Science.gov

Sample records for 2-18f fluoro-2-desoxy-d-glucose tep-fdg

  1. 2-[18F]-fluoro-2-desoxy-D-glucose positron emission tomography initial staging impacts on survival in Hodgkin lymphoma

    PubMed Central

    Cerci, Juliano J; Linardi, Camila C G; Pracchia, Luís F; Junior, José Soares; Trindade, Evelinda; Delbeke, Dominique; Cerci, Rodrigo J; Carr, Robert; Meneghetti, José C; Buccheri, Valeria

    2013-01-01

    AIM: To assess the prognostic value and risk classification improvement of metabolic staging (MS) with Initial 2-[18F]-fluoro-2-desoxy-D-glucose positron emission tomography (FDG-PET) in initial staging of Hodgkin’s Lymphoma (HL) patients to predict 5 years overall survival (5y-OS) and event free survival (EFS). METHODS: A total of 275 patients were included in this retrospective study, 155 patients were staged with conventional anatomical staging (AS), and 120 also submitted to MS (FDG-PET). Prognostic analysis compared 5y-OS and 5y-EFS of patients staged with AS and MS. Risk-adjusted models incorporated clinical risk factors, computed tomography and FDG-PET staging. RESULTS: During the follow up of 267 evaluated patients, 220 (122 AS and 98 MS) achieved complete remission after first-line therapy (median follow-up: 70 ± 29 mo), treatment failure occurred in 79 patients and 34 died. The 5y-EFS for early vs advanced disease in AS patients was 79.3% and 66.7%, and 85.6% and 53.6% in MS patients, respectively (P < 0.01). The 5y-OS for early and advanced disease with AS was 91.3% and 81.5%, and 97.5% and 80.7% for patients staged with MS, respectively. Cox proportional hazards analysis demonstrated that FDG-PET added significant prognostic information and improved risk prediction (P = 0.02). CONCLUSION: Initial staging FDG-PET could be used as an accurate and independent predictor of OS and EFS in HL, with impact in 5y-EFS and OS. PMID:24379935

  2. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis.

    PubMed

    Tahara, Nobuhiro; Mukherjee, Jogeshwar; de Haas, Hans J; Petrov, Artiom D; Tawakol, Ahmed; Haider, Nezam; Tahara, Atsuko; Constantinescu, Cristian C; Zhou, Jun; Boersma, Hendrikus H; Imaizumi, Tsutomu; Nakano, Masataka; Finn, Aloke; Fayad, Zahi; Virmani, Renu; Fuster, Valentin; Bosca, Lisardo; Narula, Jagat

    2014-02-01

    Progressive inflammation in atherosclerotic plaques is associated with increasing risk of plaque rupture. Molecular imaging of activated macrophages with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) has been proposed for identification of patients at higher risk for acute vascular events. Because mannose is an isomer of glucose that is taken up by macrophages through glucose transporters and because mannose receptors are expressed on a subset of the macrophage population in high-risk plaques, we applied (18)F-labeled mannose (2-deoxy-2-[(18)F]fluoro-D-mannose, [(18)F]FDM) for targeting of plaque inflammation. Here, we describe comparable uptake of [(18)F]FDM and [(18)F]FDG in atherosclerotic lesions in a rabbit model; [(18)F]FDM uptake was proportional to the plaque macrophage population. Our FDM competition studies in cultured cells with 2-deoxy-2-[(14)C]carbon-D-glucose ([(14)C]2DG) support at least 35% higher [(18)F]FDM uptake by macrophages in cell experiments. We also demonstrate that FDM restricts binding of anti-mannose receptor antibody to macrophages by approximately 35% and that mannose receptor targeting may provide an additional avenue for imaging of plaque inflammation.

  3. Minimally invasive input function for 2-18F-fluoro-A-85380 brain PET studies.

    PubMed

    Zanotti-Fregonara, Paolo; Maroy, Renaud; Peyronneau, Marie-Anne; Trebossen, Régine; Bottlaender, Michel

    2012-04-01

    Quantitative neuroreceptor positron emission tomography (PET) studies often require arterial cannulation to measure input function. While population-based input function (PBIF) would be a less invasive alternative, it has only rarely been used in conjunction with neuroreceptor PET tracers. The aims of this study were (1) to validate the use of PBIF for 2-(18)F-fluoro-A-85380, a tracer for nicotinic receptors; (2) to compare the accuracy of measures obtained via PBIF to those obtained via blood-scaled image-derived input function (IDIF) from carotid arteries; and (3) to explore the possibility of using venous instead of arterial samples for both PBIF and IDIF. Ten healthy volunteers underwent a dynamic 2-(18)F-fluoro-A-85380 brain PET scan with arterial and, in seven subjects, concurrent venous serial blood sampling. PBIF was obtained by averaging the normalized metabolite-corrected arterial input function and subsequently scaling each curve with individual blood samples. IDIF was obtained from the carotid arteries using a blood-scaling method. Estimated Logan distribution volume (V(T)) values were compared to the reference values obtained from arterial cannulation. For all subjects, PBIF curves scaled with arterial samples were similar in shape and magnitude to the reference arterial input function. The Logan V(T) ratio was 1.00 ± 0.05; all subjects had an estimation error <10%. IDIF gave slightly less accurate results (V(T) ratio 1.03 ± 0.07; eight of ten subjects had an error <10%). PBIF scaled with venous samples yielded inaccurate results (V(T) ratio 1.13 ± 0.13; only three of seven subjects had an error <10%). Due to arteriovenous differences at early time points, IDIF could not be calculated using venous samples. PBIF scaled with arterial samples accurately estimates Logan V(T) for 2-(18)F-fluoro-A-85380. Results obtained with PBIF were slightly better than those obtained with IDIF. Due to arteriovenous concentration differences, venous samples cannot be

  4. Synthesis of 6-acrylamido-4-(2-[18F]fluoroanilino)quinazoline: Aprospective irreversible EGFR binding probe

    SciTech Connect

    Vasdev, Neil; Dorff, Peter N.; Gibbs, Andrew R.; Nandanan,Erathodiyil; Reid, Leanne M.; O'Neil, James P.; VanBrocklin, Henry F.

    2004-03-30

    Acrylamido-quinazolines substituted at the 6-position bindirreversibly to the intracellular ATP binding domain of the epidermalgrowth factor receptor (EGFR). A general route was developed forpreparing 6-substituted-4-anilinoquinazolines from [18F]fluoroanilinesfor evaluation as EGFR targeting agents with PET. By a cyclizationreaction, 2-[18F]fluoroaniline was reacted withN'-(2-cyano-4-nitrophenyl)-N,N-dimethylimidoformamide to produce6-nitro-4-(2-[18F]fluoroanilino)quinazoline in 27.5 percentdecay-corrected radiochemical yield. Acid mediated tin chloride reductionof the nitro group was achieved in 5 min (80 percent conversion) andsubsequent acylation with acrylic acid gave6-acrylamido-4-(2-[18F]fluoroanilino)quinazoline in 8.5 percentdecay-corrected radiochemical yield, from starting fluoride, in less than2 hours.

  5. Synthesis and biological evaluation of anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid (anti-2-[18F]FACBC) in rat 9L gliosarcoma.

    PubMed

    Yu, Weiping; Williams, Larry; Camp, Vernon M; Olson, Jeffrey J; Goodman, Mark M

    2010-04-01

    A new [(18)F] labeled amino acid anti-1-amino-2-[(18)F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[(18)F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [(18)F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [(18)F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [(18)F]9 is a potential PET tracer for brain tumor imaging.

  6. Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging.

    PubMed

    Shah, N J; Arrubla, J; Rajkumar, R; Farrher, E; Mauler, J; Kops, E Rota; Tellmann, L; Scheins, J; Boers, F; Dammers, J; Sripad, P; Lerche, C; Langen, K J; Herzog, H; Neuner, I

    2017-07-25

    Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography - electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain's default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [(18)F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition - excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β-1, but not with β-2 and β-3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.

  7. Positron Emission Tomography (PET) Experience with 2-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA) in the Living Human Brain of Smokers with Paranoid Schizophrenia

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; CASCELLA, NICOLA; KUMAR, ANIL; ZHOU, YUN; HILTON, JOHN; RAYMONT, VANESSA; CRABB, ANDREW; GUEVARA, MARIA RITA; HORTI, ANDREW G.; WONG, DEAN FOSTER

    2012-01-01

    Utilizing postmortem data (Breese, et al., 2000), we hypothesized that the densities of high-affinity neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) in the brain exist in a continuum from highest to lowest as follows: smokers without schizophrenia > smokers with schizophrenia > nonsmokers without schizophrenia > nonsmokers with schizophrenia. Application of the Kruskal-Wallis Test (Stata, 2003) to the postmortem data (Breese, et al., 2000) confirmed the hypothesized order in the cortex and the hippocampus and attained significance in the caudate and the thalamus. Positron emission tomography (PET) was performed for 60 minutes at 6 hours after the intravenous administration of 444 megabequerels [MBq] (12 mCi) 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA), a radiotracer for high-affinity neuronal α4β2 nAChRs, as a bolus plus continuous infusion to 10 adults (7 men and 3 women) (6 smokers including 5 with paranoid schizophrenia and 4 nonsmokers) ranging in age from 22 to 56 years (mean 40.1, standard deviation 13.6). The thalamic nondisplaceable binding potential (BPND) was 1.32 ± 0.19 (mean ± standard deviation) for healthy control nonsmokers; 0.50 ± 0.19 for smokers with paranoid schizophrenia; and 0.51 for the single smoker without paranoid schizophrenia. The thalamic BPNDs of nonsmokers were significantly higher than those of smokers who smoked cigarettes a few hours before the scans (P = 0.0105) (StataCorp, 2003), which was likely due to occupancy of nAChRs by inhaled nicotine in smokers. Further research is needed to rule out the effects of confounding variables. PMID:22169936

  8. Facile purification and click labeling with 2-[18F]fluoroethyl azide using solid phase extraction cartridges

    DOE PAGES

    Zhou, Dong; Chu, Wenhua; Peng, Xin; ...

    2014-11-04

    In this paper, a facile method was developed to purify 2-[18F]fluoroethyl azide ([18F]FEA) using a C18 cartridge and an Oasis® HLB cartridge in series, in which [18F]FEA was exclusively trapped on the HLB cartridge. [18F]FEA can be eluted for reactions in solution; alternatively click labeling can be carried out on the HLB cartridge itself by loading an alkyne substrate and copper (I) catalyst dissolved in DMF onto the cartridge. Finally, this solid phase extraction methodology for purification and click labeling with [18F]FEA, either in solution or on the cartridge, is safe, simple, reproducible in high yield, and compatible with automatedmore » synthesis of 18F-labeled PET tracers.« less

  9. Evaluation of 2-[18F]fluoroacetate kinetics in rodent models of cerebral hypoxia–ischemia

    PubMed Central

    Ouyang, Yu; Tinianow, Jeff N; Cherry, Simon R; Marik, Jan

    2014-01-01

    Glia account for 90% of human brain cells and have a significant role in brain homeostasis. Thus, specific in vivo imaging markers of glial metabolism are potentially valuable. In the brain, 2-fluoroacetate is selectively taken up by glial cells and becomes metabolically trapped in the tricarboxylic acid cycle. Recent work in rodent brain injury models demonstrated elevated lesion uptake of 2-[18F]fluoroacetate ([18F]FACE), suggesting possible use for specifically imaging glial metabolism. To assess this hypothesis, we evaluated [18F]FACE kinetics in rodent models of cerebral hypoxia–ischemia at 3 and 24 hours post insult. Lesion uptake was significantly higher at 30 minutes post injection (P<0.05). An image-based method for input function estimation using cardiac blood was validated. Analysis of whole blood showed no significant metabolites and plasma activity concentrations of ∼50% that of whole blood. Kinetic models describing [18F]FACE uptake were developed and quantitatively compared. Elevated [18F]FACE uptake was found to be driven primarily by K1/k2 rather than k3, but changes in the latter were detectable. The two-tissue irreversible uptake model (2T3k) was found to be necessary and sufficient for modeling [18F]FACE uptake. We conclude that kinetic modeling of [18F]FACE uptake represents a potentially useful tool for interrogation of glial metabolism. PMID:24517980

  10. [Automated synthesis of 2-[(18)F]-fluoro-2-deoxy-D-glucose by on-column hydrolysis].

    PubMed

    Luo, Lei; Tang, Ganghua; Tang, Xiaolan

    2009-11-01

    To study automated synthesis of 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) via on-column hydrolysis. Automated synthesis of (18)F-FDG was performed by the on-column hydrolysis procedure in TRACERlab FXF-N synthesizer. (18)F-FDG injection was obtained via nucleophilic fluorination of 1, 3, 4, 6-tetra-O-acetyl-2-O-trifluoromethanesulfony-beta-D-mannopyranose as the precursor molecule with (18)F-fluoride, hydrolysis of the (18)F-labeled intermediate on SEP-PAK C18 cartridges with 2 mol/L NaOH solution, and purification and neutralization with SEP-PAK cartridges. The uncorrected radiochemical yield of (18)F-FDG was more than 60% within the total synthesis time shorter than 20 min. The radiochemical purity of (18)F-FDG was above 99%. On-column hydrolysis is simple and practical for the automated synthesis of (18)F-FDG. (18)F-FDG injection produced by this procedure can be used in clinical PET imaging.

  11. 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology

    PubMed Central

    Freebody, John; Wegner, Eva A; Rossleigh, Monica A

    2014-01-01

    Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology. PMID:25349660

  12. 2'[(18)F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function.

    PubMed

    Trencsényi, György; Kertész, István; Krasznai, Zoárd T; Máté, Gábor; Szalóki, Gábor; Szabó Judit, P; Kárpáti, Levente; Krasznai, Zoltán; Márián, Teréz; Goda, Katalin

    2015-07-10

    In vivo detection of the emergence of P-glycoprotein (Pgp) mediated multidrug resistance in tumors could be beneficial for patients treated with anticancer drugs. PET technique in combination with appropriate radiotracers could be the most convenient method for detection of Pgp function. Rhodamine derivatives are validated fluorescent probes for measurement of mitochondrial membrane potential and also Pgp function. The aim of this study was to investigate whether 2'[(18)F]-fluoroethylrhodamine B ((18)FRB) a halogenated rhodamine derivative previously synthesized for PET assessment of myocardial perfusion preserved its Pgp substrate character. ATPase assay as well as accumulation experiments carried out using Pgp(+) and Pgp(-) human gynecologic (A2780/A2780(AD) and KB-3-1/KB-V1) and a mouse fibroblast cell pairs (NIH 3T3 and NIH 3T3 MDR1) were applied to study the interaction of (18)FRB with Pgp. ATPase assay proved that (18)FRB is a high affinity substrate of Pgp. Pgp(-) cells accumulated the (18)FRB rapidly in accordance with its lipophilic character. Dissipation of the mitochondrial proton gradient by a proton ionophore CCCP decreased the accumulation of rhodamine 123 (R123) and (18)FRB into Pgp(-) cells. Pgp(+) cells exhibited very low R123 and (18)FRB accumulation (around 1-8% of the Pgp(-) cell lines) which was not sensitive to the mitochondrial proton gradient; rather it was increased by the Pgp inhibitor cyclosporine A (CsA). Based on the above data we conclude that (18)FRB is a high affinity Pgp substrate and consequently a potential PET tracer to detect multidrug resistant tumors as well as the function of physiological barriers expressing Pgp.

  13. Characterization of 5-(2- 18F-fluoroethoxy)-L-tryptophan for PET imaging of the pancreas

    PubMed Central

    Abbas, Ahmed; Beamish, Christine; McGirr, Rebecca; Demarco, John; Cockburn, Neil; Krokowski, Dawid; Lee, Ting-Yim; Kovacs, Michael; Hatzoglou, Maria; Dhanvantari, Savita

    2016-01-01

    Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER) stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2- 18F-fluoroethoxy)-L-tryptophan ( 18F-L-FEHTP) to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of 18F-L-FEHTP was determined in wild-type C57BL/6 mice by ex vivo biodistribution. Both dynamic and static positron emission tomography (PET) images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ). LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of 18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced 18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in 18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of 18F-L-FEHTP uptake with beta cell mass. Conclusions: 18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore, 18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes. PMID:27909574

  14. O-(2-[(18)F]fluoroethyl)-L-tyrosine PET in gliomas: influence of data processing in different centres.

    PubMed

    Filss, Christian P; Albert, Nathalie L; Böning, Guido; Kops, Elena Rota; Suchorska, Bogdana; Stoffels, Gabriele; Galldiks, Norbert; Shah, Nadim J; Mottaghy, Felix M; Bartenstein, Peter; Tonn, Jörg C; Langen, Karl-Josef

    2017-08-16

    PET using O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET) is an established method for brain tumour diagnostics, but data processing varies in different centres. This study analyses the influence of methodological differences between two centres for tumour characterization with (18)F-FET PET using the same PET scanner. Methodological differences between centres A and B in the evaluation of (18)F-FET PET data were identified for (1) framing of PET dynamic data, (2) data reconstruction, (3) cut-off values for tumour delineation to determine tumour-to-brain ratios (TBR) and tumour volume (Tvol) and (4) ROI definition to determine time activity curves (TACs) in the tumour. Based on the (18)F-FET PET data of 40 patients with untreated cerebral gliomas (20 WHO grade II, 10 WHO grade III, 10 WHO grade IV), the effect of different data processing in the two centres on TBRmean, TBRmax, Tvol, time-to-peak (TTP) and slope of the TAC was compared. Further, the effect on tumour grading was evaluated by ROC analysis. Significant differences between centres A and B were found especially for TBRmax (2.84 ± 0.99 versus 3.34 ± 1.13; p < 0.001), Tvol (1.14 ± 1.28 versus 1.51 ± 1.44; p < 0.001) and TTP (22.4 ± 8.3 min versus 30.8 ± 6.3 min; p < 0.001) and minor differences for TBRmean and slope. Tumour grading was not influenced by different data processing. Variable data processing of (18)F-FET PET in different centres leads to significant differences especially for TBRmax and Tvol. A standardization of data processing and evaluation is needed to make (18)F-FET PET comparable between different centres.

  15. Highly efficient click labeling using 2-[18F]fluoroethyl azide and synthesis of an 18F N-hydroxysuccinimide ester as conjugation agent

    PubMed Central

    Zhou, Dong; Chu, Wenhua; Dence, Carmen S.; Mach, Robert H.; Welch, Michael J.

    2012-01-01

    Introduction Click labeling using 2-[18F]fluoroethyl azide has been proven to be promising methods of radiolabeling small molecules and peptides, some of which are undergoing clinical evaluations. However, the previously reported method afforded low yield, poor purities and under desirable reproducibility. Methods A vacuum distillation method was used to isolate 2-[18F]fluoroethyl azide, and the solvent effect of acetonitrile (ACN) and dimethylformamide (DMF) on the click labeling using Cu(I) from copper sulfate/sodium ascorbate was studied. The labeling conditions were optimized to radiosynthesize a hydroxysuccinimide ester (NHS). Results 2-[18F]fluoroethyl azide was isolated by the vacuum distillation method with > 80% yield within 10 min in a “pure” and click-ready form. It was found that the amount of DMF was critical for maintaining high levels of Cu(I) from copper sulfate/sodium ascorbate in order to rapidly complete the click labeling reaction. The addition of bathophenanthrolinedisulfonic acid disodium salt (BPDS) to the mixture of copper sulfate/sodium ascorbate also greatly improved the click labeling efficiency. Through exploiting these optimizations, a base-labile N-hydroxysuccinimide (NHS) ester was rapidly radiosynthesized in 90% isolated yield with good chemical and radiochemical purities. Conclusions We have developed a general method to click-label small molecules efficiently using [18F]2 for research and clinical use. This NHS ester can be used for conjugation chemistry to label antibodies, peptides and small molecules as PET tracers. PMID:22770647

  16. Radiosynthesis and preliminary biological evaluation of N-(2-[18F]fluoropropionyl)-L-glutamine as a PET tracer for tumor imaging

    PubMed Central

    Tang, Caihua; Tang, Ganghua; Gao, Siyuan; Liu, Shaoyu; Wen, Fuhua; Yao, Baoguo; Nie, Dahong

    2016-01-01

    In this study, radiosynthesis and biological evaluation of a new [18F]labeled glutamine analogue, N-(2-[18F]fluoropropionyl)-L-glutamine ([18F]FPGLN) for tumor PET imaging are performed. [18F]FPGLN was synthesized via a two-step reaction sequence from 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NFP) with a decay-corrected yield of 30 ± 5% (n=10) and a specific activity of 48 ± 10 GBq/μmol after 125 ± 5 min of radiosynthesis. The biodistribution of [18F]FPGLN was determined in normal Kunming mice and high uptake of [18F]FPGLN was observed within the kidneys and quickly excreted through the urinary bladder. In vitro cell experiments showed that [18F]FPGLN was primarily transported by Na+-dependent system XAG− and was not incorporated into proteins. [18F]FPGLN displayed better stability in vitro than that in vivo. PET/CT studies revealed that intense accumulation of [18F]FPGLN were shown in human SPC-A-1 lung adenocarcinoma and PC-3 prostate cancer xenografts. The results support that [18F]FPGLN seems to be a possible PET tracer for tumor imaging. PMID:27153544

  17. Patterns of failure for patients with glioblastoma following O-(2-[(18)F]fluoroethyl)-L-tyrosine PET- and MRI-guided radiotherapy.

    PubMed

    Lundemann, Michael; Costa, Junia Cardoso; Law, Ian; Engelholm, Svend Aage; Muhic, Aida; Poulsen, Hans Skovgaard; Munck Af Rosenschold, Per

    2017-03-01

    To evaluate the patterns of failure following clinical introduction of amino-acid O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET)-PET-guided target definition for radiotherapy (RT) of glioblastoma patients. The first 66 consecutive patients with confirmed histology, scanned using FET-PET/CT and MRI were selected for evaluation. Chemo-radiotherapy was delivered to a volume based on both MRI and FET-PET (PETvol). The volume of recurrence (RV) was defined on MRI data collected at the time of progression according to RANO criteria. Fifty patients were evaluable, with median follow-up of 45months. Central, in-field, marginal and distant recurrences were observed for 82%, 10%, 2%, and 6% of the patients, respectively. We found a volumetric overlap of 26%, 31% and 39% of the RV with the contrast-enhancing MR volume, PETvol and the composite MRPETvol, respectively. MGMT-methylation (p=0.03), larger PETvol (p<0.001), and less extensive surgery (p<0.001), were associated with larger PETvol overlap. The combined MRPETvol had a stronger association with the recurrence volume than either of the modalities alone. Larger overlap of PETvol and RV was observed for patients with MGMT-methylation, less extensive surgery, and large PETvol on the RT-planning scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Specific binding of 3N-(2'-[18F]fluoroethyl)benperidol to primate cerebral dopaminergic D2 receptors demonstrated in vivo by PET.

    PubMed

    Moerlein, S M; Perlmutter, J S

    1992-12-14

    3N-(2'-[18F]Fluoroethyl)benperidol ([18F]FEB) an 18F-labeled analogue of the D2 antagonist benperidol, was evaluated as a tracer for positron emission tomography (PET). PET imaging of a living baboon showed that the fluorinated ligand rapidly localized in vivo within D2 receptor-rich brain tissue, with selective retention lasting over 2 h after tracer injection. Pretreatment of the animal with unlabeled D2-specific antagonist eticlopride (4 mg/kg, i.v.) 1 h before [18F]FEB completely abolished the selective disposition of the radioligand, whereas the regional cerebral blood flow, blood volume and peripheral metabolism/protein binding of [18F]FEB were not changed. Tracer localization when the baboon was pretreated with unlabeled ketanserin (0.55 mg/kg, i.v.) or SCH 23390 (1.1 mg/kg, i.v.) was identical to that for the control case, indicating that the [18F]FEB did not bind to S2 of D1 receptors in vivo. [18F]FEB has advantages compared to previously used PET tracers, and may be an excellent radioligand for non-invasive study of D2 receptor binding.

  19. Dual time point 2-deoxy-2-[18F]fluoro-D-glucose PET/CT: nodal staging in locally advanced breast cancer.

    PubMed

    García Vicente, A M; Soriano Castrejón, A; Cruz Mora, M Á; Ortega Ruiperez, C; Espinosa Aunión, R; León Martín, A; González Ageitos, A; Van Gómez López, O

    2014-01-01

    To assess dual time point 2-deoxy-2-[(18)F]fluoro-D-glucose (18)(F)FDG PET-CT accuracy in nodal staging and in detection of extra-axillary involvement. Dual time point [(18)F] FDG PET/CT scan was performed in 75 patients. Visual and semiquantitative assessment of lymph nodes was performed. Semiquantitative measurement of SUV and ROC-analysis were carried out to calculate SUV(max) cut-off value with the best diagnostic performance. Axillary and extra-axillary lymph node chains were evaluated. Sensitivity and specificity of visual assessment was 87.3% and 75%, respectively. SUV(max) values with the best sensitivity were 0.90 and 0.95 for early and delayed PET, respectively. SUV(max) values with the best specificity were 1.95 and 2.75, respectively. Extra-axillary lymph node involvement was detected in 26.7%. FDG PET/CT detected extra-axillary lymph node involvement in one-fourth of the patients. Semiquantitative lymph node analysis did not show any advantage over the visual evaluation. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  20. An evaluation of 2-deoxy-2-[18F]fluoro-D-glucose and 3'-deoxy-3'-[18F]-fluorothymidine uptake in human tumor xenograft models.

    PubMed

    Keen, Heather; Pichler, Bernd; Kukuk, Damaris; Duchamp, Olivier; Raguin, Olivier; Shannon, Aoife; Whalley, Nichola; Jacobs, Vivien; Bales, Juliana; Gingles, Neill; Ricketts, Sally-Ann; Wedge, Stephen R

    2012-06-01

    The aim of this study is to assess the variability of 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]-FDG) and 3'-deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) uptake in pre-clinical tumor models and examine the relationship between imaging data and related histological biomarkers. [(18)F]-FDG and [(18)F]-FLT studies were carried out in nine human tumor xenograft models in mice. A selection of the models underwent histological analysis for endpoints relevant to radiotracer uptake. Comparisons were made between in vitro uptake, in vivo imaging, and ex vivo histopathology data using quantitative and semi-quantitative analysis. In vitro data revealed that [1-(14)C]-2-deoxy-D: -glucose ([(14)C]-2DG) uptake in the tumor cell lines was variable. In vivo, [(18)F]-FDG and [(18)F]-FLT uptake was highly variable across tumor types and uptake of one tracer was not predictive for the other. [(14)C]-2DG uptake in vitro did not predict for [(18)F]-FDG uptake in vivo. [(18)F]-FDG SUV was inversely proportional to Ki67 and necrosis levels and positively correlated with HKI. [(18)F]-FLT uptake positively correlated with Ki67 and TK1. When evaluating imaging biomarkers in response to therapy, the choice of tumor model should take into account in vivo baseline radiotracer uptake, which can vary significantly between models.

  1. O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis.

    PubMed

    Heinzel, Alexander; Müller, Dirk; Yekta-Michael, Sareh Said; Ceccon, Garry; Langen, Karl-Josef; Mottaghy, Felix M; Wiesmann, Martin; Kocher, Martin; Hattingen, Elke; Galldiks, Norbert

    2017-09-01

    Conventional MRI is the standard method to diagnose recurrence of brain metastases after radiation. However, following radiation therapy, reactive transient blood-brain barrier alterations with consecutive contrast enhancement can mimic brain metastasis recurrence. Recent studies have suggested that O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET improves the correct differentiation of brain metastasis recurrence from radiation injury. Based on published evidence and clinical expert opinion, we analyzed effectiveness and cost-effectiveness of the use of FET PET in addition to MRI compared with MRI alone for the diagnosis of recurrent brain metastases. A decision-tree model was designed to compare the 2 diagnostic strategies from the perspective of the German Statutory Health Insurance (SHI) system. Effectiveness was defined as correct diagnosis of recurrent brain metastasis and was compared between FET PET with MRI and MRI alone. Costs were calculated for a baseline scenario and for a more expensive scenario. Robustness of the results was tested using sensitivity analyses. Compared with MRI alone, FET PET in combination with MRI increases the rate of correct diagnoses by 42% (number needed to diagnose of 3) with an incremental cost-effectiveness ratio of €2821 (baseline scenario) and €4014 (more expensive scenario) per correct diagnosis. The sensitivity analyses confirmed the robustness of the results. The model suggests that the additional use of FET PET with conventional MRI for the diagnosis of recurrent brain metastases may be cost-effective. Integration of FET PET has the potential to avoid overtreatment with corresponding costs as well as unnecessary side effects.

  2. Regional metabolic liver function measured by 2-[18F]fluoro-2-deoxy-d-galactose PET/CT in patients with cirrhosis

    PubMed Central

    Sørensen, Michael; Mikkelsen, Kasper S; Frisch, Kim; Villadsen, Gerda E; Keiding, Susanne

    2013-01-01

    Background & Aims There is a clinical need for methods that can quantify regional hepatic function noninvasively in patients with cirrhosis. Here we validate the use of 2-[18F]fluoro-2-deoxy-d-galactose (FDGal) PET/CT for measuring regional metabolic function for this purpose and apply the method to test the hypothesis of increased intrahepatic metabolic heterogeneity in cirrhosis. Methods Nine cirrhotic patients underwent dynamic liver FDGal PET/CT with blood samples from a radial artery and liver vein. Hepatic blood flow was measured by indocyanine green infusion/Fick’s principle. From blood measurements, hepatic systemic clearance (Ksyst, l blood/min) and hepatic intrinsic clearance (Vmax/Km, l blood/min) of FDGal were calculated. From PET data, hepatic systemic clearance of FDGal in liver parenchyma (Kmet, ml blood/ml liver tissue/min) was calculated. Intrahepatic metabolic heterogeneity was evaluated in terms of coefficient of variation (CoV, %) using parametric images of Kmet. Results Mean approximation of Ksyst to Vmax/Km was 86% which validates the use of FDGal as PET tracer of hepatic metabolic function. Mean Kmet was 0.157 ml blood/ml liver tissue/min, which was lower than 0.274 ml blood/ml liver tissue/min previously found in healthy subjects (p <0.001) in accordance with decreased metabolic function in cirrhotic livers. Mean CoV for Kmet in liver tissue was 24.4% in patients and 14.4% in healthy subjects (p <0.0001). The degree of intrahepatic metabolic heterogeneity correlated positively with HVPG (p <0.05). Conclusions A 20 min dynamic FDGal PET/CT with arterial sampling provides an accurate measure of regional hepatic metabolic function in patients with cirrhosis. This is likely to have clinical implications for assessment of patients with liver disease as well as treatment planning and monitoring. PMID:23339954

  3. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake.

    PubMed

    Giorgetti, Assuero; Marras, Gavino; Genovesi, Dario; Filidei, Elena; Bottoni, Antonio; Mangione, Maurizio; Emdin, Michele; Marzullo, Paolo

    2017-02-03

    Whether anticoagulants other than unfractionated heparin are able to suppress cardiac PET uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) is unknown. One-hundred-seventy-four patients without history and clinical evidence of cardiac dysfunction and/or coronary heart disease underwent a 18F-FDG PET/CT study. All patients were studied with a >12-hours fasting and divided into 2 groups: group-1 without anticoagulant therapy (n:75); group-2 patients on low molecular weight heparin (n:60) or warfarin therapy (n:39). Cardiac 18F-FDG uptake was estimated qualitatively using a 4-point scale and semiquantitatively as total LV glycolysis (LVG) and metabolic volume (MV), drawing isocontour volume of interest (VOI) including the whole LV. Qualitatively, LV 18-FDG uptake was scored 0 or 1, indicating a good suppression, in 10/75 (13%) patients of group-1 and 77/99 (78%) of group-2 (p < .001). Semiquantitatively, patients of group-1 showed higher values of 18-FDG uptake than patients of group-2, assessed as LVG (802,649 ± 468,442 vs 198,989 ± 261,439, p < .0001) or MV (219 ± 77 vs 57 ± 48 cm(3), p < .0001). Subanalysis for anticoagulant drugs showed similar results. Prolonged fasting combined to anticoagulants other than unfractionated heparin is able to minimize glucose cardiac metabolism. Our data confirm previous observation on the possibility to influence the metabolic pattern of the heart before the PET scan and broadens the spectrum of pharmacological options.

  4. Optimal 2-[(18)F]fluoro-2-deoxy-D-galactose PET/CT protocol for detection of hepatocellular carcinoma.

    PubMed

    Horsager, Jacob; Bak-Fredslund, Kirstine; Larsen, Lars Peter; Villadsen, Gerda Elisabeth; Bogsrud, Trond Velde; Sørensen, Michael

    2016-12-01

    Positron emission tomography (PET) with the liver-specific galactose tracer 2-[(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) may improve diagnosis of hepatocellular carcinoma (HCC). The aim of this study was to test which of three different (18)F-FDGal PET protocols gives the highest tumour-to-background (T/B) ratio on PET images and thus better detection of HCC tumours. Ten patients with a total of 15 hepatic HCC tumours were enrolled prior to treatment. An experienced radiologist defined volumes of interest (VOIs) encircling HCC tumours on contrast-enhanced CT (ce-CT) images. Three PET/CT protocols were conducted following an intravenous (18)F-FDGal injection: (i) a 20-min dynamic PET/CT of the liver (to generate a 3D metabolic image), (ii) a traditional static whole-body PET/CT after 1 h, and (iii) a late static whole-body PET/CT after 2 or 3 h. PET images from each PET/CT protocol were fused with ce-CT images, and the average standardized uptake values (SUV) in tumour and background liver tissue were used to calculate (T/B) ratios. Furthermore, Tpeak/B ratios were calculated using the five hottest voxels in all hot tumours. The ratios for the three different PET protocols were compared. For the individual tumours, there was no significant difference in the T/B ratio between the three PET protocols. The metabolic image yielded higher Tpeak/B ratios than the two static images, but it was easier to identify tumours on the static images. One extrahepatic metastasis was detected. Neither metabolic images nor static whole-body images acquired 2 or 3 h after (18)F-FDGal injection offered an advantage to traditional whole-body PET/CT images acquired after 1 h for detection of HCC.

  5. The influence of biological and technical factors on the variability of global and regional brain metabolism of 2-[18F]fluoro-2-deoxy-D-glucose.

    PubMed

    Camargo, E E; Szabo, Z; Links, J M; Sostre, S; Dannals, R F; Wagner, H N

    1992-03-01

    This study investigated the influence of biological and technical factors on variations of global and regional cerebral metabolic rate of glucose (CMRglc) measured with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG). Twelve male volunteers (22-40 years) were investigated on three or four occasions for a total of 42 studies. We calculated the variance/covariance of the following parameters: CMRglc, six parameters of the blood clearance of [18F]FDG, hour of injection, peak time of blood radioactivity, and six components of the operational equation (nonradioactive blood glucose concentration, brain radioactivity, two integrals, numerator, and denominator). There was correlation among these six components, except for nonradioactive blood glucose. However, the correlation between the CMRglc and the individual components of the operational equation was poor. The inter- and intrapersonal CMRglc coefficients of variations were 13.8 and 7.1%, respectively. In contrast, coefficients of variations of the numerator and denominator of the operational equation were 34.6 and 32.6%, respectively, and were always in the same direction. No correlation was found between CMRglc and the technical factors in the numerator and denominator of the operational equation. Factor analysis disclosed that a single factor was responsible for 70% of the variance. This factor included caudate, putamen, thalamus, frontal cortex, temporal cortex, and cingulate gyrus. These structures are involved with multiple complex functions, from autonomic motor control to behavior and emotions. The intrinsic metabolic variability of these structures, along with the basal metabolic processes that are continuously going on in the brain, may be the best explanation for the variance encountered in our investigation.

  6. Sensitivity of 2-[(18)F]fluoro-2-deoxyglucose positron emission tomography for advanced colorectal neoplasms: a large-scale analysis of 7505 asymptomatic screening individuals.

    PubMed

    Sekiguchi, Masau; Kakugawa, Yasuo; Terauchi, Takashi; Matsumoto, Minori; Saito, Hiroshi; Muramatsu, Yukio; Saito, Yutaka; Matsuda, Takahisa

    2016-12-01

    The sensitivity of 2-[(18)F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET) for advanced colorectal neoplasms among healthy subjects is not yet fully understood. The present study aimed to clarify the sensitivity by analyzing large-scale data from an asymptomatic screening population. A total of 7505 asymptomatic screenees who underwent both FDG-PET and colonoscopy at our Cancer Screening Division between February 2004 and March 2013 were analyzed. FDG-PET and colonoscopy were performed on consecutive days, and each examination was interpreted in a blinded fashion. The results of the two examinations were compared for each of the divided six colonic segments, with those from colonoscopy being set as the reference. The relationships between the sensitivity of FDG-PET and clinicopathological features of advanced neoplasms were also evaluated. Two hundred ninety-one advanced neoplasms, including 24 invasive cancers, were detected in 262 individuals. Thirteen advanced neoplasms (advanced adenomas) were excluded from the analysis because of the coexistence of lesions in the same colonic segment. The sensitivity, specificity, and positive and negative predictive values of FDG-PET for advanced neoplasms were 16.9 % [95 % confidence interval (CI) 12.7-21.8 %], 99.3 % (95 % CI 99.2-99.4 %), 13.5 % (95 % CI 10.1-17.6 %), and 99.4 % (95 % CI 99.3-99.5 %), respectively. The sensitivity was lower for lesions with less advanced histological grade, of smaller size, and flat-type morphology, and for those located in the proximal part of the colon. FDG-PET is believed to be difficult to use as a primary screening tool in population-based colorectal cancer screening because of its low sensitivity for advanced neoplasms. Even when it is used in opportunistic cancer screening, the limit of its sensitivity should be considered.

  7. Predominant contribution of L-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells.

    PubMed

    Yoshimoto, Mitsuyoshi; Kurihara, Hiroaki; Honda, Natsuki; Kawai, Keiichi; Ohe, Kazuyo; Fujii, Hirofumi; Itami, Jun; Arai, Yasuaki

    2013-07-01

    4-Borono-2-(18)F-fluoro-phenylalanine ((18)F-FBPA) has been used to anticipate the therapeutic effects of boron neutron capture therapy (BNCT) with 4-borono-L-phenylalanine (BPA). Similarly, L-[methyl-(11)C]-methionine ((11)C-MET), the most popular amino acid PET tracer, is a possible candidate for this purpose. We investigated the transport mechanism of (18)F-FBPA and compared it with that of (14)C-MET in human glioblastoma cell lines. Uptake of (18)F-FBPA and (14)C-MET was examined in A172, T98G, and U-87MG cells using 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (a system L-specific substrate), 2-(methylamino)-isobutyric acid (a system A-specific substrate), and BPA. Gene expression was analyzed by quantitative real time polymerase chain reaction. System L was mainly involved in the uptake of (18)F-FBPA (74.5%-81.1% of total uptake) and (14)C-MET (48.3%-59.4%). System A and ASC also contributed to the uptake of (14)C-MET. Inhibition experiments revealed that BPA significantly decreased the uptake of (18)F-FBPA, whereas 31%-42% of total (14)C-MET uptake was transported by BPA non-sensitive transporters. In addition, (18)F-FBPA uptake correlated with LAT1 and total LAT expressions. This study demonstrated that (18)F-FBPA was predominantly transported by system L in human glioblastoma cells compared to (14)C-MET. Although further studies are needed to elucidate the correlation between (18)F-FBPA uptake and BPA content in tumor tissues, (18)F-FBPA is suitable for the selection of patients who benefit from BNCT with BPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Prognostic Significance of 2-Deoxy-2-[18F]-Fluoro-D-Glucose PET/CT in Patients With Locally Advanced Esophageal Cancer Undergoing Neoadjuvant Chemoradiotherapy Before Surgery

    PubMed Central

    Giorgetti, Assuero; Pallabazzer, Giovanni; Ripoli, Andrea; Solito, Biagio; Genovesi, Dario; Lencioni, Monica; Fabrini, Maria Grazia; D’Imporzano, Simone; Pieraccini, Laura; Marzullo, Paolo; Santi, Stefano

    2016-01-01

    Abstract To investigate the prognostic value of tumor metabolism measurements on serial 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography and computed tomography scans in patients with locally advanced esophageal cancer undergoing neoadjuvant chemoradiotherapy. Forty-five patients (63 ± 7 years, 6 female) treated with concomitant chemoradiotherapy before surgery were followed up for 24 ± 18 months (range 4–71). Positron emission tomography and computed tomography scans were obtained within 1 week before the start (PET1) and 1 month after the completion of the treatment (PET2). Total body tumor metabolic activity was measured as the sum of the parameters: SUVmax, SUV corrected for lean body mass, and total lesion glycolysis (TLG40/50/70%). Then, delta values for the parameters between PET1 and PET2 were calculated and expressed as percentage of PET1 results. At the time of the analysis, 27 patients were dead and 18 were alive. There was no difference between the 2 groups in terms of age, sex, site of the disease, histology, and the presence/absence of linfonodal metastases (P = NS). Survival random forest analysis (20,000 trees) resulted in an estimate of error rate of 36%. The nonparametric approach identified ΔTLG40 as the most predictive factor of survival (relative importance 100%). Moreover, T (17%), N (5%), and M (5%) stage of the disease, cancer histology (11%), TLG70 (5%) at the end of chemioradioterapy, and ΔTLG50–70 (17%–5%) were positively associated with patient outcome. The nonparametric analysis confirmed the prognostic importance of some clinical parameters, such as TNM stage and cancer histology. Moreover, ΔTLG resulted to be the most important factor in predicting outcome and should be considered in risk stratification of patients treated with neoadjuvant chemoradiotherapy. PMID:27043676

  9. Is 2-deoxy-2-[18F]fluoro-D-glucose PET/CT acquisition from the upper thigh to the vertex of skull useful in oncological patients?

    PubMed Central

    Salvatore, B.; Caprio, M.G.; Fonti, R.; D’Amico, D.; Fraioli, F.; Salvatore, M.; Pace, L.

    2015-01-01

    Aim To assess whether performing routinely 2-deoxy-2-[18F]fluoro-D-glucose PET/CT (18FDG PET/CT) scan from the upper thigh to the vertex of skull is clinically relevant. Materials and Methods: 3502 (1634 female; mean-age 60+16) consecutive patients undergoing 18FDG PET/CT were retrospectively analyzed. Patients were divided in 10 groups according to primary malignancy. Chi-square analysis was used to assess differences among proportions. A p value < 0.05 was considered significant. Results: 18FDG PET/CT was positive in head district in 130/3502 (3,7%) patients. In all patients lesions were unknown before PET/CT examination. PET/CT showed 158 positive brain/head uptake in the 130 patients. The 158 lesions were localized in: brain (43/158; 27%), bone (52/158; 33%), lymph node (1/158; 0,6%), soft tissue (55/158; 35%) and other sites (7/158; 4,4%). According to each group, patients were positive in the head district in 1.0% for Gastrointestinal Cancer (7/690), 3.0 % for Genitourinary Cancer (3/101), 3.7 % for Haemathologic Cancer (59/1590), 2.7 % for Gynaecologic Cancer (3/112), 7.8% for Head-Neck-Thyroid and Parathyroid Cancer (26/331), 3.5% for Breast Cancer (7/200), 2.6% for Lung Cancer (7/271), 3.4% for Melanoma (2/59), 7.4% for Sarcoma (2/27), 11.6% for Unknown Primary Tumour (14/121). Conclusion: Our data show a relatively high incidence of brain/head lesion in patients with Unknown Primary Tumour. PMID:25674547

  10. Greater Nicotinic Acetylcholine Receptor Density in Smokers Than in Nonsmokers: A PET Study with 2-18F-FA-85380

    PubMed Central

    Mukhin, Alexey G.; Kimes, Alane S.; Chefer, Svetlana I.; Matochik, John A.; Contoreggi, Carlo S.; Horti, Andrew G.; Vaupel, D. Bruce; Pavlova, Olga; Stein, Elliot A.

    2009-01-01

    Assays of human postmortem brain tissue have revealed that smokers have greater densities of high-affinity nicotinic acetylcholine receptors (nAChRs) in several brain regions than do nonsmokers or exsmokers. Quantitative PET imaging of nAChRs in humans has recently been reported using the α4β2* subtype–specific radioligand 2-18F-FA-85380 (2FA). Methods We used PET and 2FA to measure total volumes of distribution corrected for the free fraction of 2FA in plasma (VT/fP) in 10 nonsmokers and 6 heavy smokers (>14 cigarettes/d; abstinent for >36 h). Dynamic PET scans were performed over 8 h, commencing immediately after a bolus injection of 2FA. Anatomic sampling was performed on PET images that were coregistered to MR images acquired from each volunteer. Data were analyzed by Logan plots and by 1- and 2-tissue-compartment models using unbound, unmetabolized arterial 2FA concentration as the input function. Results All modeling methods yielded similar results. VT/fP was significantly higher in smokers than in nonsmokers in all brain regions tested, except the thalamus. We used measures of VT/fP and estimates of nondisplaceable volume of distribution and found 25%–200% higher values in smokers than in nonsmokers for the volume of distribution for the specific binding compartment in the frontal cortex, midbrain, putamen, pons, cerebellum, and corpus callosum. These findings were consistent with voxel-based analysis using statistical parametric mapping. Conclusion Our findings suggest that PET with 2FA can be used to study the role of nicotine-induced upregulation of nAChRs in active smokers and during smoking cessation. PMID:18794265

  11. RESOLUTE PET/MRI Attenuation Correction for O-(2-(18)F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants.

    PubMed

    Ladefoged, Claes N; Andersen, Flemming L; Kjær, Andreas; Højgaard, Liselotte; Law, Ian

    2017-01-01

    Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes, and the radiolabeled amino acid analog tracer O-(2-(18)F-fluoroethyl)-L-tyrosine (FET)-PET is amongst the most frequently used. The FET-PET images need to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC) in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients. Methods: We analyzed 51 post-operative brain tumor patients (68 examinations, 200 MBq [18F]-FET) investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1) the Dixon water fat separation sequence, (2) the ultra short echo time (UTE) sequences, (3) calculated using our new RESOLUTE methodology, and (4) a same day low-dose CT used as reference "gold standard." For each subject and each AC method the tumor was delineated by isocontouring tracer uptake above a tumor(T)-to-brain background (B) activity ratio of 1.6. We measured B, tumor mean and maximal activity (TMEAN, TMAX), biological tumor volume (BTV), and calculated the clinical metrics TMEAN/B and TMAX/B. Results: When using RESOLUTE 5/68 studies did not meet our predefined acceptance criteria of TMAX/B difference to CT-AC < ±0.1 or 5%, TMEAN/B < ±0.05 or 5%, and BTV < ±2 mL or 10%. In total, 46/68 studies failed our acceptance criteria using Dixon, and 26/68 using UTE. The 95% limits of agreement for TMAX/B was for RESOLUTE (-3%; 4%), Dixon (-9%; 16%), and UTE (-7%; 10%). The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S) with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain tumor follow-up monitoring using clinical FET PET metrics. Conclusions: Overall, we found RESOLUTE to be the AC method that most robustly reproduced the

  12. Comparing 2-[18F]fluoro-2-deoxy-D-glucose and [68Ga]gallium-citrate translocation in Arabidopsis thaliana.

    PubMed

    Fatangare, Amol; Gebhardt, Peter; Saluz, Hanspeter; Svatoš, Aleš

    2014-10-01

    2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG) is a glucose surrogate commonly used in clinical or animal imaging but rarely in plant imaging to trace glucose metabolism. Recently, (18)FDG has been employed in plant imaging for studying photoassimilate translocation and glycoside biosynthesis. There is growing evidence that (18)FDG could be used as a tracer in plant imaging studies to trace sugar dynamics. However, to confirm this hypothesis, it was necessary to show that the observed (18)FDG distribution in an intact plant is an outcome of the chemical nature of the introduced radiotracer and not of the plant vascular architecture or radiotracer introduction method. In the present work, we fed (18)FDG and [(68)Ga]gallium-citrate ((68)Ga-citrate) solution through mature Arabidopsis thaliana leaf and monitored subsequent radioactivity distribution using positron autoradiography. The possible route of radioactivity translocation was elucidated through stem-girdling experiments. We also employed a bi-functional positron emission tomography/computed tomography (PET/CT) modality to capture (18)FDG radiotracer dynamics in one of the plants in order to assess applicability of PET/CT for 4-D imaging in an intact plant. Autoradiography results showed that [(18)F] radioactivity accumulated mostly in roots and young growing parts such as the shoot apex, which are known to act as sinks for photoassimilate. [(18)F] radioactivity translocation, in this case, occurred mainly via phloem. PET/CT results corroborated with autoradiography. [(68)Ga] radioactivity, on the other hand, was mainly translocated to neighboring leaves and its translocation occurred via both xylem and phloem. The radioactivity distribution pattern and translocation route observed after (18)FDG feeding is markedly different from that of (68)Ga-citrate. [(18)F] radioactivity distribution pattern in an intact plant is found similar to the typical distribution pattern of photoassimilates. Despite its limitations in

  13. Influence of Bevacizumab on Blood-Brain Barrier Permeability and O-(2-(18)F-Fluoroethyl)-l-Tyrosine Uptake in Rat Gliomas.

    PubMed

    Stegmayr, Carina; Oliveira, Dennis; Niemietz, Nicole; Willuweit, Antje; Lohmann, Philipp; Galldiks, Norbert; Shah, N Jon; Ermert, Johannes; Langen, Karl-Josef

    2017-05-01

    Restoration of the blood-brain barrier (BBB) after antiangiogenic therapy of gliomas with bevacizumab may result in a decrease in contrast enhancement on MRI despite tumor progression. This so-called pseudoresponse is difficult to differentiate from a true tumor response with conventional MRI. Initial patient studies have indicated that PET using O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) may be helpful for solving this diagnostic problem. This study was performed to investigate the effects of bevacizumab on BBB permeability and (18)F-FET uptake in a human xenograft model. Methods: Human U87 glioblastoma cells were implanted into the striatum of immunodeficient RNU rats. (18)F-FET PET scans and ex vivo autoradiography were performed in animals receiving a single high dose of bevacizumab (45 mg/kg 2 d before PET; n = 9) or in animals receiving 2 lower doses (10 mg/kg 9 and 2 d before PET; n = 10) to evaluate short-term and long-term effects on the BBB, respectively, and in control animals without bevacizumab treatment (n = 8). Time-activity curves, slope, and tumor-to-brain ratios of (18)F-FET uptake (18-61 min after injection) were evaluated using a volume-of-interest analysis. After PET scanning, Evans blue dye (EBD) was injected into animals, and cryosections of the brains were evaluated by autoradiography, by histology, and for EBD fluorescence to assess BBB permeability. Results: Compared with the control, short-term bevacizumab therapy resulted in a trend toward BBB restoration (P = 0.055) and long-term therapy resulted in a significant decrease (P = 0.004) in BBB permeability, as assessed by EBD fluorescence. In contrast, no significant differences in tumor-to-brain ratios or slope of (18)F-FET uptake were observed in PET and autoradiography (P > 0.05). Conclusion:(8)F-FET uptake in glioblastomas seems to be largely independent of BBB permeability and reflects the viability of tumor tissue during antiangiogenic therapy more reliably than contrast

  14. Positron Emission Tomography With 2-[18F]-Fluoro-2-Deoxy-D-Glucose For Initial Staging Of Hodgkin Lymphoma: A Single Center Experience In Brazil

    PubMed Central

    Cerci, Juliano Julio; Pracchia, Luís Fernando; Junior, José Soares; da Cruz Gouveia Linardi, Camila; Meneghetti, José Claudio; Buccheri, Valeria

    2009-01-01

    BACKGROUND: 2-[18F]-Fluoro-2-Deoxy-D-Glucose (FDG-PET) is a well established functional imaging modality for the initial staging of Hodgkin lymphoma (HL) in patients from Western Europe and North America. The reliability of FDG-PET in populations of different ethnic groups is unclear, as all investigations published to date have come from developed countries. PURPOSE: The aim of the present study was to investigate the effectiveness of FDG-PET in the initial staging of HL patients in a Brazilian population. METHODS: Eighty-two patients with newly diagnosed HL were prospectively included in the study. All patients were staged with both conventional clinical staging (CCS) methods, including computed tomography (CT) and whole-body FDG-PET methods. A standard of reference for the nodal regions and the extranodal organs was determined using all available information, including the CCS methods, FDG-PET, the diagnostic histology and the follow-up examinations. The results of the CCS were then compared to the FDG-PET results. RESULTS: The sensitivity of FDG-PET was higher for nodal staging than that of CT (87.8% vs. 61.6%, respectively). FDG-PET was also more sensitive than CT in regard to evaluating the extranodal organs for lymphomatous involvement (96.2% vs. 40.0%, respectively). FDG-PET detected all 16 patients who were characterized by a positive bone marrow biopsy and identified an additional 4 patients with bone marrow disease. The incorporation of FDG-PET coupled with CCS in the staging procedure upstaged 20% (17/82) of the patients and downstaged 11% (9/82) of the patients. As a result of these changes in staging, 15% (13/82) of the patients would have received a different therapeutic regimen. CONCLUSIONS: The FDG-PET method is superior to CT for the detection of nodal and extra-nodal HL. The observation that the FDG-PET method upstaged the disease was the most common result (20% of patients) brought about by the addition of PET to the staging algorithm, even in a

  15. RESOLUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants

    PubMed Central

    Ladefoged, Claes N.; Andersen, Flemming L.; Kjær, Andreas; Højgaard, Liselotte; Law, Ian

    2017-01-01

    Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes, and the radiolabeled amino acid analog tracer O-(2-18F-fluoroethyl)-L-tyrosine (FET)-PET is amongst the most frequently used. The FET-PET images need to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC) in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients. Methods: We analyzed 51 post-operative brain tumor patients (68 examinations, 200 MBq [18F]-FET) investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1) the Dixon water fat separation sequence, (2) the ultra short echo time (UTE) sequences, (3) calculated using our new RESOLUTE methodology, and (4) a same day low-dose CT used as reference “gold standard.” For each subject and each AC method the tumor was delineated by isocontouring tracer uptake above a tumor(T)-to-brain background (B) activity ratio of 1.6. We measured B, tumor mean and maximal activity (TMEAN, TMAX), biological tumor volume (BTV), and calculated the clinical metrics TMEAN/B and TMAX/B. Results: When using RESOLUTE 5/68 studies did not meet our predefined acceptance criteria of TMAX/B difference to CT-AC < ±0.1 or 5%, TMEAN/B < ±0.05 or 5%, and BTV < ±2 mL or 10%. In total, 46/68 studies failed our acceptance criteria using Dixon, and 26/68 using UTE. The 95% limits of agreement for TMAX/B was for RESOLUTE (−3%; 4%), Dixon (−9%; 16%), and UTE (−7%; 10%). The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S) with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain tumor follow-up monitoring using clinical FET PET metrics. Conclusions: Overall, we found RESOLUTE to be the AC method that most robustly

  16. In vitro and in vivo characterization of 2-deoxy-2-18F-fluoro-D-mannose as a tumor-imaging agent for PET.

    PubMed

    Furumoto, Shozo; Shinbo, Ryo; Iwata, Ren; Ishikawa, Yoichi; Yanai, Kazuhiko; Yoshioka, Takashi; Fukuda, Hiroshi

    2013-08-01

    2-Deoxy-2-(18)F-fluoro-d-mannose ((18)F-FDM) is an (18)F-labeled mannose derivative and a stereoisomer of (18)F-FDG. Our preliminary study demonstrated that (18)F-FDM accumulated in tumors to the same extent as (18)F-FDG, with less uptake in the brain and faster clearance from the blood. However, detailed studies on the uptake of (18)F-FDM in tumors have not been conducted. We undertook this study to establish a practical method of (18)F-FDM synthesis based on an (18)F-nucleophilic substitution (SN2) reaction and to advance the biologic characterization of (18)F-FDM for potential application as a tumor-imaging agent. We synthesized 4,6-O-benzylidene-3-O-ethoxymethyl-1-O-methyl-2-O-trifluoromethanesulfonyl-β-D-glucopyranoside as a precursor for the nucleophilic synthesis of (18)F-FDM. The precursor was radiofluorinated with (18)F-KF/Kryptofix222, followed by removal of the protecting groups with an acid. (18)F-FDM was purified by preparative high-performance liquid chromatography and then subjected to in vitro evaluation regarding phosphorylation by hexokinase as well as uptake and metabolism in AH109A tumor cells. The in vivo properties of (18)F-FDM were examined in Donryu rats bearing AH109A tumor cells by biodistribution studies and imaging with a small-animal PET system. We radiosynthesized (18)F-FDM in sufficient radiochemical yields (50%-68%) with excellent purities (97.6%-98.7%). (18)F-FDM was phosphorylated rapidly by hexokinase, resulting in 98% conversion into (18)F-FDG-6-phosphate within 30 min. Tumor cells showed significant uptake of (18)F-FDM with time in vitro, and uptake was dose-dependently inhibited by D-glucose. (18)F-FDM injected into tumor-bearing rats showed greater uptake in tumors (2.17 ± 0.32 percentage injected dose per gram [%ID/g]) than in the brain (1.42 ± 0.10 %ID/g) at 60 min after injection. PET studies also revealed the tumor uptake of (18)F-FDM (quasi-standardized uptake value, 2.83 ± 0.22) to be the same as that of (18)F-FDG (2

  17. In Vivo Imaging with an αvβ6 Specific Peptide Radiolabeled using 18F-“Click” Chemistry: Evaluation and Comparison with the Corresponding 4-[18F]Fluorobenzoyl- and 2-[18F]Fluoropropionyl-Peptides

    PubMed Central

    Hausner, Sven H.; Marik, Jan; Gagnon, M. Karen J.; Sutcliffe, Julie L.

    2009-01-01

    Numerous radiolabeled peptides have been utilized for in vivo imaging of a variety of cell-surface receptors. For applications in PET using [18F]fluorine, peptides are radiolabeled via a prosthetic group approach. We previously developed solution-phase 18F-“click” radiolabeling and solid-phase radiolabeling using 4-[18F]fluorobenzoic and 2-[18F]fluoropropionic acids. Here we compare the 3 different radiolabeling approaches and report the effects on PET imaging and pharmacokinetics. The prosthetic groups did have an influence; metabolites with significantly different polarities were observed. PMID:18785727

  18. All That Glitters Is Not Gold" - A Case of an Occult Foreign Body in the Lung with Elevated 2-[18F]-Fluoro-2-deoxy-D-glucose (FDG) Uptake Mimicking Bronchogenic Carcinoma

    PubMed Central

    Schenone, Aaron; Reichardt, Brian A; Saladi, Swetha; Mehta, Kris; Poddar, Nishant; Stoeckel, David

    2017-01-01

    Combined positron emission tomography/computed tomography (PET/CT) using the glucose analogue 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) has become the standard of care in oncological patients. However, due to the non-specific nature of FDG uptake, there are many physiological variants and benign pathological entities that also demonstrate augmented glucose metabolism, such as inflammatory and infective processes. Undiagnosed and retained foreign bodies (occult foreign bodies) in the lung can induce inflammatory reaction consisting of polymorphonuclear neutrophils, macrophages, and granulation tissue resulting in intense FDG uptake because of high metabolic activity and cell turnover. Here, we present a case of an occult foreign body imitating a tumor on PET/CT.  PMID:28265526

  19. Development & automation of a novel [(18)F]F prosthetic group, 2-[(18)F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide.

    PubMed

    Morris, Olivia; Gregory, J; Kadirvel, M; Henderson, Fiona; Blykers, A; McMahon, Adam; Taylor, Mark; Allsop, David; Allan, Stuart; Grigg, J; Boutin, Herve; Prenant, Christian

    2016-10-01

    2-[(18)F]-Fluoro-3-pyridinecarboxaldehyde ([(18)F]FPCA) is a novel, water-soluble prosthetic group. It's radiochemistry has been developed and fully-automated for application in chemoselective radiolabelling of amino(oxy)-derivatised RI-OR2-TAT peptide, (Aoa-k)-RI-OR2-TAT, using a GE TRACERlab FX-FN. RI-OR2-TAT is a brain-penetrant, retro-inverso peptide that binds to amyloid species associated with Alzheimer's Disease. Radiolabelled (Aoa-k)-RI-OR2-TAT was reproducibly synthesised and the product of the reaction with FPCA has been fully characterised. In-vivo biodistribution of [(18)F]RI-OR2-TAT has been measured in Wistar rats.

  20. The comparison of 2-18F-2-deoxyglucose and 15-(ortho-123I-phenyl)-pentadecanoic acid uptake in persisting defects on thallium-201 tomography in myocardial infarction

    SciTech Connect

    Henrich, M.M.; Vester, E.; von der Lohe, E.; Herzog, H.; Simon, H.; Kuikka, J.T.; Feinendegen, L.E. )

    1991-07-01

    The myocardial uptake of glucose and fatty acids into 201Tl redistribution defects were studied in 32 patients with myocardial infarction by tomography using 2-18F-2-deoxyglucose (FDG) and 15-(ortho-123I-phenyl)-pentadecanoic acid (oPPA). A total of 1153 segments were analyzed, 408 (35%) of which showed a persistent thallium-defect in stress-redistribution images. Of the segments with a decreased 201Tl uptake in these redistribution tomograms, 50.5% had a decreased uptake of both FDG and oPPA; in 21.8% FDG as well as oPPA uptake was within normal range. Normal FDG uptake but decreased oPPA uptake was detected in 17.4%, whereas 10.3% of the segments had normal oPPA uptake but decreased FDG uptake (chi-square test, p less than 0.001). A significant correlation of FDG and oPPA uptake (r = 0.51) was found in the segments with persistent 201Tl defect. Thus, a substantial fraction of persistent thallium-defects after healed myocardial infarction exhibit FDG as well as oPPA uptake, probably due to residual fatty acid metabolism in partially ischemic regions.

  1. Automated synthesis of N-(2-[(18) F]Fluoropropionyl)-L-glutamic acid as an amino acid tracer for tumor imaging on a modified [(18) F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-04-03

    N-(2-[(18) F]Fluoropropionyl)-L-glutamic acid ([(18) F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography (PET). However, due to the complicated multi-step synthesis, the routine production of [(18) F]FPGLU presents many challenging laboratory requirements. In order to simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [(18) F]FPGLU was performed on a modified commercial FDG synthesizer via a two-step on-column hydrolysis procedure, including (18) F-fluorination and on-column hydrolysis reaction. [(18) F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [(18) F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 min. To further optimize the radiosynthesis conditions of [(18) F]FPGLU, a brominated precursor 3 was also used for the preparation of [(18) F]FPGLU and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 min. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified FDG synthesis module.

