Science.gov

Sample records for 2-16 khz sweep

  1. Threshold received sound pressure levels of single 1-2 kHz and 6-7 kHz up-sweeps and down-sweeps causing startle responses in a harbor porpoise (Phocoena phocoena).

    PubMed

    Kastelein, Ronald A; Steen, Nele; Gransier, Robin; Wensveen, Paul J; de Jong, Christ A F

    2012-03-01

    Mid-frequency and low-frequency sonar systems produce frequency-modulated sweeps which may affect harbor porpoises. To study the effect of sweeps on behavioral responses (specifically "startle" responses, which we define as sudden changes in swimming speed and/or direction), a harbor porpoise in a large pool was exposed to three pairs of sweeps: a 1-2 kHz up-sweep was compared with a 2-1 kHz down-sweep, both with and without harmonics, and a 6-7 kHz up-sweep was compared with a 7-6 kHz down-sweep without harmonics. Sweeps were presented at five spatially averaged received levels (mRLs; 6 dB steps; identical for the up-sweep and down-sweep of each pair). During sweep presentation, startle responses were recorded. There was no difference in the mRLs causing startle responses for up-sweeps and down-sweeps within frequency pairs. For 1-2 kHz sweeps without harmonics, a 50% startle response rate occurred at mRLs of 133 dB re 1 μPa; for 1-2 kHz sweeps with strong harmonics at 99 dB re 1 μPa; for 6-7 kHz sweeps without harmonics at 101 dB re 1 μPa. Low-frequency (1-2 kHz) active naval sonar systems without harmonics can therefore operate at higher source levels than mid-frequency (6-7 kHz) active sonar systems without harmonics, with similar startle effects on porpoises. PMID:22423727

  2. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1-2 kHz and 6-7 kHz bands) mimicking naval sonar signals.

    PubMed

    Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F

    2011-05-01

    The distance at which active naval sonar signals can be heard by harbor porpoises depends, among other factors, on the hearing thresholds of the species for those signals. Therefore the hearing sensitivity of a harbor porpoise was determined for 1 s up-sweep and down-sweep signals, mimicking mid-frequency and low-frequency active sonar sweeps (MFAS, 6-7 kHz band; LFAS, 1-2 kHz band). The 1-2 kHz sweeps were also tested with harmonics, as sonars sometimes produce these as byproducts of the fundamental signal. The hearing thresholds for up-sweeps and down-sweeps within each sweep pair were similar. The 50% detection threshold sound pressure levels (broadband, averaged over the signal duration) of the 1-2 kHz and 6-7 kHz sweeps were 75 and 67 dB re 1 μPa(2), respectively. Harmonic deformation of the 1-2 kHz sweeps reduced the threshold to 59 dB re 1 μPa(2). This study shows that the presence of harmonics in sonar signals can increase the detectability of a signal by harbor porpoises, and that tonal audiograms may not accurately predict the audibility of sweeps. LFAS systems, when designed to produce signals without harmonics, can operate at higher source levels than MFAS systems, at similar audibility distances for porpoises. PMID:21568440

  3. Effects of exposure to intermittent and continuous 6-7 kHz sonar sweeps on harbor porpoise (Phocoena phocoena) hearing.

    PubMed

    Kastelein, Ronald A; Gransier, Robin; Schop, Jessica; Hoek, Lean

    2015-04-01

    Safety criteria for mid-frequency naval sonar sounds are needed to protect harbor porpoise hearing. A porpoise was exposed to sequences of one-second 6-7 kHz sonar down-sweeps, with 10-200 sweeps in a sequence, at an average received sound pressure level (SPLav.re.) of 166 dB re 1 μPa, with duty cycles of 10% (intermittent sounds) and 100% (continuous). Behavioral hearing thresholds at 9.2 kHz were determined before and after exposure to the fatiguing noise, to quantify temporary hearing threshold shifts (TTS1-4 min) and recovery. Significant TTS1-4 min occurred after 10-25 sweeps when the duty cycle was 10% (cumulative sound exposure level, SELcum: ∼178 dB re 1 μPa(2)s). For the same SELcum, the TTS1-4 min was greater for exposures with 100% duty cycle. The difference in TTS between the two duty cycle exposures increased as the number of sweeps in the exposure sequences increased. Therefore, to predict TTS and permanent threshold shift, not only SELcum needs to be known, but also the duty cycle or equivalent sound pressure level (Leq). It appears that the injury criterion for non-pulses proposed by Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007). Aquat. Mamm. 33, 411-521] for cetaceans echolocating at high frequency (SEL 215 dB re 1 μPa(2)s) is too high for the harbor porpoise. PMID:25920815

  4. Effect of broadband-noise masking on the behavioral response of a harbor porpoise (Phocoena phocoena) to 1-s duration 6-7 kHz sonar up-sweeps.

    PubMed

    Kastelein, Ronald A; Steen, Nele; de Jong, Christ; Wensveen, Paul J; Verboom, Willem C

    2011-04-01

    Naval sonar systems produce signals which may affect the behavior of harbor porpoises, though their effect may be reduced by ambient noise. To show how natural ambient noise influences the effect of sonar sweeps on porpoises, a porpoise in a pool was exposed to 1-s duration up-sweeps, similar in frequency range (6-7 kHz) to those of existing naval sonar systems. The sweep signals had randomly generated sweep intervals of 3-7 s (duty cycle: 19%). Behavioral parameters during exposure to signals were compared to those during baseline periods. The sessions were conducted under five background noise conditions: the local normal ambient noise and four conditions mimicking the spectra for wind-generated noise at Sea States 2-8. In all conditions, the sweeps caused the porpoise to swim further away from the transducer, surface more often, swim faster, and breathe more forcefully than during the baseline periods. However, the higher the background noise level, the smaller the effects of the sweeps on the surfacing behavior of the porpoise. Therefore, the effects of naval sonar systems on harbor porpoises are determined not only by the received level of the signals and the hearing sensitivity of the animals but also by the background noise. PMID:21476686

  5. Doppler-limited H2O and HF absorption spectroscopy by sweeping the 1,321-1,354 nm range at 55 kHz repetition rate using a single-mode MEMS-tunable VCSEL

    NASA Astrophysics Data System (ADS)

    Stein, B. A.; Jayaraman, V.; Jiang, J. Y.; Cable, A.; Sanders, S. T.

    2012-09-01

    A single longitudinal mode micro-electro-mechanical system-tunable vertical cavity surface-emitting laser (VCSEL) was used to measure H2O and HF absorption spectra in the 1,321-1,354 nm range at 55 kHz repetition rate (˜ 740 MHz/ns tuning rate). Pulse delay referencing was used to achieve an absorbance noise level of 0.004 (RMS), within a factor of 2.6 of the shot noise limit. The measured linewidths approach the low-pressure feature linewidths (˜790 MHz) characteristic of the gases studied, highlighting the single-mode nature of the VCSEL throughout each rapid wavelength sweep. At even higher tuning rates, molecular features became asymmetric and broad, consistent with rapid passage and Fourier effects.

  6. Simple sweep frequency generator

    NASA Astrophysics Data System (ADS)

    Yegorov, I.

    1985-01-01

    A sweep frequency generator is described whose center frequency can be varied from 10 kHz to 50 MHz, with seven 1 to 3 and 3 to 10 scales covering the 10 kHz to 30 MHz range and one 3 to 5 scale for the 30 to 50 MHz range. It consists of a tunable pulse generator with output voltage attenuator, a diode mixer for calibration, and a sawtooth voltage generator as a source of frequency deviation. The pulse generator is a multivibrator with two emitter coupled transistors and two diodes in the collector circuit of one. The first diode extends the tuning range and increases the frequency deviation, the second diode provides the necessary base bias to the other transistor. The pulse repetition rate is modulated either directly by the sweep voltage of the calibrating oscilloscope, this voltage being applied to the base of the transistor with the two diodes in its collector circuit through an additional attenuator or a special emitter follower, or by the separate sawtooth voltage generator. The latter is a conventional two transistor multivibrator and produces signals at any constant frequency within the 40 to 60 Hz range. The mixer receives unmodulated signals from a reference frequency source and produces different frequency signals which are sent through an RCR-filter to a calibrating oscilloscope.

  7. Fast wavelength-swept dispersion-tuned fiber laser over 500kHz using a wideband chirped fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji; Takubo, Yuya

    2011-05-01

    We proposed a wide and fast wavelength-swept fiber lasers based on the dispersion tuning for the optical coherence tomography (OCT) applications. So far, we have achieved the sweep rate of ~200kHz at the sweep bandwidth of ~180nm. The sweep rate is only limited by the photon lifetime, which is proportional to the cavity length. Since we used a dispersion compensating fiber (DCF) as the dispersive medium, the long cavity length (~100m) was the limit of the sweep rate. In this paper, we demonstrate faster sweep rate up to ~500kHz by using a wideband chirped fiber Bragg grating (CFBG).

  8. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  9. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  10. Street sweeping and stormwater regulations

    SciTech Connect

    Not Available

    1993-10-01

    This article examines the role of street sweeping in meeting the requirements of the Clean Water Act stormwater regulations. The article identifies those industrial and municipal activities which are covered by the regulations and cites frequent sweeping of site surfaces for industry and street sweeping for municipalities as an integral part of compliance plans.

  11. TIME CALIBRATED OSCILLOSCOPE SWEEP

    DOEpatents

    Owren, H.M.; Johnson, B.M.; Smith, V.L.

    1958-04-22

    The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

  12. Ion cyclotron resonance bridge detector for frequency sweep

    NASA Astrophysics Data System (ADS)

    Pitsakis, Michael N.; Wobschall, Darold C.

    1983-11-01

    An electronic ion cyclotron resonance detection system was designed and constructed. The ions are excited by sweeping the frequency of the electric field (3-300 kHz) using a sweep frequency generator with a nonlinear sweep voltage in order to maintain an approximately constant mass resolution. Ion detection is accomplished by a bridge with a phase-sensitive detector as a demodulator. The required reference signal for the phase-sensitive detector is generated by a circuit with a transfer function which approximates that of the ICR signal in order to obtain an accurate phase match between the signal source and the detector. The device is capable of detecting a minimum concentration of 50 ions/cm3 over a mass range of 15 to 1500 amu.

  13. Directional Selectivity for FM Sweeps in the Suprageniculate Nucleus of the Mustached Bat Medial Geniculate Body

    PubMed Central

    O’NEILL, WILLIAM E.; BRIMIJOIN, W. OWEN

    2014-01-01

    Mustached bats emit echolocation and communication calls containing both constant frequency (CF) and frequency-modulated (FM) components. Previously we found that 86% of neurons in the ventral division of the external nucleus of the inferior colliculus (ICXv) were directionally selective for linear FM sweeps and that selectivity was dependent on sweep rate. The ICXv projects to the suprageniculate nucleus (Sg) of the medial geniculate body. In this study, we isolated 37 single units in the Sg and measured their responses to best excitatory frequency (BEF) tones and linear 12-kHz upward and downward FM sweeps centered on the BEF. Sweeps were presented at durations of 30, 12, and 4 ms, yielding modulation rates of 400, 1,000, and 3,000 kHz/s. Spike count versus level functions were obtained at each modulation rate and compared with BEF controls. Sg units responded well to both tones and FM sweeps. BEFs clustered at 58 kHz, corresponding to the dominant CF component of the sonar signal. Spike count functions for both tones and sweeps were predominantly non-monotonic. FM directional selectivity was significant in 53–78% of the units, depending on modulation rate and level. Units were classified as up-selective (52%), down-selective (24%), or bi-directional (non-selective, 16%); a few units (8%) showed preferences that were either rate- or level-dependent. Most units showed consistent directional preferences at all SPLs and modulation rates tested, but typically showed stronger selectivity at lower sweep rates. Directional preferences were attributable to suppression of activity by sweeps in the non-preferred direction (~80% of units) and/or facilitation by sweeps in the preferred direction (~20–30%). Latencies for BEF tones ranged from 4.9 to 25.7 ms. Latencies for FM sweeps typically varied linearly with sweep duration. Most FM latency-duration functions had slopes ranging from 0.4 to 0.6, suggesting that the responses were triggered by the BEF. Latencies for BEF

  14. Directional selectivity for FM sweeps in the suprageniculate nucleus of the mustached bat medial geniculate body.

    PubMed

    O'Neill, William E; Brimijoin, W Owen

    2002-07-01

    Mustached bats emit echolocation and communication calls containing both constant frequency (CF) and frequency-modulated (FM) components. Previously we found that 86% of neurons in the ventral division of the external nucleus of the inferior colliculus (ICXv) were directionally selective for linear FM sweeps and that selectivity was dependent on sweep rate. The ICXv projects to the suprageniculate nucleus (Sg) of the medial geniculate body. In this study, we isolated 37 single units in the Sg and measured their responses to best excitatory frequency (BEF) tones and linear 12-kHz upward and downward FM sweeps centered on the BEF. Sweeps were presented at durations of 30, 12, and 4 ms, yielding modulation rates of 400, 1,000, and 3,000 kHz/s. Spike count versus level functions were obtained at each modulation rate and compared with BEF controls. Sg units responded well to both tones and FM sweeps. BEFs clustered at 58 kHz, corresponding to the dominant CF component of the sonar signal. Spike count functions for both tones and sweeps were predominantly non-monotonic. FM directional selectivity was significant in 53-78% of the units, depending on modulation rate and level. Units were classified as up-selective (52%), down-selective (24%), or bi-directional (non-selective, 16%); a few units (8%) showed preferences that were either rate- or level-dependent. Most units showed consistent directional preferences at all SPLs and modulation rates tested, but typically showed stronger selectivity at lower sweep rates. Directional preferences were attributable to suppression of activity by sweeps in the non-preferred direction (~80% of units) and/or facilitation by sweeps in the preferred direction (~20-30%). Latencies for BEF tones ranged from 4.9 to 25.7 ms. Latencies for FM sweeps typically varied linearly with sweep duration. Most FM latency-duration functions had slopes ranging from 0.4 to 0.6, suggesting that the responses were triggered by the BEF. Latencies for BEF

  15. Fast wavelength sweep in dispersion-tuned fiber laser using a chirped FBG and a reflective SOA for OCT applications

    NASA Astrophysics Data System (ADS)

    Takubo, Y.; Yamashita, S.

    2013-03-01

    We have demonstrated a wavelength-swept fiber laser based on dispersion tuning method. In this method, the light in a dispersive laser cavity is intensity modulated and actively mode-locked, and the lasing wavelength can be changed by controlling the modulation frequency. As the dispersion-tuned laser does not include any tunable filters, the sweep rate and range are not limited by mechanical moving parts. We have reported the wavelength-swept laser which has the tuning range of over 100nm with the sweep rate of 200kHz, and we have applied the laser to the swept-source optical coherence tomography (SS-OCT) system. Although we have successfully obtained the OCT image of the human finger at 1kHz sweep rate, we could not obtain OCT images at higher sweep rate because of the performance degradation of the laser. As this laser cavity included 100m long dispersion compensating fiber (DCF), the long laser cavity increased the photon lifetime and resulted in the output power decrease and the linewidth broadening at higher sweep rate. In order to solve these problems, we inserted a reflective semiconductor optical amplifier (RSOA) and a chirped fiber Bragg grating (CFBG) into the laser cavity. Use of these devices made it possible to shorten the cavity length drastically and the laser performance at high sweep rate is significantly improved. We could achieve that the sweep range of 60nm and the output power of 8.4mW at 100kHz sweep. We applied the laser to swept-source OCT system and we successfully obtained images of an adhesive tape at up to 250kHz sweep.

  16. Signal generator makes clean sweeps to 20 GHz

    NASA Astrophysics Data System (ADS)

    Browne, J.

    1986-02-01

    In the case of most swept frequency generators, approximately eight hours are required to calibrate the device, and a complex assortment of equipment is needed. The present article is concerned with a programmable sweep generator for which the calibration process is performed automatically in 15 minutes with the aid of an extra GPIB line dedicated to the control of a frequency counter and a power meter/power sensor combination. The signal generator has a frequency range from 2 to 20 GHz, a frequency resolution of 100 kHz, sweep times from 10 ms to 33 s, and a maximum levelled output power of 10 dBm at 18 GHz and 7 dBm at 20 GHz.

  17. Fast Langmuir probe sweeping circuit

    SciTech Connect

    Milnes, K.A.; Ehlers, K.W.; Leung, K.N.; Owren, H.M.; Williams, M.D.

    1980-06-01

    An inexpensive, simple, and fast Langmuir probe sweeping circuit is presented. This sweeper completes a probe trace in 1.4 ms and has a maximum probe current capability of 5 A. It is suitable for pulsemode plasma operation with density greater than 10/sup 12/ ions/cm/sup 3/.

  18. Inner workings of aerodynamic sweep

    SciTech Connect

    Wadia, A.R.; Szucs, P.N.; Crall, D.W.

    1998-10-01

    The recent trend in using aerodynamic sweep to improve the performance of transonic blading has been one of the more significant technological evolutions for compression components in turbomachinery. This paper reports on the experimental and analytical assessment of the pay-off derived from both aft and forward sweep technology with respect to aerodynamic performance and stability. The single-stage experimental investigation includes two aft-swept rotors with varying degree and type of aerodynamic sweep and one swept forward rotor. On a back-to-back test basis, the results are compared with an unswept rotor with excellent performance and adequate stall margin. Although designed to satisfy identical design speed requirements as the unswept rotor, the experimental results reveal significant variations in efficiency and stall margin with the swept rotors. At design speed, all the swept rotors demonstrated a peak stage efficiency level that was equal to that of the unswept rotor. However, the forward-swept rotor achieved the highest rotor-alone peak efficiency. At the same time, the forward-swept rotor demonstrated a significant improvement in stall margin relative to the already satisfactory level achieved by the unswept rotor. Increasing the level of aft sweep adversely affected the stall margin. A three-dimensional viscous flow analysis was used to assist in the interpretation of the data. The reduced shock/boundary layer interaction, resulting from reduced axial flow diffusion and less accumulation of centrifuged blade surface boundary layer at the tip, was identified as the prime contributor to the enhanced performance with forward sweep. The impact of tip clearance on the performance and stability for one of the aft-swept rotors was also assessed.

  19. A MHz speed wavelength sweeping for ultra-high speed FBG interrogation

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Hun; Lee, Hwi Don; Eom, Tae Joong; Jeong, Myung Yung; Kim, Chang-Seok

    2015-09-01

    We demonstrated a MHz speed wavelength-swept fiber laser based on the active mode locking (AML) technique and applied to interrogation system of an array of fiber Bragg grating (FBG) sensors. MHz speed wavelength sweeping of wavelength-swept fiber laser can be obtained by programmable frequency modulation of the semiconductor optical amplifier (SOA) without any wavelength tunable filter. Both static and dynamic strain measurement of FBG sensors were successfully characterized with high linearity of an R-square value of 0.9999 at sweeping speed of 50 kHz.

  20. Soft Selective Sweeps in Complex Demographic Scenarios

    PubMed Central

    Wilson, Benjamin A.; Petrov, Dmitri A.; Messer, Philipp W.

    2014-01-01

    Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow for changes in population size over time. We first show that population bottlenecks can lead to the removal of all but one adaptive lineage from an initially soft selective sweep. The parameter regime under which such “hardening” of soft selective sweeps is likely is determined by a simple heuristic condition. We further develop a generalized analytical framework, based on an extension of the coalescent process, for calculating the probability of soft sweeps under arbitrary demographic scenarios. Two important limits emerge within this analytical framework: In the limit where population-size fluctuations are fast compared to the duration of the sweep, the likelihood of soft sweeps is determined by the harmonic mean of the variance effective population size estimated over the duration of the sweep; in the opposing slow fluctuation limit, the likelihood of soft sweeps is determined by the instantaneous variance effective population size at the onset of the sweep. We show that as a consequence of this finding the probability of observing soft sweeps becomes a function of the strength of selection. Specifically, in species with sharply fluctuating population size, strong selection is more likely to produce soft sweeps than weak selection. Our results highlight the importance of accurate demographic estimates over short

  1. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  2. Image plane sweep volume illumination.

    PubMed

    Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

    2011-12-01

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements. PMID:22034331

  3. Study of Khz QPO in Z Sources

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    We propose to continue our succesful series of observations of Z sources. In Cycles 1 and 2 we discovered kHz QPO in 4 of them. In Cycle 3 we propose to focus on kHz QPO energy dependence, in particular time lags, to constrain Z-source emission geometry, and on the dependence of kHz QPO frequency on accretion rate, to address how the very different luminosities of Z and atoll sources can lead to identical frequencies. We will use a new method that enormously increases sensitivity for kHz QPO studies. Our long-term program aims to quantitatively model the X- ray spectral and power-spectral variations of Z sources using advanced time series analysis techniques coupled with hydrodynamic/ radiative- transfer calculations. Our aims require to cover the Z track several times in each source.

  4. Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Eibl, Matthias; Pfeiffer, Tom; Wieser, Wolfgang; Huber, Robert

    2016-03-01

    We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.

  5. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    DOEpatents

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  6. 100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers

    NASA Astrophysics Data System (ADS)

    O'Connor, Shane; Bernacil, Michael A.; DeKelaita, Andrew; Maher, Ben; Derickson, Dennis

    2009-02-01

    Fast wavelength tunable sampled grating distributed Bragg reflector (SG-DBR) lasers are used to generate fast, linear, continuous wavelength sweeps. High resolution wavelength sweeps in excess of 45 nm are demonstrated at a 100 kHz repetition rate. The front mirror, back mirror and phase segment tuning segments can be modulated at very fast rates, which allows for very fast wavelength ramp rates. This sweep is generated through three time synchronized current versus time waveforms applied to the back mirror, front mirror and phase sections of the laser. The sweep consists of fifty separate mode-hop-free tuning segments which are stitched together to form a near continuous wavelength ramp. The stitching points require a maximum of 60 ns for amplitude, wavelength, and thermal settling time to allow the laser to equilibrate. Wavelength tuning non-linearities, output power wavelength dependency, and wavelength discontinuities are defects in the wavelength sweep that result from properties of the wavelength tuning mechanism as well as limitations of the signal generators that produce the time varying bias currents. A Michelson Interferometer is used to examine the effects of these defects for optical coherence tomography (OCT). The OCT measurements demonstrate spectral broadening of the source and interference signal reduction as the penetration depth increases. However, these effects are not very severe for delay differences less than 2 mm even without correction for sweep nonlinearities.

  7. You're a What? Chimney Sweep

    ERIC Educational Resources Information Center

    Green, Kathleen

    2010-01-01

    In this article, the author talks about a chimney sweep--also called a "sweep"--which inspects chimneys as well as cleans them. Some inspections are for a specific purpose, such as home appraisal, but most precede cleaning. Chimney cleaning requires a certain level of dexterity, because the job includes a lot of climbing, squatting, kneeling, and…

  8. MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging

    NASA Astrophysics Data System (ADS)

    Potsaid, Benjamin; Jayaraman, Vijaysekhar; Fujimoto, James G.; Jiang, James; Heim, Peter J. S.; Cable, Alex E.

    2012-01-01

    This paper demonstrates new wavelength swept light source technology, MEMS tunable VCSELs, for OCT imaging. The VCSEL achieves a combination of ultrahigh sweep speeds, wide spectral tuning range, flexibility in sweep trajectory, and extremely long coherence length, which cannot be simultaneously achieved with other technologies. A second generation prototype VCSEL is optically pumped at 980nm and a low mass electrostatically tunable mirror enables high speed wavelength tuning centered at ~1310nm with ~110nm of tunable bandwidth. Record coherence length >100mm enables extremely long imaging range. By changing the drive waveform, a single 1310nm VCSEL was driven to sweep at speeds from 100kHz to 1.2MHz axial scan rate with unidirectional and bidirectional high duty cycle sweeps. We demonstrate long range and high resolution 1310nm OCT imaging of the human anterior eye at 100kHz axial scan rate and imaging of biological samples at speeds of 60kHz - 1MHz. A first generation 1050nm device is shown to sweep over 100nm. The results of this study suggest that MEMS based VCSEL swept light source technology has unique performance characteristics and will be a critical technology for future ultrahigh speed and long depth range OCT imaging.

  9. Satellite sweeping in offset, tilted dipole fields

    NASA Technical Reports Server (NTRS)

    Paonessa, Mark T.; Cheng, Andrew F.

    1987-01-01

    The paper presents a theory for the longitudinally averaged satellite sweeping rate in an offset, tilted dipole magnetic field. It includes the reductions in the sweeping rate when the moon radius is not large compared to the gyroradius or the azimuthal drift distance during a bounce period. With a large tilt angle between the magnetic and rotation axes, moons make large excursions in dipole L value, and more than one moon can sweep at a given L. The sweeping rate peaks at the minimum L for each moon. If the gyroradius is large, additional peaks can occur when the particle mirrors near the moon latitude. To illustrate the theory, sweeping rates are evaluated for parameters relevant to the observations at Uranus by the Voyager 2 Low Energy Charged Particles Experiment. Calculated sweeping rates for ions and electrons are typically two or three orders of magnitude less than the strong-diffusion loss rate. The observation of sweeping signatures at Uranus would imply that pitch-angle scattering there occurs at a rate far below the strong-diffusion limit, contrasting with the situation for energetic ions in the inner Jovian magnetosphere.

  10. Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate

    PubMed Central

    Schlachter, Simon C.; Kang, DongKyun; Gora, Michalina J.; Vacas-Jacques, Paulino; Wu, Tao; Carruth, Robert W.; Wilsterman, Eric J.; Bouma, Brett E.; Woods, Kevin; Tearney, Guillermo J.

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that uses a diffraction grating to illuminate different locations on the sample with distinct wavelengths. SECM can obtain line images without any beam scanning devices, which opens up the possibility of high-speed imaging with relatively simple probe optics. This feature makes SECM a promising technology for rapid endoscopic imaging of internal organs, such as the esophagus, at microscopic resolution. SECM imaging of the esophagus has been previously demonstrated at relatively low line rates (5 kHz). In this paper, we demonstrate SECM imaging of large regions of esophageal tissues at a high line imaging rate of 100 kHz. The SECM system comprises a wavelength-swept source with a fast sweep rate (100 kHz), high output power (80 mW), and a detector unit with a large bandwidth (100 MHz). The sensitivity of the 100-kHz SECM system was measured to be 60 dB and the transverse resolution was 1.6 µm. Excised swine and human esophageal tissues were imaged with the 100-kHz SECM system at a rate of 6.6 mm2/sec. Architectural and cellular features of esophageal tissues could be clearly visualized in the SECM images, including papillae, glands, and nuclei. These results demonstrate that large-area SECM imaging of esophageal tissues can be successfully conducted at a high line imaging rate of 100 kHz, which will enable whole-organ SECM imaging in vivo. PMID:24049684

  11. Thomson Scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, William; den Hartog, D. J.; Morton, L. A.; MST Team

    2015-11-01

    The fast Thomson scattering diagnostic on the MST Reversed-Field Pinch experiment now measures electron temperature at rates of up to 250 kHz, allowing for single shot analysis of phenomena that previously required ensembles of measurements from many shots. Recent laser upgrades include the addition of a second Nd:glass amplifier (giving a total of six amplifiers including four Nd:YAG stages) and optimization of neodymium doping levels within the glass amplifier stages to reduce thermal defocusing. The master-oscillator power-amplifier laser system operates in a pulse-burst mode where the laser generates multiple pulses per flashlamp firing and these bursts of laser pulses are repeated multiple times. When optimizing for the largest number of laser pulses, the laser produces up to 30 pulses at a rate of 100 kHz per burst repeated up to 4 times every 2 ms for a total of 120 temperature measurements per MST discharge. When optimizing for fastest pulsing rate, the laser can produce 8 pulses at 250 kHz within a single burst. A laser system upgrade currently underway is replacement of the diode-pumped pulsed Nd:YVO4 master oscillator with a CW laser chopped by an acoustic-optic modulator; this upgrade may enable pulsing rates faster than 250 kHz. This work is supported by the US DOE and NSF.

  12. Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps

    PubMed Central

    Garud, Nandita R.; Messer, Philipp W.; Buzbas, Erkan O.; Petrov, Dmitri A.

    2015-01-01

    Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes. PMID:25706129

  13. Mikkelson sweep/spike chisel plow shovel

    SciTech Connect

    Not Available

    1992-01-01

    Profitability comparisons are reported between the Mikkelson Sweep/Spike Chisel Plow Shovel standard sweeps. This evaluation covers the first year of testing of the new Sweep/Spike design. The data are not averaged over treatments due to significant interaction between treatments and environmental factors. The cost of fuel, fall and spring, to perform the various treatments ranged from $1.27 to $3.36 per acre. Use of the sweep/spike shovel always reduced total fuel cost. Savings varied from $0.11 to $0.71 per acre depending on prior treatment. This means there will be money saved, to off-set expenses, when converting present chisel plows or for special options on new chisel plows, needed for use of the sweep/spike shovel. A summary of 1991--1992 energy measurements. They indicate that more power will be required to pull a chisel plow equipped with the sweep/spike shovel. A larger tractor, narrower chisel plow and/or slower speed will be required to avoid the wheel slippage problems encountered on soft or wet field surfaces.

  14. Study of Khz QPO in Z Sources

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    We propose to continue our succesful series of observations of Z sources with extensive observations of just two of them, GX 17+2 and GX 5-1. Our proposed observations will focus on the relation between the kHz QPO and the lower-frequency horizontal-branch QPO (HBO). Due to special HBO properties of these 2 sources, this will sensitively test the Lense-Thirring-precession and beat-frequency interpretations that have been proposed for kHz QPO and HBO. Our long-term program aims to quantitatively model the X-ray spectral and power-spectral variations of Z sources using advanced time series analysis techniques coupled with hydrodynamic/radiative-transfer calculations. Our aims require to cover the Z track several times in each source.

  15. OCT based on multi-frequency sweeping Fizeau interferometer with phase modulating method

    NASA Astrophysics Data System (ADS)

    Choi, S.; Watanabe, T.; Sasaki, O.; Suzuki, T.

    2013-09-01

    The Multi-frequency sweeping Fizeau-type interferometer (MFS-FI) for optical coherence tomography (OCT) is demonstrated. The multi-frequency sweeping by a variable Fabry-Perot filter permits detection of high-order low-coherence interferometric signals in the Fizeau interferometer. The sinusoidal phase modulation technique was utilized to detect accurate interference amplitude and phase distributions of back scattered light from surfaces of a sample. OCT measurements by the MFS-FI were conducted for vibrating glass plates with a frequency of 1 kHz, and cellular tissues fixed with formalin and embedded in paraffin. The tomographic 3-dimensional volume and cross-sectional surface displacements were detected with an accuracy of nano-meters.

  16. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  17. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-06-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results.

  18. Investigation of Spiral and Sweeping Holes

    NASA Technical Reports Server (NTRS)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  19. 42 CFR 2.16 - Security for written records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Security for written records. 2.16 Section 2.16 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS General Provisions § 2.16 Security for written...

  20. Sinusoidal nonlinearity in wavelength-sweeping interferometry.

    PubMed

    Perret, Luc; Pfeiffer, Pierre

    2007-11-20

    We report the influence of the nonlinearities in the wavelength-sweeping speed on the resulting interferometric signals in an absolute distance interferometer. The sweeping signal is launched in the reference and target interferometers from an external cavity laser source. The experimental results demonstrate a good resolution in spite of the presence of nonlinearities in the wavelength sweep. These nonlinearities can be modeled by a sum of sinusoids. A simulation is then implemented to analyze the influence of their parameters. It shows that a sinusoidal nonlinearity is robust enough to give a good final measurement uncertainty through a Fourier transform technique. It can be concluded that an optimal value of frequency and amplitude exists in the case of a sinusoidal nonlinearity. PMID:18026546

  1. Sinusoidal nonlinearity in wavelength-sweeping interferometry

    SciTech Connect

    Perret, Luc; Pfeiffer, Pierre

    2007-11-20

    We report the influence of the nonlinearities in the wavelength-sweeping speed on the resulting interferometric signals in an absolute distance interferometer. The sweeping signal is launched in the reference and target interferometers from an external cavity laser source. The experimental results demonstrate a good resolution in spite of the presence of nonlinearities in the wavelength sweep. These nonlinearities can be modeled by a sum of sinusoids. A simulation is then implemented to analyze the influence of their parameters. It shows that a sinusoidal nonlinearity is robust enough to give a good final measurement uncertainty through a Fourier transform technique. It can be concluded that an optimal value of frequency and amplitude exists in the case of a sinusoidal nonlinearity.

  2. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  3. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  4. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  5. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  6. 47 CFR 80.882 - 2182 kHz watch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false 2182 kHz watch. 80.882 Section 80.882 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... kHz watch. Ships subject to this subpart must maintain a watch on the frequency 2182 kHz pursuant...

  7. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  8. Experimental measurements on a single sweeping jet

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Graff, Emilio; Gharib, Morteza

    2014-11-01

    ``Sweeping jets'' proved their effectiveness as Active Flow Control (AFC) actuators in improving the performance of vertical tails of generic and full-scale models. To gain further knowledge about the fundamental flow physics, the jets were investigated experimentally. The influence of a single jet on its surroundings was studied, especially the entrainment region. The results were compared to previous experiments to study the difference between a single isolated jet and multiple jets mounted on a vertical tail. Supported by the Boeing Company.

  9. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  10. Automatic detection of sweep-meshable volumes

    DOEpatents

    Tautges; Timothy J. , White; David R.

    2006-05-23

    A method of and software for automatically determining whether a mesh can be generated by sweeping for a representation of a geometric solid comprising: classifying surface mesh schemes for surfaces of the representation locally using surface vertex types; grouping mappable and submappable surfaces of the representation into chains; computing volume edge types for the representation; recursively traversing surfaces of the representation and grouping the surfaces into source, target, and linking surface lists; and checking traversal direction when traversing onto linking surfaces.

  11. Radially uniform circular sweep of ion beam

    SciTech Connect

    Akhmetov, T.D.; Davydenko, V.I.; Ivanov, A.A.; Kobets, V.V.; Medvedko, A.S.; Skorobogatov, D.N.; Tiunov, M.A.

    2006-03-15

    A spiral sweep of the ion beam was suggested to provide sufficiently uniform irradiation of a circular target. It is shown that if the beam radius is small enough, the radius of the beam center should increase as a square root of time to provide uniform radial irradiation of the target. In the complex for Boron Neutron Capture Therapy developed at the Budker Institute of Nuclear Physics, the proton beam sweep will be performed by a sweeper with uniform magnetic field with strength up to 500 G and axial length {approx}20 cm, rotating at 100-2000 Hz, and scanning over the radius at a 1-10 Hz frequency. The sweeper field is produced by four longitudinal flat current windings placed near the inner walls of a box-shaped yoke with the inner opening of a square cross section. A similar sweeping technique can be used in a 200 keV oxygen implanter, which is also under development at the Budker Institute.

  12. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited... equipment. (b) The use of horses or pack animals outside of trails, routes or areas designated for their...

  13. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited... equipment. (b) The use of horses or pack animals outside of trails, routes or areas designated for their...

  14. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited... equipment. (b) The use of horses or pack animals outside of trails, routes or areas designated for their...

  15. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited... equipment. (b) The use of horses or pack animals outside of trails, routes or areas designated for their...

  16. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited... equipment. (b) The use of horses or pack animals outside of trails, routes or areas designated for their...

  17. Thomson scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Den Hartog, D. J.

    2015-12-01

    Several upgrades have been applied to the high-repetition-rate Thomson scattering diagnostic on the MST experiment, having increased the rate and number of electron temperature measurements. The detector portion of the Thomson scattering system requires 1.5-2.0 J, 10-20 ns laser pulses at 1064 nm. A high-repetition-rate laser produces suitable pulses for short 3-4 pulse bursts with only 3 μs pulse spacing. Alternatively, the laser timing can be optimized to maximize the number of pulses in a single burst, producing up to 44 pulses at a rate of 100 kHz. The laser follows a master oscillator, power amplifier architecture. Upgrades to the laser include: a new acousto-optic modulator chopped CW laser based master oscillator, a sixth power amplifier, optimized Nd doping within Nd:glass amplifiers via optical modeling of the pump chamber, and a yet to be installed new cavity reflector. Additionally, a new long wavelength filter has been added to the Thomson scattering diagnostic's polychromator based detector, allowing possible detection of net electron drift.

  18. Study on the forward-sweep inducer for LRE turbopumps

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; Kim, Jin-Sun; Kim, Jinhan

    2009-07-01

    Computational and experimental studies on a forward-sweep inducer for Liquid Rocket Engine (LRE) turbopumps were conducted to evaluate the effects of forward-sweep of the leading edge on the performance of an inducer in comparison with a conventional backward-sweep inducer. Computational results show that backflows at the inlet decrease in the case of the forward-sweep inducer by inhibiting pre-rotation of the inflow and the low pressure region at backflow also diminishes, which is presumed to improve the suction performance of the inducer. Experimental results show that the suction performance of the forward-sweep inducer is almost the same as that of the backward-sweep inducer although it has a smaller inlet tip diameter and shorter axial length. The efficiency of the forward-type inducer is found better than that of the backward-sweep inducer due to the small size of backflows.

  19. The brain-stem auditory-evoked response in the big brown bat (Eptesicus fuscus) to clicks and frequency-modulated sweeps.

    PubMed

    Burkard, R; Moss, C F

    1994-08-01

    Three experiments were performed to evaluate the effects of stimulus level on the brain-stem auditory-evoked response (BAER) in the big brown bat (Eptesicus fuscus), a species that uses frequency-modulated (FM) sonar sounds for echolocation. In experiment 1, the effects of click level on the BAER were investigated. Clicks were presented at levels of 30 to 90 dB pSPL in 10-dB steps. Each animal responded reliably to clicks at levels of 50 dB pSPL and above, showing a BAER containing four peaks in the first 3-4 ms from click onset (waves i-iv). With increasing click level, BAER peak amplitude increased and peak latency decreased. A decrease in the i-iv interval also occurred with increasing click level. In experiment 2, stimuli were 1-ms linear FM sweeps, decreasing in frequency from 100 to 20 kHz. Stimulus levels ranged from 20 to 90 dB pSPL. BAERs to FM sweeps were observed in all animals for levels of 40 dB pSPL and above. These responses were similar to the click-evoked BAER in waveform morphology, with the notable exception of an additional peak observed at the higher levels of FM sweeps. This peak (wave ia) occurred prior to the first wave seen at lower levels (wave ib). As the level of the FM sweep increased, there was a decrease in peak latency and an increase in peak amplitude. Similarity in the magnitude and behavior of the i-iv and ib-iv intervals suggests that wave ib to FM sweeps is the homolog of the wave i response to click stimuli. Experiment 3 tested the hypothesis that wave ia represented activity emanating from more basal cochlear regions than wave ib. FM sweeps (100-20 kHz) were presented at 90 dB pSPL, and broadband noise was raised in level until the BAER was eliminated. This "masked threshold" occurred at 85 dB SPL of noise. At masked threshold, the broadband noise was steeply high-pass filtered at five cutoff frequencies ranging from 20 to 80 kHz. Generally, wave ia was eliminated for masker cutoff frequencies of 56.6 kHz and below, while wave

  20. Analysis of street sweepings, Portland, Oregon

    USGS Publications Warehouse

    Miller, Timothy L.; Rinella, Joseph F.; McKenzie, Stuart W.; Parmenter, Jerry

    1977-01-01

    A brief study involving collection and analysis of street sweepings was undertaken to provide the U.S. Army Corps of Engineers with data on physical, chemical, and biological characteristics of dust and dirt accumulating on Portland streets. Most of the analyses selected were based on the pollutant loads predicted by the Storage, Treatment, Overflow, and Runoff Model (STORM). Five different basins were selected for sampling, and samples were collected three times in each basin. Because the literature reports no methodology for analysis of dust and dirt, the analytical methodology is described in detail. Results of the analyses are summarized in table 1.

  1. Ammonia removal by sweep gas membrane distillation.

    PubMed

    Xie, Zongli; Duong, Tuan; Hoang, Manh; Nguyen, Cuong; Bolto, Brian

    2009-04-01

    Wastewater containing low levels of ammonia (100 mg/L) has been simulated in experiments with sweep gas membrane distillation at pH 11.5. The effects of feed temperature, gas flow rate and feed flow rate on ammonia removal, permeate flux and selectivity were investigated. The feed temperature is a crucial operating factor, with increasing feed temperature increasing the permeate flux significantly, but reducing the selectivity. The best-performing conditions of highest temperature and fastest gas flow rate resulted in 97% removal of the ammonia, to give a treated water containing only 3.3 mg/L of ammonia. PMID:19195677

  2. On detecting selective sweeps using single genomes.

    PubMed

    Sinha, Priyanka; Dincer, Aslihan; Virgil, Daniel; Xu, Guang; Poh, Yu-Ping; Jensen, Jeffrey D

    2011-01-01

    Identifying the genetic basis of human adaptation has remained a central focal point of modern population genetics. One major area of interest has been the use of polymorphism data to detect so-called "footprints" of selective sweeps - patterns produced as a beneficial mutation arises and rapidly fixes in the population. Based on numerous simulation studies and power analyses, the necessary sample size for achieving appreciable power has been shown to vary from a few individuals to a few dozen, depending on the test statistic. And yet, the sequencing of multiple copies of a single region, or of multiple genomes as is now often the case, incurs considerable cost. Enard et al. (2010) have recently proposed a method to identify patterns of selective sweeps using a single genome - and apply this approach to human and non-human primates (chimpanzee, orangutan, and macaque). They employ essentially a modification of the Hudson, Kreitman, and Aguade test - using heterozygous single nucleotide polymorphisms from single individuals, and divergence data from two closely related species (human-chimpanzee, human-orangutan, and human-macaque). Given the potential importance of this finding, we here investigate the properties of this statistic. We demonstrate through simulation that this approach is neither robust to demography nor background selection; nor is it robust to variable recombination rates. PMID:22303379

  3. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  4. Improvement of Sweep Efficiency in Gasflooding

    SciTech Connect

    Kishore Mohanty

    2008-12-31

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiency of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the

  5. Morphological analysis on the coherence of kHz QPOs

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chang, H. K.; Zhang, C. M.; Wang, D. H.; Chen, L.; Qu, J. L.; Song, L. M.

    2012-12-01

    We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) low-mass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2˜20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.

  6. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    PubMed Central

    Spafford, Ryan D; Lortie, Christopher J

    2013-01-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  7. The effect of sweep direction on avian auditory brainstem responses

    NASA Astrophysics Data System (ADS)

    Brittan-Powell, Elizabeth; Lauer, Amanda; Callahan, Julia; Dooling, Robert; Leek, Marjorie; Gleich, Otto

    2005-04-01

    In mammals, brief rising frequency sweeps result in increased amplitudes for both auditory brainstem response (ABR) and compound action potential (CAP) recordings (Dau, 2000; Shore and Nuttall, 1985). The rising sweep is thought to result in increased synchronous activity. Changing the direction of the sweep exaggerated the delay of processing along the basilar membrane and decreased synchrony of neural responses. Here we recorded ABRs from budgerigars, canaries, and zebra finches to a variety of stimulus parameters, including rising and falling sweeps with different sweep rates, determined by changing duration and frequency range. Both linear and nonlinear sweeps in frequency over time were tested. Results show that rising sweeps produce larger peak amplitudes, shorter latencies and changes in wave morphology such as a narrower wave 1 width than falling sweeps, suggesting greater synchrony of response to sweeps moving from low to high frequency. These data are consistent with mammalian results, but with a different time scale related to temporal characteristics of cochlear stimulation on the short basilar papilla in birds. [Work supported by NIH DC00198, DC001372, DC04664.

  8. Optimization and control of the sweeping range in an Yb-doped self-sweeping fiber laser

    NASA Astrophysics Data System (ADS)

    Lobach, I. A.; Tkachenko, A. Yu; Kablukov, S. I.

    2016-04-01

    Influence of the laser cavity parameters (an active fiber length and output coupling losses) and the temperature of elements (active fiber and pump laser diode) on the sweeping range in an Yb-doped self-sweeping laser is investigated. The obtained results show that the sweeping spectral region is shifted to shorter wavelengths for shorter active fibers and with increasing absorbed power. This allows one to obtain self-sweeping operation in a broad range within a ytterbium gain bandwidth from 1028 to 1080 nm. At the same time, there are optimal cavity parameters at which the sweeping span is the broadest (>20 nm). Good agreement between the experimental sweeping range and the calculated maximum gain wavelength is demonstrated.

  9. Excess mortality among Swedish chimney sweeps.

    PubMed Central

    Gustavsson, P; Gustavsson, A; Hogstedt, C

    1987-01-01

    In a cohort study of 5464 union organised Swedish chimney sweeps employed at any time between 1918 and 1980 mortality was studied from 1951 to 1982 with national statistics used as a reference. Follow up was possible for 98.6% of the individuals: 717 deaths were observed against 540 expected. There was an increased mortality from coronary heart disease, respiratory diseases, and several types of malignant tumours. Lung cancer mortality was significantly increased and positively correlated to the number of years employed. A fivefold risk increase for oesophageal cancer and liver cancer was found. The increased mortality could be attributed to exposure to combustion products in the work environment but not to smoking habits. PMID:3689705

  10. Sweep improvement in enhanced oil recovery

    SciTech Connect

    Djabbarah, N.F.

