Science.gov

Sample records for 2-2-dimethylpropane

  1. Fragrance material review on 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one.

    PubMed

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one when used as a fragrance ingredient is presented. 1-(2,4-Dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,4-dimethyl-3-cyclohexenyl)-2,2-dimethylpropan-1-one were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, sensitization, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis, structural characterization and thermal properties of a new copper(II) one-dimensional coordination polymer based on bridging N,N'-bis(2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine and dicyanamide ligands.

    PubMed

    Hopa, Cigdem; Cokay, Ismail

    2016-02-01

    The design and synthesis of polymeric coordination compounds of 3d transition metals are of great interest in the search for functional materials. The coordination chemistry of the copper(II) ion is of interest currently due to potential applications in the areas of molecular biology and magnetochemistry. A novel coordination polymer of Cu(II) with bridging N,N'-bis(2-hydroxyphenyl)-2,2-dimethylpropane-1,3-diamine (H2L-DM) and dicyanamide (dca) ligands, catena-poly[[[μ2-2,2-dimethyl-N,N'-bis(2-oxidobenzylidene)propane-1,3-diamine-1:2κ(6)O,N,N',O':O,O']dicopper(II)]-di-μ-dicyanamido-1:2'κ(2)N(1):N(5);2:1'κ(2)N(1):N(5)], [Cu2(C19H20N2O2)(C2N3)2]n, has been synthesized and characterized by CHN elemental analysis, IR spectroscopy, thermal analysis and X-ray single-crystal diffraction analysis. Structural studies show that the Cu(II) centres in the dimeric asymmetric unit adopt distorted square-pyramidal geometries, as confirmed by the Addison parameter (τ) values. The chelating characteristics of the L-DM(2-) ligand results in the formation of a Cu(II) dimer with a double phenolate bridge in the asymmetric unit. In the crystal, the dimeric units are further linked to adjacent dimeric units through μ1,5-dca bridges to produce one-dimensional polymeric chains.

  3. Mild one-step synthesis of dibromo compounds from cyclic ethers.

    PubMed

    Billing, Peter; Brinker, Udo H

    2012-12-21

    A novel one-step method for mildly converting cyclic ethers into dibromo compounds is reported. Alcohols, oximes, aldehydes, and ketones are known to react under Appel or Corey-Fuchs reaction conditions, but apparently these have never been applied to oxetanes or larger cyclic ethers. Treatment of 3,3-dimethyloxetane (1) with tetrabromomethane and triphenylphosphine gave the corresponding dibromo compound 1,3-dibromo-2,2-dimethylpropane (2). The less-strained homologue oxolane (6) was also reacted giving 1,4-dibromobutane (7) in a 93% yield. Mechanistic interpretations are offered to explain the observed reaction rates of the conversions described.

  4. Coupled-cluster, Möller Plesset (MP2), density fitted local MP2, and density functional theory examination of the energetic and structural features of hydrophobic solvation: water and pentane.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2012-02-07

    The interaction potentials between immiscible polar and non-polar solvents are a major driving force behind the formation of liquid:liquid interfaces. In this work, the interaction energy of water-pentane dimer has been determined using coupled-cluster theory with single double (triple) excitations [CCSD(T)], 2nd order Möller Plesset perturbation theory (MP2), density fitted local MP2 (DF-LMP2), as well as density functional theory using a wide variety of density functionals and several different basis sets. The M05-2X exchange correlation functionals exhibit excellent agreement with CCSD(T) and DF-LMP2 after taking into account basis set superposition error. The gas phase water-pentane interaction energy is found to be quite sensitive to the specific pentane isomer (2,2-dimethylpropane vs. n-pentane) and relative orientation of the monomeric constituents. Subsequent solution phase cluster calculations of 2,2-dimethylpropane and n-pentane solvated by water indicate a positive free energy of solvation that is in good agreement with available experimental data. Structural parameters are quite sensitive to the density functional employed and reflect differences in the two-body interaction energy calculated by each method. In contrast, cluster calculations of pentane solvation of H(2)O solute are found to be inadequate for describing the organic solvent, likely due to limitations associated with the functionals employed (B3LYP, BHandH, and M05-2X).