  2. Synthesis, Quality Control and Stability Studies of 2-[18F]Fluoro-2-Deoxy-D-Glucose(18F-FDG) at Different Conditions of Temperature by Physicochemical and Microbiological Assays

    PubMed Central

    Rahmani, Siyavash; Shahhoseini, Soraya; Mohamadi, Reza; Vojdani, Mostafa

    2017-01-01

    The introduction of 2-[18F] fluor-2-deoxy-D-glucose (18FDG) has provided a valuable tool for the study of glucose metabolism in both normal and diseased tissue in conjunction with positron emission tomography (PET). 18FDG is the most important radiopharmaceutical to be used in Nuclear Medicine for studying the brain, heart and tumor. The advancement in synthesis and quality control of 18FDG and its approval by US FDA are main reasons for increasing clinical application of 18FDG over the last 20 years. In this manuscript we explain the synthesis, quality control and stability studies of 18FDG (evaluate the physicochemical and microbiological stability of 18FDG, stored at room temperature (18 - 23 °C), and 35 - 40 °C, at different time intervals). We investigated how the influence of environmental factors in different lengths of time, alters the quality of this radiopharmaceutical. The pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, bacterial endotoxins and sterility of 18FDG were evaluated according to the European Pharmacopoeia 7ed. analytical methods and acceptance criteria. The results suggest that under experimental conditions 18FDG has physicochemical and microbiological stability up to 10 h after the end of synthesis. PMID:28979313

  3. High-yield, automated radiosynthesis of 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) ready for animal or human administration.

    PubMed

    Liu, Jie; Kepe, Vladimir; Zabjek, Alenka; Petric, Andrej; Padgett, Henry C; Satyamurthy, Nagichettiar; Barrio, Jorge R

    2007-01-01

    The biomarker 2-(1-{6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([(18)F]FDDNP) is used as a positron emission tomography (PET) imaging probe for Alzheimer's disease and other neurodegenerative diseases. A high-yield and fully automated synthesis of [(18)F]FDDNP--along with the synthesis and characterization of non-radioactive FDDNP, a fluorescent probe derived from 2-(1,1-dicyanopropenyl-2)-6-dimethylaminonaphthalene (DDNP)--are reported. Radiofluorination of the tosyloxy precursor 2-{[6-(2,2-dicyano-1-methylvinyl)-2-naphthyl](methyl)amino}ethyl-4-methylbenzenesulfonate (DDNPTs) with K(18)F/Kryptofix 2.2.2. yielded chemically (>99%) and radiochemically (>99%) pure [(18)F]FDDNP in high radiochemical yields (40-60%; n> 120), with specific activities ranging from 4 to 8 Ci/mumol at the end of synthesis (90 minutes). Both remote, semiautomated and automated synthesis procedures are described. Either approach provides a reliable method for production of large quantities (110-170 mCi from 500 mCi of [(18)F]fluoride) of [(18)F]FDDNP allowing for multiple PET experiments in the same day or for distribution of the tracer from a single cyclotron facility to PET imaging centers at various geographical distances.

  4. Automated production at the curie level of no-carrier-added 6-[(18)F]fluoro-L-dopa and 2-[(18)F]fluoro-L-tyrosine on a FASTlab synthesizer.

    PubMed

    Lemaire, C; Libert, L; Franci, X; Genon, J-L; Kuci, S; Giacomelli, F; Luxen, A

    2015-06-15

    An efficient, fully automated, enantioselective multi-step synthesis of no-carrier-added (nca) 6-[(18)F]fluoro-L-dopa ([(18)F]FDOPA) and 2-[(18)F]fluoro-L-tyrosine ([(18)F]FTYR) on a GE FASTlab synthesizer in conjunction with an additional high- performance liquid chromatography (HPLC) purification has been developed. A PTC (phase-transfer catalyst) strategy was used to synthesize these two important radiopharmaceuticals. According to recent chemistry improvements, automation of the whole process was implemented in a commercially available GE FASTlab module, with slight hardware modification using single use cassettes and stand-alone HPLC. [(18)F]FDOPA and [(18)F]FTYR were produced in 36.3 ± 3.0% (n = 8) and 50.5 ± 2.7% (n = 10) FASTlab radiochemical yield (decay corrected). The automated radiosynthesis on the FASTlab module requires about 52 min. Total synthesis time including HPLC purification and formulation was about 62 min. Enantiomeric excesses for these two aromatic amino acids were always >95%, and the specific activity of was >740 GBq/µmol. This automated synthesis provides high amount of [(18)F]FDOPA and [(18)F]FTYR (>37 GBq end of synthesis (EOS)). The process, fully adaptable for reliable production across multiple PET sites, could be readily implemented into a clinical good manufacturing process (GMP) environment.

  5. Evaluation of 2-deoxy-2-[18F]fluoro-D-glucose- and 3'-deoxy-3'-[18F]fluorothymidine-positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer.

    PubMed

    Perumal, Meg; Stronach, Euan A; Gabra, Hani; Aboagye, Eric O

    2012-12-01

    We evaluated whether 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) could be used as imaging biomarkers of platinum resensitization in ovarian cancer. Paired platinum-sensitive and platinum-resistant ovarian cancer cells from the same patient, PEO1 and PEO4, grown as tumor xenografts in nude mice, were assessed by PET. The AKT inhibitor, API-2, resensitized platinum-resistant PEO4 tumors to cisplatin, leading to a markedly lower Ki67 labeling index (p ≤ 0.006, n = 6 per group). [(18)F]FDG-PET and [(18)F]FLT-PET imaging variables were lower after combination treatment compared with vehicle treatment (p ≤ 0.006, n = 6 per group). No changes were seen with either drug alone. PRAS40 phosphorylation status was a sensitive biochemical marker of pathway inhibition, whereas reductions thymidine kinase 1 expression defined the [(18)F]FLT response. Therapeutic inhibition of AKT activation in acquired platinum-resistant disease can be imaged noninvasively by [(18)F]FDG-PET and [(18)F]FLT-PET warranting further assessment.

  6. Assessment of Tryptophan Uptake and Kinetics Using 1-(2-18F-Fluoroethyl)-l-Tryptophan and α-11C-Methyl-l-Tryptophan PET Imaging in Mice Implanted with Patient-Derived Brain Tumor Xenografts

    PubMed Central

    Michelhaugh, Sharon K.; Muzik, Otto; Guastella, Anthony R.; Klinger, Neil V.; Polin, Lisa A.; Cai, Hancheng; Xin, Yangchun; Mangner, Thomas J.; Zhang, Shaohui; Juhász, Csaba

    2017-01-01

    Abnormal tryptophan metabolism via the kynurenine pathway is involved in the pathophysiology of a variety of human diseases including cancers. α-11C-methyl-l-tryptophan (11C-AMT) PET imaging demonstrated increased tryptophan uptake and trapping in epileptic foci and brain tumors, but the short half-life of 11C limits its widespread clinical application. Recent in vitro studies suggested that the novel radiotracer 1-(2-18F-fluoroethyl)-l-tryptophan (18F-FETrp) may be useful to assess tryptophan metabolism via the kynurenine pathway. In this study, we tested in vivo organ and tumor uptake and kinetics of 18F-FETrp in patient-derived xenograft mouse models and compared them with 11C-AMT uptake. Methods: Xenograft mouse models of glioblastoma and metastatic brain tumors (from lung and breast cancer) were developed by subcutaneous implantation of patient tumor fragments. Dynamic PET scans with 18F-FETrp and 11C-AMT were obtained for mice bearing human brain tumors 1–7 d apart. The biodistribution and tumoral SUVs for both tracers were compared. Results: 18F-FETrp showed prominent uptake in the pancreas and no bone uptake, whereas 11C-AMT showed higher uptake in the kidneys. Both tracers showed uptake in the xenograft tumors, with a plateau of approximately 30 min after injection; however, 18F-FETrp showed higher tumoral SUV than 11C-AMT in all 3 tumor types tested. The radiation dosimetry for 18F-FETrp determined from the mouse data compared favorably with the clinical 18F-FDG PET tracer. Conclusion: 18F-FETrp tumoral uptake, biodistribution, and radiation dosimetry data provide strong preclinical evidence that this new radiotracer warrants further studies that may lead to a broadly applicable molecular imaging tool to examine abnormal tryptophan metabolism in human tumors. PMID:27765857

  7. Comparison Study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 for PET Imaging of U87MG Tumors in Mice

    PubMed Central

    Lang, Lixin; Li, Weihua; Guo, Ning; Ma, Ying; Zhu, Lei; Kiesewetter, Dale O.; Shen, Baozhong; Niu, Gang; Chen, Xiaoyuan

    2011-01-01

    [18F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the αvβ3 integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [68Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging αvβ3 integrin receptors. The purpose of this study was to prepare [18F]FPPRDG2, [18F]FAl-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys and muscle were similar for all three tracers and they all showed predominant renal clearance. In conclusion, [18F]FAl-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [18F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [18F]FAl-NOTA-PRGD2 and [68Ga]NOTA-PRGD2 are promising alternatives to [18F]FPPRGD2 for PET imaging of tumor αvβ3 integrin expression. PMID:22026940

  8. Determination of hepatic galactose elimination capacity using 2-[18F]fluoro-2-deoxy-D-galactose PET/CT: reproducibility of the method and metabolic heterogeneity in a normal pig liver model

    PubMed Central

    SØRENSEN, MICHAEL

    2011-01-01

    Objective A PET method is developed for non-invasive measurement of regional metabolic liver function using the galactose analog 2-[18F]fluoro-2-deoxy-D-galactose, FDGal. The aim of the present study was to determine the reproducibility of the method in pigs before translating it to human studies. Material and methods Five anesthetized pigs were studied twice within an interval of three days. A dynamic PET recording was performed with an injection of 100 MBq FDGal. Non-radioactive galactose was administered throughout the PET recordings to achieve near-saturated elimination kinetics. Arterial blood samples were collected for determination of blood concentrations of FDGal and galactose (cgal). Net metabolic clearance of FDGal, KFDGal, was calculated from linear representation of data. The approximate maximal hepatic removal rate, Vmax, of galactose (mmol/l tissue/min) was calculated as KFDGal cgal. The estimates from Day 1 and Day 2 were compared and the coefficient of variation, COV, of the estimates calculated. Functional heterogeneity in normal pig liver was evaluated as COV of the tissue concentration of radioactivity during quasi steady-state metabolism. Results There was no significant difference between Vmax from Day 1 and Day 2 (p = 0.38), and the reproducibility was good with a COV of 14% for the whole liver. In normal pig liver tissue, mean COV after an injection of FDGal was on average 15.6% with no day-to-day variation (p = 0.7). Conclusions The novel FDGal PET method for determination of hepatic metabolic function has a good reproducibility and is promising for future human studies of regional liver function. PMID:20695723

  9. Clinical significance of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography for the assessment of 131I-metaiodobenzylguanidine therapy in malignant phaeochromocytoma.

    PubMed

    Nakazawa, Azusa; Higuchi, Tetsuya; Oriuchi, Noboru; Arisaka, Yukiko; Endo, Keigo

    2011-10-01

    The aim of this study was to evaluate the significance of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the assessment of the therapeutic response to 131I-metaiodobenzylguanidine (MIBG) in malignant phaeochromocytoma. We reviewed the records of 11 patients (7 men and 4 women) with malignant phaeochromocytoma who underwent 131I-MIBG therapy (100-200 mCi). 18F-FDG PET and serum catecholamine assays were performed 3 months before and after the first dose of 131I-MIBG. FDG uptake was evaluated in the observed lesions using the maximum standardised uptake value (SUVmax). The average SUVmax of all lesions (ASUV) was calculated. If more than five lesions were identified, the average SUVmax of the five highest SUVmax (ASUV5) was calculated. The ratio of pre- and post-therapy values was calculated for the highest SUVmax (rMSUV), ASUV (rASUV), ASUV5 (rASUV5), CT diameter (rCT) and serum catecholamine (rCA). Responder (R) and non-responder (NR) groups were defined after a clinical follow-up of at least 6 months according to changes in symptoms, CT, magnetic resonance imaging (MRI) and 123I-MIBG scan. Post-therapy evaluation revealed five R and six NR patients. The size of the target lesions was not significantly different before and after therapy (p>0.05). However, ASUV and ASUV5 were significantly lower in the R group (rASUV 0.64±0.18, rASUV5 0.68±0.17) compared to the NR group (rASUV 1.40±0.54, rASUV5 1.37±0.61) (p<0.05). 18F-FDG PET can be potentially used to evaluate the response of malignant phaeochromocytoma to 131I-MIBG therapy.

  10. The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent.

    PubMed

    Faust, A; Wagner, S; Law, M P; Hermann, S; Schnöckel, U; Keul, P; Schober, O; Schäfers, M; Levkau, B; Kopka, K

    2007-03-01

    Radiolabeled Annexin V-derivatives are well characterized phosphatidylserine-targeting biomarkers and considered as state-of-the-art tracers for non-invasive molecular imaging of apoptosis. In contrast to Annexin V-derived imaging agents being surrogate markers of apoptosis, activated cysteinyl aspartate-specific proteases (caspases) represent the common final path of apoptosis being a suitable in vivo target for the exclusive imaging of apoptotic tissues in vivo. We suggest 5-pyrrolidinylsulfonyl isatins as a potential nonpeptidyl class of caspase inhibitors for the design of caspase binding radioligands (CbRs), that could be used for in vivo visualization of activated effector caspases. The caspase inhibitor (S)-(+)-5-[1-(2-Methoxy-methylpyrrolidinyl)sulfonyl]isatin 1 (K(i, caspase)-3 (1)=60 nM) was chosen as lead structure for the development of nonpeptidyl CbRs. Its structural expansion at the N-1-position the yields moderate lipophilic p-(2-fluoroethoxy)benzyl variant 2 (log D=2.2), without loss of caspase binding potency (IC(50, caspase)-3 (2)=36.4 nM). Subsequent automated radiosynthesis of the corresponding (18)F-labeled target CbR [(18)F]2 was performed by direct (18)F-labeling of tosylate precursor 4. As shown by biodistribution studies and small animal positron emission tomography a nonpeptidyl 5-pyrrolidinylsulfonyl isatin-type caspase inhibitor (S)-1-(4-(2-[(18)F]Fluoroetho-xy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin [(18)F]2 with rapid blood clearance characteristics could potentially detect apoptosis in vivo.

  11. Endoscopic ultrasound - fine needle aspiration of 2-deoxy-2-[18F] fluoro-D-glucose avid lymph nodes seen on positron emission tomography- computed tomography -what looks like cancer may not always be so.

    PubMed

    Malik, Anum Imran; Akhtar, Noreen; Loya, Asif; Yusuf, Muhammed Aasim

    2014-07-31

    Patients suffering from malignancies often undergo serial positron emission tomography - computed tomography (PET-CT) scans, using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) for diagnosis and follow up. This principle may also be applied to benign conditions as inflammatory cells take up increased amounts of FDG as well. The aim of our study was to retrospectively review the cytological diagnoses made at EUS-FNA of FDG-avid PET-CT lesions in patients with a history of cancer and to determine whether the cause of FDG-avidity was neoplastic or benign. We used the endoscopy database to extract clinical information on all patients with malignancies who underwent EUS-FNA to obtain tissue from FDG-avid nodes seen on PET-CT at our institution from 2009 - 2012. All patients who were referred for EUS-FNA after their scans were included. Those who had contraindications to endoscopic procedures were excluded. The most common location of positive lymph nodes was the subcarinal region (46%). A definitive diagnosis was obtained in 87.8% cases, of which 51.2% had a diagnosis of malignancy confirmed on cytology, while 36.5% were benign. Out of these, 29% had granulomatous inflammation. In 12.2% of cases no definitive diagnosis was obtained. Our results show that great caution should be exercised when evaluating FDG-avid PET-CT nodes in patients with known malignant disease, as a significant proportion of these lesions may be benign, particularly in geographic locations with a high background prevalence of granulomatous inflammation.

  12. Synthesis and evaluation of 2-18F-fluoro-5-iodo-3-[2-(S)-3,4-dehydropyrrolinylmethoxy]pyridine (18F-Niofene) as a potential imaging agent for nicotinic α4β2 receptors

    PubMed Central

    Kuruvilla, Sharon A; Hillmer, Ansel T; Wooten, Dustin W; Patel, Ashna; Christian, Bradley T; Mukherjee, Jogeshwar

    2014-01-01

    Nicotinic α4β2 acetylcholine receptors (nAChRs) have been implicated in various pathophysiologies including neurodegenerative diseases. Currently, 2-18F-A85380 (2-FA) and 5-123I-A85380 (5-IA) are used separately in human PET and SPECT studies respectively and require >4-6 hours of scanning. We have developed 2-fluoro-5-iodo-3-[2-(S)-3-dehydropyrrolinylmethoxy]pyridine (niofene) as a potential PET/SPECT imaging agent for nAChRs with an aim to have rapid binding kinetics similar to that of 18F-nifene used in PET studies. Niofene exhibited a 10-fold better in vitro binding affinity in rat brain than that of nicotine. The relative binding of niofene was similar to that of niodene and twice as better as that of nifene. In vitro autoradiography in rat brain slices alongside niodene indicated selective binding of niofene to regions consistent with α4β2 receptor distribution. Niofene, 10 nM, displaced >70% of 3H-cytisine bound to α4β2 receptors in rat brain slices. Radiolabeling of 18F-niofene was achieved in 10-15% radiochemical yield in high specific activities >2 Ci/μmol and showed rapid in vivo kinetics similar to that of 18F-nifene and 18F-nifrolene. In vivo PET in rats showed rapid uptake in the brain and selective localization in receptor regions such as the thalamus (TH). Pseudoequilibrium with 18F-niofene was achieved in 30-40 minutes, which is similar to that of 18F-nifene. Further evaluation of 18F-niofene as a potential PET imaging agent is underway. Future studies will be conducted to radiolabel niofene with iodine-123 for use in SPECT imaging. PMID:24982821

  13. Clinical impact of 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-positron emission tomography (PET) on treatment choice in recurrent cancer of the cervix uteri.

    PubMed

    Bjurberg, Maria; Brun, Eva

    2013-11-01

    The superiority of positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) over computed tomography and magnetic resonance imaging in detecting recurrent cervical cancer and determining the extent of the disease has been demonstrated in several clinical trials. However, there is a lack of data concerning the clinical impact of the extra findings. We report here a prospective clinical study aimed at investigating the clinical impact of FDG-PET findings on the treatment plans in recurrent cervical cancer. Thirty-six patients with suspected recurrent cervical cancer underwent FDG-PET. Relapses were confirmed in 26 cases, and one case of primary lung cancer was found. The clinical impact of the FDG-PET results was assessed using a systematic scoring system with a 4-grade scale. Median follow-up time after FDG-PET was 33.1 months (range, 5-83 months) for all patients and 22.4 months (range, 5-83 months) for patients with positive PET results. More sites of metastases were detected with FDG-PET in 56% of the patients compared to the findings by conventional imaging. The results of FDG-PET led to a change in treatment modality for 33% of the patients; and for 22%, a change in dose or deliverance of treatment was recorded. Treatment intention was changed in 30%, in all but one patient, from curative to palliative. In 48% of the patients, the initially planned treatment was reduced regarding dose or extent, or was withheld. In recurrent cervical cancer, FDG-PET provides clinically valuable information with a high impact on treatment decisions.

  14. Utility of 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography in differential diagnosis of benign and malignant intraductal papillary-mucinous neoplasm of the pancreas.

    PubMed

    Tomimaru, Yoshito; Takeda, Yutaka; Tatsumi, Mitsuaki; Kim, Tonsok; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Tanemura, Masahiro; Kitagawa, Toru; Nagano, Hiroaki; Umeshita, Koji; Wakasa, Kenichi; Doki, Yuichiro; Mori, Masaki

    2010-09-01

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas presents in various histopathological stages from benign to malignant lesions. The differentiation between benign and malignant IPMN is important in order to determine the treatment of the patients. However, pre-operative differentiation remains difficult. The aim of this study was to assess the utility of 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in pre-operative differentiation of benign and malignant IPMN of the pancreas. In the present study we prospectively investigated 29 patients who underwent CT, FDG-PET, and surgery for IPMNs, followed by histopathological examination. The maximum standardized uptake value (SUVmax) was determined on FDG-PET, and differentiation of benign from malignant IPMN was tested using various SUVmax cut-off levels and various parameters derived from the CT. SUVmax was found to be significantly higher in malignant IPMNs (4.7+/-3.0) than that in benign IPMNs (1.8+/-0.3, P=0.0011). SUVmax values correlated with the histopathological types of IPMN (adenoma/borderline lesion/carcinoma in situ/invasive carcinoma) (Spearman rank correlation 0.865, P<0.0001). The specificity, sensitivity and accuracy values were best for SUVmax of 2.5 (100, 93, and 96%, respectively). The combination of mural nodule, detected on CT, and SUVmax of 2.5 offered the best diagnosis of malignant IPMN. These results suggest that FDG-PET is useful for differentiation of malignant IPMN of the pancreas, and that it should be performed in combination with other conventional imaging modalities.

  15. 17-[4-(2-[18F]fluoroethyl)-1H-1,2,3-triazol-1-yl]-6-thia-heptadecanoic acid: a potential radiotracer for the evaluation of myocardial fatty acid metabolism.

    PubMed

    Kim, Dong Hyun; Choe, Yearn Seong; Choi, Joon Young; Choi, Yong; Lee, Kyung-Han; Kim, Byung-Tae

    2009-06-01

    In this study, we synthesized 17-[4-(2-[(18)F]fluoroethyl)-1H-1,2,3-triazol-1-yl]-6-thia-heptadecanoic acid ([(18)F]1), a PET radiotracer for the evaluation of fatty acid metabolism. [(18)F]1 was synthesized in 20-26% decay-corrected radiochemical yields from 17-azido 6-thia-heptadecanoic acid (9) and 4-[(18)F]fluoro-1-butyne using click chemistry. The tissue distribution of [(18)F]1 in mice showed high radioactivity accumulation in heart (3.70%ID/g at 1 min, 3.28%ID/g at 10 min, and 3.01%ID/g at 60 min postinjection), a prolonged myocardial elimination half-life (>60 min), and a maximal heart-to-blood uptake ratio at 5 min postinjection (5.55). Pretreatment with etomoxir, a carnitine palmitoyl transferase (CPT) I inhibitor, reduced myocardial radioactivity uptake at 30 min postinjection by 53%, suggesting that [(18)F]1 was transported into the mitochondria. Analyses of heart tissue samples showed that most of the radioactivity was present in a tissue pellet (62-63%) after homogenization in CHCl(3)-CH(3)OH followed by extraction with 40% urea and 5% H(2)SO(4), which was mostly precipitated with addition of 50% trichloroacetic acid (TCA). These results suggest that [(18)F]1 undergoes metabolic trapping via beta-oxidation in myocardium and, thus, suggest that it has potential use as a PET radiotracer for the evaluation of myocardial fatty acid metabolism.

  16. Comparison between 2-(18) F-fluoro-2-deoxy-d-glucose positron emission tomography and contrast-enhanced computed tomography for measuring gross tumor volume in cats with oral squamous cell carcinoma.

    PubMed

    Yoshikawa, Hiroto; Randall, Elissa K; Kraft, Susan L; Larue, Susan M

    2013-01-01

    Feline oral squamous cell carcinoma is one of the most refractory feline malignancies. Most patients succumb due to failure in local tumor control. 2-(18) F-fluoro-2-deoxy-D-glucose positron emission tomography ((18) F-FDG PET) is increasingly being used for veterinary oncology staging as it highlights areas with higher glucose metabolism. The goal of the current prospective study was to compare gross tumor volume measurements using (18) F-FDG PET vs. those using computed tomography (CT) for stereotactic radiation therapy planning in cats with oral squamous cell carcinoma. Twelve cats with confirmed oral squamous cell carcinoma underwent pretreatment (18) F-FDG PET/CT. Gross tumor volumes based on contrast-enhanced CT and (18) F-FDG PET were measured and compared among cats. Mean PET gross tumor volume was significantly smaller than mean CT gross tumor volume in the mandibular/maxillary squamous cell carcinoma group (n = 8, P = 0.002) and for the total number of patients (n = 12, P = 0.006), but not in the lingual/laryngeal group (n = 4, P = 0.57). Mismatch fraction analysis revealed that most of the lingual/laryngeal patients had a large region of high-(18) F-FDG activity outside of the CT gross tumor volume. This mismatch fraction was significantly greater in the lingual/laryngeal group than the mandibular/maxillary group (P = 0.028). The effect of poor spatial resolution of PET imaging was greater when the absolute tumor volume was small. Findings from this study indicated that (18) F-FDG PET warrants further investigation as a supplemental imaging modality in cats with oral squamous cell carcinoma because it detected regions of possible primary tumor that were not detected on CT images.

  17. Ferret Thoracic Anatomy by 2-Deoxy-2-(18F)Fluoro-D-Glucose (18F-FDG) Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT) Imaging

    PubMed Central

    Wu, Albert; Zheng, Huaiyu; Kraenzle, Jennifer; Biller, Ashley; Vanover, Carol D.; Proctor, Mary; Sherwood, Leslie; Steffen, Marlene; Ng, Chin; Mollura, Daniel J.; Jonsson, Colleen B.

    2013-01-01

    The domestic ferret (Mustela putorius furo) has been a long-standing animal model used in the evaluation and treatment of human diseases. Molecular imaging techniques such as 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) would be an invaluable method of tracking disease in vivo, but this technique has not been reported in the literature. Thus, the aim of this study was to establish baseline imaging characteristics of PET/computed tomography (CT) with 18F-FDG in the ferret model. Twelve healthy female ferrets were anesthetized and underwent combined PET/CT scanning. After the images were fused, volumes of interest (VOIs) were generated in the liver, heart, thymus, and bilateral lung fields. For each VOI, standardized uptake values (SUVs) were calculated. Additional comparisons were made between radiotracer uptake periods (60, 90, and >90 minutes), intravenous and intraperitoneal injections of 18F-FDG, and respiratory gated and ungated acquisitions. Pulmonary structures and the surrounding thoracic and upper abdominal anatomy were readily identified on the CT scans of all ferrets and were successfully fused with PET. VOIs were created in various tissues with the following SUV calculations: heart (maximum standardized uptake value [SUVMax] 8.60, mean standardized uptake value [SUVMean] 5.42), thymus (SUVMax 3.86, SUVMean 2.59), liver (SUVMax 1.37, SUVMean 0.99), right lung (SUVMax 0.92, SUVMean 0.56), and left lung (SUVMax 0.88, SUVMean 0.51). Sixty- to 90-minute uptake periods were sufficient to separate tissues based on background SUV activity. No gross differences in image quality were seen between intraperitoneal and intravenous injections of 18F-FDG. Respiratory gating also did not have a significant impact on image quality of lung parenchyma. The authors concluded that 18F-FDG PET and CT imaging can be performed successfully in normal healthy ferrets with the parameters identified in this study. They obtained similar imaging

  18. PET imaging of translocator protein (18 kDa) in a mouse model of Alzheimer's disease using N-(2,5-dimethoxybenzyl)-2-18F-fluoro-N-(2-phenoxyphenyl)acetamide.

    PubMed

    James, Michelle L; Belichenko, Nadia P; Nguyen, Thuy-Vi V; Andrews, Lauren E; Ding, Zhaoqing; Liu, Hongguang; Bodapati, Deepika; Arksey, Natasha; Shen, Bin; Cheng, Zhen; Wyss-Coray, Tony; Gambhir, Sanjiv S; Longo, Frank M; Chin, Frederick T

    2015-02-01

    Herein we aimed to evaluate the utility of N-(2,5-dimethoxybenzyl)-2-(18)F-fluoro-N-(2-phenoxyphenyl)acetamide ((18)F-PBR06) for detecting alterations in translocator protein (TSPO) (18 kDa), a biomarker of microglial activation, in a mouse model of Alzheimer's disease (AD). Wild-type (wt) and AD mice (i.e., APP(L/S)) underwent (18)F-PBR06 PET imaging at predetermined time points between the ages of 5-6 and 15-16 mo. MR images were fused with PET/CT data to quantify (18)F-PBR06 uptake in the hippocampus and cortex. Ex vivo autoradiography and TSPO/CD68 immunostaining were also performed using brain tissue from these mice. PET images showed significantly higher accumulation of (18)F-PBR06 in the cortex and hippocampus of 15- to 16-mo-old APP(L/S) mice than age-matched wts (cortex/muscle: 2.43 ± 0.19 vs. 1.55 ± 0.15, P < 0.005; hippocampus/muscle: 2.41 ± 0.13 vs. 1.55 ± 0.12, P < 0.005). And although no significant difference was found between wt and APP(L/S) mice aged 9-10 mo or less using PET (P = 0.64), we were able to visualize and quantify a significant difference in (18)F-PBR06 uptake in these mice using autoradiography (cortex/striatum: 1.13 ± 0.04 vs. 0.96 ± 0.01, P < 0.05; hippocampus/striatum: 1.266 ± 0.003 vs. 1.096 ± 0.017, P < 0.001). PET results for 15- to 16-mo-old mice correlated well with autoradiography and immunostaining (i.e., increased (18)F-PBR06 uptake in brain regions containing elevated CD68 and TSPO staining in APP(L/S) mice, compared with wts). (18)F-PBR06 shows great potential as a tool for visualizing TSPO/microglia in the progression and treatment of AD. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Ferret thoracic anatomy by 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (18F-FDG PET/CT) imaging.

    PubMed

    Wu, Albert; Zheng, Huaiyu; Kraenzle, Jennifer; Biller, Ashley; Vanover, Carol D; Proctor, Mary; Sherwood, Leslie; Steffen, Marlene; Ng, Chin; Mollura, Daniel J; Jonsson, Colleen B

    2012-01-01

    The domestic ferret (Mustela putorius furo) has been a long-standing animal model used in the evaluation and treatment of human diseases. Molecular imaging techniques such as 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) positron emission tomography (PET) would be an invaluable method of tracking disease in vivo, but this technique has not been reported in the literature. Thus, the aim of this study was to establish baseline imaging characteristics of PET/computed tomography (CT) with (18)F-FDG in the ferret model. Twelve healthy female ferrets were anesthetized and underwent combined PET/CT scanning. After the images were fused, volumes of interest (VOIs) were generated in the liver, heart, thymus, and bilateral lung fields. For each VOI, standardized uptake values (SUVs) were calculated. Additional comparisons were made between radiotracer uptake periods (60, 90, and >90 minutes), intravenous and intraperitoneal injections of (18)F-FDG, and respiratory gated and ungated acquisitions. Pulmonary structures and the surrounding thoracic and upper abdominal anatomy were readily identified on the CT scans of all ferrets and were successfully fused with PET. VOIs were created in various tissues with the following SUV calculations: heart (maximum standardized uptake value [SUV(Max)] 8.60, mean standardized uptake value [SUV(Mean)] 5.42), thymus (SUV(Max) 3.86, SUV(Mean) 2.59), liver (SUV(Max) 1.37, SUV(Mean) 0.99), right lung (SUV(Max) 0.92, SUV(Mean) 0.56), and left lung (SUV(Max) 0.88, SUV(Mean) 0.51). Sixty- to 90-minute uptake periods were sufficient to separate tissues based on background SUV activity. No gross differences in image quality were seen between intraperitoneal and intravenous injections of (18)F-FDG. Respiratory gating also did not have a significant impact on image quality of lung parenchyma. The authors concluded that (18)F-FDG PET and CT imaging can be performed successfully in normal healthy ferrets with the parameters identified in this study. They

  20. Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model.

    PubMed

    Guo, Ning; Lang, Lixin; Li, Weihua; Kiesewetter, Dale O; Gao, Haokao; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2012-01-01

    With favorable pharmacokinetics and binding affinity for α(v)β(3) integrin, (18)F-labeled dimeric cyclic RGD peptide ([(18)F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an (18)F-fluoride-aluminum complex labeled RGD tracer ([(18)F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare (68)Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin α(v)β(3). The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [(18)F]FPPRGD2, [(18)F]AlF-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (Bp(ND) = k(3)/k(4)) in tumor voxels. [(18)F]AlF-NOTA-PRGD2 showed comparable Bp(ND) value (3.75±0.65) with those of [(18)F]FPPRGD2 (3.39±0.84) and [(68)Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (V(T)) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [(18)F]AlF-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [(18)F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated

  1. Quantitative Analysis and Comparison Study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 Using a Reference Tissue Model

    PubMed Central

    Guo, Ning; Lang, Lixin; Li, Weihua; Kiesewetter, Dale O.; Gao, Haokao; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2012-01-01

    With favorable pharmacokinetics and binding affinity for αvβ3 integrin, 18F-labeled dimeric cyclic RGD peptide ([18F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an 18F-fluoride-aluminum complex labeled RGD tracer ([18F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare 68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin αvβ3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [18F]FPPRGD2, [18F]AlF-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (BpND = k3/k4) in tumor voxels. [18F]AlF-NOTA-PRGD2 showed comparable BpND value (3.75±0.65) with those of [18F]FPPRGD2 (3.39±0.84) and [68Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (VT) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [18F]AlF-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable

  2. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    PubMed Central

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  3. Comparative Oncology: Evaluation of 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) Positron Emission Tomography/Computed Tomography (PET/CT) for the Staging of Dogs with Malignant Tumors

    PubMed Central

    Beer, Ambros J.; Brühschwein, Andreas; Kreutzmann, Nina; Laberke, Silja; Wergin, Melanie C.; Meyer-Lindenberg, Andrea; Brandl, Johanna; von Thaden, Anne-Kathrin; Farrell, Eliane

    2015-01-01

    Introduction 2-Deoxy-2-[18F]fluoro-D-glucose PET/CT is a well-established imaging method for staging, restaging and therapy-control in human medicine. In veterinary medicine, this imaging method could prove to be an attractive and innovative alternative to conventional imaging in order to improve staging and restaging. The aim of this study was both to evaluate the effectiveness of this image-guided method in canine patients with spontaneously occurring cancer as well as to illustrate the dog as a well-suited animal model for comparative oncology. Methods Ten dogs with various malignant tumors were included in the study and underwent a whole body FDG PET/CT. One patient has a second PET-CT 5 months after the first study. Patients were diagnosed with histiocytic sarcoma (n = 1), malignant lymphoma (n = 2), mammary carcinoma (n = 4), sertoli cell tumor (n = 1), gastrointestinal stromal tumor (GIST) (n = 1) and lung tumor (n = 1). PET/CT data were analyzed with the help of a 5-point scale in consideration of the patients’ medical histories. Results In seven of the ten dogs, the treatment protocol and prognosis were significantly changed due to the results of FDG PET/CT. In the patients with lymphoma (n = 2) tumor extent could be defined on PET/CT because of increased FDG uptake in multiple lymph nodes. This led to the recommendation for a therapeutic polychemotherapy as a treatment. In one of the dogs with mammary carcinoma (n = 4) and in the patient with the lung tumor (n = 1), surgery was cancelled due to the discovery of multiple metastasis. Consequently no treatment was recommended. Conclusion FDG PET/CT offers additional information in canine patients with malignant disease with a potential improvement of staging and restaging. The encouraging data of this clinical study highlights the possibility to further improve innovative diagnostic and staging methods with regard to comparative oncology. In the future, performing PET/CT not only for staging but also in

  4. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-(18)F-fluoro-phenylalanine (FBPA) PET study.

    PubMed

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2-(18)F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of (10)B to target tumor and surrounding normal tissue after administering (10)B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of (10)B in tumor has been estimated by multiplying (10)B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p < 0.001). Image-derived radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left

  5. Synthesis of 2'-deoxy-2'-[18F]fluoro-beta-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU.

    PubMed

    Mangner, Thomas J; Klecker, Raymond W; Anderson, Lawrence; Shields, Anthony F

    2003-04-01

    An efficient and reliable synthesis of 2'-deoxy-2'-[(18)F]fluoro-beta-D-arabinofuranosyl nucleosides is presented. Overall decay-corrected radiochemical yields of 35-45% of 4 analogs, FAU, FMAU, FBAU and FIAU are routinely obtained in >98% radiochemical purity and with specific activities of greater than 3 Ci/micromol (110 MBq/micromol) in a synthesis time of approximately 3 hours. When approximately 220 mCi (8.15 GBq) of starting [(18)F]fluoride is used, 25 -30 mCi (0.93 -1.11 GBq) of product (enough to image two patients sequentially) is typically obtained.

  6. The improved syntheses of 5-substituted 2'-[18F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([18F]FAU, [18F]FEAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and [18F]FIAU) using a multistep one-pot strategy.

    PubMed

    Cai, Hancheng; Li, Zibo; Conti, Peter S

    2011-07-01

    We and others have previously reported a four-step radiosynthesis of a series of 2'-deoxy-2'-[(18)F]fluoro-5-substituted-1-β-D-arabinofuranosyluracil derivatives including [(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and [(18)F]FIAU as thymidine derivatives for tumor proliferation and/or reporter gene expression imaging with positron emission tomography (PET). Although the radiosynthesis has been proven to be reproducible and efficient, this complicated multistep reaction is difficult to incorporate into an automated cGMP-compliant radiosynthesis module for routine production. Recently, we have developed a simple and efficient one-pot method for routine production of [(18)F]FMAU. In this study, we studied the feasibility of radiosynthesizing [(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and [(18)F]FIAU using this newly developed method. Similar to the radiosynthesis of [(18)F]FMAU, 5-substituted 2'-[(18)F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and [(18)F]FIAU) were synthesized in one-pot radiosynthesis module in the presence of Friedel-Crafts catalyst TMSOTf and HMDS. This one-pot radiosynthesis method could be used to produce [(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and [(18)F]FIAU. The overall radiochemical yields of these tracers varied from 4.1%±0.8% to 10.1%±1.9% (decay-corrected, n=4). The overall reaction time was reduced from 210 min to 150 min from the end of bombardment, and the radiochemical purity was >99%. The improved radiosyntheses of [(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and [(18)F]FIAU have been achieved with reasonable yields and high purity using a multistep one-pot method. The synthetic time has been reduced, and the reaction procedures have been significantly simplified. The success of this approach may make PET tracers [(18)F]FAU, [(18)F]FEAU, [(18)F]FFAU, [(18)F]FCAU, [(18)F]FBAU and

  7. Clinical impact and diagnostic accuracy of 2-[(18)F]-fluoro-2-deoxy-d-glucose positron-emission tomography/computed tomography (PET/CT) brain imaging in patients with cognitive impairment: a tertiary centre experience in the UK.

    PubMed

    Motara, H; Olusoga, T; Russell, G; Jamieson, S; Ahmed, S; Brindle, N; Pillai, A; Scarsbrook, A F; Patel, C N; Chowdhury, F U

    2017-01-01

    To evaluate the clinical impact of combined 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography/computed tomography (PET/CT) brain imaging performed in selected patients with cognitive impairment at a tertiary referral centre in the UK, and to assess the accuracy of FDG PET/CT to correctly establish the diagnosis of Alzheimer's dementia (AD) in "real-world" clinical practice. Using an institutional radiology database, 136 patients were identified for inclusion in the study. FDG PET/CT was performed using a standard technique and interpreted by dual-trained radiologists and nuclear medicine physicians. Standardised questionnaires were sent to the referring clinicians to establish the final clinical diagnosis and to obtain information about the clinical impact of FDG PET/CT. There was a 72% questionnaire return (98/136), with mean patient follow-up of 471 (standard deviation 205) days. FDG PET/CT had an impact on patient management in 81%, adding confidence to the pre-test diagnosis in 43%, changing the pre-test diagnosis in 35%, reducing the need for further investigations in 42%, and resulting in a change in therapy in 32%. There was substantial correlation between the PET/CT diagnosis and final clinical diagnosis with a correlation (k) coefficient of 0.78 (p<0.0001). The accuracy of FDG PET/CT in diagnosis of AD was 94% (95% confidence interval [CI]: 87-99), with a sensitivity of 87% (95% CI: 75-92) and a specificity of 97% (95% CI: 87-99). FDG PET/CT brain imaging has a significant clinical impact when performed selectively in patients with cognitive impairment and shows high accuracy in the diagnosis of AD in "real-world" clinical practice. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of new bone formation in normal and osteoporotic rats with a 3-mm femur defect: functional assessment with dynamic PET-CT (dPET-CT) using 2-deoxy-2-[(18)F]fluoro-D-glucose ( (18)F-FDG) and (18)F-fluoride.

    PubMed

    Cheng, Caixia; Alt, Volker; Dimitrakopoulou-Strauss, Antonia; Pan, Leyun; Thormann, Ulrich; Schnettler, Reinhard; Weber, Klaus; Strauss, Ludwig G

    2013-06-01

    The aim of the current study was to assess the formation of new bone in a 3-mm created defect in the femur and its adjacent bone tissue in osteoporotic and normal animals. The assessment is based on bone remodeling and glucose metabolism in a rat model with a 3-mm created defct in the femur using (18)F-fluoride and 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) as tracers for dynamic PET-CT (dPET-CT). The (18)F-fluoride PET data were compared with those of (18)F-FDG. Osteoporosis was induced by ovariectomy and a calcium restricted diet in each rat (n = 7). Alternatively, a sham operation was performed in the control group (n = 8). After 3 months, all rats were operated to create a 3-mm defect using an oscillating saw in the distal metaphyseal femur, which was internally fixed with a metal plate. Eighteen weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with (18)F-FDG and (18)F-fluoride. Following PET data acquisition, standardized uptake values (SUVs) were calculated from the tracer concentration values. Then, a two-tissue compartmental learning-machine model was applied to the data for the calculation of the compartment parameters (K1-k4, VB, Ki). Furthermore, a non-compartmental model based on the fractal dimension was applied for quantitative analysis of both groups and both tracers. Finally, multivariate analysis was performed for the statistical analysis of the kinetic data. The values for K1 and Ki were higher in the osteoporotic rats than in the control group. Ki and K1 of (18)F-fluoride in the adjacent bone tissue differ significantly based on the Wilcoxon rank-sum test for the osteoporotic and control group (p < 0.05). The sensitivity and the negative predictive value (NPV) based on linear discriminant analysis was high with a value of 100 % for both tracers and both evaluated regions (defect and adjacent bone tissue) when comparing control and osteoporotic rats. The overall

  9. Can 3'-Deoxy-3'-((18)F) Fluorothymidine Out Perform 2-Deoxy-2-((18)F) Fluoro-D-Glucose Positron Emission Tomography/Computed Tomography in the Diagnosis of Cervical Lymphadenopathy in Patients With Oral/Head and Neck Cancer?

    PubMed

    Schaefferkoetter, Joshua D; Carlson, Eric R; Heidel, Robert E

    2015-07-01

    The present study investigated the performance of cellular metabolism imaging with 2-deoxy-2-((18)F) fluoro-D-glucose (FDG) versus cellular proliferation imaging with 3'-deoxy-3'-((18)F) fluorothymidine (FLT) in the detection of cervical lymph node metastases in oral/head and neck cancer. We conducted a prospective cohort study to assess a head-to-head performance of FLT imaging and clinical FDG imaging for characterizing cervical lymph node metastases in patients with squamous cell carcinoma (SCC) of the oral/head and neck region. The primary predictor variable of the study was the presence of FDG or FLT avidity within the cervical lymph nodes. The primary outcome variable was the histologic presence of metastatic SCC in the cervical lymph nodes. The performance was reported in terms of the sensitivity, specificity, accuracy, and positive and negative predictive values. The overall accuracy for discriminating positive from negative lymph nodes was evaluated as a function of the positron emission tomography (PET) standardized uptake value (SUV). Receiver operating characteristic (ROC) analyses were performed for both tracers. Eleven patients undergoing surgical resection of SCC of the oral/head and neck region underwent preoperative FDG and FLT PET-computed tomography (CT) scans on separate days. The interpretation of the FDG PET-CT imaging resulted in sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 43.2, 99.5, 94.4, 88.9, and 94.7%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for FLT PET-CT imaging was 75.7, 99.2, 97.1, 90.3, and 97.7%, respectively. The areas under the curve for the ROC curves were 0.9 and 0.84 for FDG and FLT, respectively. Poor correlation was observed between the SUV for FDG and FLT within the lymph nodes and tumors. FLT showed better overall performance for detecting lymphadenopathy on qualitative assessment within the total

  10. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2'-deoxy-2'-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC).

    PubMed

    Fledelius, Joan; Khalil, Azza Ahmed; Hjorthaug, Karin; Frøkiaer, Jørgen

    2016-04-01

    The demand for early-response evaluation with 2'-deoxy-2'-[18F] fluoro-D-glucose (F-18-FDG) positron emission tomography combined with whole body CT (PET/CT) is rapidly growing. This study was initiated to evaluate the applicability of the PET response criteria in solid tumours (PERCIST 1.0) for response evaluation. We performed a retrospective study of 21 patients with locally advanced non-small cell lung cancer (NSCLC), who had undergone both a baseline and a follow-up F-18-FDG-PET/CT scan during their treatments. The scans were performed at our institution in the period September 2009 and March 2011 and were analysed visually and according to PERCIST 1.0 by one board-certified nuclear medicine physician. The response was compared with overall survival (OS) and progression-free survival (PFS). The variation in key parameters affecting the F-18-FDG uptake was assessed. A kappa of 0.94 corresponding to an almost perfect agreement was found for the comparison of the visual evaluation with PERCIST. Patients with partial metabolic response and stable metabolic disease (as evaluated by PERCIST 1.0) had statistically significant longer median time to progression: 8.4 months (confidence interval (CI) 5.1-11.8 months) as compared with 2.7 months (CI 0-5.6 months) in patients classified with progression. The variation in uptake time between baseline and follow-up scans was more than the recommended 15 min in 48% of patients. PERCIST 1.0 is readily implementable and highly comparable with visual evaluation of response using early F-18-FDG-PET/CT scanning for locally advanced NSCLC patients. In spite of variations in parameters affecting F-18-FDG uptake, evaluation of F-18-FDG-PET/CT during treatment with PERCIST 1.0 is shown to separate non-responders from responders, each with statistically significant differences in both OS and PFS. © 2015 The Royal Australian and New Zealand College of Radiologists.

  11. Simple and efficient synthesis of 2-[(18)F]fluoroethyl triflate for high yield (18)fluoroethylation.

    PubMed

    Peters, Tanja; Vogg, Andreas; Oppel, Iris M; Schmaljohann, Jörn

    2014-12-01

    The [(18)F]fluoroethyl moiety has been widely utilized in the synthesis of (18)F-labelled compounds. The aim of this work was the reliable synthesis of [(18)F]FEtOTf with a novel strategy to increase the reactivity of the commonly used [(18)F]FEB and [(18)F]FEtOTos. [(18)F]FEtOTf and the intermediate [(18)F]FEtOH were synthesized in high RCY (78% and 85%, respectively) and purified by SPE. The high potency of [(18)F]FEtOTf was shown by the efficient alkylation of the deactivated nucleophile aniline under mild conditions, as well as by the synthesis of [(18)F]FEC.

  12. Glioma Recurrence Versus Radiation Necrosis: Single-Session Multiparametric Approach Using Simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI.

    PubMed

    Jena, Amarnath; Taneja, Sangeeta; Gambhir, Aashish; Mishra, Anil Kumar; Dʼsouza, Maria Mathew; Verma, Sapna Manocha; Hazari, Puja Panwar; Negi, Pradeep; Jhadav, Ganesh Krishna Rao; Sogani, Shanti Kumar

    2016-05-01

    This study aimed to investigate the potential of hybrid gadolinium (Gd)-enhanced F-fluoroethyl-L-tyrosine (F-FET) PET/MRI in distinguishing recurrence from radiation necrosis using simultaneously acquired multiple structural and functional parameters. Twenty-six patients (5 female and 21 male patients; mean ± SD age, 51.58 ± 15.97 years) with single or multiple contrast-enhancing brain lesions (n = 32) on MRI after surgery and radiation therapy were evaluated with simultaneously acquired Gd-enhanced F-FET PET/MRI. They were then followed up with resurgery and histopathological diagnosis (n = 9) and/or clinical/MRI- or PET/MRI-based imaging follow-up (n = 17). PET/MR images were analyzed using manually drawn regions of interest over areas of maximal contrast enhancement and/or FET uptake. Maximum target-to-background ratio (TBRmax), mean target-to-background ratio (TBRmean), and choline-to-creatine (Cho/Cr) ratios as well as normalized mean relative cerebral blood volume (rCBVmean) and mean apparent diffusion coefficient (ADCmean) were determined. The accuracy of each parameter individually and in various possible combinations for differentiating recurrence versus radiation necrosis was evaluated using 2-tailed independent samples Student t test, multivariate analysis of variance, and multivariate receiver operating characteristic analysis. Positive histopathological finding and long-term imaging/clinical follow-up suggestive of disease progression served as criterion standard. Of 26 patients, 19 were classified as recurrence, with 7 patients showing radiation necrosis. Individually, TBRmax, TBRmean, ADCmean, and Cho/Cr ratios as well as normalized rCBVmean was significant in differentiating recurrence from radiation necrosis, with an accuracy of 93.8% for TBRmax, 87.5% for TBRmean, 81.3% for ADCmean, 96.9% for Cho/Cr ratio, and 90.6% for normalized rCBVmean. The accuracy of both normalized rCBVmean and ADCmean was improved in combination with TBRmax or Cho/Cr ratio. However, TBRmax (or TBRmean) with Cho/Cr ratio yielded the highest accuracy, approaching up to 97%. Furthermore, maximum area under the curve is achieved with the combination of TBRmean, CBV, and Cho/Cr values. Our findings suggest that FET uptake with Cho/Cr ratio and normalized rCBVmean could be most useful to distinguish primary glioma recurrence from radiation necrosis. Hybrid simultaneous multiparametric F-FET PET/MRI might play a significant role in the evaluation of patients with suspected glioma recurrence.

  13. Longitudinal Partial Volume Correction in 2-[18F]-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography Studies of Alzheimer Disease.

    PubMed

    Malpas, Charles B; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia; Hicks, Rodney J; OʼBrien, Terence J

    2015-01-01

    To investigate partial volume correction (PVC) of 2-[F]-fluoro-2-deoxy-D-glucose positron emission tomography in Alzheimer disease in a longitudinal context. A total of 115 participants were included, including 55 controls, 53 patients with mild cognitive impairment, and 7 patients with dementia of the Alzheimer type. Imaging was performed at baseline and 24 months. Partial volume corrected vs uncorrected rates of longitudinal change were compared for mesial temporal and cortical regions of interest. Partial volume correction increased apparent uptake, and this effect was greater at 24 months compared with baseline. Partial volume correction decreased the rate of decline, causing an apparent increase in uptake at 24 months compared with baseline. This effect was correlated with the structural atrophy. These findings suggest that applying PVC in a longitudinal context in Alzheimer disease might produce unpredictable results. Accordingly, both PVC corrected and uncorrected data should be reported to ensure that the results are physiologically plausible.

  14. 2-[(18)F]fluoro-2-deoxy-D-galactose PET/CT of hepatocellular carcinoma is not improved by co-administration of galactose.

    PubMed

    Bak-Fredslund, Kirstine P; Munk, Ole Lajord; Keiding, Susanne; Sørensen, Michael

    2016-09-01

    PET with [(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) is a promising imaging modality for detection of hepatocellular carcinoma (HCC). However, it can be difficult to distinguish small intrahepatic HCC lesions from surrounding liver tissue. Ut the competitive inhibition that galactose shows towards hepatic (18)F-FDGal metabolism, we tested the hypothesis that co-administration of galactose, at near-saturating doses, inhibits (18)F-FDGal metabolism to a greater extent in non-malignant hepatocytes than in HCC cells. This would increase the tumor to background ratio in the (18)F-FDGal PET scans with co-administration of galactose. Three patients known to have HCC underwent two (18)F-FDGal PET/CT scans on consecutive days, one with and one without simultaneous constant intravenous infusion of galactose. On both days, (18)F-FDGal was injected in the beginning of a 45-min dynamic PET scan of the liver followed by a static PET scan from mid-thigh to the top of the skull starting 60-70min after (18)F-FDGal administration. Parametric images of the hepatic metabolic function expressed in terms of hepatic systemic clearance of (18)F-FDGal were generated from the dynamic PET recordings. Co-administration of galactose did not give significantly better discrimination of the HCC lesions from background. Parametric images of the hepatic metabolic function did not add additional useful information to the detection of HCC lesions compared to the static images of radioactivity concentrations. Co-administration of galactose did not improve the interpretation of the (18)F-FDGal PET/CT images and did not improve the detection of intrahepatic HCC lesions, either using static or parametric images. Copyright © 2016. Published by Elsevier Inc.

  15. History of the first synthesis of 2-deoxy-2-fluoro-D-glucose the unlabeled forerunner of 2-deoxy-2-[18F]fluoro-D-glucose.

    PubMed

    Pacák, Josef; Cerný, Miloslav

    2002-10-01

    The history of the first successful synthesis of 2-deoxy-2-fluoro-D-glucose (19FDG) is described. In many aspects, this substance imitates the behavior of naturally occurring glucose. For example, it is transported into the cells and is converted to the corresponding 6-phosphate by the enzyme hexokinase in a manner similar to glucose. Due to the presence of the fluorine atom at C-2, however, this phosphate derivative does not undergo further glycolysis but is metabolically trapped in the cell. Thanks to these properties, eight years after the synthesis of 19FDG, its 18F-labeled derivative was successfully used with positron emission tomography (PET).

  16. Characterization of primary prostate carcinoma by anti-1-amino-2-[18F] -fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake

    PubMed Central

    Schuster, David M; Taleghani, Pooneh A; Nieh, Peter T; Master, Viraj A; Amzat, Rianot; Savir-Baruch, Bital; Halkar, Raghuveer K; Fox, Tim; Osunkoya, Adeboye O; Moreno, Carlos S; Nye, Jonathon A; Yu, Weiping; Fei, Baowei; Wang, Zhibo; Chen, Zhengjia; Goodman, Mark M

    2013-01-01

    Anti-1-amino-3-[18F] fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) is a synthetic amino acid positron emission tomography (PET) radiotracer with utility in the detection of recurrent prostate carcinoma. The aim of this study is to correlate uptake of anti-3-[18F] FACBC with histology of prostatectomy specimens in patients undergoing radical prostatectomy and to determine if uptake correlates to markers of tumor aggressiveness such as Gleason score. Ten patients with prostate carcinoma pre-radical prostatectomy underwent 45 minute dynamic PET-CT of the pelvis after IV injection of 347.8 ± 81.4 MBq anti-3-[18F] FACBC. Each prostate was co-registered to a separately acquired MR, divided into 12 sextants, and analyzed visually for abnormal focal uptake at 4, 16, 28, and 40 min post-injection by a single reader blinded to histology. SUVmax per sextant and total sextant activity (TSA) was also calculated. Histology and Gleason scores were similarly recorded by a urologic pathologist blinded to imaging. Imaging and histologic analysis were then compared. In addition, 3 representative sextants from each prostate were chosen based on highest, lowest and median SUVmax for immunohistochemical (IHC) analysis of Ki67, synaptophysin, P504s, chromogranin A, P53, androgen receptor, and prostein. 79 sextants had malignancy and 41 were benign. Highest combined sensitivity and specificity was at 28 min by visual analysis; 81.3% and 50.0% respectively. SUVmax was significantly higher (p<0.05) for malignant sextants (5.1±2.6 at 4 min; 4.5±1.6 at 16 min; 4.0±1.3 at 28 min; 3.8±1.0 at 40 min) compared to non-malignant sextants (4.0±1.9 at 4 min; 3.5±0.8 at 16 min; 3.4±0.9 at 28 min; 3.3±0.9 at 40 min), though there was overlap of activity between malignant and non-malignant sextants. SUVmax also significantly correlated (p<0.05) with Gleason score at all time points (r=0.28 at 4 min; r=0.42 at 16 min; r=0.46 at 28 min; r=0.48 at 40 min). There was no significant correlation of anti-3-[18F] FACBC SUVmax with Ki-67 or other IHC markers. Since there was no distinct separation between malignant and non-malignant sextants or between Gleason score levels, we believe that anti-3-[18F] FACBC PET should not be used alone for radiation therapy planning but may be useful to guide biopsy to the most aggressive lesion. PMID:23342303

  17. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography

    PubMed Central

    Esmail, H; Lai, RP; Lesosky, M; Wilkinson, KA; Graham, CM; Coussens, AK; Oni, T; Warwick, JM; Said-Hartley, Q; Koegelenberg, CF; Walzl, G; Flynn, JL; Young, DB; Barry, CE; O’Garra, A; Wilkinson, RJ

    2016-01-01

    Tuberculosis is classically divided into states of latent infection and active disease. Using combined positron emission and computed tomography in 35 asymptomatic, antiretroviral therapy naïve, HIV-1 infected adults with latent tuberculosis, we identified ten individuals with pulmonary abnormalities suggestive of subclinical, active disease who were significantly more likely to progress to clinical disease. Our findings challenge the conventional two-state paradigm and may aid future identification of biomarkers predictive of progression. PMID:27595321

  18. Combined O-(2-[18F]Fluoroethyl)-L-tyrosine (FET) Positron Emission Tomography (PET) and Simultaneous Magnetic Resonance Imaging (MRI) Follow-up in Re-irradiated Recurrent Glioblastoma Patients

    ClinicalTrials.gov

    2012-12-17

    Glioblastoma; Nervous System Neoplasms; Central Nervous System Neoplasms; Astrocytoma; Glioma; Neoplasms, Neuroepithelial; Neuroectodermal Tumors; Neoplasms by Histologic Type; Neoplasms, Nerve Tissue

  19. (R,S)-anti-1-amino-2-[18F]fluorocyclopentyl-1-carboxylic acid: synthesis from racemic 2-benzyloxycyclopentanone and biological evaluation for brain tumor imaging with positron emission tomography.

    PubMed

    Jarkas, Nachwa; Voll, Ronald J; Williams, Larry; Camp, Vernon M; Goodman, Mark M

    2010-09-23

    (R,S)-anti-1-amino-2-fluorocyclopentyl-1-carboxylic acid (2-FACPC, 4b) was radiolabeled in 39% yield starting from cyclic sulfamidate 12. The 9L gliosarcoma cells assays showed that 4b is mainly a substrate for the L-type amino acid transport with some affinity to the A-type. In rats bearing 9L gliosarcoma tumors, 4b displayed high tumor to brain ratio (10:1) at 120 min after injection. FACPC is an attractive candidate for imaging brain tumors with PET, and its isolated enantiomers are under investigation.

  20. Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer's disease.

    PubMed

    Musiek, Erik S; Saboury, Babak; Mishra, Shipra; Chen, Yufen; Reddin, Janet S; Newberg, Andrew B; Udupa, Jayaram K; Detre, John A; Hofheinz, Frank; Torigian, Drew; Alavi, Abass

    2012-01-01

    The development of clinically-applicable quantitative methods for the analysis of brain fluorine-18 fluoro desoxyglucose-positron emission tomography ((18)F-FDG-PET) images is a major area of research in many neurologic diseases, particularly Alzheimer's disease (AD). Region of interest visualization, evaluation, and image registration (ROVER) is a novel commercially-available software package which provides automated partial volume corrected measures of volume and glucose uptake from (18)F-FDG PET data. We performed a pilot study of ROVER analysis of brain (18)F-FDG PET images for the first time in a small cohort of patients with AD and controls. Brain (18)F-FDG-PET and volumetric magnetic resonance imaging (MRI) were performed on 14 AD patients and 18 age-matched controls. Images were subjected to ROVER analysis, and voxel-based analysis using SPM5. Volumes by ROVER were 35% lower than MRI volumes in AD patients (as hypometabolic regions were excluded in ROVER-derived volume measurement ) while average ROVER- and MRI-derived cortical volumes were nearly identical in control population. Whole brain volumes when ROVER-derived and whole brain metabolic volumetric products (MVP) were significantly lower in AD and accurately distinguished AD patients from controls (Area Under the Curve (AUC) of Receiver Operator Characteristic (ROC) curves 0.89 and 0.86, respectively). This diagnostic accuracy was similar to voxel-based analyses. Analysis by ROVER of (18)F-FDG-PET images provides a unique index of metabolically-active brain volume, and can accurately distinguish between AD patients and controls as a proof of concept. In conclusion, our findings suggest that ROVER may serve as a useful quantitative adjunct to visual or regional assessment and aid analysis of whole-brain metabolism in AD and other neurologic and psychiatric diseases.

  1. Global and regional cerebral metabolic rate of 2-[18F]fluoro-2-deoxy-D-glucose in the presence of ofloxacin, a gamma-aminobutyric acid a receptor antagonist.

    PubMed

    Camargo, E E; Sostre, S; Sadzot, B; Shafique, I; Szabo, Z; Links, J M; Dannals, R F; Wagner, H N

    1991-04-01

    We investigated the effects of ofloxacin, a new antibacterial quinolone gamma-aminobutyric acid A receptor antagonist, on the global and regional cerebral metabolic rates of glucose (cMRgl). Twelve healthy normal male volunteers (mean age, 26.7 years) were studied in a double-blind, placebo-controlled protocol of 11 days' duration. Results of a total of 42 positron emission tomography studies were obtained for these subjects: 12 base line, 18 during placebo, and 12 during ofloxacin administration. The conditions under which repeat positron emission tomography studies of the same subject were performed were reproduced as closely as possible. cMRgl was measured in 24 brain regions. The global cMRgl for base line, placebo, and ofloxacin were 8.82 +/- 1.17, 8.24 +/- 1.17, and 8.79 +/- 1.18 mg/min/100 g, respectively (mean +/- 1 standard deviation). The mean global differences between base line and placebo and between ofloxacin and placebo were 5.1 and 6.6%, respectively. Analysis of variance of both the global and the regional cMRgl showed no statistical difference between base-line, placebo, and ofloxacin studies. Variations in cMRgl found in this study were not related to the presence of ofloxacin. Results of our study demonstrate that ofloxacin does not increase or decrease cMRgl beyond the limits of variability of the study.

  2. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice.

    PubMed

    Lang, Lixin; Li, Weihua; Guo, Ning; Ma, Ying; Zhu, Lei; Kiesewetter, Dale O; Shen, Baozhong; Niu, Gang; Chen, Xiaoyuan

    2011-12-21

    [(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [(68)Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging α(v)β(3) integrin receptors. The purpose of this study was to prepare [(18)F]FPPRGD2 [corrected] , [(18)F]FAl-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys, and muscle were similar for all three tracers, and they all showed predominant renal clearance. In conclusion, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [(18)F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]NOTA-PRGD2 are promising alternatives to [(18)F]FPPRGD2 for PET imaging of tumor α(v)β(3) integrin expression.

  3. Dual mode fluorescent (18)F-PET tracers: efficient modular synthesis of rhodamine-[cRGD]2-[(18)F]-organotrifluoroborate, rapid, and high yielding one-step (18)F-labeling at high specific activity, and correlated in vivo PET imaging and ex vivo fluorescence.

