is shown that a tracking detector with the azimuthal hit resolution of 2 mrad allows us to reduce the rate of background events to the requisite O(1 kHz) level while retaining a sufficiently large fraction of the signal events for the precise luminosity measurement.

  9. Intermediate-luminosity events : bridge between CCSNe and SLSNe

    NASA Astrophysics Data System (ADS)

    Roy, Rupak

    2016-07-01

    Development on supernova research in last decade has confirmed that there is a distinct class of events which are more luminous (~ -21 mag) with broad peak than canonical core-collapse supernovae (CCSNe). These are superluminous supernovae (SLSNe). The powering mechanism of SLSNe are yet not resolved. Interaction of SN-shock with circumstellar medium (CSM), presence of a spin-down magnetar or pair-instability (PISNe) are the proposed theories. Although photometric and spectroscopic behaviors of SLSNe differ from those of CCSNe to some extent; the recent un-targeted surveys have found several events which fall in between these two classes, both in terms of peak luminosity and broadness of lightcurve. Study of these intermediate-luminosity events are important to understand the differences and similarities in powering mechanisms of CCSNe and SLSNe and hence the natures of their progenitors. In this contribution, we will discuss about the lightcurve and spectral behaviors of few such intermediate-luminosity events to explore the connection between powering mechanisms of CCSNe and SLSNe as well as the natures of their progenitors.

  10. Long period variable stars: galactic populations and infrared luminosity calibrations

    NASA Astrophysics Data System (ADS)

    Mennessier, M. O.; Mowlavi, N.; Alvarez, R.; Luri, X.

    2001-08-01

    In this paper HIPPARCOS astrometric and kinematic data are used to calibrate both infrared luminosities and kinematical parameters of Long Period Variable stars (LPVs). Individual absolute K and IRAS 12 and 25 luminosities of 800 LPVs are determined and made available in electronic form. The estimated mean kinematics is analyzed in terms of galactic populations. LPVs are found to belong to galactic populations ranging from the thin disk to the extended disk. An age range and a lower limit of the initial mass is given for stars of each population. A difference of 1.3 mag in K for the upper limit of the Asymptotic Giant Branch is found between the disk and old disk galactic populations, confirming its dependence on the mass in the main sequence. LPVs with a thin envelope are distinguished using the estimated mean IRAS luminosities. The level of attraction (in the classification sense) of each group for the usual classifying parameters of LPVs (variability and spectral types) is examined. Table only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRID database (http://astrid.graal.univ-montp2.fr).

  11. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    PubMed

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P < 0.0001). Characteristic 8 keV X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  12. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    SciTech Connect

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  13. A Systematic Search for Molecular Outflows Toward Candidate Low-luminosity Protostars and Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int <= 0.1 L ⊙). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in 12CO and 13CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  14. 41 CFR 60-2.10 - General purpose and contents of affirmative action programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false General purpose and contents of affirmative action programs. 60-2.10 Section 60-2.10 Public Contracts and Property Management...) An affirmative action program is a management tool designed to ensure equal employment opportunity....

  15. 41 CFR 60-2.10 - General purpose and contents of affirmative action programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Identification of problem areas; (iii) Action-oriented programs; and (iv) Periodic internal audits. (c... programs also include internal auditing and reporting systems as a means of measuring the contractor's... contents of affirmative action programs. 60-2.10 Section 60-2.10 Public Contracts and Property...

  16. Large X-ray flares on stars detected with MAXI/GSC: A universal correlation between the duration of a flare and its X-ray luminosity

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko; Yamazaki, Kyohei; Sugawara, Yasuharu; Kawagoe, Atsushi; Kaneto, Soichiro; Iizuka, Ryo; Matsumura, Takanori; Nakahira, Satoshi; Higa, Masaya; Matsuoka, Masaru; Sugizaki, Mutsumi; Ueda, Yoshihiro; Kawai, Nobuyuki; Morii, Mikio; Serino, Motoko; Mihara, Tatehiro; Tomida, Hiroshi; Ueno, Shiro; Negoro, Hitoshi; Daikyuji, Arata; Ebisawa, Ken; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kitayama, Hiroki; Kohama, Mitsuhiro; Kotani, Taro; Nakagawa, Yujin E.; Nakajima, Motoki; Ozawa, Hiroshi; Shidatsu, Megumi; Sootome, Tetsuya; Sugimori, Kousuke; Suwa, Fumitoshi; Tsunemi, Hiroshi; Usui, Ryuichi; Yamamoto, Takayuki; Yamaoka, Kazutaka; Yoshida, Atsumasa

    2016-10-01

    Twenty-three giant flares from thirteen active stars (eight RS CVn systems, one Algol system, three dMe stars, and one young stellar object) were detected during the first two years of our all-sky X-ray monitoring with the gas propotional counters (GSC) of the Monitor of All-sky X-ray Image (MAXI). The observed parameters of all these MAXI/GSC flares are found to be at the upper ends for stellar flares with the luminosity of 1031-34 erg s-1 in the 2-20 keV band, the emission measure of 1054-57 cm-3, the e-folding time of 1 hr to 1.5 d, and the total radiative energy released during the flare of 1034-39 erg. Notably, the peak X-ray luminosity of 5^{+4}_{-2} × 10^{33}erg s-1 in the 2-20 keV band was detected in one of the flares on II Peg, which is one of the, or potentially the, largest-ever-observed in stellar flares. X-ray flares were detected from GT Mus, V841 Cen, SZ Psc, and TWA-7 for the first time in this survey. Whereas most of our detected sources are multiple-star systems, two of them are single stars (YZ CMi and TWA-7). Among the stellar sources within 100 pc distance, the MAXI/GSC sources have larger rotation velocities than the other sources. This suggests that the rapid rotation velocity may play a key role in generating large flares. Combining the X-ray flare data of nearby stars and the sun, taken from literature and our own data, we discovered a universal correlation of τ ∝ L_X^{0.2} for the flare duration τ and the intrinsic X-ray luminosity LX in the 0.1-100 keV band, which holds for 5 and 12 orders of magnitude in τ and LX, respectively. The MAXI/GSC sample is located at the highest ends of the correlation.

  17. A multiparametric analysis of the Einstein sample of early-type galaxies. 1: Luminosity and ISM parameters

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the luminosity and interstellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992). We find a strong nonlinear correlation between L(sub B) and L(sub X), with a power-law slope of 1.8 +/- 0.1, steepening to 2.0 +/- if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies with log L(sub X) less than or equal to 40.5, we instead find a slope of 1.0 +/- 0.2 (with or without the Local Group dwarfs). Although E and S0 galaxies have consistent slopes for their L(sub B)-L(sub X) relationships, the mean values of the distribution functions of both L(sub X) and L(sub X)/L(sub B) for the S0 galaxies are lower than those for the E galaxies at the 2.8 sigma and 3.5 sigma levels, respectively. We find clear evidence for a correlation between L(sub X) and the X-ray color C(sub 21), defined by Kim, Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below 1 keV in the sense that low-L(sub X) systems have relatively large contributions from a soft component compared with high-L(sub X) systems. We find evidence from our analysis of the 12 micron IRAS data for our sample that our S0 sample has excess 12 micron emission compared with the E sample, scaled by their optical luminosities. This may be due to emission from dust heated in star-forming regions in S0 disks. This interpretation is reinforced by the existence of a strong L(sub 12)-L(sub 100) correlation for our S0 sample that is not found for the E galaxies, and by an analysis of optical-IR colors. We find steep slopes for power-law relationships between radio luminosity and optical, X-ray, and far-IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as

  18. Discovery of a low-luminosity spiral DRAGN

    NASA Astrophysics Data System (ADS)

    Mulcahy, D. D.; Mao, M. Y.; Mitsuishi, I.; Scaife, A. M. M.; Clarke, A. O.; Babazaki, Y.; Kobayashi, H.; Suganuma, R.; Matsumoto, H.; Tawara, Y.

    2016-11-01

    Standard galaxy formation models predict that large-scale double-lobed radio sources, known as DRAGNs, will always be hosted by elliptical galaxies. In spite of this, in recent years a small number of spiral galaxies have also been found to host such sources. These so-called spiral DRAGNs are still extremely rare, with only 5 cases being widely accepted. Here we report on the serendipitous discovery of a new spiral DRAGN in data from the Giant Metrewave Radio Telescope (GMRT) at 322 MHz. The host galaxy, MCG+07-47-10, is a face-on late-type Sbc galaxy with distinctive spiral arms and prominent bulge suggesting a high black hole mass. Using WISE infra-red and GALEX UV data we show that this galaxy has a star formation rate of 0.16-0.75 M⊙ yr-1, and that the radio luminosity is dominated by star-formation. We demonstrate that this spiral DRAGN has similar environmental properties to others of this class, but has a comparatively low radio luminosity of L1.4 GHz = 1.12 × 1022 W Hz-1, two orders of magnitude smaller than other known spiral DRAGNs. We suggest that this may indicate the existence of a previously unknown low-luminosity population of spiral DRAGNS. FITS cutout image of the observed spiral DRAGN MCG+07-47- 10 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/L8

  19. Toward a Pop II Mass-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Rubenstein, Eric P.; Orosz, Jerome A.; Deliyannis, Constantine; Demarque, Pierre

    1999-08-01

    The observing runs contained within this proposal are part of a long term goal of constraining the variation of the Mass-Luminosity Relation as a function of composition. Using a sequence of Mosaic II images (U,V,R,I & H-alpha) we propose to make a detailed study of binaries and the general population of 2 globular clusters and three open clusters. The specific clusters were selected to have a wide range of chemical composition, from -2.2 <=[Fe/H]<=0.2. I will make a sensitive search for main-sequence binary stars, blue straggler stars, SX Phe pulsators and cataclysmic variables and construct a precise CMD to search for evidence of a binary sequence. The luminosity function of M30 will be compared with that derived from my team's HST data of that cluster's core (HST-GO-7379). Comparison of these two data sets, combined with Yale stellar evolutionary models (with co-I Demarque) will allow me to study the degree of mass segregation in this dynamically evolved cluster. As part of my ongoing project to constrain the Pop II Mass-Luminosity Relation (NSF-9902667) I will follow-up the detection of any detached main-sequence binaries with spectroscopic observations (with co-Is Orosz & Deliyannis) to determine the masses of the components. We also propose to obtain spectroscopic observations of an uncrowded binary candidate detected during previous work on NGC 6752. If this object and other binaries we hope to detect are double- lined spectroscopic binaries, our observations of radial velocity variations will allow the precise determination of masses. Single-lined spectroscopic binaries will allow us to derive the mass-ratio of the systems and begin to constrain the unknown mass-ratio distribution of binaries in clusters. I will be spending this coming year at CTIO on an NSF fellowship specifically to pursue this project.

  20. RESULTS FROM LUMINOSITY SCANS DURING THE RHIC 2000 RUN.

    SciTech Connect

    DREES,A.; XU,Z.

    2001-06-18

    During the year 2000 run a total of eight beam scans (Vernier Scans) were performed at various interaction points (IF) at RHIC. During a Vernier Scan the experimental collision rates are recorded while the beams are stepwise scanned across each other. Vernier Scans yield transverse beam sizes as well as maximum luminosity and thus the absolute cross section, which with the limited data from the 2000 run we measured to be {sigma} = 8.9 {+-} 0.3 barn at ({radical}s{sub NN}) = 130 GeV. Also, Vernier Scans permit performance studies of the beam orbit control and local coupling.

  1. IUE observations of blue halo high luminosity stars

    NASA Technical Reports Server (NTRS)

    Hack, M.; Franco, M. L.; Stalio, R.

    1981-01-01

    Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.

  2. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  3. The deep luminosity function of the globular cluster M30

    NASA Technical Reports Server (NTRS)

    Piotto, Giampaolo; King, Ivan R.; Capaccioli, Massimo; Ortolani, Sergio; Djorgovski, S.

    1990-01-01

    An effort is made to determine the mass function in low-metallicity, postcore-collapse globular cluster M30, as well as to analyze its radial trend, using new deep CCD photometry. It is confirmed that oxygen-enhanced isochrones yield a good representation of the color-magnitude diagrams. Luminosity functions are constructed and corrected for for field-object contamination and incompleteness. The data presented agree with the power-law trend ascertained by Pryor et al. (1986) for a multimass King-Michie model, yielding a global slope of 0.7.

  4. The deep luminosity function of the globular cluster M30

    SciTech Connect

    Piotto, G.; King, I.R.; Capaccioli, M.; Ortolani, S.; Djorgovski, S. California Univ., Berkeley Osservatorio Astronomico, Padua California Institute of Technology, Pasadena )

    1990-02-01

    An effort is made to determine the mass function in low-metallicity, postcore-collapse globular cluster M30, as well as to analyze its radial trend, using new deep CCD photometry. It is confirmed that oxygen-enhanced isochrones yield a good representation of the color-magnitude diagrams. Luminosity functions are constructed and corrected for for field-object contamination and incompleteness. The data presented agree with the power-law trend ascertained by Pryor et al. (1986) for a multimass King-Michie model, yielding a global slope of 0.7. 29 refs.

  5. The deep luminosity function of the globular cluster M30

    NASA Astrophysics Data System (ADS)

    Piotto, Giampaolo; King, Ivan R.; Capaccioli, Massimo; Ortolani, Sergio; Djorgovski, S.

    1990-02-01

    An effort is made to determine the mass function in low-metallicity, postcore-collapse globular cluster M30, as well as to analyze its radial trend, using new deep CCD photometry. It is confirmed that oxygen-enhanced isochrones yield a good representation of the color-magnitude diagrams. Luminosity functions are constructed and corrected for for field-object contamination and incompleteness. The data presented agree with the power-law trend ascertained by Pryor et al. (1986) for a multimass King-Michie model, yielding a global slope of 0.7.

  6. Calibration of gamma-ray burst luminosity indicators

    NASA Astrophysics Data System (ADS)

    Liang, Enwei; Zhang, Bing

    2006-06-01

    Several gamma-ray burst (GRB) luminosity indicators have been proposed which can be generally written in the form of , where c is the coefficient, xi is the ith observable, and ai is its corresponding power-law index. Unlike in Type Ia supernovae, calibration of GRB luminosity indicators using a low-redshift sample is difficult. This is because the GRB rate drops rapidly at low redshifts, and some nearby GRBs may be different from their cosmological brethren. Calibrating the standard candles using GRBs in a narrow redshift range (Δz) near a fiducial redshift has been proposed recently. Here we elaborate such a possibility and propose to calibrate {ai} based on the Bayesian theory and to marginalize the c value over a reasonable range of cosmological parameters. We take our newly discovered multivariable GRB luminosity indicator, Eiso=cEa1pta2b, as an example and test the validity of this approach through simulations, where Eiso is the isotropic energy of prompt gamma-rays, Ep is the spectral break energy, and tb is the temporal break time of the optical afterglow light curve. We show that while c strongly depends on the cosmological parameters, neither a1 nor a2 does as long as Δz is small enough. The selection of Δz for a particular GRB sample could be judged according to the size and the observational uncertainty of the sample. There is no preferable redshift to perform the calibration of the indices {ai}, while a lower redshift is preferable for c-marginalization. The best strategy would be to collect GRBs within a narrow redshift bin around a fiducial intermediate redshift (e.g. zc~ 1 or zc~ 2), as the observed GRB redshift distribution is found to peak around this range. Our simulation suggests that with the current observational precisions of measuring Eiso, Ep and tb, 25 GRBs within a redshift bin of Δz~ 0.30 would give fine calibration to the Liang-Zhang luminosity indicator.

  7. Radiation environment and shielding for a high luminosity collider detector

    SciTech Connect

    Diwan, M.V.; Fisyak, Y.; Mokhov, N.V.

    1995-12-01

    Detectors now under design for use in the proposed high energy high luminosity colliders must deal with unprecedented radiation levels. We have performed a comprehensive study for the GEM detector at the SSC to determine the best way to shield critical detector components from excessive radiation, with special attention paid to the low energy neutrons and photons. We have used several detailed Monte-Carlo simulations to calculate the particle fluxes in the detector. We describe these methods and demonstrate that two orders of magnitude reduction in the neutron and photon fluxes can be obtained with appropriate shielding of critical forward regions such as the low beta quadrupoles and the forward calorimeter.

  8. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  9. HEAO 3 upper limits to the expected 1634 KeV line from SS 483

    NASA Technical Reports Server (NTRS)

    Wheaton, W. A.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.

    1985-01-01

    A model based on 24 Mg(1369) was developed as the source of the lines in which refractory grains in the jets, containing Mg and 0, are bombarded, by ambient protons in the local ISM. The narrowness of the features results because the recoil Mg nucleus is stopped in the grain before the 1369 keV excited state decays. A consequence of the 24 Mg interpretation is the expected appearance of other emission lines, due to 20 Ne and 20 Na, which are produced by proton bombardment of 24 Mg at the 33 MeV/nucleon energy corresponding to the velocity of the jets. These lines appear at rest energies of 1634 keV and 1636 keV, respectively, and should have essentially the same total flux as that emited at 1369 keV. The HEAO 3 data are examined to search for the 1634 keV (rest) emission. The observation and analysis, the results, and the implications for the understanding of SS 433 are discussed.

  10. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    NASA Astrophysics Data System (ADS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-06-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ~7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to `imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ~3.5 keV line.

  11. CdZnTe x-ray detector for 30 {endash} 100 keV energy

    SciTech Connect

    Yoo, S.-S.; Rodricks, B.; Shastri, S.D.; Montano, P.A.

    1996-07-01

    High-pressure-Bridgman (HPB) grown CdZnTe x-ray detectors 1.25-1.7 mm thick were tested using monochromatic x-rays of 30 to 100 keV generated by a high energy x-ray generator. The results were compared with a commercially available 5 cm thick NaI detector. A linear dependence of the counting rate versus the x-ray generator tube current was observed at 58.9 keV. The measured pulse height of the photopeaks shows a linear dependence on energy. Electron and hole mobility-lifetime products ({mu}{tau}) were deduced by fitting bias dependent photopeak channel numbers at 30 keV x-ray energy. Values of 2 x 10{sup -3} cm{sup 2}/V and 2 x 10{sup -4}cm{sup 2}/V were obtained for {mu}{tau}{sub e} and {mu}{tau}{sub p}, respectively. The detector efficiency of CdZnTe at a 100 V bias was as high as, or higher than 90 % compared to a NaI detector. At x-ray energies higher than 70 keV, the detection efficiency becomes a dominant factor and decreases to 75 % at 100 keV.

  12. Spatial distribution of upstream magnetospheric geq50 keV ions

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Argyropoulos, G.; Kaliabetsos, G.

    2000-01-01

    We present for the first time a statistical study of geq50 keV ion events of a magnetospheric origin upstream from Earth's bow shock. The statistical analysis of the 50-220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s-1 and values of the index Kp > 2. The statistical results are consistent with (1) preferential leakage of sim50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of sim50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290-500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between sim16%-sim34% in the upstream region.

  13. The GRB luminosity function: prediction of the internal shock model and comparison to observations

    SciTech Connect

    Zitouni, H.; Daigne, F.; Mochkovitch, R.

    2008-05-22

    We compute the expected GRB luminosity function in the internal shock model. We find that if the population of GRB central engines produces all kind of relativistic outflows, from very smooth to highly variable, the luminosity function has to branchs: at low luminosity, the distribution is dominated by low efficiency GRBs and is close to a power law of slope -0.5, whereas at high luminosity, the luminosity function follows the distribution of injected kinetic power. Using Monte Carlo simulations and several observational constrains (BATSE logN-logP diagram, peak energy distribution of bright BATSE bursts, fraction of XRFs in the HETE2 sample), we show that it is currently impossible to distinguish between a single power law or a broken power law luminosity function. However, when the second case is considered, the low-luminosity slope is found to be -0.6{+-}0.2, which is compatible with the prediction of the internal shock model.

  14. TURBULENT CELLS IN STARS: FLUCTUATIONS IN KINETIC ENERGY AND LUMINOSITY

    SciTech Connect

    Arnett, W. David; Meakin, Casey E-mail: casey.meakin@gmail.com

    2011-11-01

    Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a general instability of the convective cell, requiring only a localized source of heating or cooling. Such fluctuations are shown to be suppressed in simulations of stellar evolution which use the mixing-length theory. Quantitatively similar behavior occurs in the model of a convective roll (cell) of Lorenz, which is known to have a strange attractor that gives rise to chaotic fluctuations in time of velocity and, as we show, luminosity. Study of simulations suggests that the behavior of a Lorenz convective roll may resemble that of a cell in convective flow. We examine some implications of this simplest approximation and suggest paths for improvement. Using the Lorenz model as representative of a convective cell, a multiple-cell model of a convective layer gives total luminosity fluctuations which are suggestive of irregular variables (red giants and supergiants), and of the long secondary period feature in semiregular asymptotic giant branch variables. This '{tau}-mechanism' is a new source for stellar variability, which is inherently nonlinear (unseen in linear stability analysis), and one closely related to intermittency in turbulence. It was already implicit in the 3D global simulations of Woodward et al. This fluctuating behavior is seen in extended two-dimensional simulations of CNeOSi burning shells, and may cause instability which leads to eruptions in progenitors of core-collapse supernovae prior to collapse.