  5. Screening metal-organic frameworks for separation of pentane isomers.

    PubMed

    Krishna, Rajamani; van Baten, Jasper M

    2017-03-28

    This article compares the performances of several metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) for the separation of pentane isomers: n-pentane (nC5), 2-methylbutane (2MB), and 2,2-dimethylpropane (= neo-pentane (neo-P)) in fixed bed adsorbers. The required input data on unary and mixture adsorption equilibria are obtained from Configurational-Bias Monte Carlo (CBMC) simulations for twelve different adsorbents. The best separation performance is realized with Fe2(BDP)3, where BDP(2-) = 1,4-benzenedipyrazolate, a MOF with triangular shaped 4.9 Å channels that affords the ideal pore topology to differentiate between the three pentane isomers; the linear nC5 aligns commensurately with the pore landscape. Using transient breakthrough simulations in fixed bed adsorbers, the separation performance of Fe2(BDP)3 is found to be significantly superior to that of other materials.

  6. Improved catalytic activity of homochiral dimeric cobalt-salen complex in hydrolytic kinetic resolution of terminal racemic epoxides.

    PubMed

    Kureshy, Rukhsana I; Singh, Surendra; Khan, Noor-Ul H; Abdi, Sayed H R; Ahmad, Irshad; Bhatt, Achyut; Jasra, Raksh V

    2005-11-01

    Enantiomerically pure epoxides (99%, ee) and diols (98%, ee) from racemic epichlorohydrin, 1,2-epoxypropane, 1,2-epoxyhexane, 1,2-epoxyoctane, and 1,2-epoxydodecane were obtained in 2-12 h by hydrolytic kinetic resolution (HKR) using the recyclable dimeric homochiral Co(III)-salen complex 1' (0.2 mol %) derived from 5,5-(2',2'-dimethylpropane)-di-[(R,R)-{N-(3-tert-butylsalicylidine)-N'-(3',5'-di-tert-butylsalicylidine)}-1,2-cyclohexanediamine] with cobalt(II) acetate. Unlike its monomeric version, the catalyst could be recycled several times without loss in performance. The use of BF(4) as counter ion in HKR reactions was also investigated.

  7. Electron transport in fast dielectric liquids at high applied electric fields

    SciTech Connect

    Faidas, H.; McCorkle, D.L. . Dept. of Physics); Christophorou, L.G. )

    1990-01-01

    The drift velocity, w, of excess electrons as a function of the applied uniform electric field, E, in liquid 2,2-dimethylpropane (TMC), tetramethylsilane (TMS), tetramethylgermanium (TMG), tetramethyltin (TMT), 2,2,4,4-tetramethylpentane (TMP) and in mixtures of TMS with TMP (mole ratio M = 1.31/1) and n-pentane (M = 102/1, 17/1, and 5.6/1) has been measured for E-values up to {approximately}10{sup 5} V cm{sup {minus}1}. The thermal electron mobility in the above liquids is 71.5, 119.3, 114.7, 85.7, 31.8, 39.1, 118, 85, and 47.6 cm{sup 2} s{sup {minus}1} V{sup {minus}1}, respectively. 8 refs., 2 figs., 1 tab.

  8. Phenoxy-bridged binuclear Zn(II) complex holding salen ligand: Synthesis and structural characterization

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Al-Resayes, Saud I.

    2016-03-01

    A novel binuclear phenoxo-bridged zinc complex obtained from the interaction of ligand, 2,2-(1E,1E)-(2,2-dimethylpropane-1,3-diyl)bis(azanylylidene) bis(methanylylidene)diphenol with zinc chloride is reported. The synthesized and isolated zinc complex has been characterized by FT-IR, 1H- and 13C- NMR, ESI-MS, TGA/DTA and single crystal X-ray diffraction studies. The phenoxo-bridge in this binuclear Zn(II) complex is due to the phenolic oxygen of the salen liagnd. The complex crystallizes in monoclinic P-1 space group, and different geometry has been assigned for both zinc ions in the complex.

  9. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules

    SciTech Connect

    Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin

    2014-08-21

    A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model of alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.