    PubMed

    Liu, Zhibo; Radtke, Mark Alex; Wong, May Q; Lin, Kuo-Shyan; Yapp, Donald T; Perrin, David M

    2014-11-19

    The design of dual mode fluorescent-PET peptidic tracers that can be labeled with [(18)F]fluoride at high specific activity and high yield has been challenged by the short half-life of (18)F and its aqueous indolence toward nucleophilic displacement, that often necessitates multistep reactions that start with punctiliously dry conditions. Here we present a modular approach to constructing a fluorescent dimeric peptide with a pendant radioprosthesis that is labeled in water with [(18)F]fluoride ion in a single, user-friendly step. The modular approach starts with grafting a new zwitterionic organotrifluoroborate radioprosthesis onto a pentaerythritol core with three pendent alkynes that enable successive grafting of a bright fluorophore (rhodamine) followed by two peptides (cylcoRGD). The construct is labeled with [(18)F]fluoride via isotope exchange within 20 min in a single step at high specific activity (>3 Ci/μmol) and in good yield to provide 275 mCi and high radiochemical purity. Neither drying of the [(18)F]fluoride ion solution nor HPLC purification of the labeled tracer is required. Facile chemical synthesis of this dual mode tracer along with a user-friendly one-step radiolabeling method affords very high specific activity. In vivo PET images of the dual mode tracer are acquired at both high and low specific activities. At very high specific activity, i.e., 3.5 Ci/μmol, tumor uptake is relatively high (5.5%ID/g), yet the associated mass is below the limits of fluorescent detection. At low specific activity, i.e., 0.01 Ci/μmol, tumor uptake in the PET image is reduced by approximately 50% (2.9%ID/g), but the greater associated mass enables fluorescence detection in the tumor. These data highlight a facile production of a dual mode fluorescent-PET tracer which is validated with in vivo and ex vivo images. These data also define critical limitations for the use of dual mode tracers in small animals.

  4. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars.

    PubMed

    Boutureira, Omar; Bernardes, Gonçalo J L; D'Hooge, François; Davis, Benjamin G

    2011-09-28

    A strategy for the site-specific attachment of 2-deoxy-2-fluorosugars to cysteine and dehydroalanine tagged proteins is reported. When combined with thionation of fluorosugars, such as the widely available (18)F probe 2-deoxy-2-[(18)F]fluoroglucose ([(18)F]FDG), this methodology allows fast and direct access to site-specific [(18)F]FDG-labelled proteins.

  5. A Laser Feedback Control Design for Passive Ring Laser Gyros in a Very High Finesse Cavity.

    DTIC Science & Technology

    1985-12-01

    14 II. Theory ....................... 16 Optical Cavities ................ 16 Laser Fundamentals ...............24 The Gaussian Beam. ...............28...c 1-(ABC 1h(.8 = (2.18) F = 1 2.19) - (RARCRD) t = = (2.20) C c[i- (RARRc%)] Laser Fundamentals A laser consists of three basic components: a gain

  6. Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography

    PubMed Central

    Horti, Andrew G.; Gao, Yongjun; Kuwabara, Hiroto; Dannals, Robert F.

    2009-01-01

    Aims There is an urgent need for positron emission tomography (PET) imaging of the nicotinic acetylcholine receptors (nAChR) to study the role of the nicotinic system in Alzheimer’s and Parkinson’s diseases, schizophrenia, drug dependence and many other disorders. Greater understanding of the underlying mechanisms of the nicotinic system could direct the development of medications to treat these disorders. Central nAChRs also contribute to a variety of brain functions, including cognition, behavior and memory. Main methods Currently, only two radiotracers, (S)-3-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (2-[18F]FA) and (S)-5-(azetidin-2-ylmethoxy)-2-[18F]fluoropyridine (6-[18F]FA), are available for studying nAChRs in human brain using PET. However, the “slow” brain kinetics of these radiotracers hamper mathematical modeling and reliable measurement of kinetic parameters since it takes 4–7 hours of PET scanning for the tracers to reach steady state. The imaging drawbacks of the presently available nAChR radioligands have initiated the development of radioligands with faster brain kinetics by several research groups. Key findings This minireview attempts to survey the important achievements of several research groups in the discovery of PET nicotinic radioligands reached recently. Specifically, this article reviews papers published from 2006 through 2008 describing the development of fifteen new nAChR 11C-and 18F-ligands that show improved imaging properties over 2-[18F]FA. Significance The continuous efforts of radiomedicinal chemists led to the development of several interesting PET radioligands for imaging of nAChR including [18F]AZAN, a potentially superior alternative to 2-[18F]FA. PMID:19303028

  7. (18)F-labelled metomidate analogues as adrenocortical imaging agents.

    PubMed

    Erlandsson, Maria; Karimi, Farhad; Lindhe, Orjan; Långström, Bengt

    2009-05-01

    Two- and one-step syntheses of (18)F-labelled analogues of metomidate, such as 2-[(18)F]fluoroethyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (1), 2-[(18)F]fluoroethyl 1-[(1R)-1-(4-chlorophenyl)ethyl]-1H-imidazole-5-carboxylate (2), 2-[(18)F]fluoroethyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (3), 3-[(18)F]fluoropropyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (4) and 3-[(18)F]fluoropropyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (5) are presented. Analogues 1-5 were prepared by a two-step reaction sequence that started with the synthesis of either 2-[(18)F]fluoroethyl 4-methylbenzenesulfonate or 3-[(18)F]fluoropropyl 4-methylbenzenesulfonate. These were used as (18)F-alkylating agents in the second step, in which they reacted with the ammonium salt of a 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylic acid. One-step-labelling syntheses of 1, 2 and 5 were also explored. Analogues 1-4 were biologically validated by frozen-section autoradiography and organ distribution. Metabolite analysis was performed for 2 and 3. The radiochemical yield of the two-step synthesis was in the range of 10-29% and that of the one-step synthesis was 25-37%. Using microwave irradiation in the one-step synthesis of 1 and 2 increased the radiochemical yield to 46+/-3% and 79+/-30%, respectively. Both the frozen-section autoradiography and organ distribution results indicated that analogue 2 has a potential as an adrenocortical imaging agent, having the highest degree of specific adrenal binding and best ratio of adrenal to organ uptake among the compounds studied.

  8. Condyloma acuminata induces focal intense FDG uptake mimicking vaginal stump recurrence from uterine cervical cancer: a case report.

    PubMed

    Kishimoto, T; Mabuchi, S; Kato, H; Kimura, T

    2013-01-01

    The 2-deoxy-2-[18F] fluoro-D-glucose position emission tomography/computed tomography (FDG PET/CT) findings of condyloma acuminata in a patient with FIGO Stage IB1 cervical cancer who had previously been treated with radical hysterectomy, pelvic chemoradiotherapy, and consolidation chemotherapy is described in this article. This case highlights the importance of considering condyloma acuminata during the differential diagnosis of abnormal vaginal FDG uptake in patients who have been treated for gynecological cancer.

  9. Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by 18F-Fluoroethyl-l-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic.

    PubMed

    Hutterer, Markus; Ebner, Yvonne; Riemenschneider, Markus J; Willuweit, Antje; McCoy, Mark; Egger, Barbara; Schröder, Michael; Wendl, Christina; Hellwig, Dirk; Grosse, Jirka; Menhart, Karin; Proescholdt, Martin; Fritsch, Brita; Urbach, Horst; Stockhammer, Guenther; Roelcke, Ulrich; Galldiks, Norbert; Meyer, Philipp T; Langen, Karl-Josef; Hau, Peter; Trinka, Eugen

    2017-01-01

    O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET is a well-established method increasingly used for diagnosis, treatment planning, and monitoring in gliomas. Epileptic activity, frequently occurring in glioma patients, can influence MRI findings. Whether seizures also affect (18)F-FET PET imaging is currently unknown. The aim of this retrospective analysis was to investigate the brain amino acid metabolism during epileptic seizures by (18)F-FET PET and to elucidate the pathophysiologic background.

  10. 5-substituted derivatives of 6-halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with low picomolar affinity for alpha4beta2 nicotinic acetylcholine receptor and wide range of lipophilicity: potential probes for imaging with positron emission tomography.

    PubMed

    Zhang, Yi; Pavlova, Olga A; Chefer, Svetlana I; Hall, Andrew W; Kurian, Varughese; Brown, LaVerne L; Kimes, Alane S; Mukhin, Alexey G; Horti, Andrew G

    2004-05-06

    Potential positron emission tomography (PET) ligands with low picomolar affinity at the nicotinic acetylcholine receptor (nAChR) and with lipophilicity (log D) ranging from -1.6 to +1.5 have been synthesized. Most members of the series, which are derivatives of 5-substituted-6-halogeno-A-85380, exhibited a higher binding affinity at alpha4beta2-nAChRs than epibatidine. An analysis, by molecular modeling, revealed an important role of the orientation of the additional heterocyclic ring on the binding affinity of the ligands with nAChRs. The existing nicotinic pharmacophore models do not accommodate this finding. Two compounds of the series, 6-[(18)F]fluoro-5-(pyridin-3-yl)-A-85380 ([(18)F]31) and 6-chloro-3-((2-(S)-azetidinyl)methoxy)-5-(2-[(18)F]fluoropyridin-5-yl)pyridine) ([(18)F]35), were radiolabeled with (18)F. Comparison of PET data for [(18)F]31 and 2-[(18)F]FA shows the influence of lipophilicity on the binding potential. Our recent PET studies with [(18)F]35 demonstrated that its binding potential values in Rhesus monkey brain were ca. 2.5 times those of 2-[(18)F]FA. Therefore, [(18)F]35 and several other members of the series, when radiolabeled, will be suitable for quantitative imaging of extrathalamic nAChRs.

  11. Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.

    PubMed

    Arnberg, Fabian; Grafström, Jonas; Lundberg, Johan; Nikkhou-Aski, Sahar; Little, Philip; Damberg, Peter; Mitsios, Nicholas; Mulder, Jan; Lu, Li; Söderman, Michael; Stone-Elander, Sharon; Holmin, Staffan

    2015-03-01

    Ischemic stroke has been shown to cause hypermetabolism of glucose in the ischemic penumbra. Experimental and clinical data indicate that infarct-related systemic hyperglycemia is a potential therapeutic target in acute stroke. However, clinical studies aiming for glucose control in acute stroke have neither improved functional outcome nor reduced mortality. Thus, further studies on glucose metabolism in the ischemic brain are warranted. We used a rat model of stroke that preserves collateral flow. The animals were analyzed by [2-(18)F]-2-fluoro-2-deoxy-d-glucose positron emission tomography or magnetic resonance imaging during 90-minute occlusion of the middle cerebral artery and during 60 minutes after reperfusion. Results were correlated to magnetic resonance imaging of cerebral blood flow, diffusion of water, lactate formation, and histological data on cell death and blood-brain barrier breakdown. We detected an increased [2-(18)F]-2-fluoro-2-deoxy-d-glucose uptake within ischemic regions succumbing to infarction and in the peri-infarct region. Magnetic resonance imaging revealed impairment of blood flow to ischemic levels in the infarct and a reduction of cerebral blood flow in the peri-infarct region. Magnetic resonance spectroscopy revealed lactate in the ischemic region and absence of lactate in the peri-infarct region. Immunohistochemical analyses revealed apoptosis and blood-brain barrier breakdown within the infarct. The increased uptake of [2-(18)F]-2-fluoro-2-deoxy-d-glucose in cerebral ischemia most likely reflects hypermetabolism of glucose meeting increased energy needs of ischemic and hypoperfused brain tissue, and it occurs under both anaerobic and aerobic conditions measured by local lactate production. Infarct-related systemic hyperglycemia could serve to facilitate glucose supply to the ischemic brain. Glycemic control by insulin treatment could negatively influence this mechanism. © 2015 American Heart Association, Inc.

  12. Microfluidic reactor geometries for radiolysis reduction in radiopharmaceuticals.

    PubMed

    Rensch, Christian; Waengler, Bjoern; Yaroshenko, Andriy; Samper, Victor; Baller, Marko; Heumesser, Nicole; Ulin, Johan; Riese, Stefan; Reischl, Gerald

    2012-08-01

    Autoradiolysis describes the degradation of radioactively labeled compounds due to the activity of the labeled compounds themselves. It scales with activity concentration and is of importance for high activity and microfluidic PET tracer synthesis. This study shows that microfluidic devices can be shaped to reduce autoradiolysis by geometric exclusion of positron interaction. A model is developed and confirmed by demonstrating in-capillary storage of non-stabilized [(18)F]FDG (2-[(18)F]Fluoro-2-deoxy-d-glucose) at max. 23 GBq/ml while maintaining >90% radiochemical purity over 14 h. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [(18)F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA).

    PubMed

    Yang, Xing; Mease, Ronnie C; Pullambhatla, Mrudula; Lisok, Ala; Chen, Ying; Foss, Catherine A; Wang, Yuchuan; Shallal, Hassan; Edelman, Hannah; Hoye, Adam T; Attardo, Giorgio; Nimmagadda, Sridhar; Pomper, Martin G

    2016-01-14

    Radiolabeled urea-based low-molecular weight inhibitors of the prostate-specific membrane antigen (PSMA) are under intense investigation as imaging and therapeutic agents for prostate and other cancers. In an effort to provide agents with less nontarget organ uptake than the ureas, we synthesized four (18)F-labeled inhibitors of PSMA based on carbamate scaffolds. 4-Bromo-2-[(18)F]fluorobenzoyllysineoxypentanedioic acid (OPA) carbamate [(18)F]23 and 4-iodo-2-[(18)F]fluorobenzoyllysine OPA carbamate [(18)F]24 in particular exhibited high target-selective uptake in PSMA+ PC3 PIP tumor xenografts, with tumor-to-kidney ratios of >1 by 4 h postinjection, an important benchmark. Because of its high tumor uptake (90% injected dose per gram of tissue at 2 h postinjection) and high tumor-to-organ ratios, [(18)F]23 is promising for clinical translation. Prolonged tumor-specific uptake demonstrated by [(18)F]24, which did not reach equilibrium during the 4 h study period, suggests carbamates as alternative scaffolds for mitigating dose to nontarget tissues.

  15. Microfluidic reactor for the radiosynthesis of PET radiotracers.

    PubMed

    Gillies, J M; Prenant, C; Chimon, G N; Smethurst, G J; Perrie, W; Hamblett, I; Dekker, B; Zweit, J

    2006-03-01

    Here we show the first application of a microfabricated reaction system to PET radiochemistry, we term "microfluidic PET". The short half-life of the positron emitting isotopes and the trace chemical quantities used in radiolabelling make PET radiochemistry amenable to miniaturisation. Microfluidic technologies are capable of controlling and transferring tiny quantities of liquids which allow chemical and biochemical assays to be integrated and carried out on a small scale. Such technologies provide distinct advantages over current methods of PET radiochemical synthesis. To demonstrate "proof of principle" we have investigated the radiohalogenation of small and large molecular weight molecules using the microfluidic device. These reactions involved the direct radioiodination of the apoptosis marker Annexin V using iodine-124, the indirect radioiodination of the anti-cancer drug doxorubicin from a tin-butyl precursor and the radiosynthesis of 2-[(18)F]FDG from a mannose triflate precursor and fluorine-18 and hence provide a test bed for microfluidic reactions. We demonstrate the rapid radioiodination of the protein Annexin V (40% radiochemical yield within 1 min) and the rapid radiofluorination of 2-[(18)F]FDG (60% radiochemical yield within 4s) using a polymer microreactor chip. Chromatographic analysis showed that the labelling efficiency of the unoptimised microfluidic chip is comparable to conventional PET radiolabelling reactions.

  16. Cerebral glucose metabolism in type I alpha-N-acetylgalactosaminidase deficiency: an infantile neuroaxonal dystrophy.

    PubMed

    Rudolf, J; Grond, M; Schindler, D; Heiss, W D; Desnick, R J

    1999-08-01

    Cerebral glucose metabolism was investigated in a 4.8-year-old boy with alpha-N-acetylgalactosaminidase deficiency using 2-[18F]fluoro-2-deoxy-D-glucose and positron emission tomography (PET). In comparison to normal values for age, the overall cerebral glucose metabolism was reduced and the regional cerebral glucose metabolism was decreased in proportion to the degree of atrophy. In the supratentorial cortical regions, the hypometabolism was asymmetric. However, the level of regional cerebral glucose metabolism in all cortical regions excluded a persistent vegetative state. In the lentiform nucleus and the head of the caudate, comparatively increased regional cerebral glucose metabolism was documented, similar to findings in neurodegenerative disorders with active epilepsy. In contrast, the infratentorial structures (cerebellar hemispheres, brain stem, mesencephalon, and hypothalamus), which are predominantly affected by the atrophic process, showed distinct and symmetric hypometabolism. Thus, the 2-[18F]-fluoro-2-deoxy-D-glucose PET scans provided additional insight into and correlation of the functional and structural disturbances in type I alpha-N-acetylgalactosaminidase deficiency, in addition to documenting the hypometabolism due to brain atrophy.

  17. N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]SFBTMGMB): A Residualizing Label for 18F-labeling of internalizing biomolecules

    PubMed Central

    Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon; Pruszynski, Marek; Koumarianou, Eftychia; Zhou, Zhengyuan; Zalutsky, Michael R.

    2015-01-01

    Residualizing labeling methods for internalizing peptides and proteins are designed to trap the radionuclide inside the cell after intracellular degradation of the biomolecule. The goal of this work was to develop a residualizing label for the 18F-labeling of internalizing biomolecules based on a template used successfully for radioiodination. N-succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(bis-Boc-guanidinomethyl)benzoate (Boc2-[18F]SFBTMGMB) was synthesized by click reaction of an azide precursor and [18F]fluorohexyne in 8.5 ± 2.8% average decay-corrected radiochemical yield (n =15). An anti-HER2 nanobody 5F7 was labeled with 18F using [18F]SFBTMGMB ([18F]RL-I), obtained by the deprotection of Boc2-[18F]SFBTMGMB, in 31.2 ± 6.7% (n =5) conjugation efficiency. Thus labeled nanobody had a radiochemical purity of >95%, bound to the HER2-expressing BT474M1 breast cancer cells with an affinity of 4.7 ± 0.9 nM, and had an immunoreactive fraction of 62–80%. In summary, a novel residualizing prosthetic agent for labeling biomolecules with 18F has been developed. An anti-HER2 nanobody was labeled using this prosthetic group with retention of affinity and immunoreactivity to HER2. PMID:26645790

  18. Cellular metabolic responses of PET radiotracers to (188)Re radiation in an MCF7 cell line containing dominant-negative mutant p53.

    PubMed

    Cheon, Gi Jeong; Chung, Hye-Kyung; Choi, Jung-A; Lee, Su-Jae; Ahn, Soon-Hyuk; Lee, Tae-Sup; Choi, Chang Woon; Lim, Sang Moo

    2007-05-01

    We investigated the relations between the cell uptakes of metabolic radiotracers and beta-radiation pretreatment using a dominant mutant p53 (p53mt) cell line to evaluate the effects of p53 genes on (18)F labeled positron emission tomography (PET) radiotracer uptakes. pCMV-Neo-Bam (control), which contains a neo-resistance marker, and p53 dominant-negative mutant expression constructs were stably transfected into MCF7 cell line. Cells were plated in 24-well plates at 1.0x10(5) cells for 18 h. Rhenium-188 ((188)Re) (a beta emitter) was added to the medium (3.7, 18.5, 37 MBq) and incubated for 24 h. We performed gamma-counting to determine the cellular uptakes of 2-[(18)F]fluoro-2-deoxy-d-glucose (FDG), o-(2-[(18)F]fluoroethyl)-l-tyrosine (FET) and 2'-[(18)F]fluoro-2'-deoxythymidine (FLT) (370 kBq, 60 min). Cell viabilities were determined by trypan blue staining and flow cytometry. p53mt cells showed 1.5-2-fold higher FDG uptake than wild-type p53 cells in basal condition, and the difference of FDG uptake was greater after (188)Re treatment (P<.01). FET uptake increased with (188)Re dose without a significant difference between p53 statuses. p53mt cells showed lower FLT uptake than wild-type p53 cells in basal condition, and the difference of FLT uptake was greater after (188)Re treatment. By cell viability testing and FACS analysis, p53mt cells showed lower viability and a larger apoptotic fraction (sub-G1) than wild-type p53 cells after (188)Re treatment. We speculate that p53 dysfunction increases glucose and decreases thymidine metabolism in cancer cells and that this may be exaggerated by (188)Re beta-radiation. Our findings suggest that FDG could reflect tumor viability and malignant potential after (188)Re beta-radiation treatment, whereas FLT could be a more useful PET radiotracer for assessing therapeutic response to beta-radiation, especially in cancer cells with an altered function of p53.

  19. PET/MR Imaging in Gynecologic Oncology.

    PubMed

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[(18)F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Radiolabeled Sugars Used for PET and SPECT Imaging.

    PubMed

    Barrios-Lopez, Brianda; Bergstrom, Kim

    2016-01-01

    There are new efforts to develop "sugar" probes for molecular imaging focusing on human clinical studies. Radiolabeled carbohydrates are used as substrate probes for studying specific processes in tissues and organisms. The best application case is 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG), which is incorporated by cancer cells. The introduction of ltF-FDG has advanced enormously human Positron Emission Tomography (PET). This review focuses on the importance of 18FFDG and other sugars as imaging probes in PET and Single Photon Emission Computed Tomography (SPECT) imaging. In conclusion, new radiolabeled molecules that can be used as radiopharmaceuticals also would possibly help in the treatment of cancer cells in human patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Update on advances in molecular PET in urological oncology

    PubMed Central

    Yamamoto, Shingo; Fukushima, Kazuhito; Minamimoto, Ryogo; Kamai, Takao; Jadvar, Hossein

    2017-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) with 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) has emerged as a powerful tool for the combined metabolic and anatomic evaluation of many cancers. In urological oncology, however, the use of 18F-FDG has been limited by a generally low tumor uptake, and physiological excretion of FDG through the urinary system. 18F-FDG PET/CT is useful when applied to specific indications in selected patients with urological malignancy. New radiotracers and positron emission tomography/magnetic resonance imaging (PET/MRI) are expected to further improve the performance of PET in uro-oncology. PMID:27222021

  2. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics.

    PubMed

    Lee, Chung-Cheng; Sui, Guodong; Elizarov, Arkadij; Shu, Chengyi Jenny; Shin, Young-Shik; Dooley, Alek N; Huang, Jiang; Daridon, Antoine; Wyatt, Paul; Stout, David; Kolb, Hartmuth C; Witte, Owen N; Satyamurthy, Nagichettiar; Heath, James R; Phelps, Michael E; Quake, Stephen R; Tseng, Hsian-Rong

    2005-12-16

    Microreactor technology has shown potential for optimizing synthetic efficiency, particularly in preparing sensitive compounds. We achieved the synthesis of an [(18)F]fluoride-radiolabeled molecular imaging probe, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), in an integrated microfluidic device. Five sequential processes-[18F]fluoride concentration, water evaporation, radiofluorination, solvent exchange, and hydrolytic deprotection-proceeded with high radio-chemical yield and purity and with shorter synthesis time relative to conventional automated synthesis. Multiple doses of [18F]FDG for positron emission tomography imaging studies in mice were prepared. These results, which constitute a proof of principle for automated multistep syntheses at the nanogram to microgram scale, could be generalized to a range of radiolabeled substrates.

  3. Cavernous Hemangioma of the Rib: A Case Report.

    PubMed

    Young Park, Joon; Gyoon Park, Jin; Jin Lee, Seung

    2016-07-01

    Hemangioma of the rib is a rare benign vascular tumor. Herein, we report a 63-year-old man presenting with hemangioma of the left sixth rib. An osteolytic eccentric expansive mass with calcification and focal cortical disruption was detected on chest computed tomography (CT). The mass showed low 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) avidity on positron emission tomography. The patient underwent resection of the left sixth rib. Based on the histopathology findings, a diagnosis of cavernous hemangioma was made. Rib hemangiomas and malignant lesions appear similar on CT scans; therefore, most cases of rib hemangiomas reported in the literature were treated with rib resection. However, rib hemangiomas should be included in the differential diagnosis of an asymptomatic patient if an osteolytic expansive lesion containing sunburst calcifications with low 18F-FDG avidity is observed on a CT scan.

  4. Automated production of [18F]VAT suitable for clinical PET study of vesicular acetylcholine transporter

    PubMed Central

    Yue, Xuyi; Bognar, Christopher; Zhang, Xiang; Gaehle, Gregory; Moerlein, Stephen M.; Perlmutter, Joel S.; Tu, Zhude

    2015-01-01

    Automated production of a promising radiopharmaceutical (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) for vesicular acetylcholine transporter(VAChT) was achieved using a two-step procedure in a current good manufacturing practices fashion. The production of [18F]VAT was accomplished in approximately 140 min, with radiochemical yield of ~15.0% (decay corrected), specific activity > 111 GBq/μmol, radiochemical purity > 99% and mass of VAT ~3.4 μg/batch (n > 10). The radiopharmaceutical product meets all quality control criteria for human use, and is suitable for clinical PET studies of VAChT. PMID:26408913

  5. Individual refinement of attenuation correction maps for hybrid PET/MR based on multi-resolution regional learning.

    PubMed

    Shi, Kuangyu; Fürst, Sebastian; Sun, Liang; Lukas, Mathias; Navab, Nassir; Förster, Stefan; Ziegler, Sibylle I

    2016-11-19

    PET/MR is an emerging hybrid imaging modality. However, attenuation correction (AC) remains challenging for hybrid PET/MR in generating accurate PET images. Segmentation-based methods on special MR sequences are most widely recommended by vendors. However, their accuracy is usually not high. Individual refinement of available certified attenuation maps may be helpful for further clinical applications. In this study, we proposed a multi-resolution regional learning (MRRL) scheme to utilize the internal consistency of the patient data. The anatomical and AC MR sequences of the same subject were employed to guide the refinement of the provided AC maps. The developed algorithm was tested on 9 patients scanned consecutively with PET/MR and PET/CT (7 [(18)F]FDG and 2 [(18)F]FET). The preliminary results showed that MRRL can improve the accuracy of segmented attenuation maps and consequently the accuracy of PET reconstructions.

  6. Two-step radiosynthesis of 18)F]FE-β-CIT and [18F]PR04.MZ.

    PubMed

    Riss, Patrick J; Hoehnemann, Sabine; Piel, Markus; Roesch, Frank

    2013-06-15

    The cocaine-derived dopamine reuptake inhibitors FE-β-CIT (8-(2-fluoroethyl)-3-(4-iodophenyl)-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl ester) (1) and PR04.MZ(8-(4-fluorobut-2-ynyl)-3-p-tolyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl ester) (2) were labelled with (18)F-fluorine using a two-step route. 2-[(18)F]Fluoroethyltosylate and 4-[(18)F]fluorobut-2-yne-1-yl tosylate were used as labelling reagents, respectively. Radiochemically pure (>98%) [(18)F]FE-β-CIT and [(18)F]PRD04.MZ (32-86 GBq/µmol) were obtained after a synthesis time of 100 min in about 25% non-decay-corrected overall yield. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Development of Purine-Derived 18F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET

    PubMed Central

    2014-01-01

    Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[18F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo. PMID:24456310

  8. [(18)F]Fluoroacetate is not a functional analogue of [(11)C]acetate in normal physiology.

    PubMed

    Lindhe, Orjan; Sun, Aijun; Ulin, Johan; Rahman, Obaidur; Långström, Bengt; Sörensen, Jens

    2009-09-01

    [(11)C]Acetate (C-AC) is a general PET tracer of cellular carbon flux and useful for clinical imaging in heart disease as well as prostate cancer and other tumours. C-AC has a high (70%) whole-body extraction fraction, proportional to blood flow in many organs. Trapping is related to organ-specific enzymatic activation and formation of [(11)C]-acetyl-CoA, the fate of which has been well characterized. Due to the logistic challenges with C-AC, 2-[(18)F]fluoroacetate (F-AC) has been proposed as a marker for prostate cancer imaging. We evaluated the potential of F-AC as a tracer for imaging blood flow and early enzymatic steps in the intermediary metabolism. C-AC and F-AC were injected serially in three cynomolgus monkeys and one domestic pig and scanned using PET/CT. A dynamic scan covering heart and liver was followed by repeated whole-body imaging. Kinetic patterns were compared for the myocardium, liver, blood and other organs. C-AC kinetics and organ distribution in both species were similar to those previously established in man. In contrast, F-AC showed prolonged blood retention, no detectable trapping in myocardium or salivary glands, rapid clearance from liver and extensive excretion to bile and urine. Massive defluorination was seen in the pig, resulting in intense skeletal activity. 2-[(18)F]Fluoroacetate cannot be regarded as a functional analogue of 1-[(11)C]acetate in normal physiology and appears to be of little use for studies of organ blood flow, intermediary metabolism or lipid synthesis.

  9. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography

    PubMed Central

    Weinstein, Edward A.; Ordonez, Alvaro A.; DeMarco, Vincent P.; Murawski, Allison M.; Pokkali, Supriya; MacDonald, Elizabeth M.; Klunk, Mariah; Mease, Ronnie C.; Pomper, Martin G.; Jain, Sanjay K.

    2015-01-01

    The Enterobacteriaceae are a family of rod-shaped Gram-negative bacteria that normally inhabit the gastrointestinal tract and are the most common cause of Gram-negative bacterial infections in humans. In addition to causing serious multidrug-resistant, hospital-acquired infections, a number of Enterobacteriaceae species are also recognized as biothreat pathogens. As a consequence, new tools are urgently needed to specifically identify and localize infections due to Enterobacteriaceae and to monitor antimicrobial efficacy. In this report, we used commercially available 2-[18F]-fluorodeoxyglucose (18F-FDG) to produce 2-[18F]-fluorodeoxysorbitol (18F-FDS), a radioactive probe for Enterobacteriaceae, in 30 min. 18F-FDS selectively accumulated in Enterobacteriaceae, but not in Gram-positive bacteria or healthy mammalian or cancer cells in vitro. In a murine myositis model, 18F-FDS positron emission tomography (PET) rapidly differentiated true infection from sterile inflammation with a limit of detection of 6.2 ± 0.2 log10 colony-forming units (CFU) for Escherichia coli. Our findings were extended to models of mixed Gram-positive and Gram-negative thigh co-infections, brain infection, Klebsiella pneumonia, and mice undergoing immunosuppressive chemotherapy. This technique rapidly and specifically localized infections due to Enterobacteriaceae, providing a three-dimensional holistic view within the animal. Last, 18F-FDS PET monitored the efficacy of antimicrobial treatment, demonstrating a PET signal proportionate to the bacterial burden. Therapeutic failures associated with multidrug-resistant, extended-spectrum β-lactamase (ESBL)–producing E. coli infections were detected in real time. Together, these data show that 18F-FDS is a candidate imaging probe for translation to human clinical cases of known or suspected infections owing to Enterobacteriaceae. PMID:25338757

  10. Radiofluorinated carbohydrates for positron emission tomography.

    PubMed

    Mun, Jiyoung

    2013-01-01

    2-Deoxy-2-[(18)F]fluoro-D-glucose (2-(18)FDG) has represented radiofluorinated carbohydrates as the most successful tracer for positron emission tomography (PET). 2-(18)FDG uptake depends on glucose metabolism, which is related to a disease progression. 2-(18)FDG has been widely used in oncology, neurology, cardiology, infectious diseases, and inflammation, to complement anatomical modalities such as CT and MRI. Followed by the success of 2-(18)FDG, various radiofluorinated carbohydrates have been evaluated as PET tracers, which include analogs of D-ribose, D-mannose, D-galactose, D-talose, D-fructose, D-allose, lactose, L-fucose, N-acetylneuraminic acid, and L-ascorbic acid. Among those radiofluorinated carbohydrates, several have implied potential for further development. 2-Deoxy-2-[(18)F]fluoro-D-galactose has been developed to assess liver function and diagnose hepatic carcinoma. 6-Deoxy-6-[(18)F]fluoro-D-fructose showed promising characteristics for diagnosis of breast cancer. Three radiofluorinated analogs of lactose have been designed as the substrates of the overexpressed hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in peritumoral pancreatic tissue for early diagnosis of pancreatic cancer. The metabolism of 6-[(18)F]fluoro-L-fucose suggested that it is a bioactive analog of L-fucose in the synthesis of glycoconjugate macromolecules. 6-Deoxy-6-[(18)F]fluoro-L-ascorbic acid was evaluated to assess antioxidant function of L-ascorbic acid in rodent models of transient global ischemia and glutathione deficiency.

  11. 18F-AFETP, 18F-FET, and 18F-FDG Imaging of Mouse DBT Gliomas

    PubMed Central

    Sai, Kiran Kumar Solingapuram; Huang, Chaofeng; Yuan, Liya; Zhou, Dong; Piwnica-Worms, David; Garbow, Joel R.; Engelbach, John A.; Mach, Robert H.; Rich, Keith M.; McConathy, Jonathan

    2013-01-01

    The goal of this study was to evaluate the 18F-labeled nonnatural amino acid (S)-2-amino-3-[1-(2-18F-fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (18F-AFETP) as a PET imaging agent for brain tumors and to compare its effectiveness with the more-established tracers O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) and 18F-FDG in a murine model of glioblastoma. The tracer 18F-AFETP is a structural analog of histidine and is a lead compound for imaging cationic amino acid transport, a relatively unexplored target for oncologic imaging. Methods 18F-AFETP was prepared using the click reaction. BALB/c mice with intracranially implanted delayed brain tumor (DBT) gliomas (n = 4) underwent biodistribution and dynamic small-animal PET imaging for 60 min after intravenous injection of 18F-AFETP. Tumor and brain uptake of 18F-AFETP were compared with those of 18F-FDG and 18F-FET through small-animal PET analyses. Results 18F-AFETP demonstrated focally increased uptake in tumors with good visualization. Peak tumor uptake occurred within 10 min of injection, with stable or gradual decrease over time. All 3 tracers demonstrated relatively high uptake in the DBTs throughout the study. At late time points (47.5–57.5 min after injection), the average standardized uptake value with 18F-FDG (1.9 ± 0.1) was significantly greater than with 18F-FET (1.1 ± 0.1) and 18F-AFETP (0.7 ± 0.2). The uptake also differed substantially in normal brain, with significant differences in the standardized uptake values at late times among 18F-FDG (1.5 ± 0.2), 18F-FET (0.5 ± 0.05), and 18F-AFETP (0.1 ± 0.04). The resulting average tumor-to-brain ratio at the late time points was significantly higher for 18F-AFETP (7.5 ± 0.1) than for 18F-FDG (1.3 ± 0.1) and 18F-FET (2.0 ± 0.3). Conclusion 18F-AFETP is a promising brain tumor imaging agent, providing rapid and persistent tumor visualization, with good tumor–to–normal-brain ratios in the DBT glioma model. High tumor-to-brain, tumor

  12. ELIXYS - a fully automated, three-reactor high-pressure radiosynthesizer for development and routine production of diverse PET tracers

    PubMed Central

    2013-01-01

    Background Automated radiosynthesizers are vital for routine production of positron-emission tomography tracers to minimize radiation exposure to operators and to ensure reproducible synthesis yields. The recent trend in the synthesizer industry towards the use of disposable kits aims to simplify setup and operation for the user, but often introduces several limitations related to temperature and chemical compatibility, thus requiring reoptimization of protocols developed on non-cassette-based systems. Radiochemists would benefit from a single hybrid system that provides tremendous flexibility for development and optimization of reaction conditions while also providing a pathway to simple, cassette-based production of diverse tracers. Methods We have designed, built, and tested an automated three-reactor radiosynthesizer (ELIXYS) to provide a flexible radiosynthesis platform suitable for both tracer development and routine production. The synthesizer is capable of performing high-pressure and high-temperature reactions by eliminating permanent tubing and valve connections to the reaction vessel. Each of the three movable reactors can seal against different locations on disposable cassettes to carry out different functions such as sealed reactions, evaporations, and reagent addition. A reagent and gas handling robot moves sealed reagent vials from storage locations in the cassette to addition positions and also dynamically provides vacuum and inert gas to ports on the cassette. The software integrates these automated features into chemistry unit operations (e.g., React, Evaporate, Add) to intuitively create synthesis protocols. 2-Deoxy-2-[18F]fluoro-5-methyl-β-l-arabinofuranosyluracil (l-[18F]FMAU) and 2-deoxy-2-[18F]fluoro-β-d-arabinofuranosylcytosine (d-[18F]FAC) were synthesized to validate the system. Results l-[18F]FMAU and d-[18F]FAC were successfully synthesized in 165 and 170 min, respectively, with decay-corrected radiochemical yields of 46% ± 1% (n = 6

  13. Voxel-based analysis of Alzheimer's disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG.

    PubMed

    Shin, Jonghan; Lee, Sang-Yoon; Kim, Seog Ju; Kim, So-Hee; Cho, Seong-Jin; Kim, Young-Bo

    2010-08-15

    Beta amyloid plaques, neurofibrillary tangles, and impaired glucose metabolism are among the most prevalent pathological characteristics of Alzheimer's disease (AD). However, separate visualization of these three AD-related pathologies in living humans has not been conducted. Here, we show that positron emission tomography (PET) imaging using the three radiotracers (11)C-Pittsburgh compound B (PIB), 2-(1-{6-[(2-(18)F-fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene) malononitrile (FDDNP), and 2-[18F]fluoro-2-deoxy-d-glucose (FDG), in the same subjects, with and without AD, can provide valuable information on the pathological patterns of the distribution of tracers for amyloid plaque, neurofibrillary tangle, and glucose hypometabolism in AD. Voxel-based analysis of PIB-PET in patients with AD compared with normal control subjects showed that patients with AD have highly significant PIB retention in brain regions known to have high amyloid plaque deposition (e.g., frontal, parietal, temporal, and posterior cingulate/precuneus cortices). In contrast, voxel-based analysis of FDDNP-PET showed significantly high FDDNP binding in some brain regions known to have high tangle accumulation in patients with AD compared with age-matched normal subjects (e.g., entorhinal cortex, inferior temporal gyrus, and secondary visual cortex). In addition, because FDDNP binds both plaques and tangles but PIB binds plaques specifically, we examined subtracted PET data (FDDNP minus PIB) acquired from the same patients with AD using an SPM analysis. We found that the hippocampal formation was the most significant brain region in the voxel mapping of FDDNP minus PIB in the same patients with AD. Voxel-based analysis of FDG-PET in the same subjects revealed that brain regions with glucose hypometabolism in patients with AD overlap with regions of high PIB binding. In conclusion, PET imaging using these three radiotracers in the same subjects may contribute toward developing and testing disease

  14. Effects of capecitabine treatment on the uptake of thymidine analogs using exploratory PET imaging agents: (18)F-FAU, (18)F-FMAU, and (18)F-FLT.

    PubMed

    McHugh, Christopher I; Lawhorn-Crews, Jawana M; Modi, Dipenkumar; Douglas, Kirk A; Jones, Steven K; Mangner, Thomas J; Collins, Jerry M; Shields, Anthony F

    2016-10-17

    A principal goal for the use of positron emission tomography (PET) in oncology is for real-time evaluation of tumor response to chemotherapy. Given that many contemporary anti-neoplastic agents function by impairing cellular proliferation, it is of interest to develop imaging modalities to monitor these pathways. Here we examined the effect of capecitabine on the uptake of thymidine analogs used with PET: 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT), 1-(2'-deoxy-2'-[(18)F]fluoro-β-D-arabinofuranosyl) thymidine ((18)F-FMAU), and 1-(2'-deoxy-2'-[(18)F]fluoro-β-D-arabinofuranosyl) uracil ((18)F-FAU) in patients with advanced cancer. Fifteen patients were imaged, five with each imaging agent. Patients had been previously diagnosed with breast, colorectal, gastric, and esophageal cancers and had not received therapy for at least 4 weeks prior to the first scan, and had not been treated with any prior fluoropyrimidines. Subjects were imaged within a week before the start of capecitabine and on the second day of treatment, after the third dose of capecitabine. Tracer uptake was quantified by mean standard uptake value (SUVmean) and using kinetic analysis. Patients imaged with (18)F-FLT showed variable changes in retention and two patients exhibited an increase in SUVmean of 172.3 and 89.9 %, while the other patients had changes ranging from +19.4 to -25.4 %. The average change in (18)F-FMAU retention was 0.2 % (range -24.4 to 23.1) and (18)F-FAU was -10.2 % (range -40.3 to 19.2). Observed changes correlated strongly with SUVmax but not kinetic measurements. This pilot study demonstrates that patients treated with capecitabine can produce a marked increase in (18)F-FLT retention in some patients, which will require further study to determine if this flare is predictive of therapeutic response. (18)F-FAU and (18)F-FMAU showed little change, on average, after treatment.

  15. Rerouting the metabolic pathway of (18)F-labeled peptides: the influence of prosthetic groups.

    PubMed

    Richter, Susan; Wuest, Melinda; Bergman, Cody N; Way, Jenilee D; Krieger, Stephanie; Rogers, Buck E; Wuest, Frank

    2015-02-18

    Current translational cancer research is directed to the development of high affinity peptide ligands for targeting neuropeptide receptors overexpressed in different types of cancer. Besides their desired high binding affinity to the receptor, the suitability of radiolabeled peptides as targeting vectors for molecular imaging and therapy depends on additional aspects such as high tumor-to-background ratio, favorable clearance pattern from nontarget tissue, and sufficient metabolic stability in vivo. This study reports how a switch from the prosthetic group, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), to 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) effects the metabolic pathway of an (18)F-labeled bombesin derivative, QWAV-Sar-H-FA01010-Tle-NH2. (18)F-Labeled bombesin derivatives represent potent peptide ligands for selective targeting of gastrin-releasing peptide (GRP) receptor-expressing prostate cancer. Radiosynthesis of (18)F-labeled bombesin analogues [(18)F]FBz-Ava-BBN2 and [(18)F]FDG-AOAc-BBN2 was achieved in good radiochemical yields of ~50% at a specific activity exceeding 40 GBq/μmol. Both nonradioactive compounds FBz-Ava-BBN2 and FDG-AOAc-BBN2 inhibited binding of [(125)I]Tyr(4)-bombesin(1-14) in PC3 cells with IC50 values of 9 and 16 nM, respectively, indicating high inhibitory potency. Influence of each prosthetic group was further investigated in PC3 mouse xenografts using dynamic small animal PET imaging. In comparison to [(18)F]FBz-Ava-BBN2, total tumor uptake levels were doubled after injection of [(18)F]FDG-AOAc-BBN2 while renal elimination was increased. Blood clearance and in vivo metabolic stability were similar for both compounds. The switch from [(18)F]SFB to [(18)F]FDG as the prosthetic group led to a significant reduction in lipophilicity which resulted in more favorable renal clearance and increased tumor uptake. The presented single step radiolabeling-glycosylation approach represents an innovative strategy for site

  16. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.

    PubMed

    Kim, Woosuk; Le, Thuc M; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T; Abt, Evan R; Capri, Joseph R; Austin, Wayne R; Van Valkenburgh, Juno S; Steele, Dalton; Gipson, Raymond M; Slavik, Roger; Cabebe, Anthony E; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S; Lee, Jason T; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F; Witte, Owen N; Donahue, Timothy R; Phelps, Michael E; Herschman, Harvey R; Herrmann, Ken; Czernin, Johannes; Radu, Caius G

    2016-04-12

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.

  17. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants.

    PubMed

    Didié, Michael; Biermann, Daniel; Buchert, Ralph; Hess, Andreas; Wittköpper, Katrin; Christalla, Peter; Döker, Stephan; Jebran, Fawad; Schöndube, Friedrich; Reichenspurner, Hermann; El-Armouche, Ali; Zimmermann, Wolfram-Hubertus

    2013-08-15

    Total mechanical unloading of the heart in classical models of heterotopic heart transplantation leads to cardiac atrophy and functional deterioration. In contrast, partial unloading of failing human hearts with left ventricular (LV) assist devices (LVADs) can in some patients ameliorate heart failure symptoms. Here we tested in heterotopic rat heart transplant models whether partial volume-loading (VL; anastomoses: aorta of donor to aorta of recipient, pulmonary artery of donor to left atrium of donor, superior vena cava of donor to inferior vena cava of recipient; n = 27) is superior to the classical model of myocardial unloading (UL; anastomoses: aorta of donor to aorta of recipient, pulmonary artery of donor to inferior vena cava of recipient; n = 14) with respect to preservation of ventricular morphology and function. Echocardiography, magnetic resonance imaging, and LV-pressure-volume catheter revealed attenuated myocardial atrophy with ~30% higher LV weight and better systolic contractile function in VL compared with UL (fractional area shortening, 34% vs. 18%; maximal change in pressure over time, 2,986 ± 252 vs. 2,032 ± 193 mmHg/s). Interestingly, no differences in fibrosis (Picrosirus red staining) or glucose metabolism (2-[18F]-fluoro-2-deoxy-D-glucose-PET) between VL and UL were observed. We conclude that the rat model of partial VL attenuates atrophic remodelling and shows superior morphological as well as functional preservation, and thus should be considered more widely as a research model.

  18. MicroPET-based pharmacokinetic analysis of the radiolabeled boron compound [18F]FBPA-F in rats with F98 glioma.

    PubMed

    Chen, J C; Chang, S M; Hsu, F Y; Wang, H E; Liu, R S

    2004-11-01

    Boron neutron capture therapy (BNCT) is one of the effective methods of radiation therapy for the treatment of tumors such as malignant glioma. Boronophenylalanine ((10)B-BPA) solution has been used as a potential boron carrier for such a treatment. The aim of this study is to investigate 4-borono-2-[(18)F]-fluoro-l-phenylalanine-fructose ([(18)F]FBPA-F) in rats injected in the brain with glioma using in vivo small animal positron emission tomography (PET) imaging (microPET). Male Fischer 344 rats with F98 glioma in the left brain were used for these studies. Dynamic PET imaging of [(18)F]FBPA-F was performed on the 13th day after tumor inoculation. Arterial blood sampling was performed to obtain an input function for tracer kinetic modeling. The accumulation ratios of [(18)F]FBPA-F for the glioma-to-normal brain approached 3. The uptake characteristics of BPA-F and [(18)F]FBPA-F were similar. The results indicate that 4h after BPA-F injection would be the optimal irradiation time for BNCT. Rate constants were estimated using a three-compartment model. This study provides useful information for the clinical application of BNCT in patients with brain tumors.

  19. 3D registration of micro PET-CT for measurable correlates of dyspeptic symptoms in mice

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Simpson, Kathryn; Bardsley, Michael R.; Popko, Laura N.; Young, David L.; Kemp, Bradley J.; Lowe, Val; Ordog, Tamas; Robb, Richard

    2009-02-01

    Patients with chronic calorie insufficiency commonly suffer from upper gastrointestinal dysfunction and consequent dyspeptic symptoms, which may interfere with their nutritional rehabilitation. To investigate the relationship between gastric dysfunction and feeding behavior, we exposed mice to chronic caloric restriction and demonstrated gastric motor abnormalities in them. Gastric dysmotility is typically associated with dyspeptic symptoms but sensations cannot be directly assessed in animal models. Therefore, as an initial step toward establishing measurable correlates of postprandial symptoms in small animals, we have attempted to characterize central responses to food intake by positron emission tomography-computerized microtomography (PET-CT) in normal and calorically restricted mice. Animals consumed a standard test meal after an overnight fast before receiving 2-deoxy-2[18F]fluoro-D-glucose tracer. The same mice were also scanned in the fasting state on a separate day. We were able to bring the fed and fasting PET volume images into spatial registration with each other and with an MR-derived atlas of the mouse brain, so that the differences in uptake between the two states could be mapped quantitatively against the neuroanatomic regions of the atlas. Our approach is suitable for studying the effects of gastric dysmotilities on central responses to feeding.

  20. The Synergistic Effect of Selumetinib/Docetaxel Combination Therapy Monitored by [(18)F]FDG/[(18)F]FLT PET and Diffusion-Weighted Magnetic Resonance Imaging in a Colorectal Tumor Xenograft Model.

    PubMed

    Honndorf, Valerie S; Schmidt, Holger; Wiehr, Stefan; Wehrl, Hans F; Quintanilla-Martinez, Leticia; Stahlschmidt, Anke; Barjat, Hervé; Emmas, Sally-Ann; Pichler, Bernd J

    2016-04-01

    Positron emission tomography (PET) and diffusion-weighted MRI (DW-MRI) were used to characterize the treatment effects of the MEK1/2 inhibitor selumetinib (AZD6244), docetaxel, and their combination in HCT116 tumor-bearing mice on the molecular level. Mice were treated with vehicle, selumetinib (25 mg/kg), docetaxel (15 mg/kg), or a combination of both drugs for 7 days and imaged at four time points with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) or 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) followed by DW-MRI to calculate the apparent diffusion coefficient (ADC). Data was cross-validated using the Pearson correlation coefficient (PCC) and compared to histology (IHC). Each drug led to tumor growth inhibition but their combination resulted in regression. Separate analysis of PET or ADC could not provide significant differences between groups. Only PCC combined with IHC analysis revealed the highest therapeutic impact for combination therapy. Combination treatment of selumetinib/docetaxel was superior to the respective mono-therapies shown by PCC of PET and ADC in conjunction with histology.

  1. Calculation of personal dose equivalent for positron-emitting radionuclides using Monte Carlo code EGS5.

    PubMed

    Kato, T; Aoki, K; Yokoyama, S; Ejiri, K; Minami, K; Yashima, H; Taniguchi, A; Nakamura, T; Hirayama, H

    2011-07-01

    The conversion coefficients, H'(d,α)/Φ, for monoenergetic positrons and positron-emitting radionuclides were calculated by using the user code UCICRPM of the Monte Carlo code EGS5 to estimate the radiation dose for medical staff involved in positron emission tomography examinations. From these coefficients, the dose equivalent rates per unit activity at 0.07 and 10 mm depths in a soft tissue for a straight-line source of 2-deoxy-2-[(18)F]fluoro-d-glucose ((18)F-FDG) were calculated by using the developed user code UCF18DOSE. The dose equivalent rates per unit activity at 0.07 and 10 mm depths were measured by using a personal dosemeter (DOSE(3)) under the same conditions as those considered in the calculation. The calculated dose equivalent rates per unit activity at 0.07 and 10 mm depths were 0.116 and 0.0352 pSv min(-1) Bq(-1), respectively, at 20 cm from the (18)F-FDG injection tube.

  2. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.

  3. Caged [(18)F]FDG Glycosylamines for Imaging Acidic Tumor Microenvironments Using Positron Emission Tomography.

    PubMed

    Flavell, Robert R; Truillet, Charles; Regan, Melanie K; Ganguly, Tanushree; Blecha, Joseph E; Kurhanewicz, John; VanBrocklin, Henry F; Keshari, Kayvan R; Chang, Christopher J; Evans, Michael J; Wilson, David M

    2016-01-20

    Solid tumors are hypoxic with altered metabolism, resulting in secretion of acids into the extracellular matrix and lower relative pH, a feature associated with local invasion and metastasis. Therapeutic and diagnostic agents responsive to this microenvironment may improve tumor-specific delivery. Therefore, we pursued a general strategy whereby caged small-molecule drugs or imaging agents liberate their parent compounds in regions of low interstitial pH. In this manuscript, we present a new acid-labile prodrug method based on the glycosylamine linkage, and its application to a class of positron emission tomography (PET) imaging tracers, termed [(18)F]FDG amines. [(18)F]FDG amines operate via a proposed two-step mechanism, in which an acid-labile precursor decomposes to form the common radiotracer 2-deoxy-2-[(18)F]fluoro-d-glucose, which is subsequently accumulated by glucose avid cells. The rate of decomposition of [(18)F]FDG amines is tunable in a systematic fashion, tracking the pKa of the parent amine. In vivo, a 4-phenylbenzylamine [(18)F]FDG amine congener showed greater relative accumulation in tumors over benign tissue, which could be attenuated upon tumor alkalinization using previously validated models, including sodium bicarbonate treatment, or overexpression of carbonic anhydrase. This new class of PET tracer represents a viable approach for imaging acidic interstitial pH with potential for clinical translation.

  4. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGES

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  5. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study

    PubMed Central

    Buck, Jason R.; McKinley, Eliot T.; Fu, Allie; Abel, Ty W.; Thompson, Reid C.; Chambless, Lola; Watchmaker, Jennifer M.; Harty, James P.; Cooper, Michael K.; Manning, H. Charles

    2015-01-01

    Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes. PMID:26517124

  6. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    PubMed Central

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  7. Dynamic functional imaging of brain glucose utilization using fPET-FDG.

    PubMed

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B; Catana, Ciprian; Polimeni, Jonathan R; Sander, Christin Y; Zürcher, Nicole R; Chonde, Daniel B; Fowler, Joanna S; Rosen, Bruce R; Hooker, Jacob M

    2014-10-15

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[(18)F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  8. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    SciTech Connect

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-02-03

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  9. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    DOE PAGES

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; ...

    2016-02-03

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level ofmore » neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.« less

  10. Design of an Automated System for Synthesis of [18 F] FDG for PET Investigation at IFIN-HH Bucharest

    NASA Astrophysics Data System (ADS)

    Craciun, Liviu Stefan; Cimpeanu, Catalina; Constantinescu, Olimpiu; Dudu, Dorin; Ionescu, Cristina; Negoita, Nicolae; Racolta, Petru Mihai; Rusen, Ion

    2009-03-01

    A novel apparatus constructed at IFIN-HH is described for automated synthesis of radiopharmaceuticals labeled with 18F for use in positron emission tomography (PET) investigations. [18 F] fluoride was produced at the IFIN-HH cyclotron by irradiation of H2O enriched 97% in 18O with 13 MeV deuterons, or 8 MeV protons. The irradiated H2O was transferred (injected) into the radiochemical fully-automated processing systems which ensured the separation of 18F from H2O, the labeling with 18F, and finally purified by filtration with selective absorbants. The system is easy to operate and contains a programmable logical controller that manages the entire operation program stored in its internal memory. The computer is used to assist the operator during the different steps of synthesis and to allow visualization of the process and printing the report. The device was used for used for the production of 2-[18 F] FLUORO-2-DEOXY-D-GLUCOSE at the IFIN-HH cyclotron, one of the most used radiopharmaceutical in PET investigations. The synthesis module is configured so that is flexible enough to accomplish other nucleophile reactions of labeling with short lived radioisotopes.

  11. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study.

    PubMed Central

    Kinnala, A.; Suhonen-Polvi, H.; Aärimaa, T.; Kero, P.; Korvenranta, H.; Ruotsalainen, U.; Bergman, J.; Haaparanta, M.; Solin, O.; Nuutila, P.; Wegelius, U.

    1996-01-01

    AIM: To measure the local cerebral metabolic rate for glucose (LCMRGlc) in neonatal brains during maturation using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxy-D-glucose (FDG). METHODS: Twenty infants were studied using PET during the neonatal period. The postconceptional age ranged from 32.7 to 60.3 weeks. All infants had normal neurodevelopment and were normoglycaemic. The development of the infants was carefully evaluated (follow up 12-36 months) clinically, and by using a method based on Gesell Amatruda's developmental diagnosis. LCMRGlc was quantitated using PET derived from FDG kinetics and calculated in the whole brain and for regional brain structures. RESULTS: LCMRGlc for various cortical brain regions and the basal ganglia was low at birth (from 4 to 16 mumol/100 g/minute). In infants 2 months of age and younger LCMRGlc was highest in the sensorimotor cortex, thalamus, and brain stem. By 5 months, LCMRGlc had increased in the frontal, parietal, temporal, occipital and cerebellar cortical regions. In general, the whole brain LCMRGlc correlated with postconceptional age (r = 0.90; P < 0.001). The change in the glucose metabolic pattern observed in the neonatal brain reflects the functional maturation of these brain regions. CONCLUSION: These findings show that LCMRGlc in infants increases with maturation. Accordingly, when LCMRGlc is measured during infancy, the postconceptional age has to be taken into account when interpretating the results. Images Figure 1 PMID:8777676

  12. Low-Dose PET/CT and Full-Dose Contrast-Enhanced CT at the Initial Staging of Localized Diffuse Large B-Cell Lymphomas

    PubMed Central

    Sabaté-Llobera, Aida; Cortés-Romera, Montserrat; Mercadal, Santiago; Hernández-Gañán, Javier; Pomares, Helena; González-Barca, Eva; Gámez-Cenzano, Cristina

    2016-01-01

    Computed tomography (CT) has been used as the reference imaging technique for the initial staging of diffuse large B-cell lymphoma until recent days, when the introduction of positron emission tomography (PET)/CT imaging as a hybrid technique has become of routine use. However, the performance of both examinations is still common. The aim of this work was to compare the findings between low-dose 2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) PET/CT and full-dose contrast-enhanced CT (ceCT) in 28 patients with localized diffuse large B-cell lymphoma according to PET/CT findings, in order to avoid the performance of ceCT. For each technique, a comparison in the number of nodal and extranodal involved regions was performed. PET/CT showed more lesions than ceCT in both nodal (41 vs. 36) and extranodal localizations (16 vs. 15). Disease staging according to both techniques was concordant in 22 patients (79%) and discordant in 6 patients (21%), changing treatment management in 3 patients (11%). PET/CT determined a better staging and therapeutic approach, making the performance of an additional ceCT unnecessary. PMID:27559300

  13. Complementary roles of bone scintigraphy and MR imaging in the detection and long-term follow-up of primary non-Hodgkin's bone lymphoma in a child-case report.

    PubMed

    Marina, Vlajković; Milena, Rajić; Vesna, Petronijević; Slađana, Petrović; Vera, Artiko

    2015-06-01

    The aim of our report is to demonstrate the complementary roles of bone scintigraphy (BS), magnetic resonance imaging (MR), and positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose (F-18-FDG PET/CT) in the diagnosis and treatment monitoring of a child with primary non-Hodgkin's lymphoma of bone (PLB). Increased blood flow, high tissue accumulation, and markedly increased uptake on the late BS pointed toward an active bone process in the left femoral region. Bone marrow infiltration of the left femur and cortical sclerosis, which were both demonstrated by MR imaging, were later confirmed as PLB by bone marrow biopsy. The normalizations of the flow and tissue phases of BS a year after treatment and during the entire follow-up were in keeping with inactive disease and clinical remission. However, even 8 years after treatment and complete remission, MR imaging demonstrated persistent unmodified bone marrow alteration and appreciable cortical involvement. A slightly increased metabolic activity of the left femoral epiphysis demonstrated by F-18-FDG PET/CT and mild activity in the same region on delayed BS were demonstrated in the late follow-up. Our results strongly suggest that BS and MR imaging should be included in the diagnostic algorithm of children with undefined bone symptoms. However, mild metabolic activity on the F-18-FDG PET/CT scan could not reliably differentiate between the presence or absence of disease in a patient with PLB in clinical remission.

  14. 18F-FDG PET/CT in Neurolymphomatosis: Report of 3 Cases

    PubMed Central

    Canh, Nguyen Xuan; Tan, Ngo Van; Tung, Tran Thanh; Son, Nguyen Truong; Maurea, Simone

    2014-01-01

    Neurolymphomatosis is a rare manifestation of non-Hodgkin lymphoma characterized by infiltration of peripheral nerves, nerve roots, plexus and cranial nerves by malignant lymphocytes. This report presents positron emission tomography/computed tomography (PET/CT)imaging with 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) in 3 cases of non-Hodgkin lymphoma with nerve infiltration, including one newly diagnosed lymphoma, one recurrent lymphoma in previous nerve lesions and one newly recurrent lymphoma. PET/CT could reveal the affected neural structures including cranial nerves, spinal nerve roots, brachial plexus, cervicothoracic ganglion, intercostal nerves, branches of the vagus nerve, lumbosacral plexus and sciatic nerves. There was relative concordance between PET/CT and MRI in detection of affected cranial nerves. PET/CT seemed to be better than MRI in detection of affected peripheral nerves. 18F-FDG PET/CT was a whole-body imaging technique with the ability to reveal the affected cranial nerves, peripheral nerves, nerve roots and plexus in non-Hodgkin lymphoma. A thorough understanding of disease and use of advanced imaging modalities will increasingly detect neurolymphomatosis. PMID:27408859

  15. PET imaging of primary mediastinal tumours.

    PubMed Central

    Kubota, K.; Yamada, S.; Kondo, T.; Yamada, K.; Fukuda, H.; Fujiwara, T.; Ito, M.; Ido, T.

    1996-01-01

    Mediastinal masses include a wide variety of tumours and remain an interesting diagnostic challenge for radiologist. We performed positron emission tomography (PET) studies of primary mediastinal tumours in order to predict the malignancy of these tumours preoperatively. Twenty-two patients with primary mediastinal tumours were studied with PET using 2-deoxy-2-[18F]fluoro-D-glucose (FDG). The histological findings of surgical pathology or biopsy, or mediastinoscopy were compared with those of computerised tomography (CT) and PET. PET images were evaluated semiquantitatively using the differential uptake ratio (DUR). Increased FDG uptake was observed in nine of ten patients with malignant tumours, including thymic carcinomas, lymphomas, invasive thymomas and a case of sarcoidosis. A moderate level of FDG uptake was found in a myeloma, non-invasive thymomas, and a schwannoma, whereas a low uptake was observed in a teratoma and various benign cysts. The mean FDG uptake of malignant tumours was significantly higher than that of benign tumours. Both thymic cancer and invasive thymoma showed a high FDG uptake. CT examination resulted in three false-negative and two false-positive cases when used in predicting tumour invasion, while PET was associated with a false-positive and a false-negative case. In conclusion, the use of FDG with PET is clinically helpful in evaluating the malignant nature of primary mediastinal tumours. Our results also suggest that a high FDG uptake reflects the invasiveness of malignant nature of thymic tumours. Images Figure 1 Figure 2 PMID:8611400

  16. Molecular imaging of therapy response with 18F-FLT and 18F-FDG following cyclophosphamide and mTOR inhibition

    PubMed Central

    Saint-Hubert, Marijke De; Brepoels, Lieselot; Devos, Ellen; Vermaelen, Peter; Groot, Tjibe De; Tousseyn, Thomas; Mortelmans, Luc; Mottaghy, Felix M

    2012-01-01

    Purpose Evaluation and comparison of 3’-[18F]-fluoro-3’-deoxy-L-thymidine (FLT) and 2-[18F]-fluoro-2-deoxyglucose (FDG)-PET to monitor early response following both cyclophosphamide and temsirolimus treatment in a mouse model of Burkitt lymphoma. Methods Daudi xenograft mice were treated with either cyclophosphamide or temsirolimus and imaged with FLT-PET and FDG-PET on appropriate days post therapy inititiation. Immunohistochemical (IHC) studies (H&E, TUNEL, CD20, PCNA and ki-67) and DNA flow cytometry studies were performed. Results FDG tumor uptake decreased immediately after cyclophosphamide treatment while FLT-PET showed only a late and less pronounced decrease. A fast induction of apoptosis was observed together with an early accumulation of cells in the S-phase of the cell cycle, suggesting DNA repair. Temsirolimus treatment reduced both FDG and FLT tumor uptake immediately after therapy and resulted in a fast induction of apoptosis and G0-G1 phase accumulation. Conclusion FLT response was less distinct than FDG response and may be controlled by DNA repair early after cyclophosphamide. Nevertheless, FLT-PET was able to reflect decreased proliferation following temsirolimus. PMID:23133806

  17. Comparison of Amino Acid Positron Emission Tomographic Radiotracers for Molecular Imaging of Primary and Metastatic Brain Tumors

    PubMed Central

    Juhász, Csaba; Dwivedi, Shalini; Kamson, David O.; Michelhaugh, Sharon K.; Mittal, Sandeep

    2014-01-01

    Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (l-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-l-dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-l-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-d-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients. PMID:24825818

  18. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease.