  15. Colorblind vision; luminosity losses in the spectrum for dichromats.

    PubMed

    HECHT, S; HSIA, Y

    1947-11-20

    1. Measurements have been made of the dark-adapted foveal threshold of normal and colorblind persons in five parts of the spectrum using a 1 degrees circular test field. 2. Compared to normals, protanopes (red-blinds) show an elevation of the threshold which increases slowly from blue to yellow and rises rapidly thereafter until in the red the threshold is more than ten times as high as normal. Deuteranopes (green-blinds) do not show so high an elevation, their maximum in the green being only about 70 per cent above normal. 3. These threshold elevations correspond to luminosity losses in the spectrum. For the protanope the total loss in the spectrum is nearly one-half of the normal luminosity; for the deuteranope it is nearly two-fifths of normal. 4. Such losses support the idea that colorblindness corresponds to the loss of one of the three receptor systems usually postulated to account for normal color vision. However, the color sensations reported by colorblind persons, especially monocular colorblinds, do not support the idea of a lost or inactivated receptor system. A fresh explanation for colorblindness is called for to reconcile these conflicting kinds of evidence. PMID:18896937

  16. Low-luminosity stellar mass functions in globular clusters

    SciTech Connect

    Richer, H.B.; Fahlman, G.G.; Buonanno, R.; Fusi Pecci, F. Roma Osservatorio Astronomico, Rome Bologna Universita )

    1990-08-01

    New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1) all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.

  17. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  18. FORCAST Spectroscopy of Orion Protostars: Probing Intermediate Luminosities

    NASA Astrophysics Data System (ADS)

    Megeath, Tom

    2015-10-01

    We propose FORECAST low resolution spectroscopy of seven protostars in the Orion molecular clouds. These protostars have luminosities between those of low mass protostars which were the primary focus of the Herschel Orion Protostar Survey (HOPS) and those of the high mass protostars in the Orion Nebula. Although we have constructed 1-870 micron SEDs from 2MASS, Spitzer, Herschel and APEX photometry of these intermediate (40-600 Lsun) luminosity protostars, we do not have Spitzer IRS spectra showing the shape and depth of the 10 micron silicate features and the slope of the mid-IR spectral energy distribution (SED). Given the importance of such spectra for constraining the properties of the protostars through radiative transfer modeling, we request time to obtain FORCAST FOR-G111 (8.4-13.7 micron) and FOR-G227 (17.6-27.7 micron) grism spectra. With these data, we can extend our study of protostars in Orion to include a sample of more luminous protostar which are expected to include both intermediate mass protostars and low mass protostars undergoing outbursts. To investigate potential variability between Spitzer and WISE epochs, we also request photomety of a protostar potentially undergoing an episodic outburst.

  19. Radio variability survey of very low luminosity protostars

    SciTech Connect

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  20. SMA Observations on a Very Low Luminosity Object

    NASA Astrophysics Data System (ADS)

    Hung, Chao-Ling; Lai, S.; Ohashi, N.; Lee, C.; Karr, J.; Takahashi, S.; Ching, T.

    2010-01-01

    Studying young stellar objects with extremely low luminosity (Very Low Luminosity Objects, VeLLOs) provide us great opportunity for investigating the initial conditions of star formation and the formation of brown dwarfs. We study the dynamical and chemical properties of a VeLLO - DCE 065 using Submillimeter Array (SMA). The most promising result from DCE 065 is that both CO and N2D+ are depleted toward the protostar, confirming that the core is extremely young. We also detect high velocity red and blue shifted components in 12CO, suggesting the possible outflow activities. Although the missing flux prevents us to see the whole picture of the outflows, the proto (or pseudo) disk is clearly detected in the dust continuum and N2D+. The N2D+ line is extremely narrow ( 0.2 km/s) and the line width is comparable to its velocity gradient across the major axis. Assuming the rotation of proto disk is contributed by central protostar, the derived mass of central star is 0.02 solar mass. With the consideration of the sub solar mass envelope, DCE 065 may present a scenario that a brown dwarf can be formed from the collapsing processes of a core. CLH and SPL are supported by National Science Council of Taiwan under grant NSC 96-2112-M-007-019-MY2 and NSC 98-2112-M-007-007-MY3.

  1. Degeneracy at 1871 keV in Cd112 and implications for neutrinoless double electron capture

    NASA Astrophysics Data System (ADS)

    Green, K. L.; Garrett, P. E.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Colosimo, S.; Cross, D.; Demand, G. A.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Wood, J. L.; Yates, S. W.

    2009-09-01

    High-statistics β-decay measurements of Ag112 and In112 were performed to study the structure of the Cd112 nucleus. The precise energies of the doublet of levels at 1871 keV, for which the 0+ member has been suggested as a possible daughter state following neutrinoless double electron capture of Sn112, were determined to be 1871.137(72) keV (04+ level) and 1870.743(54) keV (42+ level). The nature of the 04+ level, required for the calculation of the nuclear matrix element that would be needed to extract a neutrino mass from neutrinoless double electron capture to this state, is suggested to be of intruder origin.

  2. Evaluation of the 1077 keV γ-ray emission probability from 68Ga decay

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Long; Jiang, Li-Yang; Chen, Xiong-Jun; Chen, Guo-Chang

    2014-04-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72±0.16)%.

  3. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  4. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  5. The X-Ray Luminosity Function of M37 and the Evolution of Coronal Activity in Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Agüeros, Marcel A.

    2016-10-01

    We use a 440.5 ks Chandra observation of the ≈500 Myr old open cluster M37 to derive the X-ray luminosity functions of its ≤1.2 {M}ȯ stars. Combining detections of 162 M37 members with upper limits for 160 non-detections, we find that its G, K, and M stars have a similar median (0.5–7 keV) X-ray luminosity {L}{{X}}={10}29.0 {erg} {{{s}}}-1, whereas the {L}{{X}}-to-bolometric-luminosity ratio ({L}{{X}}/{L}{bol}) indicates that M stars are more active than G and K stars by ≈ 1 order of magnitude at 500 Myr. To characterize the evolution of magnetic activity in low-mass stars over their first ≈ 600 {{Myr}}, we consolidate X-ray and optical data from the literature for stars in six other open clusters: from youngest to oldest they are, the Orion Nebula Cluster (ONC), NGC 2547, NGC 2516, the Pleiades, NGC 6475, and the Hyades. For these, we homogenize the conversion of instrumental count rates to {L}{{X}} by applying the same one-temperature emission model as for M37, and obtain masses using the same empirical mass-absolute magnitude relation (except for the ONC). We find that for G and K stars X-ray activity decreases ≈ 2 orders of magnitude over their first 600 Myr, and for M stars, ≈1.5. The decay rate of the median {L}{{X}} follows the relation {L}{{X}}\\propto {t}b, where b=-0.61+/- 0.12 for G stars, ‑0.82 ± 0.16 for K stars, and ‑0.40 ± 0.17 for M stars. In {L}{{X}}/{L}{bol} space, the slopes are ‑0.68 ± 0.12, ‑0.81 ± 0.19, and ‑0.61 ± 0.12, respectively. These results suggest that for low-mass stars the age-activity relation steepens after ≈ 625 {{Myr}}, consistent with the faster decay in activity observed in solar analogs at t\\gt 1 {{Gyr}}.

  6. Improvements in the X-ray luminosity function and constraints on the cosmological parameters from X-ray luminous clusters

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Costa, V.; Lanzafame, G.

    2010-05-01

    Aims: We improve the current constraints on Ω_m, the dark-energy equation-of-state parameter, w, and σ_8, obtained from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS, and the REFLEX galaxy cluster samples with luminosities L > 3 × 1044 erg/s in the 0.1-2.4 keV band. Methods: To this aim, we use Tinker and collaborators mass function instead of Jenkins and collaborators and the mass-luminosity relationship obtained by Del Popolo and collaborators. Results: Using the same methods and priors as Mantz and collaborators, we find Ω_m = 0.28+0.05-0.04 and σ_8 = 0.78+0.04-0.05, for a ΛCDM universe, while the result of Mantz and collaborators gives less tight constraints Ω_m = 0.28+0.11-0.07 and σ_8 = 0.78+0.11-0.13. In the case of a wCDM model, we find Ω_m = 0.27+0.07-0.06, σ_8 = 0.81+0.05-0.06 and w = -1.3+0.3-0.4, while in Mantz and collaborators they are again less tight Ω_m = 0.24+0.15-0.07, σ_8 = 0.85+0.13-0.20 and w = -1.4+0.4-0.7. Combining the XLF analysis with the fgas+CMB+SNIa data set results in the constraint Ω_m = 0.269 ± 0.012, σ_8 = 0.81 ± 0.021 and w = -1.02 ± 0.04, to be compared with Mantz and collaborators, Ω_m = 0.269 ± 0.016, σ_8 = 0.82 ± 0.03 and w = -1.02 ± 0.06. The tightness of the last constraints obtained by Mantz and collaborators, are fundamentally due to the tightness of the fgas+CMB+SNIa constraints and not to their XLF analysis. Our findings, consistent with w = -1, lend additional support to the cosmological-constant model.

  7. Relative biological effectiveness of 280 keV neutrons for apoptosis in human lymphocytes.

    PubMed

    Ryan, L A; Wilkins, R C; McFarlane, N M; Sung, M M; McNamee, J P; Boreham, D R

    2006-07-01

    The relative biological effectiveness (RBE) of neutrons varies from unity to greater than ten depending upon neutron energy and the biological endpoint measured. In our study, we examined apoptosis in human lymphocytes to assess the RBE of low energy 280 keV neutrons compared to Cs gamma radiation and found the RBE to be approximately one. Similar results have been observed for high energy neutrons using the same endpoint. As apoptosis is a major process that influences the consequences of radiation exposure, our results indicate that biological effect and the corresponding weighting factors for 280 keV neutrons may be lower in some cell types and tissues.

  8. 3.55 keV line in minimal decaying dark matter scenarios

    SciTech Connect

    Arcadi, Giorgio; Covi, Laura; Dradi, Federico

    2015-07-20

    We investigate the possibility of reproducing the recently reported 3.55 keV line in some simple decaying dark matter scenarios. In all cases a keV scale decaying DM is coupled with a scalar field charged under SM gauge interactions and thus capable of pair production at the LHC. We will investigate how the demand of a DM lifetime compatible with the observed signal, combined with the requirement of the correct DM relic density through the freeze-in mechanism, impacts the prospects of observation at the LHC of the decays of the scalar field.

  9. First measurement of the antiproton-nucleus annihilation cross section at 125 keV

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; De Salvador, D.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Seiler, D.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.

    2015-08-01

    The first observation of in-flight antiproton-nucleus annihilation at ˜130 keV obtained with the ASACUSA detector has demonstrated that the measurement of the cross section of the process is feasible at such extremely low energies Aghai-Khozani, H., et al., Eur. Phys. J. Plus 127, 55 (2012). Here we present the results of the data analysis with the evaluations of the antiproton annihilation cross sections on carbon, palladium and platinum targets at ˜125 keV.

  10. Implications of Lag-Luminosity Relationship for Unified GRB Paradigms

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Spectral lags (tau(sub lag)) are deduced for 1437 long (T(sub 90) greater than 2 s) BATSE gamma-ray bursts (GRBs) with peak flux F(sub p) greater than 0.25 photons cm(sup -2)/s, near to the BATSE trigger threshold. The lags are modeled to approximate the observed distribution in the F(sub p)-T(sub lag) plane, realizing a noise-free representation. Assuming a two-branch lag-luminosity relationship, the lags are self-consistently corrected for cosmological effects to yield distributions in luminosity, distance, and redshift. The results have several consequences for GRB populations and for unified gamma-ray/afterglow scenarios which would account for afterglow break times and gamma-ray spectral evolution in terms of jet opening angle, viewing angle, or a profiled jet with variable Lorentz factor: A component of the burst sample is identified - those with few, wide pulses, lags of a few tenths to several seconds, and soft spectra - whose Log[N]-Log[F(sub p)] distribution approximates a -3/2 power-law, suggesting homogeneity and thus relatively nearby sources. The proportion of these long-lag bursts increases from negligible among bright BATSE bursts to approx. 50% at trigger threshold. Bursts with very long lags, approx. 1-2 less than tau(sub lag) (S) less than 10, show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of approx. -0.10 +/- 0.04. GRB 980425 (SN 1998bw) is a member of this subsample of approx. 90 bursts with estimated distances less than 100 Mpc. The frequency of the observed ultra-low luminosity bursts is approx. 1/4 that of SNe Ib/c within the same volume. If truly nearby, the core-collapse events associated with these GRBs might produce gravitational radiation detectable by LIGO-II. Such nearby bursts might also help explain flattening of the cosmic ray spectrum at ultra-high energies, as observed by AGASA.

  11. The X-ray luminosity-temperature relation of a complete sample of low-mass galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zou, S.; Maughan, B. J.; Giles, P. A.; Vikhlinin, A.; Pacaud, F.; Burenin, R.; Hornstrup, A.

    2016-11-01

    We present Chandra observations of 23 galaxy groups and low-mass galaxy clusters at 0.03 < z < 0.15 with a median temperature of {˜ }2{keV}. The sample is a statistically complete flux-limited subset of the 400 deg2 survey. We investigated the scaling relation between X-ray luminosity (L) and temperature (T), taking selection biases fully into account. The logarithmic slope of the bolometric L-T relation was found to be 3.29 ± 0.33, consistent with values typically found for samples of more massive clusters. In combination with other recent studies of the L-T relation, we show that there is no evidence for the slope, normalization, or scatter of the L-T relation of galaxy groups being different than that of massive clusters. The exception to this is that in the special case of the most relaxed systems, the slope of the core-excised L-T relation appears to steepen from the self-similar value found for massive clusters to a steeper slope for the lower mass sample studied here. Thanks to our rigorous treatment of selection biases, these measurements provide a robust reference against which to compare predictions of models of the impact of feedback on the X-ray properties of galaxy groups.

  12. The effect of advection at luminosities close to Eddington: The ULX in M 31

    NASA Astrophysics Data System (ADS)

    Straub, O.; Done, C.; Middleton, M.

    2013-05-01

    The transient, ultra-luminous X-ray source CXOM31 J004253.1+411422 in the Andromeda galaxy is most likely a 10 solar mass black hole, with super-Eddington luminosity at its peak. The XMM-Newton spectra taken during the decline then trace luminosities of 0.86-0.27 LEdd. These spectra are all dominated by a hot disc component, which roughly follows a constant inner radius track in luminosity and temperature as the source declines. At the highest luminosity the disc structure should change due to advection of radiation through the disc. This advected flux can be partly released at lower radii thus modifying the spectral shape. To study the effect of advection at luminosities close to Eddington we employ a fully relativistic slim disc model, SLIMBH, that includes advective cooling and full radiative transfer through the photosphere based on tlusty. The model also incorporates relativistic photon ray-tracing from the proper location of the disc photosphere rather than the mid-plane as the slim disc is no longer geometrically thin. We find that these new models differ only slightly from the non-advective (standard) BHSPEC models even at the highest luminosities considered here. While both discs can fit the highest luminosity data, neither is a very good fit to the lower luminosities. This could indicate a missing physical process that acts in low luminosity discs and subsides as the disc luminosity approaches the Eddington limit.

  13. 60 micron luminosity evolution of rich clusters of galaxies

    SciTech Connect

    Kelly, D.M.; Rieke, G.H. )

    1990-10-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.

  14. 60 micron luminosity evolution of rich clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kelly, Douglas M.; Rieke, George H.

    1990-01-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range.

  15. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  16. On the maximum luminosity in X-ray bursts

    NASA Technical Reports Server (NTRS)

    Van Paradijs, J.

    1981-01-01

    A qualitative model is proposed which relates the burst behavior of 1608-52 observed by Murakami et al (1980) to the composition of the envelope in which the X-ray bursts occur. The model provides an explanation for the large scatter in the peak fluxes when the accretion rate is high. A flux would be transported outward at the top of the convective region which equals 1.5 to 2 times the Eddington limit appropriate to a helium-rich gas. Upon traversing the outer part of the accreted layer, which is not affected by the nuclear processes and is therefore hydrogen-rich, this flux is about a factor of 3 to 4 higher than the local value of the Eddington luminosity.

  17. Distances, luminosities, and temperatures of the coldest known substellar objects.

    PubMed

    Dupuy, Trent J; Kraus, Adam L

    2013-09-27

    The coolest known brown dwarfs are our best analogs to extrasolar gas-giant planets. The prolific detections of such cold substellar objects in the past 2 years have spurred intensive follow-up, but the lack of accurate distances is a key gap in our understanding. We present a large sample of precise distances based on homogeneous mid-infrared astrometry that robustly establishes absolute fluxes, luminosities, and temperatures. The coolest brown dwarfs have temperatures of 400 to 450 kelvin and masses almost equal to 5 to 20 times that of Jupiter, showing they bridge the gap between hotter brown dwarfs and gas-giant planets. At these extremes, spectral energy distributions no longer follow a simple correspondence with temperature, suggesting an increasing role of other physical parameters, such as surface gravity, vertical mixing, clouds, and metallicity.

  18. Intermediate luminosity optical transients during the grazing envelope evolution (GEE)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-08-01

    By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas from the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational binding energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.

  19. Levitating atmospheres of Eddington-luminosity neutron stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek; Sądowski, Aleksander; Kluźniak, Włodek; Abramowicz, Marek; Narayan, Ramesh

    2016-06-01

    We construct models of static, spherically symmetric shells supported by the radiation flux of a luminous neutron star in the Schwarzschild metric. The atmospheres are disconnected from the star and levitate above its surface. Gas pressure and density inversion appear in the inner region of these atmospheres, which is a purely relativistic phenomenon. We account for the scattering opacity dependence on temperature green by using the Klein-Nishina formula. The relativistic M1 closure scheme for the radiation tensor provides a general relativity-consistent treatment of the photon flux and radiation tensor anisotropy. In this way, we are able to address atmospheres of both large and moderate/low optical depths with the same set of equations. We discuss properties of the levitating atmospheres and find that they may indeed be optically thick, with the distance between star surface and the photosphere expanding as luminosity increases. These results may be relevant for the photosphereric radius expansion X-ray bursts.

  20. Distances, luminosities, and temperatures of the coldest known substellar objects.

    PubMed

    Dupuy, Trent J; Kraus, Adam L

    2013-09-27

    The coolest known brown dwarfs are our best analogs to extrasolar gas-giant planets. The prolific detections of such cold substellar objects in the past 2 years have spurred intensive follow-up, but the lack of accurate distances is a key gap in our understanding. We present a large sample of precise distances based on homogeneous mid-infrared astrometry that robustly establishes absolute fluxes, luminosities, and temperatures. The coolest brown dwarfs have temperatures of 400 to 450 kelvin and masses almost equal to 5 to 20 times that of Jupiter, showing they bridge the gap between hotter brown dwarfs and gas-giant planets. At these extremes, spectral energy distributions no longer follow a simple correspondence with temperature, suggesting an increasing role of other physical parameters, such as surface gravity, vertical mixing, clouds, and metallicity. PMID:24009359

  1. Maximum likelihood random galaxy catalogues and luminosity function estimation

    NASA Astrophysics Data System (ADS)

    Cole, Shaun

    2011-09-01

    We present a new algorithm to generate a random (unclustered) version of an magnitude limited observational galaxy redshift catalogue. It takes into account both galaxy evolution and the perturbing effects of large-scale structure. The key to the algorithm is a maximum likelihood (ML) method for jointly estimating both the luminosity function (LF) and the overdensity as a function of redshift. The random catalogue algorithm then works by cloning each galaxy in the original catalogue, with the number of clones determined by the ML solution. Each of these cloned galaxies is then assigned a random redshift uniformly distributed over the accessible survey volume, taking account of the survey magnitude limit(s) and, optionally, both luminosity and number density evolution. The resulting random catalogues, which can be employed in traditional estimates of galaxy clustering, make fuller use of the information available in the original catalogue and hence are superior to simply fitting a functional form to the observed redshift distribution. They are particularly well suited to studies of the dependence of galaxy clustering on galaxy properties as each galaxy in the random catalogue has the same list of attributes as measured for the galaxies in the genuine catalogue. The derivation of the joint overdensity and LF estimator reveals the limit in which the ML estimate reduces to the standard 1/Vmax LF estimate, namely when one makes the prior assumption that the are no fluctuations in the radial overdensity. The new ML estimator can be viewed as a generalization of the 1/Vmax estimate in which Vmax is replaced by a density corrected Vdc, max.