  10. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    PubMed Central

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-01-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2′-(1E,1′E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes. PMID:27595801

  11. Identification and analytical characterization of four synthetic cannabinoids ADB-BICA, NNL-1, NNL-2, and PPA(N)-2201.

    PubMed

    Qian, Zhenhua; Jia, Wei; Li, Tao; Hua, Zhendong; Liu, Cuimei

    2017-01-01

    Since the first appearance as psychotropic drugs in illegal markets in 2008, the spread of synthetic cannabinoids is becoming a serious problem in many countries. This paper reports on the analytical properties and structure elucidation of four cannabimimetic derivatives in seized material: 1-benzyl-N-(1-carbamoyl-2,2-dimethylpropan-1-yl)-1H-indole-3-carboxamide (ADB-BICA, 1), N-(1-carbamoylpropan-1-yl)-1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide (NNL-1, 2), (4-benzylpiperazin-1-yl)(1-(5-fluoropentyl)-1H-indol-3-yl)methanone (NNL-2, 3), and N-(1-carbamoyl-2-phenylethyl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide (PPA(N)-2201, 4). The identifications were based on liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) spectroscopy. No chemical or pharmacological data about compounds 1-3 have appeared until now, making this the first report on these compounds. The GC-MS data of 4 has been reported, but this study added the LC-MS, FT-IR, and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Neopentane and solid acids: direct hydron exchange before cracking.

    PubMed

    Walspurger, Stéphane; Sun, Yinyong; Souna Sido, Abdelkarim Sani; Sommer, Jean

    2006-09-21

    The hydrogen/deuterium exchange reaction of 2,2-dimethylpropane (neopentane) over D(2)O-exchanged zeolites (MOR, FAU, BEA, MFI) using a batch recirculation reactor was studied by means of gas chromatography coupled with mass spectrometer. In the temperature range 473-573 K, H/D exchange proceeds without side reaction such as cracking at short contact times. Indeed the C-H bond has appeared favorably involved in the activation of neopentane compared to the less accessible C-C bond. The transition state allowing hydron exchange is most likely a carbonium species (pentacoordinated carbon) as in the case of the H/D exchange between methane and solid acid. The activation energies of the H/D exchange between neopentane and zeolites are the same for all zeolites indicating a common carbonium ion type transition state. On the basis of previous results in the case of the exchange between methane and liquid superacids, the deuterium exchange rates in neopentane were tentatively related to the acidity of the solids. However the order of activity MOR > MFI > BEA > FAU seems to be related to the size of the pores, which may suggest the involvement of a confinement effect in the zeolites cavities. Moreover we found that H/D exchange takes also place between neopentane and deuterated sulfated zirconia (SZ) emphasizing its strong acidity.

  13. Structural elucidation and physicochemical properties of mononuclear Uranyl(VI) complexes incorporating dianionic units

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Velmurugan, Gunasekaran; Wabaidur, Saikh Mohammad; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Al-Resayes, Saud I.; Al-Othman, Zeid A.; Venuvanalingam, Ponnambalam

    2016-09-01

    Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2‧-(1E,1‧E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes.

  14. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-05-01

    The gamma-ray spectra of pentane (C5H12) and its two isomers, i.e., 2-Methylbutane (CH3C(CH3)HC2H5) and 2,2-Dimethylpropane (C(CH3)4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron-electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron-electron annihilation process has also been suggested in the present work.