    PubMed

    Shoghi-Jadid, Kooresh; Small, Gary W; Agdeppa, Eric D; Kepe, Vladimir; Ercoli, Linda M; Siddarth, Prabha; Read, Stephen; Satyamurthy, Nagichettiar; Petric, Andrej; Huang, Sung-Cheng; Barrio, Jorge R

    2002-01-01

    The authors used 2-(1-(6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl)ethylidene)malononitrile ([18F]FDDNP), a hydrophobic radiofluorinated derivative of 2-(1-[6-(dimethylamino)-2-naphthyl]ethylidene)malononitrile (DDNP), in conjunction with positron emission tomography to determine the localization and load of neurofibrillary tangles (NFTs) and beta-amyloid senile plaques (APs) in the brains of living Alzheimer disease (AD) patients. Previous work illustrated the in vitro binding characteristics of [18F]FDDNP to synthetic beta-amyloid(1-40) fibrils and to NFTs and APs in human AD brain specimens. In the present study, greater accumulation and slower clearance was observed in AP- and NFT-dense brain areas and correlated with lower memory performance scores. The relative residence time of the probe in brain regions affected by AD was significantly greater in patients with AD (n=9) than in control subjects (n=7; p=0.0007). This noninvasive technique for monitoring AP and NFT development is expected to facilitate diagnostic assessment of patients with AD and assist in response-monitoring during experimental treatments.

  19. Testing theoretical relationships: factors influencing positive health practices (PHP) in Filipino college students.

    PubMed

    Ayres, Cynthia; Mahat, Ganga; Atkins, Robert

    2013-01-01

    To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. A sample of Filipino college students (N = 226) aged 18 to 21 was obtained in June 2009. Participants completed 4 instruments. Statistical analyses were performed using SPSS 16.0. Positive correlations were found between PHP and SS (r = .39, p = .01) and optimism and PHP (r = .36, p = .01). No correlation was found between PHP and acculturation. Optimism and SS predicted performance of PHP (R (2) = .18, F[2, 221] = 24.927, p < .001). A difference was found in acculturation levels between participants who grew up in the United States (t[223] = 4.5, p < .001) and those who did not. Findings help health practitioners and educators to better understand the underlying factors that influence PHP in this population.

  20. Sulfonation of Tyrosine as a Method to Improve Biodistribution of Peptide-Based Radiotracers: Novel (18)F-Labelled Cyclic RGD Analogues.

    PubMed

    Haskali, Mohammad Baqir; Denoyer, Delphine; Noonan, Wayne; Cullinane, Carleen; Rangger, Christine; Pouliot, Normand; Haubner, Roland; Roselt, Peter D; Hicks, Rodney J; Hutton, Craig A

    2017-02-13

    The labeling of peptides with positron emitting radionuclides has long held the promise of a wide range of PET agents possessing high affinity and selectivity. Not surprisingly, controlling the biodistribution of these agents has proven to be a major challenge in their successful application. Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[18F]fluoropropionate and the biodistribution of the radiolabeled peptides was compared with that of their non-sulfonated, clinically relevant counterparts, [18F]GalactoRGD and [18F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da towards the MW, compared with 189 Da for both the 'Galacto' and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabelled peptides.

  1. Hodgkin's lymphoma--patient's assessment and staging.

    PubMed

    Gospodarowicz, Mary K

    2009-01-01

    Hodgkin's lymphoma is one of the most curable malignancies today. But treatment is associated with significant toxicity. The objective of high-quality management is to minimize treatment exposure while maximizing cure of disease. Principles of cancer staging and patient's assessment taxonomy are important to improve communication. An orderly patient evaluation and systematic recording of disease extent using the Ann Arbor classification forms the basis for treatment decision, response assessment, and clinical trials. The practice of staging in Hodgkin's lymphoma evolved over the past 40 years from clinical examination and plain imaging to modern anatomic and functional imaging. Although useful in the past, staging laparotomy, lymphangiograms, and Gallium scintigraphy have now been abandoned. Computerized tomography combined with 2-[18F]fluoro-2-deoxyglucose-positron emission tomography form the basis for anatomic disease extent assessment. Although patients' evaluation and staging at diagnosis are important, the management of Hodgkin's lymphoma involves a complex series of algorithms requiring interim and overall response assessment, careful follow-up, repeat assessment, and salvage management of recurrent disease.

  2. Weight gain following subthalamic nucleus deep brain stimulation: a PET study.

    PubMed

    Sauleau, Paul; Le Jeune, Florence; Drapier, Sophie; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Lalys, Florent; Robert, Gabriel; Drapier, Dominique; Vérin, Marc

    2014-12-01

    Several hypotheses have been put forward to explain weight gain after deep brain stimulation (DBS), but none provides a fully satisfactory account of this adverse effect. We analyzed the correlation between changes in brain metabolism (using positron emission tomography [PET] imaging) and weight gain after bilateral subthalamic nucleus DBS in patients with Parkinson's disease. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose 3 months before and 4 months after the start of subthalamic nucleus deep brain stimulation in 23 patients with Parkinson's disease. Motor complications (United Parkinson's Disease Rating Scale [UPDRS]-IV scores) and dopaminergic medication were included in the analysis to control for their possible influence on brain metabolism. Mean ± standard deviation (SD) body mass index increased significantly by 0.8 ± 1.5 kg/m(2) (P = 0.03). Correlations were found between weight gain and changes in brain metabolism in limbic and associative areas, including the orbitofrontal cortex (Brodmann areas [BAs] 10 and 11), lateral and medial parts of the temporal lobe (BAs 20, 21, 22,39 and 42), anterior cingulate cortex (BA 32), and retrosplenial cortex (BA 30). However, we found no correlation between weight gain and metabolic changes in sensorimotor areas. These findings suggest that changes in associative and limbic processes contribute to weight gain after subthalamic nucleus DBS in Parkinson's disease.

  3. New developments of dopaminergic imaging in Parkinson's disease.

    PubMed

    Varrone, A; Halldin, C

    2012-03-09

    The development of radioligands for the dopaminergic system has provided suitable imaging biomarkers for clinical research in Parkinson's disease (PD) and related movement disorders. Single photon emission tomography (SPECT) has played an important role as main molecular imaging modality because of the availability of imaging tools such as dopamine transporter (DAT) radioligands for wide clinical use. At present, SPECT imaging of the DAT is the main diagnostic imaging procedure for the assessment of patients with parkinsonism. However, in the recent years positron emission tomography (PET) has become an important clinical diagnostic modality, mainly in oncology, due to the wide availability of PET/CT systems with improved imaging performance and to the use of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) as main diagnostic agent. In this context, further development of 18F-radioligands is of high interest for their potential utility in the clinical setting. This review will give a general overview on the development of SPECT and PET radioligands for the dopaminergic system and describe the potential advantages of developing 18F-labelled radioligands for imaging of the dopaminergic system in PD and related movement disorders.

  4. New developments of dopaminergic imaging in Parkinson's disease.

    PubMed

    Varrone, A; Halldin, C

    2012-02-01

    The development of radioligands for the dopaminergic system has provided suitable imaging biomarkers for clinical research in Parkinson's disease (PD) and related movement disorders. Single photon emission tomography (SPECT) has played an important role as main molecular imaging modality because of the availability of imaging tools such as dopamine transporter (DAT) radioligands for wide clinical use. At present, SPECT imaging of the DAT is the main diagnostic imaging procedure for the assessment of patients with parkinsonism. However, in the recent years positron emission tomography (PET) has become an important clinical diagnostic modality, mainly in oncology, due to the wide availability of PET/CT systems with improved imaging performance and to the use of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) as main diagnostic agent. In this context, further development of 18F-radioligands is of high interest for their potential utility in the clinical setting. This review will give a general overview on the development of SPECT and PET radioligands for the dopaminergic system and describe the potential advantages of developing 18F-labelled radioligands for imaging of the dopaminergic system in PD and related movement disorders.

  5. Regional, kinetic [18F]FDG PET imaging of a unilateral Parkinsonian animal model

    PubMed Central

    Silva, Matthew D; Glaus, Charles; Hesterman, Jacob Y; Hoppin, Jack; Puppa, Geraldine Hill della; Kazules, Timothy; Orcutt, Kelly M; Germino, Mary; Immke, David; Miller, Silke

    2013-01-01

    Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [18F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Following a bolus injection of 18.5 ± 1 MBq [18F]FDG and a 60-minute PET scan, image-derived input functions from the vena cava and left ventricle were used with three models, including Patlak graphical analysis, to estimate the influx constant and the metabolic rate in ten brain regions. We observed statistically significant changes in [18F]FDG uptake ipsilateral to the 6-OHDA injection in the basal ganglia, olfactory bulb, and amygdala regions; and these changes are of biological relevance to the disease. These experiments provide further validation for the use of [18F]FDG PET imaging in this model for drug discovery and development. PMID:23526185

  6. Imaging of Sleeping Beauty-Modified CD19-Specific T Cells Expressing HSV1-Thymidine Kinase by Positron Emission Tomography.

    PubMed

    Najjar, Amer M; Manuri, Pallavi R; Olivares, Simon; Flores, Leo; Mi, Tiejuan; Huls, Helen; Shpall, Elizabeth J; Champlin, Richard E; Turkman, Nashaat; Paolillo, Vincenzo; Roszik, Jason; Rabinovich, Brian; Lee, Dean A; Alauddin, Mian; Gelovani, Juri; Cooper, Laurence J N

    2016-12-01

    We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19(+) artificial antigen-presenting cells. After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19(+) targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[(18)F]fluoro-5-ethyl-1-β-D-arabinofuranosyl-uracil ([(18)F]FEAU). This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.

  7. Risk factors associated with recurrence of surgically resected node-positive non-small cell lung cancer.

    PubMed

    Ohtaki, Yoichi; Shimizu, Kimihiro; Kaira, Kyoichi; Nagashima, Toshiteru; Obayashi, Kai; Nakazawa, Seshiru; Kakegawa, Seiichi; Igai, Hitoshi; Kamiyoshihara, Mitsuhiro; Nishiyama, Masahiko; Takeyoshi, Izumi

    2016-10-01

    The aim of this study was to identify risk factors for recurrence in non-small cell lung cancer (NSCLC) patients with lymph node metastases after surgical resection. We reviewed 66 consecutive patients with surgically resected NSCLC who had pathologically proven positive lymph nodes (pN1 or pN2). All patients underwent a preoperative 2-[(18)F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) evaluation. We analyzed the recurrence-free survival (RFS) and recurrence-free proportion (RFP) according to the clinicopathological factors. A total of 27 patients were pathologically N1 and 39 were N2. The 5-year overall survival rate and the RFS rate were 47.2 and 27.7 %, respectively. The cut-off values for the SUVmax of the tumor and the lymph node ratio (LNR) were determined to be 6.5 and 0.12, respectively, using a receiver operating characteristics curve analysis. Both univariate and multivariate analyses revealed three significant independent factors for RFS: namely, the SUVmax of the tumor, the LNR, and the use of adjuvant chemotherapy. Only the SUVmax was an independent significant predictor of the RFP. Both the SUVmax and the LNR can serve as prognostic factors for patients with pN + NSCLC. Our study suggests that the LNR could be a stronger prognostic factor than the N classification of the TNM system and the SUVmax may predict recurrence in node-positive NSCLC patients.

  8. Molecular Optical Imaging with Radioactive Probes

    PubMed Central

    Liu, Hongguang; Ren, Gang; Miao, Zheng; Zhang, Xiaofen; Tang, Xiaodong; Han, Peizhen; Gambhir, Sanjiv S.; Cheng, Zhen

    2010-01-01

    Background Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI. Methodology/Principal Findings By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β− can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors. Conclusions/Significance These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging. PMID:20208993

  9. Application of feedback-controlled bolus plus infusion (FC-B/I) method for quantitative PET imaging of dopamine transporters with [(18)F]β-CFT-FE in conscious monkey brain.

    PubMed

    Harada, Norihiro; Ohba, Hiroyuki; Kakiuchi, Takeharu; Tsukada, Hideo

    2013-01-01

    The competitive inhibition of dopamine transporters (DAT) with cocaine, a specific DAT inhibitor, was evaluated with a feedback-controlled bolus plus infusion (FC-B/I) method using animal positron emission tomography (PET) in the living brain of conscious monkey. 2β-Carbomethoxy-3β-(4-fluorophenyl)-8-(2-[(18)F]fluoroethyl) nortropane ([(18)F]β-CFT-FE; Harada et al. [2004] Synapse 54:37-45) was used for this study because it provided specific, fast, and reversible kinetic properties to DAT in the striatum. In FC-B/I method, the real-time image reconstruction was started just after intravenous bolus injection of [(18)F]β-CFT-FE to generate a time-activity curve in the striatum, and the infusion rate was adjusted to achieve an equilibrium state of the striatal radioactivity concentrations by means of a feedback-control algorithm. The first equilibrium state in the brain was reached within 20 min after the infusion start. Intravenous administration of cocaine at the doses of 0.02, 0.1, and 0.5 mg/kg shifted the equilibrium radioactivity level to the second equilibrium state in a dose-dependent manner, while no significant alterations was observed in the cerebellum. The present results demonstrated that the combined use of FC-B/I method and PET probe with fast kinetics like [(18)F]β-CFT-FE could be useful to assess the occupancy of drugs in the living brain with PET.

  10. Response to deep brain stimulation in the lateral hypothalamic area in a rat model of obesity: in vivo assessment of brain glucose metabolism.

    PubMed

    Soto-Montenegro, María Luisa; Pascau, Javier; Desco, Manuel

    2014-12-01

    To investigate changes in glucose brain metabolism after deep brain stimulation (DBS) in the lateral hypothalamic area (LHA) in a rat model of obesity. Ten obese male Zucker rats were divided into two groups: LHA-control and LHA-DBS. Concentric bipolar platinum-iridium electrodes were implanted bilaterally. After 7 days, DBS was applied for 15 days. Weight and food and water intake were monitored. 2-Deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) PET-CT imaging studies were performed the day after the end of DBS. Differences in glucose uptake between the groups were assessed with statistical parametric mapping. A difference in weight gain of 3.19 percentage points was found between groups. Average food consumption during the first 15 days was lower in DBS-treated animals than in non-stimulated animals. DBS increased metabolism in the mammillary body, subiculum-hippocampal area, and amygdala, while a decrease in metabolism was recorded in the thalamus, caudate, temporal cortex, and cerebellum. DBS produced significant changes in brain regions associated with the control of food intake and the brain reward system. DBS seems to normalize the impaired hippocampal functioning that has been described in obese rats. The smaller weight gain in the DBS group suggests that this technique could be considered an option for the treatment of obesity.

  11. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    PubMed

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  12. Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles.

    PubMed

    Cheng, Hao; Li, Yong; Huo, Kaifu; Gao, Biao; Xiong, Wei

    2014-10-01

    Although titanium (Ti) implants are widely used clinically, implant-associated bacterial infection is still one of the most serious complications in orthopedic surgery. Long-term antibacterial properties and the ability to inhibit biofilm formation are highly desirable to prevent implant associated infection. In this study, a controllable amount of silver (Ag) nanoparticles was incorporated into titanium oxide; or titanium, nanotubes (TiO₂ -NTs). The reliable release and long-term antibacterial function of Ag, in vivo and in vitro, and influence normal bone-implant integration from the Ag released from Ag-incorporated NTs in vivo have been studied to make them useable in clinical practice. In the current study, TiO₂ -NTs loaded with Ag (NT-Ag) exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC43300) in vitro for 30 days, and the ability to penetrate the protein layer well. In addition, X-ray examination and 2-[(18)F]-fiuoro-2-deoxy-D-glucose positron emission tomography indicates that NT-Ag show extremely long antibacterial activity in vivo in a rat model. Furthermore, histomorphometric analysis demonstrated that satisfactory bio-integration can be expected. Our results indicate that NT-Ag has both simultaneous antimicrobial and excellent bio-integration properties, make it a promising therapeutic material for orthopedic application.

  13. Positron emission tomography (PET) imaging with 18F-based radiotracers

    PubMed Central

    Alauddin, Mian M

    2012-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802

  14. Tumor-to-background ratio to predict response to chemotherapy of osteosarcoma better than standard uptake values.

    PubMed

    He, Jin-peng; Hao, Yun; Li, Mi; Wang, Jiang; Guo, Feng-jin

    2014-05-01

    According to the current treatment protocol of the Cooperative Osteosarcoma Study, it is mandatory to determine the histological response to neoadjuvant chemotherapy treatment before surgical removal of the tumor, particularly if a limb salvage procedure is planned. The aim of this systematic, retrospective study was to evaluate the ability of 2-((18) F) fluoro-2-deoxy-D-glucose positron-emission tomography/computed tomography to predict chemotherapy response of osteosarcoma and to identify a simple promising method for noninvasive evaluation of neoadjuvant chemotherapy response in osteosarcoma. The PubMed database was searched to identify and analyze relevant published reports. In particular, correlations between tumor-to-background ratio (TBR), standard uptake value (SUV) and histological response to chemotherapy were assessed. It was found that good responses are achieved in patients with TBR after chemotherapy (TBR2)/TBR before chemotherapy (TBR1) < 0.470 (positive predictive value [PPV] = 92.31%, negative predictive value [NPV] = 82.76%, sensitivity [S] = 87.80%, specificity [SP] = 88.89%), whereas poor responses occur in patients with SUV after chemotherapy/before chemotherapy (SUV2/SUV1) > 0.396 (PPV = 73.68%, NPV = 73.33%, S = 63.64%, SP = 81.48%). Changes in TBR are better predictors of chemotherapy response than SUV in osteosarcoma patients. Therefore, we believe that choice of surgical strategy is optimally based on changes in TBR. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  15. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals.

    PubMed

    Taggart, Matthew P; Tarn, Mark D; Esfahani, Mohammad M N; Schofield, Daniel M; Brown, Nathaniel J; Archibald, Stephen J; Deakin, Tom; Pamme, Nicole; Thompson, Lee F

    2016-04-26

    The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate.

  16. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    SciTech Connect

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  17. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093

  18. Positron emission tomography of fluorine-18-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors

    SciTech Connect

    Heiss, W.D.; Heindel, W.; Herholz, K.; Rudolf, J.; Bunke, J.; Jeske, J.; Friedmann, G. )

    1990-03-01

    Positron emission tomography (PET) of 2(18F)-fluoro-2-deoxy-D-glucose (FDG) and volume-selective phosphorus-31 magnetic resonance spectroscopy (31P-MRS) are methods used to assess the energy metabolism of the brain. Both methods were studied with respect to their contribution to differential diagnosis in 23 patients with various brain tumors. The various neuroectodermal tumors differed with respect to their metabolic rate for glucose (MRGL). Benign and malignant tumors could be better differentiated by using tumor metabolism relative to contralateral brain and by evaluating heterogeneities in tumors. Low-grade gliomas usually showed normal 31P-MR spectra; high-grade gliomas were characterized by reduced and often split phosphodiester peaks and alkaline pH. Meningiomas, which had variable MRGL, typically showed extremely low phosphocreatine levels, reduced phosphodiesters, and alkaline pH. We concluded that FDG-PET and 31P-MRS examine different aspects of tumor metabolism. Therefore, both can contribute independently and complementarily to the differential diagnosis of brain tumors.

  19. A study of persistent post-concussion symptoms in mild head trauma using positron emission tomography

    PubMed Central

    Chen, S; Kareken, D; Fastenau, P; Trexler, L; Hutchins, G

    2003-01-01

    Background: Complaints of persistent cognitive deficits following mild head trauma are often uncorroborated by structural brain imaging and neuropsychological examination. Objective: To investigate, using positron emission tomography (PET), the in vivo changes in regional cerebral uptake of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) and regional cerebral blood flow (rCBF) in patients with persistent symptoms following mild head trauma. Methods: Five patients with mild head trauma and five age and education matched healthy controls were imaged using FDG-PET to measure differences in resting regional cerebral glucose metabolism. Oxygen-15 labelled water (H215O)-PET was also used to measure group differences in rCBF changes during a spatial working memory task. In addition, neuropsychological testing and self report of dysexecutive function and post-concussion symptoms were acquired to characterise the sample. Results: There was no difference between patients and controls in normalised regional cerebral FDG uptake in the resting state in frontal and temporal regions selected a priori. However, during the spatial working memory task, patients had a smaller increase in rCBF than controls in the right prefrontal cortex. Conclusions: Persistent post-concussive symptoms may not be associated with resting state hypometabolism. A cognitive challenge may be necessary to detect cerebral changes associated with mild head trauma. PMID:12588917

  20. A positive relationship between harm avoidance and brain nicotinic acetylcholine receptor availability.

    PubMed

    Storage, Steven; Mandelkern, Mark A; Phuong, Jonathan; Kozman, Maggie; Neary, Meaghan K; Brody, Arthur L

    2013-12-30

    Prior research indicates that disturbance of cholinergic neurotransmission reduces anxiety, leading to the hypothesis that people with heightened cholinergic function have a greater tendency toward anxiety-like and/or harm-avoidant behavior. We sought to determine if people with elevated levels of harm avoidance (HA), a dimension of temperament from the Temperament and Character Inventory (TCI), have high α4β2* nicotinic acetylcholine receptor (nAChR) availability. Healthy adults (n=105; 47 non-smokers and 58 smokers) underwent bolus-plus-continuous infusion positron emission tomography (PET) scanning using the radiotracer 2-[18F]fluoro-3-(2(S)azetidinylmethoxy) pyridine (abbreviated as 2-FA). During the uptake period of 2-FA, participants completed the TCI. The central study analysis revealed a significant association between total HA and mean nAChR availability, with higher total HA scores being linked with greater nAChR availability. In examining HA subscales, both 'Fear of Uncertainty' and 'Fatigability' were significant, based on higher levels of these characteristics being associated with greater nAChR availabilities. This study adds to a growing body of knowledge concerning the biological basis of personality and may prove useful in understanding the pathophysiology of psychiatric disorders (such as anxiety disorders) that have similar characteristics to HA. Study findings may indicate that heightened cholinergic neurotransmission is associated with increased anxiety-like traits. Published by Elsevier Ireland Ltd.

  1. PET/CT and High Resolution CT as potential imaging biomarkers associated with treatment outcomes in MDR-TB

    PubMed Central

    Chen, Ray Y.; Dodd, Lori E.; Lee, Myungsun; Paripati, Praveen; Hammoud, Dima A.; Mountz, James M.; Jeon, Doosoo; Zia, Nadeem; Zahiri, Homeira; Coleman, M. Teresa; Carroll, Matthew W.; Lee, Jong Doo; Jeong, Yeon Joo; Herscovitch, Peter; Lahouar, Saher; Tartakovsky, Michael; Rosenthal, Alexander; Somaiyya, Sandeep; Lee, Soyoung; Goldfeder, Lisa C.; Cai, Ying; Via, Laura E.; Park, Seung-Kyu; Cho, Sang-Nae; Barry, Clifton E.

    2017-01-01

    Definitive clinical trials of new chemotherapies for tuberculosis (TB) treatment require following subjects until at least six months after treatment discontinuation to assess for durable cure, making these trials expensive and lengthy. Surrogate endpoints relating to treatment failure and relapse are currently limited to sputum microbiology, which has limited sensitivity and specificity. In this study we prospectively assessed radiographic changes using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) at two months and six months (CT only) in a cohort of subjects with multidrug-resistant (MDR) TB who were treated with second-line TB therapy for two years and then followed for an additional six months. CT scans were read semi-quantitatively by radiologists and computationally evaluated using custom software to provide volumetric assessment of TB-associated abnormalities. CT scans at six months assessed by readers were predictive of outcomes but not two months and changes in computed abnormal volumes were predictive at both time points. Quantitative changes in FDG uptake two months after starting treatment were associated with long-term outcomes. In this cohort, some radiologic markers were more sensitive than conventional sputum microbiology in distinguishing successful from unsuccessful treatment. These results support the potential of imaging biomarkers as possible surrogate endpoints in clinical trials of new TB drug regimens. Larger cohorts confirming these results are needed. PMID:25473034

  2. Fatigue in Parkinson's disease: The contribution of cerebral metabolic changes.

    PubMed

    Cho, Sang Soo; Aminian, Kelly; Li, Crystal; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2017-01-01

    Fatigue is a common and disabling non-motor symptom in Parkinson's disease associated with a feeling of overwhelming lack of energy. The aim of this study was to identify the neural substrates that may contribute to the development of fatigue in Parkinson's disease. Twenty-three Parkinson's disease patients meeting UK Brain Bank criteria for the diagnosis of idiopathic Parkinson's disease were recruited and completed the 2-[(18) F]fluoro-2-deoxy-D-glucose (FDG)-PET scan. The metabolic activities of Parkinson's disease patients with fatigue were compared to those without fatigue using statistical parametric mapping analysis. The Parkinson's disease group exhibiting higher level of fatigue showed anti-correlated metabolic changes in cortical regions associated with the salience (i.e., right insular region) and default (i.e., bilateral posterior cingulate cortex) networks. The metabolic abnormalities detected in these brain regions displayed a significant correlation with level of fatigue and were associated with a disruption of the functional correlations with different cortical areas. These observations suggest that fatigue in Parkinson's disease may be the expression of metabolic abnormalities and impaired functional interactions between brain regions linked to the salience network and other neural networks. Hum Brain Mapp 38:283-292, 2017. © 2016 Wiley Periodicals, Inc.

  3. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography.

    PubMed

    Omi, Rei; Sano, Hirotaka; Ohnuma, Masahiro; Kishimoto, Koshi N; Watanuki, Shoichi; Tashiro, Manabu; Itoi, Eiji

    2010-05-01

    Although 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) positron emission tomography (PET) has been used for the assessment of skeletal muscle activities, its application to the shoulder muscles is only sparse. The purpose of this study was to investigate the activities of the shoulder muscles during arm elevation using PET. Six healthy volunteers performed an arm elevation exercise before and after FDG injection. The exercise consisted of 200 repetitions of arm elevation in the scapular plane with a 0.25-kg weight fixed to the wrist on both arms. PET examination was performed 50 min after FDG injection. For control data, PET scan was repeated for each subject on a separate day without any exercise. The volume of interest was established for each shoulder muscle. The subscapularis was divided into three portions (superior, middle, and inferior). The standardized uptake value (SUV) was calculated in each muscle to quantify its activity. The SUVs increased significantly after exercise in the deltoid, supraspinatus, and the superior portion of subscapularis. Among three divided portions of the subscapularis, the SUV of the superior one-third was significantly greater than the rest of the muscle after exercise. Our current study clearly indicated that there were two functionally different portions in the subscapularis muscle and the superior one-third played an important role during arm elevation in the scapular plane.

  4. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography

    PubMed Central

    Omi, Rei; Sano, Hirotaka; Ohnuma, Masahiro; Kishimoto, Koshi N; Watanuki, Shoichi; Tashiro, Manabu; Itoi, Eiji

    2010-01-01

    Although 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) has been used for the assessment of skeletal muscle activities, its application to the shoulder muscles is only sparse. The purpose of this study was to investigate the activities of the shoulder muscles during arm elevation using PET. Six healthy volunteers performed an arm elevation exercise before and after FDG injection. The exercise consisted of 200 repetitions of arm elevation in the scapular plane with a 0.25-kg weight fixed to the wrist on both arms. PET examination was performed 50 min after FDG injection. For control data, PET scan was repeated for each subject on a separate day without any exercise. The volume of interest was established for each shoulder muscle. The subscapularis was divided into three portions (superior, middle, and inferior). The standardized uptake value (SUV) was calculated in each muscle to quantify its activity. The SUVs increased significantly after exercise in the deltoid, supraspinatus, and the superior portion of subscapularis. Among three divided portions of the subscapularis, the SUV of the superior one-third was significantly greater than the rest of the muscle after exercise. Our current study clearly indicated that there were two functionally different portions in the subscapularis muscle and the superior one-third played an important role during arm elevation in the scapular plane. PMID:20298439

  5. Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B

    2011-01-01

    Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca.

  6. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury.

    PubMed

    Kato, Takayuki; Nakayama, Noriyuki; Yasokawa, Yuto; Okumura, Ayumi; Shinoda, Jun; Iwama, Toru

    2007-06-01

    The aim of this study was to explore the regional cerebral glucose metabolism (rCM) in patients with chronic stage traumatic brain injury (TBI) compared with normal controls. We also investigated the relationship between regional cerebral glucose metabolism and cognitive function. We performed 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) study using statistical parametric mapping (SPM) analysis in 36 diffuse axonal injury (DAI) patients (mean age +/- SD, 36.3 +/- 9.8 years). At 6 months or more after head injury, all patients underwent FDG-PET study and neuropsychological batteries to assess cognitive function. Thirty healthy, gender-matched control subjects who were comparable in age were also studied. Between the TBI patients and normal controls, group comparisons showed regional metabolic decreases in the bilateral frontal lobes, temporal lobes, thalamus, as well as the right cerebellum in the TBI group. Only full-scale Intelligence Quotient (IQ) (mean +/- SD, 78.5 +/- 11.9) correlated positively with rCM in the right cingulate gyrus and the bilateral medial frontal gyrus. In other examinations, the correlation was not provided. DAI may induce functional disconnection and decreased neuronal activity, and finally lead to diffuse glucose hypometabolism. Low full-scale IQ scores may be related to significantly different underlying cognitive impairment. In supporting cognitive function following TBI, which showed diffuse cerebral metabolic reduction compared with normal controls, medial prefrontal cortex and anterior cingulate cortex may be an important component.

  7. Design, synthesis and evaluation of (18)F-labeled bradykinin B1 receptor-targeting small molecules for PET imaging.

    PubMed

    Zhang, Zhengxing; Kuo, Hsiou-Ting; Lau, Joseph; Jenni, Silvia; Zhang, Chengcheng; Zeisler, Jutta; Bénard, François; Lin, Kuo-Shyan

    2016-08-15

    Two fluorine-18 ((18)F) labeled bradykinin B1 receptor (B1R)-targeting small molecules, (18)F-Z02035 and (18)F-Z02165, were synthesized and evaluated for imaging with positron emission tomography (PET). Z02035 and Z02165 were derived from potent antagonists, and showed high binding affinity (0.93±0.44 and 2.80±0.50nM, respectively) to B1R. (18)F-Z02035 and (18)F-Z02165 were prepared by coupling 2-[(18)F]fluoroethyl tosylate with their respective precursors, and were obtained in 10±5 (n=4) and 22±14% (n=3), respectively, decay-corrected radiochemical yield with >99% radiochemical purity. (18)F-Z02035 and (18)F-Z02165 exhibited moderate lipophilicity (LogD7.4=1.10 and 0.59, respectively), and were stable in mouse plasma. PET imaging and biodistribution studies in mice showed that both tracers enabled visualization of the B1R-positive HEK293T::hB1R tumor xenografts with better contrast than control B1R-negative HEK293T tumors. Our data indicate that small molecule antagonists can be used as pharmacophores for the design of B1R-targeting PET tracers.

  8. [(68)Ga]Ga-DO(2)A-(OBu-l-tyr)(2): synthesis, (68)Ga-radiolabeling and in vitro studies of a novel (68)Ga-DO(2)A-tyrosine conjugate as potential tumor tracer for PET.

    PubMed

    Burchardt, Carsten; Riss, Patrick J; Zoller, Frederic; Maschauer, Simone; Prante, Olaf; Kuwert, Torsten; Roesch, Frank

    2009-07-01

    The synthesis, (68)Ga-labeling and in vitro study of the novel tyrosine chelate derivative [(68)Ga]Ga-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid-4,10-di-(O-butyl)-l-tyrosine ([(68)Ga]Ga-DO(2)A-(OBu-l-tyr)(2)) as a potential tracer for imaging tumor metabolism by positron emission tomography (PET) is presented. This approach combines the biological amino acid transporter targeting properties of l-tyrosine with the outstanding availability of (68)Ga(III) via the (68)Ge/(68)Ga generator. In vitro studies utilizing the F98-glioblastoma cell line revealed specific uptake of [(68)Ga]Ga-DO2A-(OBu-l-tyr)(2) that was comparable to that of the reference O-(2-[(18)F]fluoroethyl)-l-tyrosine (FET). These promising results indicate a high potential of [(68)Ga]Ga-DO(2)A-(OBu-l-tyr)(2) for molecular imaging of tumor-driven amino acid uptake by PET.

  9. 68Ga-Chloride PET Reveals Human Pancreatic Adenocarcinoma Xenografts in Rats—Comparison with FDG

    PubMed Central

    Ujula, Tiina; Salomäki, Satu; Autio, Anu; Luoto, Pauliina; Tolvanen, Tuula; Lehikoinen, Pertti; Viljanen, Tapio; Sipilä, Hannu; Härkönen, Pirkko

    2009-01-01

    Purpose The aim of the study was to compare 68Ga-chloride with 2-[18F]fluoro-2-deoxy-d-glucose (FDG) for the imaging of pancreatic xenografts. Procedures Rats with subcutaneous human pancreatic adenocarcinoma xenografts were evaluated in vivo by dynamic positron emission tomography (PET) and ex vivo by measuring radioactivity of excised tissues and by digital autoradiography of tumor cryosections. Results Both tracers were capable of delineating all subcutaneous tumors from surrounding tissues by PET. The standardized uptake values of tumors by PET were 0.9 ± 0.3 (mean ± SD) for 68Ga-chloride (n = 13) and 1.8 ± 1.2 for FDG (n = 11). Ex vivo studies showed tumor-to-muscle ratio of 4.0 ± 0.3 for 68Ga-chloride (n = 4) and 7.9 ± 3.2 for FDG (n = 4). Conclusions 68Ga-chloride delineated subcutaneously implanted pancreatic adenocarcinoma xenografts by PET, but the uptake was lower than FDG. Further studies to clarify the value of 68Ga-chloride for PET imaging of tumors are warranted. PMID:19798536

  10. Endoscopic resection of esthesioneuroblastoma.

    PubMed

    Gallia, Gary L; Reh, Douglas D; Lane, Andrew P; Higgins, Thomas S; Koch, Wayne; Ishii, Masaru

    2012-11-01

    Esthesioneuroblastoma, or olfactory neuroblastoma, is an uncommon malignant tumor arising in the upper nasal cavity. Surgical approaches to this and other sinonasal malignancies involving the anterior skull base have traditionally involved craniofacial resections. Over the past 10 years to 15 years, there have been advances in endoscopic approaches to skull base pathologies, including malignant tumors. In this study, we review our experience with purely endoscopic approaches to esthesioneuroblastomas. Between January 2005 and February 2012, 11 patients (seven men and four women, average age 53.3 years) with esthesioneuroblastoma were treated endoscopically. Nine patients presented with newly diagnosed disease and two were treated for tumor recurrence. The modified Kadish staging was: A, two patients (18.2%); B, two patients (18.2%); C, five patients (45.5%); and D, two patients (18.2%). All patients had a complete resection with negative intraoperative margins. Three patients had 2-deoxy-2-((18)F)fluoro-d-glucose avid neck nodes on their preoperative positron emission tomography-CT scan. These patients underwent neck dissections; two had positive neck nodes. Perioperative complications included an intraoperative hypertensive urgency and pneumocephalus in two different patients. Mean follow-up was over 28 months and all patients were free of disease. This series adds to the growing experience of purely endoscopic surgical approaches in the treatment of skull base tumors including esthesioneuroblastoma. Longer follow-up on larger numbers of patients is required to clarify the utility of purely endoscopic approaches in the management of this malignant tumor.

  11. Anti-Inflammatory Effects of Vitis thunbergii var. taiwaniana on Knee Damage Associated with Arthritis

    PubMed Central

    Tsai, Ching-Fent; Wang, Kun-Teng; Chen, Lih-Geeng; Lee, Chia-Jung; Tseng, Sung-Hui

    2014-01-01

    Abstract Vitis thunbergii Sieb. et Zucc. var. taiwaniana Lu (VT) is an indigenous plant in Taiwan that is traditionally used for promoting joint health. In this study, we used in vitro primary human chondrocytes (PHCs) and two in vivo animal models to evaluate the anti-inflammatory effects of VT on arthritis. Results showed that the water extract of the stems and roots from VT (VT-SR) was rich in flavones and phenols with 1.1 mg/g of resveratrol, 6.7 mg/g of hopeaphenol, and 5.1 mg/g of (+)-ɛ-viniferin. VT-SR significantly scavenged DPPH radicals and inhibited prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced PHCs without exhibiting significant cytotoxicity. In in vivo models, the VT-SR (500 mg/kg) significantly decreased serum PGE2 and knee 2-18F-fluoro-2-deoxy-D-glucose (18F-FDG) levels in LPS-induced acute inflammatory arthritis in rabbits. In addition, dietary supplementation with VT-SR for 28 days significantly alleviated type II collagenase-induced rat osteoarthritis with improvements in weight bearing and range of motion tests. In conclusion, our results suggest that the VT-SR is a good candidate for developing dietary supplements to prevent joint deterioration and inhibit inflammation. PMID:24720858

  12. The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma

    NASA Astrophysics Data System (ADS)

    Thiele, Frank; Ehmer, Julia; Piroth, Marc D.; Eble, Michael J.; Coenen, Heinz H.; Kaiser, Hans-Juergen; Schaefer, Wolfgang M.; Buell, Ulrich; Boy, Christian

    2009-09-01

    The PET tracer O-(2-[18F]Fluoroethyl)-l-tyrosine (FET) has been shown to be valuable for different roles in the management of brain tumours. The aim of this study was to evaluate several quantitative measures of dynamic FET PET imaging in patients with resected glioblastoma. We evaluated dynamic FET PET in nine patients with histologically confirmed glioblastoma. Following FET PET, all subjects had radiation and chemotherapy. Tumour ROIs were defined by a threshold-based region-growing algorithm. We compared several standard measures of tumour uptake and uptake kinetics: SUV, SUV/background, distribution volume ratio (DVR), weighted frame differences and compartment model parameters. These measures were correlated with disease-free and overall survival, and analysed for statistical significance. We found that several measures allowed robust quantification. SUV and distribution volume did not correlate with clinical outcome. Measures that are based on a background region (SUV/BG, Logan-DVR) highly correlated with disease-free survival (r = -0.95, p < 0.0001), but not overall survival. Some advanced measures also showed a prognostic value but no improvement over the simpler methods. We conclude that FET PET probably has a prognostic value in patients with resected glioblastoma. The ratio of SUV to background may provide a simple and valuable predictive measure of the clinical outcome. Further studies are needed to confirm these explorative results.

  13. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia

    PubMed Central

    Falchi, Lorenzo; Keating, Michael J.; Marom, Edith M.; Truong, Mylene T.; Schlette, Ellen J.; Sargent, Rachel L.; Trinh, Long; Wang, Xuemei; Smith, Susan C.; Jain, Nitin; Estrov, Zeev; O’Brien, Susan; Wierda, William G.; Lerner, Susan

    2014-01-01

    Richter syndrome (RS) is associated with poor outcome. The prognosis of patients with histologically aggressive chronic lymphocytic leukemia (CLL), or HAC, has not been studied. We aimed to correlate 2-deoxy-2-[18F]fluoroglucose/positron emission tomography (FDG/PET) data, histological diagnosis, clinical characteristics, and survival in patients with CLL. A total of 332 patients with CLL were histologically classified as: 95 RS, 117 HAC, and 120 histologically indolent CLL (HIC). HAC and RS patients had higher maximum standardized uptake value (SUVmax), more frequent constitutional symptoms, poorer performance status (PS), lower hemoglobin and platelets, and higher lactate dehydrogenase and β-2-microglobulin. An SUVmax ≥10 strongly correlated with mortality (overall survival [OS], 56.7 vs 6.9 months in patients with SUVmax <10 vs ≥10). Survival of patients with RS and HAC was similar among patients with SUVmax <10 or ≥10. SUVmax ≥10, PS ≥2, bulky disease, and age ≥65 were independently associated with shorter OS. In patients undergoing both fine-needle aspiration and biopsy, the former proved diagnostically inadequate in 23%, 29%, and 53% of HIC, HAC, and RS, respectively. FDG/PET is a useful diagnostic tool in patients with CLL and suspected transformation. Patients with HAC show different characteristics and worse prognosis compared with those with HIC. Patients with different CLL phases, but similar SUVmax have similar outcome. Tissue biopsy should be preferred for diagnosing RS. PMID:24615780

  14. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia.

    PubMed

    Falchi, Lorenzo; Keating, Michael J; Marom, Edith M; Truong, Mylene T; Schlette, Ellen J; Sargent, Rachel L; Trinh, Long; Wang, Xuemei; Smith, Susan C; Jain, Nitin; Estrov, Zeev; O'Brien, Susan; Wierda, William G; Lerner, Susan; Ferrajoli, Alessandra

    2014-05-01

    Richter syndrome (RS) is associated with poor outcome. The prognosis of patients with histologically aggressive chronic lymphocytic leukemia (CLL), or HAC, has not been studied. We aimed to correlate 2-deoxy-2-[(18)F]fluoroglucose/positron emission tomography (FDG/PET) data, histological diagnosis, clinical characteristics, and survival in patients with CLL. A total of 332 patients with CLL were histologically classified as: 95 RS, 117 HAC, and 120 histologically indolent CLL (HIC). HAC and RS patients had higher maximum standardized uptake value (SUVmax), more frequent constitutional symptoms, poorer performance status (PS), lower hemoglobin and platelets, and higher lactate dehydrogenase and β-2-microglobulin. An SUVmax ≥10 strongly correlated with mortality (overall survival [OS], 56.7 vs 6.9 months in patients with SUVmax <10 vs ≥10). Survival of patients with RS and HAC was similar among patients with SUVmax <10 or ≥10. SUVmax ≥10, PS ≥2, bulky disease, and age ≥65 were independently associated with shorter OS. In patients undergoing both fine-needle aspiration and biopsy, the former proved diagnostically inadequate in 23%, 29%, and 53% of HIC, HAC, and RS, respectively. FDG/PET is a useful diagnostic tool in patients with CLL and suspected transformation. Patients with HAC show different characteristics and worse prognosis compared with those with HIC. Patients with different CLL phases, but similar SUVmax have similar outcome. Tissue biopsy should be preferred for diagnosing RS.

  15. Dynamic behaviour of selected PET tracers in embryonated chicken eggs.

    PubMed

    Gebhardt, P; Würbach, L; Heidrich, A; Heinrich, L; Walther, M; Opfermann, T; Sørensen, B; Saluz, H P

    2013-01-01

    Positron emission tomography/computer tomography (PET/CT) is an established method in preclinical research in small animal disease models and the clinical diagnosis of cancer. It combines functional information of the positron-emitting biomarker with the anatomical data obtained from the CT image. Thus, it allows for 4D in vivo investigation of biological processes. Recently, PET/CT was used to monitor bone growth of chicken embryos using (18)F-fluoride as a bone-seeking tracer. We are interested in investigating the adequacy of additional PET/CT tracers in chicken embryos as an in vivo model system. For this reason, we evaluated several positron emitting compounds typically used in clinical tests or if these were not commercially available, we synthesised them. We studied the properties of these (18)F- and (68)Ga-labelled tracers and of (64)Cu-chloride in catheterised eggs via small animal microPET/CT. 2-Deoxy-2-[(18)F]fluoroglucose ([(18)F]FDG) was primarily absorbed at the sites of bone growth. (64)Cu chloride and a (68)Ga-labelled amyloid-fibril-binding antibody accumulated in the liver, while the (68)Ga-albumin desferrioxamine conjugate signal in liver decreased over time. These results indicate that these biomarkers can potentially be used for the monitoring of biological processes in chicken eggs as an animal model. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  16. Setup and characterization of a human head and neck squamous cell carcinoma xenograft model in nude rats.

    PubMed

    Bao, Ande; Phillips, William T; Goins, Beth; McGuff, Howard S; Zheng, Xiangpeng; Woolley, F Ross; Natarajan, Mohan; Santoyo, Cristina; Miller, Frank R; Otto, Randal A

    2006-12-01

    To develop and characterize a new head and neck cancer animal model. A human head and neck squamous cell carcinoma (HNSCC) xenograft model in nude rats was established via subcutaneous inoculation of a human-origin HNSCC cell line, SCC-4. The tumor was evaluated for growth characteristics, pathologic features by hematoxylin-eosin (HE) staining, and immunohistochemistry of epidermal growth factor receptor (EGFR). 2-[18F] fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) imaging characteristics were studied too. A new HNSCC animal model was successfully established. Tumor sizes reached about 1 cm3 on day 15 after tumor cell inoculation. HE staining pathology has confirmed that this tumor is a typical SCC. EGFR immunohistochemistry demonstrated this tumor model to be strongly EGFR positive. 18F-FDG PET study has shown that 18F-FDG accumulated in tumors. This study has demonstrated that this tumor model is an appropriate HNSCC tumor model for animal studies on HNSCC.

  17. Impact of short access nicotine self-administration on expression of α4β2* nicotinic acetylcholine receptors in non-human primates.

    PubMed

    Le Foll, Bernard; Chefer, Svetlana I; Kimes, Alane S; Stein, Elliot A; Goldberg, Steven R; Mukhin, Alexey G

    2016-05-01

    Although nicotine exposure upregulates the α4β2* subtype of nicotinic acetylcholine receptors (nAChRs), the upregulation of nAChRs in non-human primates voluntarily self-administering nicotine has never been demonstrated. The objective of the study is to determine if short access to nicotine in a non-human primate model of nicotine self-administration is sufficient to induce nAChRs upregulation. We combined a nicotine self-administration paradigm with in vivo measure of α4β2* nAChRs using 2-[(18)F]fluoro-A-85380 (2-FA) and positron emission tomography (PET) in six squirrel monkeys. PET measurement was performed before and after intravenous nicotine self-administration (unit dose 10 μg/kg per injection). Monkeys were trained to self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Intermittent access (1 h daily per weekday) to nicotine was allowed for 4 weeks and levels of α4β2* nAChRs were measured 4 days later. This intermittent access was sufficient to induce upregulation of α4β2* receptors in the whole brain (31 % upregulation) and in specific brain areas (+36 % in amygdala and +62 % in putamen). These results indicate that intermittent nicotine exposure is sufficient to produce change in nAChRs expression.

  18. Anti-inflammatory effects of Vitis thunbergii var. taiwaniana on knee damage associated with arthritis.

    PubMed

    Tsai, Ching-Fent; Wang, Kun-Teng; Chen, Lih-Geeng; Lee, Chia-Jung; Tseng, Sung-Hui; Wang, Ching-Chiung

    2014-04-01

    Vitis thunbergii Sieb. et Zucc. var. taiwaniana Lu (VT) is an indigenous plant in Taiwan that is traditionally used for promoting joint health. In this study, we used in vitro primary human chondrocytes (PHCs) and two in vivo animal models to evaluate the anti-inflammatory effects of VT on arthritis. Results showed that the water extract of the stems and roots from VT (VT-SR) was rich in flavones and phenols with 1.1 mg/g of resveratrol, 6.7 mg/g of hopeaphenol, and 5.1 mg/g of (+)-ɛ-viniferin. VT-SR significantly scavenged DPPH radicals and inhibited prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced PHCs without exhibiting significant cytotoxicity. In in vivo models, the VT-SR (500 mg/kg) significantly decreased serum PGE2 and knee 2-(18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) levels in LPS-induced acute inflammatory arthritis in rabbits. In addition, dietary supplementation with VT-SR for 28 days significantly alleviated type II collagenase-induced rat osteoarthritis with improvements in weight bearing and range of motion tests. In conclusion, our results suggest that the VT-SR is a good candidate for developing dietary supplements to prevent joint deterioration and inhibit inflammation.

  19. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    PubMed Central

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  20. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  1. Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring

    PubMed Central

    Challapalli, Amarnath; Aboagye, Eric O.

    2016-01-01

    Cancer cells do reprogram their energy metabolism to enable several functions, such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article, we review both established and evolving radioprobes developed in association with positron emission tomography (PET) to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]fluoro-D-glucose is well established in the clinic. Analogs of choline, including [11C]choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogramed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism. PMID:26973812

  2. Interobserver variability in chest CT and whole body FDG-PET screening for distant metastases in head and neck cancer patients.

    PubMed

    Senft, Asaf; de Bree, Remco; Golding, Richard P; Comans, Emile F I; Van Waesberghe, Jan-Hein T M; Kuik, J Dirk; Hoekstra, Otto S; Leemans, C René

    2011-04-01

    The aim of the study was to assess the interobserver variability in chest computed tomography (CT) and whole body 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography (FDG-PET) screening for distant metastases in head and neck squamous cell carcinoma (HNSCC) patients. Chest CT and whole body FDG-PET of 69 HNSCC patients with high-risk factors who underwent screening for distant metastases were analyzed. All scans were independently read by two experienced radiologists or nuclear physicians who were blinded to the other examinations and follow-up results. A kappa of 0.516 was found for assessment of size on CT. Kappa values for origin and susceptibility of 0.406 and 0.512 for CT and 0.834 and 0.939 for PET were found, respectively. The overall conclusions had a kappa of 0.517-0.634 for CT and 0.820-1.000 for PET. In screening for distant metastases in HNSCC patients with high-risk factors, chest CT readings had a reasonable to substantial agreement, while PET readings showed an almost perfect agreement. These findings suggest that for optimal assessment in clinical practice, PET most often can be scored by one observer, but CT should probably more often be scored by different observers in consensus or combined with PET.

  3. First-Pass Angiography in Mice Using FDG-PET: A Simple Method of Deriving the Cardiovascular Transit Time Without the Need of Region-of-Interest Drawing.

    PubMed

    Wu, Hsiao-Ming; Kreissl, Michael C; Schelbert, Heinrich R; Ladno, Waldemar; Prins, Mayumi; Shoghi-Jadid, Kooresh; Chatziioannou, Arion; Phelps, Michael E; Huang, Sung-Cheng

    2005-10-01

    In this study, we developed a simple and robust semi-automatic method to measure the right ventricle to left ventricle (RV-to-LV) transit time (TT) in mice using 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). The accuracy of the method was first evaluated using a 4-D digital dynamic mouse phantom. The RV-to-LV TTs of twenty-nine mouse studies were measured using the new method and compared to those obtained from the conventional ROI-drawing method. The results showed that the new method correctly separated different structures (e.g., RV, lung, and LV) in the PET images and generated corresponding time activity curve (TAC) of each structure. The RV-to-LV TTs obtained from the new method and ROI method were not statistically different (P = 0.20; r = 0.76). We expect that this fast and robust method is applicable to the pathophysiology of cardiovascular diseases using small animal models such as rats and mice.

  4. Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance.

    PubMed

    Zhang, Liuyang; Tang, Chunhua; Gong, Hao

    2014-11-07

    Although the use of nickel oxide in supercapacitor electrodes has been reported extensively, the effect of incorporating copper in the binary compound is not known. Arrays of nickel copper oxide nanowires on the current collector via a simple and industrially compatible route have been successfully synthesized. A systematic study on the effect of temperature is also presented. Strikingly, through conductivity modification and binder-free growth, the as-grown nanowires show high specific capacitance (2.24 F cm(2) at 10 mA; 1955 F g(-1) at 1 mV s(-1)), good rate capability (still 2.18 F cm(2) at 50 mA, 1542 F g(-1) at 50 mV s(-1)), and excellent cycle life (90% after 1000 cycles at a high charging-discharging rate 10 A g(-1)). An asymmetric full cell is then prepared and tested, and very high energy density (30 Wh kg(-1)) is achieved. Ideal capacitive behavior (rectangular shape of cyclic voltammetry) is shown with this tailored architecture of the full cell.

  5. Review of clinically accessible methods to determine lean body mass for normalization of standardized uptake values.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; Van De Wiele, Christophe; Gheysens, Olivier; Pottel, Hans

    2016-03-01

    With the routine use of 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scans, metabolic activity of tumors can be quantitatively assessed through calculation of SUVs. One possible normalization parameter for the standardized uptake value (SUV) is lean body mass (LBM), which is generally calculated through predictive equations based on height and body weight. (Semi-)direct measurements of LBM could provide more accurate results in cancer populations than predictive equations based on healthy populations. In this context, four methods to determine LBM are reviewed: bioelectrical impedance analysis, dual-energy X-ray absorptiometry. CT, and magnetic resonance imaging. These methods were selected based on clinical accessibility and are compared in terms of methodology, precision and accuracy. By assessing each method's specific advantages and limitations, a well-considered choice of method can hopefully lead to more accurate SUVLBM values, hence more accurate quantitative assessment of 18F-FDG PET images.

  6. Optimization of the preparation of fluorine-18-labeled steroid receptor ligands 16alpha-[18F]fluoroestradiol (FES), [18F]fluoro furanyl norprogesterone (FFNP), and 16beta-[18F]fluoro-5alpha-dihydrotestosterone (FDHT) as radiopharmaceuticals†

    PubMed Central

    Zhou, Dong; Lin, Mai; Yasui, Norio; Al-Qahtani, Mohammed H.; Dence, Carmen S.; Schwarz, Sally; Katzenellenbogen, John A.

    2014-01-01

    Fluorine-18-labeled steroid receptor tracers, 16α-[18F]fluoroestradiol (FES), [18F]fluoro furanyl norprogesterone (FFNP), and 16β-[18F]fluoro-5α-dihydrotestosterone (FDHT), are important imaging tools for studies of breast and prostate cancers using positron emission tomography (PET). The automated production of these ligands with high specific activity (SA) as radiopharmaceuticals requires modification and optimization of the currently reported methods. [18F]FES with high SA was synthesized in over 60% radiochemical yield (RCY) at the end of synthesis (EOS) using a small amount of precursor (1) (as low as 0.3 mg) and 1 M H2SO4 for deprotection of the intermediate (2). [18F]FFNP was synthesized in up to 77% RCY at EOS using the triflate precursor (4) at room temperature or in 25% RCY using the mesylate precursor (6) at 65°C. Both methods are highly reproducible and afford high SA. [18F]FDHT was synthesized by radiofluoride incorporation at room temperature, reduction with NaBH4, and deprotection with HCl/acetone, giving [18F]FDHT in up to 75% yield (RCY). All of these methods can be easily translated to automated production. The information provided here will aid in the development of automated production of these steroid receptor tracers with high or improved yields, optimal SA, and ease of processing for research and clinical use. PMID:24861984

  7. Synthesis of oncological [11C]radiopharmaceuticals for clinical PET.

    PubMed

    Lodi, Filippo; Malizia, Claudio; Castellucci, Paolo; Cicoria, Gianfranco; Fanti, Stefano; Boschi, Stefano

    2012-05-01

    Positron emission tomography (PET) is a nuclear medicine modality which provides quantitative images of biological processes in vivo at the molecular level. Several PET radiopharmaceuticals labeled with short-lived isotopes such as (18)F and (11)C were developed in order to trace specific cellular and molecular pathways with the aim of enhancing clinical applications. Among these [(11)C]radiopharmaceuticals are N-[(11)C]methyl-choline ([(11)C]choline), l-(S-methyl-[(11)C])methionine ([(11)C]methionine) and 1-[(11)C]acetate ([(11)C]acetate), which have gained an important role in oncology where the application of 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) is suboptimal. Nevertheless, the production of these radiopharmaceuticals did not reach the same level of standardization as for [(18)F]FDG synthesis. This review describes the most recent developments in the synthesis of the above-mentioned [(11)C]radiopharmaceuticals aiming to increase the availability and hence the use of [(11)C]choline, [(11)C]methionine and [(11)C]acetate in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Design of an Automated System for Synthesis of [18 F] FDG for PET Investigation at IFIN-HH Bucharest

    SciTech Connect

    Craciun, Liviu Stefan; Cimpeanu, Catalina; Constantinescu, Olimpiu; Dudu, Dorin; Ionescu, Cristina; Negoita, Nicolae; Racolta, Petru Mihai; Rusen, Ion

    2009-03-10

    A novel apparatus constructed at IFIN-HH is described for automated synthesis of radiopharmaceuticals labeled with {sup 18}F for use in positron emission tomography (PET) investigations. [18 F] fluoride was produced at the IFIN-HH cyclotron by irradiation of H{sub 2}O enriched 97% in {sup 18}O with 13 MeV deuterons, or 8 MeV protons. The irradiated H{sub 2}O was transferred (injected) into the radiochemical fully-automated processing systems which ensured the separation of {sup 18}F from H{sub 2}O, the labeling with {sup 18}F, and finally purified by filtration with selective absorbants. The system is easy to operate and contains a programmable logical controller that manages the entire operation program stored in its internal memory. The computer is used to assist the operator during the different steps of synthesis and to allow visualization of the process and printing the report. The device was used for used for the production of 2-[18 F] FLUORO-2-DEOXY-D-GLUCOSE at the IFIN-HH cyclotron, one of the most used radiopharmaceutical in PET investigations. The synthesis module is configured so that is flexible enough to accomplish other nucleophile reactions of labeling with short lived radioisotopes.

  9. Use of 18F-Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography to Aid in Diagnosing Intestinal Adenocarcinoma in 2 Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Caporizzo, Debra J; Kwiatkowski, Anna E; Chen, Ming-Kai; Beck, Amanda P; Booth, Carmen J; Zeiss, Caroline; Smith, Peter C; Scholz, Jodi A Carlson; Wilson, Steven R

    2014-01-01

    Two aged female rhesus macaques (Macaca mulatta) presented with weight loss and intermittent inappetence. The signalment and constellation of clinical signs led clinicians to suspect the presence of intestinal adenocarcinoma. Because of each animal's advanced age and inconclusive radiographic findings, a noninvasive diagnostic tool was preferred over exploratory laparotomy to assist in determining a diagnosis. Consequently, 2-[18F]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography–CT (FDG-PET–CT) was chosen to aid in confirming a suspicion of gastrointestinal adenocarcinoma in both animals. FDG is a glucose analogue labeled with fluorine-18 and is taken up by highly metabolically active cells, as observed in many cancers. Tomography revealed an annular constriction of the small intestine with focal FDG uptake in one animal, and an FDG avid transmural mass in the ascending colon of the second animal. Necropsy later confirmed both sites to be adenocarcinomas. This report supports the use of FDG-PET–CT as an adjunct to conventional radiography in the diagnosis of intestinal adenocarcinoma in nonhuman primates. PMID:24956213

  10. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    PubMed

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  11. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets.

    PubMed

    Wilson, J S; Avila-Rodriguez, M A; Johnson, R R; Zyuzin, A; McQuarrie, S A

    2008-05-01

    Niobium sputtered Havar entrance foils were used for the production of reactive [(18)F]fluoride by proton irradiation of [(18)O]H(2)O targets under pressurized conditions. The synthesis yield in the routine production of 2-[(18)F]fluoro-2-deoxy-glucose (FDG) was used as an indicative parameter of the reactivity of (18)F. The yield of FDG obtained with (18)F produced in a target with Havar foil was used as a baseline. No statistically significant difference was found in the saturated yields of (18)F when using Havar or Havar-Nb sputtered entrance foils. However, the amount of long-lived radionuclidic impurities decreased more than 10-fold using the Havar-Nb entrance foil. The average decay corrected synthesis yield of FDG, evaluated over a period of more than 2 years, was found to be approximately 5% higher when using a Havar-Nb entrance foil and a marked improvement on the FDG yield consistency was noted. In addition, the frequency of target rebuilding was greatly diminished when using the Nb sputtered entrance foil.

  12. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-(18)F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.

  13. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    PubMed Central

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  14. Protein Binding in Patients With Late-Life Depression

    PubMed Central

    Kumar, Anand; Kepe, Vladimir; Barrio, Jorge R.; Siddarth, Prabha; Manoukian, Vicki; Elderkin-Thompson, Virginia; Small, Gary W.

    2013-01-01

    Context Depression has been identified as a risk factor and a prodrome of dementia. Common neurobiological mechanisms may underlie this clinical and phenomenologic overlap. Objective To examine and compare protein (amyloid and tau) binding in critical brain regions in patients diagnosed as having late-life major depressive disorder (MDD) and healthy control individuals using 2-(1-{6-[(2-[18F]fluoroethyl) (methyl)-amino]-2-naphthyl}ethylidene) malononitrile ([18F]FDDNP) positron emission tomography. Design A cross-section neuroimaging study using positron emission tomography. Setting University of California, Los Angeles. Patients Our samples comprised 20 patients diagnosed as having MDD and 19 healthy control individuals of comparable age, sex, and educational level. Main Outcome Measure Relative distribution volume in regions of interest was used as the measure of [18F]FDDNP binding in all study participants. Results When compared with controls, [18F]FDDNP binding was significantly higher overall and in the posterior cingulate and lateral temporal regions in the MDD group. Conclusions These findings suggest that neuronal injury associated with higher protein load in critical brain regions might provide a mechanism in the pathophysiologic manifestation of MDD in late life and have implications for the therapeutics of depression in elderly individuals. PMID:22065530

  15. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion.

    PubMed

    Caldwell, C B; Mah, K; Ung, Y C; Danjoux, C E; Balogh, J M; Ganguli, S N; Ehrlich, L E

    2001-11-15

    To quantify interobserver variation in gross tumor volume (GTV) localization using CT images for patients with non-small-cell lung carcinoma and poorly defined tumors on CT and to determine whether variability would be reduced if coregistered 2-[18F]fluoro-2-deoxy-d-glucose (FDG)-hybrid positron emission tomography (PET) with CT images were used. Prospectively, 30 patients with non-small-cell lung carcinoma had CT and FDG-hybrid PET examinations in radiation treatment position on the same day. Images were coregistered using eight fiducial markers. Guidelines were established for contouring GTVs. Three radiation oncologists performed localization independently. The coefficient of variation was used to assess interobserver variability. The size of the GTV defined showed great variation among observers. The mean ratios of largest to smallest GTV were 2.31 and 1.56 for CT only and for CT/FDG coregistered data, respectively. The addition of PET reduced this ratio in 23 of 30 cases and increased it in 7. The mean coefficient of variation for GTV based on the combined modalities was significantly smaller (p < 0.01) than that for CT data only. High observer variability in CT-based definition of the GTV can occur. A more consistent definition of the GTV can often be obtained if coregistered FDG-hybrid PET images are used.

  16. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging

    PubMed Central

    Lavielle, Sébastien; Gionnet, Karine; Ortega, Richard; Devès, Guillaume; Kilarski, Victor; Wehbe, Katia; Bikfalvi, Andreas; Déléris, Gérard

    2011-01-01

    PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p′γ)19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue. PMID:24310427

  17. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging.