  2. Jet or Shock Breakout? The Low-Luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher; Chevalier, Roger

    2016-01-01

    We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.

  3. Jet or shock breakout? The low-luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher M.; Chevalier, Roger A.

    2016-08-01

    We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.

  4. PROPERTIES OF THE MOLECULAR CORES OF LOW LUMINOSITY OBJECTS

    SciTech Connect

    Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud; Wyrowski, Friedrich; Hung, Chao-Ling E-mail: shawinchone@gmail.com

    2015-04-01

    We present a survey toward 16 low luminosity objects (LLOs with an internal luminosity, L{sub int}, lower than 0.2 L{sub ⊙}) with N{sub 2}H{sup +} (1–0), N{sub 2}H{sup +} (3–2), N{sub 2}D{sup +} (3–2), HCO{sup +} (3–2), and HCN (3–2) using the Arizona Radio Observatory Kitt Peak 12 m Telescope and Submillimeter Telescope. Our goal is to probe the nature of these faint protostars which are believed to be either very low mass or extremely young protostars. We find that the N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios of LLOs are similar to those of typical starless cores and Class 0 objects. The N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios are relatively high (>0.05) for LLOs with kinetic temperatures less than 10 K in our sample. The distribution of N{sub 2}H{sup +} (1–0) line widths spreads between that of starless cores and young Class 0 objects. If we use the line width as a dynamic evolutionary indicator, LLOs are likely young Class 0 protostellar sources. We further use the optically thick tracers, HCO{sup +} (3–2) and HCN (3–2), to probe the infall signatures of our targets. We derive the asymmetry parameters from both lines and estimate the infall velocities by fitting the HCO{sup +} (3–2) spectra with two-layer models. As a result, we identify eight infall candidates based on the infall velocities and seven candidates have infall signatures supported by asymmetry parameters from at least one of HCO{sup +} (3–2) and HCN (3–2)

  5. Tracing galaxy evolution by their present-day luminosity function

    NASA Astrophysics Data System (ADS)

    Tempel, Elmo

    2011-04-01

    Galaxies, which are complex objects containing up to several tens of billions stars, as well as gas and dust, are remarkable objects. The Universe contains a very diverse "zoo" of galaxies: there are galaxies with a discy shape and spiral structure, elliptical galaxies, and even galaxies, which show no sign of structure. This variety of galaxies leads to the basic question: how the galaxies form and evolve and which processes shape the structure of galaxies? Due to the complexity of galaxy formation and evolution, this question is still an unresolved puzzle and it is one of the biggest challenges in modern cosmology. The present thesis is based on large galaxy surveys and concentrates on the large-scale structure: how galaxy evolution is related to the surrounding large-scale environment of superclusters and voids. To study the evolution of galaxies, we use the luminosity function, which is in this respect one of the most fundamental of all cosmological observables. One of the principal results of the present study was the conclusion that the evolution of spiral galaxies is almost independent of the global environment, especially for blue and red spirals separately, showing that the formation of spiral galaxies has to be similar in all environments. Meanwhile, the luminosity function of elliptical galaxies depends strongly on the environment. This shows that the global environmental density is an important factor (via merging history) in the formation of elliptical galaxies. The results of the present study show clearly, that besides the local/group environment, the global (supercluster-void) environment plays also an important role in the formation and evolution of galaxies. Accounting for the role of global environment can help to solve several problems in the present picture of galaxy formation and evolution.

  6. The Galaxy UV Luminosity Function before the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mason, Charlotte A.; Trenti, Michele; Treu, Tommaso

    2015-11-01

    We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass-dependent, but redshift-independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at z > 10 (lookback time ≲500 Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations (0 ≲ z ≲ 10). The significant drop in luminosity density of currently detectable galaxies beyond z ˜ 8 is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth τ ={0.056}-0.010+0.007, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at z={7.84}-0.98+0.65. In addition, our model naturally produces smoothly rising star formation histories for galaxies with L ≲ L* in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at z > 10 we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope (α ˜ -3.5 at z ˜ 16). Finally, we construct forecasts for surveys with James Webb Space Telescope (JWST) and Wide-field Infrared Survey Telescope (WFIRST) and predict that galaxies out to z ˜ 14 will be observed. Galaxies at z > 15 will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.

  7. Quasidiatomic Approach to the Collisions of Low KEV Molecular Ions with Atoms

    NASA Astrophysics Data System (ADS)

    Yenen, Orhan

    The polarization of L(,(alpha)) radiation is measured in coincidence with a charged particle scattered at specific laboratory angles, resulting from the collision induced dissociation of low keV H(,2)('+) and H(,3)('+) incident on target gases. Coincidence measurements of the polarization pattern are made for a variety of scattering angles for 3.22 keV H(,2)('+) incident on He and Ne, and for 4.83 keV H(,3)('+) incident on He. The molecular states excited during the collision are determined from the alignment of the observed polarization patterns. A quasidiatomic collision model, which is an extension of the electron promotion model of ion-atom collisions at low keV energies to molecule-atom collisional systems, is developed to interpret the experimental results. The rules of building simple quasidiatomic correlation diagrams, to qualitatively estimate the dynamical behavior of molecular collisions, are presented. The general idea of treating the molecule as an atom under certain circumstances, is applied to a molecular two-state calculation of the differential charge-transfer probabilities in H('+)-H(,2) collisions. This calculation reproduces the essential features of previous experiments.

  8. Field aligned currents and the auroral spectrum below 1 keV

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.

    1973-01-01

    Measurements during auroral events were conducted with the aid of detectors flown aboard three Nike-Tomahawk rocket flights. The detectors used to measure the auroral spectrum below 1 keV consisted of electrostatic analyzers positioned in the rocket to measure particles moving up and down the magnetic field lines. The analyzers measured electrons and protons simultaneously during a given sweep.

  9. The Solar Flare 4: 10 keV X-ray Spectrum

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    2004-01-01

    The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.

  10. Gamma-ray burst spectra and time histories from 2 to 400keV

    NASA Astrophysics Data System (ADS)

    Fenimore, E. E.

    1999-01-01

    The Gamma-Ray burst detector on Ginga consisted of a proportional counter to observe the x-rays and a scintillation counter to observe the gamma-rays. It was ideally suited to study the x-rays associated with gamma-ray bursts (GRBs). Ginga detected ~120 GRBs and 22 of them had sufficient statistics to determine spectra from 2 to 400keV. Although the Ginga and BATSE trigger criteria were very similar, the distribution of spectral parameters was different. Ginga observed bend energies in the spectra down to 2keV and had a larger fraction of bursts with low energy power law indexes greater than zero. The average ratio of energy in the x-ray band (2 to 10keV) compared to the gamma-ray band (50 to 300keV) was 24%. Some events had more energy in the x-ray band than in the gamma-ray band. One Ginga event had a period of time preceding the gamma rays that was effectively pure x-ray emission. This x-ray ``preactivity'' might be due to the penchant for the GRB time structure to be broader at lower energy rather than a different physical process. The x-rays tend to rise and fall slower than the gamma rays but they both tend to peak at about the same time. This argues against models involving the injection of relativistic electrons that cool by synchrotron radiation.

  11. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  12. A study on the microstructural parameters of 550 keV electron irradiated Lexan polymer films

    SciTech Connect

    Hareesh, K.; Pramod, R.; Petwal, V. C.; Dwivedi, Jishnu; Sangappa; Sanjeev, Ganesh

    2012-06-05

    Lexan polymer films irradiated with 550 keV Electron Beam (EB) were characterized using Wide Angle Xray Scattering (WAXS) data to study the microstructural parameters. The crystal imperfection parameters like crystal size , lattice strain (g in %) and enthalpy ({alpha}) have been determined by Line Profile Analysis (LPA) using Fourier method of Warren.

  13. Ionization of atomic hydrogen by 30 1000 keV antiprotons

    SciTech Connect

    Knudsen, H.; Mikkelsen, U.; Paludan, K.; Kirsebom, K.; Moller, S.P.; Uggerhoj, E.; Slevin, J.; Charlton, M.; Morenzoni, E.

    1995-06-05

    Ionization in collisions between antiprotons and atomic hydrogen is perhaps the least complicated and most fundamental process that can be treated by atomic-collision theory. We present measurements of the ionization cross section for 30--1000 keV antiprotons colliding with atomic hydrogen.

  14. A STRONG EXCESS IN THE 20-100 keV EMISSION OF NGC 1365

    SciTech Connect

    Risaliti, G.; Elvis, M.; Fabbiano, G.; Wang, J.; Braito, V.; Laparola, V.; Bianchi, S.; Matt, G.; Maiolino, R.; Reeves, J.; Salvati, M.

    2009-11-01

    We present a new Suzaku observation of the obscured active galactic nucleus in NGC 1365, revealing an unexpected excess of X-rays above 20 keV of at least a factor approx2 with respect to the extrapolation of the best-fitting 3-10 keV model. Additional Swift-BAT and Integral-IBIS observations show that the 20-100 keV is concentrated within approx1.5 arcmin from the center of the galaxy, and is not significantly variable on timescales from days to years. A comparison of this component with the 3-10 keV emission, which is characterized by a rapidly variable absorption, suggests a complex structure of the circumnuclear medium, consisting of at least two distinct components with rather different physical properties, one of which covers >80% of the source with a column density N {sub H} approx 3-4x10{sup 24} cm{sup -2}. An alternative explanation is the presence of a double active nucleus in the center of NGC 1365.

  15. The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Mo, Houjun

    2016-07-01

    We characterize the luminosity functions of galaxies residing in z ˜ 0 groups and clusters over the broadest ranges of luminosity and mass reachable by the Sloan Digital Sky Survey. Our measurements cover four orders of magnitude in luminosity, down to about Mr = -12 mag or L = 107 L⊙, and three orders of magnitude in halo mass, from 1012 to 1015 M⊙. We find a characteristic scale, Mr ˜ -18 mag or L ˜ 109 L⊙, below which the slope of the luminosity function becomes systematically steeper. This trend is present for all halo masses and originates mostly from red satellites. This ubiquitous faint-end upturn suggests that it is formation, rather than halo-specific environmental effect, that plays a major role in regulating the stellar masses of faint satellites. We show that the satellite luminosity functions can be described in a simple manner by a double Schechter function with amplitudes scaling with halo mass over the entire range of observables. Combining these conditional luminosity functions with the dark matter halo mass function, we accurately recover the entire field luminosity function over 10 visual magnitudes and reveal that satellite galaxies dominate the field luminosity function at magnitudes fainter than -17. We find that the luminosity functions of blue and red satellite galaxies show distinct shapes and we present estimates of the stellar mass fraction as a function of halo mass and galaxy type. Finally, using a simple model, we demonstrate that the abundances and the faint-end slopes of blue and red satellite galaxies can be interpreted in terms of their formation history, with two distinct modes separated by some characteristic time.

  16. The jets-accretion relation, mass-luminosity relation in Fermi blazars

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoling; Zhang, Xiong; Zhang, Haojing; Xiong, Dingrong; Li, Bijun; Cha, Yongjuan; Chen, Yongyun; Huang, Xia; Wang, Yuwei

    2015-05-01

    A sample of 111 Fermi blazars each with a well-established radio core luminosity, broad-line luminosity, bolometric luminosity and black hole mass has been compiled from the literatures. We present a significant correlation between radio core and broad-line emission luminosities that supports a close link between accretion processes and relativistic jets. Analysis reveals a relationship of which is consistant with theoretical predicted coefficient and supports that blazar jets are powered by energy extraction from a rapidly spinning Kerr black hole through the magnetic field provided by the accretion disk. Through studying the correlation between the intrinsic bolometric luminosity and the black hole mass, we find a relationship of which supports mass-luminosity relation for Fermi blazars derived in this work is a powerlaw relation similar to that for main-sequence stars. Finally, EVOLUTIONARY SEQUENCE OF BLAZARS is discussed.

  17. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  18. NEUTRON TOTAL CROSS SECTIONS OF 235U FROM TRANSMISSION MEASUREMENTS IN THE ENERGY RANGE 2 keV to 300 keV AND STATISTICAL MODEL ANALYSIS OF THE DATA

    SciTech Connect

    Derrien, H.

    2000-05-22

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample. The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al. in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code was used for a statistical model analysis of the total cross section, selected fission cross sections and {alpha} data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  19. Spectral Analysis on Solar Flares with an Emission > 300 keV

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Connaughton, V.

    2013-12-01

    The continuum gamma-ray emission from solar flares is caused when a population of electrons is accelerated to relativistic speeds and interacts with the solar plasma. However, it has been theorized that the gamma-ray emission from some brighter flares comes from two populations of electrons. Using the Gamma-Ray Burst Monitor (GBM), we studied the gamma-ray emission spectra of solar flares and paid special attention to the solar flares that showed emission above 300 keV. We found that the emission above 300 keV was better fit with a broken power-law than a single power-law, evidence that the gamma-ray emission from certain solar flares involved two populations of electrons. Specifically, our best model involved a broken power law that had a steeper slope before the break in energy than after. We studied the spectral parameters as a function of time during the period of the high-energy emission. We also found that solar flares with emission above 300 keV form a small subset (~4%) of flares that trigger GBM above 20 keV. One of the flares with an emission greater than 300 keV was fitted with a Broken Power Law model. Only data from the BGO detector was used in making the plots. Various parameters of the fit have been plotted vs. time with the top two graphs representing the light curves of the flare from different detectors (BGO-0 and NaI-4). A spectral fit for bn100612038 for the time interval of [45s-50s] using only the BGO (0) detector file. Data from this fit was used in creating the other plots.

  20. The Connection Between Galaxy Environment and the Luminosity Function Slopes of Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Lee, Janice C.; Thilker, David A.; Calzetti, Daniela; Kennicutt, Robert

    2016-06-01

    We present the first study of GALEX far ultra-violet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ~65,000 star-forming regions (i.e., FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (α) and several global galaxy properties. A final sample of \

  1. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  2. The galaxy luminosity function and the redshift-distance controversy (A Review)

    PubMed Central

    Salpeter, E. E.; Hoffman, G. L.

    1986-01-01

    The mean relation between distance and redshift for galaxies is reviewed as an observational question. The luminosity function for galaxies is an important ingredient and is given explicitly. We discuss various observational selection effects that are important for comparison of the linear and quadratic distance-redshift laws. Several lines of evidence are reviewed, including the distribution of galaxy luminosities in various redshift ranges, the luminosities of brightest galaxies in groups and clusters at various redshifts, and the Tully-Fisher correlation between neutral hydrogen velocity widths and luminosity. All of these strongly favor the linear law over the quadratic. PMID:16593693

  3. The Herschel ATLAS: Evolution of the 250 Micrometer Luminosity Function Out to z = 0.5

    NASA Technical Reports Server (NTRS)

    Dye, S.; Dunne, L.; Eales, S.; Smith, D. J. B.; Amblard, A.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; Blain, A. W.; Bonfield, D. G.; Bremer, M.; Burgarella, D.; Buttiglione, S.; Cameron, E.; Cava, A.; Clements, D. L.; Cooray, A.; Croom, S.; Dariush, A.; de Zotti, G.; Driver, S.; Dunlop, J. S.; Frayer, D.; Leeuw, L.

    2010-01-01

    We have determined the luminosity function of 250 micrometer-selected galaxies detected in the approximately equal to 14 deg(sup 2) science demonstration region of the Herschel-ATLAS project out to a redshift of z = 0.5. Our findings very clearly show that the luminosity function evolves steadily out to this redshift. By selecting a sub-group of sources within a fixed luminosity interval where incompleteness effects are minimal, we have measured a smooth increase in the comoving 250 micrometer luminosity density out to z = 0.2 where it is 3.6(sup +1.4) (sub -0.9) times higher than the local value.

  4. Improved luminosity determination in pp collisions at using the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Göpfert, T.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guindon, S.; Gul, U.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Koperny, S.; Köpke, L.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Lumb, D.; Luminari, L.; Lund, E.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Martens, F. K.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Muenstermann, D.; Müller, T. A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, B.; Schnoor, U.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-08-01

    The luminosity calibration for the ATLAS detector at the LHC during pp collisions at in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at . A luminosity uncertainty of is obtained for the 47 pb-1 of data delivered to ATLAS in 2010, and an uncertainty of is obtained for the 5.5 fb-1 delivered in 2011.

  5. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    SciTech Connect

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex; Fürst, Felix; Pottschmidt, Katja; Wilms, Jörn

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  6. Imaging of the Wolf-Rayet galaxy He 2-10

    NASA Technical Reports Server (NTRS)

    Corbin, Michael R.; Korista, Kirk T.; Vacca, William D.

    1993-01-01

    We present B, V, and emission-line CCD images of the Wolf-Rayet galaxy He 2-10. The broad band images reveal the galaxy to consist of two starburst regions at the center of an elliptical stellar envelope about 10 times their size, with a major axis diameter of approximately 3.8 kpc. Previous imaging detected only the starburst regions, leading to the erroneous description of the object as an interacting pair. Morphologically, He 2-10 resembles the majority of blue compact dwarf galaxies (BCDGs), some of which also show Wolf-Rayet features in their spectra. The lack of nearby neighbors to He 2-10 suggests that its star formation is proceeding stochastically, rather than as the result of interaction, and its morphological similarity to other BCDGs suggests that all such galaxies may pass through a Wolf-Rayet phase. The similarity of the outer regions of He 2-10 and other BCDGs to normal dwarf ellipticals also supports models in which the former evolve into the latter.

  7. IET. Inside the coupling station during Snaptran tests. Snaptran 2/10A1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Inside the coupling station during Snaptran tests. Snaptran 2/10A-1 plug and flexible hoses make connections with experiment on other side. Photographer: Page Comiskey. Date: August 11, 1965. INEEL negative no. 65-4060 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED

  9. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  10. Lightning current and luminosity at and above channel bottom for return strokes and M-components

    NASA Astrophysics Data System (ADS)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Ngin, T.

    2015-10-01

    We measured current and luminosity at the channel bottom of 12 triggered lightning discharges including 44 return strokes, 23 M-components, and 1 initial continuous current pulse. Combined current and luminosity data for impulse currents span a 10-90% risetime range from 0.15 to 192 µs. Current risetime and luminosity risetime at the channel bottom are roughly linearly correlated (τr,I = 0.71τr,L1.08). We observed a time delay between current and the resultant luminosity at the channel bottom, both measured at 20% of peak amplitude, that is approximately linearly related to both the luminosity 10-90% risetime (Δt20,b = 0.24τr,L1.12) and the current 10-90% risetime (Δt20,b = 0.35τr,I1.03). At the channel bottom, the peak current is roughly proportional to the square root of the peak luminosity (IP = 21.89LP0.57) over the full range of current and luminosity risetimes. For two return strokes we provide measurements of stroke luminosity vs. time for 11 increasing heights to 115 m altitude. We assume that measurements above the channel bottom behave similarly to those at the bottom and find that (1) one return stroke current peak decayed at 115 m to about 47% of its peak value at channel bottom, while the luminosity peak at 115 m decayed to about 20%, and for the second stroke 38% and 12%, respectively; and (2) measured upward return stroke luminosity speeds of the two strokes of 1.10 × 108 and 9.7 × 107 ms-1 correspond to current speeds about 30% faster. These results represent the first determination of return stroke current speed and current peak value above ground derived from measured return stroke luminosity data.

  11. The Main Sequence Luminosity Function of Palomar 5

    NASA Astrophysics Data System (ADS)

    Smith, Graeme

    1996-07-01

    Palomar 5 appears to represent an extreme in the dynamical evolution of globular clusters. A low mass, large core radius, and a low central concentration suggest that Pal 5 has lost a large fraction of it's initial mass and has expanded as a consequence. If the dynamical evolution of Pal 5 has been dominated by the effects of star loss, then theoretical arguments suggest that the stellar mass function should be deficient in low-mass stars. From a dynamical study of NGC 5466 Pryor et al. concluded that the best fitting King-Michie models for that cluster are those which have a cutoff in the stellar mass function at about 0.4 solar masses. A similar or even more extreme truncation in the Pal 5 mass function is possible. We propose to directly test this conclusion by determining the stellar luminosity function of Pal 5 down to V = 27.0 from WFPC2 F555W and F814W frames. Two fields within Pal 5 will be observed, one located near the cluster center and the other just within the half-light radius. A magnitude of V = 27.0 in Pal 5 corresponds to a stellar mass of about 0.3 solar masses, which is fainter than the predicted truncation mass.

  12. Deep luminosity function of the globular cluster M13

    SciTech Connect

    Drukier, G.A.; Fahlman, G.G.; Richter, H.B.; Vandenberg, D.A.