    1987-11-03

    The method of sweep improvement in an operation involving enhanced oil recovery from a subterranean oil-bearing formation, is described, comprising: (a) injecting, through an injection well into a subterranean oil-bearing formation, an aqueous slug comprising a mixed surfactant system of (1) at least one foaming agent selected from the group consisting of anionic, nonionic, and amphoteric surfactants having foam-producing properties, and (2) a lignosulfonate foaming agent, (b) injecting displacing fluid into the formation through the injection well, with the fluid interacting with the mixed surfactant system to form foam and displacing the oil therein toward a production well, and, (c) recovering the displaced oil through the production well.

  11. Dissolution of FB-Line Cabinet Sweepings

    SciTech Connect

    Crowder, Mark L.

    2005-06-14

    Three FB-Line samples were received by the Savannah River National Laboratory (SRNL) for characterization and evaluation for suitability for HB-Line dissolution. These samples are part of a larger sampling/evaluation program in support of FB-Line deinventory efforts. The samples studied were identified as MC04-147- HBL, MC04-148-HBL, and FBL-SWP-04-016-HBL (N). The first sample, MC04-147-HBL, is a portion of FB-Line Packaging and Stabilization (P&S) materials. The second sample, MC04-148-HBL, is a sweeping from Cabinet 6-8, which is not representative of the mechanical line. The third sample, FBL-SWP-04-016-HBL (N), is an FB-Line North cabinet sweeping. The samples were described by FB-Line personnel as containing plutonium oxide (PuO{sub 2}) which had not been high-fired. This description was generally confirmed by solids analysis and off gas measurements. All three samples were dissolved in 8 M HNO{sub 3}/0.1 M KF at 90-100 C leaving minor amounts of solid residue. During dissolution, sample MC04-147 did not generate hydrogen gas. Sample MC04-148 generated modest amounts of gas, which contained 4.0 to 4.7 volume percent (vol %) hydrogen (H{sub 2}) at a ratio of up to 8.4 x 10{sup -5} mol H{sub 2}/g sample. Sample FBL-SWP-04-016-HBL (N) was nearly completely soluble in 8 M HNO{sub 3}and produced a very small amount of gas. Apparently, the CaF{sub 2} in that sample dissolves and provides sufficient fluoride to support the dissolution of other components.

  12. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    PubMed Central

    Bendall, Matthew L; Stevens, Sarah LR; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-01-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  13. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations.

    PubMed

    Bendall, Matthew L; Stevens, Sarah Lr; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-07-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the 'ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  14. Sweeping algorithms for five-point stencils and banded matrices

    SciTech Connect

    Kwong, Man Kam.

    1992-06-01

    We record MATLAB experiments implementing the sweeping algorithms we proposed recently to solve five-point stencils arising from the discretization of partial differential equations, notably the Ginzburg-Landau equations from the theory of superconductivity. Algorithms tested include two-direction, multistage, and partial sweeping.

  15. 41 CFR 60-2.16 - Placement goals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.16 Placement goals. (a... good faith effort to make all aspects of the entire affirmative action program work. Placement goals... merit selection principles. Affirmative action programs prescribed by the regulations in this part...

  16. 41 CFR 60-2.16 - Placement goals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.16 Placement goals. (a... good faith effort to make all aspects of the entire affirmative action program work. Placement goals... merit selection principles. Affirmative action programs prescribed by the regulations in this part...

  17. 41 CFR 60-2.16 - Placement goals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.16 Placement goals. (a... good faith effort to make all aspects of the entire affirmative action program work. Placement goals... merit selection principles. Affirmative action programs prescribed by the regulations in this part...

  18. 41 CFR 60-2.16 - Placement goals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.16 Placement goals. (a... good faith effort to make all aspects of the entire affirmative action program work. Placement goals... merit selection principles. Affirmative action programs prescribed by the regulations in this part...

  19. 41 CFR 60-2.16 - Placement goals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-AFFIRMATIVE ACTION PROGRAMS Purpose and Contents of Affirmative Action Programs § 60-2.16 Placement goals. (a... good faith effort to make all aspects of the entire affirmative action program work. Placement goals... merit selection principles. Affirmative action programs prescribed by the regulations in this part...

  20. Patterns of Neutral Diversity Under General Models of Selective Sweeps

    PubMed Central

    Coop, Graham; Ralph, Peter

    2012-01-01

    Two major sources of stochasticity in the dynamics of neutral alleles result from resampling of finite populations (genetic drift) and the random genetic background of nearby selected alleles on which the neutral alleles are found (linked selection). There is now good evidence that linked selection plays an important role in shaping polymorphism levels in a number of species. One of the best-investigated models of linked selection is the recurrent full-sweep model, in which newly arisen selected alleles fix rapidly. However, the bulk of selected alleles that sweep into the population may not be destined for rapid fixation. Here we develop a general model of recurrent selective sweeps in a coalescent framework, one that generalizes the recurrent full-sweep model to the case where selected alleles do not sweep to fixation. We show that in a large population, only the initial rapid increase of a selected allele affects the genealogy at partially linked sites, which under fairly general assumptions are unaffected by the subsequent fate of the selected allele. We also apply the theory to a simple model to investigate the impact of recurrent partial sweeps on levels of neutral diversity and find that for a given reduction in diversity, the impact of recurrent partial sweeps on the frequency spectrum at neutral sites is determined primarily by the frequencies rapidly achieved by the selected alleles. Consequently, recurrent sweeps of selected alleles to low frequencies can have a profound effect on levels of diversity but can leave the frequency spectrum relatively unperturbed. In fact, the limiting coalescent model under a high rate of sweeps to low frequency is identical to the standard neutral model. The general model of selective sweeps we describe goes some way toward providing a more flexible framework to describe genomic patterns of diversity than is currently available. PMID:22714413

  1. Planetesimal formation by sweep-up coagulation

    NASA Astrophysics Data System (ADS)

    Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.

    2013-07-01

    The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.

  2. Structured Volume Decomposition via Generalized Sweeping.

    PubMed

    Gao, Xifeng; Martin, Tobias; Deng, Sai; Cohen, Elaine; Deng, Zhigang; Chen, Guoning

    2016-07-01

    In this paper, we introduce a volumetric partitioning strategy based on a generalized sweeping framework to seamlessly partition the volume of an input triangle mesh into a collection of deformed cuboids. This is achieved by a user-designed volumetric harmonic function that guides the decomposition of the input volume into a sequence of two-manifold level sets. A skeletal structure whose corners correspond to corner vertices of a 2D parameterization is extracted for each level set. Corners are placed so that the skeletal structure aligns with features of the input object. Then, a skeletal surface is constructed by matching the skeletal structures of adjacent level sets. The surface sheets of this skeletal surface partition the input volume into the deformed cuboids. The collection of cuboids does not exhibit T-junctions, significantly simplifying the hexahedral mesh generation process, and in particular, it simplifies fitting trivariate B-splines to the deformed cuboids. Intersections of the surface sheets of the skeletal surface correspond to the singular edges of the generated hex-meshes. We apply our technique to a variety of 3D objects and demonstrate the benefit of the structure decomposition in data fitting. PMID:26336127

  3. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  4. Influence of vane sweep on rotor-stator interaction noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Kerschen, Edward J.

    1990-01-01

    The influence of vane sweep in rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust representing the rotor viscous wake, with a cascade of cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High frequency convected gusts for which noise generation is concentrated near the leading edge of airfoils is considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Using the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. A parametric study of noise generated by gust cascade interaction is carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results show that sweep is beneficial in reducing noise levels. Rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.

  5. Auditory filter shapes at 8 and 10 kHz.

    PubMed

    Shailer, M J; Moore, B C; Glasberg, B R; Watson, N; Harris, S

    1990-07-01

    Auditory filter shapes were derived from notched-noise masking data at center frequencies of 8 kHz (for three spectrum levels, N0 = 20, 35, and 50 dB) and 10 kHz (N0 = 50 dB). In order to minimize variability due to earphone placement, insert earphones (Etymotic Research ER2) were used and individual earmolds were made for each subject. These earphones were designed to give a flat frequency response at the eardrum for frequencies up to 14 kHz. The filter shapes were derived under the assumption that a frequency-dependent attenuation was applied to all stimuli before reaching the filter; this attenuation function was estimated from the variation of absolute threshold with frequency for the three youngest normally hearing subjects in our experiments. At 8 kHz, the mean equivalent rectangular bandwidths (ERBs) of the filters derived from the individual data for three subjects were 677, 637, and 1011 Hz for N0 = 20, 35, and 50 dB, respectively. The filters at N0 = 50 dB were roughly symmetrical, while, at the lower spectrum levels, the low-frequency skirt was steeper than the high-frequency skirt. The mean ERB at 10 kHz was 957 Hz. At this frequency, the filters for two subjects were steeper on the high-frequency side than the low-frequency side, while the third subject showed a slight asymmetry in the opposite direction. PMID:2380442

  6. Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system

    NASA Astrophysics Data System (ADS)

    Gebru, Alem; Rohwer, Erich; Neethling, Pieter; Brydegaard, Mikkel

    2014-01-01

    Quantitative investigation of insect activity in their natural habitat is a challenging task for entomologists. It is difficult to address questions such as flight direction, predation strength, and overall activities using the current techniques such as traps and sweep nets. A multispectral kHz remote detection system using sunlight as an illumination source is presented. We explore the possibilities of remote optical classification of insects based on their wing-beat frequencies and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be resolved by implementing high-sampling frequency. The iridescence features generated from the change of color in two channels (visible and near-infrared) during wing-beat cycle are presented. We show that the shape of the wing-beat trajectory is different for different insects. The flight direction of an atmospheric insect is also determined using a silicon quadrant detector.

  7. AN ALGORITHM FOR PARALLEL SN SWEEPS ON UNSTRUCTURED MESHES

    SciTech Connect

    S. D. PAUTZ

    2000-12-01

    We develop a new algorithm for performing parallel S{sub n} sweeps on unstructured meshes. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with ''normal'' mesh partitionings we have observed nearly linear speedups on up to 126 processors. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, we do not observe any severe asymptotic degradation in the parallel efficiency with modest ({le}100) levels of parallelism. This work is a fundamental step in the development of parallel S{sub n} methods.

  8. Application of a hybrid computer to sweep frequency data processing

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Bruton, W. M.

    1973-01-01

    A hybrid computer program is presented which can process as many as 10 channels of sweep frequency data simultaneously. The program needs only the sine sweep signal used to drive the system, and its correponding quadrature component, to process the data. It can handle a maximum frequency range of 0.5 to 500 hertz. Magnitude and phase are calculated at logarithmically spaced points covering the frequency range of interest. When the sweep is completed, these results are stored in digital form. Thus, a tabular listing and/or a plot of any processed data channel or the transfer function relating any two of them is immediately available.

  9. Increasing the Odds of the Sweep

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Using ESO's Very Large Telescope, astronomers have confirmed the extrasolar planet status of two of the 16 candidates discovered by the NASA/ESA Hubble Space Telescope. One of the two confirmed exoplanets has a mass a little below 10 Jupiter masses, while the other is less than 3.8 Jupiter masses. The 16 candidates were uncovered during an international Hubble survey, called the 'Sagittarius Window Eclipsing Extrasolar Planet Search', or SWEEPS [1]. Hubble looked at a large number of stars in the crowded central bulge of our Galaxy, covering a swath of sky that is no bigger than 1/50th the size of the full Moon. ESO PR Photo 38a/06 ESO PR Photo 38a/06 Transiting Exoplanet (Artist's Impression) This tally is consistent with the number of planets expected to be uncovered from such a distant survey, based on previous exoplanet detections made in our local solar neighbourhood. Extrapolated to the entire Galaxy, the Hubble result provides strong evidence for the existence of at least 6 billion Jupiter-sized planets in the Milky Way. Five of the newly discovered planets represent a new extreme type of planet not yet found in any nearby searches. Dubbed Ultra-Short-Period Planets (USPPs), these worlds whirl around their stars in less than a day. The shortest-duration orbit is just 10 hours. Hubble couldn't see the 16 newly found planet candidates directly. Instead, astronomers used Hubble's Advanced Camera for Surveys to search for planets by measuring the slight dimming of a star due to the passage of a planet in front of it. This event is called a transit. The planet would have to be about the size of Jupiter to block enough starlight, about 1 to 10 percent, to be measurable by Hubble. These planets are called 'candidates' because astronomers cannot be sure of their mass, hence of their status, without further spectroscopic measurements. ESO PR Photo 38b/06 ESO PR Photo 38b/06 Radial Velocities of SWEEPS-04 (UVES/VLT) Hubble monitored 180,000 stars for periodic, brief

  10. NASA Rat Acoustic Tolerance Test 1994-1995: 8 kHz, 16 kHz, 32 kHz Experiments

    NASA Technical Reports Server (NTRS)

    Mele, Gary D.; Holley, Daniel C.; Naidu, Sujata

    1996-01-01

    Adult male Sprague-Dawley rats were exposed to chronic applied sound (74 to 79 dB, SPL) with octave band center frequencies of either 8, 16 or 32 kHz for up to 60 days. Control cages had ambient sound levels of about 62 dB (SPL). Groups of rats (test vs. control; N=9 per group) were euthanized after 0. 5. 14, 30, and 60 days. On each euthanasia day, objective evaluation of their physiology and behavior was performed using a Stress Assessment Battery (SAB) of measures. In addition, rat hearing was assessed using the brain stem auditory evoked potential (BAER) method after 60 days of exposure. No statistically significant differences in mean daily food use could be attributed to the presence of the applied test sound. Test rats used 5% more water than control rats. In the 8 kHz and 32 kHz tests this amount was statistically significant(P less than .05). This is a minor difference of questionable physiological significance. However, it may be an indication of a small reaction to the constant applied sound. Across all test frequencies, day 5 test rats had 6% larger spleens than control rats. No other body or organ weight differences were found to be statistically significant with respect to the application of sound. This spleen effect may be a transient adaptive process related to adaptation to the constant applied noise. No significant test effect on differential white blood cell counts could be demonstrated. One group demonstrated a low eosinophil count (16 kHz experiment, day 14 test group). However this was highly suspect. Across all test frequencies studied, day 5 test rats had 17% fewer total leukocytes than day 5 control rats. Sound exposed test rats exhibited 44% lower plasma corticosterone concentrations than did control rats. Note that the plasma corticosterone concentration was lower in the sound exposed test animals than the control animals in every instance (frequency exposure and number of days exposed).

  11. ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ

    PubMed Central

    del Val, C.; Ernst, P.; Falkenhahn, M; Fladerer, C.; Glatting, K. H.; Suhai, S.; Hotz-Wagenblatt, A.

    2007-01-01

    The wealth of transcript information that has been made publicly available in recent years has led to large pools of individual web sites offering access to bioinformatics software. However, finding out which services exist, what they can or cannot do, how to use them and how to feed results from one service to the next one in the right format can be very time and resource consuming, especially for non-experts. Automating this task, we present a suite of protein annotation pipelines (tasks) developed at the German Cancer Research Centre (DKFZ) oriented to protein annotation by homology (ProtSweep), by domain analysis (DomainSweep), and by secondary structure elements (2Dsweep). The aim of these tasks is to perform an exhaustive structural and functional analysis employing a wide variety of methods in combination with the most updated public databases. The three servers are available for academic users at the HUSAR open server http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar/ PMID:17526514

  12. ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ.

    PubMed

    del Val, C; Ernst, P; Falkenhahn, M; Fladerer, C; Glatting, K H; Suhai, S; Hotz-Wagenblatt, A

    2007-07-01

    The wealth of transcript information that has been made publicly available in recent years has led to large pools of individual web sites offering access to bioinformatics software. However, finding out which services exist, what they can or cannot do, how to use them and how to feed results from one service to the next one in the right format can be very time and resource consuming, especially for non-experts. Automating this task, we present a suite of protein annotation pipelines (tasks) developed at the German Cancer Research Centre (DKFZ) oriented to protein annotation by homology (ProtSweep), by domain analysis (DomainSweep), and by secondary structure elements (2Dsweep). The aim of these tasks is to perform an exhaustive structural and functional analysis employing a wide variety of methods in combination with the most updated public databases. The three servers are available for academic users at the HUSAR open server http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar/ PMID:17526514

  13. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    ERIC Educational Resources Information Center

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  14. The Structure of Linkage Disequilibrium Around a Selective Sweep

    PubMed Central

    McVean, Gil

    2007-01-01

    The fixation of advantageous mutations by natural selection has a profound impact on patterns of linked neutral variation. While it has long been appreciated that such selective sweeps influence the frequency spectrum of nearby polymorphism, it has only recently become clear that they also have dramatic effects on local linkage disequilibrium. By extending previous results on the relationship between genealogical structure and linkage disequilibrium, I obtain simple expressions for the influence of a selective sweep on patterns of allelic association. I show that sweeps can increase, decrease, or even eliminate linkage disequilibrium (LD) entirely depending on the relative position of the selected and neutral loci. I also show the importance of the age of the neutral mutations in predicting their degree of association and describe the consequences of such results for the interpretation of empirical data. In particular, I demonstrate that while selective sweeps can eliminate LD, they generate patterns of genetic variation very different from those expected from recombination hotspots. PMID:17194788

  15. 13. VIEW OF SWEEP ARMDRIVE MECHANISM AND BELT CHAIN FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF SWEEP ARM-DRIVE MECHANISM AND BELT CHAIN FROM MOOR, LOOKING EAST - Mystic River Drawbridge No. 7, Spanning Mystic River at Boston & Maine Railroad Eastern Route, Somerville, Middlesex County, MA

  16. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  17. Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

    NASA Technical Reports Server (NTRS)

    Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

    1985-01-01

    The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

  18. Applications of KHZ-CW Lidar in Ecological Entomology

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Brydegaard, Mikkel

    2016-06-01

    The benefits of kHz lidar in ecological entomology are explained. Results from kHz-measurements on insects, carried out with a CW-lidar system, employing the Scheimpflug principle to obtain range resolution, are presented. A method to extract insect events and analyze the large amount of lidar data is also described.

  19. Simple phenotypic sweeps hide complex genetic changes in populations.

    PubMed

    Maharjan, Ram P; Liu, Bin; Feng, Lu; Ferenci, Thomas; Wang, Lei

    2015-02-01

    Changes in allele frequencies and the fixation of beneficial mutations are central to evolution. The precise relationship between mutational and phenotypic sweeps is poorly described however, especially when multiple alleles are involved. Here, we investigate these relationships in a bacterial population over 60 days in a glucose-limited chemostat in a large population. High coverage metagenomic analysis revealed a disconnection between smooth phenotypic sweeps and the complexity of genetic changes in the population. Phenotypic adaptation was due to convergent evolution and involved soft sweeps by 7-26 highly represented alleles of several genes in different combinations. Allele combinations spread from undetectably low baselines, indicating that minor subpopulations provide the basis of most innovations. A hard sweep was also observed, involving a single combination of rpoS, mglD, malE, sdhC, and malT mutations sweeping to greater than 95% of the population. Other mutant genes persisted but at lower abundance, including hfq, consistent with its demonstrated frequency-dependent fitness under glucose limitation. Other persistent, newly identified low-frequency mutations were in the aceF, galF, ribD and asm genes, in noncoding regulatory regions, three large indels and a tandem duplication; these were less affected by fluctuations involving more dominant mutations indicating separate evolutionary paths. Our results indicate a dynamic subpopulation structure with a minimum of 42 detectable mutations maintained over 60 days. We also conclude that the massive population-level mutation supply in combination with clonal interference leads to the soft sweeps observed, but not to the exclusion of an occasional hard sweep. PMID:25589261

  20. An analysis of sweep patterns for a handheld demining system

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Gader, P. D.; Ho, K. C.; Mazhar, R.

    2006-05-01

    Handheld sensors are commonly used to assist in landmine location and removal. A number of computer systems aimed at assisting humans in discriminating between buried mines and other objects have been developed. Each such system requires some protocol that involves sweeping the sensor over a region of ground using some set of patterns to search for objects (detection) and determine the nature of those objects (discrimination). The work reported here is an effort to determine an acceptable sweep pattern for mine/nonmine discrimination that provides good performance while still being simple for the operator to use. The paper describes a series of data collections and case studies employing a combined radar and metal detection sensor. The system was evaluated first using a robotic operator and later human operators. We discuss the application of a supervised learning system discriminator to each data set, and evaluate discrimination performance. We found that using a relatively simple sweep pattern, computer algorithms can achieve better discrimination performance than an expert human operator, and that (at least up to ten sweeps) our computer algorithm performs better with more sweeps over target.

  1. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron

  2. Modeling of long range frequency sweeping for energetic particle modes

    SciTech Connect

    Nyqvist, R. M.; Breizman, B. N.

    2013-04-15

    Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.

  3. Fractional-N PLL based FMCW sweep generator for an 80 GHz radar system with 24.5 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Jaeschke, T.; Bredendiek, C.; Vogt, M.; Pohl, N.

    2012-09-01

    A phase-locked loop (PLL) based frequency synthesizer capable of generating highly linear broadband frequency sweeps as signal source of a high resolution 80 GHz FMCW radar system is presented. The system achieves a wide output range of 24.5 GHz starting from 68 GHz up to 92.5 GHz. High frequencies allow the use of small antennas for small antenna beam angles. The wide bandwidth results in a radar system with a very high range resolution of below 1.5 cm. Furthermore, the presented synthesizer provides a very low phase noise performance of -80 dBc/Hz at 80 GHz carrier frequency and 10 kHz offset, which enables high precision distance measurements with low range errors. This is achieved by using two nested phase-looked loops with high order loop filters. The use of a fractional PLL divider and a high phase frequency discriminator (PFD) frequency assures an excellent ramp linearity.

  4. Commercial production of the oil absorbent Sea Sweep

    SciTech Connect

    Reed, T.B.; Mobeck, W.L.

    1993-12-31

    A new absorbent has been developed for oil spills. It attracts oil and chemicals and floats on water indefinitely. It is mpm-leaching and can save land and beaches from environmental disasters and can be disposed of in an environmentally acceptable manner or recycled. The new absorbent is called {open_quotes}Sea Sweep{close_quotes}; extensive research has been done on it under an EPA Small Business Innovation Research grant, Phase I and Phase II. Sea Sweep has been tested for toxicity to the environment. Less than 2 mg/l total organic carbon was found in water in contact with oil saturated Sea Sweep after 30 minutes. No toxicity was measured to any of the marine or freshwater tested species at any test concentrations. Sea Sweep is made from {open_quotes}pin chips,{close_quotes} a waste wood product, using a patented thermolytic process in which the wood is heated to about 300{degrees}C. It is a coarse, free-flowing granular material absorbing from 2.6 to 6.6 g/g of oils and chemicals. While originally designed for marine oil spills, it is also very effective for oil and chemical spills on land or water. Sea Sweep has now reached the stage of limited commercialization. A small (5 tons/day) plant has been built in northern Colorado at a wood recycling plant and it has been operated since January 1993. The plant features an afterburner that destroys the blue haze resulting from pyrolysis of the sawdust so that production is environmentally acceptable. Sea Sweep is marketed in 5, 10 and 25 lb plastic bags and 500 lb drop bags. It is also sold in socks, booms pillows and bilge rats. The company will recycle non-toxic materials for the customer using methods developed under the SBIR grant. Sea Sweep has been features in a number of articles, on television, and in national and international trade shows. The international marketing of Sea Sweep is administered from the corporate offices in Denver. Domestic marketing is administered from the regional office in Chicago.

  5. Thermal characterization of optical fibers using wavelength-sweeping interferometry.

    PubMed

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice

    2010-06-20

    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10(-7) accuracy. PMID:20563215

  6. Self-propelled sweeping removal of dropwise condensate

    DOE PAGESBeta

    Qu, Xiaopeng; Boreyko, Jonathan; Liu, Fangjie; Agapov, Rebecca L.; Lavrik, Nickolay V.; Retterer, Scott T.; Feng, James; Collier, Pat; Chen, Chuan-Hua

    2015-06-02

    Dropwise condensation can be enhanced by superhydrophobic surfaces, on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in- plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.

  7. Moving Difference (MDIFF) Non-adiabatic rapid sweep (NARS) EPR of copper(II)

    PubMed Central

    Hyde, James S.; Bennett, Brian; Kittell, Aaron W.; Kowalski, Jason M.; Sidabras, Jason W.

    2014-01-01

    Non Adiabatic Rapid Sweep (NARS) EPR spectroscopy has been introduced for application to nitroxide-labeled biological samples (AW Kittell et al, (2011)). Displays are pure absorption, and are built up by acquiring data in spectral segments that are concatenated. In this paper we extend the method to frozen solutions of copper-imidazole, a square planar copper complex with four in-plane nitrogen ligands. Pure absorption spectra are created from concatenation of 170 5-gauss segments spanning 850 G at 1.9 GHz. These spectra, however, are not directly useful since nitrogen superhyperfine couplings are barely visible. Application of the moving difference (MDIFF) algorithm to the digitized NARS pure absorption spectrum is used to produce spectra that are analogous to the first harmonic EPR. The signal intensity is about 4 times higher than when using conventional 100 kHz field modulation, depending on line shape. MDIFF not only filters the spectrum, but also the noise, resulting in further improvement of the SNR for the same signal acquisition time. The MDIFF amplitude can be optimized retrospectively, different spectral regions can be examined at different amplitudes, and an amplitude can be used that is substantially greater than the upper limit of the field modulation amplitude of a conventional EPR spectrometer, which improves the signal-to-noise ratio of broad lines. PMID:24036469

  8. Triangular-wave generator with controlled sweep polarity

    NASA Technical Reports Server (NTRS)

    Wong, H. Y.

    1971-01-01

    Generator, comprised largely of integrated circuits, has operational amplifier connected as integrator to provide linear voltage ramp, pair of logic gates and one-shot multivibrator function as sweep reverse circuit feeding the integrator. Solid state switch effects generator hold capability.

  9. Effectiveness of gutter brushes in removing street sweeping waste.

    PubMed

    Vanegas Useche, Libardo V; Wahab, Magd M Abdel; Parker, Graham A

    2010-02-01

    Litter on roadways has to be removed for hygiene and to reduce pollution, amongst other reasons. Therefore, the effective operation of street sweepers is important in the collection of solid waste. In this article, the effectiveness of gutter brushes of street sweepers in removing different debris types, namely medium-size gravel, small and fine particles, and wet thin debris is studied by means of sweeping tests using a brushing test rig. Two types of gutter brushes, cutting and F128, are tested under a variety of operating conditions. The experimental tests provide a means of identifying suitable ranges of brush penetration for the different debris types under defined operating parameters such as brush angle of attack, brush rotational speed, and sweeper velocity. These ranges may provide sufficiently high removal forces and avoid the occurrence of sweeping problems such as backward sweeping and inappropriate bristle-surface contact. Optimum operating parameters for the three debris types studied, as well as a mixture of all of them, are determined. Lastly, the results indicate that, as far as the sweeping effectiveness is concerned, the F128 brush is the preferred one for the cases studied. PMID:19879125

  10. Subminiature deflection circuit operates integrated sweep circuits in TV camera

    NASA Technical Reports Server (NTRS)

    Schaff, F. L.

    1967-01-01

    Small magnetic sweep deflection circuits operate a hand-held lunar television camera. They convert timing signals from the synchronizer into waveforms that provide a raster on the vidicon target. Raster size remains constant and linear during wide voltage and temperature fluctuations.

  11. Provably optimal parallel transport sweeps on regular grids

    SciTech Connect

    Adams, M. P.; Adams, M. L.; Hawkins, W. D.; Smith, T.; Rauchwerger, L.; Amato, N. M.; Bailey, T. S.; Falgout, R. D.

    2013-07-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P{sub x} x P{sub y} x P{sub z} partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10{sup 6}. (authors)

  12. Using temperature sweeps to investigate rheology of bioplastics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of research toward production of protein-based bioplastics, small amplitude oscillatory shear analyses were performed in the temperature sweep mode to examine protein blends in the presence of wheat flour and glycerol. The elastic modulus (G') of these samples was much higher than the visco...

  13. Iowa's Clean Solid Waste Environmental Education Project (SWEEP).

    ERIC Educational Resources Information Center

    Eells, Jean Crim; And Others

    The Iowa Clean SWEEP program is designed to provide educators, K-12, with a series of activities focusing upon critical concepts related to Iowa's solid waste problem. This activity packet contains 19 activities for grades K-6, and 25 activities for grades 7-12. Key concepts addressed throughout the activity packet include: (1) an overview, the…

  14. Student-Loan Investigation Sweeps Up More Colleges

    ERIC Educational Resources Information Center

    Basken, Paul; Field, Kelly

    2007-01-01

    An expanding investigation into conflicts of interest in the student-loan industry continued to sweep up more lenders and college financial-aid administrators last week. The nation's largest student-loan provider, Sallie Mae, accepted a $2-million settlement with New York State's attorney general, Andrew M. Cuomo, and three more college officials…

  15. Megawatt, 1kHz PRF tunable gyrotron experiments

    SciTech Connect

    Cross, A.W.; Phelps, A.D.R.; Ronald, K.; Spark, S.N.; Turnbull, S.M.

    1995-12-31

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes whereas cold cathode gyrotrons have normally operated as {open_quote} single shot{close_quote} or low pulse repetition frequency (PRF) devices. The novel results presented here demonstrate that a stacked Blumlein pulse generator driven cold cathode gyrotron developing > 1 MW per pulse (f=90 GHz) may be run with a repetition frequency of 1 kHz over timescales of >30 seconds. A short burst PRF of 2 kHz was also observed. The PRF of the system was limited to 2 kHz by the High Voltage (HV) DC power supply. The gyrotron was based on a two-electrode configuration comprising of a field-immersed, field emission cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a stacked Blumlein pulse generator was used to drive the electron beam. This pulse generator was capable of producing an output voltage up to 300 kV with a 20ns rise time, a 100ns flat top, and a 20ns fall time. The output impedance was 200{Omega} and the energy stored in the generator at a charging voltage of 60 kV was 5.4J. No degradation effects on the mm-wave output was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the recovery time in the cold cathode gyrotron is less than 500{mu}s.

  16. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    PubMed

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-01-01

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  17. 47 CFR 15.219 - Operation in the band 510-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 510-1705 kHz. 15.219... kHz. (a) The total input power to the final radio frequency stage (exclusive of filament or heater... ground lead (if used) shall not exceed 3 meters. (c) All emissions below 510 kHz or above 1705 kHz...

  18. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  19. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  20. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  1. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  2. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  3. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  4. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES... frequency 5167.5 kHz. The frequency 5167.5 kHz may be used by any station authorized under this part...

  5. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated...

  6. 47 CFR 80.147 - Watch on 2182 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch on 2182 kHz. 80.147 Section 80.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE... 2182 kHz. Ship stations must maintain a watch on 2182 kHz as prescribed by § 80.304....

  7. Detection of undistorted continuous wave (CW) electron paramagnetic resonance (EPR) spectra with non-adiabatic rapid sweep (NARS) of the magnetic field

    PubMed Central

    Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.

    2011-01-01

    A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868

  8. Evaluation of the SWEEP model during high winds on the Columbia Plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standalone version of the WEPS erosion submodel, the Single-event Wind Erosion Evaluation Program (SWEEP), was released in 2007. A limited number of studies have evaluated SWEEP in simulating soil loss under high winds. The objective of this study was to test SWEEP under conventional and undercut...

  9. Magnetic Spin Relaxation Probed with Sweep Speed Dependent Coercivity

    NASA Astrophysics Data System (ADS)

    Gredig, Thomas; Byrne, Matthew

    The magnetic spin relaxation of finite-length iron chains has been investigated in iron phthalocyanine thin films by means of sweep speed dependence on magnetic coercivity. The Fe(II) ions are embedded in a carbon matrix and molecules self-assemble during vacuum sublimation, so that the Fe(II) cores form well-separated chains of 1.3 nm and tunable chain lengths within the polycrystalline thin film. The average length of the chains is controlled through deposition variables and ranges from 30 nm to 300 nm. The coercivity strongly increases with chain length in this regime. This may be an interesting experimental realization of a low-dimensional finite-sized Ising model. The coercivity dependence on chain length and sweep speed is described with an Ising model based on Glauber dynamics. Research support from NSF under Grant DMR 0847552.

  10. Sweep-twist adaptive rotor blade : final project report.

    SciTech Connect

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  11. Satellite sweeping of electrons at Neptune and Uranus

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    1990-01-01

    Knowledge of satellite sweeping parameters at Neptune and Uranus, and of their functional dependences on particle energy and pitch angle, can be critical in the proper identification of parent absorbers for observed absorption signatures in regions where OTD (offset, tilted dipole) models are valid representations of the measured magnetic fields. In this paper, critical electron energies are calculated for longitudinal drift resonance, snowplow (i.e., strong) absorption, leapfrog, and corkscrew effects, using a reduced version of OTD that neglects nonaxial dipole offsets. Earlier analytic work on sweeping rates is extended to give the radial dependence of these rates within the minimum-L region and to set limits on diffusion of electrons with the simplifying approximation that leapfrog effects are ignored.

  12. (Test and gather data on sweep spike combination tillage tool)

    SciTech Connect

    Lukach, J.

    1992-06-19

    This summary presents the data accumulated to date with only brief comment. It is prepared with the intent that the viewers will offer advice on terminology, data presentation, methods and other. The year end analysis will detail changes in the data due to the tillage treatments. The data is incomplete due to equipment problems and time limitations due to the wet fall and early freeze up. The trial was not completed due to our inability to get the Mikkelsen Chisel Plow Shovel (MCP), a 16 inch sweep with an anhydrous knife, to penetrate untilled land. The MCP shovel penetrated to deep on plowed ground and pulled so hard that the front wheels of our JD4440 tractor were jerked off the ground. The Standard Chisel Plow Shovels (SCP), a 16 inch sweep, worked well and the data is included.

  13. Improvement of sweep efficiency and mobility control in gas flooding

    SciTech Connect

    Strycker, A.; Llave, F.M.

    1991-04-01

    The application of carbon dioxide or other gases to extract crude oil from depleted reservoirs has been shown to be a technically successful process. However, optimized recoveries are often compromised by poor sweep efficiencies because of low gas viscosities and densities. A new process was investigated that potentially could improve sweep efficiencies by enhancing extractability properties of the injected gas with entrainers. Use of a capillary viscometer to evaluate enhanced viscosities appeared to be the best procedure for evaluating candidate compounds. A mathematical treatment was proposed based on predicting entrainer solubilities and minimum miscibility pressure alterations for carbon dioxide. However, use of many assumptions and approximations limited the effectiveness of this approach to qualitative evaluations. Some 87 compounds were evaluated using this mathematical treatment, and certain monoaromatic compounds were identified for further laboratory testing. 33 refs., 8 figs., 3 tabs.

  14. Total body irradiation with a sweeping {sup 60}Cobalt beam

    SciTech Connect

    Hussein, S.; El-Khatib, E.

    1995-09-30

    This article describes the physical, technical, and dosimetric aspects of total body irradiation (TBI). The continuous head swivel motion of a standard {sup 60}Cobalt unit has been used to obtain a sweeping beam that encompases the entire length of the patient in TBI. A perspex beam flattener designed to remove the inverse square fall-off in beam intensity along the sweep axis provides a 90% field length of 200 cm in air at a treatment source-to-skin distance of 160 cm. The anterior-posterior parallel pair setup permits accurate placement of customized lead compensators to limit the dose to lungs. Measured beam profiles, dose buildup curves, and percentage depth dose for the technique are presented. With compensators in place, the variation in lung dose is shown to be within {plus_minus}5% of the prescribed tumor dose. 10 refs., 5 figs.

  15. Case depth verification of hardened samples with Barkhausen noise sweeps

    SciTech Connect

    Santa-aho, Suvi; Vippola, Minnamari; Lepistö, Toivo; Hakanen, Merja; Sorsa, Aki; Leiviskä, Kauko

    2014-02-18

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  16. Case depth verification of hardened samples with Barkhausen noise sweeps

    NASA Astrophysics Data System (ADS)

    Santa-aho, Suvi; Hakanen, Merja; Sorsa, Aki; Vippola, Minnamari; Leiviskä, Kauko; Lepistö, Toivo

    2014-02-01

    An interesting topic of recent Barkhausen noise (BN) method studies is the application of the method to case depth evaluation of hardened components. The utilization of BN method for this purpose is based on the difference in the magnetic properties between the hardened case and the soft core. Thus, the detection of case depth with BN can be achieved. The measurements typically have been carried out by using low magnetizing frequencies which have deeper penetration to the ferromagnetic samples than the conventional BN measurement. However, the penetration depth is limited due to eddy current damping of the signal. We introduce here a newly found sweep measurement concept for the case depth evaluation. In this study sweep measurements were carried out with various magnetizing frequencies and magnetizing voltages to detect the effect of different frequency and voltage and their correspondence to the actual case depth values verified from destructive characterization. Also a BN measurement device that has an implemented sweep analysis option was utilised. The samples were either induction or case-hardened samples and sample geometry contained both rod samples and gear axle samples with different case depth values. Samples were also further characterized with Xray diffraction to study the residual stress state of the surface. The detailed data processing revealed that also other calculated features than the maximum slope division of the 1st derivative of the BN signal could hold the information about the case depth value of the samples. The sweep method was able to arrange the axles into correct order according to the case depth value even though the axles were used.

  17. Performance Comparison of Sweeping/Steady Jet Actuators

    NASA Astrophysics Data System (ADS)

    Hirsch, Damian; Mercier, Justin; Noca, Flavio; Gharib, Morteza

    2015-11-01

    Flow control through the use of steady jet actuators has been used on various aircraft models since the late 1950's. However, the focus of recent studies has shifted towards the use of sweeping jets (fluidic oscillators) rather than steady jet actuators. In this work, experiments using various jet actuator designs were conducted at GALCIT's Lucas Wind Tunnel on a NACA 0012 vertical tail model similar to that of the Boeing 767 vertical stabilizer at Reynolds numbers ranging from 0.5 to 1.2 million. The rudder angle was fixed at 20 degrees. A total of 32 jet actuators were installed along the wingspan perpendicular to the trailing edge and the rudder shoulder of the vertical stabilizer. It is known that these types of flow control prevent separation. However, the goal of this work is to compare different jet designs and evaluate their performance. Parameters such as the number of actuators, their volumetric flow, and the wind tunnel speed were varied. The lift generation capabilities of steady and sweeping jet actuators were then compared. Another set of experiments was conducted to compare a new sweeping jet actuator design with one of the standard versions. Supported by Boeing.

  18. Effectiveness of street sweeping and washing for controlling ambient TSP

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Tseng, Chao-Heng

    Effectiveness of street sweeping and washing (S/W) for controlling ambient "total suspended particles (TSP)" was evaluated by TSP measurements and determining silt load from active traffic streets. A modified regenerative-air vacuum sweeper (RAVS) and a washer were used in this study. The sweeper made a pass followed by the washer. The S/W efficiencies (η,η) were obtained based on the experimental data of silt loading and TSP. It was found that the direct impact of sweeping on ambient TSP emissions was short-lived lasting no more than 3-4 h. When a vacuum sweeper and a washer, respectively, did a good job collecting or cleaning the visible fine particles on roads, the method of S/W tested in this work was effective at removing the sources of the road dust particles. This paper concludes that street sweeping followed by washing was found to offer a measurable reduction in TSP emission potentials. Typically, the reduction efficiency of ambient TSP is up to 30%. Finally, correlated with η (based on silt loading), a useful equation is proposed to estimate the S/W efficiency, η (based on TSP) with a standard error of ±20%. It seems feasible to predict the reduction efficiency of ambient TSP controlled by the regenerative-air vacuum sweeper and washer used in this work for engineering applications. Effects of traffic volume and wind velocity on the S/W efficiencies are also discussed in the paper.

  19. Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multi-spectral kHz remote detection system

    NASA Astrophysics Data System (ADS)

    Gebru, Alem; Rohwer, Erich; Neethling, Pieter; Brydegaard, Mikkel

    2014-10-01

    Quantitative investigation of insect activity in their natural habitat is a challenging task for entomologist. It is difficult to address questions such as flight direction, predation strength and overall activities using the current techniques such as traps and sweep nets. A multi-spectral kHz remote detection system using sunlight as an illumination source is presented. We explore possibilities of remote optical classification of insects based on their wing-beat frequencies and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be resolved by implementing high sampling frequency. The iridescence features generated from the change of color in two channels (visible and near infrared) during wing-beat cycle is presented. We show that the shape of the wing-beat trajectory is different for different insects. The flight direction of atmospheric insect is also determined using silicon quadrant detector.

  20. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

    SciTech Connect

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  1. The global distribution of natural and man-made ionospheric electric fields at 200 kHz and 540 kHz as observed by Ogo 6

    NASA Technical Reports Server (NTRS)

    Laaspere, T.; Semprebon, L. C.

    1974-01-01

    An experiment on the polar-orbiting Ogo 6 spacecraft yielded real-time analog data in several broadband channels and essentially continuous tape-recorded data from two narrow-band (200-Hz) receivers operating at 200 and 540 kHz. The results show that the worldwide distributions of signals at 200 and 540 kHz falls into a number of different categories: (1) naturally generated broadband (auroral) hiss at polar latitudes with typical 200-kHz intensities of around 0.1 microvolt per meter per Hz to the 1/2 power, maximum intensities of up to several microvolt per meter per Hz to the 1/2 power, and generally lower intensities at 540 kHz; (2) nighttime midlatitude enhancements of a few microvolts per meter, which probably result either from a superposition of signals from a number of 200- and 540-kHz stations or from interference from intense signals of much higher frequencies; (3) well-defined signal peaks associated with individual ground stations operating at 200 kHz; (4) striking signal enhancements in the conjugate region of a low-latitude 200-kHz station (Ashkhabad), suggesting propagation in the whistler mode to the opposite hemisphere; and (5) occasional signal enhancements at the magnetic equator.

  2. Magnetic resonance imaging at frequencies below 1 kHz.

    PubMed

    Hilschenz, Ingo; Körber, Rainer; Scheer, Hans-Jürgen; Fedele, Tommaso; Albrecht, Hans-Helge; Mario Cassará, Antonino; Hartwig, Stefan; Trahms, Lutz; Haase, Jürgen; Burghoff, Martin

    2013-02-01

    Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents. PMID:22898690

  3. Dynamic Spectra Predicted for 2-3 Khz Radio Emission

    NASA Astrophysics Data System (ADS)

    Mitchell, Jeremy J.; Cairns, Iver H.; Robinson, Peter A.

    Radio emissions observed at 2-3 kHz by the Voyager spacecraft occur when global merged interaction regions (GMIRs) reach the heliopause. The radiation is thought to occur when a GMIR enters a region close to the heliopause where the electron speed distribution is primed with a superthermal tail produced by lower hybrid drive. Previously this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in two ways. First theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Second dynamic spectra are calculated for the radio emission generated by shock from the inner solar wind to beyond the heliopause. The results are then compared with existing Voyager observations.

  4. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  5. Comparison of sweep and dihedral effects on compressor cascade performance

    SciTech Connect

    Sasaki, T.; Breugelmans, F.

    1998-07-01

    The influence of two stacking lines, namely sweep and dihedral, has been investigated in a linear compressor cascade. Both types of blade considered are symmetric about midspan and consist of a straight central section with either swept or dihedral sections toward the endwalls. Two types of experiment have been carried out. First, a parametric study was performed by changing both the magnitude and the extent of the sweep or dihedral. In the case of swept blades, those with forward sweep (SWF), for which the stacking line is swept in the upstream direction toward the endwall, were found to have better performance than backward-swept blades. Subsequently, four sets of SWFs were compared. In the case of dihedral blades, it is well known that the dihedral is advantageous when the angle between the suction surface and the endwall is obtuse, i.e., positive dihedral. Thus, four sets of positive dihedral blades (DHP) were compared. In both SWF and DHP blades, those configurations that have better efficiency than straight blades were determined. Second, detailed three-dimensional measurements inside the blade passage were performed in the cases that showed the best performance in the parametric study. Both SWF and DHP showed significant effects on the flowfield. In the SWF case, a vortex, which has the opposite sense to the passage vortex, was observed in the forward portion inside the blade passage. This vortex supplies high-energy fluid to the endwall region and reduces the corner stall. The secondary flow is greatly reduced. In the DHP, the blade loading was reduced at the endwall and increased at the midspan. Reduction of the corner stall and the secondary flow was also observed.

  6. Electron signatures of satellite sweeping in the magnetosphere of Uranus

    SciTech Connect

    Cooper, J.F.; Stone, E.C. )

    1991-05-01

    The Voyager 2 Cosmic Ray System found large-scale macrosignatures of satellite sweeping for MeV electrons near the orbits of the satellites Miranda, Ariel, and Umbriel in the magnetosphere of Uranus. Due to the large magnetic inclinations of satellite orbits at Uranus, sweeping rates vary along the orbits with the McIlwain L parameter. However, no evidence was found, where expected, for fresh sweeping signatures at such positions. Although the maximal electron intensity occurs near Voyager 2's minimum L (4.67) as predicted by the Q{sub 3} field model, the intensity minima in the macrosignatures show large outward displacements ({le}0.5 R{sub U}) from minimum-L positions of the associated satellites. These radial displacements increased with measured electron energy and at higher magnetic latitudes. Pitch angle distributions are generally more anisotropic outside the macrosignatures and more isotropic within, as determined from comparison of inbound and outbound intensity profiles at different latitudes. These anisotropy measurements provide the basis for latitudinal flux extrapolation, which when coupled with power law scaling of spectral distributions allow the calculation of phase space density profiles. The latter show local minima in the macrosignatures and are indicative of distributed electron sources in the inner magnetosphere and/or nonadiabatic transport processes such as pitch angle scattering and magnetospheric recirculation. Preliminary diffusion coefficients with values D{sub LL} {approximately} 10{sup {minus}7}-10{sup {minus}6} R{sub S}{sup 2} and radial dependence D{sub LL} {approximately} L{sup 3}-L{sup 4} have been estimated for the macrosignatures. The low-order L dependence of D{sub LL} is consistent with diffusion driven by ionospheric dynamo. However, modeling of radial and pitch angle diffusion is required to assess the formative processes for the macrosignatures before more physically meaningful transport parameters can be determined.