    PubMed

    Lavielle, Sébastien; Gionnet, Karine; Ortega, Richard; Devès, Guillaume; Kilarski, Victor; Wehbe, Katia; Bikfalvi, Andreas; Déléris, Gérard

    2011-03-09

    PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p'γ)19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue.

  18. Multimodality imaging in an orthotopic mammary window chamber model

    NASA Astrophysics Data System (ADS)

    Schafer, Rachel; Leung, Hui Min; Gmitro, Arthur F.

    2013-02-01

    Window chamber models have been utilized for many years to investigate cancer development and the tumor microenvironment. Orthotopic mammary window chamber model have been developed for detailed study of breast cancer. Orthotopic window chamber models, due to the native environment, support more realistic growth and tumor behavior than ectopic models. The work by other groups thus far utilizing mammary window chamber models has focused solely on optical imaging techniques, limited to probing the first millimeter or less of tissue. These techniques do not take full advantage of the unrestricted, three-dimensional tumor growth the model supports. We have developed a custom plastic structure compatible with multimodality imaging. We present in this work the implementation of our custom window chamber in a mouse model and the successful imaging of the window chamber cancer model with MRI, nuclear imaging, and optical techniques. MRI provides a full three-dimensional view of the tumor growth and allows for additional, potentially clinically translatable, approaches to be utilized in investigating the cancer microenvironment. Nuclear imaging is accomplished using the Beta Imager, which is a novel approach to nuclear imaging of window chambers. The Beta Imager detects photons after the interaction of a single positron with a scintillator, instead of the coincidence detection of annihilation gamma ray pairs. We utilized the radioisotope glucose analog, 2-deoxy-2- (18F)fluoro-D-glucose or FDG, with the Beta Imager to obtain information on the glycolytic metabolism of the tumor and surrounding region.

  19. 3,4,6-Tri-O-acetyl-1,2-O-[1-(exo-ethoxy)ethylidene]-β-D-mannopyranose 0.11-hydrate.

    PubMed

    Liu, Ya-Ling; Zou, Pei; Wu, Hao; Xie, Min-Hao; Luo, Shi-Neng

    2012-09-01

    The title compound, C(16)H(24)O(10)·0.11H(2)O, is a key intermediate in the synthesis of 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG), which is the most widely used molecular-imaging probe for positron emission tomography (PET). The crystal structure has two independent molecules (A and B) in the asymmetric unit, with closely comparable geometries. The pyranose ring adopts a (4)C(1) conformation [Cremer-Pople puckering parameters: Q = 0.553 (2) Å, θ = 16.2 (2)° and φ = 290.4 (8)° for molecule A, and Q = 0.529 (2) Å, θ =15.3 (3)° and φ = 268.2 (9)° for molecule B], and the dioxolane ring adopts an envelope conformation. The chiral centre in the dioxolane ring, introduced during the synthesis of the compound, has an R configuration, with the ethoxy group exo to the mannopyranose ring. The asymmetric unit also contains one water molecule with a refined site-occupancy factor of 0.222 (8), which bridges between molecules A and B via O-H···O hydrogen bonds.

  20. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    PubMed Central

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; Bundschuh, Ralph; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future. PMID:27501455

  1. Ketones suppress brain glucose consumption.

    PubMed

    LaManna, Joseph C; Salem, Nicolas; Puchowicz, Michelle; Erokwu, Bernadette; Koppaka, Smruta; Flask, Chris; Lee, Zhenghong

    2009-01-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as beta-hydroxybutyrate (beta HB) and acetoacetate (AcAc), as occurs with fasting, prolonged starvation or chronic feeding of a high fat/low carbohydrate diet (ketogenic diet). In this study, the local cerebral metabolic rate of glucose consumption (CMRglu; microM/min/100g) was calculated in the cortex and cerebellum of control and ketotic rats using Patlak analysis. Rats were imaged on a rodent PET scanner and MRI was performed on a 7-Tesla Bruker scanner for registration with the PET images. Plasma glucose and beta HB concentrations were measured and 90-minute dynamic PET scans were started simultaneously with bolus injection of 2-Deoxy-2[18F]Fluoro-D-Glucose (FDG). The blood radioactivity concentration was automatically sampled from the tail vein for 3 min following injection and manual periodic blood samples were taken. The calculated local CMRGlu decreased with increasing plasma BHB concentration in the cerebellum (CMRGlu = -4.07*[BHB] + 61.4, r2 = 0.3) and in the frontal cortex (CMRGlu = -3.93*[BHB] + 42.7, r2 = 0.5). These data indicate that, under conditions of ketosis, glucose consumption is decreased in the cortex and cerebellum by about 10% per each mM of plasma ketone bodies.

  2. Ketosis proportionately spares glucose utilization in brain.

    PubMed

    Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A

    2013-08-01

    The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.

  3. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography

    PubMed Central

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains. PMID:23820224

  4. Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model.

    PubMed

    García-García, Luis; Shiha, Ahmed A; Fernández de la Rosa, Rubén; Delgado, Mercedes; Silván, Ágata; Bascuñana, Pablo; Bankstahl, Jens P; Gomez, Francisca; Pozo, Miguel A

    2017-09-01

    The status epilepticus (SE) induced by lithium-pilocarpine is a well characterized rodent model of the human temporal lobe epilepsy (TLE) which is accompanied by severe brain damage. Stress and glucocorticoids markedly contribute to exacerbate neuronal damage induced by seizures but the underlying mechanisms are poorly understood. Herein we sought to investigate whether a single administration of metyrapone (150 mg/kg, i.p.), an 11β-hydroxylase inhibitor, enzyme involved in the peripheral and central synthesis of corticosteroids, had neuroprotective properties in this model. Two experiments were carried out. In exp. 1, metyrapone was administered 3 h before pilocarpine injection whereas in exp. 2, metyrapone administration took place at the onset of the SE. In both experiments, 3 days after the insult, brain metabolism was assessed by in vivo 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG) positron emission tomography (PET). Brains were processed for analyses of markers of hippocampal integrity (Nissl staining), neurodegeneration (Fluoro-Jade C), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and, for a marker of activated microglia by in vitro autoradiography with the TSPO (18 kDa translocator protein) radioligand [(18)F]GE180. The SE resulted in a consistent hypometabolism in hippocampus, cortex and striatum and neuronal damage, hippocampal neurodegeneration, neuronal death and gliosis. Interestingly, metyrapone had neuroprotective effects when administered before, but not after the insult. In summary, we conclude that metyrapone administration prior but not after the SE protected from brain damage induced by SE in the lithium-pilocarpine model. Therefore, it seems that the effect of metyrapone is preventive in nature and likely related to its antiseizure properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography

    NASA Astrophysics Data System (ADS)

    Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar

    2009-11-01

    A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings.

  6. Automated cGMP-compliant radiosynthesis of [(18) F]-(E)-PSS232 for brain PET imaging of metabotropic glutamate receptor subtype 5.

    PubMed

    Park, Jun Young; Son, Jeongmin; Yun, Mijin; Ametamey, Simon M; Chun, Joong-Hyun

    2017-09-25

    (E)-3-(Pyridin-2-yl ethynyl)cyclohex-2-enone O-(3-(2-[(18) F]-fluoroethoxy)propyl) oxime ([(18) F]-(E)-PSS232, [(18) F]2a) is a recently developed radiotracer that can be used to visualize metabotropic glutamate receptor subtype 5 (mGlu5 ) in vivo. The mGlu5 has become an attractive therapeutic and diagnostic target owing to its role in many neuropsychiatric disorders. Several carbon-11- and fluorine-18-labelled radiotracers have been developed to measure mGlu5 receptor occupancy in the human brain. The radiotracer [(18) F]2a, which is used as an analogue for [(11) C]ABP688 ([(11) C]1) and has a longer physical half-life, is a selective radiotracer that exhibits high binding affinity for mGlu5 . Herein, we report the fully automated radiosynthesis of [(18) F]2a using a commercial GE TRACERlab(TM) FX-FN synthesizer for routine production and distribution to nearby satellite clinics. Nucleophilic substitution of the corresponding mesylate precursor with cyclotron-produced [(18) F]fluoride ion at 100 °C in dimethyl sulfoxide (DMSO), followed by high-performance liquid chromatography (HPLC) purification and formulation, readily provided [(18) F]2a with a radiochemical yield of 40 ± 2% (decay corrected, n = 5) at the end of synthesis. Radiochemical purity for the [(18) F]-(E)-conformer was greater than 95%. Molar activity was determined to be 63.6 ± 9.6 GBq/μmol (n = 5), and the overall synthesis time was 70 min. This article is protected by copyright. All rights reserved.

  7. [(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.

    PubMed

    Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel

    2016-10-01

    Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.

  8. Baseline [(18)F]FMISO μPET as a Predictive Biomarker for Response to HIF-1α Inhibition Combined with 5-FU Chemotherapy in a Human Colorectal Cancer Xenograft Model.

    PubMed

    De Bruycker, Sven; Vangestel, Christel; Van den Wyngaert, Tim; Wyffels, Leonie; Wouters, An; Pauwels, Patrick; Staelens, Steven; Stroobants, Sigrid

    2016-08-01

    The purpose of this study was to characterize imaging biomarkers for the potential benefit of hypoxia-inducible factor-1 (HIF-1)α inhibition (by PX-12) during 5-fluorouracil (5-FU) chemotherapy in the treatment of colorectal cancer (CRC). Therapy response to 5-FU ± PX-12 was assessed with baseline [(18)F]fluoromisonidazole ([(18)F]FMISO) and longitudinal 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission computed tomography (μPET/CT) in CRC xenograft model (n = 36) during breathing of a hypoxic (10 % O2) or normoxic (21 % O2) atmosphere. Ex vivo, immunohistochemistry was performed. Baseline [(18)F]FMISO uptake and relative tumor volume (RTV) 2 days after 5-FU or 5-FU + PX-12 administration correlated significantly (p ≤ 0.01). Under hypoxic breathing conditions, [(18)F]FDG uptake (-53.1 ± 8.4 %) and Ki67 expression (-16 %) decreased and RTV stagnated in the 5-FU + PX-12 treatment group, but not in 5-FU alone-treated tumors. Under normoxic breathing, [(18)F]FDG uptake (-23.5 ± 15.2 % and -72.8 ± 7.1 %) and Ki67 expression (-5 % and -19 %) decreased and RTV stagnated in both the 5-FU and the combination treatment group, respectively. Baseline [(18)F]FMISO μPET may predict the beneficial effect of HIF-1α inhibition during 5-FU chemotherapy in CRC.

  9. A Prospective Analysis of Positron Emission Tomography and Conventional Imaging for Detection of Stage IV Metastatic Melanoma in Patients Undergoing Metastasectomy

    PubMed Central

    Finkelstein, Steven E.; Carrasquillo, Jorge A.; Hoffman, John M.; Galen, Barbara; Choyke, Peter; White, Donald E.; Rosenberg, Steven A.; Sherry, Richard M.

    2008-01-01

    Background Positron emission tomography with 2-deoxy-2-[18F]fluoro-d-glucose (FDG-PET) is available for evaluation of patients with melanoma. This study evaluates the potential of FDG-PET to improve on conventional imaging (CI) in patients with stage IV melanoma undergoing metastasectomy. Methods This was a prospective study comparing radiological evaluation of patients who underwent metastasectomy for palliation or cure. Patients underwent preoperative evaluation by physical examination, CI by computed tomography and/or magnetic resonance imaging, and FDG-PET. Independent observers performed three separate analyses of CI alone, FDG-PET alone, or FDG-PET read with knowledge of CI (FDG-PET + CI). Abnormalities were reported as benign or malignant and assessed by pathologic analysis or by clinical outcome determined by disease progression detected on serial evaluations. Results Ninety-four lesions were noted in 18 patients who underwent preoperative assessment, metastasectomy, and long-term follow up (median, 24 months). Lesion-by-lesion analysis for CI demonstrated a sensitivity of 76%, a specificity of 87%, a positive predictive value (PPV) of 86%, and a negative predictive value (NPV) of 76%. FDG-PET demonstrated a sensitivity of 79%, a specificity of 87%, a PPV of 86%, and an NPV of 80%. For FDG-PET + CI, the sensitivity was 88%, specificity was 91%, and PPV and NPV were 91% and 88%, respectively. Conclusions Combined use of FDG-PET and CI may be an accurate strategy to identify sites of disease in patients with stage IV melanoma being considered for metastasectomy. Interpreted independently, FDG-PET and CI seemed to be equivalent modalities. FDG-PET + CI had both the highest sensitivity on lesion-by-lesion analysis and the best accuracy on patient-by-patient analysis. PMID:15249335

  10. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM.

    PubMed

    Suchorska, Bogdana; Jansen, Nathalie L; Linn, Jennifer; Kretzschmar, Hans; Janssen, Hendrik; Eigenbrod, Sabina; Simon, Matthias; Pöpperl, Gabriele; Kreth, Friedrich W; la Fougere, Christian; Weller, Michael; Tonn, Joerg C

    2015-02-17

    The aim of this prospective longitudinal study was to identify static and dynamic O-(2-[(18)F]fluoroethyl)-L-tyrosine PET ((18)FET-PET)-derived imaging biomarkers in patients with glioblastoma (GBM). Seventy-nine patients with newly diagnosed GBM were included; 42 patients underwent stereotactic biopsy (unresectable tumors) and 37 patients microsurgical tumor resection. All patients were scheduled to receive radiotherapy plus concomitant and adjuvant temozolomide (RCx/TMZ). (18)FET-PET evaluation using static and dynamic analysis was done before biopsy/resection, after resection, 4 to 6 weeks following RCx, and after 3 cycles of TMZ. Endpoints were survival and progression-free-survival. Prognostic factors were obtained from proportional hazards models. Biological tumor volume before RCx (BTV(preRCx)) was the most important (18)FET-PET-derived imaging biomarker and was independent of MGMT promoter methylation and clinical prognostic factors: patients with smaller BTV(preRCx) had significantly longer progression-free and overall survival (OS). (18)FET time-activity curves (TACs) before treatment and their changes after RCx were also related to outcome; patients with initially increasing TACs experienced longer OS. BTV(preRCx) and TAC represent important (18)FET-PET-derived imaging biomarkers in GBM. Increasing TACs are associated with prolonged OS. The BTV(preRCx) is a strong prognostic factor for progression-free survival and OS independent of the mode of surgery. Our data furthermore suggest that patients harboring resectable GBM might benefit from maximal PET-guided tumor resection. © 2015 American Academy of Neurology.

  11. Preclinical evaluation of an 18F-labelled β1-adrenoceptor selective radioligand based on ICI 89,406

    PubMed Central

    Law, Marilyn P.; Wagner, Stefan; Kopka, Klaus; Renner, Christiane; Pike, Victor W.; Schober, Otmar; Schäfers, Michael

    2010-01-01

    Purpose Radioligand binding studies indicate a down-regulation of myocardial β1-adrenoceptors (β1-AR) in cardiac disease which may or may not be associated with a decrease in β2-ARs. We have chosen ICI 89,406, a β1-selective AR antagonist, as the lead structure to develop new β1-AR radioligands for PET and have synthesised a fluoro-ethoxy derivative (F-ICI). Methods (S)-N-[2-[3-(2-Cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]-N′-[4-(2-[18F]fluoro-ethoxy)-phenyl]-urea ((S)-[18F]F-ICI) was synthesised. Myocardial uptake of radioactivity after intravenous injection of (S)-[18F]F-ICI into adult CD1 mice or Wistar rats was assessed with positron emission tomography (PET) and postmortem dissection. Metabolism was assessed by high-performance liquid chromatography analysis of plasma and urine. Results The heart was visualised with PET after injection of (S)-[18F]F-ICI but neither unlabelled F-ICI nor propranolol (non-selective β-AR antagonist) injected 15 min after (S)-[18F]F-ICI affected myocardial radioactivity. Ex vivo dissection demonstrated that predosing with propranolol or CGP 20712 (β1-selective AR-antagonist) did not affect myocardial radioactivity. Radiometabolites rapidly appeared in plasma and both (S)-[18F]F-ICI and radiometabolites accumulated in urine. Conclusions Myocardial uptake of (S)-[18F]F-ICI after intravenous injection was mainly at sites unrelated to β1-ARs. (S)-[18F]F-ICI is not a suitable β1-selective-AR radioligand for PET. PMID:20447564

  12. Pretreatment Primary Tumor SUVmax Measured by FDG-PET and Pathologic Tumor Depth Predict for Poor Outcomes in Patients With Oral Cavity Squamous Cell Carcinoma and Pathologically Positive Lymph Nodes

    SciTech Connect

    Liao, C.-T.; Chang, Joseph T.-C.; Wang, H.-M.; Ng, S.-H.; Hsueh, C.; Lee, L.-Y.; Lin, C.-H.; Chen, I.-H.; Huang, S.-F.

    2009-03-01

    Purpose: The pathologic tumor depth is an independent prognosticator for local control (LC) and survival in patients with oral cavity squamous cell carcinoma (OSCC). We sought to investigate the prognostic value of the preoperative maximal standardized uptake value (SUVmax) at the primary tumor in OSCC patients with pathologically positive lymph nodes. Methods and Materials: A total of 109 OSCC patients with pathologically positive lymph nodes were investigated. All patients underwent 2-deoxy-2[(18)F]fluoro-D-glucose-positron emission tomography within 2 weeks before surgery and neck dissection. All patients were followed for {>=}24 months after surgery or until death. The optimal cutoff value for the primary tumor SUVmax was selected according to the 5-year LC rate. Independent prognosticators were identified by Cox regression analysis. Results: The median follow-up for all patients was 26 months (39 months for surviving patients). A cutoff SUVmax of 19.3 provided the greatest prognostic information for the 5-year LC rate (55% vs. 88%, p = 0.0135). A tumor depth {>=}12 mm appeared to be the most appropriate cutoff for predicting the 5-year LC rate (76% vs. 95%, p = 0.0075). A scoring system using the primary tumor SUVmax and tumor depth was formulated to define distinct prognostic groups. Patients with both a SUVmax of {>=}19.3 and tumor depth of {>=}12 mm (n = 8) had significantly poorer 5-year LC, 5-year disease-free, 5-year disease-specific, and 5-year overall survival rates compared with the other patient groups. Conclusion: The combination of the primary tumor SUVmax ({>=}19.3) and pathologic tumor depth ({>=}12 mm) identified a subgroup of OSCC patients at greatest risk of poor LC and death.

  13. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies

    PubMed Central

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and 3’-deoxy-3’-[18F]fluorothymidine(18F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With 18F-FDG and 18F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether 18F-FDG and/or 18F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in 18F-FDG and 18F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used 18F-FDG and/or 18F-FLT PET for response monitoring of cancer therapeutics. PMID:26550536

  14. Adjusted scaling of FDG positron emission tomography images for statistical evaluation in patients with suspected Alzheimer's disease.

    PubMed

    Buchert, Ralph; Wilke, Florian; Chakrabarti, Bhismadev; Martin, Brigitte; Brenner, Winfried; Mester, Janos; Clausen, Malte

    2005-10-01

    Statistical parametric mapping (SPM) gained increasing acceptance for the voxel-based statistical evaluation of brain positron emission tomography (PET) with the glucose analog 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) in patients with suspected Alzheimer's disease (AD). To increase the sensitivity for detection of local changes, individual differences of total brain FDG uptake are usually compensated for by proportional scaling. However, in cases of extensive hypometabolic areas, proportional scaling overestimates scaled uptake. This may cause significant underestimation of the extent of hypometabolic areas by the statistical test. To detect this problem, the authors tested for hypermetabolism. In patients with no visual evidence of true focal hypermetabolism, significant clusters of hypermetabolism in the presence of extended hypometabolism were interpreted as false-positive findings, indicating relevant overestimation of scaled uptake. In this case, scaled uptake was reduced step by step until there were no more significant clusters of hypermetabolism. In 22 consecutive patients with suspected AD, proportional scaling resulted in relevant overestimation of scaled uptake in 9 patients. Scaled uptake had to be reduced by 11.1% +/- 5.3% in these cases to eliminate the artifacts. Adjusted scaling resulted in extension of existing and appearance of new clusters of hypometabolism. Total volume of the additional voxels with significant hypometabolism depended linearly on the extent of the additional scaling and was 202 +/- 118 mL on average. Adjusted scaling helps to identify characteristic metabolic patterns in patients with suspected AD. It is expected to increase specificity of FDGPET in this group of patients.

  15. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  16. Change in PDE10 across early Huntington disease assessed by [18F]MNI-659 and PET imaging.

    PubMed

    Russell, David S; Jennings, Danna L; Barret, Olivier; Tamagnan, Gilles D; Carroll, Vincent M; Caillé, Fabien; Alagille, David; Morley, Thomas J; Papin, Caroline; Seibyl, John P; Marek, Kenneth L

    2016-02-23

    To evaluate whether striatal [(18)F]MNI-659 PET imaging of phosphodiesterase 10A (PDE10) serves as a sensitive and reliable biomarker of striatal neurodegeneration in a longitudinal cohort of participants with early Huntington disease (HD). A cohort of participants with HD, including both participants premanifest or manifest with motor signs, underwent clinical assessments, genetic determination, and 2 [(18)F]MNI-659 PET imaging sessions approximately 1 year apart. Eleven healthy control (HC) participants underwent clinical assessments and [(18)F]MNI-659 PET imaging once. Striatal binding potentials (BPnd) were estimated for brain regions of interest, specifically within the basal ganglia, and compared between baseline and follow-up imaging. Clinical measures of HD severity were assessed at each visit. Eight participants with HD (6 manifest; 2 premanifest) participated. Of those with manifest HD, all had relatively early stage disease (stage 1, n = 2; stage 2, n = 4) and a Unified Huntington's Disease Rating Scale total motor score <45. As expected, the HD cohort as a whole had a reduction in the basal ganglia BPnd to approximately 50% of that seen in HC. On follow-up scans, [(18)F]MNI-659 uptake declined in the putamen and caudate nucleus in all 8 participants. The mean annualized rates of decline in signal in the caudate, putamen, and globus pallidus and the putamen were 16.6%, 6.9%, and 5.8%, respectively. In HC, the annualized reduction in signal in striatal regions was less than 1%. Longitudinal data in this small cohort of participants with early HD support [(18)F]MNI-659 PET imaging of PDE10 as a useful biomarker to track HD disease progression. © 2016 American Academy of Neurology.

  17. Performance Characterization of an Actively Cooled Repetitive Transcranial Magnetic Stimulation Coil for the Rat.

    PubMed

    Parthoens, Joke; Verhaeghe, Jeroen; Servaes, Stijn; Miranda, Alan; Stroobants, Sigrid; Staelens, Steven

    2016-07-01

    This study characterizes and validates a recently developed dedicated circular rat coil for small animal repetitive Transcranial Magnetic Stimulation (rTMS). The electric (E) field distribution was calculated in a three-dimensional (3D) spherical rat head model and coil cooling performance was characterized. Motor threshold (MT) in rats (n = 12) was determined using two current directions, MT variability (n = 16) and laterality (n = 11) of the stimulation was assessed. Finally, 2-deoxy-2-((18) F)fluoro-D-glucose ([(18) F]-FDG) small animal Positron Emission Tomography (µPET) after sham and 1, 10, and 50 Hz rTMS stimulation (n = 9) with the new Cool-40 Rat Coil (MagVenture, Denmark) was performed. The coil could produce high E-fields of maximum 220 V/m and more than 100 V/m at depths up to 5.3 mm in a ring-shaped distribution. No lateralization of stimulation was observed. Independent of the current direction, reproducible MT measurements were obtained at low percentages (27 ± 6%) of the maximum machine output (MO, MagPro X100 [MagVenture, Denmark]). At this intensity, rTMS with long pulse trains is feasible (1 Hz: continuous stimulation; 5 Hz: 1000 pulses; 10 Hz and 50 Hz: 272 pulses). When compared to sham, rTMS at different frequencies induced decreases in [(18) F]-FDG-uptake bilaterally mainly in dorsal cortical regions (visual, retrosplenial, and somatosensory cortices) and increases mainly in ventral regions (entorhinal cortex and amygdala). The coil is suitable for rTMS in rats and achieves unprecedented high E-fields at high stimulation frequencies and long durations with however a rather unfocal rat brain stimulation. Reproducible MEPs as well as alterations in cerebral glucose metabolism following rTMS were demonstrated. © 2016 International Neuromodulation Society.

  18. First Experience with Clinical-Grade [18F]FPP (RGD)2: An Automated Multi-step Radiosynthesis for Clinical PET Studies

    PubMed Central

    Chin, Frederick T.; Shen, Bin; Liu, Shuanglong; Berganos, Rhona A.; Chang, Edwin; Mittra, Erik; Chen, Xiaoyuan; Gambhir, Sanjiv S.

    2013-01-01

    Purpose A reliable and routine process to introduce a new 18F-labeled dimeric RGD-peptide tracer ([18F]FPP(RGD)2) for noninvasive imaging of αvβ3 expression in tumors needed to be developed so the tracer could be evaluated for the first time in man. Clinical-grade [18F]FPP (RGD)2 was screened in mouse prior to our first pilot study in human. Procedures [18F]FPP(RGD)2 was synthesized by coupling 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NPE) with the dimeric RGD-peptide (PEG3-c(RGDyK)2). Imaging studies with [18F]FPP (RGD)2 in normal mice and a healthy human volunteer were carried out using small animal and clinical PET scanners, respectively. Results Through optimization of each radiosynthetic step, [18F]FPP(RGD)2 was obtained with RCYs of 16.9±2.7% (n=8, EOB) and specific radioactivity of 114±72 GBq/μmol (3.08±1.95 Ci/μmol; n=8, EOB) after 170 min of radiosynthesis. In our mouse studies, high radioactivity uptake was only observed in the kidneys and bladder with the clinical-grade tracer. Favorable [18F]FPP (RGD)2 biodistribution in human studies, with low background signal in the head, neck, and thorax, showed the potential applications of this RGD-peptide tracer for detecting and monitoring tumor growth and metastasis. Conclusions A reliable, routine, and automated radiosynthesis of clinical-grade [18F]FPP(RGD)2 was established. PET imaging in a healthy human volunteer illustrates that [18F]FPP(RGD)2 possesses desirable pharmacokinetic properties for clinical noninvasive imaging of αvβ3 expression. Further imaging studies using [18F]FPP(RGD)2 in patient volunteers are now under active investigation. PMID:21400112

  19. Preclinical Properties of 18F-AV-45: A PET Agent for Aβ Plaques in the Brain

    PubMed Central

    Choi, Seok Rye; Golding, Geoff; Zhuang, Zhiping; Zhang, Wei; Lim, Nathaniel; Hefti, Franz; Benedum, Tyler E.; Kilbourn, Michael R.; Skovronsky, Daniel; Kung, Hank F.

    2011-01-01

    β-amyloid plaques (Aβ plaques) in the brain, containing predominantly fibrillary Aβ peptide aggregates, represent a defining pathologic feature of Alzheimer disease (AD). Imaging agents targeting the Aβ plaques in the living human brain are potentially valuable as biomarkers of pathogenesis processes in AD. (E)-4-(2-(6-(2-(2-(2-18F-fluoroethoxy)ethoxy)ethoxy)pyridin-3-yl)vinyl)-N-methyl benzenamine (18F-AV-45) is such as an agent currently in phase III clinical studies for PET of Aβ plaques in the brain. Methods In vitro binding of 18F-AV-45 to Aβ plaques in the postmortem AD brain tissue was evaluated by in vitro binding assay and autoradiography. In vivo biodistribution of 18F-AV-45 in mice and ex vivo autoradiography of AD transgenic mice (APPswe/PSEN1) with Aβ aggregates in the brain were performed. Small-animal PET of a monkey brain after an intravenous injection of 18F-AV-45 was evaluated. Results 18F-AV-45 displayed a high binding affinity and specificity to Aβ plaques (Kd, 3.72 ± 0.30 nM). In vitro autoradiography of postmortem human brain sections showed substantial plaque labeling in AD brains and not in the control brains. Initial high brain uptake and rapid washout from the brain of healthy mice and monkey were observed. Metabolites produced in the blood of healthy mice after an intravenous injection were identified. 18F-AV-45 displayed excellent binding affinity to Aβ plaques in the AD brain by ex vivo autoradiography in transgenic AD model mice. The results lend support that 18F-AV-45 may be a useful PET agent for detecting Aβ plaques in the living human brain. PMID:19837759

  20. Models for in vivo kinetic interactions of dopamine D2-neuroreceptors and 3-(2'-( sup 18 F)fluoroethyl)spiperone examined with positron emission tomography

    SciTech Connect

    Bahn, M.M.; Huang, S.C.; Hawkins, R.A.; Satyamurthy, N.; Hoffman, J.M.; Barrio, J.R.; Mazziotta, J.C.; Phelps, M.E. )

    1989-12-01

    The in vivo tracer kinetics of 3-(2'-(18F)fluoroethyl)spiperone (FESP) in the caudate/striatum and cerebellar regions of the human and monkey brain were studied with positron emission tomography (PET). The minimal model configuration that can describe the kinetics was determined statistically. Three two-compartment model configurations were found to be suitable for describing the kinetics in caudate/striatum and cerebellum: (1) a nonlinear model (five parameters) applicable to studies using nontracer (partially saturating) quantities of FESP in monkey striatum, (2) a linear four-parameter model applicable to the caudate/striatal and cerebellar kinetics in human and monkey studies with tracer quantities of FESP, and (3) a linear three-parameter model derived from the four-parameter model by assuming irreversible binding applicable to tracer studies of the human caudate. In the human studies, when the caudate kinetics (n = 4) were fit by model 2 (with four parameters), the value of the in vivo ligand dissociation constant kd was found to be 0.0015 +/- 0.0032/min. The three-parameter model (model 3) was found to fit the data equally well: this model is equivalent to model 2 with kd set to zero. In the monkey studies, it was found that for short (90 min) studies using tracer quantities of FESP, model 2 fit the striatal kinetics better than model 3. The parameters estimated using model 2 (four parameters) were in better agreement with those estimated by the nonlinear model (model 1) than those estimated using model 3 (three parameters). The use of a graphical approach gives estimates of the plasma-tissue fractional transport rate constant K1 and the net uptake constant K3 comparable to estimates using model 3 for both human and monkey studies.

  1. Vacuum ultraviolet photon-mediated production of [(18) F]F2.

    PubMed

    Krzyczmonik, Anna; Keller, Thomas; Kirjavainen, Anna K; Forsback, Sarita; Solin, Olof

    2017-04-01

    The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [(18) F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [(18) F]F2 have been achieved so far by using electrical discharge in the post-target production of [(18) F]F2 gas from [(18) F]CH3 F. We demonstrate that [(18) F]F2 is produced by illuminating a gas mixture of neon/F2 /[(18) F]CH3 F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [(18) F]F(-) , amount of carrier F2 , and number of 193-nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [(18) F]F2 -derived [(18) F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [(18) F]F(-) . The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories.

  2. In vivo characterisation of a therapeutically relevant self-assembling (18) F-labelled β-sheet forming peptide and its hydrogel using positron emission tomography.

    PubMed

    Morris, O; Elsawy, M A; Fairclough, M; Williams, K J; Mcmahon, A; Grigg, J; Forster, D; Miller, A F; Saiani, A; Prenant, C

    2017-08-01

    Positron emission tomography (PET) and fluorescence labelling have been used to assess the pharmacokinetics, biodistribution and eventual fate of a hydrogel-forming nonapeptide, FEFKFEFKK (F9), in healthy mice, using (18) F-labelled and fluorescein isothiocyanate (FITC)-labelled F9 analogues. F9 was site-specifically radiolabelled with 2-[(18) F]fluoro-3-pyridinecarboxaldehyde ([(18) F]FPCA) via oxime bond formation. [(18) F]FPCA-F9 in vivo fate was evaluated both as a solution, following intravenous administration, and as a hydrogel when subcutaneously injected. The behaviour of FITC-F9 hydrogel was assessed following subcutaneous injection. [(18) F]FPCA-F9 demonstrated high plasma stability and primarily renal excretion; [(18) F]FPCA-F9 when in solution and injected into the bloodstream displayed prompt bladder uptake (53.4 ± 16.6 SUV at 20 minutes postinjection) and rapid renal excretion, whereas [(18) F]FPCA-F9 hydrogel, formed by co-assembly of [(18) F]FPCA-F9 monomer with unfunctionalised F9 peptide and injected subcutaneously, showed gradual bladder accumulation of hydrogel fragments (3.8 ± 0.4 SUV at 20 minutes postinjection), resulting in slower renal excretion. Gradual disaggregation of the F9 hydrogel from the site of injection was monitored using FITC-F9 hydrogel in healthy mice (60 ± 3 over 96 hours), indicating a biological half-life between 1 and 4 days. The in vivo characterisation of F9, both as a gel and a solution, highlights its potential as a biomaterial. Copyright © 2017 The Authors Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons Ltd.

  3. Diagnostic value of (18)F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults.

    PubMed

    Kassem, T W; Abdelaziz, O; Emad-Eldin, S

    2017-10-01

    The purpose of this study was to evaluate the clinical utility of 2-[(18)F] fluoro-2-deoxy-D-glucose ((18)FDG) positron emission tomography (PET)/computed tomography (CT) ((18)F-FDG-PET/CT) in the follow-up of adult patients with soft tissue sarcomas. We prospectively evaluated 37 consecutive patients with known soft tissue sarcoma with (18)F-FDG-PET/CT examination for suspected recurrence of disease. They were 21 men and 16 women with a mean age of 49.6±10.6 (SD) years (range, 34-75years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of (18)F-FDG-PET/CT examination were calculated on a per patient basis. (18)F-FDG-PET/CT showed an overall diagnostic accuracy of 91.8%, sensitivity of 90% and a specificity of 100%. The positive predictive value and negative predictive value were 100 and 70%, respectively. The (18)F-FDG-PET/CT interpretations were correct in 34/37 patients (91.8%). Incorrect interpretations occurred in three patients (8.1%). Reasons for false negative findings were low (18)F-FDG uptake of local recurrence in one patient and low (18)F-FDG uptake of subcentimetric inguinal lymph node metastases. (18)F-FDG-PET/CT has a high diagnostic value in the follow-up of patients with soft tissue sarcoma. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  4. Staging recurrent ovarian cancer with 18FDG PET/CT

    PubMed Central

    DRAGOSAVAC, SANJA; DERCHAIN, SOPHIE; CASERTA, NELSON M.G.; DE SOUZA, GUSTAVO

    2013-01-01

    The aim of the present study was to evaluate the use of 2-deoxy-2-(18F)-fluoro-D-glucose (18FDG) positron emission tomography (PET)/computed tomography (CT) in patients with suspected ovarian cancer recurrence and describe the distribution of metastasis. A total of 45 female patients who underwent PET/CT scan due to raised CA-125 levels, clinical suspicion of ovarian cancer recurrence or alterations detected on ultrasound (US), CT or magnetic resonance imaging (MRI) were included in this retrospective study. PET/CT results were compared with histological findings (n=15) or clinical, laboratory and repeated imaging techniques during subsequent follow-up for at least six months (n=30). CA-125 was elevated in 34 patients, 14 patients had clinical symptoms of disease and 23 presented with alterations on US, CT and MRI. A total of 42 patients were confirmed to have ovarian cancer recurrence, all with abnormal findings on PET/CT. Three patients remained free of disease during clinical follow-up, all with normal PET/CT findings. There were 11 patients with raised CA-125 levels and normal conventional imaging, all with positive PET/CT. Among the 11 patients with normal CA-125 levels, eight presented with positive PET/CT scan. Lymph nodes were the most frequent site of relapse of disease, followed by peritoneal implants. Distant sites of metastasis included the liver, spleen, pleura, lung and bone. PET/CT detected unsuspected lesions in 20/45 patients (44.4%). 18FDG PET/CT was a useful tool for evaluating the extent of ovarian cancer recurrence. In the current series, lymph nodes were the most frequent site of relapse of disease, with supradiaphragmatic lymph node metastasis in a large number of cases. PMID:23420711

  5. Effects of Various Anesthetic Protocols on 18F-Flurodeoxyglucose Uptake into the Brains and Hearts of Normal Miniature Pigs (Sus scrofa domestica)

    PubMed Central

    Lee, Young Ah; Kim, Jong-In; Lee, Jae-Won; Cho, Yoon Ju; Lee, Byeong Han; Chung, Hyun Woo; Park, Keun-Kyu; Han, Jin Soo

    2012-01-01

    This study used positron emission tomography–computed tomography (PET–CT) to evaluate the effects of 4 anesthetic protocols on 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) accumulation in the brains and hearts of miniature pigs (Sus scrofa domestica). The 18F-FDG standard uptake value was quantified by dividing the brain into 6 regions: cerebellum, brainstem, and frontal, parietal, temporal, and occipital lobes. Five (2 female and 3 male) clinically normal miniature pigs were premedicated with medetomidine (200 μg/kg IM) after which the following 4 anesthetic protocols were administered by using a crossover design: 1) propofol (4 mg/kg IV)–isoflurane inhalation; 2) propofol (4 mg/kg IV); 3) ketamine (5 mg/kg IV); 4) tiletamine–zolazepam (4.4 mg/kg IM). Compared with levels after other protocols, brain accumulation of 18F-FDG increased during propofol anesthesia but decreased with tiletamine–zolazepam. Relative to that due to other protocols, heart accumulation of 18F-FDG increased with propofol–isoflurane anesthesia but decreased with tiletamine–zolazepam. Comparing glucose accumulation in the brain and heart of miniature pigs by using PET–CT, we found that glucose accumulation varied according to the anesthetic protocol and between the 2 organs. These results can be used to evaluate how different anesthetic agents affect glucose metabolism in brain and heart of miniature pigs. Furthermore, these data should be considered when selecting an anesthetic agent for miniature pigs that will undergo PET–CT imaging with 18F-FDG. PMID:22776126

  6. Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix.

    PubMed

    Tran, Binh N; Grigsby, Perry W; Dehdashti, Farrokh; Herzog, Thomas J; Siegel, Barry A

    2003-09-01

    The objective was to evaluate the frequency and prognostic significance of occult supraclavicular lymph node metastases identified by 2-[(18)F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) in patients with cervical carcinoma. Between March 1998 and January 2002, 186 patients with a new diagnosis of cervical cancer underwent whole-body FDG-PET before therapy. Fourteen patients had abnormal FDG uptake in left supraclavicular lymph nodes without palpable disease. All 14 patients underwent sonographically guided fine-needle aspiration of the left supraclavicular lymph nodes. One patient refused therapy, 6 were treated with palliative intent, and 7 received definitive irradiation and concurrent chemotherapy. Survival was calculated by the Kaplan-Meier method. The overall frequency of FDG-positive left supraclavicular lymph nodes was 8% (14/186). Metastasis was pathologically confirmed in all 14 patients. Therefore, the positive predictive value of abnormal FDG uptake in left supraclavicular lymph nodes was 100%. Nineteen percent of all patients (35/186) had abnormal FDG uptake in para-aortic lymph nodes. The frequency of positive FDG uptake in the left supraclavicular lymph nodes was 40% (14/35) in those with para-aortic lymph node uptake and 15% in those with stage IIIb disease. The median overall survival was 7.5 months. At last follow-up, 11 patients were dead and 3 were alive with disease. All patients developed metastatic disease, most commonly to bone and lung. The positive predictive value of abnormal FDG uptake in left supraclavicular lymph nodes was 100%. Prognosis for these patients was dismal despite aggressive therapy.

  7. Correlation of (18)F-FDG avid volumes on pre-radiation therapy and post-radiation therapy FDG PET scans in recurrent lung cancer.

    PubMed

    Shusharina, Nadya; Cho, Joseph; Sharp, Gregory C; Choi, Noah C

    2014-05-01

    To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[(18)F]-fluoro-D-glucose positron emission tomography ((18)F-FDG PET) before and after therapy in recurrent lung cancer. We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial (18)F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUVmax) (≥50% of SUVmax) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUVmax. The VOI of pretherapy and posttherapy (18)F-FDG PET images were correlated for the extent of overlap. The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. VOI defined by the SUVmax-≥50% isocontour may be a biological target volume for escalated radiation dose. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The effects of cocaine on regional brain glucose metabolism is attenuated in dopamine transporter knockout mice.

    PubMed

    Thanos, Panayotis K; Michaelides, Michael; Benveniste, Helene; Wang, Gene Jack; Volkow, Nora D

    2008-05-01

    Cocaine's ability to block the dopamine transporter (DAT) is crucial for its reinforcing effects. However the brain functional consequences of DAT blockade by cocaine are less clear since they are confounded by its concomitant blockade of norepinephrineand serotonin transporters. To separate the dopaminergic from the non-dopaminergic effects of cocaine on brain function we compared the regional brain metabolic responses to cocaine between dopamine transporter deficient (DAT(-/-)) mice with that of their DAT(+/+) littermates. We measured regional brain metabolism (marker of brain function) with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and microPET (muPET) before and after acute cocaine administration (i.p. 10 mg/kg). Scans were conducted 2 weeks apart. At baseline DAT(-/-) mice had significantly greater metabolism in thalamus and cerebellum than DAT(+/+). Acute cocaine decreased whole brain metabolismand this effect was greater in DAT(+/+) (15%) than in DAT(-/-) mice (5%). DAT(+/+) mice showed regional decreases in the olfactory bulb, motor cortex, striatum, hippocampus, thalamus and cerebellum whereas DAT(-/-) mice showed decreases only in thalamus. The differential pattern of regional responses to cocaine in DAT(-/-) and DAT(+/+) suggests that most of the brain metabolic changes from acute cocaine are due to DAT blockade. Cocaine-induced decreases in metabolism in thalamus (region with dense noradrenergic innervation) in DAT(-/-) suggest that these were mediated by cocaine's blockade of norepinephrine transporters. The greater baseline metabolism in DAT(-/-) than DAT(+/+) mice in cerebellum (brain region mostly devoid of DAT) suggests that dopamine indirectly regulates activity of these brain regions.

  9. Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake

    PubMed Central

    Kumar, Rahul; Mickael, Claudia; Sanders, Linda; Gebreab, Liya; Huber, Kendra M.; Perez, Mario; Smith-Jones, Peter; Serkova, Natalie J.; Tuder, Rubin M.

    2015-01-01

    In severe pulmonary hypertension (SPH), prior studies have shown an increase in right ventricle (RV) uptake of glucose, but it is unclear whether there is a change in the relative utilization of fatty acids. We hypothesized that in the RV in SPH, as in left ventricular (LV) failure, there is altered substrate utilization, with increased glucose uptake and decreased fatty acid uptake. SPH was induced in rats by treatment with the VEGF receptor inhibitor SU5416 and 3 wk of hypoxia (10% FiO2), followed by an additional 4 wk of normoxia (SU-Hx group). Control rats were treated with carboxymethylcellulose vehicle and 7 wk of normoxia (CMC-Nx group). The rodents then underwent positron emission tomography with sequential administration of two radiotracers, 2-deoxy-2-[18F]fluoroglucose (18F-FDG) and 14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (18F-FTHA), analogs of glucose and fatty acid, respectively. Five CMC-Nx and 3 SU-Hx rats completed the entire experimental protocol. In the RV, there was a mild increase in 18F-FDG uptake (1.35-fold, P = 0.085) and a significant decrease in 18F-FTHA uptake (−2.1-fold, P < 0.05) in the SU-Hx rats relative to the CMC-Nx rats. In the LV, SU-Hx rats had less uptake of both radiotracers compared with CMC-Nx rats. Less RV fatty acid uptake in SPH was corroborated by decreased fatty acid transporters and enzymes in the RV tissue, and specifically a decrease in lipoprotein lipase. In the RV in rats with SPH, there is a major shift in metabolic substrate preference, largely due to decreased fatty acid uptake. PMID:26115672

  10. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography

    PubMed Central

    Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings. PMID:20059252

  11. The Effect of Defective PET Detectors in Clinical Simultaneous [(18)F]FDG Time-of-Flight PET/MR Imaging.

    PubMed

    Ter Voert, Edwin E G W; Delso, Gaspar; de Galiza Barbosa, Felipe; Huellner, Martin; Veit-Haibach, Patrick

    2017-08-01

    The purpose of this study was to evaluate the effect of defective positron emission tomography (PET) detectors on clinical PET image quality in simultaneous PET/magnetic resonance imaging (MRI) for both time-of-flight (TOF) and non-TOF reconstructed images. A total of six patients with various malignant tumors were included and underwent a 2-deoxy-2-[(18)F]fluoro-D-glucose PET scan in a fully functional simultaneous TOF PET/MRI. TOF and non-TOF PET images were reconstructed before and after simulating defective detector units. All images were clinically assessed and scored. In addition, a quantitative assessment was performed. Differences were ascertained and compared using the Wilcoxon matched pairs signed-rank test. Without TOF, the image artifacts introduced by one defective detector unit already started to degrade the overall image quality. It reduced the confidence and could lead to a change in diagnosis. Simulating three or five defective detector units resulted in more artifacts and further reduced overall image quality and confidence. By including TOF information, the effects were mitigated: Images reconstructed with one defective detector unit had similar scores as the ones without defective units. The average absolute percentage error for one, three, and five defective detector units were respectively 8, 20, and 37 % for the non-TOF cases and only 5, 11, and 19 % for the TOF cases. Our study indicates that PET image artifacts due to (simulated) defective detectors are significantly mitigated with the integration of TOF information in simultaneous PET/MR. One defective detector unit introduces, on average, a 5 % absolute percentage error. However, in TOF imaging, even in cases with one or three defective units for head and neck imaging and one defective unit for chest and abdominal imaging, overall image quality, artifact scoring, and reader confidence are not significantly degraded.

  12. Correlation of 18F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    PubMed Central

    Shusharina, Nadya; Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-01-01

    Purpose To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (18F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial 18F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUVmax) (≥50% of SUVmax) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUVmax. The VOI of pretherapy and posttherapy 18F-FDG PET images were correlated for the extent of overlap. Results The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions VOI defined by the SUVmax- ≥50% isocontour may be a biological target volume for escalated radiation dose. PMID:24725696

  13. Diagnostic yield of FDG-PET/CT in fever of unknown origin: a systematic review, meta-analysis, and Delphi exercise.

    PubMed

    Bharucha, T; Rutherford, A; Skeoch, S; Alavi, A; Brown, M; Galloway, J

    2017-09-01

    To perform a systematic review, meta-analysis and Delphi exercise to evaluate diagnostic yield of combined 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography and computed tomography (FDG-PET/CT) in fever of unknown origin (FUO). Four databases were searched for studies of FDG-PET/CT in FUO 1/1/2000-1/12/2015. Exclusions were non-English language, case reports, non-standard FDG radiotracer, and significant missing data. Quality was assessed by two authors independently using a standardised tool. Pooled diagnostic yield was calculated using a random-effects model. An iterative electronic and face-to-face Delphi exercise generated interspeciality consensus. Pooled diagnostic yield was 56% (95% confidence interval [CI]: 50-61%, I(2)=61%) from 18 studies and 905 patients. Only five studies reported results of previous imaging, and subgroup analysis estimated diagnostic yield beyond conventional CT at 32% (95% CI: 22-44%; I(2)=66%). Consensus was established that FDG-PET/CT is increasingly available with an emerging role, but there is prevailing variability in practice. There is insufficient evidence to support the value of FDG-PET/CT in investigative algorithms of FUO. A paradigm shift in research is needed, involving prospective studies recruiting at diagnosis of FUO, with updated case definitions and hard outcome measures. Although these studies will be a significant undertaking with multicentre collaboration, their completion is vital for balancing both radiation exposure and costs against the possible benefits of utilising FDG-PET/CT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  15. Mitotane effects in a H295R xenograft model of adjuvant treatment of adrenocortical cancer.

    PubMed

    Lindhe, O; Skogseid, B

    2010-09-01

    Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, O, P'-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. O, P'-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [ (11)C]methionine (MET), [ (11)C] metomidate (MTO), 2-deoxy-2-[ (18)F]fluoro-d-glucose (FDG), and [ (18)F]-l-tyrosine (FLT) in the aggregates were assessed +/- drug treatment in vitro. Tumor growth was significantly inhibited when O, P'-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with O, P'-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 microM O, P'-DDD (p<0.01) in vitro. MeSO2-DDE (15 microM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with O, P'-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with O,P'-DDD. Further studies in humans are needed to investigate this.

  16. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET

    PubMed Central

    Honndorf, Valerie S.; Wiehr, Stefan; Rolle, Anna-Maria; Schmitt, Julia; Kreft, Luisa; Quintanilla-Martinez, Letitia; Kohlhofer, Ursula; Reischl, Gerald; Maurer, Andreas; Boldt, Karsten; Schwarz, Michael; Schmidt, Holger; Pichler, Bernd J.

    2016-01-01

    The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting. Procedures A431 and Colo205 tumor-bearing mice were treated with vehicle or genistein (500 mg/kg/d) over a period of 12 days. Imaging was performed with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3′-deoxy-3′-[18F]fluorothymidine ([18F] FLT). In a second study A431 tumor-bearing mice were treated with vehicle, genistein (500 mg/kg/d), cetuximab (1mg/3d) or a combination of the compounds and imaged using [18F]FDG, [18F]FLT and [64Cu]NODAGA-cetuximab. Data were compared to histology and principal components analysis (PCA) of NMR fingerprinting data. Results Genistein reduced tumor growth significantly in both xenografts. [18F] FLT uptake was consistent in both models and corresponded to histological findings and also PCA whereas [18F]FDG and [64Cu]NODAGA-cetuximab were not suitable for therapy monitoring. Conclusions As mono-therapy the natural isoflavone genistein has a powerful therapeutic effect in vivo on A431 and Colo205 tumors. [18F]FLT has superior consistency compared to the other tested tracers in therapy monitoring, while the treatment effect could be shown on the molecular level by histology and metabolic fingerprinting. PMID:27070087

  17. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    PubMed Central

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson’s disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  18. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers.

    PubMed

    Guo, Jinxia; Lang, Lixin; Hu, Shuo; Guo, Ning; Zhu, Lei; Sun, Zhongchan; Ma, Ying; Kiesewetter, Dale O; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2014-04-01

    RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

  19. Ex-vivo biodistribution and micro-PET/CT imaging of 18F-FDG, 18F-FLT, 18F-FMISO, and 18F-AlF-NOTA-PRGD2 in a prostate tumor-bearing nude mouse model.

    PubMed

    Cheng, Zhuzhong; Wei, Renbo; Wu, Changqiang; Qing, Haomiao; Jiang, Xiao; Lu, Hao; Chen, Shirong; Li, Xinping; Xu, Guohui; Ai, Hua

    2015-09-01

    (18)F-Fluorodeoxyglucose ((18)F-FDG), (18)F-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT), (18)F-fluoromisonidazole ((18)F-FMISO), and (18)F-AlF-NOTA-PRGD2 ((18)F-RGD) are all commonly used PET tracers for tumor diagnosis based on different mechanisms of tissue uptake. This study compared the ex-vivo biodistribution and PET/computed tomography (CT) imaging studies of these four PET tracers in a xenograft prostate tumor-bearing mouse model. Nude mice were inoculated with 5 × 10 PC-3 cells in the right armpit. The ex-vivo biodistribution of (18)F-FDG, (18)F-FLT, (18)F-FMISO, and (18)F-RGD at 30, 60, 90, and 120 min after injection was compared. Micro-PET/CT images of (18)F-FDG, (18)F-FLT, and (18)F-RGD were acquired at 60 min, whereas (18)F-FMISO images were acquired at 90 min after injection. The tumors were clearly visualized by micro-PET/CT using all four PET tracers. Ex-vivo biodistribution results showed highest tumor accumulation and tumor-to-muscle ratio of (18)F-FDG at each time point, accompanied by physiologically high uptakes in the brain, heart, and intestinal tract. Modest uptake of (18)F-FLT and (18)F-FMISO in tumors was observed at 60 and 90 min after injection, with less interference from other tissues compared with (18)F-FDG. Besides, (18)F-RGD also exhibited high tumor specificity; however, relatively low uptake was observed in the tumor. Our results demonstrated the potential of (18)F-FMISO and (18)F-FLT in the diagnosis of xenograft prostate cancer.

  20. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    PubMed

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  1. Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy

    PubMed Central

    Kunos, Charles A.; Fabien, Jeffrey M.; Shanahan, John P.; Collen, Christine; Gevaert, Thierry; Poels, Kenneth; Van den Begin, Robbe; Engels, Benedikt; De Ridder, Mark

    2015-01-01

    Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors. PMID:26131774

  2. Synthesis and in vivo Evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as PET and SPECT Radiotracers for Mapping A2A Receptors.

    PubMed

    Vala, Christine; Morley, Thomas J; Zhang, Xuechun; Papin, Caroline; Tavares, Adriana Alexandre S; Lee, H Sharon; Constantinescu, Cristian; Barret, Olivier; Carroll, Vincent M; Baldwin, Ronald M; Tamagnan, Gilles D; Alagille, David

    2016-09-06

    Imaging agents that target adenosine type 2A (A2A ) receptors play an important role in evaluating new pharmaceuticals targeting these receptors, such as those currently being developed for the treatment of movement disorders like Parkinson's disease. They are also useful for monitoring progression and treatment efficacy by providing a noninvasive tool to map changes in A2A receptor density and function in neurodegenerative diseases. We previously described the successful evaluation of two A2A -specific radiotracers in both nonhuman primates and in subsequent human clinical trials: [(123) I]MNI-420 and [(18) F]MNI-444. Herein we describe the development of both of these radiotracers by selection from a series of A2A ligands, based on the pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine core of preladenant. Each of this series of 16 ligands was found to bind to recombinant human A2A receptor in the low nanomolar range, and of these 16, six were radiolabeled with either fluorine-18 or iodine-123 and evaluated in nonhuman primates. These initial in vivo results resulted in the identification of 7-(2-(4-(4-(2-[(18) F]fluoroethoxy)phenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine ([(18) F]MNI-444) and 7-(2-(4-(2-fluoro-4-[(123) I]iodophenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-7H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-amine ([(123) I]MNI-420) as PET and SPECT radiopharmaceuticals for mapping A2A receptors in brain.

  3. H-CRRETAWAC-OH, a Lead Structure for the Development of Radiotracer Targeting Integrin α5β1?

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Eder, Iris E.; Gmeiner, Peter; Virgolini, Irene J.

    2014-01-01

    Imaging of angiogenic processes is of great interest in preclinical research as well as in clinical settings. The most commonly addressed target structure for imaging angiogenesis is the integrin αvβ3. Here we describe the synthesis and evaluation of [18F]FProp-Cys*-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys*-OH, a radiolabelled peptide designed to selectively target the integrin α5β1. Conjugation of 4-nitrophenyl-(RS)-2-[18F]fluoropropionate provided [18F]FProp-Cys*-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys*-OH in high radiochemical purity (>95%) and a radiochemical yield of approx. 55%. In vitro evaluation showed α5β1 binding affinity in the nanomolar range, whereas affinity to αvβ3 and αIIbβ3 was >50 μM. Cell uptake studies using human melanoma M21 (αvβ3-positive andα5β1-negative), human melanoma M21-L (αvβ3-negative and α5β1-negative), and human prostate carcinoma DU145 (αvβ3-negative and α5β1-positive) confirmed receptor-specific binding. The radiotracer was stable in human serum and showed low protein binding. Biodistribution studies showed tumour uptake ranging from 2.5 to 3.5% ID/g between 30 and 120 min post-injection. However, blocking studies and studies using mice bearing α5β1-negative M21 tumours did not confirm receptor-specific uptake of [18F]FProp-Cys*-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys*-OH, although this radiopeptide revealed high affinity and substantial selectivity to α5β1 in vitro. Further experiments are needed to study the in vivo metabolism of this peptide and to develop improved radiopeptide candidates suitable for PET imaging of α5β1 expression in vivo. PMID:25374888

  4. FDG PET/CT in infection and inflammation--current and emerging clinical applications.

    PubMed

    Vaidyanathan, S; Patel, C N; Scarsbrook, A F; Chowdhury, F U

    2015-07-01

    Integrated positron emission tomography/computed tomography (PET/CT) with the glucose analogue, 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG), is an evolving hybrid imaging technique in the evaluation of an important and diverse group of pathological conditions, which are characterised by infection and aseptic inflammation. With a rapidly expanding body of evidence, it is being increasingly recognised that, in addition to its established role in oncological imaging, FDG PET/CT also has clinical utility in suspected infection and inflammation. The technique can identify the source of infection or inflammation in a timely fashion ahead of morphological changes on conventional anatomical imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), map the extent and severity of disease, identify sites for tissue sampling, and assess therapy response. FDG PET/CT exhibits distinct advantages over traditional radionuclide imaging techniques in terms of shorter duration of examination, higher spatial resolution, non-invasive nature of acquisition, ability to perform quantitative analyses, and the provision of a synergistic combination of functional and anatomical imaging. With the use of illustrative clinico-radiological cases, this article discusses the current and emerging evidence for the use of FDG PET/CT in a broad spectrum of disorders, such as fever of unknown origin, sarcoidosis, large vessel vasculitis, musculoskeletal infections, joint prosthesis or implant-related complications, human immunodeficiency virus (HIV)-related infections, and miscellaneous indications, such as IgG4-related systemic disease. It will also briefly summarise the role of more novel tracers such as FDG-labelled leukocytes and gallium-68 PET tracers in this arena. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Human Brown Adipose Tissue Temperature and Fat Fraction Are Related to Its Metabolic Activity.

    PubMed

    Koskensalo, Kalle; Raiko, Juho; Saari, Teemu; Saunavaara, Virva; Eskola, Olli; Nuutila, Pirjo; Saunavaara, Jani; Parkkola, Riitta; Virtanen, Kirsi A

    2017-04-01

    The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load.

  6. Radiation dosimetry of [(18)F]VAT in nonhuman primates.

    PubMed

    Karimi, Morvarid; Tu, Zhude; Yue, Xuyi; Zhang, Xiang; Jin, Hongjun; Perlmutter, Joel S; Laforest, Richard

    2015-12-01

    The objective of this study is to determine the radiation dosimetry of a novel radiotracer for vesicular acetylcholine transporter (-)-(1-((2R,3R)-8-(2-[(18)F]fluoro-ethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone ([(18)F]VAT) based on PET imaging in nonhuman primates. [(18)F]VAT has potential for investigation of neurological disorders including Alzheimer's disease, Parkinson's disease, and dystonia. Three macaque fascicularis (two males, one female) received 185.4-198.3 MBq [(18)F]VAT prior to whole-body imaging in a MicroPET-F220 scanner. Time activity curves (TACs) were created from regions of interest (ROIs) that encompassed the entire small organs or samples with the highest activity within large organs. Organ residence times were calculated based on the TACs. We then used OLINDA/EXM 1.1 to calculate human radiation dose estimates based on scaled organ residence times. Measurements from directly sampled arterial blood yielded a residence time of 0.30 h in agreement with the residence time of 0.39 h calculated from a PET-generated time activity curve measured in the left ventricle. Organ dosimetry revealed the liver as the critical organ (51.1 and 65.4 μGy/MBq) and an effective dose of 16 and 19 μSv/MBq for male and female, respectively. The macaque biodistribution data showed high retention of [(18)F]VAT in the liver consistent with hepatobiliary clearance. These dosimetry data support that relatively safe doses of [(18)F]VAT can be administered to obtain imaging in humans.

  7. First-In-Human Study Demonstrating Tumor-Angiogenesis by PET/CT Imaging with 68Ga-NODAGA-THERANOST, a High-Affinity Peptidomimetic for αvβ3 Integrin Receptor Targeting

    PubMed Central

    Baum, Richard P.; Kulkarni, Harshad R.; Müller, Dirk; Danthi, Narasimhan; Kim, Young-Seung; Brechbiel, Martin W.

    2015-01-01

    Abstract 68Ga-NODAGA-THERANOST™ is an αvβ3 integrin antagonist and the first radiolabeled peptidomimetic to reach clinical development for targeting integrin receptors. In this first-in-human study, the feasibility of integrin receptor peptidomimetic positron emission tomography/computed tomography (PET/CT) imaging was confirmed in patients with non-small-cell lung cancer and breast cancer. Methods: Patients underwent PET/CT imaging with 68Ga NODAGA-THERANOST. PET images were analyzed qualitatively and quantitatively and compared to 2-deoxy-2-(18F) fluoro-d-glucose (18F-FDG) findings. Images were obtained 60 minutes postinjection of 300–500 MBq of 68Ga-NODAGA-THERANOST. Results: 68Ga-NODAGA-THERANOST revealed high tumor-to-background ratios (SUVmax=4.8) and uptake at neoangiogenesis sites. Reconstructed fused images distinguished cancers with high malignancy potential and enabled enhanced bone metastasis detection. 18F-FDG-positive lung and lymph node metastases did not show uptake, indicating the absence of neovascularization. Conclusions: 68Ga-NODAGA-THERANOST was found to be safe and effective, exhibiting in this study rapid blood clearance, stability, rapid renal excretion, favorable biodistribution and PK/PD, low irradiation burden (μSv/MBq/μg), and convenient radiolabeling. This radioligand might enable theranostics, that is, a combination of diagnostics followed by the appropriate therapeutics, namely antiangiogenic therapy, image-guided presurgical assessment, treatment response evaluation, prediction of pathologic response, neoadjuvant-peptidomimetic-radiochemotherapy, and personalized medicine strategies. Further clinical trials evaluating 68Ga-NODAGA-THERANOST are warranted. PMID:25945808

  8. Pancreatic Tumor Growth Prediction With Elastic-Growth Decomposition, Image-Derived Motion, and FDM-FEM Coupling.

    PubMed

    Wong, Ken C L; Summers, Ronald M; Kebebew, Electron; Yao, Jianhua

    2017-01-01

    Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the pancreas. Unlike the brain which is protected by the skull, the pancreas can be significantly deformed by its surrounding organs. Consequently, the tumor shape differences observable from images at different time points arise from both tumor growth and pancreatic motion, and tumor growth model personalization may be compromised if such motion is ignored. Therefore, we incorporate pancreatic motion information derived from deformable image registration in model personalization. For more accurate mechanical interactions between tumor growth and pancreatic motion, elastic-growth decomposition is used with a hyperelastic constitutive law to model the mass effect, which allows growth modeling while conserving the mechanical properties. Furthermore, a way of coupling the finite difference method and the finite element method is proposed to greatly reduce the computation time. With both 2-[(18)F]-fluoro-2-deoxy-D-glucose positron emission tomographic and contrast-enhanced computed tomographic images, functional, structural, and motion data are combined for a patient-specific model. Experiments on synthetic and clinical data show the importance of image-derived motion on estimating pathophysiologically plausible mechanical properties and the promising performance of our framework. From seven patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average surface distance between the personalized tumor growth simulations and the measurements were 83.2 ±8.8%, 86.9 ±8.3%, 84.4 ±4.0%, 13.9 ±9.8%, and 0.6 ±0.1 mm, respectively.