    1988-05-01

    The luminosity function in a field of M13 at 14 core radii has been observed to M(V) = +12.0, and new theoretical, low-mass, stellar models appropriate to M13 are used to convert the function to a mass function which extends to M = 0.18 solar, within a factor of two of brown dwarf masses at this metal abundance. As the number of stars observed in each magnitude bin is still increasing at the limit of the data, the presence of stars with masses lower than 0.18 solar is probable. This result sets an upper limit of 0.18 solar mass for low-mass cutoffs in dynamical models of M13. No single power law mass function fits all the observations. The trend of the data supports the idea of a steep increase in the slope of the mass function for M less than 0.4 solar. The results imply that the total mass in low-mass stars in M13, and by implication elsewhere, is higher than was previously thought. 26 references.

  13. 'Harder when Brighter' Spectral Variability in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Connolly, S.; McHardy, I.; Skipper, C.; Dwelly, T.

    2015-07-01

    We present X-ray spectral variability of four low accretion rate AGN - M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the `softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely main source of spectral variability is found to be luminosity-dependent changes in the photon index of the power law component. An anticorrelation between the photon index and the count rate is found in all of the sources. The anticorrelation is likely to be caused by accretion via a radiatively-inefficient accretion flow, expected in low-Eddington ratio systems such as these, and/or due to the presence of a jet. This behaviour is similar to that seen in the `hard state' of X-ray binaries, implying that these LLAGN are in a similar state.

  14. Isochrones and Luminosity Functions for Old White Dwarfs

    NASA Astrophysics Data System (ADS)

    Richer, Harvey B.; Hansen, Brad; Limongi, Marco; Chieffi, Alessandro; Straniero, Oscar; Fahlman, Gregory G.

    2000-01-01

    Using a new grid of models of cooling white dwarfs, we calculate isochrones and luminosity functions in the Johnson-Kron/Cousins and Hubble Space Telescope (HST) filter sets for systems containing old white dwarfs. These new models incorporate a nongray atmosphere that is necessary to properly describe the effects of molecular opacity at the cool temperatures of old white dwarfs. The various functions calculated and extensively tabulated and plotted are meant to be as utilitarian as possible for observers, so all results are listed in quantities that observers will obtain. The tables and plots developed should eventually prove critical in interpreting the results of HST's Advanced Camera observations of the oldest white dwarfs in nearby globular clusters, in understanding the results of searches for old white dwarfs in the Galactic halo, and in determining ages for star clusters using white dwarfs. As a practical application we demonstrate the use of these results by deriving the white dwarf cooling age of the old Galactic cluster M67.

  15. Fast Frontend Electronics for high luminosity particle detectors

    NASA Astrophysics Data System (ADS)

    Cardinali, M.

    Future experiments of nuclear and particle physics are moving towards the high luminosity regime, in order to access suppressed processes like rare B decays or exotic charmonium resonances. In this scenario, high rate capability is a key requirement for electronics instrumentation, together with excellent timing resolution for precise event reconstruction. The development of dedicated FrontEnd Electronics (FEE) for detectors has become increasingly challenging. A current trend in R&D is towards multipurpose FEE which can be easily adapted to a great variety of detectors, without impairing the required high performance. We report on high-precision timing solutions which utilise high-bandwidth preamplifiers and fast discriminators providing Time-over-Threshold information, which can be used for charge measurements or walk corrections thus improving the obtainable timing resolution. The output signal are LVDS and can be directly fed into a multi-hit TDC readout. The performance of the electronics was investigated for single photon signals, typical for imaging Cherenkov detectors. The opposite condition of light signals arising from plastic scintillators, was also studied. High counting rates per channel of several MHz were achieved, and a timing resolution of better than 100 ps could be obtained in a test experiment using the full readout chain.

  16. The winds of high luminosity late-type bright stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Carpenter, K. G.

    1989-01-01

    The occurrence and characteristics of the Fe II line asymmetries were studied to determine the radial dependence of the wind velocity for each star. The dependence of the Fe II profiles on spectral type and luminosity class and thus the variation of the velocity fields with stellar type was also investigated. This allows the generality of the results reported for alpha Ori by Carpenter (1984b) to be judged. In addition, new atomic data was used along with observations of the C II (UV 0.01) multiplet to estimate N(sub e) in the stellar winds. Measures of relative Fe II fluxes can be used in a probability-of-escape model to determine the opacity and hydrogen column density versus height in the chromosphere of each star. Finally, analysis of the fluorescent Fe II lines (pumped by Ly alpha) near 2507 A will yield estimates of the intrinsic stellar Ly alpha flux that cannot be measured directly because of interstellar and circumstellar absorption. One important goal of the effort was to acquire high resolution spectra of the whole 2300 to 3200 A region of 13 luminous K and M stars as a data base that will be enormously valuable in planning observations with the Hubble Space Telescope High Resolution Spectrograph. It is also proposed to follow up the recent discovery of significant variations in the Fe II chromospheric emission line profiles from the M-giant Gamma Cru for the purpose of determining the underlying cause of the variations.

  17. Cepheid period-luminosity relation from the AKARI observations

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow-Choong; Ita, Yoshifusa; Kanbur, Shashi M.; Neilson, Hilding; Onaka, Takashi; Kato, Daisuke

    2010-10-01

    In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARI's Infrared Camera sources were matched to the Optical Gravitational Lensing Experiment-III (OGLE-III) LMC Cepheid catalogue. Together with the available I-band light curves from the OGLE-III catalogue, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands; hence, only the P-L relation in the N3 band is derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single-epoch AKARI data; even though the derived P-L relation is consistent with the P-L relation without random-phase correction, however there is an ~7 per cent improvement in the dispersion of the P-L relation. The final adopted N3-band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.

  18. Luminosity and density evolution of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Kravchenko, Evgeniya

    2011-07-01

    The counting of radio sources is a strong tool for the investigation of evolution of extragalactic sources. Additional information can also be obtained from the "power-linear size" diagram (P-D), which is analogues to the Hertzsprung-Russell diagram. On it there is clear evidence for the existence of a "main sequence" and the "sequence of giants". The "main sequence" consists mostly of the FR I sources. The "sequence of giants" consists of radio loud compact sources and quasars, and FR II sources, which grow in giant radio galaxies. Such evolution can be described with a theory based on the idea of fast adiabatic expansion of the source's extended parts (cocoons) and the synchrotron radiation of particles in these structures. Fixing the bulk kinetic power delivered to the cocoons by the jets, it is possible to obtain P-D tracks for FR II sources. In my work I have taken a sample of radio sources, constructed the P-D tracks, and divided all sources into two types: ones which belong to the "main consequence", and others to the "sequence of giants". As for the last sequence, it can be considered as an independent evolutionary track of some radio source classes. These defined samples I have used for the estimation of their independent and joint radio luminosity and density evolution, through which it is possible to obtain fruitful results.

  19. High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV

    SciTech Connect

    Doeppner, T; Neumayer, P; Girard, F; Kugland, N L; Landen, O L; Niemann, C; Glenzer, S H

    2008-04-30

    We used Kr K{alpha} (12.6 keV) and Ag K{alpha} (22.1 keV) x-rays, produced by petawatt class laser pulses interacting with a Kr gas jet and a silver foil, to measure the integrated crystal reflectivity of flat Highly Oriented Pyrolytic Graphite (HOPG) up to fifth order. The reflectivity in fourth order is lower by a factor of 50 when compared to first order diffraction. In second order the integrated reflectivity decreases from 1.3 mrad at 12.6 keV to 0.5 mrad at 22.1 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x ray sources (E {ge} 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

  20. Energetic (greater than 100 keV) O(+) ions in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1984-01-01

    The first measurements of very energetic (112 - 157 keV) O(+) ions in the earth's magnetosphere are presented. The observations were made with the UMd/MPE ULECA sensor on ISEE-1 on 5 March 1981 at geocentric distances approximately 20 R(E) in the earth's magnetotail. During this time period an Energetic Storm Particle event was observed by the nearly identical sensor on the ISEE-3 spacecraft, located approximately 250 R(E) upstream of the earth's magnetosphere. The ISEE-1 sensor observed a similar temporal profile except for several sharp intensity enhancements, corresponding to substorm recoveries during which the plasma sheet engulfed the spacecraft. During these plasma sheet encounters we observe O(+)/H(+) abundance ratios, at approximately 130 kev, as large as 0.35. In between plasma sheet encounters the O(+)/H(+) ratio at this energy is consistent with zero.

  1. Experimental results of a dual-beam ion source for 200 keV ion implanter

    SciTech Connect

    Chen, L. H. Cui, B. Q.; Ma, R. G.; Ma, Y. J.; Tang, B.; Huang, Q. H.; Jiang, W. S.; Zheng, Y. N.

    2014-02-15

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H{sub 2}{sup +} and He{sup +} beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H{sub 2}{sup +} and He{sup +} is feasible.

  2. 0. 073% (95% C. L. ) upper limit on 17keV neutrino admixture

    SciTech Connect

    Ohshima, T. )

    1992-02-01

    A direct search was made for a threshold kink in [sup 63]Ni [beta]-ray spectrum due possibly to a sizeable admixture of 17keV neutrino. A fine energy scan was performed using a magnetic spectrometer over the specific energy region with very high statistics and a very high signal-to-background ratio. The resultant mixing strength is [vert bar][ital U][vert bar][sup 2]=([minus]0.011[plus minus]0.033(stat.)[plus minus]0.030(sys.) )% and its upper limit [vert bar][ital U][vert bar][sup 2][le]0.073% (95% C.L.). The result clearly excludes neutrinos with [vert bar][ital U][vert bar][sup 2][ge]0.1% for the mass range from 11 to 24keV.

  3. Tuning of wettability of PANI-GNP composites using keV energy ions

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Avasthi, D. K.

    2016-07-01

    Polyaniline nanofiber composites with various nanomaterials have several applications in electrochemical biosensors. The surface properties of these composites coated electrodes play crucial role in enzyme absorption and analyte detection process. In the present study, Polyaniline-Graphene nanopowder (PANI-GNP) composites were prepared by rapid-mixing polymerization method. The films were prepared on ITO coated glass substrates and irradiated with 42 keV He+ ions produced by indigenously fabricated accelerator at IUAC, New Delhi. The films were characterized before and after irradiation by SEM, Raman spectroscopy and contact angle measurements. The as-prepared films show superhydrophilic nature and after irradiation the films show highly hydrophobic nature with water contact angle (135°). The surface morphology was studied by SEM and structural changes were studied by Raman spectra. The surface morphological modifications induced by keV energy ions helps in tuning the wettability at different ion fluences.

  4. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  5. Secondary ion emission from V and Al surfaces under keV light ion on bombardment

    NASA Astrophysics Data System (ADS)

    Blauner, Patricia G.; Weller, Martha R.; Kaurin, Michael G.; Weller, Robert A.

    1986-03-01

    Positive secondary ion mass spectra have been measured for oxidized polycrystalline V and Al targets bombarded by H +, H 2+, He + and Ar + ions with beam energies ranging from 25 keV to 275 keV. An enhancement in the relative yield of positive ions of electronegative surface constituents, in particular O + is observed under light ion bombardment. Metallic ion intensities were found to decrease with increasing primary beam energy in proportion to the estimated total sputtering yields for these targets and beams. In contrast, the O + secondary ion intensities were independent of primary beam energy. This behavior is similar to that observed previously with heavy ions of comparable velocities. In addition, for the projectiles and targets used in these measurements, no energy thresholds or collective effects were observed in the emission of any positive ion. Published data on secondary ion emission resulting from electron, photon, and heavy ion bombardment are compared with these results.

  6. A 24 keV liquid-metal-jet x-ray source for biomedical applications

    SciTech Connect

    Larsson, D. H.; Takman, P. A. C.; Lundstroem, U.; Burvall, A.; Hertz, H. M.

    2011-12-15

    We present a high-brightness 24-keV electron-impact microfocus x-ray source based on continuous operation of a heated liquid-indium/gallium-jet anode. The 30-70 W electron beam is magnetically focused onto the jet, producing a circular 7-13 {mu}m full width half maximum x-ray spot. The measured spectral brightness at the 24.2 keV In K{sub {alpha}} line is 3 x 10{sup 9} photons/(s x mm{sup 2}x mrad{sup 2}x 0.1% BW) at 30 W electron-beam power. The high photon energy compared to existing liquid-metal-jet sources increases the penetration depth and allows imaging of thicker samples. The applicability of the source in the biomedical field is demonstrated by high-resolution imaging of a mammography phantom and a phase-contrast angiography phantom.

  7. Limits on a variable source of 511 keV annihilation radiation near the Galactic center

    NASA Astrophysics Data System (ADS)

    Share, Gerald H.; Leising, Mark D.; Messina, Daniel C.; Purcell, William R.

    1990-08-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) has observed a strong Galactic source of 511 keV annihilation radiation from its launch in 1980 to its reentry in 1989. These observations are consistent with an extended source having an intensity of about 0.002 gamma/sq cm/s averaged over the central radian of Galactic longitude. These data are searched for evidence of the variable Galactic center source of 511 keV line radiation which was reported to have reappeared in 1988 by Leventhal et al. The SMM data are consistent with, but do not require, a compact source emitting a time-averaged flux of about 0.0004 gamma/sq cm/s during about 3 month transits in 1987 and 1988; they are inconsistent with a compact source flux in excess of 0.0008 gamma/sq cm/s for each year.

  8. The 871 keV gamma ray from 17O and the identification of plutonium oxide

    NASA Astrophysics Data System (ADS)

    Peurrung, Anthony; Arthur, Richard; Elovich, Robert; Geelhood, Bruce; Kouzes, Richard; Pratt, Sharon; Scheele, Randy; Sell, Richard

    2001-12-01

    Disarmament agreements and discussions between the United States and the Russian Federation for reducing the number of stockpiled nuclear weapons require verification of the origin of materials as having come from disassembled weapons. This has resulted in the identification of measurable "attributes" that characterize such materials. It has been proposed that the 871 keV gamma ray of 17O can be observed as an indicator of the unexpected presence of plutonium oxide, as opposed to plutonium metal, in such materials. We have shown that the observation of the 871 keV gamma ray is not a specific indicator of the presence of the oxide, but rather indicates the presence of nitrogen.

  9. Dynamical simulations of radiation damage induced by 10 keV energetic recoils in UO 2

    NASA Astrophysics Data System (ADS)

    Tian, X. F.; Gao, T.; Long, Chongsheng; Li, JiuKai; Jiang, Gang; Xiao, Hongxing

    2011-08-01

    We have performed classical molecular dynamics simulations to simulate the primary damage state induced by 10 keV energetic recoils in UO 2. The numbers versus time and the distance distributions for the displaced uranium and oxygen atoms were investigated with the energetic recoils accelerated along four different directions. The simulations suggest that the direction of the primary knock-on atom (PKA) has no effect on the final primary damage state. In addition, it was found that atomic displacement events consisted of replacement collision sequences in addition to the production of Frenkel pairs. The spatial distribution of defects introduced by 10 keV collision cascades was also presented and the results were similar to that of energetic recoils with lower energy.

  10. Electron-Electron Luminosity in the Next Linear COLLIDER—A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Thompson, K. A.; Helm, R. H.

    In this paper, we discuss some operational aspects of electron-electron collisions at the Next Linear Collider (NLC) and estimate the luminosity attainable in such a machine. We also consider the use of two future technologies which could simplify the operation and improve the luminosity in an e-e- collider: polarized rf guns and plasma lenses.

  11. Modeling the Near-Infrared Luminosity Function of Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Muench, A. A.; Lada, E. A.; Lada, C. J.

    1999-12-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young (0-10 Myr) stellar populations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations: the underlying IMF, cluster star forming history, and theoretical pre-main sequence mass-to-luminosity relations. Our modeling techniques also allow us to explore the effects of unresolved binaries, infrared excess emission from circumstellar disks, and interstellar extinction on the cluster luminosity function. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5>Msun>0.02) and has a peak near the hydrogen burning limit. Below the hydrogen burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. We also test the hypothesis of a space varying IMF by performing model fits to the K band luminosity functions of several other young clusters.

  12. The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Forman, W.; Jones, C.

    1994-01-01

    We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.

  13. Calculation of integrated luminosity for beams stored in the Tevatron collider

    SciTech Connect

    Finley, D.A.

    1989-03-20

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing /beta/ function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs.

  14. Size dependence of the radio-luminosity-mechanical-power correlation in radio galaxies

    SciTech Connect

    Shabala, S. S.; Godfrey, L. E. H.

    2013-06-01

    We examine the relationship between source radio luminosity and kinetic power in active galactic nucleus jets. We show that neglecting various loss processes can introduce a systematic bias in the jet powers inferred from radio luminosities for a sample of radio galaxies. This bias can be corrected for by considering source size as well as radio luminosity; effectively the source size acts as a proxy for source age. Based on a sample of Fanaroff-Riley Type II radio sources with jet powers derived from the measured hotspot parameters, we empirically determine a new expression for jet power that accounts for the source size, (Q{sub jet}/10{sup 36} W)=1.5{sub −0.8}{sup +1.8}(L{sub 151}/10{sup 27} W Hz{sup −1}){sup 0.8}(1+z){sup 1.0}(D/kpc){sup 0.58±0.17}, where D is source size and L {sub 151} the 151 MHz radio luminosity. By comparing a flux-limited and volume-limited sample, we show that any derived radio-luminosity-jet-power relation depends sensitively on sample properties, in particular the source size distribution and the size-luminosity correlation inherent in the sample. Such bias will affect the accuracy of the kinetic luminosity function derived from lobe radio luminosities and should be treated with caution.

  15. Solar Wind ~0.1-1.5 keV Electrons at Quiet Times

    NASA Astrophysics Data System (ADS)

    Tao, J.; Wang, L.; Zong, Q. G.; Li, G.; He, J.; Tu, C.; Wimmer-Schweingruber, R. F.; Salem, C. S.; Yang, L.

    2015-12-01

    Solar wind halo/strahl electrons carry important information on the formation of suprathermal electrons in the solar wind. Here we present a statistical survey on the energy spectrum of 0.1-1.5 keV electrons observed by WIND/3DP in the solar wind during quiet times at solar minimum and maximum of solar cycle 23 and 24. First, we separate strahl electrons from halo electrons according to their different behaviors in the angular distribution. Secondly, we fit the observed energy spectrum of halo/strahl electrons at 0.1-1.5 keV to a kappa distribution function with an index κ and effective temperature Teff. We also integrate the electron measurements to obtain the number density n of halo/strahl electrons at 0.1-1.5 keV. We find a strong positive correlation between κ and Teff for both halo and strahl electrons. For strahl electrons, the index κ (number density n) appears to decrease (increase) with increasing solar activity. For halo electrons, the index κ also decreases with increasing solar activity, while the number density n shows no clear solar-cycle variation. Based on a simple model, we find that the escape of thermal electrons from the coronal region with a higher temperature T could lead to a larger κ for the 0.1-1.5 keV electrons measured in the solar wind, if T > ~0.73×106 K. These results suggest that strahl electrons are likely related to the escaping thermal electrons from different regions in the hot corona, while halo electrons are probably formed due to the scatter/acceleration of strahl electrons in the interplanetary medium.

  16. Compton polarimeter for 10–30 keV x rays

    SciTech Connect

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-15

    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  17. Compton polarimeter for 10-30 keV x rays

    NASA Astrophysics Data System (ADS)

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  18. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  19. Compton polarimeter for 10-30 keV x rays.

    PubMed

    Weber, S; Beilmann, C; Shah, C; Tashenov, S

    2015-09-01

    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results. PMID:26429432

  20. Picosecond x-ray measurements from 100 eV to 30 keV

    SciTech Connect

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-10-15

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices.

  1. Proton collisions with the water dimer at keV energies

    NASA Astrophysics Data System (ADS)

    Quinet, O.; Deumens, E.; Öhrn, Y.

    Proton collisions with the water dimer are studied using a nonadiabatic, direct, time-dependent approach called electron nuclear dynamics (END). Fragmentation of the water dimer in collisions with protons at energies of 5.0, 1.0 keV and 200 eV is the primary aim of this initial study of water clusters using END. We report on the initial fragmentation dynamic, that is, for times less than 200 fs.

  2. 43 CFR 2.10 - May you ask for the processing of your request to be expedited?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... request to be expedited? 2.10 Section 2.10 Public Lands: Interior Office of the Secretary of the Interior FREEDOM OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.10 May you ask for the processing of your request to be expedited? You may ask for the processing of your request to be...

  3. 43 CFR 2.10 - May you ask for the processing of your request to be expedited?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... request to be expedited? 2.10 Section 2.10 Public Lands: Interior Office of the Secretary of the Interior FREEDOM OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.10 May you ask for the processing of your request to be expedited? You may ask for the processing of your request to be...