  7. Superluminal Sweeping Spot Pair Events in Astronomical Settings

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2015-01-01

    Sweeping beams of light can cast spots that move superluminally across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Astronomical settings where superluminal spot pairs might be found include Earth's Moon, passing asteroids, pulsars, and variable nebula. Potentially recoverable information includes three dimensional imaging, relative geometric size factors, and distances.

  8. 47 CFR 15.217 - Operation in the band 160-190 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 160-190 kHz. 15.217... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.217 Operation in the band 160-190 k... lead (if used) shall not exceed 15 meters. (c) All emissions below 160 kHz or above 190 kHz shall...

  9. Metal content and particle size distribution of street sediments and street sweeping waste.

    PubMed

    German, J; Svensson, G

    2002-01-01

    During recent years the interest in street sweeping as a pollutant control measure has increased. For planning of street sweeping programs and disposal of street sweeping waste there is a need to investigate the composition of street sweeping waste and the effect of street sweeping on the remaining sediments on the street. Particle size distribution and heavy metal concentration has been measured for street sweeping waste, street sediments before sweeping and remaining sediments after sweeping. The results show that the concentrations of heavy metals are a function of particle diameter and proportional to the inverse of the particle diameter, i.e. the highest concentrations are found in finest fractions. Regression equations for metal concentrations as a function of particle diameter are presented. According to Swedish guidelines for environmental quality of contaminated sites, heavy metal concentration in the sweeping waste can not be considered as a serious problem. The largest amount of metals and sediment is found in the sandy fractions (0.125-0.5 mm). The street sweeper is more effective in removing coarse sediments than fine. This means that the street sediments after sweeping are finer than the sediments before. PMID:12380991

  10. Breeding for 50-kHz positive affective vocalization in rats.

    PubMed

    Burgdorf, Jeffrey; Panksepp, Jaak; Brudzynski, Stefan M; Kroes, Roger; Moskal, Joseph R

    2005-01-01

    Adolescent and adult rats exhibit at least two distinct ultrasonic vocalizations that reflect distinct emotional states. Rats exhibit 22-kHz calls during social defeat, drug withdrawal, as well as in anticipation of aversive events. In contrast, 50-kHz calls are exhibited in high rates during play behavior, mating, as well as in anticipation of rewarding events. The neurochemistry of 22-kHz and 50-kHz calls closely matches that of negative and positive emotional systems in humans, respectively. The aim of this study was to replicate and further evaluate selective breeding for 50-kHz vocalization, in preparation for the analysis of the genetic underpinnings of the 50-kHz ultrasonic vocalization (USV). Isolate housed adolescent rats (23-26 days old) received experimenter administered tactile stimulation (dubbed "tickling"), which mimicked the rat rough-and-tumble play behavior. This stimulation has previously been shown to elicit high levels of 50-kHz USVs and to be highly rewarding in isolate-housed animals. Each tickling session consisted of 4 cycles of 15 seconds stimulation followed by 15 seconds no stimulation for a total of 2 min, and was repeated once per day across 4 successive days. Rats were then selected for either High or Low levels of sonographically verified 50-kHz USVs in response to the stimulation, and a randomly selected line served as a control (Random group). Animals emitted both 22-kHz and 50-kHz types of calls. After 5 generations, animals in the High Line exhibited significantly more 50-kHz and fewer 22-kHz USVs than animals in the Low Line. Animals selected for low levels of 50-kHz calls showed marginally more 22-kHz USVs then randomly selected animals but did not differ in the rate of 50-kHz calls. These results extend our previous findings that laboratory rats could be bred for differential rates of sonographically verified 50-kHz USVs. PMID:15674533

  11. Dual frequency (20.0-19.9 kHz) VLF data

    NASA Technical Reports Server (NTRS)

    Looney, C. H.

    1968-01-01

    Data are presented from 24 months of operation of radio station WWVL. Daily measurements of the 20.0 kHz and 20.0/19.9 kHz signal phase angles corrected in accordance with the NBS measurements are presented in tabular form. The 20.0/19.9 kHz data is a function of the phase angle of the 100 Hz information inherent in the 20.0/19.9 transmissions. This data can be used to resolve the 50 microsecond ambiguity inherent in 20.0 kHz single frequency transmissions.

  12. Alarm pheromone does not modulate 22-kHz calls in male rats.

    PubMed

    Muyama, Hiromi; Kiyokawa, Yasushi; Inagaki, Hideaki; Takeuchi, Yukari; Mori, Yuji

    2016-03-15

    Rats are known to emit a series of ultrasonic vocalizations, termed 22-kHz calls, when exposed to distressing stimuli. Pharmacological studies have indicated that anxiety mediates 22-kHz calls in distressed rats. We previously found that exposure to the rat alarm pheromone increases anxiety in rats. Therefore, we hypothesized that the alarm pheromone would increase 22-kHz calls in pheromone-exposed rats. Accordingly, we tested whether exposure to the alarm pheromone induced 22-kHz calls, as well as whether the alarm pheromone increased 22-kHz calls in response to an aversive conditioned stimulus (CS). Rats were first fear-conditioned to an auditory and contextual CS. On the following day, the rats were either exposed to the alarm pheromone or a control odor that was released from the neck region of odor-donor rats. Then, the rats were re-exposed to the aversive CS. The alarm pheromone neither induced 22-kHz calls nor increased 22-kHz calls in response to the aversive CS. In contrast, the control odor unexpectedly reduced the total number and duration of 22-kHz calls elicited by the aversive CS, as well as the duration of freezing. These results suggest that the alarm pheromone does not affect 22-kHz calls in rats. However, we may have found evidence for an appeasing olfactory signal, released from the neck region of odor-donor rats. PMID:26796788

  13. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding

  14. Simulation and theory of spontaneous TAE frequency sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, H. L.

    2012-09-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.

  15. Environmental and Pharmacological Modulation of Amphetamine-Induced 50-kHz Ultrasonic Vocalizations in Rats

    PubMed Central

    Rippberger, Henrike; van Gaalen, Marcel M.; Schwarting, Rainer K.W.; WÖhr, Markus

    2015-01-01

    Rats emit high-frequency 50-kHz ultrasonic vocalizations (USV) in appetitive situations like social interactions. Drugs of abuse are probably the most potent non-social elicitors of 50-kHz USV, possibly reflecting their euphorigenic properties. Psychostimulants induce the strongest elevation in 50-kHz USV emission, particularly amphetamine (AMPH), either when applied systemically or locally into the nucleus accumbens (Nacc). Emission of AMPH-induced 50-kHz USV depends on test context, such as the presence of conspecifics, and can be manipulated pharmacologically by targeting major neurotransmitter systems, including dopamine (DA), noradrenaline (NA), and serotonin (5-HT), but also protein kinase C (PKC) signaling. Several D1 and D2 receptor antagonists, as well as typical and atypical antipsychotics block the AMPH-induced elevation in 50-kHz USV. Inhibiting D1 and D2 receptors in the Nacc abolishes AMPH-induced 50-kHz USV, indicating a key role for this brain area. NA neurotransmission also regulates AMPH-induced 50-kHz USV emission given that α1 receptor antagonists and α2 receptor agonists exert attenuating effects. Supporting the involvement of the 5-HT system, AMPH-induced 50-kHz USV are attenuated by 5-HT2C receptor activation, whereas 5-HT2C receptor antagonism leads to the opposite effect. Finally, treatment with lithium, tamoxifen, and myricitrin was all found to result in a complete abolishment of the AMPH-induced increase in 50-kHz USV, suggesting the involvement of PKC signaling. Neurotransmitter systems involved in AMPH-induced 50-kHz USV emission only partially overlap with other AMPH-induced behaviors like hyperlocomotion. The validity of AMPH-induced 50-kHz USV as a preclinical model for neuropsychiatric disorders is discussed, particularly with relevance to altered drive and mood seen in bipolar disorder. PMID:26411764

  16. Application of The Full-Sweep AOR Iteration Concept for Space-Fractional Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Sunarto, A.; Sulaiman, J.; Saudi, A.

    2016-04-01

    The aim of this paper is to investigate the effectiveness of the Full-Sweep AOR Iterative method by using Full-Sweep Caputo’s approximation equation to solve space-fractional diffusion equations. The governing space-fractional diffusion equations were discretized by using Full-Sweep Caputo’s implicit finite difference scheme to generate a system of linear equations. Then, the Full-Sweep AOR iterative method is applied to solve the generated linear system To examine the application of FSAOR method two numerical tests are conducted to show that the FSAOR method is superior to the FSSOR and FSGS methods.

  17. Suppression of particle dispersion by sweeping effects in synthetic turbulence.

    PubMed

    Eyink, Gregory L; Benveniste, Damien

    2013-02-01

    Synthetic models of Eulerian turbulence like so-called kinematic simulations (KS) are often used as computational shortcuts for studying Lagrangian properties of turbulence. These models have been criticized by Thomson and Devenish (2005), who argued on physical grounds that sweeping decorrelation effects suppress pair dispersion in such models. We derive analytical results for Eulerian turbulence modeled by Gaussian random fields, in particular for the case with zero mean velocity. Our starting point is an exact integrodifferential equation for the particle pair separation distribution obtained from the Gaussian integration-by-parts identity. When memory times of particle locations are short, a Markovian approximation leads to a Richardson-type diffusion model. We obtain a time-dependent pair diffusivity tensor of the form K(ij)(r,t)=S(ij)(r)τ(r,t), where S(ij)(r) is the structure-function tensor and τ(r,t) is an effective correlation time of velocity increments. Crucially, this is found to be the minimum value of three times: the intrinsic turnover time τ(eddy)(r) at separation r, the overall evolution time t, and the sweeping time r/v(0) with v(0) the rms velocity. We study the diffusion model numerically by a Monte Carlo method. With inertial ranges like the largest achieved in most current KS (about 6 decades long), our model is found to reproduce the t(9/2) power law for pair dispersion predicted by Thomson and Devenish and observed in the KS. However, for much longer ranges, our model exhibits three distinct pair-dispersion laws in the inertial range: a Batchelor t(2) regime, followed by a Kraichnan-model-like t(1) diffusive regime, and then a t(6) regime. Finally, outside the inertial range, there is another t(1) regime with particles undergoing independent Taylor diffusion. These scalings are exactly the same as those predicted by Thomson and Devenish for KS with large mean velocities, which we argue hold also for KS with zero mean velocity. Our results

  18. Suppression of particle dispersion by sweeping effects in synthetic turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Benveniste, Damien

    2013-02-01

    Synthetic models of Eulerian turbulence like so-called kinematic simulations (KS) are often used as computational shortcuts for studying Lagrangian properties of turbulence. These models have been criticized by Thomson and Devenish (2005), who argued on physical grounds that sweeping decorrelation effects suppress pair dispersion in such models. We derive analytical results for Eulerian turbulence modeled by Gaussian random fields, in particular for the case with zero mean velocity. Our starting point is an exact integrodifferential equation for the particle pair separation distribution obtained from the Gaussian integration-by-parts identity. When memory times of particle locations are short, a Markovian approximation leads to a Richardson-type diffusion model. We obtain a time-dependent pair diffusivity tensor of the form Kij(r,t)=Sij(r)τ(r,t), where Sij(r) is the structure-function tensor and τ(r,t) is an effective correlation time of velocity increments. Crucially, this is found to be the minimum value of three times: the intrinsic turnover time τeddy(r) at separation r, the overall evolution time t, and the sweeping time r/v0 with v0 the rms velocity. We study the diffusion model numerically by a Monte Carlo method. With inertial ranges like the largest achieved in most current KS (about 6 decades long), our model is found to reproduce the t9/2 power law for pair dispersion predicted by Thomson and Devenish and observed in the KS. However, for much longer ranges, our model exhibits three distinct pair-dispersion laws in the inertial range: a Batchelor t2 regime, followed by a Kraichnan-model-like t1 diffusive regime, and then a t6 regime. Finally, outside the inertial range, there is another t1 regime with particles undergoing independent Taylor diffusion. These scalings are exactly the same as those predicted by Thomson and Devenish for KS with large mean velocities, which we argue hold also for KS with zero mean velocity. Our results support the basic

  19. Development and testing of a 20-kHz component test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.; Sundberg, Richard C.

    1989-01-01

    A history of the General Dynamics Space Systems Division 20 kHz Breadboard is presented including its current configuration and its role in the Space Station Freedom (SSF) program. Highlights and results are presented on a series of tests conducted on the 20 kHz Breadboard. The first test presented is the 20 kHz Breadboard Acceptance test. This test verified the operation of the delivered Breadboard and also characterized the main components of the system. Next, an indepth efficiency testing effort is presented. The tests attempted to apportion all the power losses in the 20 kHz Breadboard Main Invert Units. Distortion test data is presented showing the distortion characteristics of a Mapham inverter. Lastly, current work on the 20 kHz Breadboard is presented including Main Inverter Unit paralleling tests. Conclusions are summarized and references given.

  20. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  1. A double-sweeping preconditioner for the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Eslaminia, Mehran; Guddati, Murthy N.

    2016-06-01

    A new preconditioner is developed to increase the efficiency of iterative solution of the Helmholtz equation. The key idea of the proposed preconditioner is to split the domain of interest into smaller subdomains and sequentially approximate the forward and backward components of the solution. The sequential solution is facilitated by approximate interface conditions that ignore the effect of multiple reflections. The efficiency of the proposed method is tested using various 2-D heterogeneous media. We observe that the proposed preconditioner results in good convergence, with number of iterations growing very slowly with increasing frequency. We also note that the mesh size and number of subdomains do not affect the convergence rate. Finally, we find that the overall computational time is much smaller than that of the sweeping preconditioner.

  2. Natural Laminar Flow Design for Wings with Moderate Sweep

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2016-01-01

    A new method for the aerodynamic design of wings with natural laminar flow is under development at the NASA Langley Research Center. The approach involves the addition of new flow constraints to an existing knowledge-based design module for use with advanced flow solvers. The uniqueness of the new approach lies in the tailoring of target pressure distributions to achieve laminar flow on transonic wings with leading-edge sweeps and Reynolds numbers typical of current transports. The method is demonstrated on the Common Research Model configuration at critical N-factor levels representative of both flight and high-Reynolds number wind tunnel turbulence levels. The design results for the flight conditions matched the target extent of laminar flow very well. The design at wind tunnel conditions raised some design issues that prompted further improvements in the method, but overall has given promising results.

  3. Nasopharyngeal foreign body triggered by a blind finger sweep.

    PubMed

    Mori, Takaaki; Inoue, Nobuaki

    2016-01-01

    A previously healthy 1-year-old boy suddenly began choking and coughing after ingesting a coin. The child's mother attempted to extract the coin by inserting her fingers in his mouth and sweeping the oral cavity. The mother felt the object momentarily with her fingertips but was unable to retrieve it, and brought her son to a local hospital for assistance. The patient was referred to our emergency department (ED) for possible oesophageal obstruction by a foreign body based on the X-ray findings. On arrival at our ED, the child exhibited mild gagging but presented no respiratory symptoms and normal pulmonary examination. The chest X-ray revealed a nasopharyngeal foreign body. The patient was placed under procedural sedation and emergency removal was successfully completed by an otolaryngologist. Subsequently, the patient was discharged without complications. PMID:27605001

  4. Effectiveness of oscillatory gutter brushes in removing street sweeping waste.

    PubMed

    Vanegas-Useche, Libardo V; Abdel-Wahab, Magd M; Parker, Graham A

    2015-09-01

    In this paper, the novel concept of oscillatory gutter brushes of road sweepers is studied experimentally. Their effectiveness in removing different debris types is studied by means of a brushing test rig. The debris types dealt with are medium-size gravel, small and fine particles, wet thin debris, and compacted debris. The performance of two types of brushes, cutting and F128, under diverse operating conditions is investigated. The purpose of the tests is to ascertain whether brush oscillations superimposed onto brush rotation improve sweeping effectiveness. According to the results, brush oscillations seem to be useful for increasing brushing effectiveness in the case of bonded particles and wet thin debris, especially for bonded debris, but they seem to be of no value for other loosed debris. Also, appropriate values of brush penetration, sweeper speed, brush angle of attack, rotational speed, and frequency of brush speed oscillations, for the debris types studied are provided. PMID:26026947

  5. Superluminal Spot Pair Events in Astronomical Settings: Sweeping Beams

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2015-02-01

    Sweeping beams of light can cast spots moving with superluminal speeds across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown here that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events-they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Real spot pair illumination events occur unambiguously on the scattering surface when spot speeds diverge, while virtual spot pair events are observer dependent and perceived only when real spot radial speeds cross the speed of light. Specifically, a virtual spot pair creation event will be observed when a real spot's speed toward the observer drops below c, while a virtual spot pair annihilation event will be observed when a real spot's radial speed away from the observer rises above c. Superluminal spot pair events might be found angularly, photometrically, or polarimetrically, and might carry useful geometry or distance information. Two example scenarios are briefly considered. The first is a beam swept across a scattering spherical object, exemplified by spots of light moving across Earth's Moon and pulsar companions. The second is a beam swept across a scattering planar wall or linear filament, exemplified by spots of light moving across variable nebulae including Hubble's Variable Nebula. In local cases where the sweeping beam can be controlled and repeated, a three-dimensional map of a target object can be constructed. Used tomographically, this imaging technique is fundamentally different from lens photography, radar, and conventional lidar.

  6. A microprocessor-based beam sweep control unit

    NASA Astrophysics Data System (ADS)

    Conrad, R.; Mertens, P.

    1981-10-01

    Using a microprocessor a beam sweep control module has been developed that facilitates ion beam experiments or ion implantation at a constant ion beam density. The density is regulated by varying the amplitude of an x- y-deflection system. The control unit supplies an analogue output voltage which is employed to adjust this amplitude. In our experiment a commercially available DANFYSIK Model 730 beam sweep system has been modified to enable external amplitude control. The control unit can be operated manually or by computer support. In any case the initial ion beam density and ion dose are to be set manually. Four functions (START, STOP, RESET, optional: SHUTTER) are controlled via push buttons or external signals. Coincident with the START-signal the shutter is opened. The ion charge on the target is now accumulated for 10 s. If deviations larger than 2% full scale from the initial beam density are measured the analogue output voltage of the control unit is changed. In case the initial value cannot be regulated within a limited voltage range, a warning is given (lamp and level). Under normal operation the shutter is closed when the preset ion dose has been accumulated. The control unit is manufactured in a standard NIM housing (four units) and has the following features: analogue instruments for (1) ion current and (2) deviation between initial and actual ion current, (3) three digits and one exponent to preset the ion charge, digital displays for (4) accumulated ion charge and (5) time, and (6) a potentiometer to set the initial control voltage, i.e. the ion beam density. The combination of these features together with the simple three - pushbutton - operation makes the instrument a very versatile tool for ion beam experiments.

  7. Performance of a prototype detector for use as the sweeping magnet photon-veto in the KOPIO experiment

    NASA Astrophysics Data System (ADS)

    Hatzikoutelis, A.; Graham, N.; Blecher, M.

    2006-06-01

    A detector system for use as a gamma (γ) veto in the volume of the high field of the sweeping magnet of the KOPIO experiment at BNL is presented here. A laminar design of alternating 5 mm plastic scintillator tiles and 2.54 mm Pb sheets was used. The scintillator signals were readout on both ends by embedded Kuraray Y11-200 multi-clad wave-shifting 1 mm × 19 fibers/tile (WSF). The calibration of the detectors through the single photo-electron (spe) peak of the photomultiplier tubes (PMTs) and the light attenuation measurements of the fibers were performed using a commercial light emitting diode (LED, blue 465 nm) pulsed with 30 ns pulses at 1kHz. Absolute light yield of a single tile averaged 60 pe per minimum ionizing particle (mip) from cosmic rays. An assembly of 10 scintillator layers combined with nine Pb layers yielded ~ 400 pe/mip. Light intensity attenuation of about 1 dB/m allows the embedded fibers to be extended to lengths of more than 6 m in order to carry the detector signal to PMTs outside the magnetic field, thus simplifying the readout.

  8. Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele

    PubMed Central

    Zakov, Shay; Rosenberg, Noah A.; Bafna, Vineet

    2015-01-01

    Methods for detecting the genomic signatures of natural selection have been heavily studied, and they have been successful in identifying many selective sweeps. For most of these sweeps, the favored allele remains unknown, making it difficult to distinguish carriers of the sweep from non-carriers. In an ongoing selective sweep, carriers of the favored allele are likely to contain a future most recent common ancestor. Therefore, identifying them may prove useful in predicting the evolutionary trajectory—for example, in contexts involving drug-resistant pathogen strains or cancer subclones. The main contribution of this paper is the development and analysis of a new statistic, the Haplotype Allele Frequency (HAF) score. The HAF score, assigned to individual haplotypes in a sample, naturally captures many of the properties shared by haplotypes carrying a favored allele. We provide a theoretical framework for computing expected HAF scores under different evolutionary scenarios, and we validate the theoretical predictions with simulations. As an application of HAF score computations, we develop an algorithm (PreCIOSS: Predicting Carriers of Ongoing Selective Sweeps) to identify carriers of the favored allele in selective sweeps, and we demonstrate its power on simulations of both hard and soft sweeps, as well as on data from well-known sweeps in human populations. PMID:26402243

  9. 12 CFR Appendix D to Part 360 - Sweep/Automated Credit Account File Structure

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Sweep/Automated Credit Account File Structure D Appendix D to Part 360 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. D Appendix D to Part 360—Sweep/Automated Credit Account File Structure...

  10. Evaluation of regenerative-air vacuum street sweeping on geological contribution to PM sub 10

    SciTech Connect

    Chow, J.C.; Watson, J.G.; Egami, R.T.; Frazier, C.A.; Lu, Zhiqiang ); Goodrich, A. ); Bird, A. )

    1990-08-01

    Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference in source contributions to PM{sub 10} concentrations between street sweeping and non-street sweeping periods. Chemically-speciated measurements of PM{sub 10} and PM{sub 2.5} were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximatley 50 percent of the PM{sub 10} was apportioned to resuspended geological material. During half of the sampling period, streets in the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM{sub 10} were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic valume and meteorological dispersion. No significant differences in geological contributions to PM{sub 10} were detected as a result of regenerative-air vacuum street sweeping.

  11. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  12. Sweeping and straining effects in sound generation by high Reynolds number isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Rubinstein, Robert

    1995-01-01

    The sound radiated by isotropic turbulence is computed using inertial range scaling expressions for the relevant two time and two point correlations. The result depends on whether the decay of Eulerian time correlations is dominated by large scale sweeping or by local straining: the straining hypothesis leads to an expression for total acoustic power, whereas the sweeping hypothesis leads to a more recent result.

  13. Among-sampler variation in sweep net samples of adult Lygus hesperus (Hemiptera: Miridae) in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sweep net is a standard sampling method for adults of the western tarnished plant bug, Lygus hesperus Knight, in cotton. However, factors that influence the relationship between true population levels and population estimates obtained using the sweep net are poorly documented. Improved understan...

  14. Air puff-induced 22-kHz calls in F344 rats.

    PubMed

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. PMID:26723270

  15. Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions

    SciTech Connect

    Bailey, T S; Falgout, R D

    2008-10-14

    We present theoretical scaling models for a variety of discrete-ordinates sweep algorithms. In these models, we pay particular attention to the way each algorithm handles collisions. A collision is defined as a processor having multiple angles with ready to be swept during one stage of the sweep. The models also take into account how subdomains are assigned to processors and how angles are grouped during the sweep. We describe a data driven algorithm that resolves collisions efficiently during the sweep as well as other algorithms that have been designed to avoid collisions completely. Our models are validated using the ARGES and AMTRAN transport codes. We then use the models to study and predict scaling trends in all of the sweep algorithms.

  16. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps.

    PubMed

    Hallez, Loïc; Lee, Judy; Touyeras, Francis; Nevers, Aymeric; Ashokkumar, Muthupandian; Hihn, Jean-Yves

    2016-03-01

    This letter reports on the use of frequency sweeps to probe acoustic cavitation activity generated by high-intensity focused ultrasound (HIFU). Unprecedented enhancement and quenching of HIFU cavitation activity were observed when short frequency sweep gaps were applied in negative and positive directions, respectively. It was revealed that irrespective of the frequency gap, it is the direction and frequency sweep rate that govern the cavitation activity. These effects are related to the response of bubbles generated by the starting frequency to the direction of the frequency sweep, and the influence of the sweep rate on growth and coalescence of bubbles, which in turn affects the active bubble population. These findings are relevant for the use of HIFU in chemical and therapeutic applications, where greater control of cavitation bubble population is critical. PMID:26584998

  17. Narrow-band 5 kHz hiss observed in the vicinity of the plasmapause

    NASA Astrophysics Data System (ADS)

    Ondoh, T.; Nakamura, Y.; Watanabe, S.; Murakami, T.

    1981-01-01

    Latitudinal distributions of narrow-band 5 kHz hisses have been statistically obtained by using VLF electric field data received from the ISIS-1 and -2 at Syowa station, Antarctica and Kashima station, Japan, in order to study an origin of the narrow-band 5 kHz hisses which are often observed on the ground in mid- and low-latitudes. The result shows that the narrow-band 5 kHz hiss occurs most frequently at geomagnetically invariant latitudes from 55 to 63 deg, which are roughly the plasmapause latitudes at various geomagnetic activities, both in the Northern and Southern Hemispheres. The narrow-band 5 kHz hiss seems to be generated by the cyclotron instabilities of several keV to a few ten keV electrons for the most feasible electron density of 10 to 1000 per cu cm in the vicinity of the equatorial plasmapause.

  18. 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser.

    PubMed

    Puppin, Michele; Deng, Yunpei; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2015-01-26

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 µJ pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation. PMID:25835905

  19. Aging and the 4-kHz Air-Bone Gap

    ERIC Educational Resources Information Center

    Nondahl, David M.; Tweed, Ted S.; Cruickshanks, Karen J.; Wiley, Terry L.; Dalton, Dayna S.

    2012-01-01

    Purpose: In this study, the authors assessed age- and sex-related patterns in the prevalence and 10-year incidence of 4-kHz air-bone gaps and associated factors. Method: Data were obtained as part of the longitudinal, population-based Epidemiology of Hearing Loss Study ( Cruickshanks et al., 1998). An air-bone gap at 4 kHz was defined as an…

  20. Ultrasonic Plastic Welding Using 90 kHz Upper and Lower Vibration Systems

    NASA Astrophysics Data System (ADS)

    Tsujino, Jiromaru; Ishii, Yasuhiro; Shiraki, Toshiyuki; Yamazaki, Hiroyuki

    1994-05-01

    Direct and transmission welding characteristics of an ultrasonic plastic welding system using 90 kHz upper and lower vibration systems are studied. By using high frequency, welding characteristics of plastic specimens may be improved because ultrasonic vibration absorption by plastic material increases as vibration frequency increases. The 90 kHz ultrasonic vibration source designed consists of a radial-to-longitudinal vibration direction converter with four bolt-clamped Langevin-type piezoelectric ceramic (lead-zircon-titanate; PZT) transducers of 15 mm in diameter. The 90 kHz welding equipment consists of two vibration sources positioned at upper and lower parts and a welding frame. In the case of direct welding of various sheet specimens, the required total velocity of 90 kHz upper and lower welding tips is less than 60% that of 27 kHz welding tips. Direct and transmission welding characteristics of a 90 kHz welding system with two vibration sources are significantly improved compared with those of conventional systems.

  1. A test for ancient selective sweeps and an application to candidate sites in modern humans.

    PubMed

    Racimo, Fernando; Kuhlwilm, Martin; Slatkin, Montgomery

    2014-12-01

    We introduce a new method to detect ancient selective sweeps centered on a candidate site. We explored different patterns produced by sweeps around a fixed beneficial mutation, and found that a particularly informative statistic measures the consistency between majority haplotypes near the mutation and genotypic data from a closely related population. We incorporated this statistic into an approximate Bayesian computation (ABC) method that tests for sweeps at a candidate site. We applied this method to simulated data and show that it has some power to detect sweeps that occurred more than 10,000 generations in the past. We also applied it to 1,000 Genomes and Complete Genomics data combined with high-coverage Denisovan and Neanderthal genomes to test for sweeps in modern humans since the separation from the Neanderthal-Denisovan ancestor. We tested sites at which humans are fixed for the derived (i.e., nonchimpanzee allele) whereas the Neanderthal and Denisovan genomes are homozygous for the ancestral allele. We observe only weak differences in statistics indicative of selection between functional categories. When we compare patterns of scaled diversity or use our ABC approach, we fail to find a significant difference in signals of classic selective sweeps between regions surrounding nonsynonymous and synonymous changes, but we detect a slight enrichment for reduced scaled diversity around splice site changes. We also present a list of candidate sites that show high probability of having undergone a classic sweep in the modern human lineage since the split from Neanderthals and Denisovans. PMID:25172957

  2. A Test for Ancient Selective Sweeps and an Application to Candidate Sites in Modern Humans

    PubMed Central

    Racimo, Fernando; Kuhlwilm, Martin; Slatkin, Montgomery

    2014-01-01

    We introduce a new method to detect ancient selective sweeps centered on a candidate site. We explored different patterns produced by sweeps around a fixed beneficial mutation, and found that a particularly informative statistic measures the consistency between majority haplotypes near the mutation and genotypic data from a closely related population. We incorporated this statistic into an approximate Bayesian computation (ABC) method that tests for sweeps at a candidate site. We applied this method to simulated data and show that it has some power to detect sweeps that occurred more than 10,000 generations in the past. We also applied it to 1,000 Genomes and Complete Genomics data combined with high-coverage Denisovan and Neanderthal genomes to test for sweeps in modern humans since the separation from the Neanderthal–Denisovan ancestor. We tested sites at which humans are fixed for the derived (i.e., nonchimpanzee allele) whereas the Neanderthal and Denisovan genomes are homozygous for the ancestral allele. We observe only weak differences in statistics indicative of selection between functional categories. When we compare patterns of scaled diversity or use our ABC approach, we fail to find a significant difference in signals of classic selective sweeps between regions surrounding nonsynonymous and synonymous changes, but we detect a slight enrichment for reduced scaled diversity around splice site changes. We also present a list of candidate sites that show high probability of having undergone a classic sweep in the modern human lineage since the split from Neanderthals and Denisovans. PMID:25172957

  3. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. PMID:21277186

  4. An Evaluation of the General Dynamics 20 Khz 5 Kw Breadboard for Space Station Electrical Power at MSFC

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kapustka, Robert E.

    1989-01-01

    The results and observations are discussed of tests made on the General Dynamics 20 kHz Breadboard for Space Station Electrical Power. The General Dynamics 20 kHz system only is considered, and not the issue of the use of 20 kHz ac Power for Spacecraft Applications.

  5. 47 CFR 73.30 - Petition for authorization of an allotment in the 1605-1705 kHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 1605-1705 kHz band. 73.30 Section 73.30 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... authorization of an allotment in the 1605-1705 kHz band. (a) Any party interested in operating an AM broadcast station on one of the ten channels in the 1605-1705 kHz band must file a petition for the establishment...

  6. SweeD: likelihood-based detection of selective sweeps in thousands of genomes.

    PubMed

    Pavlidis, Pavlos; Živkovic, Daniel; Stamatakis, Alexandros; Alachiotis, Nikolaos

    2013-09-01

    The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-specific genomes that can be used to detect loci that have been subject to positive selection in the recent past. Based on selective sweep theory, beneficial loci can be detected by examining the single nucleotide polymorphism patterns in intraspecific genome alignments. In the last decade, a plethora of algorithms for identifying selective sweeps have been developed. However, the majority of these algorithms have not been designed for analyzing whole-genome data. We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in whole genomes. It analyzes site frequency spectra and represents a substantial extension of the widely used SweepFinder program. The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is able to analyze thousands of sequences. We also provide a parallel implementation of SweeD for multi-core processors. Furthermore, we implemented a checkpointing mechanism that allows to deploy SweeD on cluster systems with queue execution time restrictions, as well as to resume long-running analyses after processor failures. In addition, the user can specify various demographic models via the command-line to calculate their theoretically expected site frequency spectra. Therefore, (in contrast to SweepFinder) the neutral site frequencies can optionally be directly calculated from a given demographic model. We show that an increase of sample size results in more precise detection of positive selection. Thus, the ability to analyze substantially larger sample sizes by using SweeD leads to more accurate sweep detection. We validate SweeD via simulations and by scanning the first chromosome from the 1000 human Genomes project for selective sweeps. We compare SweeD results with results from a linkage-disequilibrium-based approach and identify common outliers. PMID:23777627

  7. Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.

    PubMed

    Garud, Nandita R; Rosenberg, Noah A

    2015-06-01

    Soft selective sweeps represent an important form of adaptation in which multiple haplotypes bearing adaptive alleles rise to high frequency. Most statistical methods for detecting selective sweeps from genetic polymorphism data, however, have focused on identifying hard selective sweeps in which a favored allele appears on a single haplotypic background; these methods might be underpowered to detect soft sweeps. Among exceptions is the set of haplotype homozygosity statistics introduced for the detection of soft sweeps by Garud et al. (2015). These statistics, examining frequencies of multiple haplotypes in relation to each other, include H12, a statistic designed to identify both hard and soft selective sweeps, and H2/H1, a statistic that conditional on high H12 values seeks to distinguish between hard and soft sweeps. A challenge in the use of H2/H1 is that its range depends on the associated value of H12, so that equal H2/H1 values might provide different levels of support for a soft sweep model at different values of H12. Here, we enhance the H12 and H2/H1 haplotype homozygosity statistics for selective sweep detection by deriving the upper bound on H2/H1 as a function of H12, thereby generating a statistic that normalizes H2/H1 to lie between 0 and 1. Through a reanalysis of resequencing data from inbred lines of Drosophila, we show that the enhanced statistic both strengthens interpretations obtained with the unnormalized statistic and leads to empirical insights that are less readily apparent without the normalization. PMID:25891325

  8. Monitoring insects in sweetpotatoes with sweep net and sticky traps across the Mississippi Delta: a omparative study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect populations in sweetpotato fields in the Mississippi Delta were monitored in 2007 by comparing traditional sweep net sampling with purple and yellow sticky traps. Four sweep net samples each consisting of 25 sweeps were taken weekly from each of four different locations from 2 July to 3 Sept...

  9. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  10. Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.

    2010-01-01

    This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.

  11. NGC 3312: A victim of ram pressure sweeping

    NASA Technical Reports Server (NTRS)

    Mcmahon, P. M.; Richter, O.-G.; Vangorkom, Jacqueline H.; Ferguson, H. C.

    1990-01-01

    Researchers are undertaking a volume limited survey of the Hydra I cluster in neutral hydrogen using the National Radio Astronomy Observatory's Very Large Array (VLA). The main purpose is to study the effects of a dense environment on the gaseous component of the galaxies. Observational evidence has been accumulating recently that ram pressure sweeping does occur in the centers of clusters, but it is possible that tidal interactions play a role as well. Results of high resolution HI imaging of NGC 3312, the large peculiar spiral near the cluster center are presented. Hydra I (= A1060) is the nearest rich cluster beyond Virgo and, as such, presents a unique opportunity to do a complete survey of a cluster. It is similar to the Virgo cluster in many of its general physical characteristics, such as size, x ray luminosity, velocity dispersion, and galaxy content (high spiral fraction). However, Hydra I appears to be more regular and relaxed. This is evident in the x ray distribution in its central region, which is radially symmetric and centered on the dominant galaxy, NGC 3311, a cD-like elliptical. The observed x ray luminosity implies a central gas density of 4.5 x 10 to the 3rd power cm(-3). Gallagher (1978) argued from optical images of NGC 3312 that this galaxy might be an ideal candidate to directly study effects of the ram pressure process; it might currently be undergoing stripping of its interstellar medium. The researchers' data are consistent with this suggestion, but other origins of the peculiar appearance cannot yet be ruled out.

  12. Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.

    PubMed

    Ma, Jia; Zhao, Huaying; Sandmaier, Julia; Alexander Liddle, J; Schuck, Peter

    2016-01-01

    Sedimentation velocity (SV) analytical ultracentrifugation is a classical biophysical technique for the determination of the size-distribution of macromolecules, macromolecular complexes, and nanoparticles. SV has traditionally been carried out at a constant rotor speed, which limits the range of sedimentation coefficients that can be detected in a single experiment. Recently we have introduced methods to implement experiments with variable rotor speeds, in combination with variable field solutions to the Lamm equation, with the application to expedite the approach to sedimentation equilibrium. Here, we describe the use of variable-field sedimentation analysis to increase the size-range covered in SV experiments by ∼100-fold with a quasi-continuous increase of rotor speed during the experiment. Such a gravitational-sweep sedimentation approach has previously been shown to be very effective in the study of nanoparticles with large size ranges. In the past, diffusion processes were not accounted for, thereby posing a lower limit of particle sizes and limiting the accuracy of the size distribution. In this work, we combine variable field solutions to the Lamm equation with diffusion-deconvoluted sedimentation coefficient distributions c(s), which further extend the macromolecular size range that can be observed in a single SV experiment while maintaining accuracy and resolution. In this way, approximately five orders of magnitude of sedimentation coefficients, or eight orders of magnitude of particle mass, can be probed in a single experiment. This can be useful, for example, in the study of proteins forming large assemblies, as in fibrillation process or capsid self-assembly, in studies of the interaction between very dissimilar-sized macromolecular species, or in the study of broadly distributed nanoparticles. PMID:26745414

  13. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    SciTech Connect

    Steven Bryant; Larry Britton

    2008-09-30

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  14. Performance analysis of half-sweep AOR method with nonlocal discretization scheme for nonlinear two-point boundary value problem

    NASA Astrophysics Data System (ADS)

    Alibubin, M. U.; Sunarto, A.; Sulaiman, J.

    2016-06-01

    In this paper, we present the concept of Half-sweep Accelerated OverRelaxation (HSAOR) iterative method with a nonlocal discretization scheme for solving nonlinear two-point boundary value problems. Second order finite difference scheme has been used to derive the half-sweep finite difference (HSFD) approximations of the problems. Then, the nonlocal discretization scheme is applied in order to transform the system of nonlinear approximation equations into the corresponding system of linear equations. Numerical results showed that HSAOR method is superior compared to Full-sweep Gauss-seidel (FSGS), Full-sweep Successive OverRelaxation (FSSOR) and Full-sweep Accelerated Over Relaxation (FSAOR) methods.

  15. Evolution of the ancestral recombination graph along the genome in case of selective sweep.

    PubMed

    Leocard, Stephanie; Pardoux, Etienne

    2010-12-01

    We consider the genome of a sample of n individuals taken at the end of a selective sweep, which is the fixation of an advantageous allele in the population. When the selective advantage is high, the genealogy at a locus under selective sweep can be approximated by a comb with n teeth. However, because of recombinations during the selective sweep, the hitchhiking effect decreases as the distance from the selected site increases, so that far from this locus, the tree can be approximated by a Kingman coalescent tree, as in the neutral case. We first give the distribution of the tree at a given locus. Then we focus on the evolution of this tree along the genome. Since this tree-valued process is not Markovian, we study the evolution of the Ancestral Recombination Graph along the genome in case of selective sweep. PMID:20077118

  16. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity.

    PubMed Central

    Majewski, J; Cohan, F M

    1999-01-01

    Previous studies have shown that genetic exchange in bacteria is too rare to prevent neutral sequence divergence between ecological populations. That is, despite genetic exchange, each population should diverge into its own DNA sequence-similarity cluster. In those studies, each selective sweep was limited to acting within a single ecological population. Here we postulate the existence of globally adaptive mutations, which may confer a selective advantage to all ecological populations constituting a metapopulation. Such adaptations cause global selective sweeps, which purge the divergence both within and between populations. We found that the effect of recurrent global selective sweeps on neutral sequence divergence is highly dependent on the mechanism of genetic exchange. Global selective sweeps can prevent populations from reaching high levels of neutral sequence divergence, but they cannot cause two populations to become identical in neutral sequence characters. The model supports the earlier conclusion that each ecological population of bacteria should form its own distinct DNA sequence-similarity cluster. PMID:10430576

  17. Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking.

    PubMed

    Wang, Jian; Chen, Dijun; Cai, Haiwen; Wei, Fang; Qu, Ronghui

    2015-03-23

    An ultrafast optical frequency sweeping technique for narrow linewidth lasers is reported. This technique exploits the large frequency modulation bandwidth of a wideband voltage controlled oscillator (VCO) and a high speed electro-optic dual parallel Mach-Zehnder modulator (DPMZM) which works on the state of carrier suppressed single sideband modulation(CS-SSB). Optical frequency sweeping of a narrow linewidth fiber laser with 3.85 GHz sweeping range and 80 GHz/μs tuning speed is demonstrated, which is an extremely high tuning speed for frequency sweeping of narrow linewidth lasers. In addition, injection locking technique is adopted to improve the sweeper's low optical power output and small side-mode suppression ratio (SMSR). PMID:25837048

  18. Dynamics of a many-particle Landau-Zener model: Inverse sweep

    SciTech Connect

    Itin, A. P.

    2009-05-15

    We consider dynamics of a slowly time-dependent Dicke model, which represents a many-body generalization of the Landau-Zener model. In particular, the model describes narrow Feshbach resonance passage in an ultracold gas of Fermi atoms. Adiabaticity is destroyed when a parameter crosses a critical value, even at very slow sweeping rates of a parameter. The dynamics crucially depends on direction of the sweep. We apply our recent analysis (A. P. Itin and P. Toermae, e-print arXiv:0901.4778) to the 'inverse' sweep through the resonance, corresponding (in a context of Feshbach resonance passage) to dissociation of molecules. On a level of the mean-field approximation, the dynamics is equivalent to a molecular condensate formation from Bose atoms within a two-mode model. Mapping the system to a Painleve equation allows us to calculate deviation from adiabaticity at very slow sweeps analytically.

  19. Leading edge sweep effects in generic three-dimensional sidewall compression scramjet inlets

    NASA Technical Reports Server (NTRS)

    Cozart, Aaron B.; Holland, Scott D.; Trexler, Carl A.; Perkins, John N.

    1992-01-01

    A computational and experimental study of generic 3D sidewall compression inlets is conducted to examine the effects of fore and aft leading edge sweep on the internal shock structure. Inlets with leading edge sweeps of +30 deg and -30 deg with sidewall compression angles of 6 deg were tested in the NASA Langley Mach 4 air tunnel at a geometric contraction ratio of 1.87. The principal difference in performance was determined to be in the mass capture. Spillage was identified as having two components: a pressure induced component and a sweep induced component. It was found that while the direction of the leading edge sweep had a large influence on the spillage, the pressure effects were more important.

  20. Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark

    2016-01-01

    The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.

  1. Determination of the magnetocaloric entropy change by field sweep using a heat flux setup

    SciTech Connect

    Monteiro, J. C. B. Reis, R. D. dos; Mansanares, A. M.; Gandra, F. G.

    2014-08-18

    We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. We found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.

  2. Action Thresholds for Managing Megacopta cribraria (Hemiptera: Plataspidae) in Soybean Based on Sweep-Net Sampling.

    PubMed

    Seiter, Nicholas J; Del Pozo-Valdivia, Alejandro I; Greene, Jeremy K; Reay-Jones, Francis P F; Roberts, Phillip M; Reisig, Dominic R

    2015-08-01

    The kudzu bug, Megacopta cribraria (F.), first discovered in the United States in 2009, has rapidly become a pest of commercial soybean, Glycine max (L.) Merrill, throughout much of the southeast. Because of its recent arrival, management practices and recommendations are not well established. To develop action thresholds, we evaluated insecticide applications targeted at different densities of adults and nymphs determined using the standard 38-cm diameter sweep net sampling method in 12 soybean field trials conducted in Georgia, North Carolina, and South Carolina from 2011 to 2013. Average peak densities of M. cribraria in the untreated controls reached as high as 63.5 ± 11.0 adults per sweep and 34.7 ± 8.0 nymphs per sweep. Insecticide applications triggered at densities of one adult or nymph of M. cribraria per sweep, two adults or nymphs per sweep, and one adult or nymph per sweep, with nymphs present, resulted in no yield reductions in most cases compared with plots that were aggressively protected with multiple insecticide applications. A single insecticide application timed at the R3 or R4 soybean growth stages also resulted in yields that were equivalent to the aggressively protected plots. Typically, treatments (excluding the untreated control) that resulted in fewer applications were more cost-effective. These results suggest that a single insecticide application targeting nymphs was sufficient to prevent soybean yield reduction at the densities of M. cribraria that we observed. PMID:26470324

  3. Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum

    PubMed Central

    Hsieh, I-Hui; Saberi, Kourosh

    2010-01-01

    Many natural sounds such as speech contain concurrent amplitude and frequency modulation (AM and FM), with the FM components often in the form of directional frequency sweeps or glides. Most studies of modulation coding, however, have employed one modulation type in stationary carriers, and in cases where mixed-modulation sounds have been used, the FM component has typically been confined to an extremely narrow range within a critical band. The current study examined the ability to detect AM signals carried by broad logarithmic frequency sweeps using a 2-alternative forced-choice adaptive psychophysical design. AM detection thresholds were measured as a function of signal modulation rate and carrier sweep frequency region. Thresholds for detection of AM in a sweep carrier ranged from -8 dB for an AM rate of 8 Hz to -30 dB at 128 Hz. Compared to thresholds obtained for stationary carriers (pure tones and filtered Gaussian noise), detection of AM carried by frequency sweeps substantially declined at low (12 dB at 8 Hz) but not high modulation rates. Several trends in the data, including sweep- versus stationary-carrier threshold patterns and effects of frequency region were predicted from a modulation filterbank model with an envelope-correlation decision statistic. PMID:20144700

  4. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2008-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  5. Mikkelson sweep/spike chisel plow shovel. Economic summary of the 1992 crop season

    SciTech Connect

    Not Available

    1992-12-31

    Profitability comparisons are reported between the Mikkelson Sweep/Spike Chisel Plow Shovel standard sweeps. This evaluation covers the first year of testing of the new Sweep/Spike design. The data are not averaged over treatments due to significant interaction between treatments and environmental factors. The cost of fuel, fall and spring, to perform the various treatments ranged from $1.27 to $3.36 per acre. Use of the sweep/spike shovel always reduced total fuel cost. Savings varied from $0.11 to $0.71 per acre depending on prior treatment. This means there will be money saved, to off-set expenses, when converting present chisel plows or for special options on new chisel plows, needed for use of the sweep/spike shovel. A summary of 1991--1992 energy measurements. They indicate that more power will be required to pull a chisel plow equipped with the sweep/spike shovel. A larger tractor, narrower chisel plow and/or slower speed will be required to avoid the wheel slippage problems encountered on soft or wet field surfaces.