  9. PET/CT with Gluc-Lys-([(18)F]FP)-TOCA: correlation between uptake, size and arterial perfusion in somatostatin receptor positive lesions.

    PubMed

    Wieder, Hinrich; Beer, Ambros J; Poethko, Thorsten; Meisetschlaeger, Guenther; Wester, Hans-Juergen; Rummeny, Ernst; Schwaiger, Markus; Stahl, Alexander R

    2008-02-01

    Somatostatin receptor (sstr) positive tumours vary widely in uptake of radiolabelled somatostatin (sst) analogues. This study determinates variability in lesion uptake of the glycosylated sst analogon N(alpha)-(1-deoxy-D-fructosyl)-N(epsilon)-(2-[(18)F]fluoropropionyl)-Lys(0)-Tyr(3)-octreotate (Gluc-Lys([(18)F]FP)-TOCA) and correlates it with lesion size and arterial perfusion as measured on computed tomography (CT). Ten patients with metastasized neuroendocrine carcinomas were investigated with positron emission tomography PET/CT (Biograph 16, Siemens, Germany). Lesion standardized uptake values (SUVs) were determined at approximately 50 min post tracer injection according to a 60% isocontour volume of interest around each lesion. Lesion size and enhancement in the arterial phase (hounsfield units, HUs) were derived from CT. 114 lesions in the upper abdomen had a correlate on both, PET and CT. Variability in lesion SUVs was high (SUV(mean) 22 +/- 13). Intraindividually, there was a sigmoid positive correlation between lesion SUV and lesion diameter indicating partial volume effects. Residual variability in lesions > or =3 cm (> or =2.5 cm) ranged down to about half (third) of the maximum lesion uptake and remained unexplained by partial volume effects. No correlation with measured HU in the arterial phase was found, neither intraindividually nor interindividually. Partial volume effects were a major source of intraindividual variability in tumour tracer uptake. Lesions below 2.5 to 3 cm should thus be used with caution when performing dose calculations. In larger lesions residual variability in uptake must be considered; it may be due to variable sstr2 expression on the tumours' cell surfaces.

  10. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT.

    PubMed

    Yeh, Hsin Hsien; Ogawa, Kazuma; Balatoni, Julius; Mukhapadhyay, Uday; Pal, Asutosh; Gonzalez-Lepera, Carlos; Shavrin, Aleksandr; Soghomonyan, Suren; Flores, Leo; Young, Daniel; Volgin, Andrei Y; Najjar, Amer M; Krasnykh, Victor; Tong, William; Alauddin, Mian M; Gelovani, Juri G

    2011-01-25

    The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to identify patients who may benefit from particular therapeutic agents and approaches with improved efficacy and safety profiles. To this goal, we developed 4-[(3-iodophenyl)amino]-7-{2-[2-{2-(2-[2-{2-([(18)F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}-ethoxy]-quinazoline-6-yl-acrylamide ([(18)F]F-PEG6-IPQA), a radiotracer with increased selectivity and irreversible binding to the active mutant L858R EGFR kinase. We show that PET with [(18)F]F-PEG6-IPQA in tumor-bearing mice discriminates H3255 NSCLC xenografts expressing L858R mutant EGFR from H441 and PC14 xenografts expressing EGFR or H1975 xenografts with L858R/T790M dual mutation in EGFR kinase domain, which confers resistance to EGFR inhibitors (i.e., gefitinib). The T790M mutation precludes the [(18)F]F-PEG6-IPQA from irreversible binding to EGFR. These results suggest that PET with [(18)F]F-PEG6-IPQA could be used for the selection of NSCLC patients for individualized therapy with small molecular inhibitors of EGFR kinase that are currently used in the clinic and have a similar structure (i.e., iressa, gefitinib, and erlotinib).

  11. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-01-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the (10)B (n, α) (7)Li nuclear reaction in cancer cells. In BNCT, delivery of (10)B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  12. A Novel Method for Direct site-specific Radiolabeling of Peptides Using [18F]FDG

    PubMed Central

    Namavari, Mohammad; Cheng, Zhen; Zhang, Rong; De, Abhijit; Levi, Jelena; Hoerner, Joshua K.; Yaghoubi, Shahriar S.; Syud, Faisal A.; Gambhir, Sanjiv S.

    2009-01-01

    We have used the well-accepted and easily available 2-[18F]Fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) tracer as a prosthetic group for synthesis of 18F-labeled peptides. We herein report the synthesis of [18F]FDG-RGD (18F labeled linear RGD) and [18F]FDG-cyclo(RGDDYK) (18F labeled cyclic RGD) as examples of the use of [18F]FDG. We have successfully prepared [18F]FDG-RGD and [18F]FDG-cyclo(RGDDYK) in 27.5% and 41% radiochemical yields (decay corrected) respectively. The receptor binding affinity study of FDG-cyclo(RGDDYK) for integrin αvβ3 , using αvβ3 positive U87MG cells confirmed a competitive displacement with 125I-echistatin as a radioligand. The IC50 value for FDG-cyclo(RGDDYK) was determined to be 0.67 ± 0.19µM. High contrast small animal PET images with relatively moderate tumor uptake were observed for [18F]FDG-RGD and [18F]FDG-cyclo(RGDDYK) as PET probes in xenografts models expressing αvβ3 integrin. In conclusion, we have successfully used [18F]FDG as a prosthetic group to prepare 18F]FDG-RGD and [18F]FDG-cyclic[RGDDYK] based on a simple one step radiosynthesis. The one step radiosynthesis methodology consists of chemoselective oxime formation between an aminooxy functionalized peptide and [18F]FDG. The results have implications for radiolabeling of other macromolecules and would lead to a very simple strategy for routine pre-clinical and clinical use. PMID:19226160

  13. Evaluation of [18F]-FDG-Based Hybrid Imaging Combinations for Assessment of Bone Marrow Involvement in Lymphoma at Initial Staging

    PubMed Central

    2016-01-01

    The purpose of our study was to determine the value of different hybrid imaging combinations for the detection of focal and diffuse bone marrow infiltration in lymphoma. Patients with histologically proven lymphoma, who underwent both [18F]-FDG-PET/CT and whole-body MRI (including T1- and diffusion-weighted [DWI] sequences) within seven days, and a subsequent bone marrow biopsy, were retrospectively included. Three hybrid imaging combinations were evaluated: (1) [18F]-FDG-PET/CT; (2) [18F]-FDG-PET/T1; and (3) [18F]-FDG-PET/DWI. The presence of focal or diffuse bone marrow infiltration was assessed by two rater teams. Sensitivity, specificity, and accuracy for the detection of overall, focal, and diffuse bone marrow involvement were compared between the three hybrid imaging combinations. Overall, lymphomatous bone marrow involvement was found in 16/60 patients (focal, 8; diffuse, 8). Overall sensitivity, specificity, and accuracy were 81.3%, 95.5%, and 91.7% for [18F]-FDG-PET/CT; 81.3%, 97.7%, and 93.3% for [18F]-FDG-PET/T1; and 81.3%, 95.5%, and 91.7% for [18F]-FDG-PET/DWI. No statistically significant differences between the three imaging combinations were observed, based on overall bone marrow involvement, focal involvement, or diffuse involvement. The sensitivity of all three imaging combinations for detecting diffuse bone marrow involvement was only moderate (62.5% for all three combinations). Although the combination of [18F]-FDG-PET and T1-weighted MRI generally showed the best diagnostic performance for the detection of bone marrow involvement in lymphoma, it was not significantly superior to the two other hybrid imaging combinations. Since the sensitivity of all imaging combinations for the detection of diffuse bone marrow involvement was only moderate, bone marrow biopsy cannot be replaced by imaging as yet. PMID:27723817

  14. Utilization of advanced imaging technologies for target delineation in radiation oncology.

    PubMed

    Simpson, Daniel R; Lawson, Joshua D; Nath, Sameer K; Rose, Brent S; Mundt, Arno J; Mell, Loren K

    2009-12-01

    The aim of this study was to evaluate the utilization of advanced imaging technologies for target delineation among radiation oncologists in the United States. A random sample of 1,600 radiation oncologists was contacted by Internet, e-mail, and fax and questioned regarding the use of advanced imaging technologies, clinical applications, and future plans for use. Advanced imaging technologies were defined as any of the following that were directly incorporated into radiation therapy planning: MRI, PET, single-photon emission CT, 4-D CT, functional MRI, and MR spectroscopy. Of 1,089 contactable physicians, 394 (36%) responded. Of respondents, 65% were in private practice and 35% were in academic practice. The proportion using any advanced imaging technology for target delineation was 95%. However, the majority reported only rare (in <25% of their patients; 46.6%) or infrequent (in 25%-50% of their patients; 26.0%) utilization. The most commonly used technologies were 2-[(18)F]fluoro-2-deoxyglucose PET (76%), MRI (72%), and 4-D CT (44%). The most common cancers treated using image-guided target delineation were those of the lung (83%), central nervous system (79%), and head and neck (79%). Among users of advanced imaging technologies, 66% planned to increase use; 30% of nonusers planned to adopt these technologies in the future. Advanced imaging technologies are widely used by US radiation oncologists for target delineation. Although the majority of respondents used them in <50% of their patients, the frequency of utilization is expected to increase. Studies determining the optimal application of these technologies in radiation therapy planning are needed.

  15. Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

    PubMed Central

    Shin, Eun Sil; Hwang, Onyou; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Chun, Young Il

    2014-01-01

    Objective Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) and [18F]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([18F]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [18F]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human β2 microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine. PMID:25535514

  16. 18F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α

    PubMed Central

    Pedersen, Sune Folke; Græbe, Martin; Hag, Anne Mette F; Højgaard, Liselotte; Sillesen, Henrik; Kjær, Andreas

    2013-01-01

    To investigate the association between gene expression of key molecular markers of hypoxia and inflammation in atherosclerotic carotid lesions with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) uptake as determined clinically by positron emission tomography (PET). Studies using PET have demonstrated 18F-FDG-uptake in patients with confirmed plaques of the carotid artery. Inflammatory active or “vulnerable” plaques progressively increase in bulk, develop necrotic cores, poor vessel-wall vascularization and become prone to hypoxia. We used quantitative polymerase-chain reaction (qPCR) to determine gene expression of hypoxia-inducible factor 1α (HIF-1α) and cluster of differentiation 68 (CD68) on plaques recovered by carotid endarterectomy (CEA) in 18 patients. Gene expression was compared with 18F-FDG-uptake quantified as the maximum standardized uptake value (SUVmax) on co-registered PET/computed tomography (CT) scans performed the day before CEA. Immunohistochemistry was used to validate target-gene protein expression. In univariate linear regression analysis HIF-1α was significantly correlated with 18F-FDG-uptake (SUVmax) as was CD68. A two-tailed Pearson regression model demonstrated that HIF-1α and CD68 gene expression co-variated and accordingly when entering the variables into multivariate linear regression models with SUV-values as dependent variables, HIF-1α was eliminated in the final models. 18F-FDG-uptake (SUVmax) is correlated with HIF-1α gene expression indicating an association between hypoxia and glucose metabolism in vivo. The marker of inflammation CD68 is also associated with 18F-FDG-uptake (SUVmax). As CD68 and HIF-1α gene expression co-variate their information is overlapping. PMID:24116346

  17. Improving 18F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies

    PubMed Central

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-18F-fluoro-D-glucose (18F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  18. Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism

    PubMed Central

    Thanos, PK; Michaelides, M; Gispert, J-D; Pascau, J; Soto-Montenegro, ML; Desco, M; Wang, R; Wang, G-J; Volkow, ND

    2009-01-01

    Objective Food intake is regulated by factors that modulate caloric requirements as well as food’s reinforcing properties. In this study, we measured brain glucose utilization to an olfactory stimulus (bacon scent), and we examined the role of food restriction and genetic predisposition to obesity on such brain metabolic activity. Methods Zucker obese (Ob) and lean (Le) rats were divided into four groups: (1) Ob ad-libitum fed, (2) Ob food restricted (70% of ad libitum), (3) Le ad-libitum fed and (4) Le food restricted. Rats were scanned using µ-positron emission tomography and 2-[18F]-fluoro-2-deoxy-d-glucose under two conditions: (1) baseline scan (no stimulation) and (2) challenge scan (food stimulation, FS). Results FS resulted in deactivation of the right and left hippocampus. Ob rats showed greater changes with FS than Le rats (deactivation of hippocampus and activation of the medial thalamus) and Ob but not Le animals deactivated the frontal cortex and activated the superior colliculus. Access to food resulted in an opposite pattern of metabolic changes to the food stimuli in olfactory nucleus (deactivated in unrestricted and activated in restricted) and in right insular/parietal cortex (activated in unrestricted and deactivated in restricted). In addition, restricted but not unrestricted animals activated the medial thalamus. Conclusions The greater changes in the Ob rats suggest that leptin modulates the regional brain responses to a familiar food stimulus. Similarly, the differences in the pattern of responses with food restriction suggest that FS is influenced by access to food conditions. The main changes with FS occurred in the hippocampus, a region involved in memory, the insular cortex, a region involved with interoception (perception of internal sensations), the medial thalamus (region involved in alertness) and in regions involved with sensory perception (olfactory bulb, olfactory nucleus, occipital cortex, superior colliculus and parietal

  19. Vacuum ultraviolet photon–mediated production of [18F]F2

    PubMed Central

    Krzyczmonik, Anna; Keller, Thomas; Kirjavainen, Anna K.; Forsback, Sarita

    2017-01-01

    The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [18F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [18F]F2 have been achieved so far by using electrical discharge in the post‐target production of [18F]F2 gas from [18F]CH3F. We demonstrate that [18F]F2 is produced by illuminating a gas mixture of neon/F2/[18F]CH3F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [18F]F‐, amount of carrier F2, and number of 193‐nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [18F]F2‐derived [18F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [18F]F‐. The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories. PMID:28124404

  20. FDG PET-CT imaging of therapeutic response in granulomatous lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID).

    PubMed

    Jolles, S; Carne, E; Brouns, M; El-Shanawany, T; Williams, P; Marshall, C; Fielding, P

    2017-01-01

    Common variable immunodeficiency (CVID) is the most common severe adult primary immunodeficiency and is characterized by a failure to produce antibodies leading to recurrent predominantly sinopulmonary infections. Improvements in the prevention and treatment of infection with immunoglobulin replacement and antibiotics have resulted in malignancy, autoimmune, inflammatory and lymphoproliferative disorders emerging as major clinical challenges in the management of patients who have CVID. In a proportion of CVID patients, inflammation manifests as granulomas that frequently involve the lungs, lymph nodes, spleen and liver and may affect almost any organ. Granulomatous lymphocytic interstitial lung disease (GLILD) is associated with a worse outcome. Its underlying pathogenic mechanisms are poorly understood and there is limited evidence to inform how best to monitor, treat or select patients to treat. We describe the use of combined 2-[(18)F]-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG PET-CT) scanning for the assessment and monitoring of response to treatment in a patient with GLILD. This enabled a synergistic combination of functional and anatomical imaging in GLILD and demonstrated a widespread and high level of metabolic activity in the lungs and lymph nodes. Following treatment with rituximab and mycophenolate there was almost complete resolution of the previously identified high metabolic activity alongside significant normalization in lymph node size and lung architecture. The results support the view that GLILD represents one facet of a multi-systemic metabolically highly active lymphoproliferative disorder and suggests potential utility of this imaging modality in this subset of patients with CVID. © 2016 British Society for Immunology.

  1. Pathway-Specific Analysis of Gene Expression Data Identifies the PI3K/Akt Pathway as a Novel Therapeutic Target in Cervical Cancer

    PubMed Central

    Schwarz, Julie K.; Payton, Jacqueline E.; Rashmi, Ramachandran; Xiang, Tao; Jia, Yunhe; Huettner, Phyllis; Rogers, Buck E.; Yang, Qin; Watson, Mark; Rader, Janet S.; Grigsby, Perry W.

    2013-01-01

    Purpose Cervical tumor response on posttherapy 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) is predictive of survival outcome. The purpose of this study was to use gene expression profiling to identify pathways associated with tumor metabolic response. Experimental Design This was a prospective tissue collection study for gene expression profiling of 62 pretreatment biopsies from patients with advanced cervical cancer. Patients were treated with definitive radiation. Fifty-three patients received concurrent chemotherapy. All patients underwent a pretreatment and a 3-month posttherapy FDG-PET/computed tomography (CT). Tumor RNA was harvested from fresh frozen tissue and hybridized to Affymetrix U133Plus2 GeneChips. Gene set enrichment analysis (GSEA) was used to identify signaling pathways associated with tumor metabolic response. Immunohistochemistry and in vitro FDG uptake assays were used to confirm our results. Results There were 40 biopsies from patients with a complete metabolic response (PET-negative group) and 22 biopsies from patients with incomplete metabolic response (PET-positive group). The 3-year cause-specific survival estimates were 98% for the PET-negative group and 39% for the PET-positive group (P < 0.0001). GSEA identified alterations in expression of genes associated with the PI3K/Akt signaling pathway in patients with a positive follow-up PET. Immunohistochemistry using a tissue microarray of 174 pretreatment biopsies confirmed p-Akt as a biomarker for poor prognosis in cervical cancer. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 inhibited FDG uptake in vitro in cervical cancer cell lines. Conclusions Activation of the PI3K/Akt pathway is associated with incomplete metabolic response in cervical cancer. Targeted inhibition of PI3K/Akt may improve response to chemoradiation. PMID:22235101

  2. The diagnostic value of [18F]-FDG-PET/CT in hematopoietic radiation toxicity: a Tibet minipig model

    PubMed Central

    Chen, Chi; Yan, Li-Meng; Guo, Kun-Yuan; Wang, Yu-Jue; Zou, Fei; Gu, Wei-Wang; Tang, Hua; Li, Yan-Ling; Wu, Shao-Jie

    2012-01-01

    This study was undertaken to assess the diagnostic value of 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography with computed tomography ([18F]-FDG-PET/CT) in the detection of radiation toxicity in normal bone marrow using Tibet minipigs as a model. Eighteen Tibet minipigs were caged in aseptic rooms and randomly divided into six groups. Five groups (n = 3/group) were irradiated with single doses of 2, 5, 8, 11 and 14 Gy of total body irradiation (TBI) using an 8-MV X-ray linear accelerator. These pigs were evaluated with [18F]-FDG-PET/CT, and their marrow nucleated cells were counted. The data were initially collected at 6, 24 and 72 h after treatment and were then collected on Days 5–60 post-TBI at 5-day intervals. At 24 and 72 h post-TBI, marrow standardized uptake value (SUV) data showed a dose-dependent decrease in the radiation dose range from 2–8 Gy. Upon long-term observation, SUV and marrow nucleated cell number in the 11-Gy and 14-Gy groups showed a continuous and marked reduction throughout the entire time course, while Kaplan–Meier curves of survival showed low survival. In contrast, the SUVs in the 2-, 5- and 8-Gy groups showed early transient increases followed by a decline from approximately 72 h through Days 5–15 and then normalized or maintained low levels through the endpoint; marrow nucleated cell number and survival curves showed approximately the same trend and higher survival, respectively. Our findings suggest that [18F]-FDG-PET/CT may be helpful in quickly assessing the absorbed doses and predicting the prognosis in patients. PMID:22843618

  3. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus).

    PubMed

    Via, Laura E; Weiner, Danielle M; Schimel, Daniel; Lin, Philana Ling; Dayao, Emmanuel; Tankersley, Sarah L; Cai, Ying; Coleman, M Teresa; Tomko, Jaime; Paripati, Praveen; Orandle, Marlene; Kastenmayer, Robin J; Tartakovsky, Michael; Rosenthal, Alexander; Portevin, Damien; Eum, Seok Yong; Lahouar, Saher; Gagneux, Sebastien; Young, Douglas B; Flynn, Joanne L; Barry, Clifton E

    2013-08-01

    Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.

  4. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue.

    PubMed

    Reinicke, Karin; Sotomayor, Paula; Cisterna, Pedro; Delgado, Carolina; Nualart, Francisco; Godoy, Alejandro

    2012-02-01

    Over-expression of hexose transporters (Gluts), specifically Glut-1, is a common event in human malignancies. In prostate cancer (CaP), however, expression of Gluts has been characterized poorly. In this study, expression and distribution of Glut-1 and Glut-5 proteins were characterized using immunohistochemistry in 76 specimens of benign prostate, 10 specimens of high-grade intraepithelial neoplasia (HGPIN), and 28 specimens of CaP. In addition, mRNA expression of Glut-2, Glut-7, Glut-9, and Glut-11 was analyzed in a set of five specimens of benign prostate and CaP. In benign prostate, Glut-1 localized to the basal cells and to the basolateral membrane of secretory/luminal epithelial cells. Glut-5, however, localized to the apical membrane of secretory/luminal epithelial cells. In HGPIN, Glut-1 was immunohistochemically undetectable. Glut-5, however, localized to the apical membrane of the neoplastic epithelial cells. In CaP, Glut-1 and Glut-5, were immunohistochemically undetectable. However, over-expression of GLUT1 was observed in some specimens of highly proliferative intraductal CaP. Glut-7, Glut-9, and Glut-11 mRNAs were detected in benign prostate and CaP, however, only Glut-11 mRNA was consistently up-regulated in CaP compared to benign prostate. Low levels of expression of Glut-1 protein in the majority of CaP could explain, at least in part, the limited clinical applicability of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose for imaging CaP. Moreover, expression of Glut-5 in HGPIN suggested that fructose could be utilized as potential metabolic substrate in HGPIN. Understanding the molecular mechanisms involved in regulation/dysregulation of Gluts in CaP could provide insight in the understanding of hexose metabolism in CaP.

  5. Inverse association between BMI and prefrontal metabolic activity in healthy adults.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Goldstein, Rita Z; Alia-Klein, Nelly; Logan, Jean; Wong, Christopher; Thanos, Panayotis K; Ma, Yemine; Pradhan, Kith

    2009-01-01

    Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19-37 kg/m(2)) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.

  6. Comparability of [(18)F]THK5317 and [(11)C]PIB blood flow proxy images with [(18)F]FDG positron emission tomography in Alzheimer's disease.

    PubMed

    Rodriguez-Vieitez, Elena; Leuzy, Antoine; Chiotis, Konstantinos; Saint-Aubert, Laure; Wall, Anders; Nordberg, Agneta

    2017-02-01

    For amyloid positron emission tomography tracers, the simplified reference tissue model derived ratio of influx rate in target relative to reference region (R1) has been shown to serve as a marker of brain perfusion, and, due to the strong coupling between perfusion and metabolism, as a proxy for glucose metabolism. In the present study, 11 prodromal Alzheimer's disease and nine Alzheimer's disease dementia patients underwent [(18)F]THK5317, carbon-11 Pittsburgh Compound-B ([(11)C]PIB), and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography to assess the possible use of early-phase [(18)F]THK5317 and R1 as proxies for brain perfusion, and thus, for glucose metabolism. Discriminative performance (prodromal vs Alzheimer's disease dementia) of [(18)F]THK5317 (early-phase SUVr and R1) was compared with that of [(11)C]PIB (early-phase SUVr and R1) and [(18)F]FDG. Strong positive correlations were found between [(18)F]THK5317 (early-phase, R1) and [(18)F]FDG, particularly in frontal and temporoparietal regions. Differences in correlations between early-phase and R1 ([(18)F]THK5317 and [(11)C]PIB) and [(18)F]FDG, were not statistically significant, nor were differences in area under the curve values in the discriminative analysis. Our findings suggest that early-phase [(18)F]THK5317 and R1 provide information on brain perfusion, closely related to glucose metabolism. As such, a single positron emission tomography study with [(18)F]THK5317 may provide information about both tau pathology and brain perfusion in Alzheimer's disease, with potential clinical applications.

  7. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity

    NASA Astrophysics Data System (ADS)

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-07-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain.

  8. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements

  9. Use of Molecular Imaging to Predict Clinical Outcome in Patients With Rectal Cancer After Preoperative Chemotherapy and Radiation

    SciTech Connect

    Konski, Andre Li Tianyu; Sigurdson, Elin; Cohen, Steven J.; Small, William; Spies, Stewart; Yu, Jian Q.; Wahl, Andrew; Stryker, Steven; Meropol, Neal J.

    2009-05-01

    Purpose: To correlate changes in 2-deoxy-2-[18F]fluoro-D-glucose (18-FDG) positron emission tomography (PET) (18-FDG-PET) uptake with response and disease-free survival with combined modality neoadjuvant therapy in patients with locally advanced rectal cancer. Methods and Materials: Charts were reviewed for consecutive patients with ultrasound-staged T3x to T4Nx or TxN1 rectal adenocarcinoma who underwent preoperative chemoradiation therapy at Fox Chase Cancer Center (FCCC) or Robert H. Lurie Comprehensive Cancer Center of Northwestern University with 18-FDG-PET scanning before and after combined-modality neoadjuvant chemoradiation therapy . The maximum standardized uptake value (SUV) was measured from the tumor before and 3 to 4 weeks after completion of chemoradiation therapy preoperatively. Logistic regression was used to analyze the association of pretreatment SUV, posttreatment SUV, and % SUV decrease on pathologic complete response (pCR), and a Cox model was fitted to analyze disease-free survival. Results: A total of 53 patients (FCCC, n = 41, RLCCC, n = 12) underwent pre- and postchemoradiation PET scanning between September 2000 and June 2006. The pCR rate was 31%. Univariate analysis revealed that % SUV decrease showed a marginally trend in predicting pCR (p = 0.08). In the multivariable analysis, posttreatment SUV was shown a predictor of pCR (p = 0.07), but the test results did not reach statistical significance. None of the investigated variables were predictive of disease-free survival. Conclusions: A trend was observed for % SUV decrease and posttreatment SUV predicting pCR in patients with rectal cancer treated with preoperative chemoradiation therapy. Further prospective study with a larger sample size is warranted to better characterize the role of 18-FDG-PET for response prediction in patients with rectal cancer.

  10. Characterization of a new rat model of head and neck squamous cell carcinoma.

    PubMed

    Aubry, Karine; Paraf, Francois; Monteil, Jacques; Bessede, Jean Pierre; Rigaud, Michel

    2008-01-01

    To develop and characterize by imaging and pathological examination a new immunocompetent rat model of head and neck squamous cell carcinoma (HNSCC). Prospective animal research. Frozen specimens of HNSCC induced chemically by 4-nitroquinoline 1 oxide (4-NQO) in Sprague Dawley rats were used for the first graft. Serial allografts were then performed with fresh specimens of tumor in twenty-five Sprague Dawley rats. A specimen of tumor (100 mm3) was picked up by head and neck dissection during an autopsy. The graft was performed in a subcutaneous manner, in the ventral part of the neck, using an incision of 4 mm, through the masseter muscle. Tumors were clinically measured once a week and volumes were calculated. 2-[18F]Fluoro-2-deoxy-D-glucose positron emission tomography coupled with computed tomography (FDG-PET/CT) was performed on days 14 and 30 after the graft. Rats were euthanized and pathological features were assessed using hematoxylin-eosin (HE) staining and immunohistochemistry markers to characterize the tumor. An 80% take rate was achieved using fresh tumor specimens. Tumors grew rapidly; the mean tumoral volume was 1.013 cm3 on day 14 and 7.994 cm3 on day 30. FDG-PET/CT imaging targeted regions of metabolically active tumor. It showed a uniform uptake of 18F-FDG on day 14 and a large area of central necrosis on day 30. Pathological examinations showed a typical squamous cell carcinoma, with similar immunohistochemical analyses to the human squamous cell carcinoma. We propose a new allograft HNSCC rat model which is easily reproducible and rapidly obtained in comparison to that induced chemically with 4-NQO. This model was developed in immunocompetent rats, with similar conditions to human carcinogenesis and could be used for testing new therapeutics.

  11. Automatic Cardiac Self-Gating of Small-Animal PET Data.

    PubMed

    Herraiz, Joaquin L; Herranz, Elena; Cal-González, Jacobo; Vaquero, Juan J; Desco, Manuel; Cussó, Lorena; Udias, Jose M

    2016-02-01

    The cardiac gating signal (CGS) in positron emission tomography (PET) studies is usually obtained from an electrocardiography (ECG) monitor. In this work, we propose a method to obtain the CGS in small-animal PET using the acquired list-mode data without using any hardware or end-user input. The CGS was obtained from the number of coincidences over time acquired in the lines-of-response connected with the cardiac region. This region is identified in the image as its value changes with frequencies in the range of 3 to 12 Hz. The procedure was tested in a study with 29 Wistar rats and 6 mice injected with 2-deoxy-2-[(18)F]fluoro-D-glucose, which underwent a 45-min single-bed list-mode PET scan of the heart syncronized with an ECG. The estimated signals and the reconstructed images using eight-gated frames were compared with the ones obtained using the ECG signal from the monitor. The differences of the PET-based CGS with respect to the ECG relative to the duration of the heartbeats were 5.6 % in rats and 11.0 % in mice. The reconstructed gated images obtained from the proposed method do not differ qualitatively with respect to the ones obtained with the ECG. The quantitative analysis of both set of images were performed measuring the volume of the left ventricle (LV) of the rats in the end-of-systole and end-of-diastole phase. The differences found in these parameters between both methods were below 12.1 % in the ESV and 9.3 % in the EDV with a 95 % confidence interval, which are comparable to the accuracy (7 %) of the method used for segmenting the LV. The proposed method is able to provide a valid and accurate CGS in small-animal PET list-mode data.

  12. Radiosynthesis and 'click' conjugation of ethynyl-4-[(18)F]fluorobenzene--an improved [(18)F]synthon for indirect radiolabeling.

    PubMed

    Roberts, Maxine P; Pham, Tien Q; Doan, John; Jiang, Cathy D; Hambley, Trevor W; Greguric, Ivan; Fraser, Benjamin H

    2015-01-01

    Reproducible methods for [(18)F]radiolabeling of biological vectors are essential for the development of new [(18)F]radiopharmaceuticals. Molecules such as carbohydrates, peptides and proteins are challenging substrates that often require multi-step indirect radiolabeling methods. With the goal of developing more robust, time saving, and less expensive procedures for indirect [(18)F]radiolabeling of such molecules, our group has synthesized ethynyl-4-[(18)F]fluorobenzene ([(18)F]2, [(18)F]EYFB) in a single step (14 ± 2% non-decay corrected radiochemical yield (ndc RCY)) from a readily synthesized, shelf stable, inexpensive precursor. The alkyne-functionalized synthon [(18)F]2 was then conjugated to two azido-functionalized vector molecules via CuAAC reactions. The first 'proof of principle' conjugation of [(18)F]2 to 1-azido-1-deoxy-β-D-glucopyranoside (3) gave the desired radiolabeled product [(18)F]4 in excellent radiochemical yield (76 ± 4% ndc RCY (11% overall)). As a second example, the conjugation of [(18)F]2 to matrix-metalloproteinase inhibitor (5), which has potential in tumor imaging, gave the radiolabeled product [(18)F]6 in very good radiochemical yield (56 ± 12% ndc RCY (8% overall)). Total preparation time for [(18)F]4 and [(18)F]6 including [(18)F]F(-) drying, two-step reaction (nucleophilic substitution and CuAAC conjugation), two HPLC purifications, and two solid phase extractions did not exceed 70 min. The radiochemical purity of synthon [(18)F]2 and the conjugated products, [(18)F]4 and [(18)F]6, were all greater than 98%. The specific activities of [(18)F]2 and [(18)F]6 were low, 5.97 and 0.17 MBq nmol(-1), respectively.

  13. Objective 3D surface evaluation of intracranial electrophysiologic correlates of cerebral glucose metabolic abnormalities in children with focal epilepsy.

    PubMed

    Jeong, Jeong-Won; Asano, Eishi; Kumar Pilli, Vinod; Nakai, Yasuo; Chugani, Harry T; Juhász, Csaba

    2017-03-21

    To determine the spatial relationship between 2-deoxy-2[(18) F]fluoro-D-glucose (FDG) metabolic and intracranial electrophysiological abnormalities in children undergoing two-stage epilepsy surgery, statistical parametric mapping (SPM) was used to correlate hypo- and hypermetabolic cortical regions with ictal and interictal electrocorticography (ECoG) changes mapped onto the brain surface. Preoperative FDG-PET scans of 37 children with intractable epilepsy (31 with non-localizing MRI) were compared with age-matched pseudo-normal pediatric control PET data. Hypo-/hypermetabolic maps were transformed to 3D-MRI brain surface to compare the locations of metabolic changes with electrode coordinates of the ECoG-defined seizure onset zone (SOZ) and interictal spiking. While hypometabolic clusters showed a good agreement with the SOZ on the lobar level (sensitivity/specificity = 0.74/0.64), detailed surface-distance analysis demonstrated that large portions of ECoG-defined SOZ and interictal spiking area were located at least 3 cm beyond hypometabolic regions with the same statistical threshold (sensitivity/specificity = 0.18-0.25/0.94-0.90 for overlap 3-cm distance); for a lower threshold, sensitivity for SOZ at 3 cm increased to 0.39 with a modest compromise of specificity. Performance of FDG-PET SPM was slightly better in children with smaller as compared with widespread SOZ. The results demonstrate that SPM utilizing age-matched pseudocontrols can reliably detect the lobe of seizure onset. However, the spatial mismatch between metabolic and EEG epileptiform abnormalities indicates that a more complete SOZ detection could be achieved by extending intracranial electrode coverage at least 3 cm beyond the metabolic abnormality. Considering that the extent of feasible electrode coverage is limited, localization information from other modalities is particularly important to optimize grid coverage in cases of large hypometabolic cortex. Hum Brain Mapp, 2017. © 2017

  14. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity

    PubMed Central

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-01-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain. PMID:27440054

  15. Presurgical Multimodality Neuroimaging in Electroencephalographic Lateralized Temporal Lobe Epilepsy

    PubMed Central

    Knowlton, Robert C.; Laxer, Kenneth D.; Ende, Gabriele; Hawkins, Randall A.; Wong, Stephen T. C.; Matson, Gerald B.; Rowley, Howard A.; Fein, George; Weiner, Michael W.

    2009-01-01

    The purpose of this study was to compare 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET), hippocampal volumetry (HV), T2 relaxometry, and proton magnetic resonance spectroscopic imaging (1H-MRSI) in the presurgical neuroimaging lateralization of patients with nonlesional, electroencephalogram (EEG)-defined unilateral temporal lobe epilepsy (TLE). Twenty-five patients were prospectively studied, along with age-matched controls. T2 relaxometry examinations were performed in 13 patients. Comparison of FDG-PET, HV, and 1H-MRSI was possible in 23 patients. FDG-PET lateralized 87% of patients, HV 65%, N-acetyl aspartate (NAA)/(choline [Cho] + creatine [Cr]) 61%, and [NAA] 57%. Combined HV and NAA/(Cho + Cr) results lateralized 83% of the patients, a value similar to PET. Of 10 patients with normal magnetic resonance imaging (MRI) scans, 2 were lateralized with HV, 6 with FDG-PET, 4 with NAA/(Cho + Cr), and 3 with [NAA]. T2 relaxometry lateralized no patients without hippocampal atrophy. Bilateral abnormality was present in 29 to 33% of patients with 1H-MRSI measures and 17% with HV. Only hippocampal atrophy correlated with postoperative seizure-free outcome. FDG-PET remains the most sensitive imaging method to correlate with EEG-lateralized TLE. Both FDG-PET and 1H-MRSI can lateralize patients with normal MRI, but only the presence of relative unilateral hippocampal atrophy is predictive of seizure-free outcome. Bilaterally abnormal MRI and 1H-MRSI measures do not preclude good surgical outcome. PMID:9403474

  16. Monitoring of plexiform neurofibroma in children and adolescents with neurofibromatosis type 1 by [(18) F]FDG-PET imaging. Is it of value in asymptomatic patients?

    PubMed

    Azizi, Amedeo A; Slavc, Irene; Theisen, Benjamin Emile; Rausch, Ivo; Weber, Michael; Happak, Wolfgang; Aszmann, Oskar; Hojreh, Azadeh; Peyrl, Andreas; Amann, Gabriele; Benkoe, Thomas M; Wadsak, Wolfgang; Kasprian, Gregor; Staudenherz, Anton; Hacker, Marcus; Traub-Weidinger, Tatjana

    2017-08-03

    About 10% of patients with neurofibromatosis type 1 (NF-1) develop malignant peripheral nerve sheath tumours (MPNST) mostly arising in plexiform neurofibroma (PN); 15% of MPNST arise in children and adolescents. 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG)-PET (where PET is positron emission tomography) is a sensitive method in differentiating PN and MPNST in symptomatic patients with NF-1. This study assesses the value of [(18) F]FDG-PET imaging in detecting malignant transformation in symptomatic and asymptomatic children with PN. Forty-one patients with NF-1 and extensive PN underwent prospective [(18) F]FDG imaging from 2003 to 2014. Thirty-two of the patients were asymptomatic. PET data, together with histological results and clinical course were re-evaluated retrospectively. Maximum standardised uptake values (SUVmax) and lesion-to-liver ratio were assessed. A total of 104 examinations were performed. Mean age at first PET was 13.5 years (2.6-22.6). Eight patients had at least one malignant lesion; four of these patients were asymptomatic. Two of four symptomatic patients died, while all patients with asymptomatic malignant lesions are alive. All malignant tumours could be identified by PET imaging in both symptomatic and asymptomatic patients. All lesions judged as benign by [(18) F]FDG imaging and clinical judgment were either histologically benign if removed or remained clinically silent during follow-up. SUVmax of malignant and benign lesions overlapped, but no malignant lesion showed FDG uptake ≤3.15. Asymptomatic malignant lesions were detected with a sensitivity of 100%, a negative predictive value of 100% and a specificity of 45.1%. Malignant transformation of PN also occurs in asymptomatic children and adolescents. Detection of MPNST at early stages could increase the possibility of oncologically curative resections. © 2017 Wiley Periodicals, Inc.

  17. Reproducibility of Static and Dynamic 18F-FDG, 18F-FLT, and 18F-FMISO MicroPET Studies in a Murine Model of HER2+ Breast Cancer

    PubMed Central

    Whisenant, Jennifer G.; Peterson, Todd E.; Fluckiger, Jacob U.; Tantawy, Mohammed Noor; Ayers, Gregory D.; Yankeelov, Thomas E.

    2013-01-01

    Purpose The objective of this study is to determine the reproducibility of static 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG), 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT), and [18F]-fluoromisonidazole (18F-FMISO) microPET measurements, as well as kinetic parameters returned from analyses of dynamic 18F-FLT and 18F-FMISO data. Procedures HER2+ xenografts were established in nude mice. Dynamic data were acquired for 60 min, followed by a repeat injection and second scan 6 h later. Reproducibility was assessed for the percent-injected dose per gram (%ID/g) for each radiotracer, and with kinetic parameters (K1–k4, Ki) for 18F-FLT and 18F-FMISO. Results The value needed to reflect a change in tumor physiology is given by the 95 % confidence interval (CI), which is ±14, ±5, and ±6 % for 18F-FDG (n=12), 18F-FLT (n=11), and 18F-FMISO (n=11) %ID/g, respectively. Vd (=K1/k2), k3, and KFLT are the most reproducible 18F-FLT (n=9) kinetic parameters, with 95 % CIs of ±18, ±10, and ±18 %, respectively. Vd and KFMISO are the most reproducible 18F-FMISO kinetic parameters (n=7) with 95 % CIs of ±16 and ±14 %, respectively. Conclusions Percent-injected dose per gram measurements are reproducible and appropriate for detecting treatment-induced changes. Kinetic parameters have larger threshold values, but are potentially sufficiently reproducible to detect treatment response. PMID:22644988

  18. Metabolic Response of Prostate Cancer to Nicotinamide Phophoribosyltransferase Inhibition in a Hyperpolarized MR/PET Compatible Bioreactor

    PubMed Central

    Keshari, Kayvan R.; Wilson, David M.; Van Criekinge, Mark; Sriram, Renuka; Koelsch, Bertram L.; Wang, Zhen J.; VanBrocklin, Henry F.; Peehl, Donna M.; O’Brien, Tom; Sampath, Deepak; Carano, Richard A. D.; Kurhanewicz, John

    2015-01-01

    Background Metabolic shifts in disease are of great interest for the development of novel therapeutics. In cancer treatment, these therapies exploit the metabolic phenotype associated with oncogenesis and cancer progression. One recent strategy involves the depletion of the cofactors needed to maintain the high rate of glycolysis seen with the Warburg effect. Specifically, blocking nicotinamide adenine dinucleotide (NAD) biosynthesis via nicotinamide phosphoribosyltransferase (NAMPT) inhibition depletes cancer cells of the NAD needed for glycolysis. To characterize this metabolic phenotype in vivo and describe changes in flux with treatment, non-invasive biomarkers are necessary. One such biomarker is hyperpolarized (HP) [1-13C] pyruvate, a clinically translatable probe that allows real-time assessment of metabolism. Methods We therefore developed a cell perfusion system compatible with HP magnetic resonance (MR) and positron emission tomography (PET) to develop translatable biomarkers of response to NAMPT inhibition in reduced volume cell cultures. Results Using this platform, we observed a reduction in pyruvate flux through lactate dehydrogenase with NAMPT inhibition in prostate cancer cells, and showed that both HP lactate and 2-[18F] fluoro-2-deoxy-D-glucose (FDG) can be used as biomarkers for treatment response of such targeted agents. Moreover, we observed dynamic flux changes whereby HP pyruvate was re-routed to alanine, providing both positive and negative indicators of treatment response. Conclusions This study demonstrated the feasibility of a MR/PET compatible bioreactor approach to efficiently explore cell and tissue metabolism, the understanding of which is critical for developing clinically translatable biomarkers of disease states and responses to therapeutics. PMID:26177608

  19. The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma.

    PubMed

    Poulsen, Sidsel Højklint; Urup, Thomas; Grunnet, Kirsten; Christensen, Ib Jarle; Larsen, Vibeke Andrée; Jensen, Michael Lundemann; Af Rosenschöld, Per Munck; Poulsen, Hans Skovgaard; Law, Ian

    2017-03-01

    Glioblastoma patients show a great variability in progression free survival (PFS) and overall survival (OS). To gain additional pretherapeutic information, we explored the potential of O-(2-(18)F-fluoroethyl)-L-tyrosine (FET) PET as an independent prognostic biomarker. We retrospectively analyzed 146 consecutively treated, newly diagnosed glioblastoma patients. All patients were treated with temozolomide and radiation therapy (RT). CT/MR and FET PET scans were obtained postoperatively for RT planning. We used Cox proportional hazards models with OS and PFS as endpoints, to test the prognostic value of FET PET biological tumor volume (BTV). Median follow-up time was 14 months, and median OS and PFS were 16.5 and 6.5 months, respectively. In the multivariate analysis, increasing BTV (HR = 1.17, P < 0.001), poor performance status (HR = 2.35, P < 0.001), O(6)-methylguanine-DNA methyltransferase protein status (HR = 1.61, P = 0.024) and higher age (HR = 1.32, P = 0.013) were independent prognostic factors of poor OS. For poor PFS, only increasing BTV (HR = 1.18; P = 0.002) was prognostic. A prognostic index for OS was created based on the identified prognostic factors. Large BTV on FET PET is an independent prognostic factor of poor OS and PFS in glioblastoma patients. With the introduction of FET PET, we obtain a prognostic index that can help in glioblastoma treatment planning.

  20. Value of 18F-FDG PET/CT in diagnosing chronic Q fever in patients with central vascular disease.

    PubMed

    Hagenaars, J C J P; Wever, P C; Vlake, A W; Renders, N H M; van Petersen, A S; Hilbink, M; de Jager-Leclercq, M G L; Moll, F L; Koning, O H J; Hoekstra, C J

    2016-08-01

    The aim of this study is to describe the value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in diagnosing chronic Q fever in patients with central vascular disease and the added value of 18F-FDG PET/CT in the diagnostic combination strategy as described in the Dutch consensus guideline for diagnosing chronic Q fever. 18F-FDG PET/CT was performed in patients with an abdominal aortic aneurysm or aorto-iliac reconstruction and chronic Q fever, diagnosed by serology and positive PCR for Coxiella burnetii DNA in blood and/or tissue (PCR-positive study group). Patients with an abdominal aortic aneurysm or aorto-iliac reconstruction without clinical and serological findings indicating Q fever infection served as a control group. Patients with a serological profile of chronic Q fever and a negative PCR in blood were included in additional analyses (PCR-negative study group). Thirteen patients were evaluated in the PCR-positive study group and 22 patients in the control group. 18F-FDG PET/CT indicated vascular infection in 6/13 patients in the PCR-positive study group and 2/22 patients in the control group. 18F-FDG PET/CT demonstrated a sensitivity of 46% (95% CI: 23-71%), specificity of 91% (95% CI: 71-99%), positive predictive value of 75% (95% CI:41-93%) and negative predictive value of 74% (95% CI: 55-87%). In the PCR-negative study group, 18F-FDG PET/CT was positive in 10/20 patients (50%). The combination of 18F-FDG PET/CT, as an imaging tool for identifying a focus of infection, and Q fever serology is a valid diagnostic strategy for diagnosing chronic Q fever in patients with central vascular disease.

  1. Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats.

    PubMed

    Shiha, Ahmed Anis; de Cristóbal, Javier; Delgado, Mercedes; Fernández de la Rosa, Rubén; Bascuñana, Pablo; Pozo, Miguel A; García-García, Luis

    2015-02-01

    The role of serotonin (5-hydroxytryptamine; 5-HT) in epileptogenesis still remains controversial. In this regard, it has been reported that serotonergic drugs can alter epileptogenesis in opposite ways. The main objective of this work was to investigate the effect of the selective 5-HT selective reuptake inhibitor (SSRI) fluoxetine administered subacutely (10mg/kg/day×7 days) on the eventual metabolic impairment induced by the lithium-pilocarpine model of epilepsy in rats. In vivo 2-deoxy-2-[(18)F]fluoro-d-glucose ([(18)F] FDG) positron emission tomography (PET) was performed to assess the brain glucose metabolic activity on days 3 and 30 after the insult. In addition, at the end of the experiment (day 33), several histochemical and neurochemical assessments were performed for checking the neuronal functioning and integrity. Three days after the insult, a marked reduction of [(18)F] FDG uptake (about 30% according to the brain region) was found in all brain areas studied. When evaluated on day 30, although a hypometabolism tendency was observed, no statistically significant reduction was present in any region analyzed. In addition, lithium-pilocarpine administration was associated with medium-term hippocampal and cortical damage, since it induced neurodegeneration, glial activation and augmented caspase-9 expression. Regarding the effect of fluoxetine, subacute treatment with this SSRI did not significantly reduce the mortality rate observed after pilocarpine-induced seizures. However, fluoxetine did prevent not only the short-term metabolic impairment, but also the aforementioned signs of neuronal damage in surviving animals to lithium-pilocarpine protocol. Finally, fluoxetine increased the density of GABAA receptor both at the level of the dentate gyrus and CA1-CA2 regions in pilocarpine-treated animals. Overall, our data suggest a protective role for fluoxetine against pilocarpine-induced brain damage. Moreover, this action may be associated with an increase of

  2. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background.

    PubMed

    Davies, Barry R; Greenwood, Hannah; Dudley, Phillippa; Crafter, Claire; Yu, De-Hua; Zhang, Jingchuan; Li, Jing; Gao, Beirong; Ji, Qunsheng; Maynard, Juliana; Ricketts, Sally-Ann; Cross, Darren; Cosulich, Sabina; Chresta, Christine C; Page, Ken; Yates, James; Lane, Clare; Watson, Rebecca; Luke, Richard; Ogilvie, Donald; Pass, Martin

    2012-04-01

    AKT is a key node in the most frequently deregulated signaling network in human cancer. AZD5363, a novel pyrrolopyrimidine-derived compound, inhibited all AKT isoforms with a potency of 10 nmol/L or less and inhibited phosphorylation of AKT substrates in cells with a potency of approximately 0.3 to 0.8 μmol/L. AZD5363 monotherapy inhibited the proliferation of 41 of 182 solid and hematologic tumor cell lines with a potency of 3 μmol/L or less. Cell lines derived from breast cancers showed the highest frequency of sensitivity. There was a significant relationship between the presence of PIK3CA and/or PTEN mutations and sensitivity to AZD5363 and between RAS mutations and resistance. Oral dosing of AZD5363 to nude mice caused dose- and time-dependent reduction of PRAS40, GSK3β, and S6 phosphorylation in BT474c xenografts (PRAS40 phosphorylation EC(50) ~ 0.1 μmol/L total plasma exposure), reversible increases in blood glucose concentrations, and dose-dependent decreases in 2[18F]fluoro-2-deoxy-D-glucose ((18)F-FDG) uptake in U87-MG xenografts. Chronic oral dosing of AZD5363 caused dose-dependent growth inhibition of xenografts derived from various tumor types, including HER2(+) breast cancer models that are resistant to trastuzumab. AZD5363 also significantly enhanced the antitumor activity of docetaxel, lapatinib, and trastuzumab in breast cancer xenografts. It is concluded that AZD5363 is a potent inhibitor of AKT with pharmacodynamic activity in vivo, has potential to treat a range of solid and hematologic tumors as monotherapy or a combinatorial agent, and has potential for personalized medicine based on the genetic status of PIK3CA, PTEN, and RAS. AZD5363 is currently in phase I clinical trials.

  3. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies.

    PubMed

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine((18)F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With (18)F-FDG and (18)F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether (18)F-FDG and/or (18)F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in (18)F-FDG and (18)F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used (18)F-FDG and/or (18)F-FLT PET for response monitoring of cancer therapeutics.

  4. Metabolite identification of a radiotracer by electrochemistry coupled to liquid chromatography with mass spectrometric and radioactivity detection.

    PubMed

    Baumann, Anne; Faust, Andreas; Law, Marylin P; Kuhlmann, Michael T; Kopka, Klaus; Schäfers, Michael; Karst, Uwe

    2011-07-01

    Radioligands, which specifically bind to a receptor or enzyme (target), enable molecular imaging of the target expression by positron emission tomography (PET). One very promising PET tracer is (S)-1-(4-(2-[(18)F]-fluoroethoxy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (isatin), a caspase-3 inhibitor, which has been developed at the University Hospital of Münster to image cell death (apoptosis). The translation of this novel tracer from preclinical evaluation to clinical examinations requires biodistribution studies, which characterize the pharmakodynamics and metabolic fate of the compound. This information is used to further optimize the radioligands and to interpret radioactive signals from tissues upon injection of the radioligand in vivo with respect to their specificity. The analysis of the metabolism of radioligands is hampered by the low amount of the compound being typically injected (nano/picomolar amount per injection). In the present study, electrochemistry (EC) is applied to elucidate the oxidative metabolism pathway of the radiotracer. Previous studies have demonstrated that EC can be utilized as a complementary tool to conventional in vitro approaches in drug metabolism studies. Thereby, potential oxidative metabolites of the isatin are determined by EC coupled to electrospray ionization mass spectrometry (EC/ESI-MS). Moreover, using EC/liquid chromatography (LC) and ESI-ion trap MS(n), structural elucidation of the oxidation products is performed. Comparatively to EC, in vitro metabolism studies with rat liver microsomes are conducted. Finally, the developed LC/ESI-MS method is applied to determine metabolites in body fluids and cell extracts from in vivo studies with the nonradioactive ((19)F) and radioactive isatin ((18)F). On the basis of the electrochemically generated oxidation products of the radioligand, the major radioactive metabolite occurring in vivo was successfully identified.

  5. Differential Virulence and Disease Progression following Mycobacterium tuberculosis Complex Infection of the Common Marmoset (Callithrix jacchus)

    PubMed Central

    Via, Laura E.; Weiner, Danielle M.; Schimel, Daniel; Lin, Philana Ling; Dayao, Emmanuel; Tankersley, Sarah L.; Cai, Ying; Coleman, M. Teresa; Tomko, Jaime; Paripati, Praveen; Orandle, Marlene; Kastenmayer, Robin J.; Tartakovsky, Michael; Rosenthal, Alexander; Portevin, Damien; Eum, Seok Yong; Lahouar, Saher; Gagneux, Sebastien; Young, Douglas B.; Flynn, JoAnne L.

    2013-01-01

    Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades. PMID:23716617

  6. Insulin Causes Hyperthermia by Direct Inhibition of Warm-Sensitive Neurons

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Osborn, Olivia; Mitsukawa, Kayo; Schaefer, Jean; Dubins, Jeffrey; Holmberg, Kristina H.; Klein, Izabella; Klaus, Joe; Gomez, Luis F.; Kolb, Hartmuth; Secrest, James; Jochems, Jeanine; Myashiro, Kevin; Buckley, Peter; Hadcock, John R.; Eberwine, James; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus. PMID:19846801

  7. 3-(2'-( sup 18 F)fluoroethyl)spiperone: In vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans

    SciTech Connect

    Barrio, J.R.; Satyamurthy, N.; Huang, S.C.; Keen, R.E.; Nissenson, C.H.; Hoffman, J.M.; Ackermann, R.F.; Bahn, M.M.; Mazziotta, J.C.; Phelps, M.E. )

    1989-12-01

    3-(2'-(18F)fluoroethyl)spiperone (FESP), a recently developed dopamine D2-receptor binding radiopharmaceutical, was used for dynamic characterization of dopamine-receptor binding in Macaca nemestrina monkeys and humans with positron emission tomography (PET). FESP in vitro binding properties to the dopamine receptor (IC50 = 1.5 nM) are similar to those of spiperone. Serial PET scans in monkeys after intravenous bolus injection of FESP revealed specific radioactivity accumulation in striatum (rich in dopamine D2-receptors), whereas radioactivity concentration declined after 20 min in frontal cortex (serotonin receptors) and more rapidly in cerebellum (nonspecific binding). Specific dopamine D2-receptor binding was saturated with increasing concentrations of radioligand (specific activity range: 1-10,000 Ci/mmol), was stereospecifically blocked with (+)butaclamol (0.5 mg/kg), and showed only partial displacement with spiperone (200 micrograms/kg, i.v. administration 90 min after FESP injection). From PET experiments with FESP in humans, it is possible to visualize accumulation of radioactivity in striatum in a manner similar to that observed in monkeys and, ex vivo, in rodents (adult male Sprague-Dawley rats). Biochemical analyses in rat brain revealed that the activity (approximately 90%) in striatum was unmodified FESP up to 4 h after injection. On the other hand, FESP was metabolized peripherally (rat greater than monkey greater than human), with only 11% of plasma radioactivity remaining as intact FESP in rodents and 54% in humans after 2 h. Based on these interspecies scaling pharmacokinetic data, it is unequivocal that FESP peripheral metabolites do not significantly contribute to the accumulated radioactivity in striatal tissue. Therefore, it is concluded that FESP is suitable for the quantitative estimation of dopamine D2-receptor sites using PET.

  8. Hybrid Light Imaging Using Cerenkov Luminescence and Liquid Scintillation for Preclinical Optical Imaging In Vivo.

    PubMed

    Shimamoto, Masako; Gotoh, Kumiko; Hasegawa, Koki; Kojima, Akihiro

    2016-08-01

    Cerenkov luminescence imaging (CLI) has recently emerged as a molecular imaging modality for radionuclides emitting β-particles. The aim of this study was to develop a hybrid light imaging (HLI) technique using a liquid scintillator to assist CLI by increasing the optical signal intensity from both β-particle and γ-ray emitting radionuclides located at deep regions in vivo. A commercial optical imaging system was employed to collect all images by HLI and CLI. To investigate the performance characteristics of HLI with a commercially available liquid scintillator (Emulsifier-safe), phantom experiments were conducted for two typical β-particle and γ-ray emitters, sodium iodide (Na[(131)I]I) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), respectively. To evaluate the feasibility of HLI for in vivo imaging, HLI was applied to a Na[(131)I]I injected nu/nu mouse and an [(18)F]FDG injected Balb-c mouse and compared with CLI alone. Measured HLI wavelength spectra with Emulsifier-safe showed higher signal intensities than for CLI at 500-600 nm. For material preventing light transmission of 12-mm thickness, CLI imaging provided quite low intensity and obscure signals of the source. However, despite degraded spatial resolution, HLI imaging provided sustained visualization of the source shape, with signal intensities 10-14 times higher than for CLI at 10-mm thickness. Furthermore, at 0, 4, and 8-mm material thicknesses, HLI showed a strong correlation between Na[(131)I]I or [(18)F]FDG radioactivity and signal intensity, as for CLI. In vivo studies also demonstrated that HLI could successfully visualize Na[(131)I]I uptake in the mouse thyroid gland in the prone position and [(18)F]FDG accumulation in the heart in the supine position, which were not observed with CLI. Our preliminary studies suggest that HLI can provide enhanced imaging of a β-particle probe emitting together with γ-rays at deep tissue locations. HLI may be a promising imaging technique to assist

  9. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice.

    PubMed

    Taylor, Kristina; Lemon, Jennifer A; Phan, Nghi; Boreham, Douglas R

    2014-07-01

    There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[(18)F] fluoro-2-deoxy-d-glucose ((18)F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modification of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy (18)F-FDG, 4 Gy γ-rays, 10 mGy (18)F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from (18)F-FDG, with respect to malignancy, is approximately 1. However; when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.

  10. Discordant findings in patients with non-small-cell lung cancer: absolutely normal bone scans versus disseminated bone metastases on positron-emission tomography/computed tomography.

    PubMed

    Ak, Ilknur; Sivrikoz, Muammer Cumhur; Entok, Emre; Vardareli, Erkan

    2010-04-01

    At present, metastatic bone involvement is usually assessed using bone scintigraphy, which has a high sensitivity but a poor specificity. The objective of our study was to compare the sensibility of the 2-deoxy-2-[18F] fluoro-d-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) for the detection of bone metastasis in patients with non-small-cell lung cancer (NSCLC) whose technetium 99m methylenediphosphonate (Tc-99m MDP) bone scans were absolutely normal. This study based on the retrospective analysis of 95 consecutive patients with histologically proven NSCLC who underwent F-18 FDG PET/CT and Tc-99m MDP bone scan at the Eskişehir Osmangazi University School of Medicine, Department of Nuclear Medicine between November 2006 and October 2008. Nineteen patients (19 of 95, 20%) with absolutely normal Tc-99m bone scan versus multiple high-grade F-18 FDG avid bony metastases on F-18 FDG PET/CT were selected for the review. Their ages ranged from 46 to 73 years (15 males and four females; mean: 57.2 years). Nine patients had squamous cell carcinoma, six had adenocarcinoma, three had large cell carcinoma and one had adenosquamous cell carcinoma. Tc-99m MDP bone scan that did not reveal bony abnormalities or radiotracer uptake was characteristic of benign disease (defined as absolutely normal) in these patients. Whereas, F-18 FDG PET/CT not only showed extremely disseminated heterogeneous nest-like high-grade FDG avid metastatic foci within the marrow cavity of the upper and lower thoracic spine, lumbar spine, pelvis, rib cages and bilateral proximal long bones, but also showed disseminated osteolytic bony metastases in these areas. Discordant findings of skeletal metastasis between Tc-99m MDP bone scans and F-18 FDG PET/CT imaging may be seen in 20% of the patients with NSCLC. F-18 FDG PET/CT could detect metastatic bone involvement more accurately than bone scintigraphy. Bone scans are insensitive to early bone marrow neoplastic infiltration

  11. The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography

    PubMed Central

    Rami-Mark, Christina; Savli, Markus; Höflich, Anna; Kranz, Georg S.; Hahn, Andreas; Kutzelnigg, Alexandra; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Volkow, Nora D.; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system’s contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD. OBJECTIVE To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls. DESIGN, SETTING, AND PARTICIPANTS Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups. MAIN OUTCOMES AND MEASURES The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest). RESULTS We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41 < 0.01; P = .96). Furthermore, we identified no significant association between ADHD symptom severity and regional NET availability. Neither sex nor smoking status influenced NET availability. We determined

  12. Characterization of Physiologic (18)F FSPG Uptake in Healthy Volunteers.

    PubMed

    Mosci, Camila; Kumar, Meena; Smolarz, Kamilla; Koglin, Norman; Stephens, Andrew W; Schwaiger, Markus; Gambhir, Sanjiv S; Mittra, Erik S

    2016-06-01

    Purpose To evaluate the normal biodistribution and kinetics of (S)-4-(3-[18F]fluoropropyl)-l-glutamic acid ((18)F FSPG) in healthy volunteers and to compare (18)F FSPG mean and maximum standardized uptake values (SUVmean and SUVmax, respectively) with those of (18)F fluorodeoxyglucose (FDG) across a variety of organs. Materials and Methods This protocol was reviewed and approved by all appropriate regulatory authorities. An 8-mCi (±10%) dose of (18)F FSPG was given to five subjects (three women, two men), and seven whole-body positron emission tomography (PET) scans were performed 5, 10, 20, 30, 45, 150, and 240 minutes after injection. Regions of interest were analyzed on the resultant (18)F FSPG images to evaluate the kinetics of this radiotracer. The images obtained 45 minutes after injection were used to measure SUVmean and SUVmax in additional regions of the body. These values were compared with similar values obtained with (18)F FDG PET published previously. Descriptive statistics, including average and standard deviation across the five subjects, were used. (18)F FSPG SUVmean and SUVmax were compared. Results On the (18)F FSPG images obtained 45 minutes after injection, there was only low-grade background activity in the majority of analyzed regions. Prominent activity was seen throughout the pancreas. Clearance of the radiotracer through the kidneys and collection in the bladder also were seen. SUV quantification shows notable differences between (18)F FSPG and (18)F FDG in the pancreas ((18)F FSPG SUVmean, 8.2; (18)F FDG SUVmean, 1.3), stomach ((18)F FSPG SUVmax, 3.6; (18)F FDG SUVmax, 1.6), and brain ((18)F FSPG SUVmean, 0.08; (18)F FDG SUVmean, 7.8). The kinetic data showed rapid clearance of the radiotracer from the blood pool and most organs, except the pancreas. Conclusion (18)F FSPG is a PET radiopharmaceutical characterized by rapid clearance from most healthy tissues, except the pancreas and kidneys. A consistent biodistribution pattern was

  13. HPLC and TLC methods for analysis of [(18)F]FDG and its metabolites from biological samples.

    PubMed

    Rokka, Johanna; Grönroos, Tove J; Viljanen, Tapio; Solin, Olof; Haaparanta-Solin, Merja

    2017-03-24

    The most used positron emission tomography (PET) tracer, 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG), is a glucose analogue that is used to measure tissue glucose consumption. Traditionally, the Sokoloff model is the basis for [(18)F]FDG modeling. According to this model, [(18)F]FDG is expected to be trapped in a cell in the form of [(18)F]FDG-6-phosphate ([(18)F]FDG-6-P). However, several studies have shown that in tissues, [(18)F]FDG metabolism goes beyond [(18)F]FDG-6-P. Our aim was to develop radioHPLC and radioTLC methods for analysis of [(18)F]FDG metabolites from tissue samples. The radioHPLC method uses a sensitive on-line scintillation detector to detect radioactivity, and the radioTLC method employs digital autoradiography to detect the radioactivity distribution on a TLC plate. The HPLC and TLC methods were developed using enzymatically in vitro-produced metabolites of [(18)F]FDG as reference standards. For this purpose, three [(18)F]FDG metabolites were synthesized: [(18)F]FDG-6-P, [(18)F]FD-PGL, and [(18)F]FDG-1,6-P2. The two methods were evaluated by analyzing the [(18)F]FDG metabolic profile from rodent ex vivo tissue homogenates. The HPLC method with an on-line scintillation detector had a wide linearity in a range of 5Bq-5kBq (LOD 46Bq, LOQ 139Bq) and a good resolution (Rs ≥1.9), and separated [(18)F]FDG and its metabolites clearly. The TLC method combined with digital autoradiography had a high sensitivity in a wide range of radioactivity (0.1Bq-2kBq, LOD 0.24Bq, LOQ 0.31Bq), and multiple samples could be analyzed simultaneously. As our test and the method validation with ex vivo samples showed, both methods are useful, and at best they complement each other in analysis of [(18)F]FDG and its radioactive metabolites from biological samples.