  4. No 17 keV neutrino: Admixture [lt]0. 073% (95% C. L. )

    SciTech Connect

    Ohshima, T.; Sakamoto, H.; Sato, T.; Shirai, J.; Tsukamoto, T. ); Sugaya, Y.; Takahashi, K. ); Suzuki, T. ); Rosenfeld, C.; Wilson, S. ); Ueno, K. ); Yonezawa, Y. ); Kawakami, H.; Kato, S.; Shibata, S.; Ukai, K. )

    1993-06-01

    To solve the controversial issue concerning the possible existence of a 17 keV neutrino with a 1% admixture in nuclear [beta] decay, we searched directly for any evidence of a production-threshold effect. The [sup 63]Ni [beta] spectrum was measured with a magnetic spectrometer, with very high statistics along with a fine energy scan over a narrow energy region around the expected threshold. The obtained mixing strength was [vert bar][ital U][vert bar][sup 2]=[[minus]0.011[plus minus]0.033(stat)[plus minus]0.030(syst)]%, very consistent with zero, and decisively excluding the existence of a 17 keV neutrino admixing at the 1% level with the electron neutrino. The corresponding upper limit was set at [vert bar][ital U][vert bar][sup 2][lt]0.073% (95% C.L.). A new limit was also obtained for a wider mass range: [vert bar][ital U][vert bar][sup 2][lt]0.15% (95% C.L.) for 10.5 to 25.0 keV neutrinos.

  5. Solar wind ˜0.1-1.5 keV electrons at quiet times

    NASA Astrophysics Data System (ADS)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature Teff and density n0. We also integrate the the measurements over ˜0.1-1.5 keV to obtain the average electron energy Eavg of the strahl and halo. We find a strong positive correlation between κ and Teff for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ˜68% have the halo κ smaller than the strahl κ, while ˜50% have the halo Eh larger than the strahl Es.

  6. Searching for keV Sterile Neutrino Dark Matter with X-Ray Microcalorimeter Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Figueroa-Feliciano, E.; Anderson, A. J.; Castro, D.; Goldfinger, D. C.; Rutherford, J.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Morgan, K.; Porter, F. S.; Szymkowiak, A. E.; XQC Collaboration

    2015-11-01

    High-resolution X-ray spectrometers onboard suborbital sounding rockets can search for dark matter candidates that produce X-ray lines, such as decaying keV-scale sterile neutrinos. Even with exposure times and effective areas far smaller than XMM-Newton and Chandra observations, high-resolution, wide field of view observations with sounding rockets have competitive sensitivity to decaying sterile neutrinos. We analyze a subset of the 2011 observation by the X-ray Quantum Calorimeter instrument centered on Galactic coordinates l=165°,b=-5° with an effective exposure of 106 s, obtaining a limit on the sterile neutrino mixing angle of {{sin}}22θ < 7.2× {10}-10 at 95% CL for a 7 keV neutrino. Better sensitivity at the level of {{sin}}22θ ∼ 2.1× {10}-11 at 95% CL for a 7 keV neutrino is achievable with future 300-s observations of the galactic center by the Micro-X instrument, providing a definitive test of the sterile neutrino interpretation of the reported 3.56 keV excess from galaxy clusters.

  7. Effective field theory and keV lines from dark matter

    SciTech Connect

    Krall, Rebecca; Reece, Matthew; Roxlo, Thomas E-mail: mreece@physics.harvard.edu

    2014-09-01

    We survey operators that can lead to a keV photon line from dark matter decay or annihilation. We are motivated in part by recent claims of an unexplained 3.5 keV line in galaxy clusters and in Andromeda, but our results could apply to any hypothetical line observed in this energy range. We find that given the amount of flux that is observable, explanations in terms of decay are more plausible than annihilation, at least if the annihilation is directly to Standard Model states rather than intermediate particles. The decay case can be explained by a scalar or pseudoscalar field coupling to photons suppressed by a scale not far below the reduced Planck mass, which can be taken as a tantalizing hint of high-scale physics. The scalar case is particularly interesting from the effective field theory viewpoint, and we discuss it at some length. Because of a quartically divergent mass correction, naturalness strongly suggests the theory should be cut off at or below the 1000 TeV scale. The most plausible such natural UV completion would involve supersymmetry. These bottom-up arguments reproduce expectations from top-down considerations of the physics of moduli. A keV line could also arise from the decay of a sterile neutrino, in which case a renormalizable UV completion exists and no direct inference about high-scale physics is possible.

  8. Absolute measurements of x-ray backlighter sources at energies above 10 keV

    SciTech Connect

    Maddox, B. R.; Park, H. S.; Remington, B. A.; Chen, C.; Chen, S.; Prisbrey, S. T.; Comley, A.; Back, C. A.; Szabo, C.; Seely, J. F.; Feldman, U.; Hudson, L. T.; Seltzer, S.; Haugh, M. J.; Ali, Z.

    2011-05-15

    Line emission and broadband x-ray sources with x-ray energies above 10 keV have been investigated using a range of calibrated x-ray detectors for use as x-ray backlighters in high energy density (HED) experiments. The conversion efficiency of short- and long-pulse driven Mo and Ag line-emission backlighters at 17 and 22 keV was measured to investigate the crossover region between short- and long-pulse conversion efficiency. It was found that significant 17 and 22 keV line emissions were observed using a 3 {omega}, 1 ns long-pulse drive for Mo and Ag targets and a comparison between the measured Mo x-ray spectrum and calculations using an atomic physics code suggests that the line emission is due to thermal emission from N-like Mo atoms. Electron temperatures derived from fits to the continuum region of the x-ray spectra agree well with the T{sub hot} scaling as 100x(I{lambda}{sup 2}){sup 1/3}. The continuum emissions from empty and 1 atm Kr-filled imploded CH shell targets were also measured for the use as broadband backlighters.

  9. Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

    NASA Astrophysics Data System (ADS)

    Fu, ZhenGuo; Wang, ZhiGang; He, Bin; Li, DaFang; Zhang, Ping

    2016-08-01

    The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E 0, traveling in the hot dense carbon (C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E 0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E 0 < 100 keV, about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data. We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.

  10. Relative dissociation fractions of SF6 under impact of 15-keV to 30-keV H- and C- negative ions

    NASA Astrophysics Data System (ADS)

    Zhao, Zilong; Li, Junqin; Zhang, Xuemei

    2013-10-01

    The relative dissociation fractions for the production of fragment ions and ion pairs of SF6 are studied for H- and C- impact in the energy range from 15 to 30 keV. Recoil ions (SF4+, SF3+, SF2+, SF+, S+, F+, SF42+, SF22+) and ion pairs (SF3++F+,SF2++F+,SF++F+,S++F+, F++F+) are detected and identified in coincidence with scattered projectiles in two charge states (q=0 and q=+1) by using a time-of-flight spectrometer. The relative dissociation fractions are energy dependent for both single-electron-loss (SL) channel and double-electron-loss (DL) channel processes for certain negative ions. It is also found that the relative dissociation fractions for DL are larger than those for SL. In addition, the degree of fragmentation will become greater with a larger mass number of the projectiles at the same impact energy for the same electron-loss channel. A comparison of the time-of-flight spectra is made between that under negative-ion impact and that under electron impact, and it is found that the probability of production of SFn+ ions with n odd is higher than that of similar ions with n even, and the probability of production of SFn2+ ions with n even is higher than that of similar ions withn odd under H-, C-, positive-ion, and electron impact. We analyze this interesting phenomenon from the bond-dissociation energies of SFn+ and SFn2+. We also analyze the coincident time-of-flight spectra of two fragment ions resulting from double ionization of SF6 by H- and C- impact and describe the major dissociation pathways of SF62+ for H- and C- impact in the energy range from 15 to 30 keV.

  11. Galaxy luminosity function and Tully-Fisher relation: reconciled through rotation-curve studies

    SciTech Connect

    Cattaneo, Andrea; Salucci, Paolo; Papastergis, Emmanouil E-mail: salucci@sissa.it

    2014-03-10

    The relation between galaxy luminosity L and halo virial velocity v {sub vir} required to fit the galaxy luminosity function differs from the observed Tully-Fisher relation between L and disk speed v {sub rot}. Because of this, the problem of reproducing the galaxy luminosity function and the Tully-Fisher relation simultaneously has plagued semianalytic models since their inception. Here we study the relation between v {sub rot} and v {sub vir} by fitting observational average rotation curves of disk galaxies binned in luminosity. We show that the v {sub rot}-v {sub vir} relation that we obtain in this way can fully account for this seeming inconsistency. Therefore, the reconciliation of the luminosity function with the Tully-Fisher relation rests on the complex dependence of v {sub rot} on v {sub vir}, which arises because the ratio of stellar mass to dark matter mass is a strong function of halo mass.

  12. Constraints on the luminosity function of gamma-ray bursts detected by BATSE

    NASA Technical Reports Server (NTRS)

    Horack, J. M.; Emslie, A. G.; Meegan, C. A.

    1994-01-01

    We have utilized the integral moment analysis technique of Horack & Emslie to extract information on the allowable form of the luminosity function for gamma-ray bursts observed by Burst and Transient Source Experiment (BATSE). Using the general properties of moments, we are able to derive constraints on the range of luminosity from which the gamma-ray bursts must be sampled. These constraints are independent of the form of the radial distribution of the gamma-ray bursts, and depend only on the assumptions that space is Euclidean and that the luminosity function phi(L) is distance independent. For power-law luminosity functions of the form phi(L) = A(sub 0)L(exp -alpha), we find that the range of luminosity from which 80% of the gamma-ray bursts must be sampled cannot exceed approximately 6.5, with a 3 sigma upper limit of 12-15, regardless of the value of alpha.

  13. Optical Variability of Quasars as a Function of Luminosity and Redshift

    NASA Astrophysics Data System (ADS)

    Gaskell, C. M.; Koratkar, A. P.; Kwon, T.-Y.; Liang, Y.; Scott, J. H.; Wysota, A.

    1987-09-01

    Various models of the "central engine" in quasars make different predictions of how the degree of variability and its timescale vary with luminosity. In the past there have been conflicting claims about the luminosity and redshift dependence of quasar variability. We have examined the photographic light curves obtained at the Rosemary Hill Observatory (U. of Florida) and the Royal Greenwich Observatory (Herstmonceux) for over a hundred quasars (both radio-loud and radio-quiet). We demonstrate how the previously-reported redshift dependence is a consequence of time dilation, and find that, after allowance for this, there is no luminosity dependence in the amplitude of variability. High-luminosity quasars are not less variable than their low-luminosity counterparts. This creates major difficulties for some classes of quasar model with discrete accretion events (e.g., gas cloud or disrupted stars being "swallowed" directly).

  14. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  15. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  16. The connection between galaxy environment and the luminosity function slopes of star-forming regions

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Dale, Daniel A.; Lee, Janice C.; Thilker, David; Calzetti, Daniela; Kennicutt, Robert C.

    2016-11-01

    We present the first study of GALEX far-ultraviolet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ˜65 000 star-forming regions (i.e. FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (α) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that α correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (ΣSFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity function in galaxies with low-number statistics nor the effects of blending due to distance can fully account for these trends. We hypothesize that the flatter slopes in high ΣSFR galaxies is due to higher gas densities and higher star formation efficiencies which result in proportionally greater numbers of bright star-forming regions. Finally, we create a composite luminosity function composed of star-forming regions from many galaxies and find a break in the luminosity function at brighter luminosities. However, we find that this break is an artefact of varying detection limits for galaxies at different distances.

  17. The Environmental Dependence of the Galaxy Luminosity Function in the ECO Survey

    NASA Astrophysics Data System (ADS)

    Andrews, Hayley; Andreas A. Berlind, Victor Calderon, Kathleen D. Eckert, Sheila J. Kannappan, Amanda J. Moffett, David V. Stark

    2016-01-01

    We study the environmental dependence of the galaxy luminosity function in the ECO survey and compare it with models that associate galaxies with dark matter halos. Specifically, we quantify the environment of each galaxy in the ECO survey using an Nth nearest neighbor distance metric, and we measure how the galaxy luminosity distribution varies from low density to high density environments. As expected, we find that luminous galaxies preferentially populate high density regions, while low luminosity galaxies preferentially populate lower density environments. We investigate whether this trend can be explained simply by the correlation of galaxy luminosity and dark matter halo mass combined with the environmental dependence of the halo mass function. In other words, we test the hypothesis that the luminosity of a galaxy depends solely on the mass of its dark matter halo and does not exhibit a residual dependence on the halo's larger environment. To test this hypothesis, we first construct mock ECO catalogs by populating dark matter halos in an N-body simulation with galaxies using a model that preserves the overall clustering strength of the galaxy population. We then assign luminosities to the mock galaxies using physically motivated models that connect luminosity to halo mass and are constrained to match the global ECO luminosity function. Finally, we impose the radial and angular selection functions of the ECO survey and repeat our environmental analysis on the mock catalogs. Though our mock catalog luminosity functions display similar qualitative trends as those from the ECO data, the trends are not in agreement quantitatively. Our results thus suggest that the simple models used to build the mocks are incomplete and that galaxy luminosity is possibly correlated with the larger scale density field.

  18. Evidence Of Episodic Mass Accretion In Low-luminosity, Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Jeong; Evans, N. J., II; Dunham, M. M.; Lee, J.

    2012-01-01

    We present Spitzer IRS spectroscopy of CO2 ice toward 19 young stellar objects (YSOs) with luminosity lower than 1 Lsun. Pure CO2 ice forms only at elevated temperature, T > 20 K, and thus at higher luminosity. Pure CO2 ice formation processes are irreversible. It will not disappear unless it evaporates. Current internal luminosities of YSOs with L < 1 Lsun do not provide such conditions out to radii of typical envelopes. Significant amounts of pure CO2 ice would signify a higher past luminosity. We analyze 15.2 micron CO2 ice bending mode absorption lines in comparison to the laboratory data. We decompose pure CO2 ice from 15 out of 19 young low luminosity sources. Eight sources show a significant double peak in the optical depth, which provides unambiguous evidence for pure CO2 ice. The presence of the pure CO2 ice component indicate high dust temperature and hence high luminosity in past. The total CO2 ice amount can be explained by long period of low luminosity stage between episodic accretion bursts as predicted in an episodic accretion scenario. Chemical modeling shows that the episodic accretion scenario explains the observed total CO2 ice amount best. A detailed analysis has been performed for one low luminosity Class 0 object CB130-1-IRS1. A full SED fitting with a radiative transfer model shows that the internal luminosity of CB130-1-IRS1 is as low as 0.14 - 0.16 Lsun. The best fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Also we detected the pure CO2 ice component around CB130-1-IRS1, which is an evidence of past heating.

  19. THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY

    SciTech Connect

    Courteau, Stephane; Widrow, Lawrence M.; McDonald, Michael; Guhathakurta, Puragra; Zhu Yucong

    2011-09-20

    We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31's structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sersic bulge with shape index n {approx_equal} 2.2 {+-} .3 and effective radius R{sub e} = 1.0 {+-} 0.2 kpc, and a dust-free exponential disk of scale length R{sub d} = 5.3 {+-} .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities ({epsilon} = 1 - b/a) of the bulge and the disk from the IRAC image are 0.37 {+-} 0.03 and 0.73 {+-} 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index {approx_equal} - 2.5 {+-} 0.2 (or -3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range R{sub min} {approx}< 1.2 kpc. The disk takes over in the range 1.2 kpc {approx}< R{sub min} {approx}< 9 kpc, whereas the halo dominates at R{sub min} {approx}> 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the

  20. Electromagnetic luminosity of the coalescence of charged black hole binaries

    NASA Astrophysics Data System (ADS)

    Liebling, Steven L.; Palenzuela, Carlos

    2016-09-01

    The observation of a possible electromagnetic counterpart by the Fermi GBM group to the aLIGO detection of the merger of a black hole binary has spawned a number of ideas about its source. Furthermore, observations of fast radio bursts (FRBs) have similarly resulted in a range of new models that might endow black hole binaries with electromagnetic signatures. In this context, even the unlikely idea that astrophysical black holes may have significant charge is worth exploring, and here we present results from the simulation of weakly charged black holes as they orbit and merge. Our simulations suggest that a black hole binary with mass comparable to that observed in GW150914 could produce the level of electromagnetic luminosity observed by Fermi GBM (1 049 ergs /s ) with a nondimensional charge of q ≡Q /M =10-4 assuming good radiative efficiency. However even a charge such as this is difficult to imagine avoiding neutralization long enough for the binary to produce its electromagnetic counterpart, and so this value would likely serve simply as an upper bound. On the other hand, one can equivalently consider the black holes as having acquired a magnetic monopole charge that would be easy to maintain and would generate an identical electromagnetic signature as the electric charges. The observation of such a binary would have significant cosmological implications, not the least of which would be an explanation for the quantization of charge itself. We also study such a magnetically charged binary in the force-free regime and find it much more radiative, reducing even further the requirements to produce the counterpart.

  1. On the perturbation of the luminosity distance by peculiar motions

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick; Hudson, Michael J.

    2015-06-01

    We consider some aspects of the perturbation to the luminosity distance d(z) that are of relevance for SN1a cosmology and for future peculiar velocity surveys at non-negligible redshifts. (1) Previous work has shown that the correction to the lowest order perturbation δd/d = -δv/cz has the peculiar characteristic that it appears to depend on the absolute state of motion of sources, rather than on their motion relative to that of the observer. The resolution of this apparent violation of the equivalence principle is that it is necessary to allow for evolution of the velocities with time, and also, when considering perturbations on the scale of the observer-source separation, to include the gravitational redshift effect. We provide an expression for δd/d that provides a physically consistent way to measure peculiar velocities and determine their impact for SN1a cosmology. (2) We then calculate the perturbation to the redshift as a function of source flux density, which has been proposed as an alternative probe of large-scale motions. We show how the inclusion of surface brightness modulation modifies the relation between δz(m) and the peculiar velocity, and that, while the noise properties of this method might appear promising, the velocity signal is swamped by the effect of galaxy clustering for most scales of interest. (3) We show how, in linear theory, peculiar velocity measurements are biased downwards by the effect of smaller scale motions or by measurement errors (such as in photometric redshifts). Our results nicely explain the effects seen in simulations by Koda et al. We critically examine the prospects for extending peculiar velocity studies to larger scales with near-term future surveys.

  2. Mutagenic effect of a keV range N + beam on mammalian cells

    NASA Astrophysics Data System (ADS)

    Feng, Huiyun; Wu, Lijun; Yu, Lixiang; Han, Wei; Liu, Xuelan; Yu, Zengliang

    2005-07-01

    The radiobiological effects of a keV (5-20 keV) range nitrogen ion (N +) beam on mammalian cells were studied, particularly with regard to the induction of mutation in the cell genome. The experiment demonstrated that the 20 keV N + beam, which resulted in cell death to a certain extent, induced a 2-3 fold increase in the mutation rates at the CD59 gene locus of the mammalian A L cells as compared to the control. Within certain fluence ranges (0-6 × 10 14 N +/cm 2), the cell survival displayed a down-up-down pattern which is similar to the phenomenon known as 'hyper-radiosensitivity' manifested under low-dose irradiation; the CD59 mutation rate firstly showed a gradual rise up to a 3-fold increment above the background level as the ion fluence went up to 4 × 10 14 N +/cm 2, after this peak point however, a downtrend appeared though the ion fluence increased further. It was also observed that the fraction of CD59 mutation bears no proportional relation to ion energy in further experiments of mutation induction by N + beams with the incident energies of 5, 10, 15 and 20 keV at the same fluence of 3 × 10 14 N +/cm 2. Analyses of the deletion patterns of chromosome 11 in CD59- mutants induced by 5-20 keV N + beams showed that these ions did not result in large-size chromosome deletions in this mammalian cell system. A preliminary discussion, suggesting that the mutagenic effect of such low-energy ion influx on mammalian cells could result from multiple processes involving direct collision of particles with cellular DNA, and cascade atomic and molecular reactions due to plentiful primary and secondary particles, was also presented. The study provided the first glimpse into the roles low-energy ions may play in inducing mutagenesis in mammalian cells, and results will be of much value in helping people to understand the contribution of low-energy ions to radiological effects of various ionising radiations.

  3. THE REDSHIFT DISTRIBUTION OF INTERVENING WEAK Mg II QUASAR ABSORBERS AND A CURIOUS DEPENDENCE ON QUASAR LUMINOSITY

    SciTech Connect

    Evans, Jessica L.; Churchill, Christopher W.; Nielsen, Nikole M.; Klimek, Elizabeth S.; Murphy, Michael T.

    2013-05-01

    We have identified 469 Mg II {lambda}{lambda}2796, 2803 doublet systems having W{sub r} {>=} 0.02 A in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 A {<=}W{sub r} < 0.3 A), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z {approx} 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z {approx_equal} 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10{sup 6}-10{sup 9} Mpc{sup -3} for spherical geometries and 10{sup 2}-10{sup 5} Mpc{sup -3} for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W{sub r} {>=} 1.0 A) absorbers. For weak absorption, dN/dz toward bright quasars is {approx}25% higher than toward faint quasars (10{sigma} at low redshift, 0.4 {<=} z {<=} 1.4, and 4{sigma} at high redshift, 1.4 < z {<=} 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being {approx}20% higher than toward bright quasars (also 10{sigma} at low redshift and 4{sigma} at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  4. Comprehensive Analysis of RXTE Data from Cyg X-1. Spectral Index-Quasi-Periodic Oscillation Frequency-Luminosity Correlations

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2006-01-01

    We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.