  6. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser

    NASA Astrophysics Data System (ADS)

    Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael; Baumann, Bernhard; Bonesi, Marco; Zotter, Stefan; Götzinger, Erich; Trasischker, Wolfgang; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin; Huber, Robert; Andersen, Peter; Hitzenberger, Christoph K.

    2013-02-01

    We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser with active spectral shaping which enables the use of forward and backward sweep in order to double the imaging speed without a buffering stage. With this approach and with a custom designed data acquisition system, we show polarization-sensitive imaging with an A-scan rate of 350 kHz. The acquired three-dimensional data sets of healthy human volunteers show different polarization characteristics in the eye, such as depolarization in the retinal pigment epithelium and birefringence in retinal nerve fiber layer and sclera. The increased speed allows imaging of large volumes with reduced motion artifacts. Moreover, averaging several two-dimensional frames allows the generation of high-definition B-scans without the use of an eye-tracking system. The increased penetration depth of the system, which is caused by the longer probing beam wavelength, is beneficial for imaging choroidal and scleral structures and allows automated segmentation of these layers based on their polarization characteristics.

  7. Audiogram of the chicken (Gallus gallus domesticus) from 2 Hz to 9 kHz.

    PubMed

    Hill, Evan M; Koay, Gimseong; Heffner, Rickye S; Heffner, Henry E

    2014-10-01

    The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m(2)), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies. PMID:25092127

  8. Plasma antennas driven by 5–20 kHz AC power supply

    SciTech Connect

    Zhao, Jiansen Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  9. 2- to 3-kHz continuum emissions as possible indications of global heliospheric 'breathing'

    NASA Technical Reports Server (NTRS)

    Grzedzielski, S.; Lazarus, A. J.

    1993-01-01

    The paper analyzes the main features of 2- to 3-kHz heliospheric emissions in the context of a general heliospheric 'breathing' as inferred from the Voyager 2 solar wind average ram pressure data. Triggers for the three 3-kHz emission events seen to date are suggested, and good agreement is obtained in timing and expected postshock frequency for termination shock distances of about 90 AU. It is suggested that the visibility of the individual 3-kHz events and their observed upward frequency drift are enhanced when the postulated global heliospheric expansion results in the formation of a transient, compressed external plasma barrier around the heliopause that prevents radiation escape for several months. The average termination shock distance is estimated to be in the range 80-90 AU.

  10. 20 kHz main inverter unit. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  11. A numerical study on the effect of sweep angle on flapping-wing flight using fluid-structure interaction analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kwan; Lee, Jun-Seong; Han, Jae-Hung

    2009-07-01

    The sweep-back effect of a flexible flapping wing is investigated through fluid-structure interaction analysis. The aeroelastic analysis is carried out by using an efficient fluid-structure interaction analysis tool, which is based on the modified strip theory and the flexible multibody dynamics. To investigate the sweep-back effect, the aeroelastic analysis is performed on various sweep-back wing models defined by sweep-chord ratio and sweep-span ratio, and then the sweep-back effect on the aerodynamic performance is discussed. The aeroelastic results of the sweep-back wing analysis clearly confirm that the sweep-back angle can help a flexible flapping wing to generate greater twisting motion, resulting in the aerodynamic improvement of thrust and input power for all flapping-axis angle regimes. The propulsive efficiency can also be increased by the sweep-back effect. The sweep angle of a flapping wing should be considered as an important design feature for artificial flexible flapping wings.

  12. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome

    PubMed Central

    2011-01-01

    Background Modern dog breeds display traits that are either breed-specific or shared by a few breeds as a result of genetic bottlenecks during the breed creation process and artificial selection for breed standards. Selective sweeps in the genome result from strong selection and can be detected as a reduction or elimination of polymorphism in a given region of the genome. Results Extended regions of homozygosity, indicative of selective sweeps, were identified in a genome-wide scan dataset of 25 Boxers from the United Kingdom genotyped at ~20,000 single-nucleotide polymorphisms (SNPs). These regions were further examined in a second dataset of Boxers collected from a different geographical location and genotyped using higher density SNP arrays (~170,000 SNPs). A selective sweep previously associated with canine brachycephaly was detected on chromosome 1. A novel selective sweep of over 8 Mb was observed on chromosome 26 in Boxer and for a shorter region in English and French bulldogs. It was absent in 171 samples from eight other dog breeds and 7 Iberian wolf samples. A region of extended increased heterozygosity on chromosome 9 overlapped with a previously reported copy number variant (CNV) which was polymorphic in multiple dog breeds. Conclusion A selective sweep of more than 8 Mb on chromosome 26 was identified in the Boxer genome. This sweep is likely caused by strong artificial selection for a trait of interest and could have inadvertently led to undesired health implications for this breed. Furthermore, we provide supporting evidence for two previously described regions: a selective sweep on chromosome 1 associated with canine brachycephaly and a CNV on chromosome 9 polymorphic in multiple dog breeds. PMID:21722374

  13. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or Frequency Bands § 90.253 Use...

  14. 47 CFR 90.253 - Use of frequency 5167.5 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Use of frequency 5167.5 kHz. 90.253 Section 90.253 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or Frequency Bands § 90.253 Use...

  15. An 18 bit 50 kHz ADC for low earth orbit

    NASA Technical Reports Server (NTRS)

    Thelen, Donald C.

    1992-01-01

    A fourth order incremental analog to digital converter (ADC) is proposed which performs 18 bit conversions at a 50 kHz rate on sampled and held data. A new self calibration scheme is presented which eases the matching requirements of capacitors, and the performance of the operational amplifiers in the ADC by changing coefficients in the digital postprocessing.

  16. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... do not exceed 15 uV/m, as measured at a distance of 47,715/(frequency in kHz) meters (equivalent to... of an AM broadcast station on a college or university campus or on the campus of any other...

  17. Dynamic nuclear polarization at 40 kHz magic angle spinning.

    PubMed

    Chaudhari, Sachin R; Berruyer, Pierrick; Gajan, David; Reiter, Christian; Engelke, Frank; Silverio, Daniel L; Copéret, Christophe; Lelli, Moreno; Lesage, Anne; Emsley, Lyndon

    2016-04-21

    DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase (29)Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic-inorganic material. PMID:27035630

  18. Observation of 20-400 kHz fluctuations in the U-3M torsatron

    NASA Astrophysics Data System (ADS)

    Dreval, M. B.; Yakovenko, Yu. V.; Sorokovoy, E. L.; Slavnyj, A. S.; Pavlichenko, R. O.; Kulaga, A. E.; Zamanov, N. V.; Hirose, A.

    2016-02-01

    First observations of quasi-coherent fluctuations in the frequency range of 20-400 kHz in Alfvén-wave-heated plasmas of the U-3M torsatron are presented. The excitation conditions of these modes depend on the radio frequency antenna type and the plasma density, the appearance of the modes correlating with the presence of both suprathermal electrons and high-energy ions in the plasma, which supports our opinion that the modes are excited by energetic particles. Complicated evolution of the mode frequencies with abrupt changes at the instants of plasma confinement transitions is observed at the initial stage of each discharge. The frequencies become stable at the stage of the plasma current flattop. Raw estimates show that toroidicity-induced Alfvén eigenmodes could be responsible for the 150-400 kHz fluctuations. Low-frequency 20-70 kHz bursts are observed during plasma confinement transitions. The poloidal mode number of one of these bursts with the frequency of 20 kHz burst was determined to be m = 2. This mode rotated in the electron diamagnetic rotation direction with a frequency lower than the geodesic acoustic mode frequency and can be identified as a drift-sound-type mode.

  19. Detection of selective sweeps in cattle using genome-wide SNP data

    PubMed Central

    2013-01-01

    Background The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. Results Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. Conclusions The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra

  20. Influence of Finite Span and Sweep on Active Flow Control Efficacy

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Washburn, Anthony E.

    2007-01-01

    Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased C(sub L,max) and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or streamline of the evolving perturbation, served to explain the observations. Control on finite-span flaps did not differ significantly from their two-dimensional counterpart, while control over a tip flap produced significant variations to all three moments in the presence of large deflection and these variations were linear with input slot momentum. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep.

  1. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    NASA Astrophysics Data System (ADS)

    Pi, H.; Sharratt, B.; Feng, G.; Lei, J.; Li, X.; Zheng, Z.

    2016-03-01

    Wind erosion in the desert-oasis ecotone can accelerate desertification, but little is known about the susceptibility of the ecotone to wind erosion in the Tarim Basin despite being a major source of windblown dust in China. The objective of this study was to test the performance of the Single-event Wind Erosion Evaluation Program (SWEEP) in simulating soil loss as creep, saltation, and suspension in a desert-oasis ecotone. Creep, saltation, and suspension were measured and simulated in a desert-oasis ecotone of the Tarim Basin during discrete periods of high winds in spring 2012 and 2013. The model appeared to adequately simulate total soil loss (ranged from 23 to 2272 g m-2 across sample periods) according to the high index of agreement (d = 0.76). The adequate agreement of the SWEEP in simulating total soil loss was due to the good performance of the model (d = 0.71) in simulating creep plus saltation. The SWEEP model, however, inadequately simulated suspension based upon a low d (⩽0.43). The slope estimates of the regression between simulated and measured suspension and difference of mean suggested that the SWEEP underestimated suspension. The adequate simulation of creep plus saltation thus provides reasonable estimates of total soil loss using SWEEP in a desert-oasis environment.

  2. Direction-Finding Measurements of Heliospheric 2-3 kHz Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Using data from the Voyager 1 plasma wave instrument, a series of direction-finding measurements is presented for the intense 1992-93 heliospheric 2- to 3-kHz radio emission event, and several weaker events extending into 1994. Direction-finding measurements can only be obtained during roll maneuvers, which are performed about once every three months. Two parameters can be determined from the roll-induced intensity modulation, the azimuthal direction of arrival (measured around the roll axis), and the modulation index (the peak-to-peak amplitude divided by the peak amplitude). Measurements were made at two frequencies, 1.78 and 3.11 kHz. No roll modulation was observed at 1.78 kHz, which is consistent with an isotropic source at this frequency. In most cases an easily measurable roll modulation was detectable at 3.11 kHz. Although the azimuth angles have considerable scatter, the directions of arrival at 3.11 kHz can be organized into three groups, each of which appears to be associated with a separate upward drifting feature in the radio emission spectrum. The first group, which is associated with the main 1992-93 event, is consistent with a source located near the nose of the heliosphere. The remaining two groups, which occur after the main 1992-93 event, have azimuth angles well away from the nose of the heliosphere. The modulation indexes vary over a large range, from 0.06 to 0.61, with no obvious trend. Although the variations in the directions of arrival and modulation indicies appear to reflect changes in the position and angular size of the source, it is also possible that they could be caused by refraction or scattering due to density structures in the solar wind.

  3. The effects of morphine and morphine conditioned context on 50 kHz ultrasonic vocalisation in rats.

    PubMed

    Hamed, Adam; Taracha, Ewa; Szyndler, Janusz; Krząścik, Paweł; Lehner, Małgorzata; Maciejak, Piotr; Skórzewska, Anna; Płaźnik, Adam

    2012-04-15

    The 50 kHz ultrasonic vocalisations (USVs) that are emitted by rats are dependent on activity of dopaminergic neurons projecting from the ventral tegmental area to the limbic and cortical structures. According to many experimental data, emission of the 50 kHz USV reflects a positive emotional state. The appetitive calls are also emitted in response to the administration of drugs of abuse, e.g., cocaine or amphetamine (AMPH), or in a reply to a positively conditioned context. However, there is no strong evidence in the literature that morphine can also modulate 50 kHz USVs. The aim of this paper is to study the effects of morphine and morphine-conditioned context on 50 kHz USVs, using spontaneously or drug-modulated 50 kHz USVs. Our results showed that acute administration of morphine to rats after withdrawal period inhibited the emission of 50 kHz USVs. The stimulating effect of morphine-conditioned context on 50 kHz USVs appeared on the post-withdrawal challenge day immediately before drug injection, 14 days after the last episode of morphine-induced context conditioning. The context-induced 50 kHz USVs can be used as a sensitive test for drug dependency. The current study also shows that 50 kHz USVs can be useful tool for studying the mechanisms of long lasting central effects of morphine. PMID:22326697

  4. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  5. Hubble Clicks Images of Io Sweeping Across Jupiter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.'

    These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2.

    The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes.

    'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz.

    A Trip Around Jupiter

    The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days.

    The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut.

    These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye

  6. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  7. Propagation of magnetic avalanches in Mn12Ac at high field sweep rates.

    PubMed

    Decelle, W; Vanacken, J; Moshchalkov, V V; Tejada, J; Hernández, J M; Macià, F

    2009-01-16

    Time-resolved measurements of the magnetization reversal in single crystals of Mn12Ac in pulsed magnetic fields, at magnetic field sweep rates from 1.5 kT/s up to 7 kT/s, suggest a new process that cannot be scaled onto a deflagrationlike propagation driven by heat diffusion. The sweep rate dependence of the propagation velocity, increasing from a few 100 m/s up to the speed of sound in Mn12Ac, indicates the existence of two new regimes at the highest sweep rates, with a transition around 4 kT/s that can be understood as a magnetic deflagration-to-detonation transition. PMID:19257315

  8. Numerical Study of Three-Dimensional Flows Using Unfactored Upwind-Relaxation Sweeping Algorithm

    NASA Astrophysics Data System (ADS)

    Zha, G.-C.; Bilgen, E.

    1996-05-01

    The linear stability analysis of the unfactored upwind relaxation-sweeping (URS) algorithm for 3D flow field calculations has been carried out and it is shown that the URS algorithm is unconditionally stable. The algorithm is independent of the global sweeping direction selection. However, choosing the direction with relatively low variable gradient as the global sweeping direction results in a higher degree of stability. Three-dimensional compressible Euler equations are solved by using the implicit URS algorithm to study internal flows of a non-axisymmetric nozzle with a circular-to-rectangular transition duct and complex shock wave structures for a 3D channel flow. The efficiency and robustness of the URS algorithm has been demonstrated.

  9. Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn

    2010-01-01

    GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.

  10. Surface shear strains induced by quasi-steady sweeping detonation waves

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence; Briggs, Matthew; Faulkner, James

    2012-03-01

    Sweeping wave experiments create conditions of greater shear than corresponding onedimensional motion experiments, and are of current interest for material damage characterization. Sweeping waves are also important with regards to the spectrum of applications of explosives driving metals. The intensity of the shear developed in a sweeping wave experiment may be monitored using crossed beams of Photon Doppler Velocimetry (PDV). During the time the material is traversing the volume defined by the crossed beams, the interferometer is measuring the velocity of the same mass element (approximately) from two directions. It is known that PDV measures the velocity component that lies along the beam direction, so that with crossed beams, two independent directions are simultaneously measured and therefore the vector velocity (both magnitude and direction) are captured. The vector velocity is readily related to the strain rates on the surface (after removing the rigid rotation rates), and the equations are integrated to obtain the strains.

  11. Active Flow Control Using Sweeping Jet Actuators on a Semi-Span Wing Model

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti

    2016-01-01

    Wind tunnel experiments were performed using active flow control on an unswept semispan wing model with a 30% chord trailing edge flap to aid in the selection of actuators for a planned high Reynolds number experiment. Two sweeping jet actuator sizes were investigated to determine the influence of actuator size on the active flow control system efficiency. Sweeping jet actuators with orifice sizes of 1 mm x 2 mm and 2 mm x 4 mm were selected because of the differences in actuator jet sweep angle. The parameters that were varied include actuator momentum, freestream velocity, and trailing edge flap deflection angle. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the two actuators. In addition to the wind tunnel experiments, benchtop studies of the actuators were performed to characterize the jets produced by each actuator. Benchtop investigations of the smaller actuator reveal that the jet exiting the actuator has a reduced sweep angle compared to published data for larger versions of this type of actuator. The larger actuator produces an oscillating jet that attaches to the external di?user walls at low supply pressures and produces the expected sweep angles. The AFC results using the smaller actuators show that while the actuators can control flow separation, the selected spacing of 3.3 cm may be too large due to the reduced sweep angle. In comparison, the spacing for the larger actuators, 6.6 cm, appears to be optimal for the Mach numbers investigated. Particle Image Velocimetry results are presented and show how the wall jets produced by the actuators cause the flow to attach to the flap surface.

  12. Sweeping tuneable vibration absorbers for low-mid frequencies vibration control

    NASA Astrophysics Data System (ADS)

    Gardonio, P.; Zilletti, M.

    2015-10-01

    This paper presents a simulation study concerning the low-mid frequencies control of flexural vibration in a lightly damped thin plate, which is equipped with three sweeping tuneable vibration absorbers and is excited by a rain on the roof broad frequency band stationary disturbance. The sweeping tuneable vibration absorbers are semi-active mass-spring-dashpot systems whose stiffness and damping properties can be varied uniformly within given ranges. They are operated in such a way as their characteristic natural frequencies are continuously varied to control the response of flexural modes that resonate within given frequency bands. More specifically, in this study the three sweeping tuneable vibration absorbers are operated asynchronously, each within one of three sequential frequency bands comprised between 20 and 120, 120 and 220, 220 and 320 Hz. The flexural vibration control effects produced by the three sweeping tuneable vibration absorbers are compared to those produced by three classical tuneable vibration absorbers, each set to control the response of a specific flexural mode of the plate resonating in one of these three frequency bands. The study shows that the proposed sweeping tuneable vibration absorbers outperform the classical tuneable vibration absorbers and produce about 6, 5, 4 dB reduction of the plate overall flexural response in the three frequency bands of operation. Also, the study indicates that the sweeping tuneable vibration absorbers are robust to variations in the plate flexural response. For instance they still produce about 5.1, 5.3, 4.6 dB reductions of the flexural response in the three frequency bands of operation when the plate is tensioned such that the flexural natural frequencies are shifted up from about 40 percent, for the first resonance, to 7 percent, for the tenth resonance.

  13. R2d2 Drives Selfish Sweeps in the House Mouse.

    PubMed

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  14. Application of a performance modeling technique to an airplane with variable sweep wings

    NASA Technical Reports Server (NTRS)

    Redin, P. C.

    1981-01-01

    A performance modeling concept previously applied to an F-104F G and a YF-12C airplane was applied to an F-111A airplane. This application extended the concept to an airplane with variable sweep wings. The performance model adequately matched flight test data for maneuvers flown at different wing sweep angles at maximum afterburning and intermediate power settings. For maneuvers flown at less than intermediate power, including dynamic maneuvers, the performance model was not validated because the method used to correlate model and in-flight power setting was not adequate. Individual dynamic maneuvers were matched sucessfully by using adjustments unique to each maneuver.

  15. Study of Effects of Sweep on the Flutter of Cantilever Wings

    NASA Technical Reports Server (NTRS)

    Barmby, J G; Cunningham, H J; Garrick, I E

    1951-01-01

    An experimental and analytical investigation of the flutter of sweptback cantilever wings is reported. The experiments employed groups of wings swept back by rotating and by shearing. The angle of sweep range from 0 degree to 60 degrees and Mach numbers extended to approximately 0.85. A theoretical analysis of the air forces on an oscillating swept wing of high length-chord ratio is developed, and the approximations inherent in the assumptions are discussed. Comparison with experiment indicates that the analysis developed in the present report is satisfactory for giving the main effects of sweep, at least for nearly uniform cantilever wings of high and moderate length-chord ratios.

  16. Reinterpretation of reduction potential measurements done by linear sweep voltammetry in silicate melts

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.; Keedy, C. R.

    1991-01-01

    The equilibrium concentrations of Ni between silicate melt and Pt were determined experimentally as a function of oxygen fugacity. The results demonstrate that metallic species derived in linear sweep voltammetry experiments in silicate melts are diffusing into Pt electrodes and not into the melt, as was concluded by previoius studies. This requires reinterpretation of previous linear sweep voltammetry results and recalculation and correction of reported reduction potentials. This paper reports these corrected reduction potentials. Also reported are the activity coefficients for Ni in synthetic basalt and diopsidic melts and for Co in diopsidic melt.

  17. Self-Propelled Sweeping Removal of Dropwise Condensate on Two-Tier Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Qu, Xiaopeng; Liu, Fangjie; Agapov, Rebecca; Lavrik, Nickolay; Retterer, Scott; Feng, James; Collier, Patrick; Chen, Chuan-Hua; Nature-Inspired Fluids; Interfaces Team; Microscale Physicochemical Hydrodynamics Laboratory Team; CenterNanophase Materials Sciences Team; Department of Mathematics Team

    2015-11-01

    Dropwise condensation can be enhanced by nanostructured superhydrophobic surfaces, on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in-plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.

  18. Techniques used in the F-14 variable-sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.; Chiles, Harry R.

    1988-01-01

    This paper discusses and evaluates the test measurement techniques used to determine the laminar-to-turbulent boundary layer transition location in the F-14 variable-sweep transition flight experiment (VSTFE). The main objective of the VSTFE was to determine the effects of wing sweep on the laminar-to-turbulent transition location at conditions representative of transport aircraft. Four methods were used to determine the transition location: (1) a hot-film anemometer system; (2) two boundary-layer rakes; (3) surface pitot tubes; and (4) liquid crystals for flow visualization. Of the four methods, the hot-film anemometer system was the most reliable indicator of transition.

  19. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Ouyang, G; Jandhyala, V; Champagne, N; Sharpe, R; Fasenfest, B J; Rockway, J D

    2004-12-14

    An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER computational electromagnetics code. The AWE fast frequency sweep is formed by separating the components of the integral equations by frequency dependence, then using this information to find a rational function approximation of the results. The standard AWE method is generalized to work for several integral equations, including the EFIE for conductors and the PMCHWT for dielectrics. The method is also expanded to work for two types of coupled circuit-EM problems as well as lumped load circuit elements. After a simple bisecting adaptive sweep algorithm is developed, dramatic speed improvements are seen for several example problems.

  20. Two-dimensional microtarget imaging with continuous time-base sweep

    SciTech Connect

    Bessarab, A V; Sosipatrov, A V; Suslov, N A

    2000-08-31

    A technique for two-dimensional imaging of an x-ray source with a continuous time-base sweep is described. The technique is based on the use of an x-ray image converter tube in combination with a pinhole camera, which has a linear pinhole array. The basic relationships for determining the parameters of the recording system are given. Setting up the procedure is described and the results of two-dimensional microtarget imaging with a continuous time-base sweep in an experiment at the 'Iskra-4' laser facility are presented. (laser applications and other topics in quantum electronics)

  1. A Coalescent Model for a Sweep of a Unique Standing Variant.

    PubMed

    Berg, Jeremy J; Coop, Graham

    2015-10-01

    The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has become a major pursuit of modern evolutionary genetics. In addition to the classical "hard sweep" hitchhiking model, recent research has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective sweeps. Samples from multiple populations

  2. H2 16O line list for the study of atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N. N.; Voronin, B. A.; Fedorova, A. A.

    2015-01-01

    IR spectroscopy is an important method of remote measurement of H2 16O content in planetary atmospheres with initial spectroscopic information from the HITRAN, GEISA, etc., databases adapted for studies in the Earth's atmosphere. Unlike the Earth, the atmospheres of Mars and Venus mainly consist of carbon dioxide with a CO2 content of about 95%. In this paper, the line list of H2 16O is obtained on the basis of the BT2 line list (R.J. Barber, J. Tennyson, G.J. Harris, et al., Mon. Not. R. Astron. Soc. 368, 1087 (2006)). The BT2 line list containing information on the centers, intensities, and quantum identification of lines is supplemented with the line contour parameters: the self-broadening and carbon dioxide broadening coefficients and the temperature dependence coefficient at 296 K in the range of 0.001-30000 cm-1. Transitions with intensity values 10-30, 10-32, and 10-35 cm/molecule, the total number of which is 323310, 753529, and 2011072, respectively, were chosen from the BT2 line list.

  3. Startle response of captive North Sea fish species to underwater tones between 0.1 and 64 kHz.

    PubMed

    Kastelein, Ronald A; Heul, Sander van der; Verboom, Willem C; Jennings, Nancy; Veen, Jan van der; de Haan, Dick

    2008-06-01

    World-wide, underwater background noise levels are increasing due to anthropogenic activities. Little is known about the effects of anthropogenic noise on marine fish, and information is needed to predict any negative effects. Behavioural startle response thresholds were determined for eight marine fish species, held in a large tank, to tones of 0.1-64 kHz. Response threshold levels varied per frequency within and between species. For sea bass, the 50% reaction threshold occurred for signals of 0.1-0.7 kHz, for thicklip mullet 0.4-0.7 kHz, for pout 0.1-0.25 kHz, for horse mackerel 0.1-2 kHz and for Atlantic herring 4 kHz. For cod, pollack and eel, no 50% reaction thresholds were reached. Reaction threshold levels increased from approximately 100 dB (re 1 microPa, rms) at 0.1 kHz to approximately 160 dB at 0.7 kHz. The 50% reaction thresholds did not run parallel to the hearing curves. This shows that fish species react very differently to sound, and that generalisations about the effects of sound on fish should be made with care. As well as on the spectrum and level of anthropogenic sounds, the reactions of fish probably depend on the context (e.g. location, temperature, physiological state, age, body size, and school size). PMID:18295877

  4. Radio wave emitted by an extensive air showers in 10KHz to 1MHz region

    NASA Technical Reports Server (NTRS)

    Nichimura, J.

    1985-01-01

    The importance of radio waves in a frequency range of less than 1MHz in an EAS shower is discussed. Estimates of radio intensities at 10KHz, 100KHz and 1MHz in EAS showers made on the basis of the Kahn-Lerche theory. Negative charge excess in a shower is the main source of low frequency radio emission, in spite of the importance of the contribution of transverse current in the geomagnetic field in a higher frequency range. An estimate is also made for radio intensity produced when the shower hits the ground. The contribution of this process seems to be important at a large distance, i.e., beyond 1km from the shower axis.

  5. Study of Khz QPO in the Z Source GX 340+0

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    We propose to continue our succesful series of observations of Z sources with extensive observations of just one of them, GX~340+0. Our proposed observations will focus on the relation between the kHz QPO and the lower-frequency horizontal-branch QPO (HBO). Due to special HBO properties of this source, this will sensitively test the Lense- Thirring-precession and beat-frequency interpretations that have been proposed for kHz QPO and HBO. Our long-term program aims to quantitatively model the X-ray spectral and power-spectral variations of Z sources using advanced time series analysis techniques. These aims require to cover the Z track several times.

  6. Zero-phonon-line pumped 100-kHz Yb:YAG thin disk regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Miura, Taisuke; Smrž, Martin; Nagisetty, Siva Sankar; Novák, Ondřej; Chyla, Michal; Severová, Patricie; Endo, Akira; Mocek, Tomáś

    2014-02-01

    We are developing 100-kHz picosecond Yb:YAG thin disk regenerative amplifier with 500-W average power for medical and industrial applications. Especially in case of the next generation of semiconductor lithography, high average power solid-state laser with picosecond pulse duration as pre pulse source is a key element to realize 1-kW EUV lithography source. We compared the output characteristics of CW laser operation pumped at 940-nm and 969-nm, and measured the surface temperature of thin disk. We found that the surface temperature of thin disk pumped at 960-nm was much lower than that pumped at 940-nm. We obtained 83-W output from thin disk regenerative amplifier at the repetition rate of 100-kHz pumped at 969-nm. The measured pulse duration was 1.9-ps.

  7. Comparative study of cable construction for 20 kHz power distribution

    NASA Astrophysics Data System (ADS)

    Putney, William W.; McKay, Scott J.; Freeman, Kenneth A.

    Problems associated with transmission of 20 kHz power because of skin effect are well known. At 20 kHz, classical cable constructions (i.e., solid circular and those based on circular layup of multiple noninsulated strands) larger than 18 gauge utilize only a portion of the conductor cross section to carry current. The unused metal internal to the conduction layer ('skin') can represent considerable excess weight, volume, and material cost for relatively large diameters. In this paper several special constructions have been studied to facilitate making the best choice for given current levels and cable lengths to minimize or eliminate the wasted copper. Among the candidate constructions were Litz, flat conductor, coaxial, and multiple twisted pair. Selection criteria were efficiency of copper utilization, flexibility, EMI, impedances, volume, weight, manufacturing and assembly costs, and whether existing, new, or modified existing termination techniques and hardware would be used.

  8. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser

    PubMed Central

    Oh, W. Y.; Yun, S. H.; Tearney, G. J.; Bouma, B. E.

    2009-01-01

    We demonstrate an ultrahigh-speed wavelength-swept semiconductor laser using a polygon-based wavelength scanning filter. With a polygon rotational speed of 900 revolutions per second, a continuous wavelength tuning rate of 9200 nm/ms and a tuning repetition rate of 115 kHz were achieved. The wavelength tuning range of the laser was 80 nm centered at 1325 nm, and the average polarized output power was 23 mW. PMID:16350273

  9. A modified commercial Ti:sapphire laser with 4 kHz rms linewidth

    NASA Astrophysics Data System (ADS)

    Haubrich, D.; Wynands, R.

    1996-02-01

    We have modified a commercial Ti:sapphire laser to allow optical phase stabilization to an extremely stable semiconductor laser, which in turn is locked to a Doppler-free resonance in a cesium vapor cell. For time scales from 10 μs up to several hours the combined system has a rms linewidth of 4 kHz with respect to the cesium resonance. The system allows the resolution of extremely narrow resonances in a cloud of trapped atoms.

  10. Linearization of the Frequency Sweep of a Frequency-Modulated Continuous-Wave Semiconductor Laser Radar and the Resulting Ranging Performance

    NASA Astrophysics Data System (ADS)

    Karlsson, Christer J.; Olsson, Fredrik Å. A.

    1999-05-01

    The performance of a frequency-modulated continuous-wave (FMCW) semiconductor laser radar has been examined. Frequency modulation (linear chirp) has been studied experimentally in detail. To create a linear frequency sweep, we modified the modulating function according to the measured frequency response of the laser, using an arbitrary function generator. The measurements indicate the possibility of achieving a spectral width of the signal peak that is transform limited rather than limited by the frequency modulation response of the laser, which permits the use of a narrow detection bandwidth. The narrow width results in a relatively high signal-to-noise ratio for low output power and thus also in relatively long-range and high-range accuracy. We have performed measurements of a diffuse target to determine the performance of a test laser radar system. The maximum range, range accuracy, and speed accuracy for a semiconductor laser with an output power of 10 mW and a linewidth of 400 kHz are presented. The influence of the laser s output power and coherence length on the performance of a semiconductor-laser-based FMCW laser radar is discussed.

  11. Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance.

    PubMed

    Karlsson, C J; Olsson, F A

    1999-05-20

    The performance of a frequency-modulated continuous-wave (FMCW) semiconductor laser radar has been examined. Frequency modulation (linear chirp) has been studied experimentally in detail. To create a linear frequency sweep, we modified the modulating function according to the measured frequency response of the laser, using an arbitrary function generator. The measurements indicate the possibility of achieving a spectral width of the signal peak that is transform limited rather than limited by the frequency modulation response of the laser, which permits the use of a narrow detection bandwidth. The narrow width results in a relatively high signal-to-noise ratio for low output power and thus also in relatively long-range and high-range accuracy. We have performed measurements of a diffuse target to determine the performance of a test laser radar system. The maximum range, range accuracy, and speed accuracy for a semiconductor laser with an output power of 10 mW and a linewidth of 400 kHz are presented. The influence of the laser's output power and coherence length on the performance of a semiconductor-laser-based FMCW laser radar is discussed. PMID:18319935

  12. Dependence of kHz quasi-periodic oscillation frequencies on accretion-related parameters

    NASA Astrophysics Data System (ADS)

    Hakan Erkut, M.; Catmabacak, Onur; Duran, Sivan; Çatmabacak, Önder

    2016-07-01

    To study the possible dependence of kHz QPO frequencies on the parameters such as the mass accretion rate, the surface magnetic field strength, mass, and radius of the neutron star, we consider the up-to-date distribution of neutron star LMXBs in the kHz QPO frequency versus X-ray luminosity plane. We confirm the absence of any correlation between QPO frequencies and luminosity in the ensemble of LMXBs. Searching for the dependence of QPO data on accretion-related parameters, we find a correlation between the lower kHz QPO frequency and the parameter combining mass accretion rate with magnetic field strength. The correlation cannot be adequately described by a simple power law due to observed scattering of individual source data in the ensemble of Z and atoll sources. Based on disk-magnetosphere boundary region, the model function for QPO frequency can delineate the correlation taking into account the scattering of individual sources. In addition to mass accretion rate and magnetic field strength, the model function also depends on the radial width of the boundary region near the magnetopause. Modelling the variation of the width with mass accretion rate, we also provide an explanation for the parallel tracks phenomenon observed in the case of individual sources.

  13. Free-field calibration of measurement microphones at frequencies up to 80 kHz

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Herring, Gregory C.

    2002-11-01

    Civil-aviation noise-reduction programs, that make use of scaled-down aircraft models in wind tunnel tests, require knowledge of microphone pressure (i.e., not free-field) sensitivities beyond 20 kHz--since noise wavelengths also scale down with decreasing model size. Furthermore, not all microphone types (e.g., electrets) are easily calibrated with the electrostatic technique, while enclosed cavity calibrations typically have an upper limit for the useful frequency range. Thus, work was initiated to perform a high-frequency pressure calibration of Panasonic electret microphones using a substitution free-field method in a small anechoic chamber. First, a standard variable-frequency pistonphone was used to obtain the pressure calibration up to 16 kHz. Above 16 kHz, to avoid spatially irregular sound fields due to dephasing of loudspeaker diaphragms, a series of resonant ceramic piezoelectric crystals was used at five specific ultrasonic frequencies as the free-field calibration sound source. Then, the free-field sensitivity was converted to a pressure sensitivity with an electrostatic calibration of the reference microphone (an air condenser type), for which the free-field correction is known. Combining the low- and high-frequency data sets, a full frequency calibration of pressure sensitivity for an electret microphone was generated from 63 Hz to 80 kHz.

  14. Compact 4-kHz XeF laser with a multisectional discharge gap

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Selemir, Victor D

    2005-04-30

    A XeF electric-discharge laser with a pulse repetition rate f of up to 4 kHz is developed. The laser electrode unit is based on plate electrodes with inductive-capacitive discharge stabilisation. He and Ne are used as buffer gases, and NF{sub 3} serves as a fluorine donor. A narrow ({approx}1 mm) discharge is achieved; the specific energy deposition per unit length of the active volume is as high as 2 J m{sup -1}. The maximum energy in a laser pulse is {approx}3 mJ for NF{sub 3}-Xe-He and NF{sub 3}-Xe-Ne mixtures at total pressures of 0.8 and 1.2 atm, respectively, and the maximum lasing efficiency is {approx}0.73%. The maximum gas velocity in the working gap is 19 m s{sup -1}. The laser-pulse energy at a high pulse repetition rate (4 kHz) virtually coincides with that obtained at a low repetition rate. The mean output pulse power at f = 4 kHz reaches 12 W, and the rms deviation of the laser-pulse energy is {approx}2.5%. (lasers)

  15. Effects of sweep rates of external magnetic fields on the labyrinthine instabilities of miscible magnetic fluids

    NASA Astrophysics Data System (ADS)

    Wen, C.-Y.; Lin, J.-Z.; Chen, M.-Y.; Chen, L.-Q.; Liang, T.-K.

    2011-05-01

    The interfacial instability of miscible magnetic fluids in a Hele-Shaw Cell is studied experimentally, with different magnitudes and sweep rates of the external magnetic field. The initial circular oil-based magnetic fluid drop is surrounded by the miscible fluid, diesel. The external uniform magnetic fields induce small fingerings around the initial circular interface, so call labyrinthine fingering instability, and secondary waves. When the magnetic field is applied at a given sweep rate, the interfacial length grows significantly at the early stage. It then decreases when the magnetic field reaches the preset values, and finally approaches a certain asymptotic value. In addition, a dimensionless parameter, Pe, which includes the factors of diffusion and sweep rate of the external magnetic field, is found to correlate the experimental data. It is shown that the initial growth rate of the interfacial length is linearly proportional to Pe for the current experimental parameter range and is proportional to the square root of the sweep rate at the onset of labyrinthine instability.

  16. The Ratings Sweeps: An Essay on the Ethics of Television Economics.

    ERIC Educational Resources Information Center

    Tankel, Jonathan David

    The ethical dilemma presented by the ratings sweeps is a fundamental operating principle of advertiser-financed television broadcasting: broadcasters generate operating revenue and profit by exchanging audiences for money with advertisers. In order to create or attract audiences to be sold, the broadcaster formulates or acquires and then…

  17. S/HIC: Robust Identification of Soft and Hard Sweeps Using Machine Learning

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2016-01-01

    Detecting the targets of adaptive natural selection from whole genome sequencing data is a central problem for population genetics. However, to date most methods have shown sub-optimal performance under realistic demographic scenarios. Moreover, over the past decade there has been a renewed interest in determining the importance of selection from standing variation in adaptation of natural populations, yet very few methods for inferring this model of adaptation at the genome scale have been introduced. Here we introduce a new method, S/HIC, which uses supervised machine learning to precisely infer the location of both hard and soft selective sweeps. We show that S/HIC has unrivaled accuracy for detecting sweeps under demographic histories that are relevant to human populations, and distinguishing sweeps from linked as well as neutrally evolving regions. Moreover, we show that S/HIC is uniquely robust among its competitors to model misspecification. Thus, even if the true demographic model of a population differs catastrophically from that specified by the user, S/HIC still retains impressive discriminatory power. Finally, we apply S/HIC to the case of resequencing data from human chromosome 18 in a European population sample, and demonstrate that we can reliably recover selective sweeps that have been identified earlier using less specific and sensitive methods. PMID:26977894

  18. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  19. Do sweep rowers symmetrically activate their low back muscles during indoor rowing?

    PubMed

    Readi, N G; Rosso, V; Rainoldi, A; Vieira, T M M

    2015-08-01

    This study investigates whether sweep rowers activate their low back muscles asymmetrically when exercising on a rowing ergometer. Given that indoor rowing imposes equal loading demands to left and right back muscles, any side differences in activation are expected to reflect asymmetric adaptations resulting from sweep rowing. In addition to trunk kinematics, surface electromyograms (EMGs) were sampled from multiple skin locations along the lumbar spine of six elite, sweep rowers. The distribution of EMG amplitude along the spine was averaged across strokes and compared between sides. Key results indicate a significant effect of trunk side on EMG amplitude and on the low back region where EMG amplitude was greatest. Such side differences were unlikely because of trunk lateral inclination and rotation, which were smaller than 5° for all rowers tested. Moreover, asymmetries manifested differently between participants; there was not a clear predominance of greater EMG amplitude toward the right/left side in portside/starboard rowers. These results suggest that (a) even during indoor rowing, sweep rowers activate asymmetrically their low back muscles; (b) factors other than rowing side might be associated with low back asymmetries; (c) spatial distribution of surface EMG amplitude is sensitive to bilateral changes in back muscles' activation. PMID:25264206

  20. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOEpatents

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  1. Comparison of measured and simulated friction velocity and threshold friction velocity using SWEEP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wind Erosion Prediction System (WEPS) was developed by the USDA Agricultural Research Service as a tool to predict wind erosion and assess the influence of control practices on windblown soil loss. Occasional failure of the WEPS erosion submodel (SWEEP) to simulate erosion in the Columbia Platea...

  2. Performance of the SWEEP model affected by estimates of threshold friction velocity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wind Erosion Prediction System (WEPS) is a process-based model and needs to be verified under a broad range of climatic, soil, and management conditions. Occasional failure of the WEPS erosion submodel (Single-event Wind Erosion Evaluation Program or SWEEP) to simulate erosion in the Columbia Pl...

  3. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    NASA Technical Reports Server (NTRS)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  4. The Subelement Sweeping method for radiation transport modeling on polygonal meshes

    NASA Astrophysics Data System (ADS)

    Gleicher, Frederick

    A new memory efficient way of obtaining numerical solutions to the radiation transport equation on random polygon meshes is developed and analyzed. This method is called the Subelement Sweeping method, and is applied to the discrete ordinates form of the 1-D and 2-D mono-energetic transport equations. In the Subelement Sweeping method, the coarse mesh is first subdivided into triangular subelements, and the subelement mesh is then swept to obtain subelement angular flux solutions. As the subelements are swept the scalar flux for the scattering source is interpolated from the coarse mesh. Numerical solutions on the subelements are obtained with the linear discontinuous finite element method, and the resulting angular fluxes are projected back onto the coarse mesh and accumulated into new scalar flux values. The old subelement information is then thrown away allowing the method to be memory efficient. Formulas for the interpolation from the coarse mesh fluxes to the subelement mesh fluxes and for the projection from the subelement fluxes to the coarse mesh fluxes are derived by minimizing the squared error norm between coarse mesh and subelement scalar fluxes. Asymptotic analysis is carried out in 1-D, and the Subelement Sweeping method is shown to yield a valid diffusion discretization on the coarse mesh. Asymptotic analysis is also carried out in 2-D, and the Subelement Sweeping method is shown to have the diffusion limit for orthogonal quadrilateral meshes with some simplifying assumptions. The method was implemented for the 1-D slab geometry, and numerical experiments in 1-D show that the Subelement Sweeping method is at least third order accurate and has the diffusion limit. The method was also implemented in the Capsaicin framework within the Anaheim package for 2-D polygonal meshes at Los Alamos National Laboratory. Numerical experiments in 2-D show that the Subelement Sweeping method is at least second order accurate, and suggest strongly that the diffusion

  5. Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems.

    PubMed

    Iuga, D; Schäfer, H; Verhagen, R; Kentgens, A P

    2000-12-01

    We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their

  6. Wind turbine rotor blade with in-plane sweep and devices using the same, and methods for making the same

    DOEpatents

    Wetzel, Kyle Kristopher

    2014-06-24

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  7. Wind turbine rotor blade with in-plane sweep and devices using same, and methods for making same

    DOEpatents

    Wetzel, Kyle Kristopher

    2008-03-18

    A wind turbine includes a rotor having a hub and at least one blade having a torsionally rigid root, an inboard section, and an outboard section. The inboard section has a forward sweep relative to an elastic axis of the blade and the outboard section has an aft sweep.

  8. SWEEP: Sciencing with Watersheds, Environmental Education and Partnerships. Instructor's Guide to Implementation and Summer Institute Participant Notebook.