  14. Monitoring therapeutic efficacy of sunitinib using [(18)F]FDG and [(18)F]FMISO PET in an immunocompetent model of luminal B (HER2-positive)-type mammary carcinoma.

    PubMed

    Thézé, Benoît; Bernards, Nicholas; Beynel, Audrey; Bouet, Stephan; Kuhnast, Bertrand; Buvat, Irène; Tavitian, Bertrand; Boisgard, Raphaël

    2015-07-22

    Clinical studies implying the sunitinib multi-kinase inhibitor have led to disappointing results for breast cancer care but mostly focused on HER2-negative subtypes. Preclinical researches involving this drug mostly concern Triple Negative Breast Cancer (TNBC) murine models. Here, we explored the therapeutic efficacy of sunitinib on a PyMT-derived transplanted model classified as luminal B (HER2-positive) and monitored the response to treatment using both in vivo and ex vivo approaches. Tumour-induced animals were treated for 9 (n = 7) or 14 (n = 8) days with sunitinib at 40 mg/kg or with vehicle only. Response to therapy was assessed in vivo by monitoring glucose tumour metabolism and hypoxia using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) and [(18)F]fluoromisonidazole ([(18)F]FMISO) Positron Emission Tomography (PET). After primary tumour excision, ex vivo digital microscopy was performed on treated and control samples to estimate vascular density (CD31), apoptosis (Tunel), proliferation (Ki-67), Tumour-Associated Macrophage (TAM) infiltration (F4/80), metabolism (GLUT1) and cellular response to hypoxia (HIF1 alpha). The drug impact on the metastasis rate was evaluated by monitoring the PyMT gene expression in the lungs of the treated and control groups. Concomitant with sunitinib-induced tumour size regression, [(18)F]FDG PET imaging showed a stable glycolysis-related metabolism inside tumours undergoing treatment compared to an increased metabolism in untreated tumours, resulting at treatment end in 1.5 less [(18)F]FDG uptake in treated (n = 4) vs control (n = 3) tumours (p < 0.05). With this small sample, [(18)F]FMISO PET showed a non-significant decrease of hypoxia in treated vs control tumours. The drug triggered a 4.9 fold vascular volume regression (p < 0.05), as well as a 17.7 fold induction of tumour cell apoptosis (p < 0.001). The hypoxia induced factor 1 alpha (HIF1 alpha) expression was twice lower in the treated group than in the control group

  15. Synthesis and preliminary biological evaluation of S-11C-methyl-D-cysteine as a new amino acid PET tracer for cancer imaging.

    PubMed

    Huang, Tingting; Tang, Ganghua; Wang, Hongliang; Nie, Dahong; Tang, Xiaolan; Liang, Xiang; Hu, Kongzhen; Yi, Chang; Yao, Baoguo; Tang, Caihua

    2015-04-01

    S-(11)C-methyl-L-cysteine (LMCYS) is an attractive amino acid tracer for clinical tumor positron emission tomography (PET) imaging. D-isomers of some radiolabeled amino acids are potential PET tracers for tumor imaging. In this work, S-(11)C-methyl-D-cysteine (DMCYS), a D-amino acid isomer of S-(11)C-methyl-cysteine for tumor imaging was developed and evaluated. DMCYS was prepared by (11)C-methylation of the precursor D-cysteine, with an uncorrected radiochemical yield over 50 % from (11)CH3I within a total synthesis time from (11)CO2 about 12 min. In vitro competitive inhibition studies showed that DMCYS uptake was primarily transported through the Na(+)-independent system L, and also the Na(+)-dependent system B(0,+) and system ASC, with almost no system A. In vitro incorporation experiments indicated that almost no protein incorporation was found in Hepa 1-6 hepatoma cell lines. Biodistribution studies demonstrated higher uptake of DMCYS in pancreas and liver at 5 min post-injection, relatively lower uptake in brain and muscle, and faster radioactivity clearance from most tissues than those of L-isomer during the entire observation time. In the PET imaging of S180 fibrosarcoma-bearing mice and turpentine-induced inflammatory model mice, 2-(18)F-fluoro-2-deoxy-D-glucose (FDG) exhibited significantly high accumulation in both tumor and inflammatory lesion with low tumor-to-inflammation ratio of 1.40, and LMCYS showed low tumor-to-inflammation ratio of 1.64 at 60 min post-injection. By contrast, DMCYS showed moderate accumulation in tumor and very low uptake in inflammatory lesion, leading to relatively higher tumor-to-inflammation ratio of 2.25 than (11)C-methyl-L-methionine (MET) (1.85) at 60 min post-injection. Also, PET images of orthotopic transplanted glioma models demonstrated that low uptake of DMCYS in normal brain tissue and high uptake in brain glioma tissue were observed. The results suggest that DMCYS is a little better than the corresponding L

  16. [(18)F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood-brain barrier.

    PubMed

    Wanek, Thomas; Traxl, Alexander; Bankstahl, Jens P; Bankstahl, Marion; Sauberer, Michael; Langer, Oliver; Kuntner, Claudia

    2015-07-01

    Transport of 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) by the multidrug efflux transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood-brain barrier (BBB) may confound the interpretation of [(18)F]FDG brain PET data. Aim of this study was to assess the influence of ABCB1 and ABCG2 at the BBB on brain distribution of [(18)F]FDG in vivo by performing [(18)F]FDG PET scans in wild-type and transporter knockout mice and by evaluating changes in [(18)F]FDG brain distribution after transporter inhibition. Dynamic small-animal PET experiments (60min) were performed with [(18)F]FDG in groups of wild-type and transporter knockout mice (Abcb1a/b((-/-)), Abcg2((-/-)) and Abcb1a/b((-/-))Abcg2((-/-))) and in wild-type rats without and with i.v. pretreatment with the known ABCB1 inhibitor tariquidar (15mg/kg, given at 2h before PET). Blood was sampled from animals from the orbital sinus vein at the end of the PET scans and measured in a gamma counter. Brain uptake of [(18)F]FDG was expressed as the brain-to-blood radioactivity concentration ratio in the last PET time frame (Kb,brain). Kb,brain values of [(18)F]FDG were not significantly different between different mouse types both without and with tariquidar pretreatment. The blood-to-brain transfer rate constant of [(18)F]FDG was significantly lower in tariquidar-treated as compared with vehicle-treated rats (0.350±0.025mL/min/g versus 0.416±0.024mL/min/g, p=0.026, paired t-test) but Kb,brain values were not significantly different between both rat groups. Our results show that [(18)F]FDG is not transported by Abcb1 at the mouse and rat BBB in vivo. In addition we found no evidence for Abcg2 transport of [(18)F]FDG at the mouse BBB. Our findings imply that functional activity of ABCB1 and ABCG2 at the BBB does not need to be taken into account when interpreting brain [(18)F]FDG PET data. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT.

    PubMed

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-05-23

    Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2'-deoxy-2'-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically

  18. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma

    PubMed Central

    Graf, Nicolas; Li, Zhoulei; Herrmann, Ken; Weh, Daniel; Aichler, Michaela; Slawska, Jolanta; Walch, Axel; Peschel, Christian; Schwaiger, Markus; Buck, Andreas K; Dechow, Tobias; Keller, Ulrich

    2014-01-01

    Background Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and the thymidine analog, 3′-deoxy-3′-[18F] fluorothymidine (FLT). Methods The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Conclusion Dual PI3K/mTOR inhibition using BGT

  19. In vivo amino acid transport of subacute and chronic cerebral infarction evaluated by 12-18F-phenylalanine

    SciTech Connect

    Shimosegawa, E.; Miura, S.; Murakami, M.

    1994-05-01

    On the basis of previous validation of kinetic two-compartment model and the determination of normal values of three parameters (k{sub 1}:influx rate constant, k{sub 2}:outflux rate constant, Vd:distribution volume), PET measurements of in vivo amino acid transport from blood to brain using L-(2-18F)-fluorophenylalanine ({sup 18}F-Phe) were undergone in the patients with cerebral infarction. The purposes of this study are to evaluate the alteration of amino acid transport in subacute and chronic stage of cerebral infarction and to compare with cerebral blood flow (CBF) and oxygen metabolism. Dynamic {sup 18}F-Phe PET studies for 50 minutes were performed in 7 patients with cerebral infarction. The input function was obtained by 27 points of arterial sampling. In all patients, measurements of CBF, cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO{sub 2}), and oxygen extraction fraction (OEF) were made on the same day of {sup 18}F-Phe PET measurement. Each patient was studied twice, within 2 weeks of the onset and 3 months later. Weighted integration technique with table look-up method was applied for the reconstruction of parametric images of {sup 18}F-Phe and ROI analysis of k{sub 1}, k{sub 2}, and Vd. In subacute stage, significant reduction of k{sub 2} value in infarct area was observed when compared to that in periinfarct area (p<0.05) and in normal cortices (p<0.001). k{sub 1} value in this stage showed only slightly decrease in infarct area, therefore, Vd value in infarct area increased significantly compared to normal cortices (p<0.001). In chronic stage, both k{sub 1} and k{sub 2} values in infarct area were significantly lower than that in normal cortices (p<0.001), and corresponding Vd value reduced to normal level. Correlativity between kinetic parameters of {sup 18}F-Phe and CBF or oxygen metabolism was not observed both in subacute and chronic stage of infarction.

  20. PET Imaging Evaluation of [18F]DBT-10, a Novel Radioligand Specific to α7 Nicotinic Acetylcholine Receptors, in Nonhuman Primates

    PubMed Central

    Hillmer, Ansel T.; Zheng, Ming-Qiang; Li, Songye; Scheunemann, Matthias; Lin, Shu-fei; Holden, Daniel; Labaree, David; Ropchan, Jim; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Carson, Richard E.; Brust, Peter; Huang, Yiyun

    2015-01-01

    Purpose PET radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer’s disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[18F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([18F]DBT-10), in nonhuman primates. Methods [18F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [18F]DBT-10 PET, with measurement of [18F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [18F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (VT/fP). Results [18F]DBT-10 was produced within 90 min at high specific activities of 428±436 GBq/μmol at end of synthesis. Metabolism of [18F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15–55%. Uptake of [18F]DBT-10 in brain occurred rapidly, reaching peak SUVs of 2.9–3.7 within 30 min. The plasma free fraction was 18.8±3.4%. No evidence for radiolabeled [18F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated VT/fP values were 193–376 mL/cm3 across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose dependent blockade of [18F]DBT-10 binding by structural analog ASEM was observed throughout the

  1. Comparison of (18)F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2017-08-22

    Both perfusion-weighted MR imaging (PWI) and O-(2-(18)F-fluoroethyl)-L-tyrosine PET ((18)F-FET) provide grading information in cerebral gliomas. The aim of this study was to compare the diagnostic value of (18)F-FET PET and PWI for tumor grading in a series of patients with newly diagnosed, untreated gliomas using an integrated PET/MR scanner. Seventy-two patients with untreated gliomas [22 low-grade gliomas (LGG), and 50 high-grade gliomas (HGG)] were investigated with (18)F-FET PET and PWI using a hybrid PET/MR scanner. After visual inspection of PET and PWI maps (rCBV, rCBF, MTT), volumes of interest (VOIs) with a diameter of 16 mm were centered upon the maximum of abnormality in the tumor area in each modality and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios (TBRmean, TBRmax) were calculated. In addition, Time-to-Peak (TTP) and slopes of time-activity curves were calculated for (18)F-FET PET. Diagnostic accuracies of (18)F-FET PET and PWI for differentiating low-grade glioma (LGG) from high-grade glioma (HGG) were evaluated by receiver operating characteristic analyses (area under the curve; AUC). The diagnostic accuracy of (18)F-FET PET and PWI to discriminate LGG from HGG was similar with highest AUC values for TBRmean and TBRmax of (18)F-FET PET uptake (0.80, 0.83) and for TBRmean and TBRmax of rCBV (0.80, 0.81). In case of increased signal in the tumor area with both methods (n = 32), local hot-spots were incongruent in 25 patients (78%) with a mean distance of 10.6 ± 9.5 mm. Dynamic FET PET and combination of different parameters did not further improve diagnostic accuracy. Both (18)F-FET PET and PWI discriminate LGG from HGG with similar diagnostic performance. Regional abnormalities in the tumor area are usually not congruent indicating that tumor grading by (18)F-FET PET and PWI is based on different pathophysiological phenomena.

  2. Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma.

    PubMed

    Haylock, Anna-Karin; Spiegelberg, Diana; Mortensen, Anja C; Selvaraju, Ram K; Nilvebrant, Johan; Eriksson, Olof; Tolmachev, Vladimir; Nestor, Marika V

    2016-02-01

    We have developed the CD44v6-targeting human bivalent antibody fragment AbD19384, an engineered recombinant human bivalent Fab antibody formed via dimerization of dHLX (synthetic double helix loop helix motif) domains, for potential use in antibody-based molecular imaging of squamous cell carcinoma in the head and neck region. This is a unique construct that has, to the best of our knowledge, never been assessed for molecular imaging in vivo before. The objective of the present study was to evaluate for the first time the in vitro and in vivo binding properties of radio-iodinated AbD19384, and to assess its utility as a targeting agent for molecular imaging of CD44v6-expressing tumors. Antigen specificity and binding properties were assessed in vitro. In vivo specificity and biodistribution of 125I-AbD19384 were next evaluated in tumor-bearing mice using a dual-tumor setup. Finally, AbD19384 was labeled with 124I, and its imaging properties were assessed by small animal PET/CT in tumor bearing mice, and compared with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). In vitro studies demonstrated CD44v6-specific binding with slow off-rate for AbD19384. A favorable biodistribution profile was seen in vivo, with tumor-specific uptake. Small animal PET/CT images of 124I-AbD19384 supported the results through clearly visible high CD44v6-expressing tumors and faintly visible low expressing tumors, with superior imaging properties compared to 18F-FDG. Tumor-to-blood ratios increased with time for the conjugate (assessed up to 72 h p.i.), although 48 h p.i. proved best for imaging. Biodistribution and small-animal PET studies demonstrated that the recombinant Fab-dHLX construct AbD19384 is a promising tracer for imaging of CD44v6 antigen expression in vivo, with the future aim to be used for individualized diagnosis and early detection of squamous cell carcinomas in the head and neck region. Furthermore, this proof-of-concept research established the feasibility of using

  3. PET with radiolabeled aminoacid.

    PubMed

    Crippa, F; Alessi, A; Serafini, G L

    2012-04-01

    Since the clinical introduction of FDG, neuroimaging has been the first area of PET application in oncology. Later, while FDG-PET became progressively a key imaging modality in the management of the majority of malignancies outside the brain, its neuro-oncologic indications faced some limitations because of the unfavourable characteristics of FDG as brain tumor-seeking agent. PET applications in neuro-oncology have received new effectiveness by the advent of positron-emission labelled amino acids, so that it has been coined the term "Amino acid PET" to differentiate this imaging tool from FDG-PET. Radiolabeled amino acids are a very interesting class of PET tracers with great diagnostic potential in neuro-oncology because of their low uptake in normal brain and, conversely, high uptake in most brain tumors including low-grade gliomas. The present article surveys the results obtained using L-[methyl-11C]Methionine (MET), that has been the ancestor of PET amino acid tracers and is still the most popular amino acid imaging modality in oncology, and stresses the important role that this diagnostic modality can play in the evaluation of brain tumors. However, the use of MET is restricted to PET centers with an in-house cyclotron and radiochemistry facility, because of the short half-life (20 min) of 11C. The promising results of MET have stimulated the development of 18F-labelled aminoacid tracers, particularly O-(2-18F-fluoeoethyl1)-L-tyrosine (FET), that has the same properties of MET and, thanks to the longer half-life of 18F (about 110 min), allows a distribution strategy from a production tracer site to user satellite PET centers. Considering a more widespread use of Amino acid PET, together with the recent development of integrated PET-MRI imaging systems, and the oncoming clinical validation of other interesting PET tracers, i.e. FMISO or 18F-FAZA for hypoxia imaging and FLT for tumor proliferation imaging, it can be reasonably expected that metabolic imaging

  4. Evaluation of a novel type of imaging probe based on a recombinant bivalent mini-antibody construct for detection of CD44v6-expressing squamous cell carcinoma

    PubMed Central

    HAYLOCK, ANNA-KARIN; SPIEGELBERG, DIANA; MORTENSEN, ANJA C.; SELVARAJU, RAM K.; NILVEBRANT, JOHAN; ERIKSSON, OLOF; TOLMACHEV, VLADIMIR; NESTOR, MARIKA V.

    2016-01-01

    We have developed the CD44v6-targeting human bivalent antibody fragment AbD19384, an engineered recombinant human bivalent Fab antibody formed via dimerization of dHLX (synthetic double helix loop helix motif) domains, for potential use in antibody-based molecular imaging of squamous cell carcinoma in the head and neck region. This is a unique construct that has, to the best of our knowledge, never been assessed for molecular imaging in vivo before. The objective of the present study was to evaluate for the first time the in vitro and in vivo binding properties of radio-iodinated AbD19384, and to assess its utility as a targeting agent for molecular imaging of CD44v6-expressing tumors. Antigen specificity and binding properties were assessed in vitro. In vivo specificity and biodistribution of 125I-AbD19384 were next evaluated in tumor-bearing mice using a dual-tumor setup. Finally, AbD19384 was labeled with 124I, and its imaging properties were assessed by small animal PET/CT in tumor bearing mice, and compared with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). In vitro studies demonstrated CD44v6-specific binding with slow off-rate for AbD19384. A favorable biodis-tribution profile was seen in vivo, with tumor-specific uptake. Small animal PET/CT images of 124I-AbD19384 supported the results through clearly visible high CD44v6-expressing tumors and faintly visible low expressing tumors, with superior imaging properties compared to 18F-FDG. Tumor-to-blood ratios increased with time for the conjugate (assessed up to 72 h p.i.), although 48 h p.i. proved best for imaging. Biodistribution and small-animal PET studies demonstrated that the recombinant Fab-dHLX construct AbD19384 is a promising tracer for imaging of CD44v6 antigen expression in vivo, with the future aim to be used for individualized diagnosis and early detection of squamous cell carcinomas in the head and neck region. Furthermore, this proof-of-concept research established the feasibility of using

  5. First-in-Human Phase I Trial of Two Schedules of OSI-930, a Novel Multikinase Inhibitor, Incorporating Translational Proof-of-Mechanism Studies

    PubMed Central

    Yap, Timothy A.; Arkenau, Hendrik-Tobias; Camidge, D. Ross; George, Suzanne; Serkova, Natalie J.; Gwyther, Stephen J.; Spratlin, Jennifer L.; Lal, Rohit; Spicer, James; Desouza, Nandita M.; Leach, Martin O.; Chick, Jon; Poondru, Srinivasu; Boinpally, Ramesh; Gedrich, Richard; Brock, Katie; Stephens, Andrew; Eckhardt, S. Gail; Kaye, Stan B.; Demetri, George; Scurr, Michelle

    2013-01-01

    Purpose OSI-930 is a novel, potent, oral small-molecule receptor tyrosine kinase inhibitor, predominantly against VEGF receptors (VEGFR), c-Kit, and platelet-derived growth factor receptors. A phase I trial was undertaken to determine safety, maximum-tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and antitumor activity of OSI-930 in patients with advanced solid tumors. Experimental Design OSI-930 was administered once or twice a day using a modified accelerated titration design. Pharmacokinetics and plasma soluble VEGFR2 (sVEGFR2) studies were undertaken. Dynamic contrast-enhanced MRI (DCE-MRI) and 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) MTD expansion cohorts were conducted. Results Fifty-eight patients received OSI-930 in 2 schedules; once a day schedule: 12 patients at doses up to 1,600 mg without reaching MTD; twice a day schedule: 46 patients at 400 mg (n = 7), 500 mg (n = 31), and 600 mg (n =8). Dose-limiting toxicities were observed at 600 mg twice a day (n =3): G3 rash (n =2) and G4 γ-glutamyltransferase, establishing the MTD at 500 mg twice a day. Common G1–2 toxicities included fatigue, diarrhea, nausea, and rash. Antitumor responses were seen in 2 patients with advanced ovarian cancer [Response Evaluation Criteria in Solid Tumors (RECIST) partial response (PR) (n = 1); GCIG CA125 response (n = 1)]. Eleven of 19 heavily pretreated imatinib-resistant patients with gastrointestinal stromal tumors achieved RECIST stable disease (median duration: 126 days), with FDG-PET scans showing PRs in 4 of 9 patients. OSI-930 exposure increased with dose; substantial decreases in sVEGFR levels were observed with OSI-930 twice a day doses ≥400 mg, while DCE-MRI responses were shown in 4 of 6 patients. Conclusions OSI-930 is safe and well tolerated, with pharmacokinetic–pharmacodynamic data supporting proof-of-mechanism with clinically relevant antitumor activity. PMID:23403628

  6. Dosimetric evaluation of the staff working in a PET/CT department

    NASA Astrophysics Data System (ADS)

    Dalianis, K.; Malamitsi, J.; Gogou, L.; Pagou, M.; Efthimiadou, R.; Andreou, J.; Louizï, A.; Georgiou, E.

    2006-12-01

    The dosimetric literature data concerning the medical personnel working in positron emission tomography/computed tomography (PET/CT) departments are limited. Therefore, we measured the radiation dose of the staff working in the first PET/CT department in Greece at the Diagnostic and Therapeutic Center of Athens HYGEIA—Harvard Medical International. As, for the time being, only 2-deoxy-2-[ 18F]fluoro-d-glucose (FDG) PET studies are performed, radiation dose measurements concern those derived from dispensing of the radiopharmaceutical as well as from the patients undergoing FDG-PET imaging. Our aim is to develop more effective protective measures against radionuclide exposure. To estimate the effective dose from external exposure, all seven members of the staff (two nurses, two medical physicists, two technologists, one secretary) had TLD badges worn at the upper pocket of their overall, TLD rings on the right hand and digital dosimeters at their upper side pocket. In addition, isodose curves were measured with thermoluminescence detectors for distances of 20, 50, 70 and 100 cm away from patients who had been injected with 18F-FDG. Dose values of the PET/CT staff were measured with digital detectors, TLD badges and TLD rings over the first 8 months for a total of 160 working days of the department's operation, consisting of a workload of about 10-15 patients/week who received 250-420 MBq of 18F-FDG each. Whole - body collective doses and hand doses for the staff were the following: Nurse #1 received 1.6 mSv as a whole body dose and 2,1 as a hand dose, Nurse #2 received 1.9 and 2.4 mSv respectively. For medical physicist #1 the dose values were 1.45 mSv whole body and 1.7 mSv hand dose, for medical physicist #2 1.67 mSv wholebody dose and 1.55 mSv hand dose and for technologists #1 & #2 the whole body doses were 0.7 and 0.64 mSv respectively. Lastly, the secretary received 0.1 mSv whole body dose. These preliminary data have shown that the dose levels of our PET

  7. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans.

    PubMed

    Albert, Nathalie L; Winkelmann, Isabel; Suchorska, Bogdana; Wenter, Vera; Schmid-Tannwald, Christine; Mille, Erik; Todica, Andrei; Brendel, Matthias; Tonn, Jörg-Christian; Bartenstein, Peter; la Fougère, Christian

    2016-06-01

    Current guidelines for glioma imaging by positron emission tomography (PET) using the amino acid analogue O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET) recommend image acquisition from 20-40 min post injection (p.i.). The maximal tumour-to-background evaluation (TBRmax) obtained in these summation images does not enable reliable differentiation between low and high grade glioma (LGG and HGG), which, however, can be achieved by dynamic (18)F-FET-PET. We investigated the accuracy of tumour grading using TBRmax values at different earlier time points after tracer injection. Three hundred and fourteen patients with histologically proven primary diagnosis of glioma (131 LGG, 183 HGG) who had undergone 40-min dynamic (18)F-FET-PET scans were retrospectively evaluated. TBRmax was assessed in the standard 20-40 min summation images, as well as in summation images from 0-10 min, 5-15 min, 5-20 min, and 15-30 min p.i., and kinetic analysis was performed. TBRmax values and kinetic analysis were correlated with histological classification. ROC analyses were performed for each time frame and sensitivity, specificity, and accuracy were assessed. TBRmax values in the earlier summation images were significantly better for tumour grading (P < 0.001) when compared to standard 20-40 min scans, with best results for the early 5-15 min scan. This was due to higher TBRmax in the HGG (3.9 vs. 3.3; p < 0.001), while TBRmax remained nearly stable in the LGG (2.2 vs. 2.1). Overall, accuracy increased from 70 % in the 20-40 min analysis to 77 % in the 5-15 min images, but did not reach the accuracy of dynamic analysis (80 %). Early TBRmax assessment (5-15 min p.i.) is more accurate for the differentiation between LGG and HGG than the standard static scan (20-40 min p.i.) mainly caused by the characteristic high (18)F-FET uptake of HGG in the initial phase. Therefore, when dynamic (18)F-FET-PET cannot be performed, early TBRmax assessment can be considered as an

  8. FDG-PET in patients with fever of unknown origin: the importance of diagnosing large vessel vasculitis.

    PubMed

    Meller, J; Sahlmann, C O; Gürocak, O; Liersch, T; Meller, B

    2009-02-01

    This review analyzes the impact of 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) in the diagnostic work-up of classic fever of unknown origin (FUO) according to the criteria first proposed by Petersorf in 1961 and later modified by Durack et al. in 1991. Algorithms currently used in this diagnostic process are not strictly evidence based up to now. FDG accumulates in malignant tissues, but also in inflammatory cells by the overexpression of facultative glucose transporter-isotypes (mainly GLUT-1 and GLUT-3) and by an overproduction of glycolytic enzymes. Therefore, this technique covers a broad spectrum of possible etiologies for FUO. Once imaged, these lesions can be further investigated by other (e.g. invasive) and more specific methods. Until now, four prospective studies using FDG-PET in patients with classic FUO, encompassing 167 patients in total are published. Three retrospective studies with 125 patients are also available. These studies are discussed and weighted according to the control of selection-bias that was performed. An interstudy-bias may also be present resulting from a considerable variability in causes of FUO. A low number of diagnostic scans in a study may sometimes be related to a high rate of fevers caused by miscellaneous disorders or to a high rate of undiagnosed patients. In these disease categories, focal pathologies that can be imaged with FDG-PET, are rare. A high number of diagnostic scans is always related to a high prevalence of patients with medium- and large-vessel vasculitis. Available data indicate that FDG-PET has the potential to play an important role as a second line procedure in the management of about 1/3 of patients with classic FUO. It is expected that hybrid imaging (PET/computed tomography [CT]; PET/magnetic resonance imaging [MRI]) will improve the diagnostic impact of FDG-PET further, but prospective data about the value of this methods are currently not available. The question as to how

  9. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: a positron-emitting tomography study.

    PubMed

    Virtanen, Kirsi A; Iozzo, Patricia; Hällsten, Kirsti; Huupponen, Risto; Parkkola, Riitta; Janatuinen, Tuula; Lönnqvist, Fredrik; Viljanen, Tapio; Rönnemaa, Tapani; Lönnroth, Peter; Knuuti, Juhani; Ferrannini, Ele; Nuutila, Pirjo

    2005-09-01

    To evaluate the relative impact of abdominal obesity and newly diagnosed type 2 diabetes on insulin action in skeletal muscle and fat tissue, we studied 61 men with (n = 31) or without (n = 30) diabetes, subgrouped into abdominally obese or nonobese according to the waist circumference. Adipose tissue depots were quantified by magnetic resonance imaging, and regional glucose uptake was measured using 2-[(18)F]fluoro-2-deoxyglucose/positron emission tomography during euglycemic hyperinsulinemia. Across groups, glucose uptake per unit tissue weight was higher in visceral (20.5 +/- 1.4 micromol . min(-1) . kg(-1)) than in abdominal (9.8 +/- 0.9 micromol min(-1) . kg(-1), P < 0.001) or femoral (12.3 +/- 0.6 micromol . min(-1) . kg(-1), P < 0.001) subcutaneous tissue and approximately 40% lower than in skeletal muscle (33.1 +/- 2.5 micromol . min(-1) . kg(-1), P < 0.0001). Abdominal obesity was associated with a marked reduction in glucose uptake per unit tissue weight in all fat depots and in skeletal muscle (P < 0.001 for all regions). Recent type 2 diabetes per se had little additional effect. In both intra-abdominal adipose (r = -0.73, P < 0.0001) and skeletal muscle (r = -0.53, P < 0.0001) tissue, glucose uptake was reciprocally related to intra-abdominal fat mass in a curvilinear fashion. When regional glucose uptake was multiplied by tissue mass, total glucose uptake per fat depot was similar irrespective of abdominal obesity or type 2 diabetes, and its contribution to whole-body glucose uptake increased by approximately 40% in obese nondiabetic and nonobese diabetic men and was doubled in obese diabetic subjects. We conclude that 1) in abdominal obesity, insulin-stimulated glucose uptake rate is markedly reduced in skeletal muscle and in all fat depots; 2) in target tissues, this reduction is reciprocally (and nonlinearly) related to the amount of intra-abdominal fat; 3) mild, recent diabetes adds little insulin resistance to that caused by abdominal obesity

  10. Assessment of (10)B concentration in boron neutron capture therapy: potential of image-guided therapy using (18)FBPA PET.

    PubMed

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of (10)B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The (10)B concentration in normal organs after loading with (10)B, however, has not been established in humans. In this study, we performed 4-borono-2-[(18)F]-fluoro-phenylalanine ((18)FBPA) PET in healthy volunteers and estimated the chronological changes in the (10)B concentrations of normal organs. In 6 healthy volunteers, whole-body (18)FBPA PET scans were repeated 7 times during 1 h, and the mean (18)FBPA distributions of 13 organs were measured. Based on the (18)FBPA PET data, we then estimated the changes in the (10)B concentrations of the organs when the injection of a therapeutic dose of (10)BPA-fructose complex ((10)BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean (18)FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean (18)FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of (10)BPA-fr was assumed, the estimated mean (10)B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean (10)B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean (10)B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. (18)FBPA PET has a potential to estimate (10)B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  11. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    PubMed

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal (10)B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[(18)F]fluorofenbufen ester boronopinacol (m-[(18)F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [(18)F]FFBPin to compete FBPin for binding to COX-1 (IC50=0.91±0.68μM) and COX-2 (IC50=0.33±0.24μM). [(18)F]FFBPin-derived 60-min dynamic PET scans predict the (10)B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[(18)F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [(18)F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  12. Dissecting molecular mechanisms in the living brain of dementia patients.

    PubMed

    Barrio, Jorge R; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Petric, Andrej; Small, Gary W; Kepe, Vladimir

    2009-07-21

    Understanding the molecular mechanisms associated with the development of dementia is essential for designing successful interventions. Dementia, like cancer and cardiovascular disease, requires early detection to potentially arrest or prevent further disease progression. By the time a neurologist begins to manage clinical symptoms, the disease has often damaged the brain significantly. Because successful treatment is the logical goal, detecting the disease when brain damage is still limited is of the essence. The role of chemistry in this discovery process is critical. With the advent of molecular imaging, the understanding of molecular mechanisms in human neurodegenerative diseases has exploded. Traditionally, knowledge of enzyme and neurotransmitter function in humans has been extrapolated from animal studies, but now we can acquire data directly from both healthy and diseased human subjects. In this Account, we describe the use of molecular imaging probes to elucidate the biochemical and cellular bases of dementia (e.g., Alzheimer's disease) and the application of these discoveries to the design of successful therapeutic interventions. Molecular imaging permits observation and evaluation of the basic molecular mechanisms of disease progression in the living brains of patients. 2-Deoxy-2-[(18)F]fluoro-d-glucose is used to assess the effect of Alzheimer's disease progression on neuronal circuits projecting from and to the temporal lobe (one of the earliest metabolic signs of the disease). Recently, we have developed imaging probes for detection of amyloid neuropathology (both tau and beta-amyloid peptide deposits) and neuronal losses. These probes allow us to visualize the development of pathology in the living brain of dementia patients and its consequences, such as losses of critical neurons associated with memory deficits and other neuropsychiatric impairments. Because inflammatory processes are tightly connected to the brain degenerative processes

  13. Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET.

    PubMed

    Buchert, R; Obrocki, J; Thomasius, R; Väterlein, O; Petersen, K; Jenicke, L; Bohuslavizki, K H; Clausen, M

    2001-08-01

    The popular recreational drug, 'ecstasy', mainly contains 3,4-methylenedioxymethamphetamine (MDMA) as the psychotropic agent. MDMA is suspected of causing neurotoxic lesions to the serotonergic system as demonstrated by animal studies, examinations of human cerebrospinal fluid, and the first positron emission tomography (PET) studies using the serotonin transporter ligand [11C]-McN5652. Damage of serotonergic afferents might mediate long-lasting alterations of cerebral glucose metabolism as a secondary effect. To study a relationship between ecstasy use and long-lasting alterations, PET using 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) was performed in 93 ecstasy users and 27 subjects without any known history of illicit-drug abuse. As an index of glucose metabolism, mean normalized FDG uptake was determined in both groups using a computerized brain atlas, and was compared for a selected number of brain regions. FDG uptake was normalized in each individual by dividing local FDG uptake by the maximum FDG uptake in the individual's brain. Within the group of ecstasy users we examined the relationship between FDG uptake and cumulative ecstasy dose, time since last ecstasy ingestion at the time of PET scanning, and age at first ecstasy use, respectively. Normalized FDG uptake was reduced within the striatum and amygdala of ecstasy users when compared to controls. No statistically significant correlation of the FDG uptake and the cumulative dose of ecstasy was detected. A positive correlation was found in the cingulate between FDG uptake and the time since last ecstasy ingestion. As compared to the control group, normalized FDG uptake in the cingulate was reduced in ecstasy users who took ecstasy during the last 6 months, while it was elevated in former ecstasy users who did not consume ecstasy for more than 1 year. FDG uptake was significantly more affected in ecstasy users who started to consume ecstasy before the age of 18 years. In conclusion, ecstasy abuse causes long

  14. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy

    PubMed Central

    Topakian, Raffi; Pichler, Robert

    2016-01-01

    Abstract Background Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20–40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as well as non routinely used 18F-Flumazenil (18F-FMZ) tracers PET/CT in patients with refractory epilepsy. Conclusions Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays 18F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, 18F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of 11C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, 18F-FMZ might be established as one of the tracers of choice for patients

  15. Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences

    PubMed Central

    Fakhri, Georges El; Trott, Cathryn M.; Sitek, Arkadiusz; Bonab, Ali; Alpert, Nathaniel M.

    2013-01-01

    Purpose With single-photon emission computed tomography, simultaneous imaging of two physiological processes relies on discrimination of the energy of the emitted gamma rays, whereas the application of dual-tracer imaging to positron emission tomography (PET) imaging has been limited by the characteristic 511-keV emissions. Procedures To address this limitation, we developed a novel approach based on generalized factor analysis of dynamic sequences (GFADS) that exploits spatio-temporal differences between radiotracers and applied it to near-simultaneous imaging of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) (brain metabolism) and 11C-raclopride (D2) with simulated human data and experimental rhesus monkey data. We show theoretically and verify by simulation and measurement that GFADS can separate FDG and raclopride measurements that are made nearly simultaneously. Results The theoretical development shows that GFADS can decompose the studies at several levels: (1) It decomposes the FDG and raclopride study so that they can be analyzed as though they were obtained separately. (2) If additional physiologic/anatomic constraints can be imposed, further decomposition is possible. (3) For the example of raclopride, specific and nonspecific binding can be determined on a pixel-by-pixel basis. We found good agreement between the estimated GFADS factors and the simulated ground truth time activity curves (TACs), and between the GFADS factor images and the corresponding ground truth activity distributions with errors less than 7.3±1.3 %. Biases in estimation of specific D2 binding and relative metabolism activity were within 5.9±3.6 % compared to the ground truth values. We also evaluated our approach in simultaneous dual-isotope brain PET studies in a rhesus monkey and obtained accuracy of better than 6 % in a mid-striatal volume, for striatal activity estimation. Conclusions Dynamic image sequences acquired following near-simultaneous injection of two PET radiopharmaceuticals

  16. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET.

    PubMed

    Iyer, M; Barrio, J R; Namavari, M; Bauer, E; Satyamurthy, N; Nguyen, K; Toyokuni, T; Phelps, M E; Herschman, H R; Gambhir, S S

    2001-01-01

    We have synthesized and evaluated 8-[18F]fluoropenciclovir (FPCV) and compared it with 8-[18F]fluoroganciclovir (FGCV) for monitoring the expression of herpes simplex virus type 1 thymidine kinase (HSV1 -tk) reporter gene in cell culture and in vivo. C6 rat glioma cells stably transfected with HSV1-tk (C6-stb-tk+) and control C6 cells were evaluated for their ability to accumulate FGCV versus FPCV. For in vivo studies, 15 mice were injected by tail vein with increasing levels of an adenoviral vector carrying HSV1-tk. Forty-eight hours later the mice were injected with FPCV and killed 3 h later. The percentage injected dose per gram (%ID/g) liver was then determined. Two additional mice were studied by microPET and autoradiography using FPCV to image adenoviral-mediated hepatic HSV1-tk reporter gene expression. A tumor-bearing mouse (C6 control and C6-stb-tk+) was imaged with FDG, FGCV, and FPCV. Two mice carrying tumors expressing two different reporter genes, HSV1-tk and dopamine type 2 receptor (D2R), were also imaged by microPET using FPCV (day 1) and 3-(2'-[18F]fluoroethyl)spiperone (FESP) (day 2). FPCV shows a significantly greater accumulation in C6-stb-tk+ cells than does FGCV (P < 0.05). Over identical ranges of adenoviral administration, mouse liver shows a higher %ID/g liver for FPCV (0%-9%) compared with our previously reported results with FGCV (0%-3%). In C6 control and C6-stb-tk+ tumor-bearing mice, FPCV has a greater accumulation than does FGCV for equal levels of HSV1-tk gene expression. In mice carrying tumors expressing either HSV1-tk or D2R reporter genes, there is a corresponding retention of FPCV and FESP, respectively. These results indicate that FPCV is a better reporter probe than is FGCV for imaging lower levels of HSV1 -tk gene expression in vivo. The results also reveal the ability to monitor the expression of two distinct reporter genes in the same animal using reporter probes specific for each gene.

  17. Semiautomated radiosynthesis and biological evaluation of [18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression.

    PubMed

    Chin, Frederick T; Namavari, Mohammed; Levi, Jelena; Subbarayan, Murugesan; Ray, Pritha; Chen, Xiaoyuan; Gambhir, Sanjiv S

    2008-01-01

    2'-deoxy-2'-[(18)F]fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil ([(18)F]FEAU) is a promising radiolabeled nucleoside designed to monitor Herpes Simplex Virus Type 1 thymidine kinase (HSV1-tk) reporter gene expression with positron emission tomography (PET). However, the challenging radiosynthesis creates problems for being able to provide [(18)F]FEAU routinely. We have developed a routine method using a commercial GE TRACERlab FX-FN radiosynthesis module with customized equipment to provide [(18)F]FEAU. All radiochemical yields are decay corrected to end-of-bombardment and reported as means +/- SD. Radiofluorination (33 +/- 8%; n = 4), bromination (85 +/- 8%; n = 4), coupling reaction (83 +/- 6%; n = 4), base hydrolysis steps, and subsequent high-performance liquid chromatography purification afforded purified [(18)F]FEAU beta-anomer in 5 +/- 1% overall yield (n = 3 runs) after approximately 5.5 h and a beta/alpha-anomer ratio of 7.4. Radiochemical/chemical purities and specific activity exceeded 99% and 1.3 Ci/micromol (48 GBq/micromol), respectively. In cell culture, [(18)F]FEAU showed significantly (P < 0.05) higher accumulation in C6 cells expressing HSV1-tk/sr39tk as compared to wild-type C6 cells. Furthermore, [(18)F]FEAU showed slightly higher accumulation than 9-[4-[(18)F]fluoro-3-(hydroxymethyl)butylguanine ([(18)F]FHBG) in cells expressing HSV1-tk (P < 0.05), whereas [(18)F]FHBG showed significantly higher (P < 0.05) accumulation than [(18)F]FEAU in HSV1-sr39tk-expressing cells. micro-PET imaging of mice carrying tumor xenografts of C6 cells stably expressing HSV1-tk or HSV1-sr39tk are consistent with the cell uptake results. The [(18)F]FEAU mouse images also showed very low gastrointestinal signal with predominant renal clearance as compared to [(18)F]FHBG. The routine radiosynthesis of [(18)F]FEAU was successfully semiautomated using a commercial module along with customized equipment to provide the beta-anomer in modest yields. Although further

  18. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma.

    PubMed

    Graf, Nicolas; Li, Zhoulei; Herrmann, Ken; Weh, Daniel; Aichler, Michaela; Slawska, Jolanta; Walch, Axel; Peschel, Christian; Schwaiger, Markus; Buck, Andreas K; Dechow, Tobias; Keller, Ulrich

    2014-01-01

    Dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226), in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET) imaging using the standard tracer, 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and the thymidine analog, 3'-deoxy-3'-[(18)F] fluorothymidine (FLT). The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In vivo, both FDG-PET and FLT-PET discriminated sensitive from resistant lymphoma, as indicated by a significant reduction of tumor-to-background ratios on day 7 in treated SU-DHL-1 lymphoma-bearing animals compared with the control group, but not in animals with Karpas299 xenografts. Imaging results correlated with a marked decrease in the proliferation marker Ki67, and a slight increase in the apoptotic marker, cleaved caspase 3, as revealed by immunostaining of explanted lymphoma tissue. Dual PI3K/mTOR inhibition using BGT226 is effective in ALK

  19. Quantitative Analysis of Torso FDG-PET Scans by Using Anatomical Standardization of Normal Cases from Thorough Physical Examinations.

    PubMed

    Hara, Takeshi; Kobayashi, Tatsunori; Ito, Satoshi; Zhou, Xiangrong; Katafuchi, Tetsuro; Fujita, Hiroshi

    2015-01-01

    Understanding of standardized uptake value (SUV) of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) depends on the background accumulations of glucose because the SUV often varies the status of patients. The purpose of this study was to develop a new method for quantitative analysis of SUV of FDG-PET scan images. The method included an anatomical standardization and a statistical comparison with normal cases by using Z-score that are often used in SPM or 3D-SSP approach for brain function analysis. Our scheme consisted of two approaches, which included the construction of a normal model and the determination of the SUV scores as Z-score index for measuring the abnormality of an FDG-PET scan image. To construct the normal torso model, all of the normal images were registered into one shape, which indicated the normal range of SUV at all voxels. The image deformation process consisted of a whole body rigid registration of shoulder to bladder region and liver registration and a non-linear registration of body surface by using the thin-plate spline technique. In order to validate usefulness of our method, we segment suspicious regions on FDG-PET images manually, and obtained the Z-scores of the regions based on the corresponding voxels that stores the mean and the standard deviations from the normal model. We collected 243 (143 males and 100 females) normal cases to construct the normal model. We also extracted 432 abnormal spots from 63 abnormal cases (73 cancer lesions) to validate the Z-scores. The Z-scores of 417 out of 432 abnormal spots were higher than 2.0, which statistically indicated the severity of the spots. In conclusions, the Z-scores obtained by our computerized scheme with anatomical standardization of torso region would be useful for visualization and detection of subtle lesions on FDG-PET scan images even when the SUV may not clearly show an abnormality.

  20. Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203.

    PubMed

    Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2012-02-01

    A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the

  1. Quantitative Positron Emission Tomography Imaging Detects Early Metabolic Remodeling in a Mouse Model of Pressure Overload Left Ventricular Hypertrophy in vivo

    PubMed Central

    Zhong, Min; Alonso, Clayton E.; Taegtmeyer, Heinrich; Kundu, Bijoy K.

    2013-01-01

    We proposed that metabolic remodeling in the form of increased myocardial glucose analogue 2-[18F] fluoro-2deoxy-D-glucose (FDG) uptake precedes and triggers the onset of severe contractile dysfunction in pressure overload left ventricular hypertrophy (LVH) in vivo. To test this hypothesis we used a mouse model of transverse aortic constriction (TAC) together with Positron Emission Tomography (PET) and assessed serial changes in cardiac metabolism and function over 7 days. Methods PET scans of 16 C57BL/6 male mice were performed using a microPET scanner under sevofluorane anesthesia. A 10-minute transmission scan was followed by a 60-minute dynamic FDG-PET scan with cardiac and respiratory gating. Blood glucose levels were measured before and after the emission scan. Transverse aortic constriction (TAC) and sham surgeries were performed after baseline imaging. Osmotic mini-pumps containing either propranolol (5 mg/kg/day) or vehicle alone were implanted subcutaneously at the end of surgery. Subsequent scans were taken at days 1 and 7 after surgery. A compartment model, in which the blood input function with spill-over and partial volume corrections and the metabolic rate constants in a 3-compartment model are simultaneously estimated, was used to determine the net myocardial FDG influx constant, Ki. The rate of myocardial glucose use, rMGU, was also computed. Estimations of the ejection fractions (EF) were based on the high resolution gated PET images Results Mice undergoing TAC surgery exhibited an increase in the Ki (580%) and glucose usage the day after surgery indicating early adaptive response. On day 7 the EF had decreased by 24% indicating a maladaptive response. Average Ki increases were not linearly associated with increases in rMGU. Ki exceeded rMGU by 29% in the TAC mice. TAC Mice treated with propranolol attenuated rate of FDG uptake, diminished mismatch between Ki and rMGU (9%) and rescued cardiac function. Conclusions Metabolic maladaptation precedes

  2. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer

    PubMed Central

    Moreno, Paula; Lara-Chica, Maribel; Soler-Torronteras, Rafael; Caro, Teresa; Medina, Manuel; Álvarez, Antonio; Salvatierra, Ángel; Muñoz, Eduardo; Calzado, Marco A.

    2015-01-01

    Objectives Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH) proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry) in human non-small cell lung cancer (NSCLC) samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features. Materials and Methods One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables. Results The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry) in non-small cell lung cancer (NSCLC). We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC) and squamous cell lung cancer (SCC). Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18F)fluoro-D-glucose) uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates

  3. Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec)

    PubMed Central

    Kil, Kun-Eek; Ding, Yu-Shin; Lin, Kuo-Shyan; Alexoff, David; Kim, Sung Won; Shea, Colleen; Xu, Youwen; Muench, Lisa; Fowler, Joanna S.

    2010-01-01

    Introduction Imatinib mesylate (Gleevec) is a well known drug for treating chronic myeloid leukemia and gastrointestinal stromal tumors. Its active ingredient, imatinib ([4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridyl)-2-pyrimidinyl]amino]phenyl]benzamide), blocks the activity of several tyrosine kinases. Here we labeled imatinib with carbon-11 as a tool for determining the drug distribution and pharmacokinetics of imatinib, and we carried out positron emission tomography (PET) studies in baboons. Methods [N-11C-methyl]imatinib was synthesized from [11C]methyl iodide and norimatinib was synthesized by the demethylation of imatinib (isolated from Gleevec tablets) according to a patent procedure [Collins JM, Klecker RW Jr, Anderson LW. Imaging of drug accumulation as a guide to antitumor therapy. US Patent 20030198594A1, 2003]. Norimatinib was also synthesized from the corresponding amine and acid. PET studies were carried out in three baboons to measure pharmacokinetics in the brain and peripheral organs and to determine the effect of a therapeutic dose of imatinib. Log D and plasma protein binding were also measured. Results [N-11C-methyl]imatinib uptake in the brain is negligible (consistent with P-glycoprotein-mediated efflux); it peaks and clears rapidly from the heart, lungs and spleen. Peak uptake and clearance occur more slowly in the liver and kidneys, followed by accumulation in the gallbladder and urinary bladder. Pretreatment with imatinib did not change uptake in the heart, lungs, kidneys and spleen, and increased uptake in the liver and gallbladder. Conclusions [N-11C-methyl]imatinib has potential for assessing the regional distribution and kinetics of imatinib in the human body to determine whether the drug targets tumors and to identify other organs to which the drug or its labeled metabolites distribute. Paired with tracers such as 2-deoxy-2-[18F]fluoro-D-glucose (18FDG) and 3′-deoxy-3′-[18F]fluorothymidine (18FLT), [N-11C

  4. Effect of dosimeter's position on occupational radiation extremity dose measurement for nuclear medicine workers during (18)F-FDG preparation for PET/CT.

    PubMed

    Salesses, Fabien; Perez, Paul; Maillard, Aline E; Blanchard, Julie; Mallard, Sabine; Bordenave, Laurence

    2016-12-01

    The recent spread of positron emission tomography-computed tomography (PET/CT) poses extremity dosimetry challenges. The question arose whether the radiation dose measured by the ring thermoluminescent dosimeter usually worn on the proximal phalanx (P1) of the index finger measures doses that are representative of the true doses received by the upper extremities of the operators. A prospective individual dosimetry study was performed in which the personal equivalent dose Hp (0.07) received during a specific 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)F-FDG) manual dose-dispensing procedure was measured in a paired design by two operational personal electronic dosimeters fitted on the palm side of the index finger, namely in the P1 and distal phalanx (P3) positions. The study participants were ten nuclear medicine technologists working in two nuclear medicine departments. The personal equivalent radiation doses received by the palm side of the proximal phalanx of the index finger [Hp (0.07)P1] and that received by the distal phalanx [Hp (0.07)P3] were compared. The median Hp (0.07)P3/Hp (0.07)P1 ratio per participant varied between 1.0 and 2.5 (based on 23 to 31 measurements per participant). The 271 paired measurements revealed a crude Hp (0.07)P3/Hp (0.07)P1 ratio of 1.67, significantly different from 1 (p = 0.0004, 95 % CI [1.35-2.07]). When adjusted on participant's gender and mother vial activity, the ratio was similar (1.53, p = 0.003, 95 % CI [1.22-1.92]). The study demonstrated a significant disparity that may exist between the radiation doses measured in the P1 and P3 positions of operators during (18)F-FDG manipulation. These findings emphasize the importance of performing workplace dosimetry studies adapted to each radiopharmaceutical and manipulation thereof, aiming to guarantee optimal workers' dosimetry monitoring schemes. Hospital Nursing and Paramedical Research Program (PHRIP, 2011-2013) from the French Ministry of Health (DGOS), http

  5. (18)F-FET PET Uptake Characteristics in Patients with Newly Diagnosed and Untreated Brain Metastasis.

    PubMed

    Unterrainer, Marcus; Galldiks, Norbert; Suchorska, Bogdana; Kowalew, Lara-Caroline; Wenter, Vera; Schmid-Tannwald, Christine; Niyazi, Maximilian; Bartenstein, Peter; Langen, Karl-Josef; Albert, Nathalie L

    2017-04-01

    In patients with brain metastasis, PET using labeled amino acids has gained clinical importance, mainly regarding the differentiation of viable tumor tissue from treatment-related effects. However, there is still limited knowledge concerning the uptake characteristics in patients with newly diagnosed and untreated brain metastases. Hence, we evaluated the uptake characteristics in these patients using dynamic O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET. Methods: Patients with newly diagnosed brain metastases without prior local therapy and (18)F-FET PET scanning were retrospectively identified in 2 centers. Static and dynamic PET parameters (maximal/mean tumor-to-brain-ratio [TBRmax/TBRmean], biologic tumor volume [BTV], and time-activity curves with minimal time to peak [TTPmin]) were evaluated and correlated with MRI parameters (maximal lesion diameter, volume of contrast enhancement) and originating primary tumor. Results: Forty-five brain metastases in 30 patients were included. Forty of 45 metastases (89%) had a TBRmax ≥ 1.6 and were classified as (18)F-FET-positive (median TBRmax, 2.53 [range, 1.64-9.47]; TBRmean, 1.86 [range, 1.63-5.48]; and BTV, 3.59 mL [range, 0.04-23.98 mL], respectively). In 39 of 45 brain metastases eligible for dynamic analysis, a wide range of TTPmin was observed (median, 22.5 min; range, 4.5-47.5 min). All (18)F-FET-negative metastases had a diameter of ≤ 1.0 cm, whereas metastases with a > 1.0 cm diameter all showed pathologic (18)F-FET uptake, which did not correlate with lesion size. The highest variability of uptake intensity was observed within the group of melanoma metastases. Conclusion: Untreated metastases predominantly show increased (18)F-FET uptake, and only a third of metastases < 1.0 cm were (18)F-FET-negative, most likely because of scanner resolution and partial-volume effects. In metastases > 1.0 cm, (18)F-FET uptake intensity was highly variable and independent of tumor size (even intraindividually). (18

  6. Pharmacokinetic analysis and uptake of 18F-FBPA-Fr after ultrasound-induced blood-brain barrier disruption for potential enhancement of boron delivery for neutron capture therapy.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Li, Jia-Je; Wang, Hsin-Ell; Chen, Jyh-Cheng; Chang, Chi-Wei

    2014-04-01

    Boronophenylalanine has been applied in clinical boron neutron capture therapy for the treatment of high-grade gliomas. The purpose of this study was to evaluate the pharmacokinetics of 4-borono-2-(18)F-fluoro-L-phenylalanine-fructose ((18)F-FBPA-Fr) in F98 glioma-bearing Fischer 344 rats by means of intravenous injection of (18)F-FBPA-Fr both with and without blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). Dynamic PET imaging of (18)F-FBPA-Fr was performed on the ninth day after tumor implantation. Blood samples were collected to obtain an arterial input function for tracer kinetic modeling. Ten animals were scanned for approximately 3 h to estimate the uptake of (18)F radioactivity with respect to time for the pharmacokinetic analysis. Rate constants were calculated by use of a 3-compartment model. The accumulation of (18)F-FBPA-Fr in brain tumors and the tumor-to-contralateral brain ratio were significantly elevated after intravenous injection of (18)F-FBPA-Fr with BBB-D. (18)F-FBPA-Fr administration after sonication showed that the tumor-to-contralateral brain ratio for the sonicated tumors (3.5) was approximately 1.75-fold higher than that for the control tumors (2.0). Furthermore, the K1/k2 pharmacokinetic ratio after intravenous injection of (18)F-FBPA-Fr with BBB-D was significantly higher than that after intravenous injection without BBB-D. This study demonstrated that radioactivity in tumors and the tumor-to-normal brain ratio after intravenous injection of (18)F-FBPA-Fr with sonication were significantly higher than those in tumors without sonication. The K1/k2 ratio may be useful for indicating the degree of BBB-D induced by FUS. Further studies are needed to determine whether FUS may be useful for enhancing the delivery of boronophenylalanine in patients with high-grade gliomas.

  7. Monitoring of Cardiac Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy with [(18)F]FDG MicroPET.

    PubMed

    Todica, Andrei; Beetz, Nick L; Günther, Lisa; Zacherl, Mathias J; Grabmaier, Ulrich; Huber, Bruno; Bartenstein, Peter; Brunner, Stefan; Lehner, Sebastian

    2017-08-29

    This study aims to analyze the left ventricular function parameters, scar load, and hypertrophy in a mouse model of pressure-overload left ventricular (LV) hypertrophy over the course of 8 weeks using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) micro-positron emission tomography (microPET) imaging. LV hypertrophy was induced in C57BL/6 mice by transverse aortic constriction (TAC). Myocardial hypertrophy developed after 2-4 weeks. ECG-gated microPET scans with [(18)F]FDG were performed 4 and 8 weeks after surgery. The extent of fibrosis was measured by histopathologic analysis. LV function parameters and scar load were calculated using QGS®/QPS®. LV metabolic volume (LVMV) and percentage injected dose per gram were estimated by threshold-based analysis. The fibrotic tissue volume increased significantly from 4 to 8 weeks after TAC (​1.67 vs. 3.91  mm(3); P = 0.044). There was a significant increase of the EDV (4 weeks: 54 ± 15 μl, 8 weeks: 79 ± 32 μl, P < 0.01) and LVMV (4 weeks: 222 ± 24 μl, 8 weeks: 276 ± 52 μl, P < 0.01) as well as a significant decrease of the LVEF (4 weeks: 56 ± 17 %, 8 weeks: 44 ± 20 %, P < 0.01). The increase of LVMV had a high predictive value regarding the amount of ex vivo measured fibrotic tissue (R = 0.905, P < 0.001). The myocardial metabolic defects increased within 4 weeks (P = 0.055) but only moderately correlated with the fibrosis volume (R = 0.502, P = 0.021). The increase in end-diastolic volume showed a positive correlation with the fibrosis at 8 weeks (R = 0.763, P = 0.017). [(18)F]FDG-PET is applicable for serial in vivo monitoring of the TAC mouse model. Myocardial hypertrophy, the dilation of the left ventricle, and the decrease in LVEF could be reliably quantified over time, as well as the developing localized scar. The increase in volume over time is predictive of a high fibrosis load.

  8. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected with a rangemore » of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  9. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi; ...

    2014-05-28

    There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modification of cancermore » risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less

  10. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates.

    PubMed

    Haubner, Roland; Kuhnast, Bertrand; Mang, Christian; Weber, Wolfgang A; Kessler, Horst; Wester, Hans-Jürgen; Schwaiger, Markus

    2004-01-01

    It has been demonstrated in various murine tumor models that radiolabeled RGD-peptides can be used for noninvasive determination of alphavbeta3 integrin expression. Introduction of sugar moieties improved the pharmacokinetic properties of these peptides and led to tracer with good tumor-to-background ratios. Here we describe the synthesis, radiolabeling, and the metabolic stability of a glycosylated RGD-peptide ([18F]Galacto-RGD) and give first radiation dose estimates for this tracer. The peptide was assembled on a solid support using Fmoc-protocols and cyclized under high dilution conditions. It was conjugated with a sugar amino acid, which can be synthesized via a four-step synthesis starting from pentaacetyl-protected galactose. For radiolabeling of the glycopeptide, 4-nitrophenyl-2-[18F]fluoropropionate was used. This prosthetic group allowed synthesis of [18F]Galacto-RGD with a maximum decay-corrected radiochemical yield of up to 85% and radiochemical purity >98%. The overall radiochemical yield was 29 +/- 5% with a total reaction time including final HPLC preparation of 200 +/- 18 min. The metabolic stability of [18F]Galacto-RGD was determined in mouse blood and liver, kidney, and tumor homogenates 2 h after tracer injection. The average fraction of intact tracer in these organs was approximately 87%, 76%, 69%, and 87%, respectively, indicating high in vivo stability of the radiolabeled glycopeptide. The expected radiation dose to humans after injection of [18F]Galacto-RGD has been estimated on the basis of dynamic PET studies with New Zealand white rabbits. According to the residence times in these animals the effective dose was calculated using the MIRDOSE 3.0 program as 2.2 x 10(-2) mGy/MBq. In conclusion, [18F]Galacto-RGD can be synthesized in high radiochemical yields and radiochemical purity. Despite the time-consuming synthesis of the prosthetic group 185 MBq of [18F]Galacto-RGD, a sufficient dose for patient studies, can be produced starting with

  11. Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET.