  5. A Proposed Fast Luminosity Feedback for the Super-B Accelerator

    SciTech Connect

    Bertsche, Kirk; Field, R.Clive; Fisher, Alan; Sullivan, Michael; Drago, Alessandro; /Frascati

    2009-05-15

    We present a possible design for a fast luminosity feedback for the SuperB Interaction Point (IP). The design is an extension of the fast luminosity feedback installed on the PEP-II accelerator. During the last two runs of PEP-II and BaBar (2007-2008), we had an improved luminosity feedback system that was able to maintain peak luminosity with faster correction speed than the previous system. The new system utilized fast dither coils on the High-Energy Beam (HEB) to independently dither the x position, the y position and the y angle at the IP, at roughly 100 Hz. The luminosity signal was then read out with three independent lock-in amplifiers. An overall correction was computed based on the lock-in signal strengths and beam corrections for position in x and y and in the y angle at the IP were simultaneously applied to the HEB. With the 100 times increase in luminosity for the SuperB design, we propose using a similar fast luminosity feedback that can operate at frequencies between DC and 1 kHz, high enough to follow any beam motion from the final focusing magnets.

  6. Constraints on the gamma-ray burst luminosity function from Pioneer Venus Orbiter and BATSE observations

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew; Wijers, Ralph A. M. J.; Fenimore, Edward E.

    1995-01-01

    We examine the width of the gamma ray burst luminosity function through the distribution of Gamma Ray Burst (GRB) peak fluxes as detected by the Pioneer Venus Orbiter (PVO) and the Burst and Transient Source Experiment (BATSE). The strength of the analysis is greatly enhanced by using a merged catalog of peak fluxes from both instruments with good cross-calibration of their sensitivities. The range of peak fluxes is increased by approximately a factor of 20 relative to the BATSE catalog. Thus, more sensitive investigations of the log N - log P distribution are possible. We place constraints on the width of the luminosity function of gamma-ray bursts brighter than the BATSE completeness limit by comparing the intensity distribution in the merged catalog with those produced by a variety of spatial density and luminosity functions. For the models examined, 90% of the detectable bursts have peak luminosities within a range of 10, indicating that the peak luminosities of gamma-ray bursts span a markedly less wide range of values than many other of their measurable properties. We also discuss for which slopes of a power-law luminosity function the observed width is at the upper end of the constrained range. This is essential in determining the power-law slopes for which luminosity-duration correlations could be important.

  7. DISTRIBUTION OF MAXIMAL LUMINOSITY OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Taghizadeh-Popp, M.; Szalay, A. S.; Ozogany, K.; Racz, Z.

    2012-11-10

    Extreme value statistics is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey. We analyze the DR8 Main Galaxy Sample (MGS), as well as the luminous red galaxies (LRGs). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index {xi}, effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high-luminosity end. Assuming, however, {xi} = 0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided that uncertainties arising from both the finite batch size and the batch-size distribution are accounted for. For a volume-limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided that the uncertainties related to batch-size distribution are taken care of.

  8. Characterizing Quasar Outflows III: SEDs, and Bolometric Luminosity Estimates

    NASA Astrophysics Data System (ADS)

    Richmond, Joseph; Robbins, J. M.; Ganguly, R.; Stark, M. A.; Christenson, D. H.; Derseweh, J. A.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from both the Two Micron All-Sky Survey (2MASS) and from the Wide-Field Infrared Survey Explorer (WISE). 2MASS photometry covers the rest-frame optical regime of these qusars, while the WISE W1, W2, and W3 bands cover the rest-frame wavelength ranges 0.9-1.27 micron, 1.35-1.75 micron, and 2.52-5.51 micron, respectively. The preliminary release of WISE data cover 3800 of our quasars. In an accompnying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). Here, we present average SEDs for these subsamples, estimates of bolometric luminosity, and explore changes in SED based on both outflow properties and quasar physical properties. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the

  9. A TENTATIVE SIZE-LUMINOSITY RELATION FOR THE IRON EMISSION-LINE REGION IN QUASARS

    SciTech Connect

    Chelouche, Doron; Rafter, Stephen E.; Cotlier, Gabriel I.; Kaspi, Shai; Barth, Aaron J. E-mail: rafter@physics.technion.ac.il E-mail: barth@uci.edu

    2014-03-10

    New reverberation mapping measurements of the size of the optical iron emission-line region in quasars are provided, and a tentative size-luminosity relation for this component is reported. Combined with lag measurements in low-luminosity sources, the results imply an emission-region size that is comparable to and at most twice that of the Hβ line, and is characterized by a similar luminosity dependence. This suggests that the physics underlying the formation of the optical iron blends in quasars may be similar to that of other broad emission lines.

  10. The line continuum luminosity ratio in AGN: Or on the Baldwin Effect

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.; Ferland, F. J.

    1983-01-01

    The luminosity dependence of the equivalent width of CIV in active galaxies, the "Baldwin" effect, is shown to be a consequence of a luminosity dependent ionization parameter. This law also agrees with the lack of a "Baldwin" effect in Ly alpha or other hydrogen lines. A fit to the available data gives a weak indication that the mean covering factor decreases with increasing luminosity, consistent with the inference from X-ray observations. The effects of continuum shape and density on various line ratios of interest are discussed.

  11. Experimental demonstration of interaction region beam waist position knob for luminosity leveling

    SciTech Connect

    Hao, Yue; Bai, Mei; Duan, Zhe; Luo, Yun; Marusic, Aljosa; Robert-Demolaize, Guillaume; Shen, Xiaozhe

    2015-05-03

    In this paper, we report the experimental implementation of the model-dependent control of the interaction region beam waist position (s* knob) at Relativistic Heavy Ion Collider (RHIC). The s* adjustment provides an alternative way of controlling the luminosity and is only known method to control the luminosity and reduce the pinch effect of the future eRHIC. In this paper, we will first demonstrate the effectiveness of the s* knob in luminosity controlling and its application in the future electron ion collider, eRHIC, followed by the detail experimental demonstration of such knob in RHIC.

  12. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  13. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  14. Detector Developments for the High Luminosity LHC Era (1/4)

    SciTech Connect

    2010-09-22

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  15. Potential luminosity improvement for low-energy RHIC operation with electron cooling

    SciTech Connect

    Fedotov,A.

    2009-06-08

    There is a strong interest in heavy-ion RHIC collisions in the energy range below the present RHIC injection energy, which is termed 'low-energy' operation. These collisions will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. However, luminosity projections are relatively low for the lowest energy points of interest. Luminosity improvement can be provided with RHIC electron cooling at low beam energies. This report summarizes the expected luminosity improvements with electron cooling and various limitations.

  16. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Collazzi, Andrew

    2011-08-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of 'standard candle'; where standard candle is meant in the usual sense that their luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, several methods are employed to do just that. First, generalized forms of two tests are performed on all of the luminosity relations. All the luminosity relations pass the second of these tests, and all but two pass the first. Even with this failure, the redundancy in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the 'Firmani relation' is shown to have poorer accuracy than first advertised. In addition, it is shown to be exactly derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a popular luminosity indicator (Epeak ) are measured. The result is that an irreducible systematic error of 28% exists. After that, a preliminary investigation into the usefulness of breaking GRBs into individual pulses is conducted. The results of an 'ideal' set of data do not

  17. NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM

    SciTech Connect

    Caspi, Amir; Woods, Thomas N.; Warren, Harry P.

    2015-03-20

    The solar corona is orders of magnitude hotter than the underlying photosphere, but how the corona attains such high temperatures is still not understood. Soft X-ray (SXR) emission provides important diagnostics for thermal processes in the high-temperature corona, and is also an important driver of ionospheric dynamics at Earth. There is a crucial observational gap between ∼0.2 and ∼4 keV, outside the ranges of existing spectrometers. We present observations from a new SXR spectrometer, the Amptek X123-SDD, which measured the spatially integrated solar spectral irradiance from ∼0.5 to ∼5 keV, with ∼0.15 keV FWHM resolution, during sounding rocket flights on 2012 June 23 and 2013 October 21. These measurements show that the highly variable SXR emission is orders of magnitude greater than that during the deep minimum of 2009, even with only weak activity. The observed spectra show significant high-temperature (5–10 MK) emission and are well fit by simple power-law temperature distributions with indices of ∼6, close to the predictions of nanoflare models of coronal heating. Observations during the more active 2013 flight indicate an enrichment of low first-ionization potential elements of only ∼1.6, below the usually observed value of ∼4, suggesting that abundance variations may be related to coronal heating processes. The XUV Photometer System Level 4 data product, a spectral irradiance model derived from integrated broadband measurements, significantly overestimates the spectra from both flights, suggesting a need for revision of its non-flare reference spectra, with important implications for studies of Earth ionospheric dynamics driven by solar SXRs.

  18. Rise time in 20-32 keV impulsive X-radiation

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Takakura, T.

    1974-01-01

    A new property of the X-ray impulsive component observed in solar flares is discussed, giving attention to the relation between the slope of the electron power spectrum and the rise time in the 20-32 keV X-ray spike. This particular energy range was chosen because it offered the greatest number of impulsive events while being sufficiently high to avoid contamination by soft X radiation. It is found for the thin-target model that the electron spectrum tends to be softer when the acceleration rate is smaller.

  19. Single ionization of helium by 40-3000-keV antiprotons

    NASA Astrophysics Data System (ADS)

    Andersen, L. H.; Hvelplund, P.; Knudsen, H.; Møller, S. P.; Pedersen, J. O. P.; Tang-Petersen, S.; Uggerhøj, E.; Elsener, K.; Morenzoni, E.

    1990-06-01

    Measurements of single-ionization cross sections for antiproton impact on helium atoms are reported for impact energies ranging from 40 keV to 3 MeV. It is found that the measured cross sections are in good agreement with recent theoretical estimates based on the continuum-distorted-wave approximation. From a comparison with similar proton data, the ratio between antiproton and proton results is obtained. The energy dependence of this ratio is compared with various theoretical estimates and explained as a result of polarization and binding effects.

  20. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  1. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  2. On the vectorial photoelectric effect at 2.69 keV

    NASA Technical Reports Server (NTRS)

    Shaw, P. S.; Hanany, S.; Liu, Y.; Church, E. D.; Fleischman, J.; Kaaret, P.; Novick, R.; Santangelo, A.

    1991-01-01

    Recent experiments conducted to study the vectorial photoelectric effect with CsI, Al2O3 and Si photocathodes at 2.69 keV indicate null results. Detailed analysis shows that previously measured modulation can be well explained by geometrical misalignment and a combination of the asymmetric shape of the incident X-ray beam and a small detection area of the photoelectron detector. After the elimination of the sources of spurious modulation, we observed a modulation factor of less than 3 percent for a grazing incidence angle as small as 5 deg. There is no observable difference in the pulse height distribution between s and p states.

  3. A 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Senjanovic, G.; Tao, Zhijian; Berezhiani, Z. G.

    1992-08-01

    Zee-type models with Majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, a particularly simple solution is found to the solar neutrino problem, which besides nu(sub 17) predicts a light Zeldovich-Konopinski-Mahmoud neutrino nu(sub light) = nu(sub e) + nu(sub mu)(sup c) with a magnetic moment being easily as large as 10(exp -11)(mu)(sub B) through the Barr-Freire-Zee mechanism.

  4. 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-01-01

    Zee-type models with majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, we find a particularly simple solution to the solar neutrino problem, which besides ν17 predicts a light Zeldovich-Konopinski-Mahmoud neutrino νlight = νe + νcμ with a magnetic moment being easily as large as 10 -11μB through the Barr-Freire-Zee mechanism.

  5. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  6. The effect of 1 to 5 keV electrons on the reproductive integrity of microorganisms

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Brady, J.

    1977-01-01

    Microorganisms were exposed to simulated space environment in order to assess the effect of electrons in the energy range 1 to 5 keV on their colony-forming ability. The test system consisted of an electron gun and power supply, a dosimetry subsystem, and a vacuum subsystem. The system was capable of current densities ranging from 0.1 nA/sq cm to 5 micro A/sq cm on a 25 sq on target and an ultimate vacuum of 0.0006 N/sq m (0.000004 torr). The results of the experimental program show a significant reduction in microbial reproductive integrity.

  7. Ionization and Fragmentation of 5-Chlorouracil induced by 100 keV protons collisions

    SciTech Connect

    Cafarelli, Pierre; Champeaux, Jean-Philippe; Le Padellec, Arnaud; Moretto-Capelle, Patrick; Rabier, Julien; Sence, Martine; Carcabal, Pierre

    2008-12-08

    We present preliminary experimental results on the dissociation of singly and doubly ionized 5-Chlorouracil induced by collisions with proton of 100 keV energy. Multiple coincidence techniques are used to detect the ionic fragments from single dissociation events. This enables a thorough analysis of kinetic momentums of the charged and neutral species involved in the dissociation. In many cases, this leads to the establishment of the scenario the molecule undergoes after ionization as well as the determination of the nature of intermediate (undetected) species. In other cases, the dissociation scenario cannot be unambiguously identified and further analysis as well as theoretical support is needed.

  8. Dynamic dependence of interaction potentials for keV atoms at metal surfaces

    SciTech Connect

    Schueller, A.; Adamov, G.; Wethekam, S.; Maass, K.; Mertens, A.; Winter, H.

    2004-05-01

    He and N atoms are scattered with keV energies under a grazing angle of incidence from clean and flat Ag(111) and Al(111) surfaces. For incidence along low index crystallographic directions in the surface plane, atomic projectiles are steered by rows of atoms (''axial surface channeling'') giving rise to characteristic rainbows in their angular distribution. From the analysis of this effect we derive effective scattering potentials which reveal pronounced dynamical effects. We attribute our observation to the embedding energy for penetration of atoms in the electron gas of a metal.

  9. Evidence for electron acceleration up to approximately 300 keV in the magnetic reconnection diffusion region of earth's magnetotail.

    PubMed

    ØIeroset, M; Lin, R P; Phan, T D; Larson, D E; Bale, S D

    2002-11-01

    We report direct measurements of high-energy particles in a rare crossing of the diffusion region in Earth's magnetotail by the Wind spacecraft. The fluxes of energetic electrons up to approximately 300 keV peak near the center of the diffusion region and decrease monotonically away from this region. The diffusion region electron flux spectrum obeys a power law with an index of -3.8 above approximately 2 keV, and the electron angular distribution displays strong field-aligned bidirectional anisotropy at energies below approximately 2 keV, becoming isotropic above approximately 6 keV. These observations indicate significant electron acceleration inside the diffusion region. Ions show no such energization.

  10. Characteristics of upstream energetic (E>=50keV) ion events during intense geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Rigas, A. G.; Sarris, E. T.; Krimigis, S. M.

    1998-05-01

    In this work we examine the statistical presence of some important features of upstream energetic (>=50 keV) ion events under some special conditions in the upstream region and the magnetosphere. The 125 ion events considered in the statistic were observed by the IMP 7 and IMP 8 spacecraft, at ~35RE from the Earth, during nine long time intervals of a total of 153 hours. The time intervals analyzed were selected under the following restrictions: existence of high proton flux (i.e., >=900 pcm-2s-1sr-1) and of a great number of events (an occurrence frequency of ~10 events per 12 hours in the whole statistics) in the energy range 50-220 keV. The most striking findings are the following: (1) The upstream events were observed during times with high values of the geomagnetic activity index Kp(>=3-) (2) all of the upstream events (100%) have energy spectra extending up to energies E>=290keV (3) 86% of these events are accompanied by relativistic (E>=220keV) electrons; and (4) the majority of the upstream ion events (82%) showed noninverse velocity dispersion during their onset phase (22% of the events showed forward velocity dispersion, and 60% showed no velocity dispersion at all when 5.5-min averaged observations were analyzed). Further statistical analysis of this sample of upstream particle events shows that the 50- to 220-keV proton flux shows a positive correlation with the following parameters: the Kp index of geomagnetic activity and the flux of the high-energy (290-500 keV) protons and (>=220 keV) electrons. More specific findings are the following: (1) The spectral index γ for a power law distribution of ions detected by the National Oceanic and Atmospheric Administration Energetic Particle Experiment (EPE) instrument (50<=E<=220keV) and The Johns Hopkins University Applied Physics Laboratory Charged Particle Measurement Experiment (CPME) instrument (290<=E<=500keV) ranges between 2 and 6, with maximum probability between 4 and 5 and (2) the peak

  11. Precise Determination of the Intensity of 226Ra Alpha Decay to the 186 keV Excited State

    SciTech Connect

    S.P. LaMont; R.J. Gehrke; S.E. Glover; R.H. Filby

    2001-04-01

    There is a significant discrepancy in the reported values for the emission probability of the 186 keV gamma-ray resulting from the alpha decay of 226 Ra to 186 keV excited state of 222 Rn. Published values fall in the range of 3.28 to 3.59 gamma-rays per 100 alpha-decays. An interesting observation is that the lower value, 3.28, is based on measuring the 186 keV gamma-ray intensity relative to the 226 Ra alpha-branch to the 186 keV level. The higher values, which are close to 3.59, are based on measuring the gamma-ray intensity from mass standards of 226 Ra that are traceable to the mass standards prepared by HÓNIGSCHMID in the early 1930''s. This discrepancy was resolved in this work by carefully measuring the 226 Ra alpha-branch intensities, then applying the theoretical E2 multipolarity internal conversion coefficient of 0.692±0.007 to calculate the 186 keV gamma-ray emission probability. The measured value for the alpha branch to the 186 keV excited state was (6.16±0.03)%, which gives a 186 keV gamma-ray emission probability of (3.64±0.04)%. This value is in excellent agreement with the most recently reported 186 keV gamma-ray emission probabilities determined using 226 Ra mass standards.

  12. Magnetic field structure around cores with very low luminosity objects

    NASA Astrophysics Data System (ADS)

    Soam, A.; Maheswar, G.; Lee, Chang Won; Dib, Sami; Bhatt, H. C.; Tamura, Motohide; Kim, Gwanjeong

    2015-01-01

    Aims: We carried out optical polarimetry of five dense cores, (IRAM 04191, L1521F, L328, L673-7, and L1014) which are found to harbour very low luminosity objects (VeLLOs; Lint ≲ 0.1 L⊙). This study was conducted mainly to understand the role played by the magnetic field in the formation of very low and substellar mass range objects. Methods: Light from the stars, while passing through the dust grains that are aligned with their short axis parallel to an external magnetic field, becomes linearly polarised. The polarisation position angles measured for the stars can provide the plane-of-the sky magnetic field orientation. Because the light in the optical wavelength range is most efficiently polarised by the dust grains typically found at the outer layers of the molecular clouds, optical polarimetry mostly traces the magnetic field orientation of the core envelope. Results: The polarisation observations of stars projected on IRAM 04191, L328, L673-7, and L1014 were obtained in the R-band and those of L1521F were obtained in the V-band. The angular offsets between the envelope magnetic field direction (inferred from optical polarisation measurements) and the outflow position angles from the VeLLOs in IRAM 04191, L1521F, L328, L673-7, and L1014 are found to be 84°, 53°, 24°, 08°, and 15°, respectively. The mean value of the offsets for all the five clouds is ~ 37°. If we exclude IRAM 04191, the mean value reduces to become ~ 25°. In IRAM 04191, the offset between the projected envelope and the inner magnetic field (inferred from the submillimetre data obtained using SCUBA-POL) is found to be ~ 68°. The inner magnetic field, however, is found to be nearly aligned with the projected position angles of the minor axis, the rotation axis of the cloud, and the outflow from the IRAM 04191-IRS. We discuss a possible explanation for the nearly perpendicular orientation between the envelope and core scale magnetic fields in IRAM 04191. The angular offset between the

  13. Optical Variability of Two High-Luminosity Radio-Quiet Quasars, PDS 456 and PHL 1811

    NASA Astrophysics Data System (ADS)

    Gaskell, C. M.; Benker, A. J.; Campbell, J. S.; Crowley, K. A.; George, T. A.; Hedrick, C. H.; Hiller, M. E.; Klimek, E. S.; Leonard, J. P.; Peterson, B. W.; Sanders, K. M.