    ERIC Educational Resources Information Center

    Bainer, Deb; Barron, Pat; Cantrell, Diane

    Sciencing with Watersheds, Environmental Education, and Partnerships (SWEEP) is a professional development program designed to help elementary teachers improve the way they teach science using partnerships among teachers and resource professionals. SWEEP follows a thematic approach using watersheds as the core concept of an integrated elementary…

  9. R2d2 Drives Selfish Sweeps in the House Mouse

    PubMed Central

    Didion, John P.; Morgan, Andrew P.; Yadgary, Liran; Bell, Timothy A.; McMullan, Rachel C.; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J.; Campbell, Karl J.; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J.; Crowley, James J.; Chesler, Elissa J.; Förster, Daniel W.; French, John E.; Gabriel, Sofia I.; Gatti, Daniel M.; Garland, Theodore; Giagia-Athanasopoulou, Eva B.; Giménez, Mabel D.; Grize, Sofia A.; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C.; Herman, Jeremy S.; Holt, James M.; Hua, Kunjie; Jolley, Wesley J.; Lindholm, Anna K.; López-Fuster, María J.; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P.; Searle, Jeremy B.; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L.; Thomas-Laemont, Patricia; Threadgill, David W.; Ventura, Jacint; Weinstock, George M.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2016-01-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  10. Genomic Signature of Selective Sweeps Illuminates Adaptation of Medicago truncatula to Root-Associated Microorganisms

    PubMed Central

    Bonhomme, Maxime; Boitard, Simon; San Clemente, Hélène; Dumas, Bernard; Young, Nevin; Jacquet, Christophe

    2015-01-01

    Medicago truncatula is a model legume species used to investigate plant–microorganism interactions, notably root symbioses. Massive population genomic and transcriptomic data now available for this species open the way for a comprehensive investigation of genomic variations associated with adaptation of M. truncatula to its environment. Here we performed a fine-scale genome scan of selective sweep signatures in M. truncatula using more than 15 million single nucleotide polymorphisms identified on 283 accessions from two populations (Circum and Far West), and exploited annotation and published transcriptomic data to identify biological processes associated with molecular adaptation. We identified 58 swept genomic regions with a 15 kb average length and comprising 3.3 gene models on average. The unimodal sweep state probability distribution in these regions enabled us to focus on the best single candidate gene per region. We detected two unambiguous species-wide selective sweeps, one of which appears to underlie morphological adaptation. Population genomic analyses of the remaining 56 sweep signatures indicate that sweeps identified in the Far West population are less population-specific and probably more ancient than those identified in the Circum population. Functional annotation revealed a predominance of immunity-related adaptations in the Circum population. Transcriptomic data from accessions of the Far West population allowed inference of four clusters of coregulated genes putatively involved in the adaptive control of symbiotic carbon flow and nodule senescence, as well as in other root adaptations upon infection with soil microorganisms. We demonstrate that molecular adaptations in M. truncatula were primarily triggered by selective pressures from root-associated microorganisms. PMID:25901015

  11. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick Glauert Goldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  12. SECULAR RESONANCE SWEEPING OF THE MAIN ASTEROID BELT DURING PLANET MIGRATION

    SciTech Connect

    Minton, David A.; Malhotra, Renu E-mail: renu@lpl.arizona.edu

    2011-05-01

    We calculate the eccentricity excitation of asteroids produced by the sweeping {nu}{sub 6} secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the {nu}{sub 6} sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid's initial orbit. Based on the slowest rate of {nu}{sub 6} sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturn's migration speed of {approx}0.15 AU Myr{sup -1} during the era that the {nu}{sub 6} resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturn's current eccentricity and scales with the square of its eccentricity; the limit on Saturn's migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the {nu}{sub 6} resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H {<=} 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of {approx}0.05) linked with Saturn's migration speed {approx}4 AU Myr{sup -1} or a dynamically hot state (single-peaked eccentricity distribution with mean of {approx}0.3) linked with Saturn's migration speed {approx}0.8 AU Myr{sup -1}.

  13. Modulation of 22-khz postejaculatory vocalizations by conditioning to new place: Evidence for expression of a positive emotional state.

    PubMed

    Bialy, Michal; Bogacki-Rychlik, Wiktor; Kasarello, Kaja; Nikolaev, Evgeni; Sajdel-Sulkowska, Elzbieta M

    2016-08-01

    It has been assumed that the 22-kHz ultrasonic vocalizations (USVs) are emitted by adult rats as a result of a negative emotional state. However, emission of the 22-kHz vocalizations by male rats has been also observed following ejaculation, which has a high rewarding value as shown by a conditioned place preference test. These observations suggest that 22-kHz USVs may also occur in response to a positive emotional state. The aim of this study was to determine whether the postejaculatory 22-kHz USVs are related to conditioning processes. The 22 kHz USVs were recorded in Sprague-Dawley males in the postejaculatory refractory period during conditioning processes to a new chamber unrelated to copulation. During the first session in the clean recording chamber, males vocalized marginally and exhibited intensive rearing behavior. From the second to fourth sessions, vocalization duration increased and the number of rearing decreased. Following established conditioning process, odor cues from foreign males, but not the familiar ones, resulted in decreased duration of 22-kHz USVs and increased the number of rearing. On the other hand, in the presence of mating cues (copulatory chamber and presence of the female), males exhibited increased duration of postejaculatory 22-kHz USVs and reduced number of rearing. These results demonstrated that the conditioning to the cues, both unrelated and related to copulation, is important for evoking postejaculatory 22-kHz USVs as well as the relaxation state. Furthermore, these results confirmed the postejaculatory 22-kHz USVs' involvement in expression of the positive emotional state. (PsycINFO Database Record PMID:27454624

  14. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  15. The distribution of kHz QPO frequencies in bright low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Méndez, M.; Homan, J.

    2005-07-01

    We analyzed all published frequencies, ν1 and ν2, of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in bright neutron star low-mass X-ray binaries. The two frequencies are well correlated but, contrary to recent suggestions, the frequency-frequency correlation is significantly different from a ν2 = (3/2) ν1 relation. To check whether, although not following the the 3/2 relation, the QPO frequencies cluster around a region where ν2/ν1 ≈ 3/2, we re-analyzed the Sco X-1 data that were used to report that ratio and show that, because the distribution of ratios of linearly correlated measurements is intrinsically biased, although the significance of the clustering around ν2/ν1 ≈ 3/2 previously reported in the case of Sco X-1 is formally correct, it does not provide any useful information about a possible underlying resonance mechanism in this source. Using the same data, we then show that the (unbiased) distribution of QPO frequencies is consistent with a uniform distribution at a 2.4σ level. To investigate this further, we analyzed a larger data set of Sco X-1 and four other sources, 4U 1608-52, 4U 1636-53, 4U 1728-34 and 4U 1820-30. We find that for all five sources the distribution of the kHz QPO frequencies is not uniform and has multiple peaks, which have no analogy in the distribution of points in the spectral color-color diagrams of these sources. Finally, we demonstrate that a simple random walk of the QPO frequencies can reproduce qualitatively the observed distributions in frequency and frequency ratio. This result weakens the support for resonance models of kHz QPOs in neutron stars.

  16. 2.5-kHz magnetostrictive Tonpilz sonar transducer design

    NASA Astrophysics Data System (ADS)

    Butler, Stephen C.

    2002-07-01

    Naval Undersea Warfare Center has fabricated and tested a 2.5 kHz magnetostrictive sonar transducer to validate various modeling techniques. The transducer selected is a longitudinal vibrator Tonpilz type consisting of Terfenol-D driver, tail mass, radiating head mass, and stress rod bolt with 21 MPa (3000 psi) prestress. The Terfenol-D drive rod is interlaced with three samarium cobalt magnets, one in the center and one on either end magnetically biasing the Terfenol to 60 kA/m (750 Oe). Both the Terfenol-D rods and magnets were laminated to reduce eddy currents. The magnetic circuit is comprised of pole piece discs on each end of the Terfenol-D magnet assembly and an external magnetic cylinder (return path) made of a high-permeability, high-resistivity, high-saturation powdered metal 'T2'. The transducer has a 25 cm (9.8in) diameter radiating face (piston), is 28 cm (11 in.) long, and weighs 15 kg (32 lb.) without the housing. It is 41 cm (16 in.) long and 25 kg (56 lb.) with the underwater housing. The measured results are compared to a finite element model using 'ATILA' and distributed plane wave element equivalent circuit model. The coupling coefficient, permeability and mechanical loss effects for different prestress loads were measured on a resonant Terfenol 'dumbbell' device. The in-water measured results indicate a mechanical Q of 2.5, an effective coupling coefficient of 0.36, an electro-acoustic efficiency of 60 percent, beam pattern directivity index of 6 dB, a maximum Source Level of 214.6 dB re 1uPa/m at 15 Amps AC drive and bandwidth of 2 kHz to 5.4 kHz +/- 1.5 dB.

  17. Ground-truthing 6. 5-kHz side scan sonographs: What are we really imaging

    SciTech Connect

    Gardner, J.V.; Field, M.E.; Lee, H.; Edwards, B.E. ); Masson, D.G.; Kenyon, N. ); Kidd, R.B. )

    1991-04-10

    A 1,000-km{sup 2} area on the distal lobe of Monterey Fan shows a digitate pattern of juxtaposed high and low backscatter on GLORIA side scan sonographs. This area was investigated using stereo photography, high-resolution seismic profiles, and measurements of physical properties of cores to quantitatively evaluate the causes of backscatter from the 6.5-kHz side scan sonar. Stereo photography and bottom video were used to determine that the sediment-water interface typically has a bed roughness less than 10 cm over the entire ground truth area; consequently, bed roughness is not a significant contributor to the sonar backscatter. Vertical-incidence 3.5-kHz profiles reveal that high-backscatter areas allow less penetration and have slightly more relief than low-backscatter areas. Closely spaced measurements of {rho} wave velocity, density, and grain size made on transponder-navigated cores are used to investigate the geoacoustic properties of the sediment with the aid of a numerical model. The model results demonstrate that the sediment-water interface is, in most cases, acoustically transparent to the sonar energy and that most or all of the energy is refracted into the sediment to depths of at least a few meters rather than scattered from the surface. In this area, thick (up to 50 cm) sand deposits with thin interbeds of silty clay correlate with lower backscatter than do silty clay deposits with thin interbeds of sand. This suggests that volume inhomogeneities and complex constructive and destructive interferences caused by the subsurface volume inhomogeneities within the top few meters of the sediment ultimately modulate the intensity of backscatter. Although 6.5-kHz sonographs appear easy to interpret in a conventional and simplistic manner, caution should be used when interpreting lithofacies from backscatter intensities.

  18. Lack of Teratological Effects in Rats Exposed to 20 or 60 kHz Magnetic Fields

    PubMed Central

    Nishimura, Izumi; Oshima, Atsushi; Shibuya, Kazumoto; Negishi, Tadashi

    2011-01-01

    BACKGROUND: A risk assessment of magnetic field (MF) exposure conducted by the World Health Organization indicated the need for biological studies on primary hazard identification and quantitative risk evaluation of intermediate frequency (300 Hz–100 kHz) MFs. Because induction heating cookers generate such MFs for cooking, reproductive and developmental effects are a concern due to the close proximity of the fields' source to a cook's abdomen. METHODS: Pregnant Crl:CD(SD) rats (25/group) were exposed to a 20 kHz, 0.2 mT(rms) or 60 kHz, 0.1 mT(rms) sinusoidal MF or sham-exposed for 22 hr/day during organogenesis, and their fetuses were examined for malformations on gestation day 20. All teratological evaluations were conducted in a blind fashion, and experiments were duplicated for each frequency to confirm consistency of experimental outcomes. RESULTS: No exposure-related changes were found in clinical signs, gross pathology, or number of implantation losses. The number of live fetuses and low-body-weight fetuses as well as the incidence of external, visceral, and skeletal malformations in the fetuses did not indicate significant differences between MF-exposed and sham-exposed groups. Although some fetuses showed isolated changes in sex ratio and skeletal variation and ossification, such changes were neither reproduced in duplicate experiments nor were they common to specific field frequencies. CONCLUSIONS: Exposure of rats to MFs during organogenesis did not show significant reproducible teratogenicity under experimental conditions. Present findings do not support the hypothesis that intermediate frequency MF exposure after implantation carries a significant risk for developing mammalian fetuses. Birth Defects Res (Part B) 92:469–477, 2011. © 2011 Wiley Periodicals, Inc. PMID:21770026

  19. A four kHz repetition rate compact TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yijun; Tan, Rongqing

    2013-09-01

    A compact transversely excited atmospheric (TEA) CO2 laser with high repetition-rate was reported. The size of the laser is 380 mm×300 mm×200 mm, and the discharge volume is 12×103 mm3. The laser cavity has a length of 320mm and consists of a totally reflective concave mirror with a radius of curvature of 4 m (Cu metal substrate coated with Au) and a partially reflecting mirror. The ultraviolet preionization makes the discharge even and stable,the output energy can be as high as 28 mJ under the circumstance of free oscillation, and the width of the light pulse is 60ns.To acquire the high wind velocity, a turbocharger is used in the system of the fast-gas flow cycle. When the wind speed is 100m/s, the repetition rate of the transversely excited atmospheric CO2 laser is up to 2 kHz. On this basis, a dual modular structure with two sets of the gas discharge unit is adopted to obtain a higher pulse repetition frequency output. The dual discharge unit composed two sets of electrodes and two sets of turbo fan. Alternate trigger technology is used to make the two sets of discharge module work in turn with repetition frequency of 2 kHz, the discharge interval of two sets of the gas discharge unit can be adjusted continuously from 20 microseconds to 250 microseconds. Under the conditions of maintaining the other parameters constant, the repetition frequency of the laser pulse is up to 4 kHz. The total size of laser with dual modular structure is 380mm×520mm×200mm, and the discharge volume is 24×103 mm3 with the cavity length of 520mm.

  20. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    SciTech Connect

    Barret, Didier

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  1. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  2. Variation of 40 kHz Signal Level in Relation to Sunrise, Sunset and Climatic Condition

    NASA Astrophysics Data System (ADS)

    Guha, A.; De, B. K.; Saha, A.; Das, T. K.

    2007-07-01

    The sunrise effect, sunset effect, the diurnal and seasonal variations are the characteristic feature of low frequency (LF) radio wave propagated over a large distance. The normal character has been found to be perturbed during rainy days. The amplitude of 40 kHz signal transmitted from Miyakoji station, Japan and received in North-East India is remarkably attenuated after the commencement of rain. On the basis of nature of attenuation the observed records have been classified into two different forms viz., F1 and F2. An analysis in this regard is represented in this paper.

  3. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  4. In situ 24 kHz coherent imaging of morphology change in laser percussion drilling.

    PubMed

    Webster, Paul J L; Yu, Joe X Z; Leung, Ben Y C; Anderson, Mitchell D; Yang, Victor X D; Fraser, James M

    2010-03-01

    We observe sample morphology changes in real time (24 kHz) during and between percussion drilling pulses by integrating a low-coherence microscope into a laser micromachining platform. Nonuniform cut speed and sidewall evolution in stainless steel are observed to strongly depend on assist gas. Interpulse morphology relaxation such as hole refill is directly imaged, showing dramatic differences in the material removal process dependent on pulse duration/peak power (micros/0.1 kW, ps/20 MW) and material (steel, lead zirconate titanate PZT). Blind hole depth precision is improved by over 1 order of magnitude using in situ feedback from the imaging system. PMID:20195306

  5. 8-kHz bottom backscattering measurements at low grazing angles in shallow water.

    PubMed

    La, Hyoungsul; Choi, Jee Woong

    2010-04-01

    8-kHz bottom backscattering measurements at low grazing angles (6 degrees -31 degrees ) are presented. The experiment was performed at a very shallow water site with a silty bottom on the south coast of Korea. Backscattering strengths between -42 and -30 dB were obtained and were compared to a theoretical backscattering model and Lambert's law. The fit of the theoretical model to the measurements suggests that sediment volume scattering is dominant over scattering from bottom interface roughness. Combining these results with previous measurements found in the published literature implies that backscattering strengths from silty sediment increase slightly as the frequency increases. PMID:20369984

  6. 200 Deg C Demonstration Transformer Operates Efficiently at 50 kHz

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E. (Technical Monitor)

    2003-01-01

    A compact, high temperature demonstration transformer was constructed, using a moly permalloy powder core and Teflon -insulated copper wire. At 50 kHz and 200 C, this 1:2 ratio transformer is capable of 98 percent efficiency when operating at a specific power of 6.1 kW/kg at 4 kW. This roughly 7 cm diameter transformer has a mass of 0.65 kg. Although Teflon is unstable above 200 C, about the same electrical performance was seen at 250 C. A plot of winding loss versus frequency illustrates the need to control these losses at high frequency.

  7. High-order harmonic generation at a repetition rate of 100 kHz

    SciTech Connect

    Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.

    2003-07-01

    We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.

  8. Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha

    2009-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.

  9. Induction of apoptosis in MCF‑7 human breast cancer cells by Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelium).

    PubMed

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2016-02-01

    Khz (fusion of Ganoderma lucidum and Polyporus umbellatus), isolated from the mycelia of G. lucidum and P. umbellatus, exerts anti‑proliferative effects against malignant cells; however, its activity against human breast cancer cells remains to be elucidated. In the present study, cell proliferation was assessed using a 3-(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide assay, and poptosis was examined using annexin V‑propidium iodide staining and flow cytometry. The activation of caspases 7, 8 and 9 were detected in the Khz‑treated cells using western blotting. The results demonstrated that Khz increased the intracellular calcium concentration and induced the production of reactive oxygen species in MCF‑7 breast cancer cells, as determined using flow cytometry. The results also demonstrated that Khz inhibited cell proliferation and induced apoptosis in the MCF‑7 cells. In addition, the mechanism by which Khz induces apoptosis in cancer cells was investigated. Khz induced apoptosis preferentially in transformed cells, with a minimal effect on non‑transformed cells, suggesting its potential as an anticancer therapeutic agent. Oxidative stress is associated with apoptotic and non‑apoptotic cell death, although pro‑oxidative conditions are not a pre‑requisite for apoptosis. Assessment of the activation status of caspases 7, 8 and 9 revealed that the levels of cleaved caspases were significantly increased in the cells treated with Khz. It is widely accepted that calcium signaling is important in apoptosis, and the present study observed an increase in [Ca2+]i in response to Khz treatment. The anti‑proliferative and pro‑apoptotic effects of Khz suggest that this extract may be developed as a potential anticancer agent. PMID:26648109

  10. Theoretical interpretation of frequency sweeping observations in the Mega-Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Dendy, R. O.; Gryaznevich, M. P.

    2005-03-01

    Frequency sweeping (chirping) of high frequency magnetohydrodynamic modes is widely observed in tokamak plasmas. In this paper observations of chirping in neutral-beam-heated plasmas in the Mega-Amp Spherical Tokamak (MAST) [A. Sykes, R. J. Akers, L. C. Appel et al., Nucl. Fusion 41, 1423 (2001)] are considered, and it is shown that these may be interpreted using the Berk-Breizman augmentation of the Vlasov-Maxwell equations. This model includes an energetic particle source: it leads not only to a single chirp but also to a series of bursting events. This repetitious behavior is characteristic of the chirping seen in experiments such as MAST. The similarity between features in velocity space and features in frequency space reinforces the theory that hole-clump pair formation is responsible for the observed frequency sweeping.

  11. Isothermal-sweep theorems for ultracold quantum gases in a canonical ensemble

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2011-03-01

    After deriving the isothermal Hellmann-Feynman theorem (IHFT) that is suitable for mixed states in a canonical ensemble, we use this theorem to obtain the isothermal magnetic-field sweep theorems for the free, average, and trapping energies and for the entropy, specific heat, pressure, and atomic compressibility of strongly correlated ultracold quantum gases. In particular, we apply the sweep theorems to two-component Fermi gases in the weakly interacting Bardeen-Cooper-Schrieffer and Bose-Einstein condensate limits, showing that the temperature dependence of the contact parameter can be determined by varying either the entropy or specific heat with respect to the scattering length. We also use the IHFT to obtain the virial theorem in a canonical ensemble and discuss its implications for quantum gases.

  12. Sweeping Jet Actuators - A New Design Tool for High Lift Generation

    NASA Technical Reports Server (NTRS)

    Graff, Emilio; Seele, Roman; Lin, John C.; Wygnanski, Israel

    2013-01-01

    Active Flow Control (AFC) experiments performed at the Caltech Lucas Wind Tunnel on a generic airplane vertical tail model proved the effectiveness of sweeping jets in improving the control authority of a rudder. The results indicated that a momentum coefficient (C(sub u)) of approximately 2% increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. However, sparsely distributed actuators providing a collective C(sub u) approx. = 0.1% were able to increase the side force in excess of 20%. This result is achieved by reducing the spanwise flow along the swept back rudder and its success is attributed to the large sweep back angle of the vertical tail. This current effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project.

  13. Picosecond programmable laser sweeping over 50 mega-wavelengths per second

    NASA Astrophysics Data System (ADS)

    Kim, Youngjae; Burgoyne, Bryan; Godbout, Nicolas; Villeneuve, Alain; Lamouche, Guy; Vergnole, Sébastien

    2011-02-01

    We report here the successful realization of 25 millions wavelengths per second using an SOA based PL around 1565 nm at a 75 MHz repetition rate. The laser is simply composed of an SOA, a CFBG (10 ps/nm) with a 100 nm bandwidth, an optical circulator, an EOM (intensity modulator), and an output coupler (20%). Pulse duration is around 45 ps and OSNR of the pulse is around 35 dB at 1565 nm without sweeping. Tunable dispersion compensating module (TDCM) was used to compress the chirped pulse output and 10 ps pulse duration was obtained at 1548 nm. Finally 25 megawavelengths per second was realized with under 3 pulses per wavelength and 1024 discrete wavelengths. Linear k-space sweeping function was enabled in the swept-source OCT (SS-OCT) system through graphical user interface (GUI).

  14. Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and Users' Manual

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.; Behbehani, Roxanna

    1990-01-01

    NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

  15. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  16. An Integrated Three-Dimensional Solution for Wire-Sweep Analysis in Microchip Encapsulation

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Hsien; Hsu, David C.; Chang, Rong-Yeu

    2004-06-01

    This paper presents an integrated true three-dimensional simulation of resin flow and wire sweep in microchip encapsulation. A FVM-based decoupled solution algorithm with the hybrid elements capability is adopted to calculate the resin flow during mold filling. Furthermore, a highly flexible mesh generation technique especially tailored for the IC packages is also proposed to mesh the model with high quality element both in the flow and gapwize directions. Thanks to the efficiency of the proposed methodology in terms of CPU time and memory requirement, the industrial packages with complex geometry and high pin count can be analyzed with minimum model simplification. Finally, a user-friendly integrated environment is also developed to link the flow analysis with structure analysis to provide the total solution for wire sweep assessment.

  17. 3D measurements of ignition processes at 20 kHz in a supersonic combustor

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Lei, Qingchun; Wu, Yue; Ombrello, Timothy M.; Carter, Campbell D.

    2015-05-01

    The ignition dynamics in a Mach 2 combustor were investigated using a three-dimensional (3D) diagnostic with 20 kHz temporal resolution. The diagnostic was based on a combination of tomographic chemiluminescence and fiber-based endoscopes (FBEs). Customized FBEs were employed to capture line-of-sight integrated chemiluminescence images (termed projections) of the combustor from eight different orientations simultaneously at 20 kHz. The measured projections were then used in a tomographic algorithm to obtain 3D reconstruction of the sparks, ignition kernel, and stable flame. Processing the reconstructions frame by frame resulted in 4D measurements. Key properties were then extracted to quantify the ignition processes, including 3D volume, surface area, sphericity, and velocity of the ignition kernel. The data collected in this work revealed detailed spatiotemporal dynamics of the ignition kernel, which are not obtainable with planar diagnostics, such as its growth, movement, and development into "stable" combustion. This work also illustrates the potential for obtaining quantitative 3D measurements using tomographic techniques and the practical utility of FBEs.

  18. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier.

    PubMed

    Chang, Chun-Lin; Krogen, Peter; Hong, Kyung-Han; Zapata, Luis E; Moses, Jeffrey; Calendron, Anne-Laure; Liang, Houkun; Lai, Chien-Jen; Stein, Gregory J; Keathley, Phillip D; Laurent, Guillaume; Kärtner, Franz X

    2015-04-20

    We report on a diode-pumped, hybrid Yb-doped chirped-pulse amplification (CPA) laser system with a compact pulse stretcher and compressor, consisting of Yb-doped fiber preamplifiers, a room-temperature Yb:KYW regenerative amplifier (RGA), and cryogenic Yb:YAG multi-pass amplifiers. The RGA provides a relatively broad amplification bandwidth and thereby a long pulse duration to mitigate B-integral in the CPA chain. The ~1030-nm laser pulses are amplified up to 70 mJ at 1-kHz repetition rate, currently limited by available optics apertures, and then compressed to ~6 ps with high efficiency. The near-diffraction-limited beam focusing quality is demonstrated with M(x)(2) = 1.1 and M(y)(2) = 1.2. The shot-to-shot energy fluctuation is as low as ~1% (rms), and the long-term energy drift and beam pointing stability for over 8 hours measurement are ~3.5% and <6 μrad (rms), respectively. To the best of our knowledge, this hybrid laser system produces the most energetic picosecond pulses at kHz repetition rates among rod-type laser amplifiers. With an optically synchronized Ti:sapphire seed laser, it provides a versatile platform optimized for pumping optical parametric chirped-pulse amplification systems as well as driving inverse Compton scattered X-rays. PMID:25969056

  19. 23 kHz MEMS based swept source for optical coherence tomography imaging.

    PubMed

    Vuong, Barry; Sun, Cuiru; Harduar, Mark K; Mariampillai, Adrian; Isamoto, Keiji; Chong, Changho; Standish, Beau A; Yang, Victor X D

    2011-01-01

    The transition from benchtop to clinical system often requires the medical technology to be robust, portable and accurate. This poses a challenge to current swept source optical coherence tomography imaging systems, as the bulk of the systems footprint is due to laser components. With the recent advancement of micromachining technology, we demonstrate the characterization of a microelectromechanical system (MEMS) swept source laser for optical coherence tomography imaging (OCT). This laser utilizes a 2 degree of freedom MEMS scanning mirror and a diffraction grating, which are arranged in a Littrow configuration. This resulted in a swept source laser that was capable of scanning at 23.165 kHz (bidirectional) or 11.582 kHz (unidirectional). The free spectral range of the laser was ≈ 100 nm with a central wavelength of ≈ 1330 nm. The 6 dB roll off depth was measured to be at 2.5 mm. Furthermore, the structural morphology of a human finger and tadpole (Xenopus laevis) were evaluated. The overall volumetric footprint of the laser source was measured to be 70 times less than non-MEMS swept sources. Continued work on the miniaturization of OCT system is on going. It is hypothesized that the overall laser size can be reduced for suitable OCT imaging for a point of care application. PMID:22255739

  20. Multi-mJ, kHz, ps deep-ultraviolet source.

    PubMed

    Chang, Chun-Lin; Krogen, Peter; Liang, Houkun; Stein, Gregory J; Moses, Jeffrey; Lai, Chien-Jen; Siqueira, Jonathas P; Zapata, Luis E; Kärtner, Franz X; Hong, Kyung-Han

    2015-02-15

    We demonstrate a 0.56-GW, 1-kHz, 4.2-ps, 2.74-mJ deep-ultraviolet (DUV) laser at ∼257.7  nm with a beam propagation factor (M2) of ∼2.54 from a frequency-quadrupled cryogenic multi-stage Yb-doped chirped-pulse amplifier. The frequency quadrupling is achieved using LiB3O5 and β-BaB2O4 crystals for near-infrared (NIR)-to-green and green-to-DUV conversion, respectively. An overall NIR-to-DUV efficiency of ∼10% has been achieved, which is currently limited by the thermal-induced phase mismatching and the DUV-induced degradation of transmittance. To the best of our knowledge, this is the highest peak-power picosecond DUV source from a diode-pumped solid-state laser operating at kHz repetition rates. PMID:25680176

  1. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  2. Update on an investigation of flight buffeting of a variable-sweep aircraft. [F-111 A dynamic response

    NASA Technical Reports Server (NTRS)

    Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.

    1975-01-01

    A detailed investigation of flight buffeting response of an F-111A aircraft was performed. AIAA Paper No. 74-358 presented results of an initial study of wing and fuselage responses measured at subsonic speeds and wing leading-edge sweep of 26 degrees. The present paper gives additional results for wing sweeps of 26, 50 and 72.5 degrees at Mach numbers up to 1.2 including horizontal tail responses. Power spectra, response time histories, variations of rms response with angle of attack, and effects of Mach number and wing sweep angle are discussed.

  3. A method of generating a linear frequency sweep in the microwave band

    NASA Astrophysics Data System (ADS)

    Hua, Li

    1989-02-01

    This article describes a method for generating a linear frequency sweep of more than 300 MHz in the band of 0.5 to 2.5 GHz using a phase-locked loop and a design of microwave voltage-controlled oscillator using a short-circuited transmission line and a varactor diode as the tuned circuit. The result of linearity measurements on the system is presented.

  4. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection.

    PubMed

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials' health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  5. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  6. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  7. A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements

    NASA Astrophysics Data System (ADS)

    Tsuji, Paul; Engquist, Bjorn; Ying, Lexing

    2012-05-01

    This paper is concerned with preconditioning the stiffness matrix resulting from finite element discretizations of Maxwell's equations in the high frequency regime. The moving PML sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite difference grid, is generalized to an unstructured mesh with finite elements. The method dramatically reduces the number of GMRES iterations necessary for convergence, resulting in an almost linear complexity solver. Numerical examples including electromagnetic cloaking simulations are presented to demonstrate the efficiency of the proposed method.

  8. Deficits in the Sensitivity to Pitch Sweeps by School-Aged Children Wearing Cochlear Implants

    PubMed Central

    Deroche, Mickael L. D.; Kulkarni, Aditya M.; Christensen, Julie A.; Limb, Charles J.; Chatterjee, Monita

    2016-01-01

    Sensitivity to static changes in pitch has been shown to be poorer in school-aged children wearing cochlear implants (CIs) than children with normal hearing (NH), but it is unclear whether this is also the case for dynamic changes in pitch. Yet, dynamically changing pitch has considerable ecological relevance in terms of natural speech, particularly aspects such as intonation, emotion, or lexical tone information. Twenty one children with NH and 23 children wearing a CI participated in this study, along with 18 NH adults and 6 CI adults for comparison. Listeners with CIs used their clinically assigned settings with envelope-based coding strategies. Percent correct was measured in one- or three-interval two-alternative forced choice tasks, for the direction or discrimination of harmonic complexes based on a linearly rising or falling fundamental frequency. Sweep rates were adjusted per subject, in a logarithmic scale, so as to cover the full extent of the psychometric function. Data for up- and down-sweeps were fitted separately, using a maximum-likelihood technique. Fits were similar for up- and down-sweeps in the discrimination task, but diverged in the direction task because psychometric functions for down-sweeps were very shallow. Hits and false alarms were then converted into d′ and beta values, from which a threshold was extracted at a d′ of 0.77. Thresholds were very consistent between the two tasks and considerably higher (worse) for CI listeners than for their NH peers. Thresholds were also higher for children than adults. Factors such as age at implantation, age at profound hearing loss, and duration of CI experience did not play any major role in this sensitivity. Thresholds of dynamic pitch sensitivity (in either task) also correlated with thresholds for static pitch sensitivity and with performance in tasks related to speech prosody. PMID:26973451

  9. Deficits in the Sensitivity to Pitch Sweeps by School-Aged Children Wearing Cochlear Implants.

    PubMed

    Deroche, Mickael L D; Kulkarni, Aditya M; Christensen, Julie A; Limb, Charles J; Chatterjee, Monita

    2016-01-01

    Sensitivity to static changes in pitch has been shown to be poorer in school-aged children wearing cochlear implants (CIs) than children with normal hearing (NH), but it is unclear whether this is also the case for dynamic changes in pitch. Yet, dynamically changing pitch has considerable ecological relevance in terms of natural speech, particularly aspects such as intonation, emotion, or lexical tone information. Twenty one children with NH and 23 children wearing a CI participated in this study, along with 18 NH adults and 6 CI adults for comparison. Listeners with CIs used their clinically assigned settings with envelope-based coding strategies. Percent correct was measured in one- or three-interval two-alternative forced choice tasks, for the direction or discrimination of harmonic complexes based on a linearly rising or falling fundamental frequency. Sweep rates were adjusted per subject, in a logarithmic scale, so as to cover the full extent of the psychometric function. Data for up- and down-sweeps were fitted separately, using a maximum-likelihood technique. Fits were similar for up- and down-sweeps in the discrimination task, but diverged in the direction task because psychometric functions for down-sweeps were very shallow. Hits and false alarms were then converted into d' and beta values, from which a threshold was extracted at a d' of 0.77. Thresholds were very consistent between the two tasks and considerably higher (worse) for CI listeners than for their NH peers. Thresholds were also higher for children than adults. Factors such as age at implantation, age at profound hearing loss, and duration of CI experience did not play any major role in this sensitivity. Thresholds of dynamic pitch sensitivity (in either task) also correlated with thresholds for static pitch sensitivity and with performance in tasks related to speech prosody. PMID:26973451

  10. A semi-analytical method for heat sweep calculations in fractured reservoirs

    SciTech Connect

    Pruess, K.; Wu, Y.S.

    1988-01-01

    An analytical approximation is developed for purely conductive heat transfer from impermeable blocks of rock to fluids sweeping past the rocks in fractures. The method was incorporated into a multi-phase fluid and heat flow simulator. Comparison with exact analytical solutions and with simulations using a multiple interacting continua approach shows very good accuracy, with no increase in computing time compared to porous medium simulations. 14 refs., 3 figs., 5 tabs.

  11. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  12. A semi-analytical method for heat sweep calculations in fractured reservoirs

    SciTech Connect

    Pruess, K.; Wu, Y.S.

    1988-01-01

    An analytical approximation is developed for purely conductive heat transfer from impermeable blocks of rock to fluids sweeping past the rocks in fractures. The method was incorporated into a multi-phase fluid and heat flow simulator. Comparison with exact analytical solutions and with simulations using a multiple interacting continua approach shows very good accuracy, with no increase in computing time compared to porous medium simulations.

  13. Discovery of kHz Quasi-periodic Oscillations in the Z Source Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Homan, Jeroen; van der Klis, Michiel; Kuulkers, Erik; van Paradijs, Jan; Lewin, Walter H. G.; Lamb, Frederick K.; Psaltis, Dimitrios; Vaughan, Brian

    1998-02-01

    During observations with the Rossi X-Ray Timing Explorer from 1997 June 31 to July 3 we discovered two simultaneous kHz quasi-periodic oscillations (QPOs) near 500 and 860 Hz in the low-mass X-ray binary and Z source Cygnus X-2. In the X-ray color-color diagram and hardness-intensity diagram (HID), a clear Z track was traced out, which shifted in the HID within 1 day to higher count rates at the end of the observation. Z track shifts are well known to occur in Cyg X-2 our observation for the first time catches the source in the act. A single kHz QPO peak was detected at the left end of the horizontal branch (HB) of the Z track, with a frequency of 731+/-20 Hz and an amplitude of 4.7+0.8-0.6% rms in the energy band 5.0-60 keV. Further to the right on the HB, at somewhat higher count rates, an additional peak at 532+/-43 Hz was detected with an rms amplitude of 3.0+1.0-0.7%. When the source moved down the HB, thus when the inferred mass accretion rate increased, the frequency of the higher frequency QPO increased to 839+/-13 Hz, and its amplitude decreased to 3.5+0.4-0.3% rms. The higher frequency QPO was also detected on the upper normal branch (NB) with an rms amplitude of 1.8+0.6-0.4% and a frequency of 1007+/-15 Hz; its peak width did not show a clear correlation with inferred mass accretion rate. The lower frequency QPO was most of the time undetectable, with typical upper limits of 2% rms; no conclusion on how this QPO behaved with mass accretion rate can be drawn. If the peak separation between the QPOs is the neutron star spin frequency (as required in some beat-frequency models), then the neutron star spin period is 2.9+/-0.2 ms (346+/-29 Hz). This discovery makes Cyg X-2 the fourth Z source that displays kHz QPOs. The properties of the kHz QPOs in Cyg X-2 are similar to those of other Z sources. Simultaneous with the kHz QPOs, the well-known horizontal-branch QPOs (HBOs) were visible in the power spectra. At the left end of the HB, the second harmonic of

  14. Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise

    2013-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.

  15. Numerical and performance analysis of one row transonic rotor with sweep and lean angle

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Reza; Boroomand, Masoud

    2014-10-01

    In this study, aerodynamic behaviors of swept and leaned blades were investigated. Axial and tangential blade curvatures impacts on compressor's operating parameters were analyzed separately. A commercial CFD program which solves the Reynolds-averaged Navier-Stokes equations was used to find out the mentioned impact and the complicated flow field of transonic compressor-rotors. The CFD method that was used for solving flow field's equation was validated by experimental data of NASA Rotor 67. The results showed that the compressor with curved rotors had higher efficiency, rotor pressure ratio and stable operating range compared to the compressor with un-curved rotors. Using curved rotors mostly had higher impact on the overall stable operating range compared to the other operating parameters. Operating range involves choking point and stall point that were changed separately by using of bended blade. For finding the detailed impact of sweep and lean angle on transonic blades, various forms of lean and sweep angles were exerted to basic rotor. It was found that sweep angles increased overall operating range up to 30%, efficiency up to 2% and pressure ratio up to 1%. Leaning the blades increased the safe operating range, the pressure ratio and efficiency by 14%, 4% and 2% respectively.

  16. Observational Test for a Random Sweeping Model in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Perschke, C.; Narita, Y.; Motschmann, U.; Glassmeier, K. H.

    2016-03-01

    Evidence of frequency broadening at ion kinetic scales due to large-scale eddies and waves is found in solar wind turbulence by a test for a random sweeping model using the magnetic energy spectrum in the frequency vs wave number domain in the comoving frame of the flow obtained from multispacecraft observations. The statistical analysis of the frequency vs wave number spectra without using Taylor's hypothesis shows Gaussian frequency broadening around nearly zero frequencies that increases for larger wave numbers and non-Gaussian tails at higher frequencies. Comparison of the observed frequency broadening with a random sweeping model derived from hydrodynamic turbulence reveals similarities with respect to the Gaussian shape. The standard deviation of the broadening scales with ˜k1.6 ±0.2 and differs from the hydrodynamic turbulence model that predicts ˜k2 /3. We interpret this stronger increasing broadening as a consequence of the more diverse large scale structures (eddies and waves) in plasma turbulence and the accompanied more complex sweeping. Consequently, an identification and association of waves with normal modes based on their dispersion relation only, in particular at ion kinetic scales and below, is not possible in solar wind turbulence.

  17. Observational Test for a Random Sweeping Model in Solar Wind Turbulence.

    PubMed

    Perschke, C; Narita, Y; Motschmann, U; Glassmeier, K H

    2016-03-25

    Evidence of frequency broadening at ion kinetic scales due to large-scale eddies and waves is found in solar wind turbulence by a test for a random sweeping model using the magnetic energy spectrum in the frequency vs wave number domain in the comoving frame of the flow obtained from multispacecraft observations. The statistical analysis of the frequency vs wave number spectra without using Taylor's hypothesis shows Gaussian frequency broadening around nearly zero frequencies that increases for larger wave numbers and non-Gaussian tails at higher frequencies. Comparison of the observed frequency broadening with a random sweeping model derived from hydrodynamic turbulence reveals similarities with respect to the Gaussian shape. The standard deviation of the broadening scales with ∼k^{1.6±0.2} and differs from the hydrodynamic turbulence model that predicts ∼k^{2/3}. We interpret this stronger increasing broadening as a consequence of the more diverse large scale structures (eddies and waves) in plasma turbulence and the accompanied more complex sweeping. Consequently, an identification and association of waves with normal modes based on their dispersion relation only, in particular at ion kinetic scales and below, is not possible in solar wind turbulence. PMID:27058084

  18. Fourth order solutions of singularly perturbed boundary value problems by quarter-sweep iteration

    NASA Astrophysics Data System (ADS)

    Sulaiman, J.; Hasan, M. K.; Othman, M.; Abdul Karim, S. A.

    2013-04-01

    In previous studies, the effectiveness of the second-order quarter-sweep finite difference approximation equations has been shown in solving singularly perturbed boundary value problems. In this paper, however, we investigate the application of the fourth-order quarter-sweep finite difference approximation equation based on the fourth-order standard central difference scheme. To solve the problems numerically, discretization of the singularly perturbed problems via second-order and fourth-order finite difference schemes is proposed to form the corresponding system of linear algebraic equations. For comparison purpose, we also discuss on how to derive the basic formulation and implementation for the family of Successive Over-Relaxation (SOR) iterative methods such as FSSOR, HSSOR and QSSOR in solving the corresponding linear systems generated from the fourth-order discretization schemes based on full, half- and quarter-sweep cases. Some numerical tests were conducted to show that the accuracy of fourth-order finite difference schemes via the corresponding GS methods is more accurate than second-order schemes.

  19. Extreme selective sweeps independently targeted the X chromosomes of the great apes

    PubMed Central

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger; Dutheil, Julien Yann; Veeramah, Krishna R.; Woerner, August E.; Hammer, Michael F.; Mailund, Thomas; Schierup, Mikkel Heide

    2015-01-01

    The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis. PMID:25941379

  20. On Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure

    PubMed Central

    Ferrer-Admetlla, Anna; Liang, Mason; Korneliussen, Thorfinn; Nielsen, Rasmus

    2014-01-01

    We present a new haplotype-based statistic (nSL) for detecting both soft and hard sweeps in population genomic data from a single population. We compare our new method with classic single-population haplotype and site frequency spectrum (SFS)-based methods and show that it is more robust, particularly to recombination rate variation. However, all statistics show some sensitivity to the assumptions of the demographic model. Additionally, we show that nSL has at least as much power as other methods under a number of different selection scenarios, most notably in the cases of sweeps from standing variation and incomplete sweeps. This conclusion holds up under a variety of demographic models. In many aspects, our new method is similar to the iHS statistic; however, it is generally more robust and does not require a genetic map. To illustrate the utility of our new method, we apply it to HapMap3 data and show that in the Yoruban population, there is strong evidence of selection on genes relating to lipid metabolism. This observation could be related to the known differences in cholesterol levels, and lipid metabolism more generally, between African Americans and other populations. We propose that the underlying causes for the selection on these genes are pleiotropic effects relating to blood parasites rather than their role in lipid metabolism. PMID:24554778

  1. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  2. Effect of infrasound on cochlear damage from exposure to a 4-kHz octave band of noise

    PubMed Central

    Harding, Gary W.; Bohne, Barbara A.; Lee, Steve C.; Salt, Alec N.

    2008-01-01

    Infrasound (i.e., < 20 Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100 dB SPL and a 4-kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one ear was perforated (~1 mm2) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4-kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10–21 dB DPOAE LS from 0.6–2 kHz. The infrasound exposure alone resulted in a 10–20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4-kHz OBN alone at 108 dB produced a 10–50 dB ABR TS for 0.5–12 kHz, a 10–60 dB DPOAE LS for 0.6–16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4-kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4-kHz OBN alone. Exposure to only the 4-kHz OBN at 86 dB produces a 10–40 dB ABR TS for 3–12 kHz and 10–30 dB DPOAE LS for 3–8 kHz but little or no

  3. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  4. Theory for broadband Noise of Rotor and Stator Cascades with Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    2001-01-01

    The problem of broadband noise generated by turbulence impinging on a downstream blade row is examined from a theoretical viewpoint. Equations are derived for sound power spectra in terms of 3 dimensional wavenumber spectra of the turbulence. Particular attention is given to issues of turbulence inhomogeneity associated with the near field of the rotor and variations through boundary layers. Lean and sweep of the rotor or stator cascade are also handled rigorously with a full derivation of the relevant geometry and definitions of lean and sweep angles. Use of the general theory is illustrated by 2 simple theoretical spectra for homogeneous turbulence. Limited comparisons are made with data from model fans designed by Pratt & Whitney, Allison, and Boeing. Parametric studies for stator noise are presented showing trends with Mach number, vane count, turbulence scale and intensity, lean, and sweep. Two conventions are presented to define lean and sweep. In the "cascade system" lean is a rotation out of its plane and sweep is a rotation of the airfoil in its plane. In the "duct system" lean is the leading edge angle viewing the fan from the front (along the fan axis) and sweep is the angle viewing the fan from the side (,perpendicular to the axis). It is shown that the governing parameter is sweep in the plane of the airfoil (which reduces the chordwise component of Mach number). Lean (out of the plane of the airfoil) has little effect. Rotor noise predictions are compared with duct turbulence/rotor interaction noise data from Boeing and variations, including blade tip sweep and turbulence axial and transverse scales are explored.

  5. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans Johannes G.; Merkel, Timothy C.; Baker, Richard W.

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  6. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  7. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping: erratum.

    PubMed

    Peterka, P; Honzátko, P; Koška, P; Todorov, F; Aubrecht, J; Podrazký, O; Kašík, I

    2016-07-11

    This erratum presents a correction to the computed reflection spectra of transient fiber Bragg gratings that are spontaneously built-up in the ytterbium-doped fiber of the fiber laser with laser wavelength self-sweeping. The corrected spectra have high reflectivity reaching values up to 100%. Therefore, they still more support the conclusion drawn in the original paper that self-sweeping is an important mechanism for triggering the self-Q-switched regime with giant pulse generation. PMID:27410889

  8. Performance of a 30-kV, 1-kHz, nanosecond source

    SciTech Connect

    Cravey, W.R.; Freytag, K.; Goerz, D.

    1992-06-01

    An existing pulser at LLNL was modified to increase its repetition rate to 1000 Hz. Spark gap recovery measurements were made for both the Marx and the Blumlein output switches. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were necessary to over-voltage the switch. The output of the pulser was used to drive a log-periodic-dipole-array. Measurements were made on the transmitted pulses in an anechoic chamber and yielded a center frequency of 80 MHz. This paper describes the modifications made on the pulse generator, discusses the spark gap recovery data, and summarizes the performance of the pulser at 1 kHz. In addition, a brief description of the antenna is given along with the field measurements that were made in the EMPEROR facility.

  9. Mechanism for generation of 2-3 kHz radiation beyond the termination shock

    SciTech Connect

    Macek, Wieslaw M.

    1996-07-20

    Intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere can possibly be explained provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. The mechanism consists of two steps. First, the beam of energetic electrons generate a high level of electrostatic Langmuir plasma waves. Second, electromagnetic radiation results from the non-linear interaction between Langmuir waves. The field strength of Langmuir waves required to generate the second harmonic emissions are of 50-100 {mu}V m{sup 1}. These waves may be observed in situ by Voyager in the near future.

  10. Transmission line design for a power distribution system at 20 kHz for aircraft

    NASA Technical Reports Server (NTRS)

    Zelby, L. W.; Mathes, J. B.; Shawver, J. W.