  15. Products and mechanism of the reaction of OH radicals with 2,2,4-trimethylpentane in the presence of NO.

    PubMed

    Aschmann, Sara M; Arey, Janet; Atkinson, Roger

    2002-02-15

    Alkanes are important constituents of gasoline fuel and vehicle exhaust, with branched alkanes comprising a significant fraction of the total alkanes observed in urban areas. Products of the gas-phase reactions of OH radicals with 2,2,4-trimethylpentane and 2,2,4-trimethylpentane-d18 in the presence of NO at 298+/-2 K and atmospheric pressure of air have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography-mass spectrometry (GC-MS), and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS). Acetone, 2-methylpropanal, and 4-hydroxy-4-methyl-2-pentanone were identified and quantified by GC-FID from 2,2,4-trimethylpentane with molar formation yields of 54+/-7%, 26+/-3%, and 5.1+/-0.6%, respectively; upper limits to the formation yields of acetaldehyde, 2,2-dimethylpropanal, and 4,4-dimethyl-2-pentanone were obtained. Additional products observed from 2,2,4-trimethylpentane by API-MS and API-MS/MS analyses using positive and negative ion modes were hydroxy products of molecular weight 130 and 144, a product of molecular weight 128 (attributed to a C8-carbonyl), and hydroxynitrates of molecular weight 135, 177, and 191 (attributed to HOC4H8ONO2, HOC7H14ONO2, and HOC8H16-ONO2, respectively). Formation of HOC8H16ONO2 and HOC7H14-ONO2 is consistent with the observation of products of molecular weight 207 (HOC8D16ONO2) and 191 (HOC7D14-ONO2), respectively, in the API-MS analyses of the 2,2,4-trimethylpentane-d18 reaction (-OD groups rapidly exchange to -OH groups under our experimental conditions). These product data allow the reaction pathways to be delineated to a reasonable extent, and the reaction mechanism is discussed.

  16. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The importance of solvent hydrogen-bond interactions with the substrate and the abstracting radical.

    PubMed

    Salamone, Michela; Giammarioli, Ilaria; Bietti, Massimo

    2011-06-03

    A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO•) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO•) have been studied in MeCN. The reaction of CumO• with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO•. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO• and BnO• with PA and DMPA (k(H)(BnO•)/k(H)(CumO•) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.

  17. Crystal Structure of Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 Å Resolution: Dynamics of Catalytic Residues

    SciTech Connect

    Oakley, Aaron J.; Klvana, Martin; Otyepka, Michal; Nagata, Yuji; Wilce, Matthew C.J.; Damborsky, Jiri

    2010-11-16

    We present the structure of LinB, a 33-kDa haloalkane dehalogenase from Sphingomonas paucimobilis UT26, at 0.95 {angstrom} resolution. The data have allowed us to directly observe the anisotropic motions of the catalytic residues. In particular, the side-chain of the catalytic nucleophile, Asp108, displays a high degree of disorder. It has been modeled in two conformations, one similar to that observed previously (conformation A) and one strained (conformation B) that approached the catalytic base (His272). The strain in conformation B was mainly in the C{sub {alpha}}-C{sub {beta}}-C{sub {gamma}} angle (126{sup o}) that deviated by 13.4{sup o} from the 'ideal' bond angle of 112.6{sup o}. On the basis of these observations, we propose a role for the charge state of the catalytic histidine in determining the geometry of the catalytic residues. We hypothesized that double-protonation of the catalytic base (His272) reduces the distance between the side-chain of this residue and that of the Asp108. The results of molecular dynamics simulations were consistent with the structural data showing that protonation of the His272 side-chain nitrogen atoms does indeed reduce the distance between the side-chains of the residues in question, although the simulations failed to demonstrate the same degree of strain in the Asp108 C{sub {alpha}}-C{sub {beta}}-C{sub {gamma}} angle. Instead, the changes in the molecular dynamics structures were distributed over several bond and dihedral angles. Quantum mechanics calculations on LinB with 1-chloro-2,2-dimethylpropane as a substrate were performed to determine which active site conformations and protonation states were most likely to result in catalysis. It was shown that His272 singly protonated at N{sub {delta}1} and Asp108 in conformation A gave the most exothermic reaction ({Delta}H = -22 kcal/mol). With His272 doubly protonated at N{sub {delta}1} and N{sub {epsilon}2}, the reactions were only slightly exothermic or were endothermic