    2003-12-01

    PDS 456 and PHL 1811 are two of the highest luminosity low-redshift quasars. Both have optical luminosities comparable to 3C 273, but they have low radio luminosities. PDS 456 is a broad line object but PHL 1811 could be classified as a high-luminosity Narrow-Line Seyfert 1 (NLS1) object. We present the results of optical (V-band) continuum monitoring of PDS 456 and PHL 1811. We compare the variability properties of these two very different AGNs compared with the radio-loud AGN 3C 273, and we discuss the implications for the origin of the optical continuum variability in AGNs. This research has been supported in part by the Howard Hughes Foundation, Nebraska EPSCoR, the University of Nebraska Layman Fund, the University of Nebraska Undergraduate Creative Activities and Research Experiences, Pepsi-Cola, and the National Science Foundation through grant AST 03-07912.

  14. Tevatron Collider Run II status and novel technologies for luminosity upgrades

    SciTech Connect

    Vladimir Shiltsev

    2004-07-20

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 92e30 cm-2s-1 which exceeds the original Run IIa goal. Over 0.57fb-1 have being delivered to each CDF and D0 experiments since the beginning of the Run II. In parallel to the Collider operation, we have started a project of the luminosity upgrade which should lead to peak luminosities of about 270e30 and total integrated luminosity of 4.4-8.5 fb-1 through FY2009. In this paper we describe the status of the Tevatron Collider complex, essence of the upgrades and novel accelerator technologies to be employed.

  15. Shock heated dust in L1551: L(IR) greater than 20 solar luminosities

    NASA Technical Reports Server (NTRS)

    Clark, F. O.; Laureijs, R. J.; Chlewicki, G.; Zhang, C. Y.; Vanoosterom, W.; Kester, D.

    1987-01-01

    The infrared bolometric luminosity of the extended emission from the L1551 flow exceeds 20 solar luminosities. Ultraviolet radiation from the shock associated with the flow appears to heat the dust requiring shock temperatures from 10,000 to 90,000 K in L1551, velocities of approximately 50 km/s near the end of the flow, and a minimum mechanical luminosity of approximately 40 solar luminosities. The total energy requirement of the infrared emission over a 10,000 year lifetime is 10 to the 46th to 47th ergs, two orders of magnitude higher than previous estimates for L1551. Infrared radiation offers a method of probing interstellar shocks, by sampling the untraviolet halo surrounding the shock. At least one current model for bipolar flows is capable of meeting the energetic requirements.

  16. A supersoft variable low-luminosity X-ray source in the globular cluster M3

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grindlay, J. E.; Bailyn, C. D.

    1993-01-01

    The globular cluster M3 (NGC 5272) was observed twice with the ROSAT high-resolution imager in order to study the low-luminosity X-ray source 1E 1339.8 + 2837. In 1992 January 1E 1339.8 + 2837 had an X-ray luminosity of 2 x 10 exp 35 ergs/s over an order of magnitude brighter than it was when observed with the Einstein Observatory. The source was unresolved and very soft; such supersoft outbursts would be difficult to detect in the vast majority of globular clusters which are more heavily absorbed than M3. In 1992 June the source was too faint to be detected. The soft outburst luminosity and the blackbody radius suggest that 1E 1339.8 + 2837 is a cataclysmic variable in which much of the luminosity is generated by steady nuclear burning of accreted material on the surface of the white dwarf primary.

  17. The luminosity functions of the 1969 Perseid and Orionid meteor showers

    NASA Technical Reports Server (NTRS)

    Krisciunas, K.

    1980-01-01

    Observations of the 1969 Perseid and Orionid meteor showers are presented and used to derive luminosity functions for the 288 Perseids and 56 Orionids detected. Visual counts were performed under very good to excellent seeing conditions at the times of peak activities, and the brightnesses of the meteors were estimated to the nearest magnitude by comparison with the magnitudes of known objects. Maximum likelihood estimates of the power law index of the luminosity function of 1.56 + or - 0.06 for the Perseids and of 1.85 + or - 0.1 for the Orionids are obtained which are lower than the values found by other investigators. Under the assumption that the luminosity of visual meteors is proportional to their mass, the luminosity function power law may also be used to characterize the mass function.

  18. RADIO-LOUD ACTIVE GALACTIC NUCLEUS: IS THERE A LINK BETWEEN LUMINOSITY AND CLUSTER ENVIRONMENT?

    SciTech Connect

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Jarvis, M.; Kraft, R. P.; Evans, D. A.

    2013-06-20

    We present here the first results from the Chandra ERA (Environments of Radio-loud AGN) Large Project, characterizing the cluster environments of a sample of 26 radio-loud active galactic nuclei (AGNs) at z {approx} 0.5 that covers three decades of radio luminosity. This is the first systematic X-ray environmental study at a single epoch, and has allowed us to examine the relationship between radio luminosity and cluster environment without the problems of Malmquist bias. We have found a weak correlation between radio luminosity and host cluster X-ray luminosity, as well as tentative evidence that this correlation is driven by the subpopulation of low-excitation radio galaxies, with high-excitation radio galaxies showing no significant correlation. The considerable scatter in the environments may be indicative of complex relationships not currently included in feedback models.

  19. Luminosity-environment relation in the Lowz sample of the Sdss-Iii

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Qi, Xiao-Ping; Wu, Ping; Jiang, Peng; Qian, Xiao-Xia; Song, Jun; Ding, Ying-Ping

    In this work, we examine the environmental dependence of the u-, g-, r-, i- and z-band luminosities in the LOWZ sample of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10). To decrease the radial selection effect, we divide the LOWZ sample into subsamples with a redshift bin size of Δ z = 0.01 and analyze the environmental dependence of luminosities for these subsamples in each redshift bin. It is found that all five band luminosities of the LOWZ galaxy sample in the redshift region z=0.16--0.23 show substantial correlation with the local environment, especially in the redshift bins 0.19--0.20 and 0.20--0.21. The environmental dependence of all five band luminosities in the LOWZ galaxy sample becomes weak with increasing redshift, like the one in the apparent-magnitude limited Main galaxy sample.

  20. Influence of a keV sterile neutrino on neutrinoless double beta decay: How things changed in recent years

    NASA Astrophysics Data System (ADS)

    Merle, Alexander; Niro, Viviana

    2013-12-01

    Earlier studies of the influence of dark matter keV sterile neutrinos on neutrinoless double beta decay concluded that there is no significant modification of the decay rate. These studies have focused only on a mass of the keV sterile neutrino above 2 and 4 keV, respectively, as motivated by certain production mechanisms. On the other hand, alternative production mechanisms have been proposed, which relax the lower limit for the mass, and new experimental data are available, too. For this reason, an updated study is timely and worthwhile. We focus on the most recent data, i.e., the newest Chandra and XMM-Newton observational bounds on the x-ray line originating from radiative keV sterile neutrino decay, as well as the new measurement of the previously unknown leptonic mixing angle θ13. While the previous works might have been a little short-sighted, the new observational bounds do indeed render any influences of keV sterile neutrinos on neutrinoless double beta decay small. This conclusion even holds in case not all the dark matter is made up of keV sterile neutrinos.

  1. High order reflectivity of highly oriented pyrolytic graphite crystals for x-ray energies up to 22 keV

    SciTech Connect

    Doeppner, T.; Neumayer, P.; Landen, O. L.; Glenzer, S. H.; Girard, F.; Kugland, N. L.; Niemann, C.

    2008-10-15

    We used Kr K{alpha} (12.6 keV), Zr K{alpha} (15.7 keV), and Ag K{alpha} (22.2 keV) x-rays, produced by petawatt-class laser pulses, to measure the integrated crystal reflectivity R{sub int} of flat highly oriented pyrolytic graphite (HOPG) up to the fifth order. The maximum R{sub int} was observed in first order (3.7 mrad at 12.6 keV), decreasing by a factor of 3-5 for every successive order, and dropping by a factor of 2-2.5 at 22.2 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x-ray sources (E{>=}20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

  2. Resolution of the 1,238-keV gamma-ray line from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1989-01-01

    Observations of supernova 1987A from the maiden flight of the Gamma-Ray Imaging Spectrometer (GRIS) are reported. SN1987A was observed for a period of 11.1 hours on May 1, 1988. Line emission at 1238 keV and continuum emission from 60-800 keV were detected. A gaussian line profile gives an acceptable fit to the 1238 keV line. The best-fit parameters are: flux = 8.5(+ 2.3, - 2.2) x 10 to the -4th photons/sq cm/s; peak energy = 1235.4 (+ 2.2, - 2.4) keV; FWHM = 16.3 (+ 6.1, - 5.7) keV. No evidence is found for a supernova-produced red- or blueshift in the 1238 keV line. The measured linewidth is a factor of about two greater than model predictions, although the discrepancy represents only two standard deviations. The line profiles are characteristic of optically thin regions, whereas the intensity implies a mean optical depth of about two. Fragmentation or nonspherical geometry of the supernova shell are possible explanations of the data.

  3. The 2dF Galaxy Redshift Survey: the number and luminosity density of galaxies

    NASA Astrophysics Data System (ADS)

    Cross, Nicholas; Driver, Simon P.; Couch, Warrick; Baugh, Carlton M.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Dalton, Gavin; Deeley, Kathryn; De Propris, Roberto; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Moody, Stephen; Norberg, Peder; Peacock, John A.; Peterson, Bruce A.; Price, Ian; Seaborne, Mark; Sutherland, Will; Tadros, Helen; Taylor, Keith

    2001-07-01

    We present the bivariate brightness distribution (BBD) for the 2dF Galaxy Redshift Survey (2dFGRS) based on a preliminary subsample of 45000 galaxies. The BBD is an extension of the galaxy luminosity function, incorporating surface brightness information. It allows the measurement of the local luminosity density, jB, and of the galaxy luminosity and surface brightness distributions, while accounting for surface brightness selection biases. The recovered 2dFGRS BBD shows a strong luminosity-surface brightness relation MB~(2.4+/-0.51.5)μe], providing a new constraint for galaxy formation models. In terms of the number density, we find that the peak of the galaxy population lies at MB>=-16.0mag. Within the well-defined selection limits (-24luminosity density is dominated by conventional giant galaxies (i.e., 90 per cent of the luminosity density is contained within -22.5luminosity-density peak lies away from the selection boundaries, implying that the 2dFGRS is complete in terms of sampling the local luminosity density, and that luminous low surface brightness galaxies are rare. The final value we derive for the local luminosity density, inclusive of surface brightness corrections, is jB=2.49+/- 0.20×108h100LsolarMpc- 3. Representative Schechter function parameters are M*=-19.75+/-0.05, φ*=2.02+/-0.02×10-2 and α=-1.09+/-0.03. Finally, we note that extending the conventional methodology to incorporate surface brightness selection effects has resulted in an increase in the luminosity density of ~37 per cent. Hence surface brightness selection effects would appear to explain much of the discrepancy between previous estimates of the local luminosity density.

  4. Overview of a high luminosity {mu}{sup +}{mu}{sup {minus}} collider

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders.

  5. XMM-NEWTON OBSERVATIONS REVEAL VERY HIGH X-RAY LUMINOSITY FROM THE CARBON-RICH WOLF-RAYET STAR WR 48a

    SciTech Connect

    Zhekov, Svetozar A.; Gagne, Marc; Skinner, Stephen L. E-mail: mgagne@wcupa.edu

    2011-01-20

    We present XMM-Newton observations of the dusty Wolf-Rayet (W-R) star WR 48a. This is the first detection of this object in X-rays. The XMM-Newton EPIC spectra are heavily absorbed and the presence of numerous strong emission lines indicates a thermal origin of the WR 48a X-ray emission, with dominant temperature components at kT{sub cool} {approx} 1 keV and kT{sub hot} {approx} 3 keV, the hotter component dominating the observed flux. No significant X-ray variability was detected on timescales {<=}1 day. Although the distance to WR 48a is uncertain, if it is physically associated with Open clusters Danks 1 and 2 at d {approx}4 kpc, then the resultant X-ray luminosity L{sub X}{approx} 10{sup 35} erg s{sup -1} makes it the most X-ray luminous W-R star in the Galaxy detected so far, after the black hole candidate Cyg X-3. We assume the following scenarios as the most likely explanation for the X-ray properties of WR 48a: (1) colliding stellar winds in a wide WR+O binary system, or in a hierarchical triple system with non-degenerate stellar components and (2) accretion shocks from the WR 48a wind onto a close companion (possibly a neutron star). More specific information about WR 48a and its wind properties will be needed to distinguish between the above possibilities.

  6. Attenuation of photons at 3 to 14 keV energies in helium

    SciTech Connect

    Azuma, Y.; Berry, H.G.; Gemmell, D.S.

    1995-08-01

    Using X-ray photons at the X24A, X23B and X23A2 beam lines at NSLS, we measured the total photo-attenuation cross section of helium for photons in the energy range of 3 to 14 keV. In this range the photoionization cross section decreases rapidly with energy, so that Compton scattering is significant at 4 keV and dominates at the highest energies. The apparatus consisted of a 1.4-m long helium-absorption tube, 5 cm in diameter, with 75-{mu} thick, 7-mm diameter, kapton end windows. The tube could be filled with helium up to a pressure of 10{sup 6} Pa. We attained a precision of 1-2% in the attenuation cross section. The measurements verify the dominance of Compton scattering in this energy range and its importance in recent measurements of the ratio of double-to-single photoionization of helium. The measured cross sections are close to the combined calculated cross sections for Compton scattering and photoionization, and we are able to distinguish the contributions of the two effects.

  7. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  8. Hydroxyapatite-titanium interface reaction induced by keV electron irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Foti, G.

    1992-03-01

    Thin films of hydroxyapatite bioceramic, 5-50 Å in thickness, have been deposited on ion cleaned titanium surfaces to study the chemical-physical adhesion of metal-ceramic interfaces of biomedical devices (orthopaedic and dentistry prosthesis). Film deposition was performed in ultrahigh vacuum condition (10 -10 mbar) using 5 keV argon sputtering of hydroxyapatite matrix; the film thickness was measured in situ with Auger electron spectroscopy. The hydroxyapatite-titanium interface was irradiated with an electron beam of 0.5-5 keV energy and 0.2-2 A/cm 2 current density. During electron irradiation, Auger spectra show chemical shifts of phosphorus, titanium and oxygen peaks. The released electron energy induces modifications in the tetraedric phosphorus-oxygen groups with production of new chemical bonds between phosphorus, oxygen and titanium. Oxygen, for example, diffuses into the titanium interface forming titanium oxide. Chemical reactions induced by electron irradiation are driven by the metal-ceramic interface. Near the interface a strong and fast effect is observed while far from the interface a weak and slow effect occurs. Chemical reactions depend on the electron irradiation dose showing an inhibition threshold at about 10 19 e/cm 2 and, near the interface, a saturation condition at about 5 × 10 20 e/cm 2. Titanium-ceramic chemical reactions are inhibited if the substrate titanium surface is rich in oxide.

  9. Lifetime measurement of the 167.1 keV state in {sup 41}Ar

    SciTech Connect

    White, E. R.; Mach, H.; Fraile, L. M.; Koester, U.; Arndt, O.; Blazhev, A.; Braun, N.; Fransen, C.; Jolie, J.; Boelaert, N.; Borge, M. J. G.; Boutami, R.; Reillo, E.-M.; Tengblad, O.; Bradley, H.; Dlouhy, Z.; Ugryumov, V.; Fynbo, H. O. U.; Hinke, Ch.; Kroell, T.

    2007-11-15

    The Advanced-Time-Delayed method was used to measure lifetimes of the states in {sup 41}Ar populated in the {beta} decay of {sup 41}Cl. The nuclei {sup 41}Cl were produced at ISOLDE by 1.4-GeV proton bombardment of a thick UC{sub x} target and mass-separated as molecular ions, XeCl{sup +}. Our measured half-life of the 167.1-keV state, T{sub 1/2}=315(15) ps, is significantly lower than the previously measured value of 410(30) ps. We have also determined T{sub 1/2}=260(80) ps and T{sub 1/2}{<=}46 ps for the 515.9- and 1867.7-keV states, respectively. These are the shortest lifetimes measured so far with the ultrafast timing method using the new LaBr{sub 3}(Ce) crystals for {gamma}-ray detection.

  10. EMISSION LINES BETWEEN 1 AND 2 keV IN COMETARY X-RAY SPECTRA

    SciTech Connect

    Ewing, Ian; Christian, Damian J.; Bodewits, Dennis; Dennerl, Konrad; Lisse, Carey M.; Wolk, Scott J. E-mail: daman.christian@csun.edu

    2013-01-20

    We present the detection of new cometary X-ray emission lines in the 1.0-2.0 keV range using a sample of comets observed with the Chandra X-Ray Observatory and ACIS spectrometer. We have selected five comets from the Chandra sample with good signal-to-noise spectra. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model. Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV which we identify as being created by SWCX lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to be included in SWCX models. The silicon lines in the 1700-2000 eV range are detected for all comets, but with the rising background and decreasing cometary emission, we caution that these detections need further confirmation with higher resolution instruments.

  11. Stimulated Raman scattering in hydrogen by ultrashort laser pulse in the keV regime

    NASA Astrophysics Data System (ADS)

    Bachau, H.; Dondera, M.

    2016-04-01

    This letter addresses the problem of stimulated Raman excitation of a hydrogen atom submitted to an ultrashort and intense laser pulse in the keV regime. The pulse central frequency ω of 55 a.u. (about 1.5 keV) is in the weakly relativistic regime, ω ≤ c/a0 (c is the speed of light in vacuum and a 0 the Bohr radius) and the pulse duration is τ ≈ 18.85 a.u. (about 456 attoseconds). We solve the corresponding time-dependent Schrödinger equation (TDSE) using a spectral approach, retardation (or nondipole) effects are included up to O(1/c) , breaking the conservation of the magnetic quantum number m and forcing the resolution of the TDSE in a three-dimensional space. Due to the laser bandwidth, which is of the order of the ionization potential of hydrogen, stimulated Raman scattering populates nlm excited states (n and l are the principal and azimuthal quantum numbers, respectively). The populations of these excited states are calculated and analyzed in terms of l and m quantum numbers, this showing the contributions of the retardation effects and their relative importance.

  12. Improving accuracy and reliability of 186-keV measurements for unattended enrichment monitoring

    SciTech Connect

    Ianakiev, Kiril D; Boyer, Brian D; Swinhoe, Martyn T; Moss, Calvin E; Goda, Joetta M; Favalli, Andrea; Lombardi, Marcie; Paffett, Mark T; Hill, Thomas R; MacArthur, Duncan W; Smith, Morag K

    2010-04-13

    Improving the quality of safeguards measurements at Gas Centrifuge Enrichment Plants (GCEPs), whilst reducing the inspection effort, is an important objective given the number of existing and new plants that need to be safeguarded. A useful tool in many safeguards approaches is the on-line monitoring of enrichment in process pipes. One aspect of this measurement is a simple, reliable and precise passive measurement of the 186-keV line from {sup 235}U. (The other information required is the amount of gas in the pipe. This can be obtained by transmission measurements or pressure measurements). In this paper we describe our research efforts towards such a passive measurement system. The system includes redundant measurements of the 186-keV line from the gas and separately from the wall deposits. The design also includes measures to reduce the effect of the potentially important background. Such an approach would practically eliminate false alarms and can maintain the operation of the system even with a hardware malfunction in one of the channels. The work involves Monte Carlo modeling and the construction of a proof-of-principle prototype. We will carry out experimental tests with UF{sub 6} gas in pipes with and without deposits in order to demonstrate the deposit correction.

  13. The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS

    SciTech Connect

    Hartse, H.E.

    1997-11-01

    Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{sub n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.

  14. Neutron activation of natural zinc samples at kT=25 keV

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Heil, M.; Käppeler, F.; Plag, R.; Sonnabend, K.; Uberseder, E.

    2012-03-01

    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT=25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,γ)65Zn cross section and for the partial cross section 68Zn(n,γ)69Znm feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,γ)71Znm and 70Zn(n,γ)71Zng, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the β-decay half-life of 71Znm could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars.

  15. New structural and electronic properties of (TiO2)10

    NASA Astrophysics Data System (ADS)

    Aguilera-Granja, F.; Vega, A.; Balbás, L. C.

    2016-06-01

    We present, based on state of the art density functional theoretic calculations, a new putative ground state (GS) for the cluster (TiO2)10, which results more than 1 eV lower in energy than all those previously reported in the literature. The geometric and electronic properties of this new cluster are discussed in detail and in comparison with the rest. We analyze the implications of the new GS in the context of recent experiments of reactivity regarding oxygen exchange with gaseous CO2 in TiO2 nanostructures, and also in connection with a recent interpretation of photoelectron spectroscopic measurements of the band gap of gas phase TiO 2- clusters.

  16. The faint end of the 250 μm luminosity function at z < 0.5

    NASA Astrophysics Data System (ADS)

    Wang, L.; Norberg, P.; Bethermin, M.; Bourne, N.; Cooray, A.; Cowley, W.; Dunne, L.; Dye, S.; Eales, S.; Farrah, D.; Lacey, C.; Loveday, J.; Maddox, S.; Oliver, S.; Viero, M.