    1986-01-01

    A low inductance, low characteristic impedance transmission line was designed for a 20 kHz power distribution system. Several different conductor configurations were considered: strip lines, interdigitated metal ribbons, and standard insulated wires in multiwire configurations (circular and rectangular cylindrical arrangements). The final design was a rectangular arrangement of multiple wires of the same gauge with alternating polarities from wire to wire. This offered the lowest inductance per unit length (on the order of several nanohenries/meter) and the lowest characteristic impedance (on the order of one Ohm). Standard multipin connectors with gold-plated elements were recommended with this transmission line, the junction boxes to be internally connected with flat metal ribbons for low inductance, and the line to be constructed in sections of suitable length. Computer programs for the calculation of inductance of multiwire lines and of capacitances of strip lines were developed.

  11. 50 kHz bottom backscattering measurements from two types of artificially roughened sandy bottoms

    NASA Astrophysics Data System (ADS)

    Son, Su-Uk; Cho, Sungho; Choi, Jee Woong

    2016-07-01

    Laboratory measurements of 50 kHz bottom backscattering strengths as a function of grazing angle were performed on the sandy bottom of a water tank; two types of bottom roughnesses, a relatively smooth interface and a rough interface, were created on the bottom surface. The roughness profiles of the two interface types were measured directly using an ultrasound arrival time difference of 5 MHz and then were Fourier transformed to obtain the roughness power spectra. The measured backscattering strengths increased from ‑29 to 0 dB with increasing grazing angle from 35 to 86°, which were compared to theoretical backscattering model predictions. The comparison results implied that bottom roughness is a key factor in accurately predicting bottom scattering for a sandy bottom.

  12. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate.

    PubMed

    Auböck, Gerald; Consani, Cristina; Monni, Roberto; Cannizzo, Andrea; van Mourik, Frank; Chergui, Majed

    2012-09-01

    We developed a fast multichannel detection system for pump-probe spectroscopy, capable of detecting single shot super-continuum spectra at the repetition rate (10-50 kHz) of an amplified femtosecond laser system. By tandem pumping the amplifier with three pump lasers we obtain very low noise operation, with less than 0.1% rms intensity fluctuations at the output of the amplifier. We also propose an alternative way of chopping the pump beam. With a synchronized scanning mirror two spots in the sample are illuminated by the train of pump pulses in an alternating fashion, such that when both spots are interrogated by the probe pulse, the duty cycle of the experiment is doubled. PMID:23020360

  13. Influence of Liquid Height on Mechanical and Chemical Effects in 20 kHz Sonication

    NASA Astrophysics Data System (ADS)

    Tran, Khuyen Viet Bao; Asakura, Yoshiyuki; Koda, Shinobu

    2013-07-01

    We examined the influence of liquid height on mechanical and chemical effects in 20 kHz sonication with a new Langevin-type transducer. Mechanical effects were evaluated from the degradation of polyethylene oxide in aqueous solution and chemical effects were measured with potassium iodide solution. Standing waves or reactive zones were observed using sonochemical luminescence and aluminum foil erosion. The observed wavelength was reduced by coupled vibration, compared with the wavelength calculated by dividing velocity by irradiation frequency. As liquid height increased, mechanical effects were suppressed. In the case of chemical effects, the stable sonochemical efficiency gained at a height of over 120 mm, and the sonochemical efficiency were also markedly higher than those of a conventional horn-type one.

  14. 20 kHz, 25 kVA node power transformer

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    The electrical and mechanical design information and the electrical and thermal testing performed on the 440-208-V rms, 20-kHz, 25-kVa prototype node transformer are summarized. The calculated efficiency of the node transformer is 99.3 percent based on core loss and copper loss test data, and its maximum calculated load regulation is 0.7 percent. The node transformer has a weight of 19.7 lb and has a power density of 0.8 lb/kW. The hot-spot temperature rise is estimated to be 33 C above the cold plate mounting base. This proof-of-concept transformer design is a viable candidate for the space station Freedom application.

  15. Three-dimensional magnetic cloak working from d.c. to 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui

    2015-11-01

    Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.

  16. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber

    NASA Astrophysics Data System (ADS)

    Sun, Haiyi; Liang, Hong; Liu, Yonghong; Ju, Jingjing; Wei, Yingxia; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    Airflow induced by femtosecond laser (800 nm/1 kHz/25 fs) filamentation with different lengths was investigated in a laboratory cloud chamber. Various filament lengths were generated by adjusting laser energy and lens focal length. It was found that airflow patterns are closely related to filament intensity and length. Intense and long filaments are beneficial in updraft generation with large vortices above the filament, while intense and short filaments tend to promote the formation of well-contacted vortices below the filament. Differently patterned airflows induced elliptical snow piles with different masses. We simulated airflow in a cloud chamber numerically taking laser filaments as heat sources. The mechanisms of differently patterned airflow and snow formation induced by filaments were discussed.

  17. 100 kHz Mueller polarimeter for laser scanning polarimetric microscopy

    NASA Astrophysics Data System (ADS)

    Le Gratiet, A.; Dubreuil, M.; Rivet, S.; Le Grand, Y.

    2016-04-01

    A new setup was recently proposed to perform Mueller matrix polarimetry at 100 kHz using a swept laser source, high order retarders and a single channel photodetector. In this communication, we present the implementation of this setup on a laser scanning microscope to perform high speed scanning Mueller microscopy in transmission. Calibration of the instrument is briefly described and precision and stability over time are evaluated. Finally, Mueller images of a manufactured scene are reported. To our best knowledge, this is the first time that Mueller polarimetry is performed using a laser scanning microscope. We further plan to develop confocal/nonlinear/Mueller microscopy from the same setup in order to produce multimodal contrast images of biological samples.

  18. 100-kHz 22-fs Ti:sapphire regenerative amplification laser with programmable spectral control

    NASA Astrophysics Data System (ADS)

    Sung, Jae Hee; Lee, Hwang Woon; Nam, Chang Hee; Lee, Seong Ku

    2016-05-01

    An ultrashort, high-power Ti:sapphire laser operating at 100 kHz was developed. A regenerative amplifier with a cryogenically cooled Ti:sapphire crystal and a grism compressor were incorporated in the laser. For achieving a wide bandwidth of 78 nm, a programmable spectral control filter was applied to the regenerative amplifier to compensate for the gain narrowing effect. An output power of 1.4 GW with near Fourier-transform-limited pulse duration of 22 fs was achieved after minimizing a spectral phase error with the grism compressor, and the measured beam quality factor ( M 2) was less than 1.2. This high-quality laser will facilitate applications requiring high-repetition rate, ultrashort, high-power laser pulses.

  19. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor

    PubMed Central

    Guentner, Manuel; Schildhauer, Monika; Thumser, Stefan; Mayer, Peter; Stephenson, David; Mayer, Peter J.; Dube, Henry

    2015-01-01

    Photodriven molecular motors are able to convert light energy into directional motion and hold great promise as miniaturized powering units for future nanomachines. In the current state of the art, considerable efforts have still to be made to increase the efficiency of energy transduction and devise systems that allow operation in ambient and non-damaging conditions with high rates of directional motions. The need for ultraviolet light to induce the motion of virtually all available light-driven motors especially hampers the broad applicability of these systems. We describe here a hemithioindigo-based molecular motor, which is powered exclusively by nondestructive visible light (up to 500 nm) and rotates completely directionally with kHz frequency at 20 °C. This is the fastest directional motion of a synthetic system driven by visible light to date permitting materials and biocompatible irradiation conditions to establish similarly high speeds as natural molecular motors. PMID:26411883

  20. A 2 kHz-100 MHz dynamic amplifier for tracking targets of variable amplitude

    NASA Astrophysics Data System (ADS)

    Jain, Mahaveer K.; Bitler, J. Samuel; Grimes, Craig A.

    2001-06-01

    A 2 kHz-100 MHz constant-output dynamic amplifier design is presented. Application of the amplifier is shown for tracking wireless magnetoelastic and magnetoacoustic environmental sensors [C. A. Grimes et al., Rev. Sci. Instrum. 70, 4711 (1999); K. Loiselle and C. A. Grimes, Rev. Sci. Instrum. 71, 1141 (2000)], the detected amplitude which varies significantly with spatial location from the detector. The amplification of the dynamic amplifier, 80 dB, is controlled by inverted feedback voltage; the design is suitable for an input voltage range of -150 to -10 dB. The dynamic amplifier enhances the detection range of magnetoacoustic sensors by an approximate factor of three, and that of magnetoelastic sensors by a factor of 1.25, with the magnetoelastic sensors having comparatively less detection range increase due to higher background noise levels.

  1. Exposure to high-frequency electromagnetic fields (100 kHz-2 GHz) in Extremadura (Spain).

    PubMed

    Rufo, M Montaña; Paniagua, Jesús M; Jiménez, Antonio; Antolín, Alicia

    2011-12-01

    The last decade has seen a rapid increase in people's exposure to electromagnetic fields. This paper reports the measurements of radiofrequency (RF) total power densities and power density spectra in 35 towns of the region of Extremadura, Spain. The spectra were taken with three antennas covering frequencies from 100 kHz to 2.2 GHz. This frequency range includes AM/FM radio broadcasting, television, and cellular telephone signals. The power density data and transmitting antenna locations were stored in a geographic information system (GIS) as an aid in analyzing and interpreting the results. The results showed the power density levels to be below the reference level guidelines for human exposure and that the power densities are different for different frequency ranges and different size categories of towns. PMID:22048492

  2. Mechanism for generation of 2-3 kHz radiation in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Macek, W. M.

    1995-01-01

    The question of how low-frequency non-thermal radio emissions at the boundary of the heliosphere might be generated is considered. The mechanism consists of two steps. First, the beam of energetic electrons generates a high level of electrostatic Langmuir plasma waves. Second, electromagnetic radiation results from the non-linear interaction between Langmuir waves. Intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere can be explained provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. Modification of the heliospheric shocks by the cosmic ray pressure is also taken into account. The field strengths of Langmuir waves required to generate the second harmonic emissions are of 50 to 100 microvolts per meter. These waves may be observed in situ by Voyager 1 and 2 in the near future.

  3. A 400 KHz line rate 2048-pixel stitched SWIR linear array

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick

    2016-05-01

    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (<20mV). An on-chip Correlated Double Sample (CDS) facilitates removal of CTIA KTC and 1/f noise, and other offsets, achieving low noise performance. There are five gain modes in the FPA giving the full well range from 85Ke- to 40Me-. The measured input referred noise is 35e-rms in the highest gain mode. The FPA operates in Integrate While Read mode and, at a master clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  4. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  5. Theory for 2-3 kHz radiation from the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, J. J.; Cairns, Iver H.; Robinson, P. A.

    2004-06-01

    High-intensity radio emission events at 2-3 kHz were observed by the Voyager spacecraft during 1983-1984 and 1992-1993. Such events are thought to occur when shock waves associated with global merged interaction regions (GMIRs) enter a region of the outer heliosheath where the electron speed distribution is primed with a superthermal tail, generated by lower hybrid drive. Previously, this priming mechanism was combined with a theory for type II solar radio bursts to predict the flux of radio emission in the outer heliosphere. Here this theory is extended in a number of ways. First, theoretical arguments regarding the availability of Langmuir and ion sound waves are used to determine whether emission occurs via three-wave processes or processes involving wave scattering off thermal ions (STI). New expressions for conversion efficiencies into radio emission associated with STI are then implemented where appropriate. Next, the dependence of the predicted fluxes on plasma and shock parameters are determined. Lastly, dynamic spectra are calculated for the radio emission generated by shocks traveling from the inner solar wind to beyond the heliopause and into the very local interstellar medium (VLISM). It is found that the predicted fluxes of fundamental radiation are comparable with those observed for plausible shock and plasma parameters. The theory can also predict radio-quiet GMIRs to be smaller and slower and to propagate through heliosheath regions with weaker superthermal tails. The calculated dynamic spectra have predicted fluxes below the Voyager detection thresholds in the solar wind, inner heliosheath, and VLISM. However, the predicted fluxes and frequency-time behavior are very similar to the 2 kHz component observed by the Voyager spacecraft when the GMIR is in the primed region.

  6. Exercise reward induces appetitive 50-kHz calls in rats.

    PubMed

    Heyse, Natalie C; Brenes, Juan C; Schwarting, Rainer K W

    2015-08-01

    Rats express affective states by visible behaviors (like approach or flight) and through different kinds of ultrasonic vocalizations (USV). 50-kHz calls are thought to reflect positive affective states since they occur during rewarding situations like social play or palatable food. However, the effects of voluntary exercise on USV have not been investigated yet, although such exercise can serve as reward. To this aim, we gave young adult rats restricted daily access to a runway maze, where they could interact with either a movable (experimental group) or locked wheel (sedentary group) for 14days and we tested USV in anticipation of and during subsequent running. We also studied inter-individual differences in running, and relationships with USV, and rat-typical trait measures. The results showed that the experimental rats had to be separated into "runners" and "pseudorunners" since only runners performed true running, whereas pseudorunners hardly entered the wheel and turned it only with their forelimbs. This outcome seems to be related to subject-dependent differences in responding to novelty and in reward sensitivity, as indicated by pertinent screening tests, which we had performed prior to the 14days of wheel access. In the runway, our experimental and control groups did not differ in visible anticipatory behavior, like approach. Yet, only runners and sedentary rats displayed an increasing but similar amount of anticipatory USV, which is suggestive of a state of incentive anticipation of the coming wheel access. During exercise, only runners increased USV, probably indicating a highly positive emotional state. To conclude, voluntary exercise provides a promising tool to induce 50-kHz USV during and in anticipation of exercise. When performing such studies, possible individual differences between subjects have to be taken into account, and the actual wheel performance should carefully be controlled. PMID:25872156

  7. PULSE AMPLITUDE DEPENDS ON kHz QPO FREQUENCY IN THE ACCRETING MILLISECOND PULSAR SAX J1808.4-3658

    SciTech Connect

    Bult, Peter; Van der Klis, Michiel

    2015-01-10

    We study the relation between the 300-700 Hz upper kHz quasi-periodic oscillation (QPO) and the 401 Hz coherent pulsations across all outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658 observed with the Rossi X-ray Timing Explorer. We find that the pulse amplitude systematically changes by a factor of ∼2 when the upper kHz QPO frequency passes through 401 Hz: it halves when the QPO moves to above the spin frequency and doubles again on the way back. This establishes for the first time the existence of a direct effect of kHz QPOs on the millisecond pulsations and provides a new clue to the origin of the upper kHz QPO. We discuss several scenarios and conclude that while more complex explanations can not formally be excluded, our result strongly suggests that the QPO is produced by azimuthal motion at the inner edge of the accretion disk, most likely orbital motion. Depending on whether this azimuthal motion is faster or slower than the spin, the plasma then interacts differently with the neutron-star magnetic field. The most straightforward interpretation involves magnetospheric centrifugal inhibition of the accretion flow that sets in when the upper kHz QPO becomes slower than the spin.

  8. Development of a 5-kHz ultra-line-narrowed F2 laser for dioptric projection systems

    NASA Astrophysics Data System (ADS)

    Ariga, Tatsuya; Watanabe, Hidenori; Kumazaki, Takahito; Kitatochi, Naoki; Sasano, Kotaro; Ueno, Yoshifumi; Konishi, Masayuki; Suganuma, Takashi; Nakano, Masaki; Yamashita, Toshio; Nishisaka, Toshihiro; Nohdomi, Ryoichi; Hotta, Kazuaki; Mizoguchi, Hakaru; Nakao, Kiyoharu

    2002-07-01

    The roadmap of semiconductor fabrication predicts that the semiconductor market will demand 65 nm node devices from 2004/2005. Therefore, an Ultra-Line-Narrowed F2 laser for dioptric projection systems is currently being developed under the ASET project of The F2 Laser Lithography Development Project. The target of this project is to achieve a F2 laser spectral bandwidth below 0.2 pm (FWHM) and an average power of 25 W at a repetition rate of 5 kHz. The energy stability (3-sigma) target is less than 10%. An Oscillator-Amplifier arrangement at 2 kHz was developed as a first step of an Ultra-Line-Narrowed F2 laser system. With this laser system, we did the basic study of the synchronization technology for line narrowing operation using two system arrangements: MOPA (Master Oscillator/Power Amplifier) and Injection Locking. Based on this experience we have developed the 5 kHz system. With the 5 kHz Line-Narrowed Injection Locking system, we have achieved a spectral bandwidth of < 0.2 pm with an output energy of > 5 mJ and an energy pulse to pulse stability of 10%. The feasibility of a 5 kHz Ultra-Line-Narrowed F2 Laser for Dioptric Projection Systems has been demonstrated.

  9. Development of 5-kHz ultra-line-narrowed F2 laser for dioptric projection system

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nohdomi, Ryoichi; Ariga, Tatsuya; Hotta, Kazuaki; Nakao, Kiyoharu; Kasuya, Koichi

    2003-11-01

    The roadmap of semiconductor fabrication predicts that the semiconductor market will demand 65 nm node devices from 2004/2005. Therefore, an Ultra-Line-Narrowed F2 laser for dioptric projection systems has been developed under the ASET project of "The F2 Laser Lithography Development Project". The target of this project is to achieve a F2 laser spectral bandwidth below 0.2 pm (FWHM) and an average power of 25 W at a repetition rate of 5 kHz. The energy stability (3-sigma) target is less than 10%. Simultaneously, it is also required to establish the technology of evaluating the optical performance. An Oscillator-Amplifier arrangement at 2 kHz was developed as a first step of an Ultra-Line-Narrowed F2 laser system. With this laser system, we achieved the basic study of the synchronization technology for line narrowing operation using two system arrangements: MOPA (Master Oscillator/Power Amplifier) and Injection Locking. Based on this experience we have developed the 5 kHz system. With the 5 kHz Line-Narrowed Injection Locking system, we have achieved a spectral bandwidth of <0.2 pm with an output energy of >5 mJ and a pulse to pulse energy stability of <10%. The feasibility of a 5 kHz Ultra-Line-Narrowed F2 Laser for Dioptric Projection Systems has been demonstrated.

  10. Configuration of a 30-mm-diameter 94 kHz Ultrasonic Longitudinal Vibration System for Plastic Welding

    NASA Astrophysics Data System (ADS)

    Hongoh, Misugi; Yoshikuni, Masafumi; Miura, Hiroyuki; Miyamoto, Rei; Ueoka, Tetsugi; Tsujino, Jiromaru

    2004-05-01

    Vibration and welding characteristics of a 94 kHz ultrasonic plastic welding system are studied. The 94 kHz ultrasonic plastic welding systems consist of a 30-mm-diameter bolt-clamped Langevin-type PZT longitudinal transducers with four PZT rings, a stepped horn (vibration transform ratio N = 3.0) with a supporting flange at a nodal position and a catenoidal horn (N = 3.13) with an 8-mm-diameter welding tip. Maximum vibration velocity of the 94 kHz welding tip was 3.2 m/s (peak-to-zero value) at loaded condition. The welding characteristics of the 1.0-mm-thick polypropylene sheet specimens using the 94 kHz welding system were studied. Using the 94 kHz system, a weld strength of more than 370 N per one welded area was obtained at a vibration velocity of 2.7 m/sp-0 (peak-to-zero value), welding time of 0.8 s and static pressure of 600 kPa.

  11. Summary of NACA/NASA Variable-Sweep Research and Development Leading to the F-111 (TFX)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    On November 24, 1962, the United States ushered in a new era of aircraft development when the Department of Defense placed an initial development contract for the world's first supersonic variable-sweep aircraft - the F-111 or so-called TFX (tactical fighter-experimental). The multimission performance potential of this concept is made possible by virtue of the variable-sweep wing - a research development of the NASA and its predecessor, the NACA. With the wing swept forward into the maximum span position, the aircraft configuration is ideal for efficient subsonic flight. This provides long-range combat and ferry mission capability, short-field landing and take-off characteristics, and compatibility with naval aircraft carrier operation. With the wing swept back to about 650 of sweep, the aircraft has optimum supersonic performance to accomplish high-altitude supersonic bombing or interceptor missions. With the wing folded still further back, the aircraft provides low drag and low gust loads during supersonic flight "on the deck" (altitudes under 1000 feet). The concept of wing variable sweep, of course, is not new. Initial studies were conducted at Langley as early as 1945, and two subsonic variable-sweep prototypes (Bell X-5 and Grumman XF-IOF) were flown as early as 1951/52. These were subsonic aircraft, however, and the great advantage of variable sweep in improving supersonic flight efficiency could not be realized. Further the structures of these early aircraft were complicated by the necessity for translating the ing fore and aft to achieve satisfactory longitUdinal stability as the wing sweep was varied. Late in 1958 a research breakthrough at Langley provided the technology for designing a variable-sweep wing having satisfactory stability through a wide sweep angle range without the necessity for fore and aft translation of the wing. In this same period there evolved within the military services an urgent requirement for a versatile fighter-bomber that

  12. Street dust: implications for stormwater and air quality, and environmental through street sweeping.

    PubMed

    Calvillo, Steven J; Williams, E Spencer; Brooks, Bryan W

    2015-01-01

    Street dust represents a source of dual potential risk to stormwater and air quality. It has been well documented that street dust washes into local watersheds and can degrade water quality. Research has also demonstrated that ambient particulate matter (PM10) , which is associated with adverse health outcomes, can arise from resuspension of accumulated street dust. Furthermore, many contaminants, including metals, are present at higher concentrations in the smallest available particles, which are more likely to be resuspended in air and stormwater runoff. Although street cleaning is listed as a best management practice for storm water quality by the EPA, data are limited on the critical parameters (technology, environment, usage), which determine the effectiveness of any street cleaning program, particularly in the peer-reviewed literature. The purpose of the present study was to develop a comprehensive understanding of the efficacy of various street cleaning technologies and practices to protect both water quality and public health. Few studies have compared the effectiveness of street sweeping technologies to remove street dust. Unfortunately, the dearth of comprehensive data on exposure, contaminant concentrations, and efficacy of various sweeping technologies and strategies precludes developing quantitative estimates for potential risk to humans and the environment. Based on the few studies available, regenerative air street sweepers appear to provide the most benefit with regard to collection of small particles and prevention of re-entrainment. It is also clear from the available data that local conditions, climate, and specific needs are critical determinants of the ideal street sweeping strategy (technology, frequency, speed, targeted areas, etc.). Given the critical need for protection of water and air quality in rapidly expanding urban regions (e.g., megacities), further research is necessary to develop best practices for street dust management. Herein

  13. A design of three-stage addressing sweep frequency signal generator

    NASA Astrophysics Data System (ADS)

    Liu, Zhihui; Fan, Muwen; Zhou, Luchun

    2015-10-01

    In order to test the working state of adaptive optics system, it is necessary to design an online sweep-frequency circuit module to test the frequency response of the adaptive system. Sweep-frequency signal generator based on Direct Digital frequency Synthesis (DDS) is one of the core components. But the classic DDS technology also has some drawbacks: the truncation error of phase, the truncation error of magnitude (caused by memory FWL) and high occupancy of ROM. These are also the optimization directions in this paper. This paper presents a FPGA-based DDS sweep-frequency signal generator suitable in adaptive optics. It has a low occupancy rate with ROM. And in the case of low-ROM, the paper reduces the noise generated by the truncation error of phase and the truncation error of magnitude of DDS sweepfrequency signal generator by method of linear interpolation. The results show that, when the reference frequency is 100 MHz, the frequency resolution can be as low as 0.025 Hz. It only takes up 0.5 KB ROM with the ROM compression ratio of 64:1 in the optimized scheme in the paper and has higher precision due to the method of linear interpolation than the unoptimized scheme, which can meet the engineering needs. Compared with other schemes, the scheme in the paper improves signal accuracy in the case of reducing the truncation error of phase, the truncation error of magnitude and the occupancy rate with ROM, but only adds a multiplication and division circuit, which is a practical solution.

  14. 183 WTEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz.

    PubMed

    Liu, Qiang; Yan, Xingpeng; Fu, Xing; Gong, Mali; Wang, Dongsheng

    2009-03-30

    We report a high-power, high-repetition-rate TEM00 mode MOPA laser using acoustic-optic Q-switching. Seed laser from the dual-end- pumped Nd:YVO4 oscillator was scaled up to 183.5 W average power at 850 kHz after behind amplified by the four-stage power amplifiers. The stable Q-switching operation worked at different pulse repetition rate from 60 kHz to 850 kHz while the pulse duration increased from 12.8 ns to 72 ns. The beam quality was near diffraction-limit with M2 factors measured as M2x = 1.28 and M2y = 1.21. In CW operation, 195 W TEM00 mode output was achieved corresponding to the total optical-optical efficiency of 44.7% and the absorbed pump power to output power efficiency of 53.3% respectively. PMID:19333332

  15. Kernel sweeping method for exact diagonalization of spin models - numerical computation of a CSL Hamiltonian

    NASA Astrophysics Data System (ADS)

    Schroeter, Darrell; Kapit, Eliot; Thomale, Ronny; Greiter, Martin

    2007-03-01

    We have recently constructed a Hamiltonian that singles out the chiral spin liquid on a square lattice with periodic boundary conditions as the exact and, apart from the two-fold topological degeneracy, unique ground state [1]. The talk will present a kernel-sweeping method that greatly reduces the numerical effort required to perform the exact diagonalization of the Hamiltonian. Results from the calculation of the model on a 4x4 lattice, including the spectrum of the model, will be presented. [1] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys. Rev. Lett. in review.

  16. Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.

    1991-01-01

    An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.

  17. Frequency-sweeping: A new technique for energy-selective transport

    SciTech Connect

    Mynick, H.E.; Pomphrey, N.

    1994-02-01

    A new method is described for inducing energy-selective transport by `sweeping` the frequency of applied low-n magnetic perturbations. The mechanism, formally analogous to the `rising buckets` concept in accelerator physics, can move particles with a selected velocity in a nondiffusive fashion from one specified radius to another. The technique is considered principally as a means for removal of Helium ash. Other likely applications are as a method for burn control, profile control, as a diagnostic, and perhaps as a nonstochastic means of effecting the direct coupling of alpha power recently discussed by Fisch and Rax.

  18. The Grid[Way] Job Template Manager, a tool for parameter sweeping

    NASA Astrophysics Data System (ADS)

    Lorca, Alejandro; Huedo, Eduardo; Llorente, Ignacio M.

    2011-04-01

    Parameter sweeping is a widely used algorithmic technique in computational science. It is specially suited for high-throughput computing since the jobs evaluating the parameter space are loosely coupled or independent. A tool that integrates the modeling of a parameter study with the control of jobs in a distributed architecture is presented. The main task is to facilitate the creation and deletion of job templates, which are the elements describing the jobs to be run. Extra functionality relies upon the GridWay Metascheduler, acting as the middleware layer for job submission and control. It supports interesting features like multi-dimensional sweeping space, wildcarding of parameters, functional evaluation of ranges, value-skipping and job template automatic indexation. The use of this tool increases the reliability of the parameter sweep study thanks to the systematic bookkeeping of job templates and respective job statuses. Furthermore, it simplifies the porting of the target application to the grid reducing the required amount of time and effort. Program summaryProgram title: Grid[Way] Job Template Manager (version 1.0) Catalogue identifier: AEIE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Apache license 2.0 No. of lines in distributed program, including test data, etc.: 3545 No. of bytes in distributed program, including test data, etc.: 126 879 Distribution format: tar.gz Programming language: Perl 5.8.5 and above Computer: Any (tested on PC x86 and x86_64) Operating system: Unix, GNU/Linux (tested on Ubuntu 9.04, Scientific Linux 4.7, centOS 5.4), Mac OS X (tested on Snow Leopard 10.6) RAM: 10 MB Classification: 6.5 External routines: The GridWay Metascheduler [1]. Nature of problem: To parameterize and manage an application running on a grid or cluster. Solution method: Generation of job templates as a cross product of

  19. A fluctuating surface pressure test technique utilizing Mach number sweeps at transonic speeds

    NASA Technical Reports Server (NTRS)

    Hanly, R. D.

    1974-01-01

    A multichannel on-line RMS data acquisition and reduction system has been developed using commercial RMS computing modules and a programmable calculator. Details of this system, which has the capability of acquiring 96 channels of RMS data and computing and printing desired parameters in near real-time, are presented. In addition, raw data can be recorded at a much higher rate for computation and printing later. Results are presented showing the benefits of this system in 'sweep' tests where one parameter such as Mach number or angle of attack is slowly varied with time.

  20. Voltammetric behavior of methaqualone and its determination by single-sweep oscillopolarography.

    PubMed

    Zhang, Lijuan; Zhang, Shaofeng; Wan, Youzhi

    2003-04-10

    A well derivative reduction wave of methaqualone (MTQ) was obtained in 0.033 mol dm(-3) B-R (pH 3.76) buffer solution by single-sweep oscillopolarography. The peak potential is -1.36 V (vs. saturated calomel reference electrode, SCE). The peak current is proportional to the concentration of methaqualone over the range of 7.0 x 10(-8)-9.0 x 10(-6) mol dm(-3). The method has been successfully applied to the determination of methaqualone in tablets. The wave is believed to result from irreversible adsorption through studies of its electrochemical behavior and reaction mechanism. PMID:18968991

  1. Non-parametric analysis of neurochemical effects and Arc expression in amphetamine-induced 50-kHz ultrasonic vocalization.

    PubMed

    Hamed, Adam; Daszczuk, Patrycja; Kursa, Miron Bartosz; Turzyńska, Danuta; Sobolewska, Alicja; Lehner, Małgorzata; Boguszewski, Paweł M; Szyndler, Janusz

    2016-10-01

    A number of studies have identified the importance of dopaminergic, opioid, serotonergic, noradrenergic and glutamatergic neurotransmission in amphetamine-induced "50-kHz" ultrasonic vocalizations (USVs). Amphetamine became a topic of interest for many researchers interested in USVs due to its ability to induce 50-kHz USVs. To date, it has been difficult to identify the neurotransmitters responsible for this phenomenon. The aim of this study was to determine the following: (i) concentrations of neurotransmitters in selected structures of the rat brain after re-exposure of the rats to amphetamine administration; (ii) changes in Arc in the medial prefrontal cortex, striatum, nucleus accumbens core and shell, hippocampus, amygdala and ventral tegmental area; and (iii) a biological basis for differences in 50-kHz USV emissions in response to amphetamine administration. Re-exposure to amphetamine increased 50-kHz USVs. This parameter do not correlate with distance covered by the investigated animals. An increased concentration of noradrenaline in the nucleus accumbens (NAcc) strongly correlated with the number of 50-kHz USVs. We found that NAcc noradrenaline concentrations negatively correlated with the concentration of dopamine and dopamine metabolites and positively correlated with the concentration of GABA and 5-HIAA (serotonin metabolite) in this structure. We have also identified a positive correlation between striatal 3-MT (dopamine metabolite) concentrations and Arc expression in the hippocampal DG as well as a negative correlation between the concentration of GABA in the amygdala and Arc expression in the central amygdala. Thus, the relationship between the emission of 50-kHz USVs and the neurochemical changes that occur after re-exposure to amphetamine indicates cross-talk between NA, DA, 5-HT and GABA neurotransmission in the NAcc. PMID:27288591

  2. Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina).

    PubMed

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Verboom, Willem C; Terhune, John M

    2009-02-01

    The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed. PMID:19206895

  3. Rats selectively bred for low levels of 50 kHz ultrasonic vocalizations exhibit alterations in early social motivation.

    PubMed

    Harmon, K M; Cromwell, H C; Burgdorf, J; Moskal, J R; Brudzynski, S M; Kroes, R A; Panksepp, J

    2008-05-01

    In rats, the rates of 50 kHz ultrasonic vocalizations (USVs) can be used as a selective breeding phenotype and variations in this phenotype can be an indicator of affective states. The 50 kHz USV is elicited by rewarding stimuli (e.g., food, sexual behavior) and therefore can express a positive affective state. Conversely, the 22 kHz USV is elicited by aversive stimuli (e.g., presence of a predator, social defeat) indicating a negative affective state. In the present study, we tested the effect of selectively breeding for 50 kHz USVs on a variety of maternal social/emotional behaviors in young rat pups (PND 10-12). These measures consisted of an assessment of isolation calls and conditioned odor preference paradigm. Results indicate that animals selected for low levels of 50 kHz USVs show the greatest alterations in social behaviors compared to the control animals. The low line animals had an increase in isolation calls tested during place preference conditioning and a decrease in 50 kHz ultrasonic calls in all conditions. These same low line animals failed to show a typical preference for a maternally-associated odor during the place preference test. The different social behaviors of the high line animals did not consistently vary from those of the control group. These results have important implications for the study of genetic and epigenetic mechanisms underlying emotional states, and possibly contribute to the research underlying the emotional changes in developmental disorders such as autistic spectrum disorder by providing a novel animal model that displays communication deficits that are interdependent with significant social behavioral impairments. PMID:18393285

  4. Effects of Mach Number, Leading-Edge Bluntness, and Sweep on Boundary-Layer Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Jillie, Don W.; Hopkins, Edward J.

    1961-01-01

    The effects of leading-edge bluntness and sweep on boundary-layer transition on flat plate models were investigated at Mach numbers of 2.00, 2.50, 3.00, and 4.00. The effect of sweep on transition was also determined on a flat plate model equipped with an elliptical nose at a Mach number of 0.27. Models used for the supersonic investigation had leading-edge radii varying from 0.0005 to 0.040 inch. The free-stream unit Reynolds number was held constant at 15 million per foot for the supersonic tests and the angle of attack was 0 deg. Surface flow conditions were determined by visual observation and recorded photographically. The sublimation technique was used to indicate transition, and the fluorescent-oil technique was used to indicate flow separation. Measured Mach number and sweep effects on transition are compared with those predicted from shock-loss considerations as described in NACA Rep. 1312. For the models with the blunter leading edges, the transition Reynolds number (based on free-stream flow conditions) was approximately doubled by an increase in Mach number from 2.50 to 4.00; and nearly the same result was predicted from shock-loss considerations. At all super- sonic Mach numbers, increases in sweep reduced the transition Reynolds number and the amount of reduction increased with increases in bluntness. The shock-loss method considerably underestimated- the sweep effects, possibly because of the existence of crossflow instability associated with swept wings. At a Mach number of 0.27, no reduction in the transition Reynolds number with sweep was measured (as would be expected with no shock loss) until the sweep angle was attained where crossflow instability appeared.

  5. A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick

    2015-10-01

    In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.

  6. Phasic Dopamine Release in the Nucleus Accumbens in Response to Pro-Social 50 kHz Ultrasonic Vocalizations in Rats

    PubMed Central

    Tose, Amanda; Wanat, Matthew J.; Hart, Andrew S.; Hollon, Nick G.; Phillips, Paul E.M.; Schwarting, Rainer K.W.

    2014-01-01

    Rats emit ultrasonic vocalizations (USVs) that are thought to serve as situation-dependent affective signals and accomplish important communicative functions. In appetitive situations, rats produce 50 kHz USVs, whereas 22 kHz USVs occur in aversive situations. Reception of 50 kHz USVs induces social approach behavior, while 22 kHz USVs lead to freezing behavior. These opposite behavioral responses are paralleled by distinct brain activation patterns, with 50 kHz USVs, but not 22 kHz USVs, activating neurons in the nucleus accumbens (NAcc). The NAcc mediates appetitive behavior and is critically modulated by dopaminergic afferents that are known to encode the value of reward. Therefore, we hypothesized that 50 kHz USVs, but not 22 kHz USVs, elicit NAcc dopamine release. While recording dopamine signaling with fast-scan cyclic voltammetry, freely moving rats were exposed to playback of four acoustic stimuli via an ultrasonic speaker in random order: (1) 50 kHz USVs, (2) 22 kHz USVs, (3) time- and amplitude-matched white noise, and (4) background noise. Only presentation of 50 kHz USVs induced phasic dopamine release and elicited approach behavior toward the speaker. Both of these effects, neurochemical and behavioral, were most pronounced during initial playback, but then declined rapidly with subsequent presentations, indicating a close temporal relationship between the two measures. Moreover, the magnitudes of these effects during initial playback were significantly correlated. Collectively, our findings show that NAcc dopamine release encodes pro-social 50 kHz USVs, but not alarming 22 kHz USVs. Thus, our results support the hypothesis that these call types are processed in distinct neuroanatomical regions and establish a functional link between pro-social communicative signals and reward-related neurotransmission. PMID:25100595

  7. Determination of nitroaromatic explosives residue at military shooting ranges using a sweeping-MEKC method.

    PubMed

    Yang, Ying-Ying; Liu, Ju-Tsung; Lin, Cheng-Huang

    2009-03-01

    We report on the application of sweeping-MEKC, for the first time, using the Environmental Protection Agency Method 8330 stock standard (a mixture of 14 explosives). The use of a traditional MEKC mode provided the LODs (at S/N=3) ranging from 1.5 to 2.9 microg/mL for the 14 explosives standards, which were improved by as low as 3.1-6.5 ng/mL when a sweeping-MEKC technique was used. A set of 21 soil samples were collected from surface soil at military shooting ranges located at Kinmen County in Taiwan, and the findings showed that hexahydro-1,3,5-trini-tro-1,3,5-triazine and 2,4,6-trinitrotoluene made up the explosives residue present at the highest concentrations. This study is very useful for determining current levels of explosives residue and as a reference for making appropriate recommendations concerning future site characterization techniques. PMID:19229840

  8. Flow Separation Control on A Full-Scale Vertical Tail Model Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Andino, Marlyn Y.; Lin, John C.; Washburn, Anthony E.; Whalen, Edward A.; Graff, Emilio C.; Wygnanski, Israel J.

    2015-01-01

    This paper describes test results of a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jets AFC was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The flow separation control optimization was performed at 100 knots, a maximum rudder deflection of 30deg, and sideslip angles of 0deg and -7.5deg. Greater than 20% increments in side force were achieved at the two sideslip angles with a 31-actuator AFC configuration. Flow physics and flow separation control associated with the AFC are presented in detail. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. The momentum coefficient (C sub mu) is shown to be a useful parameter to use for scaling-up sweeping jet AFC from sub-scale tests to full-scale applications. Reducing the number of actuators at a constant total C(sub mu) of approximately 0.5% and tripling the actuator spacing did not significantly affect the flow separation control effectiveness.

  9. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps

    SciTech Connect

    Wi, Sungsool E-mail: lucio.frydman@weizmann.ac.il; Gan, Zhehong; Schurko, Robert; Frydman, Lucio E-mail: lucio.frydman@weizmann.ac.il

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ({sup 13}C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ({sup 1}H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB{sub 1}{sup s} were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

  10. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10{sup -7} or better, resulting in a resolution of {+-}25 {mu}m for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

  11. A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations

    PubMed Central

    Clemente, Florian J.; Cardona, Alexia; Inchley, Charlotte E.; Peter, Benjamin M.; Jacobs, Guy; Pagani, Luca; Lawson, Daniel J.; Antão, Tiago; Vicente, Mário; Mitt, Mario; DeGiorgio, Michael; Faltyskova, Zuzana; Xue, Yali; Ayub, Qasim; Szpak, Michal; Mägi, Reedik; Eriksson, Anders; Manica, Andrea; Raghavan, Maanasa; Rasmussen, Morten; Rasmussen, Simon; Willerslev, Eske; Vidal-Puig, Antonio; Tyler-Smith, Chris; Villems, Richard; Nielsen, Rasmus; Metspalu, Mait; Malyarchuk, Boris; Derenko, Miroslava; Kivisild, Toomas

    2014-01-01

    Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6–23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment. PMID:25449608

  12. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    PubMed

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  13. Reverberation time measurement using integrated impulse response and sweep sine excitation

    NASA Astrophysics Data System (ADS)

    Nabuco, Marco; Brando, Paulo

    2002-11-01

    As the capacity and speed of digital processing systems becomes much higher, the integrated impulsive response for reverberation time measurements by the indirect method also becomes more feasible and faster. The MLS technique to obtain the impulse response for LTI has been developed during the last several years and it is very well reported by the bibliography. Some frequency analyzers available in the market are capable to generate and process MLS to get the impulse responses very easily. Sometimes, when the room to be tested is very reverberant, sequences of higher order and a certain number of average are necessary to assure acceptable signal-to-noise ratio. The sweep sine technique or the deconvolution method to obtain impulsive responses presents many new advantages, most of them still reported in various technical documents. This paper presents the results of application of this technique to measure the reverberation time in two different reverberation rooms. Comparisons with MLS, ensemble, and reverberation time averages are presented. The sweep sine technique repeatability was verified in a reverberation chamber for a polyurethane foam sample and showed smaller standard deviations when compared with other techniques. (To be presented in Portuguese.)

  14. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.

    PubMed

    Wi, Sungsool; Gan, Zhehong; Schurko, Robert; Frydman, Lucio

    2015-02-14

    Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed. PMID:25681899

  15. Demonstration of frequency-sweep testing technique using a Bell 214-ST helicopter

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Diekmann, Vernon L.; Williams, Robert A.; Cason, Randall W.

    1987-01-01

    A demonstration of frequency-sweep testing using a Bell-214ST single-rotor helicopter was completed in support of the Army's development of an updated MIL-H-8501A, and an LHX (ADS-33) handling-qualities specification. Hover and level-flight (V sub a = 0 knots and V sub a = 90 knots) tests were conducted in 3 flight hours by Army test pilots at the Army Aviation Engineering Flight Activity (AEFA) at Edwards AFB, Calif. Bandwidth and phase-delay parameters were determined from the flight-extracted frequency responses as required by the proposed specifications. Transfer function modeling and verification demonstrates the validity of the frequency-response concept for characterizing closed-loop flight dynamics of single-rotor helicopters -- even in hover. This report documents the frequency-sweep flight-testing technique and data-analysis procedures. Special emphasis is given to piloting and analysis considerations which are important for demonstrating frequency-domain specification compliance.

  16. Electromotive Triggering and Single Sweep Analysis of Vestibular Evoked Myogenic Potentials (VEMPs).

    PubMed

    Hecker, Dietmar J; Lohscheller, Joerg; Schorn, Bianca; Koch, Klaus Peter; Schick, Bernhard; Dlugaiczyk, Julia

    2014-01-01

    Cervical (c) and ocular (o) vestibular evoked myogenic potentials (VEMPs) provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice. First, recording of oVEMPs is compromised by small n10 amplitudes. Second, VEMP analysis is currently based on the averaging technique, resulting in a loss of information compared to single sweep analysis. Here, we: 1) developed a novel electromotive trigger mechanism for evoking VEMPs by bone-conducted vibration to the forehead and 2) established maximum entropy extraction of complex wavelet transforms for calculation of phase synchronization between VEMP single sweeps. Both c- and oVEMPs were recorded for n=10 healthy individuals. The oVEMP n10 amplitude was consistently higher (right: 24.84±9.71 μV; left: 27.40±14.55 μV) than previously described. Stable VEMP signals were reached after a smaller number of head taps (oVEMPs 6; cVEMPs 11) compared to current recommendations. Phase synchronization vectors and phase shift values were successfully determined for simulated and clinically recorded VEMPs, providing information about the impact of noise and phase jitter on the VEMP signal. Thus, the proposed method constitutes an easy-to-use approach for the fast detection and analysis of VEMPs in clinical practice. PMID:23529108

  17. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  18. Digital Calibration of TR Modules for Real-time Digital Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Perkovic, Dragana; Shaffer, Scott; Veilleux, Louise; Peral, Eva

    2011-01-01

    Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures such as that of the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). These new instrument concepts require new methods for calibrating the multiple channels, which must be combined on-board, in real-time. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on temperature, which ignores the effects of element aging and drifts unrelated to temperature. We are developing new methods for digitally calibrating digital beamforming arrays to reduce development time, risk and cost of precision calibrated TR modules for array architectures by accurately tracking modules' characteristics through closed-loop Digital Calibration, thus tracking systematic changes regardless of temperature. The benefit of this effort is that it would enable a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost. This new instrument concept requires new methods for calibrating the multiple channels, which must be combined on-board, in real-time.

  19. Femtosecond Laser Tagging Characterization of a Sweeping Jet Actuator Operating in the Compressible Regime

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Miles, Richard B.; Burns, Ross A.; Bathel, Brett F.; Jones, Gregory S.; Danehy, Paul M.

    2016-01-01

    A sweeping jet (SWJ) actuator operating over a range of nozzle pressure ratios (NPRs) was characterized with femtosecond laser electronic excitation tagging (FLEET), single hot-wire anemometry (HWA) and high-speed/phase-averaged schlieren. FLEET velocimetry was successfully demonstrated in a highly unsteady, oscillatory flow containing subsonic through supersonic velocities. Qualitative comparisons between FLEET and HWA (which measured mass flux since the flow was compressible) showed relatively good agreement in the external flow profiles. The spreading rate was found to vary from 0.5 to 1.2 depending on the pressure ratio. The precision of FLEET velocity measurements in the external flow field was poorer (is approximately equal to 25 m/s) than reported in a previous study due to the use of relatively low laser fluences, impacting the velocity fluctuation measurements. FLEET enabled velocity measurements inside the device and showed that choking likely occurred for NPR = 2.0, and no internal shockwaves were present. Qualitative oxygen concentration measurements using FLEET were explored in an effort to gauge the jet's mixing with the ambient. The jet was shown to mix well within roughly four throat diameters and mix fully within roughly eight throat diameters. Schlieren provided visualization of the internal and external flow fields and showed that the qualitative structure of the internal flow does not vary with pressure ratio and the sweeping mechanism observed for incompressible NPRs also probably holds for compressible NPRs.