  18. Corona discharge of Titan's troposphere.

    PubMed

    Navarro-Gonzalez, R; Ramirez, S I

    1997-01-01

    The atmosphere of Titan is constantly bombarded by galactic cosmic rays and Saturnian magnetospheric electrons causing the formation of free electrons and primary ions, which are then stabilized by ion cluster formation and charging of aerosols. These charged particles accumulate in drops in cloud regions of the troposphere. Their abundance can substantially increase by friction, fragmentation or collisions during convective activity. Charge separation occurs with help of convection and gravitational settling leading to development of electric fields within the cloud and between the cloud and the ground. Neutralization of these charge particles leads to corona discharges which are characterized by low current densities. These electric discharges could induce a number of chemical reactions in the troposphere and hence it is of interest to explore such effects. We have therefore, experimentally studied the corona discharge of a simulated Titan's atmosphere (10% methane and 2% argon in nitrogen) at 500 Torr and 298 K by GC-FTIR-MS techniques. The main products have been identified as hydrocarbons (ethane, ethyne, ethene, propane, propene + propyne, cyclopropane, butane, 2-methylpropane, 2-methylpropene, n-butene, 2-butene, 2,2-dimethylpropane, 2-methylbutane, 2-methylbutene, n-pentane, 2,2-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,2-dimethylhexane, 2,2-dimethylpentane, 2,2,3-trimethylbutane, 2,3-dimethylpentane and n-heptane), nitriles (hydrogen cyanide, cyanogen, ethanenitrile, propanenitrile, 2-methylpropanenitrile and butanenitrile) and an uncharacterized film deposit. We present their trends of formation as a function of discharge time in an ample interval and have derived their initial yields of formation. These results clearly demonstrate that a complex organic chemistry can be initiated by corona processes in the lower atmosphere. Although photochemistry and charged particle chemistry occurring in the stratosphere can account for many of the

  19. Influence of the geometry around the manganese ion on the peroxidase and catalase activities of Mn(III)-Schiff base complexes.

    PubMed

    Vázquez-Fernández, M Ángeles; Bermejo, Manuel R; Fernández-García, M Isabel; González-Riopedre, Gustavo; Rodríguez-Doutón, M Jesús; Maneiro, Marcelino

    2011-12-01

    The peroxidase and catalase activities of eighteen manganese-Schiff base complexes have been studied. A correlation between the structure of the complexes and their catalytic activity is discussed on the basis of the variety of systems studied. Complexes 1-18 have the general formulae [MnL(n)(D)(2)](X)(H(2)O/CH(3)OH)(m), where L(n)=L(1)-L(13); D=H(2)O, CH(3)OH or Cl; m=0-2.5 and X=NO(3)(-), Cl(-), ClO(4)(-), CH(3)COO(-), C(2)H(5)COO(-) or C(5)H(11)COO(-). The dianionic tetradentate Schiff base ligands H(2)L(n) are the result of the condensation of different substituted (OMe-, OEt-, Br-, Cl-) hydroxybenzaldehyde with diverse diamines (1,2-diaminoethane for H(2)L(1)-H(2)L(2); 1,2-diamino-2-methylethane for H(2)L(3)-H(2)L(4); 1,2-diamino-2,2-dimethylethane for H(2)L(5); 1,2-diphenylenediamine for H(2)L(6)-H(2)L(7); 1,3-diaminopropane for H(2)L(8)-H(2)L(11); 1,3-diamino-2,2-dimethylpropane for H(2)L(12)-H(2)L(13)). The new Mn(III) complexes [MnL(1)(H(2)O)Cl](H(2)O)(2.5) (2), [MnL(2)(H(2)O)(2)](NO(3))(H(2)O) (4), [MnL(6)(H(2)O)(2)][MnL(6)(CH(3)OH)(H(2)O)](NO(3))(2)(CH(3)OH) (8), [MnL(6)(H(2)O)(OAc)](H(2)O) (9) and [MnL(7)(H(2)O)(2)](NO(3))(CH(3)OH)(2) (12) were isolated and characterised by elemental analysis, magnetic susceptibility and conductivity measurements, redox studies, ESI spectrometry and UV, IR, paramagnetic (1)H NMR, and EPR spectroscopies. X-ray crystallographic studies of these complexes and of the ligand H(2)L(6) are also reported. The crystal structures of the rest of the complexes have been previously published and herein we have only revised their study by those techniques still not reported (EPR and (1)H NMR for some of these compounds) and which help to establish their structures in solution. Complexes 1-12 behave as more efficient mimics of peroxidase or catalase in contrast with 13-18. The analysis between the catalytic activity and the structure of the compounds emphasises the significance of the existence of a vacant or a labile position in the