    2016-08-01

    Aims: We aim to study the 250 μm luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods: We developed a modified stacking method to reconstruct the 250 μm LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 μm luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results: We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (~ 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution L*250(z)∝(1+z)4.89±1.07 and moderate negative density evolution Φ*250(z)∝(1+z)-1.02±0.54 over the redshift range 0.02

  17. Re-analysis of the Radio Luminosity Function of Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Paladini, R.; De Zotti, G.; Noriega-Crespo, A.; Carey, S. J.

    2009-09-01

    We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic H II regions. The study is performed by considering the first and fourth Galactic quadrants independently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and supergiant H II regions, a significant number of subgiant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidt's estimator using an effective volume derived from the observed spatial distribution of the considered H II regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23 ± 0.07 (fourth quadrant) and to -1.85 ± 0.11 (first quadrant). We also find marginal evidence of a luminosity break at L knee = 1023.45 erg s-1 Hz-1 for the LF in the fourth quadrant. We convert radio luminosities into equivalent Hα and Lyman continuum luminosities to facilitate comparisons with extragalactic studies. We obtain an average total H II regions Lyman continuum luminosity of 0.89 ± 0.23 × 1053 s-1, corresponding to 30% of the total ionizing luminosity of the Galaxy.

  18. The X-ray Luminosity Function of Point Sources in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Diehl, Steven; Statler, Thomas

    2004-04-01

    The sub-arcsecond spatial resolution of Chandra recently revealed that early-type galaxies comprise a significant number of low-mass X-ray binaries (LMXBs). Early studies suggest the existence of a 'knee' in their X-ray luminosity function near the Eddington luminosity of a 1.4 Mo neutron star, indicating a transition from neutron star to black hole binaries. Recent analyses show however that a thorough correction for incompleteness is crucial, and able to remove the need for this break luminosity, leaving single power law fits more suitable for the data. We present luminosity functions of 65 elliptical galaxies in the Chandra archive which represents the largest uniformly reduced sample so far. An iterative Bayesian algorithm takes incompleteness and local background variation into account and generates the unbiased luminosity functions. This new non-parametric approach uncovers the significance of the contribution of unresolved LMXBs to the diffuse emission and the degree to which a break luminosity is required.

  19. Upper limits on the total cosmic-ray luminosity of individual sources

    SciTech Connect

    Anjos, R.C.; De Souza, V.; Supanitsky, A.D. E-mail: vitor@ifsc.usp.br

    2014-07-01

    In this paper, upper limits on the total luminosity of ultra-high-energy cosmic-rays (UHECR) E > 10{sup 18} eV) are determined for five individual sources. The upper limit on the integral flux of GeV--TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV--TeV gamma-ray flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic rays in the background radiation fields, as explained in reference [1]. Twenty-eight sources measured by FERMI-LAT, VERITAS and MAGIC observatories have been studied. The measured upper limit on the GeV--TeV gamma-ray flux is restrictive enough to allow the calculation of an upper limit on the total UHECR cosmic-ray luminosity of five sources. The upper limit on the UHECR cosmic-ray luminosity of these sources is shown for several assumptions on the emission mechanism. For all studied sources an upper limit on the ultra-high-energy proton luminosity is also set.

  20. Probing the Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian W.; Wise, John H.; Xu, Hao; Norman, Michael L.

    2015-07-01

    In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z˜ 25-8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function ({M}1600≤slant -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ≃ 2× {10}8 {M}⊙ do not universally contain stars, with the fraction of halos containing stars dropping to zero at ≃ 7× {10}6 {M}⊙ . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

  1. The dependence of protostellar luminosity on environment in the Cygnus-X star-forming complex

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Hora, J. L.; Smith, Howard A.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Kraemer, K.; Hennemann, M.; Motte, F.

    2014-07-01

    The Cygnus-X star-forming complex is one of the most active regions of low- and high-mass star formation within 2 kpc of the Sun. Using mid-infrared photometry from the IRAC and MIPS Spitzer Cygnus-X Legacy Survey, we have identified over 1800 protostar candidates. We compare the protostellar luminosity functions of two regions within Cygnus-X: CygX-South and CygX-North. These two clouds show distinctly different morphologies suggestive of dissimilar star-forming environments. We find the luminosity functions of these two regions are statistically different. Furthermore, we compare the luminosity functions of protostars found in regions of high and low stellar density within Cygnus-X and find that the luminosity function in regions of high stellar density is biased to higher luminosities. In total, these observations provide further evidence that the luminosities of protostars depend on their natal environment. We discuss the implications this dependence has for the star formation process.

  2. Effects of Formation Epoch Distribution on X-Ray Luminosity and Temperature Functions of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Enoki, Motohiro; Takahara, Fumio; Fujita, Yutaka

    2001-07-01

    We investigate statistical properties of galaxy clusters in the context of a hierarchical clustering scenario, taking into account their formation epoch distribution; this study is motivated by the recent finding by Fujita and Takahara that X-ray clusters form a fundamental plane in which the mass and the formation epoch are regarded as two independent parameters. Using the formalism that discriminates between major mergers and accretion, the epoch of a cluster formation is identified with that of the last major merger. Since tiny mass accretion following formation does not much affect the core structure of clusters, the properties of X-ray emission from clusters are determined by the total mass and density at their formation time. Under these assumptions, we calculate X-ray luminosity and temperature functions of galaxy clusters. We find that the behavior of the luminosity function differs from the model that does not take into account formation epoch distribution; the behavior of the temperature function, however, is not much different. In our model, the luminosity function is shifted to a higher luminosity and shows no significant evolution up to z~1, independent of cosmological models. The clusters are populated on the temperature-luminosity plane, with a finite dispersion. Since the simple scaling model in which the gas temperature is equal to the virial temperature fails to reproduce the observed luminosity-temperature relation, we also consider a model that takes into account the effects of preheating. The preheating model reproduces the observations much more accurately.

  3. INTEGRAL IGR J18135-1751 = HESS J1813-178: A New Cosmic High-Energy Accelerator from keV to TeV Energies

    NASA Astrophysics Data System (ADS)

    Ubertini, P.; Bassani, L.; Malizia, A.; Bazzano, A.; Bird, A. J.; Dean, A. J.; De Rosa, A.; Lebrun, F.; Moran, L.; Renaud, M.; Stephen, J. B.; Terrier, R.; Walter, R.

    2005-08-01

    We report the discovery of a soft gamma-ray source, namely, IGR J18135-1751, detected with IBIS, the Imager on Board the INTEGRAL Satellite. The source is persistent and has a 20-100 keV luminosity of ~5.7× 1034 ergs s-1 (assuming a distance of 4 kpc). This source is coincident with one of the eight unidentified objects recently reported by the HESS collaboration as part of the first TeV survey of the inner part of the Galaxy. Two of these new sources found along the Galactic plane, HESS J1813-178 and HESS J1614-518, have no obvious lower energy counterparts, a fact that motivated the suggestion that they might be dark cosmic ray accelerators. HESS J1813-178 has a strongly absorbed X-ray counterpart, the ASCA source AGPS 273.4-17.8, showing a power-law spectrum with photon index ~1.8 and a total (Galactic plus intrinsic) absorption corresponding to NH~5×1022 cm-2. We hypothesize that the source is a pulsar wind nebula embedded in its supernova remnant. The lack of X-ray or gamma-ray variability, the radio morphology, and the ASCA spectrum are all compatible with this interpretation. In any case we rule out the hypothesis that HESS J1813-178 belongs to a new class of TeV objects or that it is a cosmic ``dark particle'' accelerator. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), the Czech Republic, and Poland and with the participation of Russia and the US.

  4. Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253

    NASA Technical Reports Server (NTRS)

    Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.; Hailey, C.J.; Harrison, F.A.; Krivonos, R.; Leyder, Jean-Christophe Xavier Georges; Maccarone, T.J.; Stern, D.; Venters, T.; Zezas, A.; Zhang, W.W.

    2013-01-01

    We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum

  5. 43 CFR 3162.2-10 - Will BLM notify me when it determines that drainage is occurring?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Will BLM notify me when it determines that drainage is occurring? 3162.2-10 Section 3162.2-10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS OPERATIONS...

  6. 43 CFR 3162.2-10 - Will BLM notify me when it determines that drainage is occurring?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Will BLM notify me when it determines that drainage is occurring? 3162.2-10 Section 3162.2-10 Public Lands: Interior Regulations Relating to Public... notify me when it determines that drainage is occurring? We will send you a demand letter by...

  7. 43 CFR 3162.2-10 - Will BLM notify me when it determines that drainage is occurring?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Will BLM notify me when it determines that drainage is occurring? 3162.2-10 Section 3162.2-10 Public Lands: Interior Regulations Relating to Public... notify me when it determines that drainage is occurring? We will send you a demand letter by...

  8. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-05-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  9. Extra-galactic high-energy transients: event rate density and luminosity function

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Zhang, Bing; Li, Zhuo

    2015-08-01

    Several types of extra-galactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with a relativistic jet. In this paper, we apply a unified method to systematically study the reshift-dependent event rate densities and luminosity functions of these extra-galactic high-energy transients. We consider star formation history as the tracer of the redshift distribution for long GRBs and SBOs. For short GRBs, we consider the compact star merger model to introduce several possible merger delay time distribution models. For TDEs, we consider the mass distribution of supermassive black holes as a function of redshift. We derive some empirical formulae for the redshift-dependent event rate density for different types of transients. Based on the observed events, we derive the local specific event rate density, ρ0,L ∝ dρ0/dL for each type of transient, which represents its luminosity function. All the transients are consistent with having a single power law luminosity function, except the high luminosity long GRBs (HL-lGRBs), whose luminosity function can be well described by a broken power law. The total event rate density for a particular transient depends on the luminosity threshold, and we obtain the following values in units of Gpc-3 yr-1: 2.82^{+0.41}_{-0.36} for HL-lGRBs above 4×1049 erg s-1 218^{+130}_{-86} for low luminosity long GRBs above 6×1046 erg s-1 3.18^{+0.88}_{-0.70}, 2.87^{+0.80}_{-0.64}, and 6.25^{+1.73}_{-1.38} above 5×1049 erg s-1 for short GRBs with three different merger delay models (Gaussian, log-normal, and power law); 2.0^{+2.6}_{-1.3}×104 above 9×1043 erg s-1 for SBOs, 3.0^{+1.0}_{-0.8}×105 for normal TDEs above 1042 erg s-1 and 6.2^{+8.2}_{-4.0} above 3×1047 erg s-1for TDE jets as discovered by Swift. Intriguingly, the global specific event rate densities

  10. An Investigation of X-ray Luminosity versus Crystalline Powder Granularity

    SciTech Connect

    Borade, Ramesh; Bourret-Courchesne, Edith; ,

    2012-03-07

    At the High-throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a "full-size" scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi{sub 4}Ge{sub 3}O{sub 12} (BGO), Lu{sub 2}SiO{sub 5}:Ce (LSO), YAlO{sub 3}:Ce (YAP:Ce), and CsBa{sub 2}I{sub 5}:Eu{sup 2+} (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-{micro}m crystal grain sizes for BGO and LSO, for 310- to 600-{micro}m crystal grain sizes for CBI, and for crystal grains larger than 165{micro}m for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000- {micro}m crystal grain size range down to the 20- to 36-{micro}m range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-{micro}m crystal grains to the 20- to 36-{micro}m range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-{micro}m crystal grain range to the 36- to 50-{micro}m range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 {micro}m.

  11. EVIDENCE FOR A PHOTOSPHERIC COMPONENT IN THE PROMPT EMISSION OF THE SHORT GRB 120323A AND ITS EFFECTS ON THE GRB HARDNESS-LUMINOSITY RELATION

    SciTech Connect

    Guiriec, S.; McEnery, J.; Gehrels, N.; Daigne, F.; Hascoeet, R.; Mochkovitch, R.; Vianello, G.; Ryde, F.; Kouveliotou, C.; Foley, S.; McGlynn, S.; Gruber, D.

    2013-06-10

    The short GRB 120323A had the highest flux ever detected with the Gamma-Ray Burst Monitor on board the Fermi Gamma-Ray Space Telescope. Here we study its remarkable spectral properties and their evolution using two spectral models: (1) a single emission component scenario, where the spectrum is modeled by the empirical Band function (a broken power law), and (2) a two-component scenario, where thermal (a Planck-like function) emission is observed simultaneously with a non-thermal component (a Band function). We find that the latter model fits the integrated burst spectrum significantly better than the former, and that their respective spectral parameters are dramatically different: when fit with a Band function only, the E{sub peak} of the event is unusually soft for a short gamma-ray burst (GRB; 70 keV compared to an average of 300 keV), while adding a thermal component leads to more typical short GRB values (E{sub peak} {approx} 300 keV). Our time-resolved spectral analysis produces similar results. We argue here that the two-component model is the preferred interpretation for GRB 120323A based on (1) the values and evolution of the Band function parameters of the two component scenario, which are more typical for a short GRB, and (2) the appearance in the data of a significant hardness-intensity correlation, commonly found in GRBs, when we employee two-component model fits; the correlation is non-existent in the Band-only fits. GRB 110721A, a long burst with an intense photospheric emission, exhibits the exact same behavior. We conclude that GRB 120323A has a strong photospheric emission contribution, observed for the first time in a short GRB. Magnetic dissipation models are difficult to reconcile with these results, which instead favor photospheric thermal emission and fast cooling synchrotron radiation from internal shocks. Finally, we derive a possibly universal hardness-luminosity relation in the source frame using a larger set of GRBs (L{sub i}{sup Band

  12. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE

    SciTech Connect

    Ross, Nicholas P.; White, Martin; Bailey, Stephen; McGreer, Ian D.; Richards, Gordon T.; Myers, Adam D.; Palanque-Delabrouille, Nathalie; Yeche, Christophe; Strauss, Michael A.; Anderson, Scott F.; Shen, Yue; Swanson, Molly E. C.; Brandt, W. N.; Aubourg, Eric; Bovy, Jo; DeGraf, Colin; Di Matteo, Tiziana; and others

    2013-08-10

    We present a new measurement of the optical quasar luminosity function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine, a uniform sample of 22,301 i {approx}< 21.8 quasars are selected over an area of 2236 deg{sup 2}, with confirmed spectroscopic redshifts between 2.2 < z < 3.5, filling in a key part of the luminosity-redshift plane for optical quasar studies. The completeness of the survey is derived through simulated quasar photometry, and this completeness estimate is checked using a sample of quasars selected by their photometric variability within the BOSS footprint. We investigate the level of systematics associated with our quasar sample using the simulations, in the process generating color-redshift relations and a new quasar K-correction. We probe the faint end of the QLF to M{sub i} (z = 2.2) Almost-Equal-To -24.5 and see a clear break in the QLF at all redshifts up to z = 3.5. A log-linear relation (in log {Phi}* - M*) for a luminosity evolution and density evolution model is found to adequately describe our data within the range 2.2 < z < 3.5; across this interval the break luminosity increases by a factor of {approx}2.6 while {Phi}* declines by a factor of {approx}8. At z {approx}< 2.2 our data are reasonably well fit by a pure luminosity evolution model, and only a weak signature of ''AGN downsizing'' is seen, in line with recent studies of the hard X-ray luminosity function. We compare our measured QLF to a number of theoretical models and find that models making a variety of assumptions about quasar triggering and halo occupation can fit our data over a wide range of redshifts and luminosities.

  13. A Search for Brown Dwarf Companions to Low-Luminosity Dwarfs

    NASA Astrophysics Data System (ADS)

    McElwain, M. W.; Koerner, D. W.; Kirkpatrick, J. D.; Reid, I. N.; Allen, P. R.; Murphy, G. R.

    2001-12-01

    We present the results of a deep infrared search for substellar companions to low-luminosity dwarfs. K-band imaging of a sample of late M and L dwarfs was carried out at the Keck telescope down to a limiting magnitude of mK = 20. Companions were distinguished from background stars by common proper motion as identified in a double-epoch study with a 1 to 3 year timeline. We found no companions at separations of 1'' to 15'' in a sample of 90 targets. We are testing this result further with an IRTF survey of a larger sample over a wider field of view. Preliminary results of the latter are also presented here. Four close companions were detected in the Keck survey with luminosities similar to the primaries. Angular separations of 0.3'' to 0.5'' corresponded to linear separations of 5-10 AU, assuming trigonometric parallaxes recently obtained by USNO. This result accords well with the number of similar-luminosity companions detected in a recent HST survey of low-luminosity dwarfs (Reid et al. 2001). The detection rate of both studies falls short of that for earlier spectral types, but sensitivity to high luminosity contrast was reduced at these separations. High-contrast companions may in fact be abundant at the shorter separations. Thus we can conclude only that companions to low-luminosity dwarfs are absent at the separations for which they are most abundant in earlier spectral types ( ~30 AU for G dwarfs). This signifies either a lower companion rate overall for low-luminosity dwarfs, or a separation distribution peaked closer to the primary.

  14. 200 keV Xe+ ions irradiation effects on Zr-Ti binary films

    NASA Astrophysics Data System (ADS)

    Wang, Weipeng; Chai, Maosheng; Feng, Wei; Li, Zhengcao; Zhang, Zhengjun

    2015-05-01

    200 keV Xenon irradiation experiments were performed on magnetron sputtered Zr-Ti films under different doses up to 9 * 1015 ions/cm2. XRD, FE-SEM, AFM, HRTEM, nano-indentation and white light interferometer characterizations were applied to study the structural and mechanical properties modification introduced by the bombardment. Upon Xenon irradiation, structure of film matrix kept stable while the crystallinity of the top surface degraded significantly. Meanwhile, properties of irradiated films such as hardness, modulus and sheet resistance evolved with the same tendency, i.e. increased firstly and decrease with further increasing the irradiation dose. By selective area irradiation, competition between the surface sputtering and swelling was revealed, by which surface defects evolution was highlighted. The micro-defects evolution during Xenon irradiation was believed to be responsible for the macro-properties' modification.

  15. Laboratory source based full-field x-ray microscopy at 9 keV

    NASA Astrophysics Data System (ADS)

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-01

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  16. Preliminary resolved resonance region evaluation of copper-63 from 0 to 300 keV

    SciTech Connect

    Sobes, V.; Forget, B.; Leal, L.; Guber, K.

    2012-07-01

    A new preliminary evaluation of Cu-63 was done in the energy region from 0 to 300 keV extending the resolved resonance region of the previous, ENDF/B-VII.0, evaluation three-fold. The new evaluation was based on three experimental transmission data sets; two measured at the Oak Ridge Electron Linear Accelerator (ORELA) and one from the Massachusetts Inst. of Technology Nuclear Reactor (MITR). A total of 275 new resonances were identified and a corresponding set of external resonances was approximated to mock up the external levels. The negative external levels (bound level) were modified to match the thermal cross section values. A preliminary benchmarking calculation was made using 11 ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program. (authors)

  17. Point Defect Cluster Formation in Iron Displacement Cascades Up to 50 keV

    SciTech Connect

    Stoller, R.E.

    1998-11-30

    The results of molecular dynamics displacement cascade simulations in iron at energies up to 50 keV and temperatures of 100, 600, and 900K are summarized, with a focus on the characterization of interstitial and vacancy clusters that are formed directly within the cascade. The fraction of the surviving point defects contained in clusters, and the size distributions of these in-cascade clusters have been determined. Although the formation of true vacancy clusters appears to be inhibited in iron, a significant degree of vacancy site correlation was observed. These well correlated arrangements of vacancies can be considered nascent clusters, and they have been observed to coalesce during longer term Monte Carlo simulations which permit short range vacancy diffusion. Extensive interstitial clustering was observed. The temperature and cascade energy dependence of the cluster size distributions are discussed in terms of their relevance to microstructural evolution and mechanical property changes in irradiated iron-based alloys.

  18. A 75-keV, 145-mA proton injector

    SciTech Connect

    Figueroa, T. L.; Hansborough, L. D.; Kerstiens, D. M.; Schneider, J. D.; Smith, H. V.; Stettler, M. W.; Thuot, M. E.; Warren, D. S.; Zaugg, T. J.; Arvin, A. A.; Bolt, A. S.; Sherman, Joseph D.

    2001-01-01

    A dc and pulsed-mode 75-keV proton injector has been developed and is used in characterization of a continuous-wave (cw) 6.7-MeV, 100-mA radio-frequency quadrupole (RFQ). The injector is used frequently at the full RFQ design power (100-mA, 6.7-MeV) where the RFQ admittance (1rms, normalized) is 0.23 ({pi}mm-mrad). The injector includes a 2.45-GHz microwave proton source and a beam space-charge-neutralized, two magnetic-solenoid, low-energy beam-transport system (LEBT). The design RFQ beam transmission of 95% has been demonstrated at 100-mA RFQ output current.

  19. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  20. Active detection of shielded SNM with 60-keV neutrons

    SciTech Connect

    Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

    2008-07-08

    Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.