  20. Cancer Incidence in a Cohort of Swedish Chimney Sweeps, 1958–2006

    PubMed Central

    Jansson, Catarina; Hugosson, Marcus; Tinnerberg, Håkan; Gustavsson, Per

    2013-01-01

    Objectives. We examined cancer incidence in an expanded cohort of Swedish chimney sweeps. Methods. We added male chimney sweep trade union members (1981–2006) to an earlier cohort (employed 1918–1980) and linked them to nationwide registers of cancer, causes of deaths, and total population. The total cohort (n = 6320) was followed from 1958 through 2006. We estimated standardized incidence ratios (SIRs) using the male Swedish population as reference. We estimated exposure as years of employment and analyzed for exposure–response associations by Poisson regression. Results. A total of 813 primary cancers were observed versus 626 expected (SIR = 1.30; 95% confidence interval = 1.21, 1.39). As in a previous follow-up, SIRs were significantly increased for cancer of the esophagus, liver, lung, bladder, and all hematopoietic cancer. New findings included significantly elevated SIRs for cancer of the colon, pleura, adenocarcinoma of the lung, and at unspecified sites. Total cancer and bladder cancer demonstrated positive exposure–response associations. Conclusions. Exposure to soot and asbestos are likely causes of the observed cancer excesses, with contributions from adverse lifestyle factors. Preventive actions to control work exposures and promote healthier lifestyles are an important priority. PMID:23327283

  1. Characterization of pollutants in Florida street sweepings for management and reuse.

    PubMed

    Jang, Yong-Chul; Jain, Pradeep; Tolaymat, Thabet; Dubey, Brajesh; Townsend, Timothy

    2009-01-01

    Disposal and beneficial-use options for street sweeping residuals collected as part of routine roadway maintenance activities in Florida, USA, were assessed by characterizing approximately 200 samples collected from 20 municipalities. Total concentrations (mg/kg or microg/kg) and leachable concentrations (mg/L or microg/L) of 11 metals and a number of organic pollutant groups (volatile organics, semi-volatile organics, pesticides, herbicides, carbamates) in the samples were measured. The synthetic precipitation leaching procedure (SPLP) was performed to evaluate the leachability of the pollutants. From the total metal analysis, several metals (e.g., arsenic, barium, chromium, copper, nickel, lead, and zinc) were commonly found above their detection limits. Zinc was found to have the highest mean concentration of all metals measured (46.7 mg/kg), followed by copper (10.7 mg/kg) and barium (10.5mg/kg). The metal with the smallest mean concentration was arsenic (0.48 mg/kg). A small fraction of the total arsenic, barium, lead, and zinc leached in some samples using the SPLP; leached concentrations were relatively low. A few organic compounds (e.g., 4,4'-DDT, endrin, and endosulfan II) were detected in a limited number of samples. When the total and leaching results were compared to risk-based Florida soil cleanup target levels and groundwater cleanup target levels, the street sweepings were not found to pose a significant human-health risk via direct exposure or groundwater contamination. PMID:19800729

  2. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    SciTech Connect

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  3. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    SciTech Connect

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  4. Compact hadron driver for cancer therapies using continuous energy sweep scanning

    NASA Astrophysics Data System (ADS)

    Wah, Leo Kwee; Monma, Takumi; Adachi, Toshikazu; Kawakubo, Tadamichi; Dixit, Tanuja; Takayama, Ken

    2016-04-01

    A design of a compact hadron driver for future cancer therapies based on the induction synchrotron concept is presented. To realize a slow extraction technique in a fast-cycling synchrotron, which allows energy sweep beam scanning, a zero momentum-dispersion D (s ) region and a high flat D (s ) region are necessary. The proposed design meets both requirements. The lattice has two-fold symmetry with a circumference of 52.8 m, a 2-m dispersion-free straight section, and a 3-m-long large flat dispersion straight section. Assuming a 1.5-T bending magnet, the ring can deliver heavy ions (200 MeV /u ) at 10 Hz. A beam fraction is dropped from the barrier bucket at the desired timing, and the increasing negative momentum deviation of this beam fraction becomes large enough for the fraction to fall in the electrostatic septum extraction gap, which is placed at the large D (s ) region. The programmed energy sweep extraction enables scanning beam irradiation on a cancer site in depth without an energy degrader, avoiding the production of secondary particles and the degradation of emittance. Details of the lattice parameters and computer simulations for slow extraction are discussed. An example extraction scenario is presented. Qualities of the spilled beam such as emittance and momentum spread are discussed, as well as necessary functions and parameters required for the extraction system.

  5. Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation

    PubMed Central

    Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus

    2012-01-01

    An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458

  6. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    NASA Technical Reports Server (NTRS)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure

  7. Hydrogen in a-Si:H deposited by 55 kHz PECVD

    SciTech Connect

    Budaguan, B.G.; Aivazov, A.A.

    1998-12-31

    In this work the mechanism of hydrogen incorporation and structural stability of a-Si:H films deposited by LF 55 kHz glow discharge in a wide range of technological parameters have been investigated. The analysis of plasma emission spectra and microstructure of films measured by IR spectroscopy and atomic force microscopy were carried out. It was shown that hydrogen desorption controls the growth rate in a wide range of substrate temperature (40--325 C) and at low values of LF power (50--200W). At the same time the abnormal increase of hydrogen content due to ion-molecule surface reactions with the increase of substrate temperature was observed. The kinetics of hydrogen diffusion and thermodynamics of defect formation in a-Si:H films were determined from modeling of differential scanning calorimetry data. It is concluded that the mechanism of hydrogen incorporation leads to formation of strong SiH bonds in the material bulk and to increase of structural stability with the increase of substrate temperature despite the increase of hydrogen content.

  8. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures. PMID:14650007

  9. Streamer properties in a repetitively pulsed plasma jet from 1 to 100 kHz

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2015-09-01

    We investigate the properties of guided streamers in a nanosecond repetitively pulsed dielectric barrier plasma jet at repetition rates up to 100 kHz. In this regime, remnant ionization and neutral metastable concentrations are significant in the channel through which the streamer propagates. Both helium and a Penning mixture of helium and argon are investigated as feed gases for a plasma jet in a controlled pressure chamber with a flowing nitrogen background. The applied voltage pulse was set at 8 kV, with a risetime of 15 ns and falltime of 8.5 μs. Streamer dynamics were monitored using spatiotemporally-resolved emission spectroscopy with a PMT filtered at 706.5 nm He (33S - 23P) and 587.6 nm He (33D - 23P) to track the streamer head. Temporally-resolved ICCD imaging was also used to characterize discharge development. Tunable diode laser absorption spectroscopy was used to measure He (23S1) and Ar (3P2) metastable densities in the streamer channel, and streamer current was measured using an inductive current monitor. As the pulse rate is increased, the streamer dynamics are significantly altered, while production of He (23S1) and Ar (3P2) is enhanced with alternate production channels becoming important in the case of He (23S1). Work funded by Air Force Office of Scientific Research under program manager Jason Marshall.

  10. 1KHz high average power single-frequency Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Ma, Xiuhua; Li, Shiguang; Chen, Weibiao

    2015-02-01

    A laser-diode-pumped master oscillator and power amplifier was developed with high efficiency, high average power and high beam quality. The oscillator is an injection-seeding, fiber coupled diode-end-pumped E-O Q-switched Nd:YAG laser, producing single frequency pulse laser output with pulse energy of 8mJ and pulse width of 11ns at a pulse repetition rate of 1KHz,The 1KHz was divided into four chains with frequency of 250Hz, through E-O modulation technology, The power amplifier utilizes conductively-cooling Nd:YAG zigzag slab with two sides' pump architecture at bounce point. Pulse energy of more than 800mJ with pulse widths of 12.6ns was obtained at repetition rate of 250Hz in every amplifier chain, the frequency-doubled pulse energy of 360mJ when KTP crystal was used was obtained at a repetition of 250Hz.

  11. Correlations between X-ray Spectra and kHz QPOS in Sco X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2008-05-01

    Recent analysis of the RXTE X-ray spectra of Sco X-1 discovered that Sco X-1 can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K-line. The results show a strong correlation between spectral power law index and kHz QPOs. Sco X-1 is the prototypical Z-source low-mass X-ray binary (LMXB) system radiating near the Eddington limit. This radiation produces a high radiation pressure in its Compton cloud. We infer that the radiation pressure produces a geometrical configuration of the cloud that is quasi-spherical. We conclude that the high Thomson optical depth of the Compton cloud, in the range of 5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material, which would likely suppress a spin frequency of Sco X-1 due to photon scattering off cloud electrons. We also demonstrate the evolution of its power spectrum when Sco X-1 transitions from the horizontal branch to the normal branch.

  12. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    NASA Astrophysics Data System (ADS)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  13. Observations of the radio noise background in the frequency range 150-180 kHz

    NASA Astrophysics Data System (ADS)

    Knowles, S. H.; Kelly, F. J.; Waltman, W. B.; Odenwald, S.

    1985-05-01

    Observations were made of the radio noise background in the frequency range 150-180 kHz to provide reference data for the design of the ground wave emergency network system. These observations were undertaken at Nanjemoy, Maryland, during early summer 1983 and included 41 days of data recording. The noise environment was found to be dominated by impulsive thunderstorm noise. A typical nighttime mean noise power spectral density was 1×10-15 W m-2 Hz-1 (noise factor of 107 dB above kT0), while a typical daytime level was at least 14 dB quieter. However, the daytime level was at times significantly higher, especially during the presence of a local thunderstorm front. During local thunderstorm activity, impulses with peak power spectral density of 1×10-14 W m-2 Hz-1 were observed frequently, while the most energetic pulse detected during our monitoring period had a peak power spectral density of 6.8×10-14 W m-2 Hz-1 (Fa = 125 dB). Sample amplitude probability distributions and time probability distributions are presented for day/quiet, night, and thunderstorm conditions. Agreement with the mean noise level predictions of CCIR report 322 is satisfactory within the accuracy limits of the CCIR data.

  14. Measurement of the acoustic reflectivity of sirenia (Florida manatees) at 171 kHz.

    PubMed

    Jaffe, Jules S; Simonet, Fernando; Roberts, Paul L D; Bowles, Ann E

    2007-01-01

    The Florida manatee (Trichechus manatus latirostris) is an endangered sirenian. At present, its adult population (approximately 2200) seems stable, but tenuous. Manatee-boat collisions are a significant proportion (approximately 25%) of mortalities. Here, the potential use of active sonar for detecting manatees by quantifying sonic reflectivity is explored. In order to estimate reflectivity two methods were used. One method measured live reflections from captive animals using a carefully calibrated acoustic and co-registered optical system. The other method consisted of the analysis of animal tissue in order to obtain estimates of the sound speed and density and to predict reflectivity. The impedance measurement predicts that for a lateral view, the tissue reflectivity is close to 0.13, with a critical grazing angle of 28 degrees. Data measured from live animals indicate that substantial reflections can be recorded, however in many instances observed "empirical target strengths" were less than an experimentally dependent -48-dB threshold. Conclusions favor the hypothesis that the animals reflect substantial amounts of sound; however, the reflections can often be specular, and therefore impractical for observation by a manatee detection sonar operating at 171 kHz. PMID:17297771

  15. Application of longitudinal and transversal bioimpedance measurements in peritoneal dialysis at 50 kHz

    NASA Astrophysics Data System (ADS)

    Nescolarde, L.; Doñate, T.; Casañas, R.; Rosell-Ferrer, J.

    2010-04-01

    More relevant information of the fluid changes in peritoneal dialysis (PD) might be obtained with segmental bioimpedance measurements rather than whole-body measurement, who hidden information of body composition. Whole-body and segmental bioimpedance measurements were obtained using 5 configurations (whole-body or right-side (RS), longitudinal-leg (L-LEG), longitudinal-abdomen (L-AB), transversal-abdomen (T-AB), and transversal-leg (T-LEG)) in 20 patients: 15 males (56.5 ± 9.4 yr, 24.2 ± 4.2 kg/m2) and 5 females (58.4 ± 7.1 yr, 28.2 ± 5.9 kg/m2) in peritoneal dialysis (PD). The aim of this study is to analyze the relationship between whole-body, longitudinal-segmental (L-LEG and L-AB) and transversal-segmental (TAB and TLEG) bioimpedance measurement at 50 kHz, with clinical parameters of cardiovascular risk, dyslipidemia, nutrition and hydration. The Kolmogorov-Smirnov test was used for the normality test of all variables. Longitudinal bioimpedance parameters were normalized by the height of the patients. The Spearman correlation was used to analyze the correlation between bioimpedance and clinical parameters. The statistical significance was considered with P < 0.05. Transversal bioimpedance measurements have higher correlation with clinical parameters than longitudinal measurements.

  16. Use of 24 kHz ultrasound to improve sulfate precipitation from wastewater.

    PubMed

    Davies, Lisa A; Dargue, Andrew; Dean, John R; Deary, Michael E

    2015-03-01

    Elevated sulfate concentrations in industrial effluent can lead to a number of significant problems, the most serious of which is the corrosion of concrete sewers as a result of hydrogen sulfide induced biogenic sulfuric acid attack; hydrogen sulfide can also create odor nuisance problems. The most common treatment process for sulfate removal from wastewaters is to precipitate it as gypsum using lime addition. Nevertheless, meeting discharge consent limits for sulfate can often present practical challenges due to the solubility of gypsum and so there is a need to investigate technological solutions that might provide for more consistent sulfate removal. This paper reports on the application of ultrasound during the sulfate precipitation process. We show that with as little as 10 s sonication at 24 kHz, significant increases in the rate of sulfate precipitation are observed. Particle size analysis, pH profiles and SEM micrographs, suggest that the likely mode of action is disaggregation of the calcium hydroxide particles, giving a greater solid-liquid interface, thus resulting in a faster dissolution rate and more readily available calcium ions. A range of experimental variables are studied, including the duration and power of sonication, as well as initial sulfate concentration and the effect of changing the time at which sonication is applied. For both sonicated and non-sonicated samples, precipitation commences almost immediately that the lime is added and so induction time is not an issue in this system. PMID:25218769

  17. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1

    PubMed Central

    Feder, Alison F; Rhee, Soo-Yon; Holmes, Susan P; Shafer, Robert W; Petrov, Dmitri A; Pennings, Pleuni S

    2016-01-01

    In the early days of HIV treatment, drug resistance occurred rapidly and predictably in all patients, but under modern treatments, resistance arises slowly, if at all. The probability of resistance should be controlled by the rate of generation of resistance mutations. If many adaptive mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which multiple adaptive mutations spread concomitantly, but if adaptive mutations occur rarely in the population, then a single adaptive mutation should spread alone in a hard selective sweep. Here, we use 6717 HIV-1 consensus sequences from patients treated with first-line therapies between 1989 and 2013 to confirm that the transition from fast to slow evolution of drug resistance was indeed accompanied with the expected transition from soft to hard selective sweeps. This suggests more generally that evolution proceeds via hard sweeps if resistance is unlikely and via soft sweeps if it is likely. DOI: http://dx.doi.org/10.7554/eLife.10670.001 PMID:26882502

  18. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  19. Trilateral South-American project: a reference system for measuring electric power up to 100 kHz - progress report

    NASA Astrophysics Data System (ADS)

    Kyriazis, G. A.; Di Lillo, L.; Slomovitz, D.; Iuzzolino, R.; Yasuda, E.; Trigo, L.; Laiz, H.; Debatin, R. M.; Franco, A. M. R.; Afonso, E.

    2016-07-01

    Three countries in South America are jointly developing a reference system for measuring electric power up to 100 kHz. The objective is the construction of three similar measuring systems, one for each institute. The measuring system is described and its design requirements are presented. This project will contribute to provide calibration services in measuring ranges still not covered by the three institutes.

  20. Are the kHz QPO Lags in Neutron Star 4U 1608–52 due to Reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.

    2016-08-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608‑52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a function of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608‑52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608‑52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608‑52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.

  1. Are the kHz QPO Lags in Neutron Star 4U 1608-52 due to Reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.

    2016-08-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608‑52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a function of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608‑52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608‑52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608‑52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.

  2. Are the kHz QPO lags in neutron star 4U 1608-52 due to reverberation?

    NASA Astrophysics Data System (ADS)

    Cackett, Edward

    2016-04-01

    X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGN) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary 4U 1608-52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGN for neutron star low-mass X-ray binaries, and calculate the expected lags as a function of energy over the range of observed kHz QPO frequencies in 4U 1608-52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608-52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608-52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star low-mass X-ray binaries, suggesting that lower and upper kHz QPOs may have different origins.

  3. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    SciTech Connect

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  4. Sexual performance and precontact 50-kHz ultrasonic vocalizations in WAG/Rij rats: effects of opioid receptor treatment.

    PubMed

    Bialy, Michal; Strefnel, Michal; Nikolaev-Diak, Anna; Socha, Anna; Nikolaev, Evgeni; Boguszewski, Pawel M

    2014-10-01

    WAG/Rij rats are genetically selected animals that model absence epilepsy in rats. Ultrasonic vocalizations and sexual behavior - both ethologically relevant markers of reward system functioning - are poorly described in this strain. The aim of our experiment was to investigate reward-dependent precontact 50-kHz vocalizations (PVs) and copulatory behavior as well as the effects of opioid receptor treatment on such behaviors in sexually experienced WAG/Rij males and rats from two control strains: Sprague-Dawley and Crl: Han Wistar. We analyzed the effects of the opioid receptor antagonist naltrexone (3 mg/kg) and the agonist morphine (1 mg/kg) administration. Additionally, we analyzed the initiation of copulation in sexually naïve males before drug treatment. A significantly lower number of sexually naïve WAG/Rij rats initiated copulation. Sexually experienced WAG/Rij males differed at the control session (after physiological saline treatment) compared with Sprague-Dawley rats: WAG/Rij rats displayed more 50-kHz precontact vocalizations and had longer mount and intromission latencies, longer ejaculation latency, longer postejaculatory latency to exploration, longer 22-kHz vocalization duration after ejaculation, and longer postejaculatory intromission latency. Compared with Crl: Han Wistar rats, WAG/Rij males displayed longer mount latency and shorter 22-kHz vocalization duration. Neither naltrexone nor morphine affected PVs in all groups. On the other hand, opioid receptor treatment differently influenced the number of intromissions required to achieve ejaculation and 22-kHz postejaculatory vocalization duration in WAG/Rij rats than in both control groups. This suggests functional differences in the opioid system in this strain. As a result of the number of males that initiated copulation as well as the number of intromissions to ejaculation and 22-kHz postejaculatory vocalizations which all depend on D1 receptor activation, we suggest that the proportion of

  5. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOEpatents

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  6. Demonstration of correlations between the 8 and 10 kHz atmospherics and the inflammatory reaction of rats after carrageenan injection

    NASA Astrophysics Data System (ADS)

    Ruhenstroth-Bauer, Gerhard; Rösing, Olga; Baumer, Hans; Sönning, Walter; Lehmacher, Walter

    1988-09-01

    Between the mean daily density of 28 kHz atmospherics and the onset of epileptic fits there is a highly significant correlation coefficient ( r) of 0.30; there is a negative coefficient of -0.20 between the fits and the mean daily density of 10 kHz atmospherics. The onset of heart infarction is correlated with 28 kHz atmospherics ( r=0.15). Furthermore, we have discovered that sudden deafness is also correlated with certain configurations of atmospherics. In this paper we report the following correlation coefficients between the inflammatory reaction of rats to a carrageenan injection (rci) into a hind paw and the mean daily pulse rate of atmospherics of the same day: r=0.49 for the 8 kHz atmospherics ( P<0.02) and r=0.44 for the 10 kHz atmospherics ( P<0.04). The correlations between rci reaction and other atmospherics (12 and 28 kHz) are smaller and not significant. By the method of multiple linear regression we found a multiple R=0.54 between rci reaction and the 8 and 10 kHz atmospherics (the regression function for the rci reaction is 0.15+0.004×8 kHz+0.002×10 kHz, P<0.05).

  7. Multiscale magnetosheath turbulence model from mHz to kHz

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin; Narita, Yasuhito

    2015-04-01

    We construct a nonlinear whistler wave model under the influence of the ponderomotive force to explain the energy spectra and the waveforms observed in loin roar waves in Earth's magnetosheath region. We use the two-fluid approach to derive the model equations governing the dynamics of ion-acoustic and whistler waves propagating along the ambient magnetic field. On the account of ponderomotive force, nonlinearity arises in the dynamics of ion-acoustic wave which modify the background number density under the steady state condition. Whistler wave nonlinearly interacts with the ion-acoustic wave while propagating through the density inhomogeneity created by the ponderomotive force, and gets modulated and forms localized structures in the magnetic field. Furthermore, we develop a semi-analytical numerical method to compute the magnetic energy spectrum of whistler wave and investigate the spectral features of the spectrum. The magnetic field spectrum shows a spectral break accompanied by the steepening of the spectrum with a spectral index -3.2 at higher wave numbers. In the recent past, the magnetic field fluctuations with the occurrence of lion roar waves are widely investigated in the frequency range from 20 to 1000 Hz in Earth's magnetosheath. The observed lion roar waves show a broadband turbulence spectrum with the spectral slope about -4.5. The present model develop a concept on multiscale magnetosheath turbulence in which turbulence at low frequencies (mHz) is dominated by mirror mode, however at high frequencies (kHz) it is mainly due to the nonlinear whistler waves and the whistler turbulence is embedded inside the mirror mode.

  8. Imaging Paleo-Iceberg Scour in Western Lake Superior With a 28 kHz Echosounder.

    NASA Astrophysics Data System (ADS)

    Wattrus, N. J.; Sharpe, A. T.; Cartwright, J. A.

    2006-12-01

    In the very fine-grained, gas-poor sediments of Lake Superior, it is possible to collect extremely high resolution images of the subsurface with a 28 kHz echosounder. Penetration depths routinely exceed 20 m. This represents a significant portion of the lake's soft sediment section and makes it possible to image sediments that were deposited during the most recent de-glaciation of the basin. A high-resolution "pseudo-3D" seismic survey recently collected with this system in western Lake Superior provides convincing evidence of buried iceberg scouring in the lakefloor glaciolacustrine sediments. In seismic profiles, the scour appears as localized regions of acoustical blanking that are frequently "U" or "V"-shaped. The scour zones are typically 10s of meters across and up to 6 m deep. In plan-view, they exhibit a curvilinear appearance, frequently running for several kilometers. Many of the scour marks exhibit a WNW-ESE orientation, suggesting that the prevailing winds blew in this direction. Additional support for the iceberg-grounding interpretation is apparent from localized stratigraphic unconformities and raised lateral berms, interpreted to have been caused by iceberg- induced erosion and deformation of the ancient lake floor. By using the top of the scour marks as indicator of their relative age, it appears that the rate of calving into the lake changed over time, reaching a maximum shortly before the end of deposition of the red varved glaciolacustrine clays. Presumably this marks the final retreat of the Superior Lobe of the Laurentide Ice Sheet out of the lake. Earlier increases in scouring events, recorded in the sub-surface section are most likely the result of increases in calving during earlier minor readvances of the ice sheet.

  9. 20 kHz ultrasound assisted treatment of chronic wounds with concurrent optic monitoring

    NASA Astrophysics Data System (ADS)

    Bawiec, Christopher R.; Sunny, Youhan; Diaz, David; Nadkarni, Sumati; Weingarten, Michael S.; Neidrauer, Michael; Margolis, David J.; Zubkov, Leonid; Lewin, Peter A.

    2015-05-01

    This paper describes a novel, wearable, battery powered ultrasound applicator that was evaluated as a therapeutic tool for healing of chronic wounds, such as venous ulcers. The low frequency and low intensity (~100mW/cm2) applicator works by generating ultrasound waves with peak-to-peak pressure amplitudes of 55 kPa at 20 kHz. The device was used in a pilot human study (n=25) concurrently with remote optical (diffuse correlation spectroscopy - DCS) monitoring to assess the healing outcome. More specifically, the ulcers' healing status was determined by measuring tissue oxygenation and blood flow in the capillary network. This procedure facilitated an early prognosis of the treatment outcome and - once verified - may eventually enable customization of wound management. The outcome of the study shows that the healing patients of the ultrasound treated group had a statistically improved (p<0.05) average rate of wound healing (20.6%/week) compared to the control group (5.3%/week). In addition, the calculated blood flow index (BFI) decreased more rapidly in wounds that decreased in size, indicating a correlation between BFI and wound healing prediction. Overall, the results presented support the notion that active low frequency ultrasound treatment of chronic venous ulcers accelerates healing when combined with the current standard clinical care. The ultrasound applicator described here provides a user-friendly, fully wearable system that has the potential for becoming the first device suitable for treatment of chronic wounds in patient's homes, which - in turn - would increase patients' compliance and improve quality of life.

  10. Energy dependent time delays of kHz oscillations due to thermal Comptonization

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Misra, Ranjeev

    2014-12-01

    We study the energy dependent photon variability from a thermal Comptonizing plasma that is oscillating at kHz frequencies. In particular, we solve the linearized time-dependent Kompaneets equation and consider the oscillatory perturbation to be either in the soft photon source or in the heating rate of the plasma. For each case, we self consistently consider the energy balance of the plasma and the soft photon source. The model incorporates the possibility of a fraction of the Comptonized photons impinging back into the soft photon source. We find that when the oscillation is due to the soft photon source, the variation of the fractional root mean sqaure (rms) is nearly constant with energy and the time-lags are hard. However, for the case when the oscillation is due to variation in the heating rate of the corona, and when a significant fraction of the photons impinge back into the soft photon source, the rms increases with energy and the time-lags are soft. As an example, we compare the results with the ˜850 Hz oscillation observed on 1996 March 3 for 4U 1608-52 and show that both the observed soft time-lags as well as the rms versus energy can be well described by such a model where the size of the Comptonizing plasma is ˜1 km. Thus, modelling of the time-lags as due to Comptonization delays, can provide tight constraints on the size and geometry of the system. Detailed analysis would require well-constrained spectral parameters.

  11. The K(a)-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep.

    PubMed

    Glyavin, M; Luchinin, A; Morozkin, M

    2012-07-01

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method. PMID:22852711

  12. The Ka-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep

    NASA Astrophysics Data System (ADS)

    Glyavin, M.; Luchinin, A.; Morozkin, M.

    2012-07-01

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.

  13. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry

    NASA Astrophysics Data System (ADS)

    Prellinger, Günther; Meiners-Hagen, Karl; Pollinger, Florian

    2016-06-01

    A spectroscopic reference for the intrinsic frequency calibration of a ranging system based on frequency-sweeping interferometry (FSI) is presented. Saturation spectroscopy of iodine transitions at 636.8 nm is used to generate well-defined frequency markers. The experimental and analytic implementation is shown to enable in principle a frequency determination with an uncertainty of 0.17 MHz for a coverage factor k = 1. This corresponds to a relative standard uncertainty of 1.5× {10}-7 as contribution to the combined measurement uncertainty of the FSI-based length measurement. But the analysis also reveals the high sensitivity of the actually achievable measurement uncertainty to the quality of the spectroscopic reference data.

  14. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    NASA Astrophysics Data System (ADS)

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 1011-1013 cm-3 and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  15. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results.

    PubMed

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10(11)-10(13) cm(-3) and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented. PMID:26932081

  16. Applications of sweep frequency rotating force perturbation methodology in rotating machinery for dynamic stiffness identification

    NASA Astrophysics Data System (ADS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Grant, John W.; Goldman, Paul

    1992-06-01

    This paper outlines the sweep frequency rotating force perturbation method for identifying the dynamic stiffness characteristics of rotor/bearing/seal systems. Emphasis is placed on nonsynchronous perturbation of rotating shafts in a sequence of constant rotative speeds. In particular, results of the identification of flexible rotor multi-mode parameters and identification of fluid forces in seals and bearings are given. These results, presented in the direct and quadrature dynamic stiffness formats, permit the separation of components for easy identification. Another example of the perturbation method application is the identification of the lateral-torsional coupling due to shaft anisotropy. Results of laboratory rig experiments, the identification algorithm, and data processing techniques are discussed.

  17. The simulative calculation and optimum design for FOA, the purge gas sweeping system

    NASA Astrophysics Data System (ADS)

    Wang, Liquan; Jing, Yukun; Feng, Bing; Li, Fuquan; Xiang, Yong; Han, Wei; Wang, Fang

    2016-01-01

    This paper first studies the structure effect law in order to design a reasonable option in theory for the Final Optics Assembly(FOA)' harmonic converter module, involved in the design of the fluid theory, including the basic equations of fluid motion, the form of fluid motion and fluid movement in the small hole. Optimizing the structure need to be applied to the simulation software, which requires the Fluent simulation principle. Then, combined with theoretical knowledge to design the overall structure of the multiplier module, It will apply the simulation software to optimize structural parameters of the board and use control system to realize it for verifying the law obtained by simulation under various conditions whether consistent with the law in actual work of the sweeping system.

  18. Unsteady Flow Simulation of a Sweeping Jet Actuator Using a Lattice-Boltzmann Method

    NASA Technical Reports Server (NTRS)

    Duda, B.; Wessels, M.; Fares, E.; Vatsa, V.

    2016-01-01

    Active flow control technology is increasingly used in aerospace applications to control flow separation and to improve aerodynamic performance. In this paper, PowerFLOW is used to simulate the flow through a sweeping jet actuator at two different pressure ratios. The lower pressure ratio leads to a high subsonic flow, whereas the high pressure ratio produces a choked flow condition. Comparison of numerical results with experimental data is shown, which includes qualitatively good agreement of pressure histories and spectra. PIV measurements are also available but the simulation overestimates mean and fluctuation quantities outside the actuator. If supply pressure is matched at one point inside the mixing chamber a good qualitative agreement is achieved at all other monitor points.

  19. Sweeping of hydrophobic amines under inhomogeneous electric field and low surfactant concentration in micellar electrokinetic chromatography.

    PubMed

    Ciura, Krzesimir; Kowalski, Piotr; Nowakowska, Joanna; Markuszewski, Michał; Bączek, Tomasz; Dziomba, Szymon

    2016-05-01

    The influence of sample matrix on sample sweeping in MEKC was examined in the presented manuscript. Significant focusing effect was observed for relatively hydrophobic cationic compounds (emetine, strychnine and quinine) using high ionic strength sample matrix (900 mM H3 PO4 /720 mM Tris) which conductivity was about ninefold higher than utilized BGE. Moreover, the results were obtained using BGE composed of comparatively low surfactant concentration (10 mM SDS) and 40 mM H3 PO4 /32 mM Tris buffer solution. About 200 to 300-fold preconcentration of analytes was reached with the presented method. Basing on experimental results and computer simulation using Simul5 software, hypothetical mechanism of observed phenomenon was proposed. PMID:27135308

  20. A microsatellite-based multilocus screen for the identification of local selective sweeps.

    PubMed Central

    Schlötterer, Christian

    2002-01-01

    With the availability of completely sequenced genomes, multilocus scans of natural variability have become a feasible approach for the identification of genomic regions subjected to natural and artificial selection. Here, I introduce a new multilocus test statistic, ln RV, which is based on the ratio of observed variances in repeat number at a set of microsatellite loci in two groups of populations. The distribution of ln RV values captures demographic history of the populations as well as variation in microsatellite mutation among loci. Given that microsatellite loci associated with a recent selective sweep differ from the remainder of the genome, they are expected to fall outside of the distribution of neutral ln RV values. The ln RV test statistic is applied to a data set of 94 loci typed in eight non-African and two African human populations. PMID:11861576

  1. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  2. Digitally Calibrated TR Modules Enabling Real-Time Beamforming SweepSAR Architectures

    NASA Technical Reports Server (NTRS)

    Hoffman, James P.; Veilleux, Louse A.; Peral, Eva; Chuang, Chung-Lun; Shaffer, Scott J.

    2013-01-01

    SweepSAR, a novel radar architecture that depends on a DBF (digital beamforming) array, requires calibration accuracies that are order(s) of magnitude greater than is possible with traditional techniques, such as a priori characterization of TR (transmit/receive) modules in thermal vacuum chambers, or simple loop-back of the calibration signal. The advantages of a SweepSAR architecture are so great that it is worth applying significant resources to calibration efforts. Due to the nature of the DBF, each channel contains a digitizer and very powerful digital processor. Each channel can independently digitize (with the digitizer) and analyze (with the processor) its channel's unique calibration signal, and extract the relevant calibration parameters, namely channel gain and channel phase delay commonly referred to as the gain (or amplitude) and phase of the channel. Using the processor, each channel's gain and phase can theoretically be estimated with arbitrary precision through averaging a sufficiently large number of samples. Systematic errors and the changing gain and phase of the channels, typically due to temperature drifts, limits how long the averaging can occur, which limits the precision of the calibration estimate. However, results indicate that calibration knowledge of both the transmit and receive chains of each TR module can be improved by one or two orders of magnitude. Due to the digital nature of the receiver data, the channel's gain and phase may be corrected by a similar amount, while the transmit chain can only be corrected in a traditional manner. To implement Sweep SAR, the order of magnitude improvement in the knowledge of the channel's gain and phase is needed, and the control of the receiver to a similar level is required. Inherent to the DBF array is the individual digitization of each of the array's receiver channels. Current systems typically combine all of the analog signals in the array into one or two analog channels, which are then

  3. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.

  4. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  5. Landau-Zener sweeps and sudden quenches in coupled Bose-Hubbard chains.

    PubMed

    Kasztelan, C; Trotzky, S; Chen, Y-A; Bloch, I; McCulloch, I P; Schollwöck, U; Orso, G

    2011-04-15

    We simulate numerically the dynamics of strongly correlated bosons in a two-leg ladder subject to a time-dependent energy bias between the two chains. When all atoms are initially in the leg with higher energy, we find a drastic reduction of the interchain particle transfer for slow linear sweeps, in quantitative agreement with recent experiments. This effect is preceded by a rapid broadening of the quasimomentum distribution of atoms, signaling the presence of a bath of low-energy excitations in the chains. We further investigate the scenario of quantum quenches to fixed values of the energy bias. We find that for a large enough density the momentum distribution relaxes to that of an equilibrium thermal state with the same energy. PMID:21568570

  6. Effect of leading edge sweep on shock-shock interference at Mach 8

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.; Wieting, Allan R.; Holden, Michael S.

    1989-01-01

    These Mach 8 experimental results are applicable to the details of a shock-shock interference that may occur on an engine inlet of a hypersonic vehicle from a swept forebody shock interacting with a swept cowl leading edge bow shock or from a swept splitter plate shock interacting with a swept fuel injection strut bow shock. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 deg and 30 deg swept results with the 0 deg swept results shows that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  7. Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal.

    PubMed

    Fateri, Sina; Boulgouris, Nikolaos V; Wilkinson, Adam; Balachandran, Wamadeva; Gan, Tat-Hean

    2014-09-01

    Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. PMID:25167151

  8. A Genome-wide Scan for Selective Sweeps in Racing Horses

    PubMed Central

    Moon, Sunjin; Lee, Jin Woo; Shin, Donghyun; Shin, Kwang-Yun; Kim, Jun; Choi, Ik-Young; Kim, Jaemin; Kim, Heebal

    2015-01-01

    Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses. PMID:26333666

  9. Sweep-up growth at the inner edge of dead zones

    NASA Astrophysics Data System (ADS)

    Drazkowska, Joanna; Windmark, Fredrik; Dullemond, Cornelis P.

    2013-07-01

    Planetesimal formation is still not understood. Coagulation models have revealed numerous obstacles to the dust growth. One of them is the bouncing barrier. The growth of small dust grains was shown to be completely halted already for cm-sized silicate particles. This barrier can be actually beneficial to the growth. When a limited number of grains is inserted into a population halted by the bouncing, growth to planetesimal sizes is possible. This is because as long as a collision between two big particles generally leads to fragmentation, a collision involving non-equal sized aggregates can lead to growth via so-called fragmentation with mass transfer. The origin of the first seeds is a problem for this scenario. We propose a new method of providing the seeds. We find that a steep radial variation in the turbulence efficiency that takes place at the inner edge of a dead zone, promotes planetesimal formation via sweep-up in several ways. It provides a pressure trap that saves the dust from the radial drift barrier. It also causes a change in the maximum size of aggregates at which growth barriers occur. The seeds can grow in the dead zone, where the bouncing barrier occurs for larger grains, and then be delivered by radial mixing to the MRI active region, where the growth via sweep-up occurs. In the presented model, which is employing an ad hoc turbulent viscosity change near the snow line, it is possible to grow planetesimals by incremental growth on timescales relevant for planet formation.

  10. Dealloying NiCo and NiCoCu Alloy Thin Films Using Linear Sweep Voltammetry

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    When electrodeposited into thin films, metals have well-known electrochemical potentials at which they will be removed from the film. These potential differences can be utilized to re-oxidize only certain metals in an alloy, altering the film's structure and composition. Here we discuss NiCo and NiCoCu thin films' response to linear sweep voltammetry (LSV) as a means of electrochemical dealloying. For each of four different metal ratios, films were dealloyed to various potentials in order to gain insight into the evolution of the film over the course of the LSV. Capacitance, topography, and composition were examined for each sample before and after linear sweep voltammetry was performed. For NiCo films with high percentages of Ni, dealloying resulted in almost no change in composition, but did result in an increased capacitance, with greater increases occurring at higher LSV potentials. Dealloying also resulted in the appearance of large (100-1000 nm) pores on the surface of the film. For NiCoCu films with high percentages of Ni, Cu was almost completely removed from the film at LSV potentials greater than 500 mV. The LSV first removed larger copper-rich dendrites from the film's surface before creating numerous nano-pores, resulting in a net increase in area. This work is supported by an Award to Hope College from the HHMI Undergraduate Science Education Program, the Hope College Department of Physics Frissel Research Fund, and the National Science Foundation under Grants RUI-DMR-1104725 and MRI-CHE-0959282.

  11. Acceleration of groundwater remediation by deep sweeps and vortex ejections induced by rapidly pulsed pumping

    NASA Astrophysics Data System (ADS)

    Kahler, David M.; Kabala, Zbigniew J.

    2016-05-01

    One key limiting factor to groundwater remediation is contaminant sequestered in pores whose contents do not mix well with the bulk flow. Mixing between well-connected (pores whose volume is flushed as water flows through the aquifer) and poorly connected pores (pores whose volume does not exchange readily when water flows through the aquifer) is of primary concern. Under steady flow, contaminants are effectively trapped in the poorly connected pores and are transferred only by molecular diffusion. This slow mixing process between pore types is a bottleneck to remediation. We present a novel rapidly pulsed pumping method that increases the mixing between these pore types. We do it in the context of pump-and-treat remediation because it is the most common remediation practice. In rapidly pulsed pumping, the increase in flow causes a deep sweep, which pushes the flow into poorly connected pores and sweeps out sequestered contaminants. The decrease in flow causes a vortex ejection, which causes the vortex within the poorly connected pore to emerge with contaminant. These actions are modeled with computational fluid mechanics to elucidate the individual mechanisms and determine how they function and interact. Cleanup of single and multiple poorly connected pore systems were simulated and show the acceleration possible. This technique can decrease the time and cost needed to remediate contaminated aquifers, which in the United States has been estimated to exceed $1 trillion. Since our rapidly pulsed pumping method enhances mixing between well-connected and poorly connected pores, it can be applied to other remediation schemes such as in situ methods.

  12. The First Steps of Adaptation of Escherichia coli to the Gut Are Dominated by Soft Sweeps

    PubMed Central

    Lourenço, Marta; Bergman, Marie-Louise; Sobral, Daniel; Demengeot, Jocelyne; Xavier, Karina B.; Gordo, Isabel

    2014-01-01

    The accumulation of adaptive mutations is essential for survival in novel environments. However, in clonal populations with a high mutational supply, the power of natural selection is expected to be limited. This is due to clonal interference - the competition of clones carrying different beneficial mutations - which leads to the loss of many small effect mutations and fixation of large effect ones. If interference is abundant, then mechanisms for horizontal transfer of genes, which allow the immediate combination of beneficial alleles in a single background, are expected to evolve. However, the relevance of interference in natural complex environments, such as the gut, is poorly known. To address this issue, we have developed an experimental system which allows to uncover the nature of the adaptive process as Escherichia coli adapts to the mouse gut. This system shows the invasion of beneficial mutations in the bacterial populations and demonstrates the pervasiveness of clonal interference. The observed dynamics of change in frequency of beneficial mutations are consistent with soft sweeps, where different adaptive mutations with similar phenotypes, arise repeatedly on different haplotypes without reaching fixation. Despite the complexity of this ecosystem, the genetic basis of the adaptive mutations revealed a striking parallelism in independently evolving populations. This was mainly characterized by the insertion of transposable elements in both coding and regulatory regions of a few genes. Interestingly, in most populations we observed a complete phenotypic sweep without loss of genetic variation. The intense clonal interference during adaptation to the gut environment, here demonstrated, may be important for our understanding of the levels of strain diversity of E. coli inhabiting the human gut microbiota and of its recombination rate. PMID:24603313

  13. Mine detection performance comparison between manual sweeping and tele-operated robotic system

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Higgins, Todd; Falmier, Olga; Valois, Jean-Sebastien; McMahill, Jeff

    2010-04-01

    Mine detection is a dangerous and physically demanding task that is very well-suited for robotic applications. In the experiment described in this paper, we try to determine whether a remotely-operated robotic mine detection system equipped with a hand-held mine detector can match the performance of a human equipped with a hand-held mine detector. To achieve this objective, we developed the Robotic Mine Sweeper (RMS). The RMS platform is capable of accurately sweeping and mapping mine lanes using common detectors, such as the Minelab F3 Mine Detector or the AN/PSS-14. The RMS is fully remote controlled from a safe distance by a laptop via a redundant wireless connection link. Data collected from the mine detector and various sensors mounted on the robot are transmitted and logged in real-time to the remote user interface and simultaneously graphically displayed. In addition, a stereo color camera mounted on top of the robot sends a live picture of the terrain. The system plays audio feedback from the detector to further enhance the user's situational awareness. The user is trained to drag and drop various icons onto the user interface map to locate mines and non-mine clutter objects. We ran experiments with the RMS to compare its detection and false alarm rates with those obtained when the user physically sweeps the detectors in the field. The results of two trials: one with the Minelab F3, the other with the Cyterra AN/PSS-14 are presented here.

  14. Study of pre-seismic kHz EM emissions by means of complex systems

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Eftaxias, Konstantinos

    2010-05-01

    The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe disparate problems ranging from particle physics to economies of societies. A corollary is that transferring ideas and results from investigators in hitherto disparate areas will cross-fertilize and lead to important new results. It is well-known that the Boltzmann-Gibbs statistical mechanics works best in dealing with systems composed of either independent subsystems or interacting via short-range forces, and whose subsystems can access all the available phase space. For systems exhibiting long-range correlations, memory, or fractal properties, non-extensive Tsallis statistical mechanics becomes the most appropriate mathematical framework. As it was mentioned a central property of the magnetic storm, solar flare, and earthquake preparation process is the possible occurrence of coherent large-scale collective with a very rich structure, resulting from the repeated nonlinear interactions among collective with a very rich structure, resulting from the repeated nonlinear interactions among its constituents. Consequently, the non-extensive statistical mechanics is an appropriate regime to investigate universality, if any, in magnetic storm, solar flare, earthquake and pre-failure EM emission occurrence. A model for earthquake dynamics coming from a non-extensive Tsallis formulation, starting from first principles, has been recently introduced. This approach leads to a Gutenberg-Richter type law for the magnitude distribution of earthquakes which provides an excellent fit to seismicities generated in various large geographic areas usually identified as "seismic regions". We examine whether the Gutenberg-Richter law corresponding to a non-extensive Tsallis statistics is able to describe the distribution of amplitude of earthquakes, pre-seismic kHz EM emissions (electromagnetic earthquakes), solar flares, and magnetic storms. The

  15. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    NASA Astrophysics Data System (ADS)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  16. Picosesond pulses in deep ultraviolet produced by a 100 kHz solid-state thin disk laser

    NASA Astrophysics Data System (ADS)

    Turčičová, H.; Novák, O.; Smrž, M.; Miura, T.; Endo, A.; Mocek, T.

    2015-05-01

    We report on the generation of 100 kHz 0.1mJ-level deep ultraviolet pulses based on frequency-quadrupled (257.5 nm) beam of a diode pumped Yb:YAG thin disk laser at the HiLASE Centre. The 100-kHz beamline used for the generation of the harmonic frequencies is operated at an average output power of 100 W level and 2 picosecond duration of pulses. The amplification of the oscillator beam is performed in a regenerative amplifier where the thin disk serves as an active mirror. The CPA technique is used for achieving high average output power of the whole system. The outcoming laser beam at 1030 nm wavelength is frequency-doubled in an LBO crystal and then frequency-quadrupled in BBO crystal, conversion efficiencies being 40% and 19%, resp. The basic characteristics of the harmonics generation in both crystals are given.

  17. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    PubMed

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  18. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering.

    PubMed

    Young, W C; Den Hartog, D J

    2014-11-01

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO4 oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence. PMID:25430221

  19. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    SciTech Connect

    Young, W. C. Den Hartog, D. J.

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  20. Tunable cw UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states.

    PubMed

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10(-3) s and 10(3) s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz. PMID:26906804

  1. Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz.

    PubMed

    Spiessberger, Stefan; Schiemangk, Max; Sahm, Alexander; Wicht, Andreas; Wenzel, Hans; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2011-04-11

    We demonstrate a compact, narrow-linewidth, high-power, micro-integrated semiconductor-based master oscillator power amplifier laser module which is implemented on a footprint of 50 x 10 mm(2). A micro-isolator between the oscillator and the amplifier suppresses optical feedback. The oscillator is a distributed Bragg reflector laser optimized for narrow-linewidth operation and the amplifier consists of a ridge waveguide entry and a tapered amplifier section. The module features stable single-mode operation with a FWHM linewidth of only 100 kHz and an intrinsic linewidth as small as 3.6 kHz for an output power beyond 1 W. PMID:21503020

  2. The Effect of Sweep-Angle Variation on the Turbulence Structure in a Separated, Three-Dimensional Flow

    NASA Astrophysics Data System (ADS)

    Kaltenbach, H.-J.