    PubMed

    Hsiao, Ing-Tsung; Huang, Chin-Chang; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Kung, Mei-Ping; Yen, Tzu-Chen; Lin, Kun-Ju

    2013-06-01

    Amyloid positron emission tomography (PET) is an important noninvasive method for detecting amyloid burden in Alzheimer's disease (AD) patients. As amyloid PET images have limited anatomical information, magnetic resonance (MR) imaging is usually acquired to perform reliable spatial normalization needed for large-scale analysis. This work proposed and evaluated the performance of new MR-free spatial normalization methods using a perfusion-like template for amyloid PET imaging. Amyloid PET and MR images were collected in 35 subjects (cohort 1: 8 AD patients and 6 controls; cohort 2: 15 AD patients and 6 controls). Three ligand-related templates (AD, control, mixed group) and a perfusion-like template (pAV-45) from early time frames of amyloid PET images were constructed from cohort 1. The variations of (18)F-AV-45 standardized uptake value ratios (SUVRs) among AD patients, controls, and all subjects were tested with repeated two-way (template × brain region) analysis of variance (ANOVA) in cohort 2. (18)F-AV-45 SUVRs by region of interest analysis and voxelwise analysis between MR-based and MR-free approaches were compared and correlated to clinical and image parameters. Effect size (group mean SUVR difference between AD and control/standard deviation) was also evaluated for each template method. Significantly different (18)F-AV-45 SUVRs between MR-free spatial normalization and MR-based reference images were found among AD patients, controls, and all subjects by the effect of template and brain regions. The highest correlation (r=0.991) of (18)F-AV-45 SUVR to MR-based reference was found in the pAV-45 group. The SUVR percentage difference to MR-based reference showed the least variation and bias (control: -1.31±3.47 %; AD: -0.36±2.50 %) in the pAV-45 group as well. The voxelwise analysis showed the smallest t statistic value in pAV-45 followed by mixed, control, and AD groups when compared to MR-based reference images. Moreover, an overall larger effect size but

  12. Primary Tumor Standardized Uptake Value Measured on F18-Fluorodeoxyglucose Positron Emission Tomography Is of Prediction Value for Survival and Local Control in Non–Small-Cell Lung Cancer Receiving Radiotherapy

    PubMed Central

    Na, Feifei; Wang, Jingwen; Li, Cong; Deng, Lei; Xue, Jianxin

    2014-01-01

    Introduction: The 2-[18F]-Fluorodeoxyglucose (FDG) positron emission tomography (PET/CT) has become an imaging tool for clinical assessment of tumor, node, metastasis in non–small-cell lung cancer (NSCLC). Primary tumor maximum standardized uptake value (SUVmax) on 18F-FDG PET/CT before and after radiation therapy (RT) has been studied as a potential prognostic factor for NSCLC patients receiving radiotherapy. However, the sample sizes of most studies were small, and the results of the prediction value of SUVmax remained undetermined, which lead us to perform a meta-analysis to improve the precision in estimating its effect. Methods: We performed a meta-analysis of published literature for primary tumor SUVmax-based biomarkers of the outcome of NSCLC receiving radiotherapy. The required data for estimation of individual hazard ratios (HRs) to compare patients with a low and a high SUVmax were extracted from each publication. A combined HR was calculated by Stata statistical software (Version 11). All of the results were verified by two persons to ensure its accuracy. Results: Thirteen studies were finally included into this meta-analysis; data are available in 13 studies for pre-RT primary tumor SUVmax and in five studies for post-RT. For overall survival, the combined HR estimate was 1.05 (95% confidence interval [CI], 1.02–1.08) and 1.32 (95% CI, 1.15–1.51) for pre-RT SUVmax and post-RT SUVmax, respectively; 1.26 (95% CI, 1.05–1.52) and 2.01 (95% CI, 1.16–3.46) for local control (LC). In stereotactic body radiotherapy (SBRT) group, HR for LC was 1.11 (95% CI, 1.06–1.18) and 2.19 (95% CI, 1.34–3.60) for pre-SBRT SUVmax and post-SBRT SUVmax, respectively. Conclusion: Both pre-RT and post-RT primary tumor SUVmax can predict the outcome of patients with NSCLC treated with radiotherapy. Patients with high levels of pre-RT SUVmax seemed to have poorer overall survival and LC. PMID:24787963

  13. Influence of Software Tool and Methodological Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict Survival in Hodgkin Lymphoma

    PubMed Central

    Kanoun, Salim; Tal, Ilan; Berriolo-Riedinger, Alina; Rossi, Cédric; Riedinger, Jean-Marc; Vrigneaud, Jean-Marc; Legrand, Louis; Humbert, Olivier; Casasnovas, Olivier; Brunotte, François; Cochet, Alexandre

    2015-01-01

    Aim To investigate the respective influence of software tool and total metabolic tumor volume (TMTV0) calculation method on prognostic stratification of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET) in newly diagnosed Hodgkin lymphoma (HL). Methods 59 patients with newly diagnosed HL were retrospectively included. [18F]FDG-PET was performed before any treatment. Four sets of TMTV0 were calculated with Beth Israel (BI) software: based on an absolute threshold selecting voxel with standardized uptake value (SUV) >2.5 (TMTV02.5), applying a per-lesion threshold of 41% of the SUVmax (TMTV041) and using a per-patient adapted threshold based on SUVmax of the liver (>125% and >140% of SUVmax of the liver background; TMTV0125 and TMTV0140). TMTV041 was also determined with commercial software for comparison of software tools. ROC curves were used to determine the optimal threshold for each TMTV0 to predict treatment failure. Results Median follow-up was 39 months. There was an excellent correlation between TMTV041 determined with BI and with the commercial software (r = 0.96, p<0.0001). The median TMTV0 value for TMTV041, TMTV02.5, TMTV0125 and TMTV0140 were respectively 160 (used as reference), 210 ([28;154] p = 0.005), 183 ([-4;114] p = 0.06) and 143ml ([-58;64] p = 0.9). The respective optimal TMTV0 threshold and area under curve (AUC) for prediction of progression free survival (PFS) were respectively: 313ml and 0.70, 432ml and 0.68, 450ml and 0.68, 330ml and 0.68. There was no significant difference between ROC curves. High TMTV0 value was predictive of poor PFS in all methodologies: 4-years PFS was 83% vs 42% (p = 0.006) for TMTV02.5, 83% vs 41% (p = 0.003) for TMTV041, 85% vs 40% (p<0.001) for TMTV0125 and 83% vs 42% (p = 0.004) for TMTV0140. Conclusion In newly diagnosed HL, baseline metabolic tumor volume values were significantly influenced by the choice of the method used for determination of volume. However, no significant

  14. Monitoring of neoadjuvant chemotherapy using multiparametric, ²³Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer.

    PubMed

    Jacobs, Michael A; Ouwerkerk, Ronald; Wolff, Antonio C; Gabrielson, Edward; Warzecha, Hind; Jeter, Stacie; Bluemke, David A; Wahl, Richard; Stearns, Vered

    2011-07-01

    We prospectively investigated using advanced magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) to identify radiological biomarkers for treatment response in patients receiving preoperative systemic therapy (PST) for locally advanced breast cancer. Patients with a stage II or III breast cancer receiving PST were selected and underwent positron emission tomography (PET), magnetic resonance imaging (MRI), and breast biopsies at baseline and after the first cycle of PST (days 7-8) during the full course of treatment. PET/CT was acquired after injection of 2-deoxy-2-[18F]-fluoro-D-glucose (¹⁸FDG, 0.22 mCi/kg) and quantified with standardized uptake value assessment (SUV). Diagnostic breast MRI and sodium (²³Na) was acquired at 1.5 T. Total tissue sodium concentration (TSC), response criteria in solid tumors (RECIST), and volumes were quantified. Treatment response was determined by pathological assessment at surgery. Immunohistochemistry values of the proliferative index (Ki-67) were performed on biopsy specimens. Six of nineteen eligible women (43 ± 11 years) who received PST underwent radiological imaging of ¹⁸FDG-PET/CT and MRI for at least two cycles of treatment. Five patients had a pathological partial response (pPR) and one had pathological non-response (pNR). TSC decreased 21% in responders with increases in the non-responder (P = 0.03). Greater reduction in SUV was observed in responders (38%) compared to the non-responder (22%; P = 0.03). MRI volumes decreased after cycle 1 by 42% (responders) and 35% (non-responder; P = 0.11). Proliferation index Ki-67 declined in responders in the first cycle (median = 47%, range = 29-20%), but increased (4%) in the non-responder. Significant decreases in TSC, SUV, and Ki-67 were observed in responders with increases in TSC and Ki-67 in non-responders. Our results demonstrate the feasibility of using multi-modality proton, ²³Na MRI, and PET/CT metrics as radiological

  15. Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer

    PubMed Central

    Ouwerkerk, Ronald; Wolff, Antonio C.; Gabrielson, Edward; Warzecha, Hind; Jeter, Stacie; Bluemke, David A.; Wahl, Richard; Stearns, Vered

    2011-01-01

    We prospectively investigated using advanced magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) to identify radiological biomarkers for treatment response in patients receiving preoperative systemic therapy (PST) for locally advanced breast cancer. Patients with a stage II or III breast cancer receiving PST were selected and underwent positron emission tomography (PET), magnetic resonance imaging (MRI), and breast biopsies at baseline and after the first cycle of PST (days 7–8) during the full course of treatment. PET/CT was acquired after injection of 2-deoxy-2-[18F]-fluoro-D-glucose (18FDG, 0.22 mCi/kg) and quantified with standardized uptake value assessment (SUV). Diagnostic breast MRI and sodium (23Na) was acquired at 1.5 T. Total tissue sodium concentration (TSC), response criteria in solid tumors (RECIST), and volumes were quantified. Treatment response was determined by pathological assessment at surgery. Immunohistochemistry values of the proliferative index (Ki-67) were performed on biopsy specimens. Six of nineteen eligible women (43 ± 11 years) who received PST underwent radiological imaging of 18FDG-PET/CT and MRI for at least two cycles of treatment. Five patients had a pathological partial response (pPR) and one had pathological non-response (pNR). TSC decreased 21% in responders with increases in the non-responder (P = 0.03). Greater reduction in SUV was observed in responders (38%) compared to the non-responder (22%; P = 0.03). MRI volumes decreased after cycle 1 by 42% (responders) and 35% (non-responder; P = 0.11). Proliferation index Ki-67 declined in responders in the first cycle (median = 47%, range = 29–20%), but increased (4%) in the non-responder. Significant decreases in TSC, SUV, and Ki-67 were observed in responders with increases in TSC and Ki-67 in non-responders. Our results demonstrate the feasibility of using multi-modality proton, 23Na MRI, and PET/CT metrics as radiological

  16. Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of 18F-FP-DTBZ in baboons

    PubMed Central

    Lim, Keunpoong; Labaree, David; Ropchan, Jim; Harris, Paul; Huang, Yiyun; Ichise, Masanori; Carson, Richard E.; Cline, Gary W.

    2017-01-01

    Introduction 18F-Fluoropropyl-(+)-dihydrotetrabenazine (18F-FP-(+)-DTBZ) is a vesicular monoamine transporter type 2 (VMAT2) radiotracer for positron emission tomography (PET) imaging to quantify human β-cell mass. Renal cortex and spleen have been suggested as reference regions, however, little is known about 18F-FP-(+)-DTBZ binding in these regions including the fraction of radiometabolite. We compared the kinetics of 18F-FP-(+)-DTBZ and its inactive enantiomer 18F-FP-(−)-DTBZ in baboons, estimated the non-displaceable binding (VND) of the tracers, and used ex vivo studies to measure radiometabolite fractions. Methods PET scans were conducted for up to 4 h with (+) and (−) enantiomers. Displacement experiments using unlabeled (+) and (−) enantiomers of FP-DTBZ and fluvoxamine (to evaluate sigma-1 receptor binding) were performed. SUV curves were used to calculate displacement values in the pancreas, renal cortex, and spleen. Distribution volumes (VT) were computed, and three approaches for calculation of VND were compared: (1) 18F-FP-(+)-DTBZ reference VT, (2) 18F-FP-(−)-DTBZ pancreatic VT, and (3) a scaled 18F-FP-(+)-DTBZ reference VT values. Ex vivo study was conducted to measure radiometabolite fraction in homogenized tissue samples from baboons at 90 min post-injection. Results Spleen uptake was lowest for both tracers. Highest uptake was in the pancreas with 18F-FP-(+)-DTBZ and renal cortex with 18F-FP-(−)-DTBZ. Substantial displacement effect was observed only with unlabeled FP-(+)-DTBZ in the 18F-FP-(+)-DTBZ studies. Radiometabolite fraction was higher in the renal cortex than the spleen. Approaches (1) and (3) with spleen to estimate VND provided lowest inter-subject variability of BPND. Conclusions VT differences among organs and between enantiomers indicated that scaling of reference region values is needed for quantification of VMAT2 binding in the pancreas with 18F-FP-(+)-DTBZ. Since the kidney PET signal has greater partial volume

  17. Cigarette Smoking Saturates Brain α4 β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Brody, Arthur L.; Mandelkern, Mark A.; London, Edythe D.; Olmstead, Richard E.; Farahi, Judah; Scheibal, David; Jou, Jennifer; Allen, Valerie; Tiongson, Emmanuelle; Chefer, Svetlana I.; Koren, Andrei O.; Mukhin, Alexey G.

    2009-01-01

    Context 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy) pyridine (2-F-A-85380, abbreviated as 2-FA) is a recently developed radioligand that allows for visualization of brain α4β2* nicotinic acetylcholine receptors (nAChRs) with positron emission tomography (PET) scanning in humans. Objective To determine the effect of cigarette smoking on α4β2* nAChR occupancy in tobacco-dependent smokers. Design Fourteen 2-FA PET scanning sessions were performed. During the PET scanning sessions, subjects smoked 1 of 5 amounts (none, 1 puff, 3 puffs, 1 full cigarette, or to satiety [2½ to 3 cigarettes]). Setting Academic brain imaging center. Participants Eleven tobacco-dependent smokers (paid volunteers). Main Outcome Measure Dose-dependent effect of smoking on occupancy of α4β2* nAChRs, as measured with 2-FA and PET in nAChR-rich brain regions. Results Smoking 0.13 (1 to 2 puffs) of a cigarette resulted in 50% occupancy of α4β2* nAChRs for 3.1 hours after smoking. Smoking a full cigarette (or more) resulted in more than 88% receptor occupancy and was accompanied by a reduction in cigarette craving. A venous plasma nicotine concentration of 0.87 ng/mL (roughly 125th of the level achieved in typical daily smokers) was associated with 50% occupancy of α4β2* nAChRs. Conclusions Cigarette smoking in amounts used by typical daily smokers leads to nearly complete occupancy of α4β2* nAChRs, indicating that tobacco-dependent smokers maintain α4β2* nAChR saturation throughout the day. Because prolonged binding of nicotine to α4β2* nAChRs is associated with desensitization of these receptors, the extent of receptor occupancy found herein suggests that smoking may lead to withdrawal alleviation by maintaining nAChRs in the desensitized state. PMID:16894067

  18. β -[18F]Fluoro Azomycin Arabinoside (β -[18F]FAZA): Synthesis, Radiofluorination and Preliminary PET Imaging of Murine A431 Tumors.

    PubMed

    Kumar, Piyush; Roselt, Peter; Reischl, Gerald; Cullinane, Carlene; Beiki, Davood; Ehrlichmann, Walter; Binns, David; Naimi, Ebrahim; Yang, Jennifer; Hicks, Rodney; Machulla, Hans-Juergen; Wiebe, Leonard I

    2017-01-01

    1-α-D-(5-Deoxy-5-[18F]fluoroarabinofuranosyl)-2-nitroimidazole([18F] FAZA) is a PET radiotracer that demonstrates excellent potential in imaging regional hypoxia, and is clinically used in diagnosing a wide range of solid tumors in cancer patients. [18F]FAZA, however, is radiofluorinated in only moderate recovered radiochemical yield (rRCY, ~12%). It is postulated that the relative stability of the C1' β-anomeric bond at C5' will make 1-β-D-(5-fluoro-5-deoxyarabinofuranosyl)-2-nitroimidazole (β-FAZA), the β-conformer of FAZA, an attractive candidate for clinical hypoxia imaging. The principle goals were to synthesize β-FAZA and β-Ac2TsAZA, the radiofluorination precursor, to establish the radiofluorination chemistry leading to β-[18F]FAZA, and to investigate the biodistribution of β-[18F]FAZA in an animal tumor-bearing model using PET imaging. The appropriately-protected furanose sugar was coupled with 2-nitroimidazole to afford 1-β-D-(2,3-di-O-acetylarabinofuranosyl)-2-nitroimidazole (β-Ac2AZA). Fluorination of β-Ac2AZA with DAST, followed by alkaline hydrolysis, afforded β-FAZA (21%). The radiolabeling synthon, 1-β-D-(5-O-toluenesulfonyl-2,3-di-O-acetylarabinofuranosyl)-2-nitroimidazole (β-Ac2TsAZA), on radiofluorination using the 18F/K222 complex under various reaction conditions, followed by base-catalyzed deacetylation, afforded β-[18F]FAZA. β-[18F]FAZA was radiochemically stable for at least 8 h when stored in aqueous ethanol (8%) at 22 °C. A preliminary PET imaging-based biodistribution study of β-[18F]FAZA was performed in A431 tumor-bearing nude mice. β-FAZA and β-Ac2TsAZA were synthesized in satisfactory yield. Radiochemistry of [18F]FAZA was established. PET images showed strong uptake in hypoxic regions of the tumor. The synthesis of β-FAZA and β-[18F]FAZA are reported. Radiofluorination of β-Ac2TsAZA and the deprotection of β-Ac2[18F]FAZA were facile, but led to a more complex mixture of radiofluorinated by-products than

  19. Change in total lesion glycolysis and clinical outcome after (90)Y radioembolization in intrahepatic cholangiocarcinoma.

    PubMed

    Filippi, Luca; Pelle, Giuseppe; Cianni, Roberto; Scopinaro, Francesco; Bagni, Oreste

    2015-01-01

    Our aim was to assess the prognostic value of post-treatment decrease in total lesion glycolysis (ΔTLG) assessed by 2-[(18)F]-fluorodeoxyglucose ([(18)F] FDG) PET-CT performed 6weeks after (90)Y radioembolization ((90)Y RE) in patients affected by intrahepatic cholangiocarcinoma (ICC). A total of 18 patients were accepted into our department for (90)Y RE. Before the procedure, all patients underwent [(18)F] FDG PET-CT, and total lesion glycolysis was calculated. Six weeks after (90)Y administration, PET scan was performed, and ΔTLG was determined. Patients underwent follow up by imaging and laboratory at quarterly intervals until death or for at least 24 months from (90)Y RE. Furthermore, subjects were divided in 2 groups (group 1: 6 weeks ΔTLG>50%, group 2: ΔTLG<50%). Kaplan-Meier method was used to achieve time to progression (TTP) and overall survival (OS) curves for each group. TTP and OS curves were compared to demonstrate eventual relevant differences between the 2 groups. Seventeen patients underwent (90)Y RE, and one subject was considered ineligible. According to PET Response Criteria in Solid Tumors, partial response was found in 14 patients (82.4%), stable disease in 3 (17.6%). No patient showed complete metabolic response. The mean OS for all patients was 64.5±5.0 weeks. Subjects with a ΔTLG>50% and ΔTLG<50% had a mean OS of 79.6±3.6 and 43.1±2.0 weeks, respectively (p<0.001). TTP resulted of 28.9±3.8 weeks for the whole cohort. Patients with ΔTLG>50% had a significantly longer TTP (mean 36.9±3.6 weeks) than those with ΔTLG<50% (mean 13.7±1.7 weeks, p=0.001). Our results indicate that (90)Y RE can be an effective and safe therapy for ICC. ΔTLG calculated on post-treatment [(18)F] FDG PET-CT agrees with patients' final outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals.

    PubMed

    Haller, Stephanie; Ametamey, Simon M; Schibli, Roger; Müller, Cristina

    2015-03-01

    The chick embryo is an emerging in vivo model in several areas of pre-clinical research including radiopharmaceutical sciences. Herein, it was evaluated as a potential test system for assessing the biodistribution and in vivo stability of radiopharmaceuticals. For this purpose, a number of radiopharmaceuticals labeled with (18)F, (125)I, (99m)Tc, and (177)Lu were investigated in the chick embryo and compared with the data obtained in mice. Chick embryos were cultivated ex ovo for 17-19 days before application of the radiopharmaceutical directly into the peritoneum or intravenously using a vein of the chorioallantoic membrane (CAM). At a defined time point after application of radioactivity, the embryos were euthanized by shock-freezing using liquid nitrogen. Afterwards they were separated from residual egg components for post mortem imaging purposes using positron emission tomography (PET) or single photon emission computed tomography (SPECT). SPECT images revealed uptake of [(99m)Tc]pertechnetate and [(125)I]iodide in the thyroid of chick embryos and mice, whereas [(177)Lu]lutetium, [(18)F]fluoride and [(99m)Tc]-methylene diphosphonate ([(99m)Tc]-MDP) were accumulated in the bones. [(99m)Tc]-dimercaptosuccinic acid ((99m)Tc-DMSA) and the somatostatin analog [(177)Lu]-DOTATOC, as well as the folic acid derivative [(177)Lu]-DOTA-folate showed accumulation in the renal tissue whereas [(99m)Tc]-mebrofenin accumulated in the gall bladder and intestine of both species. In vivo dehalogenation of [(18)F]fallypride and of the folic acid derivative [(125)I]iodo-tyrosine-folate was observed in both species. In contrast, the 3'-aza-2'-[(18)F]fluorofolic acid ([(18)F]-AzaFol) was stable in the chick embryo as well as in the mouse. Our results revealed the same tissue distribution profile and in vivo stability of radiopharmaceuticals in the chick embryo and the mouse. This observation is promising with regard to a potential use of the chick embryo as an inexpensive and simple

  1. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma.

    PubMed

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand (68)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent (68)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. (68)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. (68)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for (18)F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for (68)Ga-Pentixafor than for (18)F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high (68)Ga-Pentixafor uptake; regions of the same tumor without apparent (68)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, (68)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, (68)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.

  2. Characterization and Predictive Value of Near Infrared 2-Deoxyglucose Optical Imaging in Severe Acute Pancreatitis

    PubMed Central

    de Oliveira, Cristiane; Patel, Krutika; Mishra, Vivek; Trivedi, Ram N.; Noel, Pawan; Singh, Abhilasha; Yaron, Jordan R.; Singh, Vijay P.

    2016-01-01

    Background Studying the uptake of 2-deoxy glucose (2-DG) analogs such as 2-Deoxy-2-[18F] fluoroglucose (FDG) is a common approach to identify and monitor malignancies and more recently chronic inflammation. While pancreatitis is a common cause for false positive results in human studies on pancreatic cancer using FDG, the relevance of these findings to acute pancreatitis (AP) is unknown. FDG has a short half-life. Thus, with an aim to accurately characterize the metabolic demand of the pancreas during AP in real-time, we studied the uptake of the non-radioactive, near infrared fluorescence labelled 2-deoxyglucose analog, IRDye® 800CW 2-DG probe (NIR 2-DG; Li-Cor) during mild and severe biliary AP. Methods Wistar rats (300 g; 8–12/group) were administered NIR 2-DG (10 nM; I.V.). Mild and severe biliary AP were respectively induced by biliopancreatic duct ligation (DL) alone or along with infusing glyceryl trilinoleate (GTL; 50 μL/100 g) within 10 minutes of giving NIR 2-DG. Controls (CON) only received NIR 2-DG. Imaging was done every 5–10 minutes over 3 hrs. Average Radiant Efficiency [p/s/cm²/sr]/[μW/cm²] was measured over the pancreas using the IVIS 200 in-vivo imaging system (PerkinElmer) using the Living Image® software and verified in ex vivo pancreata. Blood amylase, lipase and pancreatic edema, necrosis were measured over the course of AP. Results NIR 2-DG uptake over the first hour was not influenced by AP induction. However, while the signal declined in controls and rats with mild AP, there was significantly higher retention of NIR 2-DG in the pancreas after 1 hour in those with GTL pancreatitis. The increase was > 3 fold over controls in the GTL group and was verified to be in the pancreas ex vivo. In vitro, pancreatic acini exposed to GTL had a similar increase in NIR 2-DG uptake which was followed by progressively worse acinar necrosis. Greater retention of NIR 2-DG in vivo was associated with worse pancreatic necrosis, reduced ATP

  3. Monitoring of Tumor Growth with [18F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches

    PubMed Central

    Holzgreve, Adrien; Brendel, Matthias; Gu, Song; Carlsen, Janette; Mille, Erik; Böning, Guido; Mastrella, Giorgia; Unterrainer, Marcus; Gildehaus, Franz J.; Rominger, Axel; Bartenstein, Peter; Kälin, Roland E.; Glass, Rainer; Albert, Nathalie L.

    2016-01-01

    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-18F-fluoroethyl)-L-tyrosine ([18F]-FET) to determine tumor growth in a murine glioblastoma (GBM) model—including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM-bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [18F]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: ≥1.4; ≥1.6; ≥1.8; ≥2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual “optimal” thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [18F]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual “optimal” thresholds for BTV assessment correlated highly with SUVmax/BG (ρ = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, ρ = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [18F]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model

  4. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation

    PubMed Central

    2011-01-01

    Background Brown adipose tissue [BAT] metabolism in vivo is vital for the development of novel strategies in combating obesity and diabetes. Currently, BAT is activated at low temperatures and measured using 2-deoxy-2-18F-fluoro-D-glucose [18F-FDG] positron-emission tomography [PET]. We report the use of β3-adrenergic receptor-mediated activation of BAT at ambient temperatures using (R, R)-5-[2-[2,3-(3-chlorphenyl)-2-hydroxyethyl-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate, disodium salt [CL316,243] (a selective β3-adrenoceptor agonist) and measured by 18F-FDG PET/computed tomography [CT]. Methods Control and CL316,243-treated (2 mg/kg) male Sprague-Dawley rats were administered with 18F-FDG for PET/CT studies and were compared to animals at cold temperatures. Receptor-blocking experiments were carried out using propranolol (5 mg/kg). Dose effects of CL316,243 were studied by injecting 0.1 to 1 mg/kg 30 min prior to 18F-FDG administration. Imaging results were confirmed by autoradiography, and histology was done to confirm BAT activation. Results CL316,243-activated interscapular BAT [IBAT], cervical, periaortic, and intercostal BATs were clearly visualized by PET. 18F-FDG uptake of IBAT was increased 12-fold by CL316,243 vs. 1.1-fold by cold exposure when compared to controls. 18F-FDG uptake of the CL-activated IBAT was reduced by 96.0% using intraperitoneal administration of propranolol. Average 18F-FDG uptake of IBAT increased 3.6-, 3.5-, and 7.6-fold by doses of 0.1, 0.5, and 1 mg/kg CL, respectively. Ex vivo 18F-FDG autoradiography and histology of transverse sections of IBAT confirmed intense uptake in the CL-activated group and activated IBAT visualized by PET. Conclusion Our study indicated that BAT metabolic activity could be evaluated by 18F-FDG PET using CL316,243 at ambient temperature in the rodent model. This provides a feasible and reliable method to study BAT metabolism. PMID:22214183

  5. 18F-FET MicroPET and MicroMRI for Anti-VEGF and Anti-PlGF Response Assessment in an Orthotopic Murine Model of Human Glioblastoma

    PubMed Central

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Urup, Thomas; Broholm, Helle; El Ali, Henrik; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése

    2015-01-01

    Background Conflicting data exist for anti-cancer effects of anti-placental growth factor (anti-PlGF) in combination with anti-VEGF. Still, this treatment combination has not been evaluated in intracranial glioblastoma (GBM) xenografts. In clinical studies, position emission tomography (PET) using the radiolabeled amino acid O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) and magnetic resonance imaging (MRI) add complementary but distinct information about glioma growth; however, the value of 18F-FET MicroPET combined with MicroMRI has not been investigated preclinically. Here we examined the use of 18F-FET MicroPET and MicroMRI for evaluation of anti-VEGF and anti-PlGF treatment response in GBM xenografts. Methods Mice with intracranial GBM were treated with anti-VEGF, anti-PlGF + anti-VEGF or saline. Bioluminescence imaging (BLI), 18F-FET MicroPET and T2-weighted (T2w)-MRI were used to follow tumour development. Primary end-point was survival, and tumours were subsequently analysed for Ki67 proliferation index and micro-vessel density (MVD). Further, PlGF and VEGFR-1 expression were examined in a subset of the xenograft tumours and in 13 GBM patient tumours. Results Anti-VEGF monotherapy increased survival and decreased 18F-FET uptake, BLI and MVD, while no additive effect of anti-PlGF was observed. 18F-FET SUVmax tumour-to-brain (T/B) ratio was significantly lower after one week (114±6%, n = 11 vs. 143±8%, n = 13; p = 0.02) and two weeks of treatment (116±12%, n = 8 vs. 190±24%, n = 5; p = 0.02) in the anti-VEGF group as compared with the control group. In contrast, T2w-MRI volume was unaffected by anti-VEGF. Gene expression of PlGF and VEGFR-1 in xenografts was significantly lower than in patient tumours. Conclusion 18F-FET PET was feasible for anti-angiogenic response evaluation and superior to T2w-MRI; however, no additive anti-cancer effect of anti-PlGF and anti-VEGF was observed. Thus, this study supports use of 18F-FET PET for response evaluation in future

  6. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    PubMed

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  7. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease.

    PubMed

    Liguori, Claudio; Chiaravalloti, Agostino; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Schillaci, Orazio; Pierantozzi, Mariangela

    2016-10-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in

  8. Nuclear medicine imaging of bone infections.

    PubMed

    Love, C; Palestro, C J

    2016-07-01

    Osteomyelitis is a broad group of infectious diseases that involve the bone and/or bone marrow. It can arise haematogenously, via extension from a contiguous infection, or by direct inoculation during surgery or trauma. The diagnosis is not always obvious and imaging tests are frequently performed as part of the diagnostic work-up. Commonly performed radionuclide tests include technetium-99m ((99m)Tc)-diphosphonate bone scintigraphy (bone), and gallium-67 ((67)Ga) and in vitro labelled leukocyte (white blood cell; WBC) imaging. Although they are useful, each of these tests has limitations. Bone scintigraphy is sensitive but not specific, especially when underlying osseous abnormalities are present. (67)Ga accumulates in tumour, trauma, and in aseptic inflammation; furthermore, there is typically an interval of 1-3 days between radiopharmaceutical injection of and imaging. Currently, this agent is used primarily for spinal infections. Except for the spine, WBC imaging is the nuclear medicine test of choice for diagnosing complicating osteomyelitis. The in vitro leukocyte labelling process requires skilled personnel, is laborious, and is not always available. Complementary marrow imaging is usually required to maximise accuracy. Not surprisingly, alternative radiopharmaceuticals are continuously being investigated. Radiolabelled anti-granulocyte antibodies and antibody fragments, investigated as in vivo leukocyte labelling agents, have their own limitations and are not widely available. (111)In-biotin is useful for diagnosing spinal infections. Radiolabelled synthetic fragments of ubiquicidin, a naturally occurring human antimicrobial peptide that targets bacteria, have shown promise as infection specific radiopharmaceuticals. 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) with or without computed tomography (CT) is very useful in musculoskeletal infection. Sensitivities of more than 95% and specificities ranging from 75-99% have been

  9. Monitoring tumor response with [18F]FMAU in a sarcoma-bearing mouse model after liposomal vinorelbine treatment.

    PubMed

    Chan, Pei-Chia; Wu, Chun-Yi; Chang, Wei-Ting; Lin, Chih-Yuan; Tseng, Yun-Long; Liu, Ren-Shyan; Alauddin, Mian M; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2013-11-01

    Previous studies have shown that the accumulation level of FMAU in tumor is proportional to its proliferation rate. This study demonstrated that 2'-deoxy-2'-[(18)F]fluoro-β-d-arabinofuranosyluracil ([(18)F]FMAU) is a promising PET probe for noninvasively monitoring the therapeutic efficacy of 6% PEGylated liposomal vinorelbine (lipo-VNB) in a subcutaneous murine NG4TL4 sarcoma mouse model. Female syngenic FVB/N mice were inoculated with NG4TL4 cells in the right flank. After tumor size reached 150 ± 50 mm(3) (day 0), lipo-VNB (5mg/kg) was intravenously administered on days 0, 3 and 6. To monitor the therapeutic efficacy of lipo-VNB, [(18)F]FMAU PET was employed to evaluate the proliferation rate of tumor, and it was compared with that observed from [(18)F]FDG/[(18)F]fluoroacetate PET. The expression of proliferating cell nuclear antigen (PCNA) in tumor during treatment was determined by semiquantitative analysis of immunohistochemical staining. A significant inhibition (p<0.001) in tumor growth was observed on day 3 after a single dose treatment. The tumor-to-muscle ratio (T/M) derived from [(18)F]FMAU-PET images of lipo-VNB-treated group declined from 2.33 ± 0.16 to 1.26 ± 0.03 after three doses of treatment, while that of the control remained steady. The retarded proliferation rate of lipo-VNB-treated sarcoma was confirmed by PCNA immunohistochemistry staining. However, both [(18)F]FDG and [(18)F]fluoroacetate microPET imaging did not show significant difference in T/M between the therapeutic and the control groups throughout the entire experimental period. Lipo-VNB can effectively impede the growth of NG4TL4 sarcoma. [(18)F]FMAU PET is an appropriate modality for early monitoring of the tumor response during the treatment course of lipo-VNB. © 2013.

  10. Characterization of a novel rat cholangiocarcinoma cell culture model-CGCCA

    PubMed Central

    Yeh, Chun-Nan; Lin, Kun-Ju; Chen, Tsung-Wen; Wu, Ren-Ching; Tsao, Lee-Cheng; Chen, Ying-Tzu; Weng, Wen-Hui; Chen, Miin-Fu

    2011-01-01

    AIM: To characterize a culture model of rat CCA cells, which were derived from a transplantable TTA-induced CCA and designated as Chang Gung CCA (CGCCA). METHODS: The CGCCA cells were cultured at in vitro passage 12 times on a culture dish in DMEM medium. To measure the doubling time, 103 cells were plated in a 96-well plate containing the growth medium. The cells were harvested 4 to 10 d after seeding, and a standard MTT assay was used to measure the growth. The phenotype of CACCA cell and xenograft was determined by immunohistochemical study. We also determine the chromosomal alterations of CGCCA, G-banding and spectral karyotyping studies were performed. The CGCCA cell line was transplanted into the nude mice for examining its tumorigenicity. 2-Deoxy-2-(18F)fluoro-D-glucose (FDG) autoradiography was also performed to evaluate the FDG uptake of the tumor xenograft. RESULTS: The doubling time for the CGCCA cell line was 32 h. After transplantation into nude mice, FDG autoradiography showed that the tumors formed at the cell transplantation site had a latency period of 4-6 wk with high FDG uptake excluding necrosis tissue. Moreover, immunohistochemical staining revealed prominent cytoplasmic expression of c-erb-B2, CK19, c-Met, COX-II, EGFR, MUC4, and a negative expression of K-ras. All data confirmed the phenotypic features of the CGCCA cell line coincide with the xenograft mice tumors, indicating cells containing the tumorigenicity of CCA originated from CCA. In addition, karyotypic banding analysis showed that the diploid (2n) cell status combines with ring and giant rod marker chromosomes in these clones; either both types simultaneously appeared or only one type of marker chromosome in a pair appeared in a cell. The major materials contained in the marker chromosome were primarily identified from chromosome 4. CONCLUSION: The current CGCCA cell line may be used as a non-K-ras effect CCA model and to obtain information and reveal novel pathways for CCA. Further

  11. Characterization of a novel rat cholangiocarcinoma cell culture model-CGCCA.

    PubMed

    Yeh, Chun-Nan; Lin, Kun-Ju; Chen, Tsung-Wen; Wu, Ren-Ching; Tsao, Lee-Cheng; Chen, Ying-Tzu; Weng, Wen-Hui; Chen, Miin-Fu

    2011-06-28

    To characterize a culture model of rat CCA cells, which were derived from a transplantable TTA-induced CCA and designated as Chang Gung CCA (CGCCA). The CGCCA cells were cultured at in vitro passage 12 times on a culture dish in DMEM medium. To measure the doubling time, 10(3) cells were plated in a 96-well plate containing the growth medium. The cells were harvested 4 to 10 d after seeding, and a standard MTT assay was used to measure the growth. The phenotype of CACCA cell and xenograft was determined by immunohistochemical study. We also determine the chromosomal alterations of CGCCA, G-banding and spectral karyotyping studies were performed. The CGCCA cell line was transplanted into the nude mice for examining its tumorigenicity. 2-Deoxy-2-((18)F)fluoro-D-glucose (FDG) autoradiography was also performed to evaluate the FDG uptake of the tumor xenograft. The doubling time for the CGCCA cell line was 32 h. After transplantation into nude mice, FDG autoradiography showed that the tumors formed at the cell transplantation site had a latency period of 4-6 wk with high FDG uptake excluding necrosis tissue. Moreover, immunohistochemical staining revealed prominent cytoplasmic expression of c-erb-B2, CK19, c-Met, COX-II, EGFR, MUC4, and a negative expression of K-ras. All data confirmed the phenotypic features of the CGCCA cell line coincide with the xenograft mice tumors, indicating cells containing the tumorigenicity of CCA originated from CCA. In addition, karyotypic banding analysis showed that the diploid (2n) cell status combines with ring and giant rod marker chromosomes in these clones; either both types simultaneously appeared or only one type of marker chromosome in a pair appeared in a cell. The major materials contained in the marker chromosome were primarily identified from chromosome 4. The current CGCCA cell line may be used as a non-K-ras effect CCA model and to obtain information and reveal novel pathways for CCA. Further applications regarding tumor

  12. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile.

    PubMed

    Bouvet, Vincent; Wuest, Melinda; Bailey, Justin J; Bergman, Cody; Janzen, Nancy; Valliant, John F; Wuest, Frank

    2017-06-21

    Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [(18)F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies. Prosthetic groups N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), 4-[(18)F]fluorobenzaldehyde, and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [(125)I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([(18)F]4, [(18)F]7, and [(18)F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice. F-18-labeled PSMA inhibitors were synthesized in 32-69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [(18)F]SFB and (2) oxime formation with 4-[(18)F]fluorobenzaldehyde and [(18)F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC50 values of 13 and 62 nM, respectively. The IC50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0

  13. (18)F-FBPA as a tumor specific tracer of L-type amino acid transporter 1 (LAT1): PET evaluation in tumor and inflammation compared to (18)F-FDG and (11)C-methionine.

    PubMed

    Watabe, Tadashi; Hatazawa, Jun

    2015-01-01

    (18)F-FDG-PET is used worldwide for oncology patients. However, we sometimes encounter false positive cases of (18)F-FDG PET, such as moderate uptake in the inflammatory lesion, because (18)F-FDG accumulates not only in the cancer cells but also in the inflammatory cells (macrophage, granulation tissue, etc). To overcome this limitation of (18)F-FDG, we started to use (4-borono-2- [(18)F]fluoro-L-phenylalanine) (18)F-FBPA, an artificial amino acid tracer which is focusing attention as a tumor specific PET tracer. Physiological accumulation of (18)F-FBPA is limited in the kidney and urinary tract in humans, which enable preferable evaluation of uptake in the abdominal organs compared to (11)C-methionine ((11)C-MET). The purpose of this study was to evaluate (18)F-FBPA as a tumor specific tracer by in vitro cellular uptake analysis focusing on the selectivity of L-type amino acid transporter 1 (LAT1), which is specifically expressed in tumor cells, and in vivo PET analysis in rat xenograft and inflammation models compared to (18)F-FDG and (11)C-methionine. Uptake inhibition and efflux experiments were performed in HEK293-LAT1 and LAT2 cells using cold BPA, cold (18)F-FBPA, and hot (18)F-FBPA to evaluate LAT affinity and transport capacity. Position emission tomography studies were performed in rat xenograft model of C6 glioma 2 weeks after the implantation (n=9, body weight=197±10.5g) and subcutaneous inflammation model 4 days after the injection of turpentine oil (n=9, body weight=197±14.4g). Uptake on static PET images were compared among (18)F-FBPA at 60-70min post injection, (18)F-FDG at 60-70min, and (11)C-MET at 20-30min in the tumors and the inflammatory lesions by maximum standardized uptake value (SUVmax). Cellular uptake analysis showed no significant difference in inhibitory effect and efflux of LAT1 between cold (18)F-FBPA and cold BPA, suggesting the same affinity and transport capacity via LAT1. Uptake of (18)F-FBPA via LAT1 was superior to LAT2 by

  14. The phosphodiesterase 10 positron emission tomography tracer, [18F]MNI-659, as a novel biomarker for early Huntington disease.

    PubMed

    Russell, David S; Barret, Olivier; Jennings, Danna L; Friedman, Joseph H; Tamagnan, Gilles D; Thomae, David; Alagille, David; Morley, Thomas J; Papin, Caroline; Papapetropoulos, Spyridon; Waterhouse, Rikki N; Seibyl, John P; Marek, Kenneth L

    2014-12-01

    In Huntington disease (HD) striatal neuron loss precedes and predicts motor signs or symptoms. Current imaging biomarkers lack adequate sensitivity for assessing the early stages of HD. Developing an imaging biomarker for HD spanning the time of onset of motor signs remains a major unmet research need. Intracellular proteins whose expression is altered by the mutant huntingtin protein may be superior markers for early HD stages. To evaluate whether [18F]MNI-659 (2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione), a novel phosphodiesterase 10 positron emission tomography (PET) ligand, is a sensitive marker for striatal changes in early HD. A cohort of individuals with HD, including premanifest (pre-HD) or manifest with motor signs (mHD), underwent clinical assessments, genetic determination, [18F]MNI-659 PET imaging, and brain magnetic resonance imaging. Age-matched healthy volunteers (HVs) also received clinical assessments and PET and magnetic resonance imaging. Binding potentials (BPnds) were estimated for brain regions of interest, specifically within the basal ganglia, and compared between participants with HD and the HVs and correlated with markers of HD severity and atrophy of basal ganglia nuclei. Eleven participants with HD (8 mHD and 3 pre-HD) and 9 HVs participated. Ten of 11 HD participants had known huntingtin CAG repeat length, allowing determination of a burden of pathology (BOP) score. One individual with HD declined CAG determination. All participants with mHD had relatively early-stage disease (4 with stage 1 and 4 with stage 2) and a Unified Huntington's Disease Rating Scale (UHDRS) total Motor subscale score of less than 50. The HD cohort had significantly lower striatal [18F]MNI-659 uptake than did the HV cohort (mean, -48.4%; P < .001). The HD cohort as a whole had a reduction in the basal ganglia BPnd to approximately 50% of the level in the HVs (mean, -47.6%; P < .001

  15. IMPROVED DERIVATION OF INPUT FUNCTION IN DYNAMIC MOUSE [18F]FDG PET USING BLADDER RADIOACTIVITY KINETICS

    PubMed Central

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-01-01

    Purpose Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Methods Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. Total accumulated radioactivity in the urinary bladder was fitted to a renal compartmental model with the last blood sample and a 1-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of 4-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects and erythrocytes uptake) and the late-time blood estimates. Using only the blood sample acquired at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. Results The area under the plasma TACs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal

  16. Improved derivation of input function in dynamic mouse [18F]FDG PET using bladder radioactivity kinetics.

    PubMed

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-08-01

    Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with computed tomography-based attenuation correction. Total accumulated radioactivity in the urinary bladder at late times was fitted to a renal compartmental model with the last blood sample and a one-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of four-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0-1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects, and erythrocyte uptake) and the late-time blood estimates. Using only the blood sample collected at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. The area under the plasma IFs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium

  17. Metabolic Tumor Burden Assessed by Dual Time Point [(18)F]FDG PET/CT in Locally Advanced Breast Cancer: Relation with Tumor Biology.

    PubMed

    Garcia-Vicente, Ana María; Pérez-Beteta, Julián; Pérez-García, Víctor Manuel; Molina, David; Jiménez-Londoño, German Andrés; Soriano-Castrejón, Angel; Martínez-González, Alicia

    2017-08-01

    The aim of the study was to investigate the influence of dual time point 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) on the standard uptake value (SUV) and volume-based metabolic variables of breast lesions and their relation with biological characteristics and molecular phenotypes. Retrospective analysis including 67 patients with locally advanced breast cancer (LABC). All patients underwent a dual time point [(18)F]FDG PET/CT, 1 h (PET-1) and 3 h (PET-2) after [(18)F]FDG administration. Tumors were segmented following a three-dimensional methodology. Semiquantitative metabolic variables (SUVmax, SUVmean, and SUVpeak) and volume-based variables (metabolic tumor volume, MTV, and total lesion glycolysis, TLG) were obtained. Biologic prognostic parameters, such as the hormone receptors status, p53, HER2 expression, proliferation rate (Ki-67), and grading were obtained. Molecular phenotypes and risk-classification [low: luminal A, intermediate: luminal B HER2 (-) or luminal B HER2 (+), and high: HER2 pure or triple negative] were established. Relations between clinical and biological variables with the metabolic parameters were studied. The relevance of each metabolic variable in the prediction of phenotype risk was assessed using a multivariate analysis. SUV-based variables and TLG obtained in the PET-1 and PET-2 showed high and significant correlations between them. MTV and SUV variables (SUVmax, SUVmean, and SUVpeak) where only marginally correlated. Significant differences were found between mean SUV variables and TLG obtained in PET-1 and PET-2. High and significant associations were found between metabolic variables obtained in PET-1 and their homonymous in PET-2. Based on that, only relations of PET-1 variables with biological tumor characteristics were explored. SUV variables showed associations with hormone receptors status (p < 0.001 and p = 0.001 for estrogen and progesterone receptor

  18. Comparison of 18F-Labeled Fluoroalkylphosphonium Cations with 13N-NH3 for PET Myocardial Perfusion Imaging.

    PubMed

    Kim, Dong-Yeon; Kim, Hyeon Sik; Reder, Sybille; Zheng, Jin Hai; Herz, Michael; Higuchi, Takahiro; Pyo, A Young; Bom, Hee-Seung; Schwaiger, Markus; Min, Jung-Joon

    2015-10-01

    Despite substantial advances in the diagnosis of cardiovascular disease, there is a need for 18F-labeled myocardial perfusion agents for the diagnosis of ischemic heart disease because current PET tracers for myocardial perfusion imaging have a short half-life that limits their widespread clinical use in PET. Thus, 18F-labeled fluoroalkylphosphonium derivatives (18F-FATPs), including (5-18F-fluoropentyl)triphenylphosphonium cation (18F-FPTP), (6-18F-fluorohexyl)triphenylphosphonium cation (18F-FHTP), and (2-(2-18F-fluoroethoxy)ethyl)triphenylphosphonium cation (18F-FETP), were synthesized. The myocardial extraction and image quality of the 18F-FATPs were compared with those of 13N-NH3 in rat models. The first-pass extraction fraction (EF) values of the 18F-FATPs (18F-FPTP, 18F-FHTP, 18F-FETP) and 13N-NH3 were measured in isolated rat hearts perfused with the Langendorff method (flow velocities, 0.5, 4.0, 8.0, and 16.0 mL/min). Normal and myocardial infarction rats were imaged with small-animal PET after intravenous injection of 37 MBq of 18F-FATPs and 13N-NH3. To determine pharmacokinetics, a region of interest was drawn around the heart, and time-activity curves of the 18F-FATPs and 13N-NH3 were generated to obtain the counts per pixel per second. Defect size was analyzed on the basis of polar map images of 18F-FATPs and 13N-NH3. The EF values of 18F-FATPs and 13N-NH3 were comparable at low flow velocity (0.5 mL/min), whereas at higher flows EF values of 18F-FATPs were significantly higher than those of 13N-NH3 (4.0, 8.0, and 16.0 mL/min, P<0.05). Myocardium-to-liver ratios of 18F-FPTP, 18F-FHTP, 18F-FETP, and 13N-NH3 were 2.10±0.30, 4.36±0.20, 3.88±1.03, and 0.70±0.09, respectively, 10 min after injection, whereas myocardium-to-lung ratios were 5.00±0.25, 4.33±0.20, 7.98±1.23, and 2.26±0.14, respectively. Although 18F-FATPs and 13N-NH3 sharply delineated myocardial perfusion defects, defect size on the 13N-NH3 images was significantly smaller than on the

  19. Synthesis and characterization in monkey of [11C]SP203 as a radioligand for imaging brain metabotropic glutamate 5 receptors.

    PubMed

    Siméon, Fabrice G; Liow, Jeih-San; Zhang, Yi; Hong, Jinsoo; Gladding, Robert L; Zoghbi, Sami S; Innis, Robert B; Pike, Victor W

    2012-12-01

    [(18)F]SP203 (3-fluoro-5-(2-(2-([(18)F]fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile) is an effective high-affinity and selective radioligand for imaging metabotropic 5 receptors (mGluR5) in human brain with PET. To provide a radioligand that may be used for more than one scanning session in the same subject in a single day, we set out to label SP203 with shorter-lived (11)C (t (1/2) = 20.4 min) and to characterize its behavior as a radioligand with PET in the monkey. Iodo and bromo precursors were obtained by cross-coupling 2-fluoromethyl-4-((trimethylsilyl)ethynyl)-1,3-thiazole with 3,5-diiodofluorobenzene and 3,5-dibromofluorobenzene, respectively. Treatment of either precursor with [(11)C]cyanide ion rapidly gave [(11)C]SP203, which was purified with high-performance liquid chromatography. PET was used to measure the uptake of radioactivity in brain regions after injecting [(11)C]SP203 intravenously into rhesus monkeys at baseline and under conditions in which mGluR5 were blocked with 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP). The emergence of radiometabolites in monkey blood in vitro and in vivo was assessed with radio-HPLC. The stability of [(11)C]SP203 in human blood in vitro was also measured. The iodo precursor gave [(11)C]SP203 in higher radiochemical yield (>98 %) than the bromo precursor (20-52 %). After intravenous administration of [(11)C]SP203 into three rhesus monkeys, radioactivity peaked early in brain (average 12.5 min) with a regional distribution in rank order of expected mGluR5 density. Peak uptake was followed by a steady decline. No radioactivity accumulated in the skull. In monkeys pretreated with MTEP before [(11)C]SP203 administration, radioactivity uptake in brain was again high but then declined more rapidly than in the baseline scan to a common low level. [(11)C]SP203 was unstable in monkey blood in vitro and in vivo, and gave predominantly less lipophilic radiometabolites. By contrast, [(11)C]SP203 was stable in

  20. Synthesis and characterization in monkey of [11C]SP203 as a radioligand for imaging brain metabotropic glutamate 5 receptors

    PubMed Central

    Siméon, Fabrice G.; Liow, Jeih-San; Zhang, Yi; Hong, Jinsoo; Gladding, Robert L.; Zoghbi, Sami S.; Innis, Robert B.

    2017-01-01

    Purpose [18F]SP203 (3-fluoro−5-(2− (2-([18F]fluoromethyl)-thiazol−4-yl)ethynyl)benzonitrile) is an effective high-affinity and selective radioligand for imaging metabotropic 5 receptors (mGluR5) in human brain with PET. To provide a radioligand that may be used for more than one scanning session in the same subject in a single day, we set out to label SP203 with shorter-lived 11C (t1/2=20.4 min) and to characterize its behavior as a radioligand with PET in the monkey. Methods Iodo and bromo precursors were obtained by cross-coupling 2-fluoromethyl−4-((trimethylsilyl)ethynyl) −1,3-thia-zole with 3,5-diiodofluorobenzene and 3,5-dibromofluoroben-zene, respectively. Treatment of either precursor with [11C] cyanide ion rapidly gave [11C]SP203, which was purified with high-performance liquid chromatography. PET was used to measure the uptake of radioactivity in brain regions after injecting [11C]SP203 intravenously into rhesus monkeys at baseline and under conditions in which mGluR5 were blocked with 3-[ (2-methyl−1,3-thiazol−4-yl)ethynyl]pyridine (MTEP). The emergence of radiometabolites in monkey blood in vitro and in vivo was assessed with radio-HPLC. The stability of [11C]SP203 in human blood in vitro was also measured. Results The iodo precursor gave [11C]SP203 in higher radio-chemical yield (>98 %) than the bromo precursor (20–52 %). After intravenous administration of [11C]SP203 into three rhesus monkeys, radioactivity peaked early in brain (average 12.5 min) with a regional distribution in rank order of expected mGluR5 density. Peak uptake was followed by a steady decline. No radioactivity accumulated in the skull. In monkeys pretreated with MTEP before [11C]SP203 administration, radioactivity uptake in brain was again high but then declined more rapidly than in the baseline scan to a common low level. [11C]SP203 was unstable in monkey blood in vitro and in vivo, and gave predominantly less lipophilic radiometabolites. By contrast, [11C]SP203 was

  1. Radiofluorinated Rhenium Cyclized α-MSH Analogs for PET Imaging of Melanocortin Receptor 1

    PubMed Central

    Ren, Gang; Liu, Shuanlong; Liu, Hongguang; Miao, Zheng; Cheng, Zhen

    2010-01-01

    In order to accomplish in vivo molecular imaging of melanoma biomarker melanocortin 1 receptor (MC1R), several alpha-melanocyte-stimulating hormone (α-MSH) analogs have been labeled with N-succinimidyl-4-18F-fluorobenzoate (18F-SFB) and studied as positron emission tomography (PET) probes in our recent studies. To further pursue a radiofluorinated α-MSH peptide with high clinical translation potential, we utilized 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP) to radiofluorinate the transition metal rhenium cyclized α-MSH metallopeptides for PET imaging of MC1R positive malignant melanoma. Methods Metallopeptides Ac-d,Lys-ReCCMSH(Arg11) (two isomers, namely RMSH-1 and RMSH-2) were synthesized using conventional solid phase peptide synthesis chemistry and rhenium cyclization reaction. The two isomers were then conjugated with 19F-NFP or 18F-NFP. The resulting cold or radiofluorinated metallopeptides, 18/19F-FP-RMSH-1 and 18/19F-FP-RMSH-2 were further evaluated for their in vitro receptor binding affinities, in vivo biodistribution and small-animal PET imaging properties. Results The binding affinities of the 19F-FP-RMSH-1 and 19F-FP-RMSH-2) were determined to be within low nM range. In vivo studies revealed that both 18F-labeled metallopeptides possessed good tumor uptake in B16F10 murine model with high MC1R expression, while much lower uptake in A375M human melanoma xenografts. Moreover, 18F-FP-RMSH-1 displayed more favorable in vivo performance in terms of higher tumor uptake and much lower accumulation in kidney and liver, when compared to 18F-FP-RMSH-2 at 2 h post-injection (p.i.). 18F-FP-RMSH-1 also displayed lower liver and lung uptake when compared with the same peptide labeled with 18F-SFB (named as 18F-FB-RMSH-1). Small animal PET imaging of 18F-FP-RMSH-1 in mice bearing B16F10 tumors at 1 and 2 h showed good tumor imaging quality. As expected, much lower tumor uptake and poorer tumor/normal organs contrast were observed for A375M model than that of B16

  2. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume.

    PubMed

    Piroth, Marc D; Galldiks, Norbert; Pinkawa, Michael; Holy, Richard; Stoffels, Gabriele; Ermert, Johannes; Mottaghy, Felix M; Shah, N Jon; Langen, Karl-Josef; Eble, Michael J

    2016-06-24

    O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0-32) and at time of recurrence (13 %; 0-100). Recurrent tumor volume in FET-2 was localized to 39 % (12-91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5-26) ml) and shifting (mean 6 (1-10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54-100) versus 85 % (0-100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112-297) ml versus 231 (117-386) ml, p < 0.001). In this

  3. (123)I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial.

    PubMed

    Cachin, Florent; Miot-Noirault, Elisabeth; Gillet, Brigitte; Isnardi, Vanina; Labeille, Bruno; Payoux, Pierre; Meyer, Nicolas; Cammilleri, Serge; Gaudy, Caroline; Razzouk-Cadet, Micheline; Lacour, Jean Philippe; Granel-Brocard, Florence; Tychyj, Christelle; Benbouzid, Fathalah; Grange, Jean Daniel; Baulieu, Françoise; Kelly, Antony; Merlin, Charles; Mestas, Danielle; Gachon, Françoise; Chezal, Jean Michel; Degoul, Françoise; D'Incan, Michel

    2014-01-01

    Our group has developed a new radiopharmaceutical, (123)I - N-(2-diethylaminoethyl)-2-iodobenzamide ((123)I-BZA2), a benzamide derivative able to bind to melanin pigment in melanoma cells. In a prospective and multicentric phase III clinical study, the value of (18)F-FDG PET/CT and (123)I-BZA2 scintigraphy was compared for melanoma staging. Patients with a past history of cutaneous or ocular melanoma were included from 8 hospitals. (18)F-FDG imaging was performed according to a standard PET protocol. Whole-body, static planar, and SPECT/CT (if available) images were acquired 4 h after injection of a 2 MBq/kg dose of (123)I-BZA2. (18)F-FDG and (123)I-BZA2 sensitivity and specificity for the diagnosis of melanoma metastasis were calculated and compared on both a lesion basis and a patient basis. True-positive and true-negative lesion status was determined after 6 mo of clinical follow-up or according to lesion biopsies (if available). Melanin content in biopsies was evaluated with the standard Fontana-Masson silver method and was correlated with (123)I-BZA2 uptake. Based on statistical analysis, the number of inclusions was estimated at 186. In all, 87 patients were enrolled from 2008 to 2010. Of these, 45 (52%) had metastases. A total of 338 imaging abnormalities were analyzed; 86 lesions were considered metastases, and 20 of 25 lesion biopsies found melanoma metastases. In a patient-based analysis, the sensitivity of (18)F-FDG for diagnosis of melanoma metastases was higher than that of (123)I-BZA2, at 87% and 39%, respectively (P < 0.05). For specificity, (18)F-FDG and (123)I-BZA2 were not statistically different, at 78% and 94%, respectively. In a lesion-based analysis, the sensitivity of (18)F-FDG was statistically higher than that of (123)I-BZA2 (80% vs. 23%, P < 0.05). The specificity of (18)F-FDG was lower than that of (123)I-BZA2 (54% vs. 86%, P < 0.05). According to biopsy analysis, only 9 of 20 metastatic lesions (45%) were pigmented with high melanin

  4. Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs.

    PubMed

    Najjar, Amer M; Nishii, Ryuichi; Maxwell, David S; Volgin, Andrei; Mukhopadhyay, Uday; Bornmann, William G; Tong, William; Alauddin, Mian; Gelovani, Juri G

    2009-03-01

    Imaging 2 different molecular-genetic events in a single subject by PET is essential in a variety of in vivo applications. Using herpes simplex virus-1 thymidine kinase (HSV1-tk) mutants with narrower substrate specificities in combination with wild-type HSV1-tk (wtHSV1-tk) would enable differential imaging with corresponding radiotracers, namely 2'-deoxy-2'-(18)F-fluoro-5-ethyl-1-beta-d-arabinofuranosyl-uracil ((18)F-FEAU) and the acycloguanosine derivative 9-(4-(18)F-fluoro-3-[hydroxymethyl]butyl)guanine ((18)F-FHBG). In this study, we evaluated wtHSV1-tk and the A168H mutant, which has been reported to exhibit enhanced acycloguanosine substrate catalytic activity and diminished pyrimidine phosphorylating activity, as PET reporter genes. Computational analysis was performed to assess the binding mode of FHBG and FEAU to wtHSV1-tk and the A168H variant. U87 cells were stably transduced with wtHSV1-tk or HSV1-tk(A168H) fused with green fluorescent protein and sorted to obtain equivalent transgene expression. In vitro uptake studies were performed to determine rates of substrate accumulation and retention. Nude mice bearing tumors expressing HSV1-tk variants were subsequently imaged using (18)F-FHBG and (18)F-FEAU. Docking results indicate that binding of FHBG to the A168H variant is unaffected whereas the binding of FEAU is hindered because of a steric clash with the bulkier mutant residues. U87 cells expressing HSV1-tk(A168H) accumulated (18)F-FHBG in in vitro uptake studies at a 3-fold higher rate than did cells expressing wtHSV1-tk without any detectable accumulation of (3)H-FEAU. Furthermore, HSV1-tk(A168H) demonstrated no thymidine phosphorylation activity. In contrast, U87 cells expressing wtHSV1-tk preferentially accumulated (3)H-FEAU at an 18-fold higher rate than they did (18)F-FHBG. Tumors expressing wtHSV1-tk or HSV1-tk(A168H) were distinctly imaged with (18)F-FEAU or (18)F-FHBG, respectively. Hence, tumors expressing HSV1-tk(A168H) accumulated 8.4-fold

  5. Impact of a Multiple Mice Holder on Quantitation of High-Throughput MicroPET Imaging With and Without Ct Attenuation Correction

    PubMed Central

    Habte, Frezghi; Ren, Gang; Doyle, Timothy C.; Liu, Hongguang; Cheng, Zhen; Paik, David S.

    2016-01-01

    Purpose The aim of this study is to evaluate the impact of scanning multiple mice simultaneously on image quantitation, relative to single mouse scans on both a micro-positron emission tomography/computed tomography (microPET/CT) scanner (which utilizes CT-based attenuation correction to the PET reconstruction) and a dedicated microPET scanner using an inexpensive mouse holder “hotel.” Methods We developed a simple mouse holder made from common laboratory items that allows scanning multiple mice simultaneously. It is also compatible with different imaging modalities to allow multiple mice and multi-modality imaging. For this study, we used a radiotracer (64Cu-GB170) with a relatively long half-life (12.7 h), selected to allow scanning at times after tracer uptake reaches steady state. This also reduces the effect of decay between sequential imaging studies, although the standard decay corrections were performed. The imaging was also performed using a common tracer, 2-deoxy-2-[18 F]fluoro-d-glucose (FDG), although the faster decay and faster pharmacokinetics of FDG may introduce greater biological variations due to differences in injection-to-scan timing. We first scanned cylindrical mouse phantoms (50 ml tubes) both in a groups of four at a time (multiple mice mode) and then individually (single mouse mode), using microPET/CT and microPET scanners to validate the process. Then, we imaged a first set of four mice with subcutaneous tumors (C2C12Ras) in both single- and multiple-mice imaging modes. Later, a second set of four normal mice were injected with FDG and scanned 1 h post-injection. Immediately after completion of the scans, ex vivo biodistribution studies were performed on all animals to provide a “gold-standard” to compare quantitative values obtained from PET. A semi-automatic threshold-based region of interest tool was used to minimize operator variability during image analysis. Results Phantom studies showed less than 4.5 % relative error

  6. Expedited Synthesis of Fluorine-18 Labeled Phenols. A Missing Link in PET Radiochemistry

    SciTech Connect

    Katzenellenbogen, John A.; Zhou, Dong

    2015-03-26

    (diazocyclohexenones) by a novel reaction sequence that uses fluoride ion as a precursor and various activating electrophiles, and we have improved methods for the preparation of heterodiaryl iodonium salts. Both methods have been used to prepare interesting potential radiotracers. Other advances have been made in labeling dendrimeric nanoparticle structures of increasing interest for multimodal imaging and in advancing labeling through fluorosilane bonds. Thus, the progress we have made substantially fills the significant gap in PET radiochemistry that we originally identified, and it provides for the field new methodology that can be applied to a number of current challenges, including the preparation of several molecules of interest as radiotracers, such as 2-[18F]Fluoroestradiol (2-FES) and m-fluorotyrosine, which we have illustrated. These methods can be used by any skilled radiochemist interesting in preparing these agents or similar fluorine-18 labeled electron-rich arene systems of interested for PET biological imaging in the most general sense.

  7. A study of shape-dependent partial volume correction in pet imaging using ellipsoidal phantoms fabricated via rapid prototyping

    NASA Astrophysics Data System (ADS)

    Mille, Matthew M.

    Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards

  8. Current evidence base of FDG-PET/CT imaging in the clinical management of malignant pleural mesothelioma: emerging significance of image segmentation and global disease assessment.

    PubMed

    Basu, Sandip; Saboury, Babak; Torigian, Drew A; Alavi, Abass

    2011-10-01

    Increasingly, integrated positron emission tomography-computed tomography (PET/CT) imaging is playing a crucial role in the assessment of patients with known or suspected malignant pleural mesothelioma (MPM). Based on the data reported in the literature, this combined modality is likely to become the instrument of choice for examining patients of MPM. The research on this subject has focused on the following five domains: (1) differentiation of MPM from other benign pleural diseases, (2) preoperative staging for the selection of appropriate candidates for surgery, (3) evaluation for therapy response and post-treatment surveillance for recurrence, (4) prognostication based upon the intensity of 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake, and (5) planning of radiotherapy. These represent the bases for critical decision making in the management of mesothelioma, and FDG-PET/CT offers potential advantages over conventional CT imaging and thus can play a pivotal role in this regard. Optimal characterization of this potentially fatal disease with a high negative predictive value for MPM, superior capability for cancer staging initially and at the later course of disease, and ability for measuring therapeutic response and the precise determination of the target volume for radiotherapy planning represent distinct advantages of this promising molecular imaging tool. In this communication, we have explored the promising role of integrated FDG-PET/CT in the overall management of this serious malignancy. From the available data, the major role of PET-CT at present appears to be in the preoperative disease staging, response to treatment assessment, and post-treatment disease surveillance of MPM. In all these three areas, PET-CT convincingly shows better results than conventional anatomical imaging alone and thereby can aid in exploring novel therapeutic approaches. Disease prognosis and radiotherapy planning are evolving areas where this modality has demonstrated significant