    A three-dimensional separated flow behind a swept, backward-facing step is investigated by means of DNS for ReH = C∞H/ν = 3000 with the purpose to identify changes in the statistical turbulence structure due to a variation of the sweep angle α from 0° up to 60°. With increasing sweep angle, the near-wall turbulence structure inside the separation bubble and downstream of reattachment changes due to the presence of an edge-parallel mean flow component W. Turbulence production due to the spanwise shear ∂W/∂y at the wall becomes significant and competes with the processes caused by impingement of the separated shear-layer. Changes due to a sweep angle variation can be interpreted in terms of two competing velocity scales which control the global budget of turbulent kinetic energy: the step-normal component U∞ = C∞cosα throughout the separated flow region and the velocity difference C∞ across the entire shear-layer downstream of reattachment. As a consequence, the significance of history effects for the development into a two-dimensional boundary layer decreases with increasing sweep angle. For α >=50°, near-wall streaks tend to form inside the separated flow region.

  3. Combinations of corn glutel meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a ...

  4. Determination of enantiomers by FESI-sweeping with an acid-labile sweeper in nonaqueous capillary electrophoresis.

    PubMed

    Wang, Wei-feng; Zhang, Hui-ge; Qi, Sheng-da; Chen, Hong-li; Chen, Xing-guo

    2015-06-21

    In this work, a facile and highly efficient on-line concentration strategy based on a coupling of field enhanced sample injection (FESI) and sweeping was developed for the determination of trace enantiomers (propranolol, PL) by nonaqueous capillary electrophoresis (NACE). In this FESI-sweeping method, the use of a sample of high acidity and low conductivity (pH* = 2.5, 4.0 μS cm(-1)) allowed for a large amount of analyte injection. Then, the concentration of the analytes was carried out by sweeping based on the interaction of an acid-labile anionic selector, di-n-butyl L-tartrate-boric acid complex acid, and cationic analytes. Simultaneously, the concentrated analytes were released and focused at the boundary of the acid sample solution and separation buffer due to the decomposition of the selector in the acid sample solution. Under the optimum conditions, a 21,000-fold sensitivity enhancement upon normal capillary zone electrophoresis (CZE) was achieved for PL enantiomers. The detection limits of R-propranolol and S-propranolol were 0.26 ng mL(-1) and 0.31 ng mL(-1), respectively. Eventually, the FESI-sweeping method was applied to detect PL enantiomers in plasma, saliva, and urine. PMID:25923176

  5. Sweep net recapture of marked Lygus hesperus Knight (Hemiptera: Miridae) adults after different release times in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elevated status of Lygus spp. as key cotton pests has accentuated the need for improved interpretation of population samples. Mark-release-recapture methods were recently developed to investigate factors that affect sweep net sampling of adult L. hesperus. During these efforts, marked bugs were ...

  6. Expression of c-Fos in rat auditory and limbic systems following 22-kHz calls.

    PubMed

    Ouda, Ladislav; Jílek, Milan; Syka, Josef

    2016-07-15

    In the present study, adult Long-Evans rats were exposed either to natural conspecific aversive 22-kHz vocalizations or to artificial call-like stimuli with comparable frequency-temporal features, followed by c-Fos immunohistochemistry. The natural 22-kHz vocalizations was either played from a recording or produced by a foot-shocked animal located nearby (live vocalizations). In comparison with controls (non-exposed animals), c-Fos immunoreactivity was significantly increased in the inferior colliculus (IC), auditory cortex (AC), periaqueductal grey (PAG), basolateral amygdala (BA), and hippocampus (Hip) of rats exposed to either live or recorded 22-kHz natural vocalizations. Exposure to live natural vocalizations of the foot-shocked animal resulted in a similar pattern of c-Fos activity, as did exposure to the playback of the natural vocalizations. In contrast to this, foot-shocked rats (emitting the 22-kHz vocalizations) had the c-Fos positivity increased markedly in the PAG and only slightly in the AC. The expression of c-Fos also increased in the IC, AC, and in the PAG in animals exposed to the artificial call-like stimuli, when compared to controls; however, the increase was much less pronounced. In this case, c-Fos expression was not increased in the hippocampus or basolateral amygdala. Interestingly, almost no c-Fos expression was found in the medial nucleus of the geniculate body in any of the experimental groups. These findings suggest that differences exist between the processing of important natural conspecific vocalizations and artificial call-like stimuli with similar frequency-temporal features, and moreover they suggest the specific role of individual brain structures in the processing of such calls. PMID:27102341

  7. 30-fs pulses tunable across the visible with a 100-kHz Ti:sapphire regenerative amplifier

    SciTech Connect

    Reed, M.K.; Armas, M.S.; Steiner-Shepard, M.K.; Negus, D.K.

    1995-03-15

    A 100-kHz mode-locked Ti:sapphire-seeded regenerative amplifier pumping an optical parametric amplifier generates femtosecond pulses tunable from 470 to 710 nm. This output was compressed with a pair of prisms to bandwidth-limited pulses of 80- to 40-fs duration and more than 150 nJ of energy. These tunable pulses were then bandwidth expanded through self-phase modulation in bulk material and further compressed to less than 30-fs duration.

  8. Chronic variable stress prevents amphetamine-elicited 50-kHz calls in rats with low positive affectivity.

    PubMed

    Kõiv, Kadri; Metelitsa, Mait; Vares, Marten; Tiitsaar, Kai; Raudkivi, Karita; Jaako, Külli; Vulla, Kaspar; Shimmo, Ruth; Harro, Jaanus

    2016-04-01

    The relationship between stress response and positive affective states is thought to be bidirectional: whilst stress can lead to a blunted hedonic response, positive affect reduces the negative effects of stress. We have previously shown that persistently high positive affectivity as measured by 50-kHz ultrasonic vocalizations (USVs) is protective against chronic variable stress (CVS). The present study examined the effect of CVS on 50-kHz USVs elicited by amphetamine administration, simultaneously considering the stable inter-individual differences in positive affectivity. Forty juvenile male Wistar rats were categorised as of high (HC) or low (LC) positive affectivity based on their 50-kHz USV response to imitation of rough-and-tumble play ('tickling'). As adults, the rats were subjected to four weeks of CVS, after which D-amphetamine was administered in five daily doses followed by a challenge dose (all 1mg/kg IP) nine days later. CVS reduced sucrose preference in LC-rats only. After CVS, amphetamine-elicited 50-kHz USVs were significantly reduced in LC-rats, the effect of stress in HC-rats being smaller and less consistent. In previously stressed and amphetamine-treated LC-rats, locomotor response to amphetamine was attenuated. In stressed LC-rats, DOPAC levels and dopamine turnover were increased in striatum after amphetamine treatment, and dopamine D1 receptor levels were upregulated in nucleus accumbens. LC-rats had lower isoleucine levels in frontal cortex. These results show that stress-related changes in response to amphetamine are dependent on inter-individual differences in positive affectivity both at neurochemical and behavioural levels, and further support the notion of higher vulnerability of animals with low positive affect. PMID:26951611

  9. Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian

    2010-01-01

    This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.

  10. A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's

    NASA Technical Reports Server (NTRS)

    Chen, Keming; Stuart, Thomas A.

    1993-01-01

    A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.

  11. Vapor space characterization of waste tank 241-C-105: Results from samples collected on 2/16/94

    SciTech Connect

    Clauss, T.W.; Lucke, R.B.; McVeety, B.D.

    1995-06-01

    This report describes results of the analyses of tank-headspace samples taken from the Hanford waste Tank 241-C-105 (referred to as Tank C-105). Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and to analyze inorganic and organic analytes collected from the tank headspace. For organic analyses, six SUMMA{trademark} canisters were delivered to WHC on COC 0061 11 on 2/14/94. At the request of WHC, an additional six SUMMA{trademark} canisters were supplied on COC 005127 on 2/16/94. Samples were collected by WHC from the headspace of Tank C-105 through the VSS on 2/16/94, but only three SUMMA{sup {trademark}} canisters were returned to PNL using COC 0061 11 on 2/18/94. The canisters were stored in the 326/23B laboratory at ambient (25{degrees}C) temperature until the time of the analysis. Analyses described in this report were performed at PNL in the 300 area of the Hanford Reservation. Analytical methods that were used are described in the text. In summary, sorbent traps for inorganic analyses containing sample materials were either weighed (for water analysis) or desorbed with the appropriate aqueous solutions. The aqueous extracts were analyzed either by selective electrode or by ion chromatography (IC). Organic analyses were performed using cryogenic preconcentration followed by gas chromatography/mass spectrometry (GC/MS).

  12. Detection of Direct-path Arrivals for Multi-Narrowband Sequences (3-30 kHz) In Shallow Water

    NASA Astrophysics Data System (ADS)

    Zoksimovski, A.; de Moustier, C.

    2004-11-01

    In an effort to measure underwater acoustic transmission loss over direct-path lengths ranging from a few hundred meters to ten kilometers in shallow water, a sequence of 16 gated pure tones (3-30 kHz) was transmitted every 10 s from a lowed source and received at moored sonobuoys. The magnitude of multipath arrivals often exceeded that of direct-path arrivals, resulting in variable detection performance of simple matched filtering techniques. More reliable signal recognition was obtained via iterative least square time constraints on the arrival times across all frequencies in a sequence, based on the known time intervals between transmitted tones. Signal detection improvement was obtained also by searching for the direct-path arrival near the global maximum of the sum of the rectified correlograms of the received sequences. These methods allowed detection in environments characterized by multipath interferences, as well as low signal-to-noise ratio and fading, and in the presence of other unrelated sonar signals that cause large detection errors. It also improved the direct-path signal strength estimation, and associated transmission loss computation, by bounding the time interval over which to compute the signals' autocorrelations and estimate their power. These algorithms were tested on a limited data set recorded in the Southern California Offshore Range, confirming that frequencies below 6 kHz suffered less direct-path transmission losses than higher frequencies (7-30 kHz).

  13. 20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow

    NASA Astrophysics Data System (ADS)

    Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.

    2014-10-01

    This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.

  14. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  15. Steady-state and dynamic characteristics of a 20-kHz spacecraft power system - Control of harmonic resonance

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.

    1990-01-01

    A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.

  16. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  17. An Attempt to Describe Frequency Correlations among kHz QPOs and HBOs by Two-Armed Nearly Vertical Oscillations

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-06-01

    We examine whether the two-armed (m = 2) vertical p-mode oscillations trapped in the innermost region of magnetized accretion disks with finite disk thickness can describe kHz quasi-periodic oscillations (QPOs) and horizontal branch oscillations (HBOs) in low-mass X-ray binaries (LMXBs). First, we derive the frequency-frequency correlation of the two basic oscillations (both are fundamental modes in the vertical direction, but one is the fundamental and the other the first overtone in the radial direction), and compare it with the observed frequency correlation of twin kHz QPOs. Results show that the calculated frequency correlation can well describe the observed frequency one with reasonable values of the parameters. Second, we examine whether the observed frequency correlation between kHz QPOs and HBO can be described by regarding HBO as the first overtone oscillation in the vertical direction (and the fundamental in the radial direction). The results suggest that (i) the innermost parts of disks on the horizontal branch are strongly diminished in their vertical thickness (presumably by hot coronae) and (ii) the branch is roughly a sequence of variations of magnetic fields or disk temperature.

  18. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGESBeta

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  19. Parameter Sweep and Optimization of Loosely Coupled Simulations Using the DAKOTA Toolkit

    SciTech Connect

    Elwasif, Wael R; Bernholdt, David E; Pannala, Sreekanth; Allu, Srikanth; Foley, Samantha S

    2012-01-01

    The increasing availability of large scale computing capabilities has accelerated the development of high-fidelity coupled simulations. Such simulations typically involve the integration of models that implement various aspects of the complex phenomena under investigation. Coupled simulations are playing an integral role in fields such as climate modeling, earth systems modeling, rocket simulations, computational chemistry, fusion research, and many other computational fields. Model coupling provides scientists with systematic ways to virtually explore the physical, mathematical, and computational aspects of the problem. Such exploration is rarely done using a single execution of a simulation, but rather by aggregating the results from many simulation runs that, together, serve to bring to light novel knowledge about the system under investigation. Furthermore, it is often the case (particularly in engineering disciplines) that the study of the underlying system takes the form of an optimization regime, where the control parameter space is explored to optimize an objective functions that captures system realizability, cost, performance, or a combination thereof. Novel and flexible frameworks that facilitate the integration of the disparate models into a holistic simulation are used to perform this research, while making efficient use of the available computational resources. In this paper, we describe the integration of the DAKOTA optimization and parameter sweep toolkit with the Integrated Plasma Simulator (IPS), a component-based framework for loosely coupled simulations. The integration allows DAKOTA to exploit the internal task and resource management of the IPS to dynamically instantiate simulation instances within a single IPS instance, allowing for greater control over the trade-off between efficiency of resource utilization and time to completion. We present a case study showing the use of the combined DAKOTA-IPS system to aid in the design of a lithium ion

  20. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect

    PubMed Central

    2012-01-01

    Background Numerous recent studies have shown that resident symbiotic microorganisms of insects play a fundamental role in host ecology and evolution. The lepidopteran pest, African armyworm (Spodoptera exempta), is a highly migratory and destructive species found throughout sub-Saharan Africa, that can experience eruptive outbreaks within the space of a single generation, making predicting population dynamics and pest control forecasting extremely difficult. Three strains of Wolbachia have recently been identified infecting this species in populations sampled from Tanzania. In this study, we examined the interaction between Wolbachia pipiensis infections and the co-inherited marker, mtDNA, within populations of armyworm, as a means to investigate the population biology and evolutionary history of Wolbachia and its host. Results A Wolbachia-infected isofemale line was established in the laboratory. Phenotypic studies confirmed the strain wExe1 as a male-killer. Partial sequencing of the mitochondrial COI gene from 164 individual field-collected armyworm of known infection status revealed 17 different haplotypes. There was a strong association between Wolbachia infection status and mtDNA haplotype, with a single dominant haplotype, haplo1 (90.2% prevalence), harbouring the endosymbiont. All three Wolbachia strains were associated with this haplotype. This indicates that Wolbachia may be driving a selective sweep on armyworm haplotype diversity. Despite very strong biological and molecular evidence that the samples represent a single species (including from nuclear 28S gene markers), the 17 haplotypes did not fall into a monophyletic clade within the Spodoptera genus; with six haplotypes (2 each from 3 geographically separate populations) differing by >11% in their nucleotide sequence to the other eleven. Conclusions This study suggests that three strains of Wolbachia may be driving a selective sweep on armyworm haplotype diversity, and that based on COI sequence

  1. Dynamic-stability tests on an aircraft escape module at Mach numbers from 0.40 to 2.16

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.; Kilgore, R. A.

    1975-01-01

    Wind-tunnel measurements of the aerodynamic damping and oscillatory stability of a model of a proposed escape module for a military aircraft have been made using a small-amplitude forced-oscillation technique in pitch and yaw at Mach numbers from 0.40 to 2.16 and in roll at Mach numbers from 0.40 to 1.20. The results in pitch indicate regions in the angle-of-attack range where the model exhibits large and rapid changes in both damping and stability with angle of attack, probably caused by vortex flow over the fins. There was no pronounced effect of change in angle of attack on damping in yaw. Except for the highest Mach number, negative damping in roll was produced at high negative angles of attack.

  2. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep.

    PubMed

    Jones, Bryony L; Raga, Tamiru O; Liebert, Anke; Zmarz, Pawel; Bekele, Endashaw; Danielsen, E Thomas; Olsen, Anders Krüger; Bradman, Neil; Troelsen, Jesper T; Swallow, Dallas M

    2013-09-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (-13910(∗)T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene LCT is responsible for lactase persistence and appears to have been under strong directional selection in the last 5,000 years, evidenced by the widespread occurrence of this allele on an extended haplotype. In Africa and the Middle East, the situation is more complicated and at least three other alleles (-13907(∗)G, rs41525747; -13915(∗)G, rs41380347; -14010(∗)C, rs145946881) in the same LCT enhancer region can cause continued lactase expression. Here we examine the LCT enhancer sequence in a large lactose-tolerance-tested Ethiopian cohort of more than 350 individuals. We show that a further SNP, -14009T>G (ss 820486563), is significantly associated with lactose-digester status, and in vitro functional tests confirm that the -14009(∗)G allele also increases expression of an LCT promoter construct. The derived alleles in the LCT enhancer region are spread through several ethnic groups, and we report a greater genetic diversity in lactose digesters than in nondigesters. By examining flanking markers to control for the effects of mutation and demography, we further describe, from empirical evidence, the signature of a soft selective sweep. PMID:23993196

  3. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for narrow-band sweeps.

    PubMed

    Kastelein, Ronald A; Schop, Jessica; Hoek, Lean; Covi, Jennifer

    2015-10-01

    The hearing sensitivity of a 2-yr-old male harbor porpoise was measured using a standard psycho-acoustic technique under low ambient noise conditions. Auditory sensitivity was measured for narrow-band 1 s sweeps (center frequencies: 0.125-150 kHz). The audiogram was U-shaped; range of best hearing (within 10 dB of maximum sensitivity) was from 13 to ∼140 kHz. Maximum sensitivity (threshold: ∼39 dB re 1 μPa) occurred at 125 kHz at the peak frequency of echolocation pulses produced by harbor porpoises. Reduced sensitivity occurred at 32 and 63 kHz. Sensitivity fell by ∼10 dB per octave below 16 kHz and declined sharply above 125 kHz. Apart from this individual's ca. 10 dB higher sensitivity at 0.250 kHz, ca. 10 dB lower sensitivity at 32 kHz, and ca. 59 dB lower sensitivity at 150 kHz, his audiogram is similar to that of two harbor porpoises tested previously with a similar psycho-acoustic technique. PMID:26520333

  4. The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind’s future?

    PubMed Central

    2013-01-01

    An HIV-1 infection progresses in most human individuals sooner or later into AIDS, a devastating disease that kills more than a million people worldwide on an annual basis. Nonetheless, certain HIV-1-infected persons appear to act as long-term non-progressors, and elite control is associated with the presence of particular MHC class I allotypes such as HLA-B*27 or -B*57. The HIV-1 pandemic in humans arose from the cross-species transmission of SIVcpz originating from chimpanzees. Chimpanzees, however, appear to be relatively resistant to developing AIDS after HIV-1/SIVcpz infection. Mounting evidence illustrates that, in the distant past, chimpanzees experienced a selective sweep resulting in a severe reduction of their MHC class I repertoire. This was most likely caused by an HIV-1/SIV-like retrovirus, suggesting that chimpanzees may have experienced long-lasting host-virus relationships with SIV-like viruses. Hence, if natural selection is allowed to follow its course, prospects for the human population may look grim, thus underscoring the desperate need for an effective vaccine. PMID:23705941

  5. Endoscopic common-path OCT based on sweeping laser source and curled optical patch cord

    NASA Astrophysics Data System (ADS)

    Park, Jae Suk; Jung, Eun Joo; Jeong, Myung Yung; Kim, Chang-Seok; Kang, Jin U.

    2008-02-01

    Several technical problems have to be overcome before Optical Coherence Tomography (OCT) can be accepted among the established endoscopic imaging modalities. Most of conventional Michelson-based OCT systems need to have two separated paths of the sample and reference arms, which limits the flexibility of endoscopic probe. Recently, common-path interferometer based OCT have been demonstrated to circumvent the mismatch problems of length, polarization, and dispersion between the reference and sample arms, but the interferometric scanning methods have been realized with time-domain PZT or spectral-domain CCD. In this work, we demonstrate a novel Fourier-domain common-path OCT based on sweeping laser source, which shows superiority in the speed and robustness. Using a holey optical fiber with low bending loss, a novel curled optical patch cord, like a curl cord of telephone, is also adapted for the convenient access to the biological target at the flexible distance. The freedom to use an arbitrary length and wiring of the probe can provide more flexibility for use in endoscopic OCT.

  6. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population.

    PubMed

    Adams, Jennifer R; Vucetich, Leah M; Hedrick, Philip W; Peterson, Rolf O; Vucetich, John A

    2011-11-22

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  7. Computational Inference Methods for Selective Sweeps Arising in Acute HIV Infection

    PubMed Central

    Leviyang, Sivan

    2013-01-01

    During the first weeks of human immunodeficiency virus-1 (HIV-1) infection, cytotoxic T-lymphocytes (CTLs) select for multiple escape mutations in the infecting HIV population. In recent years, methods that use escape mutation data to estimate rates of HIV escape have been developed, thereby providing a quantitative framework for exploring HIV escape from CTL response. Current methods for escape-rate inference focus on a specific HIV mutant selected by a single CTL response. However, recent studies have shown that during the first weeks of infection, CTL responses occur at one to three epitopes and HIV escape occurs through complex mutation pathways. Consequently, HIV escape from CTL response forms a complex, selective sweep that is difficult to analyze. In this work, we develop a model of initial infection, based on the well-known standard model, that allows for a description of multi-epitope response and the complex mutation pathways of HIV escape. Under this model, we develop Bayesian and hypothesis-test inference methods that allow us to analyze and estimate HIV escape rates. The methods are applied to two HIV patient data sets, concretely demonstrating the utility of our approach. PMID:23666940

  8. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki

    2008-01-01

    Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  9. Performance Enhancement of a Vertical Tail Model with Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Seele, Roman; Graff, Emilio; Lin, John; Wygnanski, Israel

    2013-01-01

    Active Flow Control (AFC) experiments performed at the Caltech Lucas Adaptive Wall Wind Tunnel on a 12%-thick, generic vertical tail model indicated that sweeping jets emanating from the trailing edge (TE) of the vertical stabilizer significantly increased the side force coefficient for a wide range of rudder deflection angles and yaw angles at free-stream velocities approaching takeoff rotation speed. The results indicated that 2% blowing momentum coefficient (C(sub mu) increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. Even C(sub mu) = 0.5% increased the side force in excess of 20% under these conditions. This effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project and the successful demonstration of this flow-control application could have far reaching implications. It could lead to effective applications of AFC technologies on key aircraft control surfaces and lift enhancing devices (flaps) that would aid in reduction of fuel consumption through a decrease in size and weight of wings and control surfaces or a reduction of the noise footprint due to steeper climb and descent.

  10. Linearity enhancement of TVGA based on adaptive sweep optimisation in monostatic radar receiver

    NASA Astrophysics Data System (ADS)

    Almslmany, Amir; Wang, Caiyun; Cao, Qunsheng

    2016-08-01

    The limited input dynamic power range of the radar receiver and the power loss due to the targets' ranges are two potential problems in the radar receivers. This paper proposes a model based on the time-varying gain amplifier (TVGA) to compensate the power loss from the targets' ranges, and using the negative impedance compensation technique to enhance the TVGA linearity based on Volterra series. The simulation has been done based on adaptive sweep optimisation (ASO) using advanced design system (ADS) and Matlab. It shows that the suppression of the third-order intermodulation products (IMR3) was carried out for two-tone test, the high-gain accuracy improved by 3 dB, and the high linearity IMR3 improved by 14 dB. The monostatic radar system was tested to detect three targets at different ranges and to compare its probability of detection with the prior models; the results show that the probability of detection has been increased for ASO/TVGA.

  11. Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle.

    PubMed

    Guo, Junyu; Patay, Zoltan; Reddick, Wilburn E

    2016-01-01

    Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites. PMID:27440077

  12. Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle

    PubMed Central

    Guo, Junyu; Patay, Zoltan; Reddick, Wilburn E.

    2016-01-01

    Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites. PMID:27440077

  13. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population

    PubMed Central

    Adams, Jennifer R.; Vucetich, Leah M.; Hedrick, Philip W.; Peterson, Rolf O.; Vucetich, John A.

    2011-01-01

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  14. Homage to Bob Brodkey at 85: ejections, sweeps and the genesis and extensions of quadrant analysis

    NASA Astrophysics Data System (ADS)

    Wallace, James

    2013-11-01

    Almost 50 years ago Bob Brodkey and his student, Corino, conceived and carried out a visualization experiment for the very near wall region of a turbulent pipe flow (JFM 37) that, together with the turbulent boundary layer visualization of Kline et al. (JFM 30), excited the turbulence community. Using a high speed movie camera mounted on a lathe bed that recorded magnified images in a moving frame of reference, they observed the motions of small particles in the sub- and buffer-layers. Surprisingly, these motion were not nearly so locally random as was the general view of turbulence at the time. Rather, connected regions of the near wall flow decelerated and then erupted away from the wall in what they called ``ejections.'' These decelerated motions were followed by larger scale connected motions toward the wall from above that they called ``sweeps.'' Brodkey and Corino estimated that ejections accounted for 70 % the Reynolds shear stress at Red = 20 , 000 while only occurring about 18 % of the time. Wallace et al. (JFM 54) attempted to quantify these visual observations by conceiving of and carrying out a quadrant analyisis in a turbulent oil channel flow. This paper will trace this history and describe the expanding use of these ideas in turbulence research today.

  15. Determination of Bosentan in Pharmaceutical Preparations by Linear Sweep, Square Wave and Differential Pulse Voltammetry Methods

    PubMed Central

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151

  16. Damage in low alloy steel produced by sweeping, interacting detonation waves

    NASA Astrophysics Data System (ADS)

    Hull, L.; Gray, G.; Faulkner, J.; Briggs, M.

    2014-05-01

    Detonation waves that sweep along the surface of a metal plate induce reduced pressure and enhanced shear, relative to the same detonation at normal incidence. Detonation waves at intermediate obliquity impress intermediate combined stress states. Release waves from the free surfaces may enter into play and contribute to the damage. Initiation of explosive at discrete points produces strong pressure, density, and velocity gradients in the gaseous explosive products in areas where the waves collide, are impressed in an adjacent metal, causing similar stress gradients within the metal that often leading to intense damage. In this work, we investigate damage generated in AISI 4130 steel by the combined effects of oblique drive and interacting detonation waves. The experimental data consist of multipoint velocimetry points probing the free surface in regions loaded by interacting detonation waves and regions between the interactions. Metallography on recovered plate records the plastic flow and damage correlated with the velocimetry data. Spall is indicated in most regions, but not some, and the alpha-epsilon stress-induced phase transformation appears in most regions, but not all.

  17. Determination of strobilurin fungicide residues in fruits and vegetables by micellar electrokinetic capillary chromatography with sweeping.

    PubMed

    Wang, Kun; Chen, Guan-hua; Wu, Xian; Shi, Jie; Guo, Dong-shan

    2014-02-01

    A new assay of micellar electrokinetic capillary chromatography with sweeping was developed to determine azoxystrobin, kresoxim-methyl and pyraclostrobin in fruits and vegetables. The key factors affecting resolution and peak height were studied and the optimum conditions were obtained for separation and enrichment. The running buffer consisted of 40 mM borate, 25 mM sodium dodecyl sulfate and 15% acetonitrile, and its pH was adjusted to 8.4. The sample was injected for 677 nL and the separation voltage was 25 kV. Under the optimum conditions, the enrichment factors of azoxystrobin, kresoxim-methyl and pyraclostrobin were 861, 550 and 403; the linear dynamic ranges were all 0.01-5.0 mg/L; the limits of detection were 0.002, 0.001 and 0.002 mg/kg; the recoveries of spiked samples were 85.1-98.5%, 87.5-97.0% and 89.1-99.1%, respectively. The assay can meet the requirement of maximum residue limits for these three strobilurin fungicides, and has been applied for determining their residues in fruits and vegetables. PMID:23390023

  18. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics.

    PubMed Central

    Jiggins, Francis M

    2003-01-01

    Mitochondrial DNA (mtDNA) sequences are widely used as neutral genetic markers in insects. However, patterns of mtDNA variability are confounded by the spread of maternally transmitted parasites, which are genetically linked to the mitochondria. We have investigated these effects in the butterflies Acraea encedon (which is host to two strains of male-killing Wolbachia bacteria) and A. encedana (which is host to one strain). Within a population, the mitochondria are in linkage disequilibrium with the different male-killers. Furthermore, there has been a recent selective sweep of the mtDNA, which has led to the loss of mitochondrial variation within populations and erased any geographical structure. We also found that one of the male-killers, together with the associated mtDNA, has introgressed from A. encedana into A. encedon within the last 16,000 years. Interestingly, because butterflies are female heterogametic, this will presumably have also led to the introgression of genes on the W sex chromosome. Finally, in A. encedon the mitochondria in uninfected females are unaltered by the spread of the male-killer and have diverse, geographically structured mtDNA. This means we can reject the hypothesis that the male-killer is at a stable equilibrium maintained by imperfect transmission of the bacterium. Instead, some other form of balancing selection may be maintaining uninfected females in the population and preventing the species from going extinct due to a shortage of males. PMID:12750316

  19. A Sweeping based Kinematic Simulation for the Stably Stratified Surface Layer

    NASA Astrophysics Data System (ADS)

    Ghate, Aditya; Lele, Sanjiva

    2014-11-01

    A Kinematic Simulation (KS) for a statistically stationary and stably stratified surface layer is proposed. The Fourier coefficients are obtained by numerically solving the linearized NS equations with Boussinesq approximation in spectral space, under the assumption of ``rapid'' deformation (RDT) due to combined shear and stratification. The linearization of RDT, which is unrealistic for the surface layer, is rectified using Mann's (JFM, 1994) idea of wavenumber dependent eddy lifetime. The input parameters required by the KS are estimated using either Monin-Obukhov theory, or an appropriate Second Moment Closure. In order to overcome the frozen turbulence hypothesis made in the Mann model, we incorporate inter-scale ``sweeping'' of eddies following the ideas of Fung et al. (JFM, 1992), along with temporal decorrelation associated with the natural eddy time scale. The solenoidal velocity field generated by the KS allows inclusion of a wide range of scales with correct space-time correlations, making it ideal to investigate particle dispersion in a stably stratified environment, and can also serve as inflow for the study of Wind Farm-PBL interactions. The effect of varying Obukhov length will be discussed by analyzing the frozen Eulerian spectra and Lagrangian particle dispersion.

  20. Formant frequency analysis of children's spoken and sung vowels using sweeping fundamental frequency production.

    PubMed

    White, P

    1999-12-01

    High-pitched productions present difficulties in formant frequency analysis due to wide harmonic spacing and poorly defined formants. As a consequence, there is little reliable data regarding children's spoken or sung vowel formants. Twenty-nine 11-year-old Swedish children were asked to produce 4 sustained spoken and sung vowels. In order to circumvent the problem of wide harmonic spacing, F1 and F2 measurements were taken from vowels produced with a sweeping F0. Experienced choir singers were selected as subjects in order to minimize the larynx height adjustments associated with pitch variation in less skilled subjects. Results showed significantly higher formant frequencies for speech than for singing. Formants were consistently higher in girls than in boys suggesting longer vocal tracts in these preadolescent boys. Furthermore, formant scaling demonstrated vowel dependent differences between boys and girls suggesting non-uniform differences in male and female vocal tract dimensions. These vowel-dependent sex differences were not consistent with adult data. PMID:10622522

  1. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors

    NASA Astrophysics Data System (ADS)

    Gui, Xingmin; Zhu, Fang; Wan, Ke; Jin, Donghai

    2013-10-01

    Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

  2. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    PubMed Central

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  3. A support vector machine approach for truncated fingerprint image detection from sweeping fingerprint sensors.

    PubMed

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  4. Single-molecule magnets: two-electron reduced version of a Mn12 complex and environmental influences on the magnetization relaxation of (PPh4)(2)[Mn(12)O(12)(O(2)CCHCl2)(16)(H2O)4].

    PubMed

    Soler, Monica; Wernsdorfer, Wolfgang; Abboud, Khalil A; Huffman, John C; Davidson, Ernest R; Hendrickson, David N; Christou, George

    2003-03-26

    The complex [Mn(12)O(12)(O(2)CCHCl(2))(16)(H(2)O)(4)] (2) in MeCN exhibits three quasi-reversible one-electron reduction processes at significantly higher potentials than [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)] (1). This has allowed the two-electron reduced version of 2 to be generated and isolated. Reaction of 2 with one and two equivalents of PPh(4)I led to isolation of (PPh(4))[Mn(12)O(12)(O(2)CCHCl(2))(16)(H(2)O)(4)] (3) and (PPh(4))(2)[Mn(12)O(12)(O(2)CCHCl(2))(16)(H(2)O)(4)] (4), respectively. The latter represents a new isolated oxidation level of the Mn(12) family of single-molecule magnets (SMMs). Crystallization from CH(2)Cl(2)/hexanes yields a mixture of two crystal forms, 4.4CH(2)Cl(2).H(2)O (4a) and 4.6CH(2)Cl(2) (4b), both of which have been structurally characterized as triclinic and monoclinic, respectively. The molecular structures are very similar, with the added electrons localized on former Mn(III) ions to give a trapped-valence 2Mn(II), 6Mn(III), 4Mn(IV) oxidation state description. Dried solid analyzed as unsolvated 4. (1)H NMR spectral data in CD(2)Cl(2) confirm that 4 retains its solid-state structure in solution. Bulk DC magnetization data for dried 4 in the 1.80-4.00 K and 10-70 kG ranges were fit to give S = 10, D = -0.275 cm(-1), g = 2.00 and |D|/g = 0.14 cm(-1), where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4a and 4b give resolvable frequency-dependent out-of-phase (chi(M)'') signals in AC susceptibility studies resulting from the magnetization relaxation of SMMs. Relaxation rate vs T data to 1.8 K obtained from the chi(M)'' vs temperature studies were supplemented with rate vs T data measured to lower temperatures via magnetization vs time decay data, and these were fit to the Arrhenius equation to give the effective barrier to relaxation (U(eff)). The U(eff) values are 18.5 and 30.3 K for 4a and 4b, respectively. A similar analysis for dried 4 using AC data gave U(eff) = 32 K. Magnetization vs DC field

  5. High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader

    NASA Astrophysics Data System (ADS)

    Chen, Y.-F.; Su, K. W.; Chen, W. L.; Huang, K. F.; Chen, Y. F.

    2012-08-01

    We report on a compact efficient high-repetition-rate (>100 kHz) optically pumped AlGaInAs nanosecond eye-safe laser at 1525 nm. A diamond heat spreader bonded to the gain chip is employed to improve the heat removal. At a pump power of 13.3 W, the average output power at a repetition rate 200 kHz is up to 3.12 W, corresponding to a peak output power of 560 W. At a repetition rate 500 kHz, the maximum average power and peak power are found to be 2.32 W and 170 W, respectively.

  6. Effects of Wing Sweep on In-flight Boundary-layer Transition for a Laminar Flow Wing at Mach Numbers from 0.60 to 0.79

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The variable sweep transition flight experiment (VSTFE) was conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude of 10,000 ft.

  7. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds

    PubMed Central

    Weinberg, Irving N.; Stepanov, Pavel Y.; Fricke, Stanley T.; Probst, Roland; Urdaneta, Mario; Warnow, Daniel; Sanders, Howard; Glidden, Steven C.; McMillan, Alan; Starewicz, Piotr M.; Reilly, J. Patrick

    2012-01-01

    Purpose: A time-varying magnetic field can cause unpleasant peripheral nerve stimulation (PNS) when the maximum excursion of the magnetic field (ΔB) is above a frequency-dependent threshold level [P. Mansfield and P. R. Harvey, Magn. Reson. Med. 29, 746–758 (1993)]. Clinical and research magnetic resonance imaging (MRI) gradient systems have been designed to avoid such bioeffects by adhering to regulations and guidelines established on the basis of clinical trials. Those trials, generally employing sinusoidal waveforms, tested human responses to magnetic fields at frequencies between 0.5 and 10 kHz [W. Irnich and F. Schmitt, Magn. Reson. Med. 33, 619–623 (1995), T. F. Budinger et al., J. Comput. Assist. Tomogr. 15, 909–914 (1991), and D. J. Schaefer et al., J. Magn. Reson. Imaging 12, 20–29 (2000)]. PNS thresholds for frequencies higher than 10 kHz had been extrapolated, using physiological models [J. P. Reilly et al., IEEE Trans. Biomed. Eng. BME-32(12), 1001–1011 (1985)]. The present study provides experimental data on human PNS thresholds to oscillating magnetic field stimulation from 2 to 183 kHz. Sinusoidal waveforms were employed for several reasons: (1) to facilitate comparison with earlier reports that used sine waves, (2) because prior designers of fast gradient hardware for generalized waveforms (e.g., including trapezoidal pulses) have employed quarter-sine-wave resonant circuits to reduce the rise- and fall-times of pulse waveforms, and (3) because sinusoids are often used in fast pulse sequences (e.g., spiral scans) [S. Nowak, U.S. patent 5,245,287 (14 September 1993) and K. F. King and D. J. Schaefer, J. Magn. Reson. Imaging 12, 164–170 (2000)]. Methods: An IRB-approved prospective clinical trial was performed, involving 26 adults, in which one wrist was exposed to decaying sinusoidal magnetic field pulses at frequencies from 2 to 183 kHz and amplitudes up to 0.4 T. Sham exposures (i.e., with no magnetic fields) were applied to all

  8. Optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications.

    PubMed

    Sunny, Youhan; Bawiec, Christopher R; Nguyen, An T; Samuels, Joshua A; Weingarten, Michael S; Zubkov, Leonid A; Lewin, Peter A

    2012-09-01

    This paper describes optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10-25V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (I(SPTP)) on the order of 100mW/cm(2) delivered at frequencies below 100kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10-90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15V the prototypes were capable of delivering pressure amplitudes of about 55kPa or 100mW/cm(2) (I(SPTP)). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure. PMID:22513259

  9. Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz

    NASA Astrophysics Data System (ADS)

    Graves, W. S.; Bessuille, J.; Brown, P.; Carbajo, S.; Dolgashev, V.; Hong, K.-H.; Ihloff, E.; Khaykovich, B.; Lin, H.; Murari, K.; Nanni, E. A.; Resta, G.; Tantawi, S.; Zapata, L. E.; Kärtner, F. X.; Moncton, D. E.

    2014-12-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb ∶YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 ×1 011 photons /second in a 5% bandwidth and the brilliance is 2 ×1 012 photons /(sec mm2 mrad2 0.1 %) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.

  10. Optimization of un-tethered, low voltage, 20–100 kHz flexural transducers for biomedical ultrasonics applications

    PubMed Central

    Sunny, Youhan; Bawiec, Christopher R.; Nguyen, An T.; Samuels, Joshua A.; Weingarten, Michael S.; Zubkov, Leonid A.; Lewin, Peter A.

    2012-01-01

    This paper describes optimization of un-tethered, low voltage, 20–100 kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100 g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10–25 V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (ISPTP) on the order of 100 mW/cm2 delivered at frequencies below 100 kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100 kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10–90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15 V the prototypes were capable of delivering pressure amplitudes of about 55 kPa or 100 mW/cm2 (ISPTP). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure. PMID:22513259

  11. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  12. Megawatt peak power, 1 kHz, 266 nm sub nanosecond laser source based on single-crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Deyra, Loïc; Martial, Igor; Balembois, François; Diderjean, Julien; Georges, Patrick

    2013-06-01

    We report the realization of a UV source based on the fourth harmonic generation with LBO/BBO of a Nd:YAG passively Q-switched oscillator amplified in a single-crystal fiber. With careful optimization of the nonlinear components and parameters, we obtain 530 mW average power at 266 nm with pulses of 540 ps at the repetition rate of 1 kHz, which represents a 22.7 % total conversion efficiency from IR to UV and nearly 1 MW peak power. The beam quality M 2 is measured to be below 2.

  13. >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging

    PubMed Central

    Oh, Wang-Yuhl; Vakoc, Benjamin J.; Shishkov, Milen; Tearney, Guillermo J.; Bouma, Brett E.

    2010-01-01

    We demonstrate a high-speed wavelength-swept laser with a tuning range of 104 nm (1228–1332 nm) and a repetition rate of 403 kHz. The design of the laser utilizes a high-finesse polygon-based wavelength-scanning filter and a short-length unidirectional ring resonator. Optical frequency domain imaging of the human skin in vivo is presented using this laser, and the system shows sensitivity of higher than 98 dB with single-side ranging depth of 1.7 mm over 4 dB sensitivity roll-off. PMID:20808369

  14. Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm.

    PubMed

    Novák, Jakub; Green, Jonathan T; Metzger, Thomas; Mazanec, Tomáš; Himmel, Bedřich; Horáček, Martin; Hubka, Zbyněk; Boge, Robert; Antipenkov, Roman; Batysta, František; Naylon, Jack A; Bakule, Pavel; Rus, Bedřich

    2016-03-21

    We report on a frequency-doubled picosecond Yb:YAG thin disk regenerative amplifier, developed as a pump laser for a kilohertz repetition rate OPCPA. At a repetition rate of 1 kHz, the compressed output of the regenerative amplifier has a pulse duration of 1.2 ps and pulse energy of 90 mJ with energy stability of σ < 0.8% and M2 < 1.2. The pulses are frequency doubled in an LBO crystal yielding 42 mJ at 515 nm. PMID:27136770

  15. Two-millijoule, 1-kHz, 355-nm picosecond laser pulse generation in LiBO crystal

    NASA Astrophysics Data System (ADS)

    Chen, Liyuan; Bai, Zhenxu; Pan, Yunlong; Chen, Meng; Li, Gang

    2013-08-01

    A third-harmonic-generation picosecond pulse with several millijoules per pulse at 355 nm has been achieved by nonlinear optical materials LiB3O5 (LBO). The single pulse energy of third harmonic was up to 2 mJ at the repetition rate of 1 kHz. The conversion efficiency was up to 33.3% from 1064 to 355 nm with the M2 factor of 2.4. The system is based on a Nd:YAG regenerative amplifier with a simple double-pass post-amplifier.

  16. All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling.

    PubMed

    Dietz, Roman J B; Vieweg, Nico; Puppe, Thomas; Zach, Armin; Globisch, Björn; Göbel, Thorsten; Leisching, Patrick; Schell, Martin

    2014-11-15

    We demonstrate a completely fiber-coupled terahertz (THz) time-domain spectrometer (TDS) system based on electronically controlled optical sampling with two erbium-doped femtosecond fiber lasers at a central wavelength of 1560 nm. The system employs optimized InGaAs/InAlAs photoconductive antennas for THz generation and detection. With this system, we achieve measurement rates of up to 8 kHz and up to 180 ps scan range. We further achieve 2 THz spectral bandwidth and a dynamic range of 76 dB at only 500 ms measurement time. PMID:25490499

  17. Initial tests of the dual-sweep streak camera system planned for APS particle-beam diagnostics

    SciTech Connect

    Lumpkin, A.; Yang, B.; Gai, W.; Cieslik, W.

    1995-07-01

    Initial tests of a dual-sweep streak system planned for use on the Advanced Photon Source (APS) have been performed using assets of the Argonne Wakefield Accelerator (AWA) facility. The short light pulses from the photoelectric injector drive laser in both the visible ({lambda}=496 nm, {Delta}t{approximately}1.5 ps (FWHM)), and the ultraviolet ({lambda}=248 nm, {Delta}t{approximately}5 ps (FWHM)) were used. Both a UV-visible S20 photocathode streak tube and a UV-to-x-ray Au photocathode streak tube were tested. Calibration data with an etalon were also obtained. A sample of dual-sweep streak data using optical synchrotron radiation on the APS injector synchrotron is also presented.

  18. Potential effects of structural controls and street sweeping on stormwater loads to the lower Charles River, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.

    2002-01-01

    The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range

  19. High nucleotide diversity and limited linkage disequilibrium in Helicoverpa armigera facilitates the detection of a selective sweep.

    PubMed

    Song, S V; Downes, S; Parker, T; Oakeshott, J G; Robin, C

    2015-11-01

    Insecticides impose extreme selective pressures on populations of target pests and so insecticide resistance loci of these species may provide the footprints of 'selective sweeps'. To lay the foundation for future genome-wide scans for selective sweeps and inform genome-wide association study designs, we set out to characterize some of the baseline population genomic parameters of one of the most damaging insect pests in agriculture worldwide, Helicoverpa armigera. To this end, we surveyed nine Z-linked loci in three Australian H. armigera populations. We find that estimates of π are in the higher range among other insects and linkage disequilibrium decays over short distances. One of the surveyed loci, a cytochrome P450, shows an unusual haplotype configuration with a divergent allele at high frequency that led us to investigate the possibility of an adaptive introgression around this locus. PMID:26174024

  20. [Test and gather data on sweep spike combination tillage tool]. Quarterly technical report, August 1991--March 1992

    SciTech Connect

    Lukach, J.

    1992-06-19

    This summary presents the data accumulated to date with only brief comment. It is prepared with the intent that the viewers will offer advice on terminology, data presentation, methods and other. The year end analysis will detail changes in the data due to the tillage treatments. The data is incomplete due to equipment problems and time limitations due to the wet fall and early freeze up. The trial was not completed due to our inability to get the Mikkelsen Chisel Plow Shovel (MCP), a 16 inch sweep with an anhydrous knife, to penetrate untilled land. The MCP shovel penetrated to deep on plowed ground and pulled so hard that the front wheels of our JD4440 tractor were jerked off the ground. The Standard Chisel Plow Shovels (SCP), a 16 inch sweep, worked well and the data is included.